
Administration Guide Volume 2

Replication Server® 15.7

DOCUMENT ID: DC32518-01-1570-01
LAST REVISED: November 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Conventions ...1
Verify and Monitor Replication Server5

Check Replication System Log Files for Errors5
Verifying a Replication System6
Monitor Replication Server ...7

Verify Server Status ...8
Visual Monitoring of Status8
Display Replication System Thread Status9

Set and Use Threshold Levels11
Monitor Partition Percentages12

Customize Database Operations ..13
Functions, Function Strings, and Function-string

Classes ...13
Work with Functions, Function Strings, and Classes14

Functions ...14
Summary of System Functions17
Function Strings ...20
System Functions with Multiple Function Strings

...22
Function-String Classes ...22

System-Provided Classes23
Function-String Inheritance24
Restrictions in Mixed-Version Systems25

Manage Function-String Classes26
Creating a Function-String Class27
Assign a Function-String Class to a Database30
Drop a Function-String Class31

Manage Function Strings ..31
Function Strings and Function-string Classes32
Function-string Input and Output Templates32
Output Templates ...33

Administration Guide Volume 2 iii

Input Templates ...34
Function-string Variables36
Create Function Strings38
Alter Function Strings ..40
Drop Function Strings ..41
Restore Default Function Strings42
Create Empty Function Strings with the Output

Template ..43
Define Multiple Commands in a Function String

...43
Command Batching for Non-ASE Servers44
Use Declare Statements in Language Output

Templates ..45
Display Function-Related Information46

Obtain Information Using the admin Command
...46

Obtain Information Using Stored Procedures46
Default System Variable ..47

Extend Default Function Strings48
Use the replicate minimal columns Clause48

Use Function Strings with text, unitext, image, and
rawobject Datatypes ..49

Use the writetext Output Template Option for
rs_writetext Function Strings49

Use the none Output Tempate for rs_writetext
Function Strings ..49

Manage Warm Standby Applications53
Warm Standby Applications ..53

How a Warm Standby Works53
Database Connections in a Warm Standby

Application ...55
Primary and Replicate Databases and Warm

Standby Applications55
Warm Standby Requirements and Restrictions ...57

Contents

iv Replication Server

Function Strings for Maintaining Standby
Databases ...58

Replicated Information for Warm Standby58
Comparison of Replication Methods59
Use sp_reptostandby to Enable Replication60
Use sp_setreptable to Enable Replication65
Use sp_setrepproc to Copy User Stored

Procedures ..66
Replication of Tables with the Same Name but

Different Owners ..66
Replication of text, unitext, image, and rawobject

Data in Warm Standby Applications67
Configure Warm Standby Database for SQL

Statement Replication68
Replication of Encrypted Columns 68
Replication of Quoted Identifiers68
When Warm Standby Involves a Replicate

Database ...68
Change Replication for the Current isql Session

...69
Setting Up ASE Warm Standby Databases70

Before You Begin ...70
Task One: Creating the Logical Connection 71
Task Two: Add the Active Database72
Task Three: Enabling Replication for Objects in

the Active Database .. 72
Task Four: Adding the Standby Database73

Replication of the Master Database in a Warm
Standby Environment for ASE82

Setting Up Master Database Replication in a
Warm Standby Environment83

Switch the Active and Standby ASE Databases84
Determine if a Switch Is Necessary84
Before Switching Active and Standby Databases

...85

Contents

Administration Guide Volume 2 v

Internal Switching Steps86
After Switching Active and Standby Databases ...87
Making the Switch ..87

Monitor a Warm Standby Application91
Replication Server Log File91
Commands for Monitoring Warm Standby

Applications ...92
Set up Clients to Work with the Active Data Server93

Two Interfaces Files ...94
Symbolic Data Server Name for Client

Applications ...94
Map Client Data Server to Currently Active Data

Server ..94
Alter Warm Standby Database Connections95

Alter Logical Connections95
Alter Physical Connections98
Drop Logical Database Connections99

Warm Standby Applications Using Replication100
Warm Standby Application for a Primary

Database ...100
Warm Standby Application for a Replicate

Database ...102
Replication Definitions and Subscriptions for Warm

Standby Databases ..106
alter table Support for Warm Standby106
Use Replication Definitions to Optimize

Performance ..108
Use Replication Definitions to Copy Redundant

Updates ...110
Use Subscriptions with Warm Standby

Applications ...110
Missing Columns When You Create the Standby

Database ...114
Loss Detection and Recovery115

Performance Tuning ..117

Contents

vi Replication Server

Replication Server Internal Processing117
Threads, Modules, and Daemons117
Processes in the Primary Replication Server118
Processes in the Replicate Replication Server ..122

Configuration Parameters that Affect Performance123
Replication Server Parameters that Affect

Performance ..124
Connection Parameters that Affect Performance

...138
Route Parameters that Affect Performance146

Suggestions for Using Tuning Parameters147
Set the Amount of Time SQM Writer Waits147
Cache System Tables ..148
Executor Command Cache149
Stable Queue Cache ...151
SQM Command Cache152
Set Wake up Intervals ..154
Size the SQT Cache .. 154
Control the Number of Outstanding Bytes 155
Control the Number of Network Operations156
Control the Number of Commands the

RepAgent Executor Can Process156
Specify the Number of Stable Queue Segments

Allocated ..157
Select Disk Partitions for Stable Queues157
Make SMP More Effective158
Specify the Number of Transactions in a Group

...158
Set Transaction Size ..159
Enable Nonblocking Commit160
Memory Consumption Controls160

Parallel DSI Threads ...162
Benefits and Risks of Using Parallel DSI

Threads ...162
Parallel DSI Parameters163

Contents

Administration Guide Volume 2 vii

Components of Parallel DSI167
Process Transactions with Parallel DSI Threads

...168
Select Isolation Levels169
Transaction Serialization Methods171
Partitioning Rules: Reducing Contention and

Increasing Parallelism173
Resolution of Conflicting Updates178
Configuration of Parallel DSI for Optimal

Performance ..182
Parallel DSI and the rs_origin_commit_time

System Variable ...186
DSI Bulk Copy-in ..187

DSI Bulk Copy-in Configuration Parameters187
Changes to Subscription Materialization188
Counters for Bulk Copy-in188
Limitations for Bulk Copy-in189

SQL Statement Replication ..190
Introduction to SQL Statement Replication190
Performance Issues with Log-Based Replication

...191
Enable SQL Statement Replication194
Set SQL Statement Replication Threshold197
Configure Replication Definitions for SQL

Statement Replication201
Row Count Validation for SQL Statement

Replication ...204
Scope of SQL Statement Replication205
Issues Resolved by SQL Statement Replication

...208
Exceptions to Using SQL Statement Replication

...209
RSSD System Table Modifications211
Adaptive Server Monitoring Tables for SQL

Statement Replication211

Contents

viii Replication Server

Product and Mixed-Version Requirements212
Downgrades and SQL Statement Replication . . .212

Dynamic SQL for Enhanced Replication Server
Performance ...213

Dynamic SQL Configuration Parameters213
Set up the Configuration Parameters to Use

Dynamic SQL ..214
Table-Level Dynamic SQL Control214
replicate minimal columns Clause and Dynamic

SQL ...215
Limitations for Dynamic SQL215

Advanced Services Option ...216
High Volume Adaptive Replication to Adaptive

Server ..216
Enhanced DSI Efficiency229
Enhanced RepAgent Executor Thread

Efficiency ...230
Enhanced Distributor Thread Read Efficiency .. .231
Enhanced Memory Allocation232
Increase Queue Block Size232

Multi-Path Replication ...238
Multi-Path Replication Quick Start239
Parallel Transaction Streams240
Default and Alternate Connections241
Multiple Connections to the Replicate Database

...241
Multiple Connections from the Primary

Database ...245
Replication Definitions and Subscriptions246
Multiple Primary Replication Paths248
Creating Multiple Replication Paths for MSA

Environments ..260
Multiple Replication Paths for Warm Standby

Environments ...261
Dedicated Routes ..263

Contents

Administration Guide Volume 2 ix

Adaptive Server Monitoring Tables for Multiple
Replication Paths ...266

System Table Support for Alternate Primary and
Replicate Connections267

Multiprocessor Platforms ..267
Enable Multiprocessor Support267
Commands to Monitor Thread Status268
Monitor Performance ...268

Allocation of Queue Segments268
Default Allocation Mechanism269
Choose Disk Allocations269
Drop Hints and Partitions271

Heartbeat Feature in RMS ..271
Monitor Performance Using Counters273

Commands to View Counter Values273
Modules ..273

Replication Server Modules274
Counters ...275
Data Sampling ..275

Collect Statistics for a Specific Time Period276
Collect Statistics for an Indefinite Time Period . .279

View Statistics on Screen ...280
View Throughput Rates281
View Statistics About Messages and Memory

Use ..281
View the Number of Transactions in the Stable

Queues ..282
View Statistics Saved in the RSSD282

Use the rs_dump_stats Procedure282
View Information About the Counters284
Resetting of Counters ...284
Generate Performance Reports285

Errors and Exceptions Handling287
General Error Handling ...287
Error Log Files ..287

Contents

x Replication Server

Replication Server Error Log288
RepAgent Error Log Messages290

Data Server Error Handling ..291
RCL Commands and System Procedures for

Error Processing ..291
Default Error Classes ...292
Native Error Codes for Non-ASE Databases292
Create an Error Class ..293
Alter Error Classes ...294
Initialize a New Error Class294
Drop an Error Class ...295
Change the Primary Replication Server for an

Error Class ..295
Display Error Class Information296
Assign Actions to Data Server Errors296
Display Assigned Actions for Error Numbers298
Row Count Validation ..298

Exceptions Handling ...301
Handling of Failed Transactions302
Access the Exceptions Log303
Delete Transactions from the Exceptions Log . . .305

DSI Duplicate Detection ..306
Duplicate Detection for System Transactions307

Replication System Recovery ..309
How to Use Recovery Procedures309
Configure the Replication System to Support Sybase

Failover ...310
Enable Failover Support in Replication Server . .310

Configure the Replication System to Prevent Data
Loss ..313

Save Interval for Recovery313
Back up the RSSDs ...316
Create Coordinated Dumps316

Recovery from Partition Loss or Failure317

Contents

Administration Guide Volume 2 xi

Symptoms of and Relevant Recovery
Procedures for Partition Loss or Failure318

Recovering from Partition Loss or Failure318
Recovering Messages from Off-line Database

Logs ...319
Recovering Messages from the Online

Database Log ..321
Recovery from Truncated Primary Database Logs321

Recovering Messages from Truncated Primary
Database Logs ..322

Recovery from Primary Database Failures323
Loading a Primary Database from Dumps324
Loading from Coordinated Dumps325

Recovery from RSSD Failure326
Procedures to Recover an RSSD from Dumps ..327
Using the Basic RSSD Recovery Procedure 327
Using the Subscription Comparison Procedure

...330
Using the Subscription Re-Creation Procedure

...336
Using the Deintegration and Reintegration

Procedure ..339
Recovery Support Tasks ...339

Rebuild Stable Queues340
Replicate Database Resynchronization for Adaptive

Server ...350
Configuring Database Resynchronization350
Database Resynchronization Scenarios354

Asynchronous Procedures ...363
Introduction to Asynchronous Procedure Delivery363

Replicated Stored Procedures Logging by
Adaptive Server ...363

Applied Stored Procedures ...364
Request Stored Procedures365
Asynchronous Stored Procedure Prerequisites366

Contents

xii Replication Server

Implementing an Applied Stored Procedure 366
Warning Conditions ...368

Implementing a Request Stored Procedure370
Specify Stored Procedures and Tables for Replication

..372
Manage User-Defined Functions372

Create a User-Defined Function373
Adding Parameters to a User-Defined Function

...374
Drop a User-defined Function374
Map a Function to a Different Stored Procedure

Name ...375
Specify a Nonunique Name for a User-defined

Function ...376
High Availability on Sun Cluster 2.2379

Introduction to Sybase Replication for Sun Cluster HA
..379

Terminology ..379
Technology Overview ..380
Configuration of Replication Server for High

Availability ...381
Installing Replication Server for HA381
Installing Replication Server as a Data Service

...383
Administration of Replication Server as a Data Service

..385
Data Service Start and Shutdown385
Logs for Sun Cluster for HA385

Implement a Reference Replication Environment387
Reference Replication Environment Implementation

..387
Platform Support ..387
Components for Reference Implementation388

Prerequisites for the Reference Environment388
Build the Reference Environment389

Contents

Administration Guide Volume 2 xiii

Reference Implementation Configuration Files
...389

Configure the Reference Environment393
Run Performance Tests on the Reference

Environment ...393
Obtain Tests Results from the Reference Environment

..394
rs_ticket_history Report394
Monitors and Counters Report395

Shut Down the Reference Implementation Servers396
Clean Up the Reference Environment396
Objects Created for the Reference Environment396

Table Schema ..398
Glossary ...405
Obtaining Help and Additional Information419

Technical Support ...419
Downloading Sybase EBFs and Maintenance Reports

..419
Sybase Product and Component Certifications420
Creating a MySybase Profile420
Accessibility Features ...420

Index ..423

Contents

xiv Replication Server

Conventions

These style and syntax conventions are used in Sybase® documentation.

Style conventions

Key Definition

monospaced(fixed-
width)

• SQL and program code

• Commands to be entered exactly as shown

• File names

• Directory names

italic monospaced In SQL or program code snippets, placeholders for user-specified
values (see example below).

italic • File and variable names

• Cross-references to other topics or documents

• In text, placeholders for user-specified values (see example be-
low)

• Glossary terms in text

bold san serif • Command, function, stored procedure, utility, class, and meth-
od names

• Glossary entries (in the Glossary)

• Menu option paths

• In numbered task or procedure steps, user-interface (UI) ele-
ments that you click, such as buttons, check boxes, icons, and so
on

If necessary, an explanation for a placeholder (system- or setup-specific values) follows in
text. For example:

Run:
installation directory\start.bat

where installation directory is where the application is installed.

Conventions

Administration Guide Volume 2 1

Syntax conventions

Key Definition

{ } Curly braces indicate that you must choose at least one of the enclosed options. Do
not type the braces when you enter the command.

[] Brackets mean that choosing one or more of the enclosed options is optional. Do
not type the brackets when you enter the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options shown.

, The comma means you can choose as many of the options shown as you like,
separating your choices with commas that you type as part of the command.

... An ellipsis (three dots) means you may repeat the last unit as many times as you
need. Do not include ellipses in the command.

Case-sensitivity

• All command syntax and command examples are shown in lowercase. However,
replication command names are not case-sensitive. For example, RA_CONFIG,
Ra_Config, and ra_config are equivalent.

• Names of configuration parameters are case-sensitive. For example, Scan_Sleep_Max is
not the same as scan_sleep_max, and the former would be interpreted as an invalid
parameter name.

• Database object names are not case-sensitive in replication commands. However, to use a
mixed-case object name in a replication command (to match a mixed-case object name in
the primary database), delimit the object name with quote characters. For example:
pdb_get_tables "TableName"

• Identifiers and character data may be case-sensitive, depending on the sort order that is in
effect.
• If you are using a case-sensitive sort order, such as “binary,” you must enter identifiers

and character data with the correct combination of uppercase and lowercase letters.
• If you are using a sort order that is not case-sensitive, such as “nocase,” you can enter

identifiers and character data with any combination of uppercase or lowercase letters.

Terminology
Replication Agent™ is a generic term used to describe the Replication Agents for Adaptive
Server® Enterprise, Oracle, IBM DB2 UDB, and Microsoft SQL Server. The specific names
are:

• RepAgent – Replication Agent thread for Adaptive Server Enterprise
• Replication Agent for Oracle

Conventions

2 Replication Server

• Replication Agent for Microsoft SQL Server
• Replication Agent for UDB – for IBM DB2 on Linux, Unix, and Windows

Conventions

Administration Guide Volume 2 3

Conventions

4 Replication Server

Verify and Monitor Replication Server

Verifying and monitoring Replication Server® includes checking error logs, verifying that the
components of a replication system are running, and monitoring the status of system
components and processes.

The replication system includes data servers and Replication Servers. It may also include
Replication Agents for heterogeneous data servers. The Replication Agent for Adaptive
Server is RepAgent, an Adaptive Server thread.

Note: If you are using a Replication Agent for a heterogeneous data server, see the Replication
Agent documentation for your data server for information about troubleshooting your
Replication Agent.

In a fully operational replication system, all data servers, Replication Servers, Replication
Agents, and their internal threads and other components are running. Basic troubleshooting
tasks you can perform on the replication system include:

• Checking error logs for status and error messages
• Logging in to system servers and checking that all threads are functioning, routes and

connections are in place, and the interfaces file information is correct
• Monitoring Replication Server and its threads and checking partition threshold levels

See the Replication Server Troubleshooting Guide for detailed information about monitoring
and troubleshooting Replication Server.

Check Replication System Log Files for Errors
Replication Server records status and error messages, including internal errors, in the
Replication Server error log file.

Use the admin log_name command to display the path to the current log file. The default name
for the log file is repserver.log. You can change the default name by executing
repserver with the -E option and specifying the new log file name.

See Replication Server Reference Manual > Replication Server Commands for more
information about these commands.

Internal errors are those where the only action available to Replication Server is to dump the
stack and exit. For diagnostic purposes, Replication Server prints a trace of its execution stack
in the log and leaves a record of its state when the error occurred.

Messages continue to accumulate in the error log files until you remove them. For this reason,
you may choose to truncate the log files when the Replication Server is shut down. You can
also close the Replication Server log file and begin a new log file by using the admin
set_log_name command.

Verify and Monitor Replication Server

Administration Guide Volume 2 5

The Replication Server log file contains messages generated during the execution of
asynchronous commands, such as create subscription and create route, which continue
processing after the commands complete. While you are executing asynchronous commands,
pay special attention to the log files for the Replication Servers affected by the procedure.

If a log file is unavailable, important error information is written to the standard error output
file, which you can display on a terminal or redirect to a file.

Verifying a Replication System
Verify that the entire replication system is working when you are about to create replication
definitions or subscriptions or when you are performing diagnostics on your system.

Prerequisites
Ensure that no threads are down before you confirm that the replication system is working.

Task

If you encounter errors, verifying your system allows you to rule out the possibility that
threads or components are not running, or that routes and connections are not properly set
up.

To make sure that Replication Server threads are running, you can execute admin
who_is_down, which displays only threads that are not running. Alternatively, execute admin
who to display information about all threads.

1. Verify that replication system servers and Replication Agents are running and available.

At the primary site, log in to these servers:
• Data server with the primary database and its Replication Agent

If you are using Adaptive Server, execute sp_help_rep_agent at Adaptive Server to
display status information for RepAgent thread.

• Replication Server managing the primary database
• RSSD (and its Replication Agent) for the primary Replication Server

If you are using Adaptive Server, execute sp_help_rep_agent at Adaptive Server to
display status information for RepAgent thread.

At replicate sites, log in to these servers:
• Data servers with replicate databases and, if request functions are executed at these

databases, their Replication Agents
If you are using Adaptive Server, execute sp_help_rep_agent at Adaptive Server to
display status information for RepAgent thread.

• Replication Servers managing replicate databases
• RSSDs (and their Replication Agents) for replicate Replication Servers

Verify and Monitor Replication Server

6 Replication Server

If you are using Adaptive Server, execute sp_help_rep_agent at Adaptive Server to
display status information for RepAgent thread.

2. Use the admin show_connections command at Replication Server to verify that these
routes and connections are in place:

• Routes from the primary Replication Server to each replicate Replication Server
• Database connection between the primary Replication Server and the primary

database
• Route from a replicate Replication Server to the primary Replication Server, if the

replicate Replication Server manages a replicate database in which request functions
are executed

• Database connections between each replicate Replication Server and its replicate
database

3. Verify the accuracy of entries in the interfaces file.

When creating subscriptions, be sure an entry for the primary data server exists in the
interfaces file for the replicate Replication Server. If you are using atomic or non-atomic
materialization, the replicate Replication Server retrieves initial rows through a direct
connection to the primary data server.

4. Use admin who to verify that these Replication Server threads are running:

• Data Server Interface (DSI)
• Replication Server Interface (RSI)
• Distributor (DIST)
• Stable Queue Manager (SQM)
• Stable Queue Transaction interface (SQT)
• RepAgent User

See also
• Display Replication System Thread Status on page 9

Monitor Replication Server
While the replication system is in operation, you may need to monitor its components and
processes.

You may need to:

• Monitor replication system servers.
• Monitor DSI, RSI, and other thread status.
• Use system information commands to obtain information about various aspects of the

Replication Server.

Verify and Monitor Replication Server

Administration Guide Volume 2 7

Verify Server Status
There are several methods you can use to verify the status of your servers.
• Use isql to log in to each server. If the login succeeds, the server is running.
• Create a script that logs in to and displays the status of each Adaptive Server and its

RepAgent thread, other Replication Agent (if any), and Replication Server. Make sure all
servers in the script are included in the interfaces file.

If a login fails, it may be caused by one of the following problems:

Problem: You typed an incorrect name, or the interfaces file you are using does not have an
entry for the server.
DB-LIBRARY error:
 Server name not found in interface file.

Problem: The server is running, but you specified an incorrect login name or password.
DB-LIBRARY error:
 Login incorrect.

Problem: The server is not running.
Operating-system error:
 Invalid argument
 DB-LIBRARY error:
 Unable to connect: Server is unavailable
 or does not exist.

Problem: The interfaces file cannot be found.
Operating-system error:
 No such file or directory
 DB-LIBRARY error:
 Could not open interface file.

Problem: The interfaces file exists, but you do not have permission to access it.
Operating-system error:
 Permission denied
 DB-LIBRARY error:
 Could not open interface file

If you cannot log in but do not receive an error message, you can assume that the server has
stopped processing. Call Sybase Technical Support if you need assistance in determining the
problem.

Visual Monitoring of Status
Use the Replication Manager GUI to monitor the status in Replication Monitoring Services
(RMS). The Replication Manager connects to the servers in the environment through RMS.

Replication Manager graphically displays an environment or object status.

The status of an environment is the state of its components. An object’s status includes its
current state and a list of reasons for the state. The state of each object appears on the object

Verify and Monitor Replication Server

8 Replication Server

icon, in the parent object Details list, and on the Properties dialog box for that object. You can
monitor the status of servers, connections, routes, and queues.

See Replication Server Administration Guide Volume 1 > Managing Replication Server with
Sybase Central.

Display Replication System Thread Status
Display general information on the different types of current Replication Server threads with
the relevant admin who command or a system procedure.

Table 1. Monitoring Replication Server Threads

Replication Server Thread Command

Distributor (DIST) – uses SQT and SQM to read transactions from the
inbound queue.

admin who, dist

Data Server Interface (DSI) – submits transactions to data server. admin who, dsi

REP AGENT USER – verifies that transactions from the data server
are valid and writes them to the inbound queue.

admin who

Note: Use sp_who or
sp_help_rep_agent to dis-
play status of RepAgent
thread at Adaptive Server.

Replication Server Interface (RSI) – logs in to each destination Rep-
lication Server and transfers commands from the stable queue to the
destination server.

admin who, rsi

Stable Queue Manager (SQM) – manages Replication Server stable
queues.

admin who, sqm

Stable Queue Transaction interface (SQT) – reads transactions in a
queue and passes them to the SQT reader.

admin who, sqt

See:

• Replication Server Troubleshooting Guide to interpret the command output for
troubleshooting purposes.

• Replication Server Reference Manual > Replication Server Commands > admin who

• Replication Server Reference Manual > Adaptive Server Commands and System
Procedures > sp_help_rep_agent

• Adaptive Server Enterprise > Reference Manual: Procedures > System Procedures >
sp_who

Verify and Monitor Replication Server

Administration Guide Volume 2 9

Use System Information Commands
In addition to admin who, Replication Server offers other admin commands to assist you in
monitoring Replication Server.

See Replication Server Reference Manual > Replication Server Commands for details on each
command.

Table 2. Overview of System Information Commands

Command Description

admin disk_space Displays utilization of disk partitions accessed by the Replication
Server.

admin echo Determines if the local Replication Server is running.

admin get_generation Retrieves the generation number for a primary database, used in re-
covery operations.

admin health Displays the overall status of the Replication Server.

admin log_name Displays the path to the current log file.

admin logical_status Displays the status of logical database connections, used in warm
standby applications.

admin pid Displays the process ID of the Replication Server.

admin quiesce_check Determines if the queues in the Replication Server have been quiesced.

admin quiesce_force_rsi Determines whether a Replication Server is quiescent. Also forces
Replication Server to deliver outbound messages.

admin rssd_name Displays the names of the data server and database for the RSSD.

admin security_property Displays security features of network-based security systems suppor-
ted by Replication Server.

admin security_setting Displays network-based security settings of a particular target server.

admin set_log_name Closes the existing Replication Server log file and opens a new log
file.

admin show_connections Displays information about all connections and routes to and from
Replication Server.

admin show_func-
tion_classes

Displays the names of existing function-string classes and their parent
classes and indicates the number of levels of inheritance.

admin show_route_ver-
sions

Displays the version number of routes that originate at Replication
Server and routes that terminate at Replication Server.

admin show_site_version Displays the site version of Replication Server.

Verify and Monitor Replication Server

10 Replication Server

Command Description

admin sqm_readers Displays information about threads that are reading the inbound
queue.

admin stats Displays information and statistics about Replication Server counters.
Replaces admin statistics.

admin statistics, md Displays statistics about message delivery and counters.

admin statistics, mem Displays statistics about memory utilization.

admin statistics, reset Resets the message delivery statistics.

admin version Displays which version of the Replication Server you are running,
representing the software version.

admin who Displays information about all threads in the Replication Server.

admin who, dsi Displays information about DSI threads that connect to a data server.

admin who, rsi Displays information about RSI threads that connect to other Repli-
cation Servers.

admin who, sqm Displays information about all queues managed by the SQM.

admin who, sqt Displays information about all queues managed by the SQT.

admin who_is_down Displays the same information as admin who, but only about threads
that are down.

admin who_is_up Displays the same information as admin who, but only about threads
that are running.

Set and Use Threshold Levels
You can configure Replication Server to warn when partitions become too full.

Stable queue partitions fill up when a Replication Server is receiving more messages than it is
sending. For example, if a network is down between a primary site and a replicate site, the
Replication Server at the primary site queues up the undeliverable messages. When the
network returns to service, the messages can be delivered, and then deleted from the primary
Replication Server partitions.

If a partition becomes completely full, senders cannot deliver their messages to the
Replication Server, and messages begin to back up in the partitions at previous sites and in the
transaction logs for primary databases.

Warning! If the situation is not corrected, RepAgent is unable to update the secondary
truncation point in the database log, and the transaction log fills. Clients are then unable to
execute transactions at the primary database.

Verify and Monitor Replication Server

Administration Guide Volume 2 11

Use configure replication server with sqm_warning_thr1, sqm_warning_thr2, and
sqm_warning_thr_ind to configure Replication Server to warn when partitions become too
full. See Replication Server Reference Manual > Replication Server Commands > configure
replication server.

Monitor Partition Percentages
Use the messages in the log file to monitor changes in Replication Server partition
percentages.

Replication Server operates on 1MB partition segments. Whenever it allocates or deallocates
a partition segment, it calculates:

• Percentage of total partition segments in use
• Percentage of total partition segments in use by the affected stable queue

If the percentage of partition segments in use rises above the percentage specified by
sqm_warning_thr1 or sqm_warning_thr2, a message is written to the log file:
WARNING: Stable Storage Use is Above threshold percent

If you see this message often, you may need to add partitions to the Replication Server or
correct a recurring failure that causes the queues to fill.

When the first percentage drops below the percentage specified by sqm_warning_thr1 or
sqm_warning_thr2, a message is written that the condition that caused the original warning
no longer exists:
WARNING CANCEL: Stable Storage Use is Below threshold percent

The percentage of total partition segments in use by the affected stable queue triggers a
warning message when the percentage of the total space used by a single stable queue exceeds
the percentage specified by sqm_warning_thr_ind:
WARNING: Stable Storage Use by queue name is Above threshold percent

This warning alerts you to problems that cause a particular stable queue to fill until it is using a
disproportionate share of the total partition space. For example, if a route is suspended for a
length of time, its stable queue may fill until it occupies enough partition space to trigger a
warning.

When the percentage of the total partition space used by a stable queue drops below the
sqm_warning_thr_ind percentage, Replication Server writes a cancel message:
WARNING CANCEL: Stable Storage Use by queue name is Below threshold
percent.

Verify and Monitor Replication Server

12 Replication Server

Customize Database Operations

Create and alter functions, function strings, and function-string classes to allow replication
definitions to work with database servers other than Adaptive Server.

Functions, Function Strings, and Function-string Classes
Replication Server translates commands from the primary database into Replication Server
functions that represent data server operations such as insert, delete, select, begin transaction,
and so on. It distributes these functions to remote Replication Servers in the system, where
they execute those operations in remote databases.

The primary Replication Server distributes functions in the same format regardless of the type
of data server that actually updates the replicated data. Functions are not database-specific.
They include all the data needed to perform the operation, but they do not specify the syntax
needed to complete the operation at the destination data server.

The remote Replication Server converts functions to commands specific to the destination
data servers where they are executed. A function string contains the database-specific
instructions for executing a function. The replicate Replication Server managing a database
uses an appropriate function string to map the function to a set of instructions for the data
server. For example, the function string for the rs_insert function provides the actual language
to be applied in a replicate database.

This separation between functions and data server commands lets you maintain replicated
data among heterogeneous data servers. Replication Server allows you to customize function
strings, specifying how Replication Server functions map to SQL commands. You can create
function strings if you require customized data server operations. You customize replicated
data applications by changing the way operations are performed at the destination database.

Function strings are grouped into function-string classes, so you can group mappings of
functions to commands according to data server. Replication Server provides function-string
classes for Adaptive Server Enterprise, Oracle, Microsoft SQL Server, IBM DB2 UDB, and
other databases. You can create new derived function-string classes in which you customize
certain function strings and inherit all others from these or other classes. You can also create
entirely new classes in which you create all new function strings.

You may also need to create function strings for replicated functions, which allow you to
execute stored procedures on remote databases. You must create a function string for any
replicated function for which Replication Server does not automatically generate a function
string in the function-string class used by the destination database.

Customize Database Operations

Administration Guide Volume 2 13

Work with Functions, Function Strings, and Classes
There are several ways you can work with functions and function strings to customize
database operations.

You can:

• Create a new function-string class for use with a specific type of database, and customize
some or all of the function strings.

• For atomic materialization, use a function from a function-string class associated with the
primary database connection, not a function from the function-string class associated with
the replicate database connection.

• Alter function strings for the system-provided function-string class,
rs_sqlserver_function_class.

• Create a function-string class that inherits, either directly or indirectly, function strings
from the system-provided function-string class rs_default_function_class.

• Use the system-provided function-string classes for non-ASE data servers:
rs_iq_function_class, rs_db2_function_class, rs_mss_function_class, or
rs_oracle_function_class. See Replication Server Administration Guide Volume 1 >
Manage Replicated Tables > Translate Datatypes Using HDS for detailed information on
datatype translations using the heterogeneous datatype support (HDS) feature.

You can work with functions, function strings, and classes using Sybase Central™ or RCL
commands that you enter at the command line using isql.

See Replication Server Reference Manual > Replication Server System Functions for more
information about the system functions.

See also
• Manage Function-String Classes on page 26
• Manage Function Strings on page 31

Functions
Replication Server uses two major types of functions.

The major Replication Server types of functions are:

• System functions
• User-defined functions

You can create custom function strings for either type of function, depending on your needs.

See also
• Manage Function Strings on page 31

Customize Database Operations

14 Replication Server

System Functions
System functions represent data server operations that use function strings supplied by
Replication Server or are available when you install a new database on the replication system.

Unless your application requires it, you do not need to customize function strings for system
functions. The system-provided class generates them for you.

System functions include:

• Functions that represent data-manipulation operations such as insert, update, delete,
select, and select with holdlock. These system functions have replication-definition scope.

• Functions that represent transaction-control directives. These functions include
operations such as begin transaction and commit transaction. These system functions have
function-string-class scope.

See also
• Function Scope on page 16
• Summary of System Functions on page 17

User-Defined Functions
User-defined functions allow you to use Replication Server to distribute replicated stored
procedures between sites in the replication system.

You must create function strings for user-defined functions unless you use a function-string
class that directly or indirectly inherits function strings from rs_default_function_class.
User-defined functions include:

• Functions that are used in replicating stored procedures associated with function
replication definitions. Replication Server automatically creates a user-defined function of
this type when you create a function-replication definition. See Replication Server
Administration Guide Volume 1 > Manage Replicated Functions.

• Functions that are used in replicating stored procedures associated with table-replication
definitions. You create and maintain user-defined functions of this type yourself.
You can use asynchronous procedures to replicate stored procedures that are associated
with table-replication definitions

User-defined functions have replication-definition scope as the type of function scope.

Any function string that you create for a user-defined function should be created at the primary
Replication Server, where the replication definition was created. If you are using function
replication definitions, see Replication Server Administration Guide Volume 1 > Manage
Replicated Functions > Use Replicated Functions.

See also
• Asynchronous Procedures on page 363
• Function Scope on page 16

Customize Database Operations

Administration Guide Volume 2 15

Function Scope
The scope of a function defines the object to which the function applies: a replication
definition or a function-string class.

You must know the scope of a function to determine where to customize a function string at the
primary or replicate Replication Server.

Function-String-Class Scope
A function with function-string-class scope is defined once for the class. Functions with
function-string-class scope include system functions that represent transaction-control
directives (such as rs_begin, rs_commit, or rs_marker) and do not perform data
manipulation. Function strings for user-defined functions do not have class scope.

Function strings for functions with function-string-class scope must be customized at the
primary Replication Server for the function-string class.

Replication-Definition Scope
A function with replication-definition scope is defined once for a specific table-replication
definition or function-replication definition—although the function may have multiple
function strings.

Functions with replication-definition scope include:

• System functions that perform data-manipulation operations (such as rs_insert,
rs_delete, rs_update, rs_select, rs_select_with_lock, and special functions used in
replicating text, unitext, and image data).

• User-defined functions for table- or function-replication definitions.
System functions with replication-definition scope must be customized at the Replication
Server where the replication definition was created. User-defined functions with
replication-definition scope must be customized at the Replication Server where the
replication definition was created.

See Replication Server Reference Manual > Replication Server System Functions for
complete documentation of all of the system functions.

See also
• Primary Site for a Function-String Class on page 29

• System Functions with Function-String-Class Scope on page 17

• System Functions with Replication-Definition Scope on page 19

Customize Database Operations

16 Replication Server

Summary of System Functions
Replication Server provides system functions with function-string-class scope and
replication-definition scope.

See Replication Server Reference Manual > Replication Server System Functions for
complete documentation of all of the system functions.

System Functions with Function-String-Class Scope
Replication Server provides several system functions with function-string-class scope.

Replication Server provides default generated function strings for each system-provided class
when you install the replication system.

Some functions are required for every Replication Server application, while other functions
only apply in particular cases, such as warm standby applications, parallel DSI threads, or
coordinated dumps.

If you use a function-string class other than the default (rs_sqlserver_function_class), and
you are not using function-string inheritance, you must create a function-string for each
system function you use that has function-string class scope.

Customize function strings for system functions with class scope at the Replication Server that
is the primary site for the function-string class. You may also need to assign or change the
primary site from one Replication Server to another for a function-string class.

Table 3. System Functions with Function-String-Class Scope

Function Name Description

rs_batch_start Specify the SQL statements required in addition to the rs_begin
statements to mark the beginning of a batch of commands.

rs_batch_end Specify the SQL statements required to mark the end of a batch of
commands. This function string is used with rs_batch_start.

rs_begin Begin a transaction.

rs_check_repl Check if a table is marked for replication.

rs_commit Commit a transaction.

rs_dumpdb Initiate a coordinated database dump.

rs_dumptran Initiate a coordinated transaction dump.

rs_get_charset Return the character set used by a data server.

rs_get_lastcommit Retrieve rows from the rs_lastcommit system table.

rs_get_sortorder Return the sort order used by a data server.

Customize Database Operations

Administration Guide Volume 2 17

Function Name Description

rs_get_thread_seq Return the current sequence number for the specified entry in the
rs_threads system table. This function is executed only when
you are using parallel DSI.

rs_get_thread_seq_nohold-
lock

Return the current sequence number for the specified entry in the
rs_threads system table, using the noholdlock option. This thread is
used when dsi_isolation_level is 3.

rs_initialize_threads Set the sequence of each entry in the rs_threads system table
to 0. This function is executed only when you are using parallel DSI.

rs_marker Help coordinate subscription materialization. The function passes
its first parameter to Replication Server as an independent com-
mand.

rs_non_blocking_commit Coordinates Replication Server non-blocking commit with the cor-
responding function in the replicate data server.

Maps to the set delayed_commit on function string in Adaptive
Server 15.0 and later, and with the alter session set commit_write =
nowait; function string in Oracle 10g v2. For all other non-Sybase
databases, rs_non_blocking_commit maps to null.

Executes every time DSI connects to the replicate data server and if
the dsi_non_blocking_commit value is from 1 to 60. If the value of
dsi_non_blocking_commit is zero, rs_non_blocking_commit does
not execute.

rs_non_blocking_com-
mit_flush

Ensures that database transactions are flushed to disk when
dsi_non_blocking_commit is enabled.

Maps to the corresponding function string in Adaptive Server 15.0
and later, and Oracle 10g v2 and later. For all other non-Sybase
databases, rs_non_blocking_commit_flush maps to null.

rs_non_blocking_commit_flush executes at intervals equal to any
number of minutes from 1 to 60 that you specify with
dsi_non_blocking_commit. rs_non_blocking_commit_flush does
not execute if the value of dsi_non_blocking_commit is zero.

rs_raw_object_serialization Replicate Java columns as serialized data.

rs_repl_off Set replication off in Adaptive Server for a standby database con-
nection.

rs_repl_on Set replication on in Adaptive Server for a standby database con-
nection.

rs_rollback Roll back a transaction.

Customize Database Operations

18 Replication Server

Function Name Description

rs_set_ciphertext Turn on set ciphertext on, which enables replication of encrypted
columns for rs_default_function_class and rs_sqlserver_func-
tion_class. For all other classes, this function is set to null.

rs_set_isolation_level Passes the isolation level for transaction to replicate data server.

rs_set_dml_on_computed Is applied at the replicate database DSI when a connection is estab-
lished. It issues the command set dml_on_computed “on” after the
use database statement

rs_set_proxy Assume the permissions, login name, and server user ID of the user.

rs_set_quoted_identifiers Sets the DSI connection to the data server to allow quoted identifiers
to be sent through the connection.

Pre-requisites: dsi_quoted_identifier must be set to “on” and
rs_set_quoted_identifier must contain the necessary commands to
enable the use of quoted identifiers for the data server. For Adaptive
Server and Microsoft SQL Server the command is: set quoted_iden-
tifiers on.

rs_thread_check_lock Determines whether or not the DSI executor thread is holding a lock
that blocks a replicate database process.

rs_triggers_reset Set triggers off in Adaptive Server for a standby database connec-
tion.

rs_trunc_reset Reset the secondary truncation point in warm standby databases.
This function is executed only when you create a warm standby
database or when you switch to a standby database.

rs_trunc_set Set the secondary truncation point in warm standby databases. This
function is executed only when you create a warm standby database
or when you switch to a standby database.

rs_update_threads Update the sequence number for the specified entry in the
rs_threads table. This function is executed only when you are
using parallel DSI.

rs_usedb Change the database context.

See also
• Change the Primary Site for a Function-String Class on page 29

System Functions with Replication-Definition Scope
Replication Server provides several system functions with replication-definition scope.

Replication Server provides default function strings for each system-provided class when you
create a replication definition.

Customize Database Operations

Administration Guide Volume 2 19

Some functions are required for every Replication Server application, while other functions
only apply in particular cases, such as replication of text, unitext, and image datatypes,
parallel DSI threads, or performing subscription materialization or dematerialization.

Customize function strings for a system functions with replication-definition scope at the
Replication Server where the replication definition was created.

Table 4. System Functions with Replication Definition Scope

Function name Description

rs_datarow_for_write-
text

Provide an image of the data row associated with a text, unitext, or
image column updated with a Transact-SQL® writetext command or
with CT-Library or DB-Library™ functions.

rs_delete Delete a row in a table.

rs_get_textptr Retrieve the text pointer for a text, unitext, image, or raw-
object column.

rs_insert Insert a row into a table.

rs_select Retrieve rows from a table for subscription materialization or dematerial-
ization.

rs_select_with_lock Retrieve subscription materialization or dematerialization rows using a
holdlock.

rs_textptr_init Allocate a text pointer for a text, unitext, image, or raw-
object column.

rs_truncate Truncate a table.

rs_update Update a row in a table.

rs_writetext Alter text, unitext, image, or rawobject data.

Function Strings
Function strings contain instructions for executing a function in a database.

These instructions may differ according to database. For example, a non-Sybase database may
require different instructions and have different function strings than an Adaptive Server
database.

Functions strings come in two formats: language and (remote procedure call) RPC. A
language-format function string contains a command, such as a SQL statement, that the data
server parses. An RPC-format function string contains a remote procedure call that executes a
registered procedure in an Open Server™ gateway application or in an Adaptive Server
database. Both function-string formats can contain variables that can be replaced with data
values. The format used by a function string is determined by the type of data server and how
you want Replication Server to interact with it. You can alter output templates to customize
function strings.

Customize Database Operations

20 Replication Server

Function strings are grouped into function-string classes. Each database connection must be
assigned a function-string class according to the type of replicate database. Replication Server
provides function-string classes that generate default function strings for all actively
supported data servers.

When you set up a replication system or add databases to the system, anticipate your function-
string requirements and decide how you will use function-string classes and whether you need
to customize function strings.

See also
• Output Templates on page 33
• Function-String Classes on page 22
• Manage Function Strings on page 31

Input and Output Templates
Every function string uses an output template to instruct the destination database in executing
the function for a specific data server.

Function strings for the rs_select and rs_select_with_lock functions use both input templates
and output templates, which together perform subscription materialization and
dematerialization.

You customize function strings by altering their input and output templates. You customize
function strings for functions other than rs_select and rs_select_with_lock by altering only
the output template. How you alter a function string depends on the function string’s format-
language or RPC.

See also
• Function-string Input and Output Templates on page 32

Applications for Customized Function Strings
There are several applications for customized function strings.

• Perform operations in any native database language (including those other than Transact-
SQL) by altering function-string output templates to format the commands sent to a data
server.

• Materialize and dematerialize multiple subscriptions for the same replication definition
with a single function string.

• Alter output templates for existing system function strings to:
• Record auditing information.
• Execute remote procedure calls (RPCs).
• Replicate data into multiple replicate tables in the same database.
• Replicate data into a replicate table with a different name, column names, or column

order than the primary table.
If the replicate Replication Server is version 11.5 or later, you can perform the same
tasks more easily by creating a customized replication definition that specifies the

Customize Database Operations

Administration Guide Volume 2 21

relevant information about the replicate table. See Replication Server Administration
Guide Volume 1 > Manage Replicated Tables > Create Replication Definitions >
Create Multiple Replication Definitions Per Table.

System Functions with Multiple Function Strings
You can create multiple function-string instances for the same replication definition for other
system functions with replication-definition scope

For the class-scope system functions, each function maps to a function string within the class.
Each replication-definition-scope rs_insert, rs_delete, and rs_update system function maps
to a function string within the class for each replication definition.

You can create multiple function-string instances for the same replication definition for other
system functions with replication-definition scope—rs_select, rs_select_with_lock,
rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and rs_writetext. In such cases,
you must give each instance of a function string a different name. System functions that can
take multiple function strings include:

• rs_select and rs_select_with_lock functions – used in subscription materialization and
dematerialization when multiple subscriptions exist for the same replication definition.
You can give each instance of the function string any name that is unique for the replication
definition. Each instance of the function string corresponds to a where clause used in
creating subscriptions for the replication definition.

• rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and rs_writetext function each
instance of the function string. You must name each instance of a function string for the
text, unitext, or image column specified in the replication definition.

Function-String Classes
Each function string belongs to a function-string class, which groups function strings intended
to be used with databases of a similar type or with similar requirements.

Replication Server assigns each database connection a function-string class according to the
data server of the destination database.

Replication Server applies functions to the database using the function strings from its
assigned function-string class. Function-string classes contain function strings for system
functions and for any user-defined functions.

You can use a function-string class on multiple databases if the function strings can execute on
all of the data servers. For example, a system with several databases managed by Adaptive
Server can use rs_sqlserver_function_class for all the databases.

You can even use a single function-string class with non-ASE data servers, provided you use
ECDA to access the various data servers.

Customize Database Operations

22 Replication Server

System-Provided Classes
Replication Server provides several function-string classes called system-provided classes
which contain default function strings for data servers supported by Replication Server.

• rs_sqlserver_function_class – default Adaptive Server function strings are provided for
this class. The default function strings in rs_sqlserver_function_class are identical to
those in rs_default_function_class. rs_sqlserver_function_class is assigned by default
to Adaptive Server databases you add to the replication system using rs_init.
You can customize function strings for this class. However, this class cannot participate in
function-string class inheritance. In most cases, using derived classes that specify
rs_default_function_class as a parent class is preferable to using
rs_sqlserver_function_class directly.

• rs_default_function_class – default Adaptive Server function strings are provided for this
class. The default function strings in rs_sqlserver_function_class are identical to those in
rs_default_function_class.
You cannot customize function strings for this class. However, this class can participate in
function-string class inheritance. In most cases, using derived classes that specify
rs_default_function_class as a parent class is preferable to using
rs_default_function_class directly.

Note: The system-provided function-string classes rs_default_function_class and
rs_sqlserver_function_class contain default function strings for all system functions
except rs_dumpdb and rs_dumptran. If you need to use function strings for these
functions you must create them yourself in a derived class or in
rs_sqlserver_function_class.

• rs_db2_function_class – DB2-specific function strings are provided for this class. See
Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Translate Datatypes Using HDS > Create Class-Level Translations.
If you require DB2 function strings, using derived classes that specify
rs_db2_function_class as a parent class is preferable, in most cases, to using this class
directly.

• rs_iq_function_class – Sybase® IQ function strings are provided for this class. See
Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Translate Datatypes Using HDS > Create Class-Level Translations.

• rs_msss_function_class – Microsoft SQL Server function strings are provided for this
class. See Replication Server Administration Guide Volume 1 > Manage Replicated
Tables > Translate Datatypes Using HDS > Create Class-Level Translations.

• rs_oracle_function_class – Oracle function strings are provided for this class. See
Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Translate Datatypes Using HDS > Create Class-Level Translations.

See also
• Guidelines for Creating Function Strings on page 38

Customize Database Operations

Administration Guide Volume 2 23

• System Functions with Function-String-Class Scope on page 17

Function-String Inheritance
The ability to share function-string definitions among classes by creating relationships
between classes is called function-string inheritance.

Using function-string inheritance in general, and inheriting from system-provided classes in
particular, provides both administrative and upgrade benefits to replication system
administrators. Using classes that inherit from system-provided classes, you alter only the
function strings you want to customize and inherit all others.

If you use classes that do not inherit from system-provided classes, you must create all
function strings yourself, and add new function strings whenever you create a new table or
function replication definition.

A class that inherits function strings from a parent class is called a derived class. A class from
which a derived class inherits function strings is called the parent class of the derived class.
Generally, you create a derived class in order to customize certain function strings and inherit
all others from the parent class.

A class that does not inherit function strings from any parent class is called a base class. The
system-provided classes rs_default_function_class and rs_db2_function_class, and any
additional classes you create that do not inherit function strings from a parent class, are base
classes. The system-provided classes rs_iq_function_class, rs_msss_function_class, and
rs_oracle_function_class are derived from rs_default_function_class.

A parent class can have multiple derived classes, while a derived class can have only one
parent class. A derived class can also serve as the parent class for one or more derived classes.
A set of derived classes of any number of levels stemming from the same base class is called a
class tree.

The system-provided classes rs_default_function_class and rs_db2_function_class can
serve as parent classes for derived classes. However, they cannot become derived classes of
other parent classes.

The system-provided class rs_sqlserver_function_class cannot serve as a parent class or
become a derived class.

A base class that you have created can be modified to become a derived class, or it can be
designated as the parent class for a derived class. A derived class can be modified to inherit
function strings from a different parent class, or it can be detached from a parent class and
become a base class.

For every base class that you create, you must provide function strings for the functions that
Replication Server invokes in each database to which the class is assigned. If you assign a
function-string class to a database when some of the function strings for system functions are
missing, the DSI reports an error when Replication Server tries to apply the function string,
and suspends the database connection.

Customize Database Operations

24 Replication Server

Circular function-string inheritance relationships are disallowed. That is, a parent class cannot
be modified to inherit function strings from one of its own derived classes or from a derived
class of one of these derived classes.

Function-string class relationships are illustrated in this figure.

Figure 1: Function-String Class Relationships

Restrictions in Mixed-Version Systems
In a mixed-version system, only Replication Servers of version 11.5 or later can work with
classes that participate in function-string inheritance.

Any class whose primary site is Replication Server version 11.0.x cannot participate in
function-string inheritance. If you want to alter such a class to become a derived class or use it
as a parent class, you must move that class to a primary site that is Replication Server version
11.5 or later. Then you can alter the class relationships as desired and assign the class or its
derived classes to connections managed by Replication Server version 11.5 or later.

Customize Database Operations

Administration Guide Volume 2 25

A base class that you created in Replication Server version 11.5 or later and that does not
participate in function-string inheritance can be assigned to connections managed by any
Replication Server in the replication system. If it is not assigned to any databases managed by
Replication Server version 11.5 or later, then you can use the move primary command to
assign it to a primary site managed by Replication Server version 11.0.x.

Refer to the release bulletin for more information about compatibility between Replication
Servers.

Note: For compatibility with Replication Servers of version 11.0.x, you may need to continue
to customize function strings in rs_sqlserver_function_class. However, for databases
managed by Replication Servers version 11.5 or later, using function-string inheritance and
customizing function strings only in derived classes is encouraged.

Manage Function-String Classes
Managing function-string classes includes creating, assigning, and dropping function-string
classes.

When you create or customize a function string, you specify which class it belongs to. If you
want to create and use customized function strings, you can:

• Create a derived function-string class that inherits function strings from
rs_default_function_class, rs_db2_function_class, or another parent class. Then, in the
derived class, create only the function strings that you are interested in overriding.

Note: You cannot alter, add to, delete, or change any of the function-string classes for
non-Sybase data servers.

• Create a new function-string class and create function strings for all functions.
• Customize function strings in rs_sqlserver_function_class.

Before you create customized function strings, you should decide in advance which of these
approaches to take and set up your classes accordingly. Generally, it is preferable to customize
function strings in derived classes rather than to customize function strings in the class
rs_sqlserver_function_class. You must be using Replication Server version 11.5 or later in
order to create and deploy a derived function-string class that inherits function strings from
other classes.

See also
• Manage Function Strings on page 31

Customize Database Operations

26 Replication Server

Creating a Function-String Class
If function strings in an existing class do not serve your needs for particular database
connections, and customizing function strings in an existing class is not feasible, you can
create a new class in which to create the function strings you need.

Either:

• Create a derived class – one that inherits function strings from an existing parent class.
• Create a base class – one that does not inherit function strings from another class.

1. Create the function-string class with create function string class.

Use the appropriate syntax to either:
• Create a derived class, or
• Create a base class.

The name of the new class must conform to the rules for identifiers. See Replication Server
Reference Manual > Topics > Identifiers.

2. Create function strings for the new class with create function string.

• If you are creating a derived class, you need to create only the function strings that you
want to override and inherit all others from the specified parent class.

• The class rs_default_function_class, which is a system-provided class, does not
contain default function strings for the rs_dumpdb and rs_dumptran functions. If you
require them in a derived class that inherits from rs_default_function_class, you must
create them.

• If you are creating a base class, you must create all the necessary function strings for
the class.

3. If you are preparing a new function-string class for an existing database connection, you
must suspend the connection before you can use the new class.

See Replication Server Administration Guide Volume 1 > Manage Database Connections
> Altering Database Connections > Suspend Database Connections.

4. Create or alter the database connection to assign the new class.

5. If you altered an existing database connection to use the new class, resume the connection.

See Replication Server Administration Guide Volume 1 > Manage Database Connections
> Altering Database Connections > Suspend Database Connections.

See also
• Function-String Inheritance on page 24

• Create a Derived Class on page 28

• Create a Base Class on page 28

• Create Function Strings on page 38

• System-Provided Classes on page 23

Customize Database Operations

Administration Guide Volume 2 27

• Assign a Function-String Class to a Database on page 30

Create a Derived Class
Use the create function string class command and specify a parent class to create a derived
function-string class that inherits function strings from the parent class.

For example, at the primary site of the parent, enter:
create function string class
 sqlserver_derived_class
 set parent to rs_default_function_class

In this example, the new class sqlserver_derived_class inherits function strings from the
system-provided class rs_default_function_class. You can then create function strings that
override some of the inherited function strings.

You can specify as the parent class any existing class whose primary site runs Replication
Server version 11.5 or later. However, you cannot specify as a parent class the system-
provided class rs_sqlserver_function_class. You also cannot specify a parent class that
would result in circular inheritance.

If the parent class is rs_default_function_class or a function-string class for a non-Sybase
data server, you can enter this command at any Replication Server with routes to the other
Replication Servers where the new class will be used. This site is the primary site for the
derived class and any new classes derived from it.

If the parent class is a user-created class, enter this command in the Replication Server that is
the primary site for the parent class. This site is the primary site for all classes derived from the
parent class.

See also
• Function-String Inheritance on page 24

Create a Base Class
Use the create function string class command without specifying a parent class to create a
base function-string class, which is one that does not inherit function strings from a parent
class.

For example, enter:
create function string class base_class

In this example, the new class base_class does not inherit function strings from a parent
class.

Enter this command at any Replication Server that has routes to the other Replication Servers
where the new class will be used. This site then becomes the primary site for the class and for
any derived classes for which this class serves as the parent class.

A base class can be used as a parent class for a derived class or can be modified to become a
derived class.

Customize Database Operations

28 Replication Server

For every base class that you create, you must provide function strings for the functions that
Replication Server invokes in each database to which the class is assigned.

If you create a base class and then alter it so it becomes a derived class before actually using it
with database connections, you do not have to create all the function strings.

Primary Site for a Function-String Class
Although most function strings are executed in replicate databases, you execute the create
function string class command in a Replication Server, usually a primary Replication Server,
that has routes to all sites where the function-string class is to be used.

This command designates that Replication Server as the primary site for the class. Function-
string classes are replicated via routes, along with other replication system data.

You can only create or alter function strings that have class scope at the primary site for a class.
Function strings with replication-definition scope must be created or altered at the primary site
for the replication definition.

By default, the class rs_sqlserver_function_class does not have a primary site. To alter class-
scope function strings for this class, you must first designate a Replication Server as a primary
site for the class. To specify a site for this function-string class, execute the following
command at the Replication Server that is to be the primary site:
create function string class rs_sqlserver_function_class

After you have executed this command, you can use the move primary command to make
further changes to the primary site for the function-string class.

Change the Primary Site for a Function-String Class
Use the move primary command or Sybase Central to change the primary Replication Server
for a function-string class.

For example, you may need to change the primary site from one Replication Server to another
so that function strings can be distributed through a new routing configuration. The new
primary site must include routes to all Replication Servers where the function-string class will
be used.

If you move a base class, all classes derived from that class move with it.

You cannot move the primary site for a derived class unless its parent class is a default
function-string class.

Execute move primary at the Replication Server that you want to designate as the new primary
site for the function-string class.

For example, the following command changes the primary site for the
sqlserver2_function_class function-string class to the SYDNEY_RS Replication Server,
where the command is entered:

Customize Database Operations

Administration Guide Volume 2 29

move primary of function string class
 sqlserver2_function_class
 to SYDNEY_RS

If the class rs_sqlserver_function_class has not yet been assigned a primary site, you cannot
use move primary to assign one. You must use create function string class to first designate a
primary site for that class.

See also
• Primary Site for a Function-String Class on page 29

Assign a Function-String Class to a Database
You can assign a function-string class to a database connection in Sybase Central or with the
create connection or alter connection commands, executed in the Replication Server that
manages the database.

When you add a database connection using the rs_init program, the class
rs_sqlserver_function_class is assigned to the database by default.

You must suspend the connection to the database before you alter the function-string class that
is assigned to the database. The set function string class clause of create connection and
alter connection specifies the name of the function-string class to use with the database.

Before you can assign a function-string class to a database connection:

• The function-string class you specify must already be created and be available to the
Replication Server.

• All necessary function strings must be created in the class.

Note: When you create a connection using a connection profile, the function string class is
assigned by the connection profile.

See Replication Server Administration Guide Volume 1 > Manage Database Connections >
Create Database Connections and Replication Server Administration Guide Volume 1 >
Manage Database Connections > Altering Database Connections for more information about
using the create connection and alter connection commands, and connection profiles. Also
refer to reference pages for these commands in the Replication Server Reference Manual >
Replication Server Commands.

Refer to the Replication Server installation and configuration guides for your platform for
more information about rs_init.

Example for Creating New Connection

The following command creates a connection to the pubs2 database managed by the
TOKYO_DS data server:
create connection to TOKYO_DS.pubs2
 set error class tokyo_error_class
 set function string class tokyo_func_class

Customize Database Operations

30 Replication Server

 set username pubs2_maint
 set password pubs2_maint_pw

This command assigns the tokyo_func_class function-string class to the database
connection.

Example for Altering an Existing Connection

The following command alters an existing database connection to specify a different function-
string class:
alter connection to TOKYO_DS.pubs2
 set function string class tokyo_func_class2

See also
• Create Function Strings on page 38
• Creating a Function-String Class on page 27

Drop a Function-String Class
Use the drop function string class command to drop a function-string class that you created,
from the replication system, if you are sure that you will not need the function-string class
again.

You can drop any function-string class except the three system-provided classes and any user-
created class that currently serves as a parent class. Before you can drop a function-string
class, you must drop all database connections that use the function-string class, or you can
alter the connections to use a different class.

Dropping a function-string class deletes all function strings defined for the class and removes
all references to the class from the RSSD.

For example, to drop the tokyo_func_class function-string class and all of its function strings,
enter at the isql command line:
drop function string class tokyo_func_class

Enter this command in the Replication Server that is the primary site for the class.

See Replication Server Reference Manual > Replication Server Commands > drop function
string class.

Manage Function Strings
Each destination Replication Server uses function strings to convert the functions to
commands that are appropriate for the destination data server (such as Adaptive Server) before
it submits these commands.

See Replication Server Administration Guide Volume 1 > Replication Server Technical
Overview for more information about DSI threads, the components that perform this
conversion at the replicate Replication Server.

Customize Database Operations

Administration Guide Volume 2 31

See Replication Server Reference Manual for complete command syntax and permissions.

Function Strings and Function-string Classes
If you do not require customized function strings, you can use one of the system-provided
function-string classes to provide default function strings. If you require customized strings,
you must use the system-provided class—rs_sqlserver_function_class—in which you can
customize function strings or create a derived or base function-string class.

• If the connection for the database in which the function will be executed uses a system-
provided function-string class or a derived class that inherits directly or indirectly from
rs_default_function_class or a function-string class for a non-Sybase data server, default
function strings are provided for every system function and user-defined function.

• If the connection uses a user-created base function-string class (which does not inherit
function strings) or a derived class that inherits from such a class, you must create function
strings for every system function and user-defined function. Create them in the base class
if you want them to be available in all its derived classes.

See also
• Function-String Classes on page 22

Function-string Input and Output Templates
To customize function strings, you alter their input and output templates.

Depending on the function, function strings may include both an input template and an output
template, an output template, or neither template:

• For the rs_select and rs_select_with_lock functions, used in subscription materialization,
Replication Server uses input templates to locate the function string that corresponds to a
subscription’s where clause.

• For all functions Replication Server uses output templates to map functions to the
language commands or to apply RPC invocations at the destination data server.

Requirements for Using Input and Output Templates
There are several requirements for altering templates to customize function strings.

Requirements include:

• Function-string input and output templates are limited to 64K bytes. The result of
substituting runtime values for embedded variables in function-string input or output
templates must not exceed 64K.

• Function-string input and output templates are delimited with single quotation marks (').
• Function-string variables are enclosed within a pair of question marks (?).
• A variable name and its modifier are separated with an exclamation point (!).

Language output templates involve additional related requirements.

Customize Database Operations

32 Replication Server

See also
• Output Templates on page 33

Output Templates
Replication Server uses output templates to determine the format of the command sent to a
data server. You can alter output templates to customize function strings.

Most output templates use one of three formats: language, RPC or none, corresponding to the
format of the function string itself.

An output template for an rs_writetext function string can use the RPC format or one of the
additional formats—writetext or none, but not a language output template.

See also
• Function Strings on page 20
• Use Function Strings with text, unitext, image, and rawobject Datatypes on page 49

Language Output Templates
Language output templates contain text that the data server interprets as commands.

Replication Server substitutes values for variables embedded in the output template and
passes the resulting language commands to the data server to process.

Within a language output template, Replication Server interprets certain characters in special
ways:

• Two single quote characters ('') are interpreted as one single quote
• Two question marks (??) are interpreted as one single question mark
• Two semicolons (;;) are interpreted as one single semicolon

Other than the embedded variable substitutions and these special interpretations, Replication
Server does not attempt to interpret the contents of language output templates.

See also
• Create Function Strings on page 38
• Function-string Variables on page 36
• Function-string Variable Formatting on page 37

RPC Output Templates
Unlike language output templates, Replication Server interprets the contents of RPC output
templates.

They are written in the format of the Transact-SQL execute command. Replication Server
parses the output template to construct a remote procedure call to send to the Adaptive Server,
Open Server gateway, or Open Server application.

RPC output templates work well with gateways or Open Servers with no language parser.
RPCs are usually more compact than language requests and, since they do not require parsing

Customize Database Operations

Administration Guide Volume 2 33

by the data server, may also be more efficient. Therefore, you might choose to use an RPC even
when a data server supports language requests.

Output Templates That Use the none Parameter
You can increase function-string efficiency when you create or alter function strings by using
the none parameter to identify class-level and table-level function strings that do not have
output commands. Replication Server does not execute these function strings on replicate
databases.

Output Templates for rs_writetext Function Strings
Replication Server supports three output formats for creating an rs_writetext function string:
RPC, none, and writetext. The writetext output template can only be used in rs_writetext
function strings.

See also
• Use Function Strings with text, unitext, image, and rawobject Datatypes on page 49

Input Templates
Input templates are used only for non-bulk materialization and for dematerialization with
purge—those situations where Replication Server must select data to add or delete from
selected tables.

rs_select and rs_select_with_lock are the only function strings that can contain input
templates. Replication Server determines which function string to use with a subscription
during materialization or dematerialization by:

• Matching the subscription’s replication definition
• Matching the input template with the where clause used in the subscription

rs_select and rs_select_with_lock also contain output templates to specify the actual select
statements or other operations that perform the desired materialization or dematerialization.

For the system-provided classes, Replication Server generates default function strings for the
rs_select and rs_select_with_lock functions when you create a replication definition.
Generally, you only need to customize these function strings if multiple subscriptions exist for
your replication definition.

Function strings for the rs_select and rs_select_with_lock functions are most often used for
materialization. If you plan multiple subscriptions to the same replication definition, create
the function strings before you create the subscriptions. See Replication Server
Administration Guide Volume 1 > Manage Subscriptions > Subscription Materialization
Methods for more information about subscription materialization.

Function strings for rs_select and rs_select_with_lock may also be used for subscription
dematerialization, which uses the where clause of the command used to create the
subscription. The function strings for these functions must exist before you drop the
subscriptions. See Replication Server Administration Guide Volume 1 > Manage

Customize Database Operations

34 Replication Server

Subscriptions > Subscription Commands > drop subscription Command for more information
about dematerialization.

An input template can contain user-defined variables whose values come from constants in the
where clause of a subscription. No other types of function-string variables are allowed in input
templates. An output template in the same function string can reference these user-defined
variables.

If you need to customize an output template to select materialization data, you can omit the
input template from an rs_select or rs_select_with_lock function string. Doing so creates a
default function string that can match any select statement when no other function string’s
input template matches the select command.

As with other functions with replication-definition scope, you create function strings for the
rs_select and rs_select_with_lock functions in the primary Replication Server where the
replication definition was created.

Determining Where to Create Function Strings
Determine the class in which to create function strings.

When you create rs_select and rs_select_with_lock function strings for materialization, you
create them in the function-string class that is assigned to the connection to the primary
database from which you are selecting materialization data. If you are using bulk
materialization, you do not need to create rs_select and rs_select_with_lock function strings
for materialization.

When you create rs_select and rs_select_with_lock function strings for dematerialization,
you create them in the function-string class that is assigned to the connection to the replicate
database for which you are selecting data to be dematerialized. If you drop a subscription
using drop subscription with the without purge option, you do not need rs_select and
rs_select_with_lock function strings for dematerialization.

Example for rs_select Function String

In this example, a site subscribes to a specified publisher’s book titles through the replication
definition titles_rep. There must be an rs_select function string with an input template that
compares the publisher column in the pubs2 database’s titles table to a user-defined
value that identifies the publisher.

The create function string command creates a function string with an input template that
compares the publisher column pub_id to the user-defined variable ?pub_id!user?.

The input template matches any subscription with a where clause of the form where pub_id =
constant. As a result, the output template, when it is used, includes the constant value. The
output template selects materialization data from two different tables.
create function string titles_rep.rs_select;pub_id
 for sqlserver2_function_class
scan 'select * from titles where pub_id =
 ?pub_id!user?'

Customize Database Operations

Administration Guide Volume 2 35

output language
 'select * from titles where pub_id =
 ?pub_id!user?
 union
 select * from titles.pending where pub_id =
 ?pub_id!user?'

See Replication Server Reference Manual for complete syntax.

See also
• Function-string Variables on page 36

• Create Function Strings on page 38

Function-string Variables
You can use variables embedded in function-string input or output templates as symbolic
markers for various runtime values.

A variable can represent a column name, the name of a system-defined variable, the name of a
parameter in a user-defined function, or a user-defined variable defined in an input template.
The variable must refer to a value with the same datatype as anything to which it is assigned.

Function-string variables are enclosed inside of a pair of question marks (?), as shown:

?variable!modifier?

The modifier portion of a variable identifies the type of data the variable represents. The
modifier is separated from the variable name with an exclamation (!).

The rs_truncate function string accepts position-based function string variable in the format:

?n!param?

Where n is a number from 1 to 255, representing the position of function parameter in the LTL.
The first parameter for rs_truncate in the LTL is represented in function string as ?1!
param?. For position based function string variable, the only acceptable modifier is param.

A sample function string for rs_truncate with the position-based variable is as follows:

truncate table publishers partition ?1!param?

See also
• Default System Variable on page 47

Function-string Variable Modifiers
Replication Server recognizes several function-string variable modifiers.

Customize Database Operations

36 Replication Server

Table 5. Function-string Variable Modifiers

Modifier Description

new, new_raw A reference to the new value of a column in a row that Replication Server is
inserting or updating.

old, old_raw A reference to the old values of a column in a row that Replication Server is
inserting or updating.

user,
user_raw

A reference to a variable that is defined in the input template of an rs_select or
rs_select_with_lock function string.

sys, sys_raw A reference to a system-defined variable.

param, par-
am_raw

A reference to a stored-procedure parameter.

text_status A reference to the text_status value for text, unitext, or image
data. Possible values are:

• 0x000 – Text field contains NULL value, and the text pointer has not been
initialized.

• 0x0002 – Text pointer is initialized.
• 0x0004 – Real text data will follow.
• 0x0008 – No text data will follow because the text data is not replicated.
• 0x0010 – The text data is not replicated but it contains NULL values.

Note: Function strings for user-defined functions may not use the new or old modifiers.

See Replication Server Reference Manual > Replication Server Commands > create function
string for a list of system-defined variables that you can use in function-string input or output
templates.

Function-string Variable Formatting
When Replication Server maps function-string output templates to data server commands, it
formats the variables using the Adaptive Server format.

For most variables (except those special cases with modifiers ending in _raw), Replication
Server formats data as follows:

• Adds an extra single-quote character to single-quote characters appearing in character and
date/time values.

• Adds single-quote characters around character and date/time values, if they are missing.
• Adds the appropriate monetary symbol (for example, the dollar sign) to values of money

datatypes.
• Adds the “0x” prefix to values of binary datatypes.
• Adds a combination of a backslash (\) and newline character between existing instances of

a backslash and newline character in character values. Adaptive Server treats a backslash

Customize Database Operations

Administration Guide Volume 2 37

followed by a newline as a continuation character and, therefore, deletes the added pair of
characters, leaving the original characters intact.

Replication Server does not alter datatypes in these ways for modifiers that end in _raw.

Create Function Strings
Use the create function string command to add a function string to a function-string class.

Enter function-string commands at the primary site of the function string. For function strings
with:

• Replication-definition scope – the primary site is the Replication Server where the
replication definition was created.

• Class scope – the primary site is the Replication Server that is the primary site for the class.
The primary site for a derived class is the same as for its parent class, unless the parent class
is one of the system-provided classes.

If you are using a derived function-string class whose parent class is not provided by the
system, you may choose to customize function strings in the parent class rather than in the
derived class that is actually assigned to a particular database connection. Doing so would
make the customized function strings available for any additional derived classes of that
parent class.

See also
• Primary Site for a Function-String Class on page 29

Guidelines for Creating Function Strings
There are several guidelines for creating function strings.

The following guidelines for creating function strings pertain to function-string classes:

• If you need to customize function strings, you can do so in any class other than the system-
provided classes rs_default_function_class and rs_db2_function_class.
For rs_db2_function_class, rs_iq_function_class, rs_msss_function_class, and
rs_oracle_function_class, you:
• Cannot use function-string class scope system functions, such as rs_begin to create

customized class-level function strings
• Can use replication definition scope system functions such as rs_insert to create

customized table-level function strings
• You must assign a function-string class a primary site before you can create function

strings for the class. The system-provided class rs_sqlserver_function_class has no
primary site until you assign one using the create function string class command.

• If the function-string class is a new base class, you must create function strings for all the
necessary system functions before you can use the class.

The following guidelines pertain to function strings themselves:

Customize Database Operations

38 Replication Server

• You can specify an optional name for the function string. For the rs_select,
rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and
rs_writetext functions, Replication Server uses the function-string name to uniquely
identify the function strings. Function string names are unique when you qualify them
fully.

• If the input template is omitted for an rs_select or rs_select_with_lock function string,
Replication Server matches any subscriptions that do not have matching function strings.

• If you are customizing function strings for functions with replication-definition scope, you
must create the function strings before you create the subscriptions.

• You can put multiple commands in a language output template, separating them with
semicolons.

• You can batch commands for non-ASE servers.
Make sure that the database connection batch parameter has been set to allow command
batching. See Replication Server Administration Guide Volume 1 > Manage Database
Connections > Altering Database Connections > Set and Change Parameters Affecting
Physical Connections > Change Parameters Affecting a Single Connection.

• You can use Adaptive Server syntax to specify a null value for a constant in a function
string.

• You can increase function string efficiency when you create or alter function strings by
using the none parameter to identify class-level and table-level function strings that do not
have output commands. Replication Server does not execute these function strings on
replicate databases.

See Replication Server Reference Manual > Replication Server Commands > create function
string for the complete syntax.

See also
• Define Multiple Commands in a Function String on page 43
• Command Batching for Non-ASE Servers on page 44

Create Function Strings Examples
Learn from the examples showing how to create function strings.

• Example for rs_begin Function String
This example shows you how to create a function string for the rs_begin function that
begins a transaction in the database by executing a stored procedure named begin_xact.
create function string rs_begin
 for gateway_func_class
 output rpc 'execute begin_xact'

• Example for rs_insert Function String.
This example shows you how to create a function string for a rs_insert function that
references the publishers_rep replication definition, which executes an RPC at the
replicate database as a result of an insert in the primary table. The stored procedure
insert_publisher is defined only at the replicate database.

Customize Database Operations

Administration Guide Volume 2 39

create function string publishers_rep.rs_insert
 for rs_sqlserver_function_class
 output rpc
 'execute insert_publisher
 @pub_id = ?pub_id!new?,
 @pub_name = ?pub_name!new?,
 @city = ?city!new?,
 @state = ?state!new?'

Alter Function Strings
The alter function string command replaces an existing function string.

alter function string acts essentially the same as create function string except that it executes
the drop function string command first. The function string is dropped and re-created in a
single transaction to prevent any errors from occurring as a result of missing function strings.

You can alter a function string using either the alter function string command or the create
function string command. To alter a function string using the create function string
command, you must include the optional clause with overwrite after the name of the function-
string class. This command drops and re-creates an existing function string, the same as the
alter function string command.

To alter a function string using the alter function string command, you must first create a
function string.

In a derived class, first use the create function string command to override the function string
that is inherited from the parent class. You cannot alter a function string in a derived class
unless the function string has been explicitly created for the derived class.

You alter function strings at the Replication Server that is the primary site for the existing
function string. For functions of:

• Replication-definition scope – alter the function string at the primary Replication Server
where the replication definition was defined.

• Class scope – alter the function string at the primary site for the function-string class. The
primary site for a derived class is the same as for its parent class, unless the parent class is
one of the system-provided classes.

For system functions that allow multiple function-string mappings, such as rs_select and
rs_select_with_lock, provide the complete function string name in the alter function string
syntax. Replication Server uses the name to determine which function string to alter.

See Replication Server Reference Manual > Replication Server Commands > alter function
string for the complete syntax.

See also
• Primary Site for a Function-String Class on page 29

• Create Function Strings on page 38

Customize Database Operations

40 Replication Server

Drop Function Strings
To discard a customized function string in a derived class and restore the function string from
the parent class, drop the function string.

Use the drop function string command to remove one or more function strings in a function-
string class.

Warning! If you want to drop and re-create a function string, use alter function string to
replace an existing function string with a new one. Dropping and then re-creating a function
string by other methods can lead to a state where the function string is temporarily missing. If a
transaction that uses this function string occurs between the time the function string is dropped
and the time it is re-created, Replication Server detects the function string as missing and fails
the transaction.

When you drop the function string from a derived class, you restore the function string from
the parent class.

See Replication Server Reference Manual > Replication Server Commands > drop function
string.

You can also drop customized function strings from the system-provided class
rs_sqlserver_function_class.

To restore a default function string for a function string with replication-definition scope that
you have dropped, use the alter function string command to omit the output clause.

See also
• Restore Default Function Strings on page 42

Drop Function Strings Examples
Learn from the examples showing how to drop function strings.

Drop Function String for the Replication Definition

The following command drops the rs_insert function string for the publishers_rep
replication definition in the class sqlserver2_func_class:

drop function string
publishers_rep.rs_insert
for sqlserver2_func_class

Drop Instance of a Function String for the Replication Definition

The following command drops the pub_id instance of a function string for the rs_select
function for the publishers_rep replication definition in the class derived_class.
Drop function strings for the rs_select_with_lock function in a similar way.
drop function string
publishers_rep.rs_select;pub_id
for derived_class

Customize Database Operations

Administration Guide Volume 2 41

Drop Function String from Function-string Class

The following command drops the rs_begin function string from the
gateway_func_class function-string class:

drop function string rs_begin
for gateway_func_class

Restore Default Function Strings
To restore the Adaptive Server default function string for a system function with replication
definition scope, omit the output clause in the create function string or alter function string
command.

You cannot omit an output template from a system function with function-string-class scope,
although you can specify an empty template.

See Replication Server Reference Manual > Replication Server Commands, for more
information on these commands.

In all classes, even derived classes, executing the create function string or alter function
string command without the output clause restores the same function string that is provided
by default for the system-provided classes rs_sqlserver_function_class and
rs_default_function_class.

The default function-string definition this method yields may or may not be appropriate for the
databases to which you have assigned the class. This method may be most helpful when you
are using a customized rs_sqlserver_function_class or when you are using other user-
created base classes for Adaptive Server databases.

In a derived class, if you want to discard a customized function string and restore the function
string from the parent class, drop the function string.

Example for Alter Function String

The following command replaces a customized rs_insert function string for the
publishers_rep replication definition with the default function string:

alter function string publishers_rep.rs_insert
for rs_sqlserver_function_class

Example for Create Function String In a Derived Class

You can use this method in a derived function-string class to override an inherited function
string with the Adaptive Server default function string.

The following command replaces an inherited rs_insert function string for the
publishers_rep replication definition with the default function string:

create function string publishers_rep.rs_insert
for derived_class

See also
• Drop Function Strings on page 41

Customize Database Operations

42 Replication Server

• Alter Function Strings on page 40
• Create Function Strings on page 38

Create Empty Function Strings with the Output Template
You can create an empty function string—one that performs no action—by including the
output language clause with an empty function string specified with two single quotes.

For example, the following command defines no action for the rs_insert function string for the
publishers_rep replication definition:

alter function string publishers_rep.rs_insert
for derived_class
output none

See also
• Alter Function Strings on page 40

Define Multiple Commands in a Function String
You can use function strings to batch commands for database servers.

Language output templates can contain many commands. Adaptive Server permits multiple
commands in a batch. Although most other data servers do not offer this feature, Replication
Server allows you to batch commands in function strings for any data server by separating
commands with a semicolon (;).

Use two consecutive semicolons (;;) to represent a semicolon that is not to be interpreted as a
command separator.

If the data server supports command batches, Replication Server replaces the semicolons with
the DSI command separator character (dsi_cmd_separator configuration parameter), as
necessary, and submits the commands in a single batch.

If the data server does not support command batches, Replication Server submits each
command in the function string separately.

For example, the output template in the following function string contains two commands:
create function string rs_commit
for sqlserver2_function_class
output language
'execute rs_update_lastcommit
 @origin = ?rs_origin!sys?,
 @origin_qid = ?rs_origin_qid!sys?,
 @secondary_qid = ?rs_secondary_qid!sys?;
 commit transaction'

Support for batches is enabled or disabled in Replication Server with the alter connection
command.

Set batch to “on” to allow command batching for a database, or set it to “off” to send
individual commands to the data server.

Customize Database Operations

Administration Guide Volume 2 43

To set batching “on” for this example, enter:

alter connection to SYDNEY_DS.pubs2
 set batch to 'on'

To set batching “off,” enter:
alter connection to SYDNEY_DS.pubs2
 set batch to 'off'

Command Batching for Non-ASE Servers
Replication Server lets you batch commands for non-ASE database servers, which may
improve performance.

Support for command batching requires:

• Using the two function strings, rs_batch_start and rs_batch_end.
• Using the DSI connection parameters to control the processing of the two function strings.

Function Strings to Support Command Batching
Support for command batching to non-ASE servers is achieved through the use of two
function strings, rs_batch_start and rs_batch_end.

These function strings store the SQL translation needed for marking the beginning and end of
command batches. Use of these function strings is not necessary for ASE or any other data
server where the function strings rs_begin and rs_commit already support the needed
functionality

Connection Settings to Support Command Batching
The use_batch_markers DSI connection parameter is used to control the processing of the
rs_batch_start and rs_batch_end function strings.

Set use_batch_markers with alter connection and configure connection. If
use_batch_markers is set to on, the rs_batch_start and rs_batch_end function strings are
executed. The default is off.

Note: Set use_batch_markers on only for replicate data servers that require additional SQL
to be sent at the beginning and end of a batch of commands that are not contained in the
rs_begin function string.

Order of Processing
When you configure a connection to use the batch marker function strings, Replication Server
sends statements to the data server in a certain order.

1. The rs_begin command is sent to the replicate data server first, either separately or
grouped with the batch of commands, based on the configuration parameter batch_begin
as it is with current functionality.

2. The rs_batch_start command is processed and sent only when use_batch_markers is
configured to true.

Customize Database Operations

44 Replication Server

The rs_batch_start marker is grouped with the commands being sent as a batch. Valid
rs_begin and rs_batch_start function strings allows processing of both single and batched
transactions to the data servers.

3. A batch of commands is sent to the replicate data server.
The size of the batch varies, and sending of the batch follows the existing rules for
terminating the grouping and flushing of the commands to the replicate data server. These
commands contain a command separator between each individual command.

4. The rs_batch_end command is the last command in the batch of commands. The
rs_batch_end marker is sent only when the configuration parameter use_batch_markers
is set to true.
The rs_batch_start, a batch of commands, and rs_batch_end may be repeated if more
than one batch is required when commands have been flushed by limits such as
dsi_cmd_batch_size.

5. After the final rs_batch_end command has been sent, the rs_commit command is sent to
the replicate data server. The rs_commit is processed according to the present rules.

DSI Configuration
There are several DSI configuration parameters that you need to consider for each connection
that will be batching commands

• batch

• batch_begin

• use_batch_markers

See the Replication Server Heterogeneous Replication Guide to determine whether command
batching is allowed for your non-ASE replicate data server.

See the Replication Server Administration Guide Volume 1 > Manage Database Connections
> Altering Database Connections > Set and Change Parameters Affecting Physical
Connections > Configuration Parameters Affecting Physical Database Connections and
Replication Server Reference Manual > Replication Server Commands > alter connection to
use the configuration parameters.

Use Declare Statements in Language Output Templates
To include declare statements, used to define local variables, in the language output templates,
make sure that the batch configuration parameter is set to “off” for the Replication Server
connected to the database.

When batch is set to “on”, the default for Adaptive Server, Replication Server can send
multiple invocations of a function string to the data server as a single command batch, thereby
putting multiple declarations of the same variable in that batch, which is unacceptable to
Adaptive Server.

Performance is slower when batch mode is off because Replication Server must wait for a
response to each command before the next one is sent. If your performance requirements are
low, you can use declare statements in your function strings if you set batch to “off.”

Customize Database Operations

Administration Guide Volume 2 45

Alternatively, if you want to use batch mode for improved performance, create function-string
language output templates that execute stored procedures, which can include declare
statements and other commands.

See Replication Server Administration Guide Volume 1 > Manage Database Connections >
Altering Database Connections > Set and Change Parameters Affecting Physical Connections
> Configuration Parameters Affecting Physical Database Connections for more information
about batch.

Display Function-Related Information
Use the Replication Server admin command or Adaptive Server stored procedures to obtain
information about existing function strings and classes in your replication system.

See Replication Server Reference Manual > Replication Server Commands for more
information on admin command.

Obtain Information Using the admin Command
You can display the names of the function-string classes used in your Replication Server
system using one of the Replication Server admin commands.

Use admin show_function_classes to display the names of existing function-string classes
and their parent classes. It also indicates the inheritance level of the class. Level 0 is a base
class such as rs_default_function_class or rs_db2_function_class, level 1 is a derived class
that inherits from a base class, and so on.

For example:
 admin show_function_classes

 Class ParentClass Level
 -------- ------------ -----
 sql_derived_class rs_default_function_class 1
 rs_db2_derived_class rs_db2_function_class 1
 rs_db2_function_class 0
...

See Replication Server Reference Manual > Replication Server Commands > admin
show_function_classes.

Obtain Information Using Stored Procedures
You can obtain information about existing functions, function strings, and function-string
classes in your system using stored procedures in a Replication Server RSSD.

See Replication Server Reference Manual > RSSD Stored Procedures for more information.

Customize Database Operations

46 Replication Server

rs_helpfunc
rs_helpfunc displays information about system functions and user-defined functions for a
Replication Server or for a particular table or function replication definition. The syntax is:

rs_helpfunc [replication_definition [, function_name]]

rs_helpfstring
rs_helpfstring displays the parameters and function-string text for functions associated with a
replication definition. The syntax is:

rs_helpfstring replication_definition
 [, function_name]

rs_helpclass
rs_helpclass lists all function-string classes and error classes and their primary Replication
Servers. The syntax is:

rs_helpclass [class_name]

rs_helpclassfstring
rs_helpclassfstring displays the function-string information for class-scope functions. The
syntax is:
rs_helpclassfstring class_name [, function_name]

Default System Variable
Use the default system variable, rs_default_fs, to extend and customize function strings.

• Extend function strings with replication-definition scope to include additional commands
(such as those for auditing or tracking)

• Customize rs_update and rs_delete function strings and still be able to use the replicate
minimal columns option in your replication definitions

Note: Function strings containing the rs_default_fs system variable may only be applied on
Adaptive Servers or data servers that accept Adaptive Server syntax. Otherwise, errors will
occur.

See Replication Server Reference Manual > Replication Server Commands > create function
string for a complete list of function string system variables.

Customize Database Operations

Administration Guide Volume 2 47

Extend Default Function Strings
You can use the rs_default_fs system variable with all function strings that have replication-
definition scope (table or function) as a way to extend the default function-string behavior.

Using the rs_default_fs system variable reduces the amount of typing required when you want
to keep the functionality of the default function string intact and include additional
commands. For example, you can add commands to extend the capabilities of the default
function string for auditing or tracking purposes.

Commands that you add to the output language template may either precede or follow the
rs_default_fs system variable. They may or may not affect how the row is replicated into the
replicate table.

The following example shows how you might use the rs_default_fs system variable in the
create function string command (or the alter function string command) to verify that an
update has occurred:
create function string replication_definition.rs_update
 for function_string_class
 output language '?rs_default_fs!sys?;
if (@@rowcount = 0)
 begin
 raiserror 99999 "No rows updated!"
 end'

In this example, the rs_default_fs system variable, embedded in the language output template,
maintains the functionality of the default rs_update function string while the output template
then checks to see if any rows have been updated. If they have not been updated, an error is
raised.

In this example, the commands that follow the system variable do not affect how the row is to
be replicated at the replicate site. You can use the rs_default_fs system variable with similar
additional commands for verification or auditing purposes.

Use the replicate minimal columns Clause
Customize rs_update and rs_delete function strings and continue to use the replicate
minimal columns clause.

If you have specified the replicate minimal columns clause for a replication definition, you
normally cannot create non-default function strings for the rs_update, rs_delete,
rs_get_textptr, rs_textptr_init, or rs_datarow_for_writetext system functions.

You can create non-default function strings for the rs_update and rs_delete functions by
embedding the rs_default_fs system variable in the output language template of the create
function string or alter function string commands and still use the minimal columns option.

You cannot use any variables, including the rs_default_fs system variable, that access non-key
column values in rs_update or rs_delete function strings for replication definitions that use

Customize Database Operations

48 Replication Server

the minimal columns option. When you create such a function string, you may not know ahead
of time which columns will be modified at the primary table. You may, however, include
variables that access key column values.

See Replication Server Reference Manual > Replication Server Commands > create
replication definition for more information about the replicate minimal columns clause.

Use Function Strings with text, unitext, image, and
rawobject Datatypes

In an environment that supports text, unitext, image, and rawobject datatypes, you
can customize function strings for the rs_writetext function using the output template formats
writetext or none.

See Replication Server Reference Manual > Replication Server System Functions >
rs_writetext.

For Replication Server version 11.5 or later, you can use multiple replication definitions
instead of function strings. See Replication Server Administration Volume 1 > Manage
Replicated Tables > Create Replication Definitions > Create Multiple Replication Definitions
Per Table.

Use the writetext Output Template Option for rs_writetext Function
Strings

The writetext output template option for rs_writetext function string instructs Replication
Server to use the Client-Library™ function ct_send_data to update a text, unitext,
image, or rawobject column value.

It specifies logging behavior for text, unitext, image, and rawobject columns in the
replicate database.

writetext output templates support these options:

• use primary log – logs the data in the replicate database, if the logging option was
specified in the primary database.

• with log – logs the data in the replicate database transaction log.
• no log – does not log the data in the replicate database transaction log.

Use the none Output Tempate for rs_writetext Function Strings
The none output template option for rs_writetext function strings instructs Replication Server
not to replicate a text, unitext, or image column value, providing necessary flexibility
for using text, unitext, and image columns within a heterogeneous environment.

Customize Database Operations

Administration Guide Volume 2 49

Heterogeneous Replication and text, unitext, image, and rawobject Data
To replicate text, unitext, image, and rawobject data from a non-ASE data server
into an Adaptive Server database, you must include the text, unitext, image, and
rawobject data in the replication definition so that a subscription can be created for the
Adaptive Server database.

However, you might not want to replicate the text, unitext, image, and rawobject
data into other replicate data servers, whether they are other foreign data servers or other
Adaptive Servers.

With the none output template option, you can customize rs_writetext function strings to map
operations to a smaller table at a replicate site and to instruct the rs_writetext function string
not to perform any text, unitext, image, or rawobject operation against the
replicate site.

There is one rs_writetext function string for each text, unitext, image, and
rawobject column in the replication definition. If you do not want to replicate a certain
text, unitext, image, or rawobject column, customize the rs_writetext function
string for that column. Specify the column name in the create or alter function string
command, as shown in the example below. You may also need to customize the rs_insert
function string.

Example
Assume that a replication definition does not allow null values in a text, unitext,
image, or rawobject column and that you do not require certain text, unitext,
image, or rawobject columns at the replicate site.

If inserts occur in those columns at the primary site, you must customize the rs_writetext
function strings for the text, unitext, image, or rawobject columns that are not
needed at the replicate site. You must also customize the rs_insert function string for the
replication definition.

For example, assume that you have primary table foo:

foo (int a, b text not null, c image not null)

In foo, you perform the following insert:

insert foo values (1, "111111", 0x11111111)

By default, Replication Server translates rs_insert into the following form for application by
the DSI thread into the replicate table foo:

insert foo (a, b, c) values (1, "", "")

The DSI thread calls:

• ct_send_data to insert text data into column b

• ct_send_data to insert image data into column c

Customize Database Operations

50 Replication Server

Because null values are not allowed for the text column b and the image column c, the DSI
thread shuts down if the replicate table does not contain either column b or column c.

If the replicate table only contains columns a and b, you need to customize the rs_writetext
function for column c to use output none, as follows:

alter function string foo_repdef.rs_writetext;c
 for rs_sqlserver_function_class
 output none

You must specify the column name (c in this example) as shown to alter the rs_writetext
function string for that column.

If the replicate table only contains columns a and b, you also need to customize the rs_insert
function string for the replication definition so that it will not attempt to insert into column c,
as follows:
alter function string foo_repdef.rs_insert
 for rs_sqlserver_function_class
 output language
 'insert foo (a, b) values (?a!new?, "")'

You do not have to customize rs_insert if the replication definition specifies that null values
are allowed for column c. By default, rs_insert does not affect any text, unitext, or
image columns where null values are allowed.

Customize Database Operations

Administration Guide Volume 2 51

Customize Database Operations

52 Replication Server

Manage Warm Standby Applications

Set up, configure, and monitor a warm standby application between two databases—the
primary or active database and a single standby database.

Changes to the primary database are copied directly to the warm standby database. To change
or qualify the data sent, you must add table and function replication definitions.

Replication Server supports setting up and managing warm standby applications for Adaptive
Server and Oracle databases. See Replication Server Heterogeneous Guide > Heterogeneous
Warm Standby for Oracle for detailed information on how to set up and configure a warm
standby application between two Oracle databases.

You can also use multisite availability (MSA) to set up a warm standby application between
Adaptive Server databases. MSA enables replication to multiple standby and replicate
databases. You can choose whether to replicate the entire database or replicate (or not
replicate) specified tables, transactions, functions, system stored procedures, and data
definition language (DDL). See Replication Server Administration Guide Volume 1 >
Manage Replicated Objects Using Multisite Availability.

Warm Standby Applications
A warm standby application is a pair of databases, one of which is a backup copy of the other.
Client applications update the active database; Replication Server maintains the standby
database as a copy of the active database.

If the active database fails, or if you need to perform maintenance on the active database or on
the data server, a switch to the standby database allows client applications to resume work with
little interruption.

To keep the standby database consistent with the active database, Replication Server
reproduces transaction information retrieved from the active database’s transaction log.
Although replication definitions facilitate replication into the standby database, they are not
required. Subscriptions are not needed to replicate data into the standby database.

How a Warm Standby Works
Learn how a warm standby works.

This figure illustrates the normal operation of an example warm standby application.

Manage Warm Standby Applications

Administration Guide Volume 2 53

Figure 2: Warm Standby Application—Normal Operation

In this warm standby application:

• Client applications execute transactions in the active database.
• The RepAgent for the active database retrieves transactions from the transaction log and

forwards them to Replication Server.
• Replication Server executes the transactions in the standby database.
• Replication Server may also copy transactions to destination databases and remote

Replication Servers.

Figure 3: Warm Standby Application Example—Before Switching

This figure shows details about the components and processes in a warm standby application.

See also
• Before Switching Active and Standby Databases on page 85

Manage Warm Standby Applications

54 Replication Server

Database Connections in a Warm Standby Application
In a warm standby application, the active database and the standby database appear in the
replication system as a connection from the Replication Server to a single logical database.

The replication system administrator creates this logical connection to establish one symbolic
name for both the active and standby databases.

Thus, a warm standby application involves these database connections from the Replication
Server:

• A physical connection for the active database
• A physical connection for the standby database
• A logical connection for the active and standby databases

Replication Server maps the logical connection to the currently active database and copies
transactions from the active to the standby database.

See Replication Server Administration Guide Volume 1 > Manage Database Connections.

To improve replication performance, you can create alternate connections and alternate
logical connections in warm standby environments.

See also
• Multiple Replication Paths for Warm Standby Environments on page 261

• Setting Up ASE Warm Standby Databases on page 70

Primary and Replicate Databases and Warm Standby Applications
A logical database may also function as a primary or a replicate database.

In many Replication Server applications:

• A primary database is the source of data that is copied to other databases through the use of
replication definitions and subscriptions.

• A replicate database receives data from the primary database.

Replication Server treats a logical database like any other database. Depending on your
application, the logical database in a warm standby application may function as a database that
does not participate in replication and exists solely as a warm standby backup, or the logical
database may also function as a primary or a replicate database.

Comparison of Database Relationships
Usually, databases are defined as “primary” or “replicate.” In discussing warm standby
applications, however, databases are also defined as “active” or “standby.”

Manage Warm Standby Applications

Administration Guide Volume 2 55

Table 6. Active and Standby vs. Primary and Destination Databases

Active and Standby Databases Primary and Replicate Databases

The active and standby databases must be
managed by the same Replication Server.

Primary and destination databases may be managed by
the same or different Replication Servers.

The active and standby databases must be
Adaptive Server databases.

Except where they participate in warm standby appli-
cations, primary and destination databases need not be
Adaptive Server databases.

The active database has one standby data-
base.

Information is always copied from the active
to the standby database.

A primary database can have one or more destination
databases.

Some databases contain both primary and copied data.

The use of replication definitions is option-
al. Subscriptions are not used.

Replication definitions and subscriptions are required
for replication from a primary to a destination data-
base.

The connection to the standby database uses
the function-string class rs_default_func-

tion_class.

You cannot customize function strings for
this class.

The connection to a replicate database can use a func-
tion-string class in which you can customize function
strings. For example, it may use a derived class that
inherits function strings from rs_default_func-

tion_class.

You can switch the roles of the active and
standby databases.

You cannot switch the roles of primary and replicate
databases.

Client applications generally connect to the
active database. (However, you can perform
read-only operations at the standby data-
base.)

No mechanism is provided for switching
client applications when you switch the
Replication Server to the standby database.

Client applications can connect to either primary or
destination database. Only primary data can be directly
modified.

Generally, client applications do not need to switch
between primary and destination databases.

The RepAgent for the active database sub-
mits all transactions on replicated tables, in-
cluding maintenance user transactions, to
the Replication Server, which reproduces
them in the standby database.

In a warm standby application for a desti-
nation database, transactions in the active
database are normally executed by the main-
tenance user.

In most applications, RepAgent does not submit main-
tenance user transactions to the Replication Server to
be reproduced in destination databases.

The maintenance user does not generally execute
transactions in primary databases.

Manage Warm Standby Applications

56 Replication Server

See also
• Warm Standby Applications Using Replication on page 100

Warm Standby Requirements and Restrictions
There are several requirements and restrictions that apply to all Replication Server warm
standby applications.

• You must use a data server such as Adaptive Server, that supports warm standby
applications.

• One Replication Server manages both the active and standby databases. Both the active
and standby databases must be Adaptive Server databases. See Replication Server
Heterogeneous Guide > Heterogeneous Warm Standby for Oracle for detailed
information on how to set up and configure a warm standby application between two
Oracle databases.

• You cannot create a standby database for the RSSD. You can create a standby database for
the master database only if the Adaptive Server supports master database replication,
such as Adaptive Server 15.0 ESD #2 and later.

• Replication Server does not switch client applications to the standby database.
• You should run Adaptive Server for the active and standby databases on different

machines. Putting the active and standby databases on the same data server or hardware
resources undermines the benefits of the warm standby feature.

• Although Adaptive Server allows tables that contain duplicate rows, tables in the active
and standby databases should have unique values for the primary key columns in each
row.

• The commands and procedures for abstract plans are replicated, except for:
• The and set @plan_id clause of create plan is not replicated. For example, this

command is not replicated as shown.
create plan "select avg(price)
from titles" "(t_scan titles)
into dev_plans and set @plan_id

Rather, it is replicated as:
create plan "select avg(price)
from titles" "(t_scan titles)
into dev_plans

• The abstract plan procedures that take a plan ID as an argument (sp_drop_qplan,
sp_copy_qplan, sp_set_qplan) are not replicated.

• The set plan command is not replicated.
• Failover support is not a substitute for warm standby. While warm standby keeps a copy of

a database, Sybase Failover accesses the same database from a different machine. Failover
support works the same for connections from Replication Server to warm standby
databases.
See Using Sybase Failover in a High Availability System in the Adaptive Server Enterprise
documentation set.

Manage Warm Standby Applications

Administration Guide Volume 2 57

• You cannot use the dump and enable marker on the active database and then use cross-
platform dump and load to rebuild the standby database. The Replication Agent must send
the dump marker to the standby database you are rebuilding. During the cross-platform
dump and load, the active database must be in single-user mode when you obtain the dump
from the active database.

See also
• Set up Clients to Work with the Active Data Server on page 93

• Configure the Replication System to Support Sybase Failover on page 310

• Cross-Platform Dump and Load on page 76

Function Strings for Maintaining Standby Databases
Replication Server uses the system-provided function-string class rs_default_function_class
for the standby DSI, which is the connection to the standby database.

Replication Server generates default function strings for this class. You cannot customize the
function strings in the class rs_default_function_class.

Replicated Information for Warm Standby
Replication Server supports different methods for enabling replication to the standby
database. The level and type of information that Replication Server copies to the standby
database depends on the method you choose.

You must choose one of these two methods:

• Use the sp_reptostandby system procedure to mark the entire database for replication to
the standby database. sp_reptostandby enables replication of data manipulation language
(DML) commands and a set of supported data definition language (DDL) commands and
system procedures.
• DML commands, such as insert, update, delete, and truncate table, change the data in

user tables.
• DDL commands and system procedures change the schema or structure of the

database.
sp_reptostandby allows replication of DDL commands and procedures that make
changes to system tables stored in the database. You can use DDL commands to create,
alter, and drop database objects such as tables and views. Supported DDL system
procedures affect information about database objects. They are executed at the standby
database by the original user.

• If you choose not to use sp_reptostandby, you can mark individual user tables for
replication with sp_setreptable. This procedure enables replication of DML operations
for the marked tables.

Manage Warm Standby Applications

58 Replication Server

Optionally, you can also tell Replication Server which user stored procedures to replicate to
the standby database:

• You can copy the execution of user stored procedures to the standby database by marking
the stored procedures with the sp_setrepproc system procedure. Normally, only stored
procedures associated with function replication definitions are replicated to standby
databases.

For detailed information on what information is replicated for Oracle warm standby, see
Replication Server Heterogeneous Guide > Heterogeneous Warm Standby for Oracle.

See also
• Use sp_setrepproc to Copy User Stored Procedures on page 66

Comparison of Replication Methods
Compare sp_reptostandby and sp_setreptable, to learn how each copies information to the
standby database.

Table 7. Comparison of Table Replication Methods

sp_reptostandby sp_setreptable

Copies all user tables to the standby database. Lets you choose which user tables are copied to the
standby database.

Allows replication of DML commands and sup-
ported DDL commands and system procedures.

Allows replication of DML commands executed
on marked tables.

Note: You can force replication of supported DDL
operations for an isql session.

Does not copy DML and DDL operations to
replicate databases.

If the warm standby application also copies data
to a replicate database, you must mark tables to
be copied to the replicate database with sp_se-
treptable.

Copies DML operations to standby and replicate
databases.

Copies execution of the truncate table com-
mand to the standby database. No subscription is
needed.

Note: You can enable or disable replication of
truncate table to standby databases with the al-
ter logical connection command.

If you use Adaptive Server databases, copies exe-
cution of truncate table to standby databases. No
subscription is needed.

Manage Warm Standby Applications

Administration Guide Volume 2 59

sp_reptostandby sp_setreptable

Replication Server uses table name and table
owner information to identify a table at the
standby database.

If you include the owner_on keywords when you
mark a table for replication to the warm standby,
Replication Server uses table name and table own-
er information to identify a table at the standby
database.

If you include the owner_off keywords when you
mark a table for replication to the warm standby,
Replication Server uses the table name and “dbo”
to identify a table at the standby database.

By default, text, unitext, image, and
rawobject columns are copied to the stand-
by database only if changed.

If you mark the database tables with sp_reptos-
tandby and sp_setreptable, text, uni-
text, image, and rawobject data may
be treated in a different way.

By default, text, unitext, and image col-
umns are always copied to the standby database.

If you set the replication status with sp_setrepcol,
text, unitext, image, and rawobject
columns are treated as marked: always_replicate,
replicate_if_changed, or do_not_replicate.

The easiest method to use when the active and
standby databases are identical.

See also
• Force Replication of DDL Commands to the Standby Database on page 69

• Replicate Truncate Table To Standby Databases on page 97

• Replication of text, unitext, image, and rawobject Data in Warm Standby Applications on
page 67

• Supported DDL Commands and System Procedures on page 61

Use sp_reptostandby to Enable Replication
Use sp_reptostandby to copy DML and supported DDL commands for all user tables to the
standby database.

To enable replication of DML and DDL commands, execute sp_reptostandby in the Adaptive
Server that manages the active database:

sp_reptostandby dbname, [[, 'L1' | 'ALL' | 'NONE'] [, use_index]]

where dbname is the name of the active database and the keywords L1, all, and none set the
level of replication support.

L1 represents the level of replication supported by Adaptive Server version 12.5.

Use the all keyword to make sure that schema replication support is always at the highest level
available. For example, to set the schema replication support level to that of the latest Adaptive
Server version, log in to Adaptive Server and execute this command at the isql prompt:

Manage Warm Standby Applications

60 Replication Server

sp_reptostandby dbname, 'all'

Then, if the database is upgraded to a later Adaptive Server version with a higher level of
replication support, all new features of that version are enabled automatically.

If a DDL command or system procedure contains password information, the password
information is sent through the replication environment using the cipher text password value
stored in the source Adaptive Server system tables.

See Replication Server Reference Manual > Adaptive Server Commands and System
Procedures > sp_reptostandby.

Restrictions and Requirements when Using sp_reptostandby
Consider these restrictions and requirements when you set up your warm standby application
and enable replication with sp_reptostandby.

• Both the active and standby databases must be managed by Adaptive Servers and must
support RepAgent. Both databases must have the same disk allocations, segment names,
and roles. See the Adaptive Server Enterprise System Administration Guide.

• The active database name must exist in the standby server. Otherwise, replication of
commands or procedures containing the name of that database fails.

• Replication Server does not support replication of DDL commands containing local
variables. You must explicitly define site-specific information for these commands.

• Login information is not replicated to the standby database. Make the server user's IDs
match, and add login information to the destination Replication Server.

• Some commands are not copied to the standby database:
• select into

• update statistics

• Database or configuration options such as sp_dboption and sp_configure

• Replication Server does not support the replication of DDL commands after set proxy is
executed on the primary Adaptive Server; Replication Server returns error 5517:
A REQUEST transaction to database '...' failed because the
transaction owner's password is missing. This prevents the
preservation of transaction ownership.

See also
• Making the Server User’s IDs Match on page 79

Supported DDL Commands and System Procedures
DDL commands, Transact-SQL commands, and Adaptive Server system procedures that
Replication Server reproduces at the standby database when you enable replication with
sp_reptostandby.

An asterisk marks those commands and stored procedures for which replication is supported
for Adaptive Server 12.5 and later.

The supported DDL commands are:

Manage Warm Standby Applications

Administration Guide Volume 2 61

• alter encryption key

• alter key

• alter table

• create default

• create encryption key

• create function

• create index

• create key

• create plan*

• create procedure

• create rule

• create schema*

• create table

• create trigger

• create view

• drop default

• drop encryption key

• drop function

• drop index

• drop procedure

• drop rule

• drop table

• drop trigger

• drop view

• grant

• installjava* – replication of installjava is not supported for MSA environments.
• remove java*

• revoke

The supported system procedures are:

• sp_add_qpgroup*

• sp_addalias

• sp_addgroup

• sp_addmessage

• sp_addtype

• sp_adduser

• sp_bindefault

• sp_bindmsg

• sp_bindrule

Manage Warm Standby Applications

62 Replication Server

• sp_cachestrategy

• sp_changegroup

• sp_chgattribute

• sp_commonkey

• sp_config_rep_agent

• sp_drop_all_qplans*

• sp_drop_qpgroup*

• sp_dropalias

• sp_dropgroup

• sp_dropkey

• sp_dropmessage

• sp_droptype

• sp_dropuser

• sp_encryption

• sp_export_qpgroup*

• sp_foreignkey

• sp_hidetext

• sp_import_qpgroup*

• sp_primarykey

• sp_procxmode

• sp_recompile

• sp_rename

• sp_rename_qpgroup*

• sp_replication_path

• sp_setrepcol

• sp_setrepdefmode

• sp_setrepproc

• sp_setreplicate

• sp_setreptable

• sp_unbindefault

• sp_unbindmsg

• sp_unbindrule

The set of DDL commands and system procedures that are supported for replication in the
master database is different than the set supported from replication in a user database.

If the database is the master database, the supported DDL commands are:

• alter role

• create role

• drop role

Manage Warm Standby Applications

Administration Guide Volume 2 63

• grant role

• revoke role

If the database is the master database, the supported system procedures are:

• sp_addlogin

• sp_defaultdb

• sp_defaultlanguage

• sp_displaylevel

• sp_droplogin

• sp_locklogin

• sp_modifylogin

• sp_password

• sp_passwordpolicy – replicated for all options except allow password downgrade.
• sp_role

Replication of alter table: Limitations
When Adaptive Server performs an alter table ... add column_name default ... statement, the
server creates a constraint for the default value using the objid.

After Replication Server replicates this statement, the standby Adaptive Server creates the
same constraint but with a different objid.

If the constraint is later dropped at the primary using alter table ... drop constraint ... , the
statement cannot be performed at the warm standby because the objid is not the same.

To drop the constraint at both the primary and standby databases, execute either of these
statements at the primary database:

• alter table table_name
 ...
 replace column_name default null

• alter table table_name
 ...
 drop constraint constraint_name

This statement shuts down the DSI. Execute the same command at the standby database
with the corresponding objid, and then resume the connection to the DSI, skipping a
transaction.

Replication of the Master Database: Limitations
User tables and user stored procedures are not replicated from the master database.

If the master database is replicated, the following system procedures must be executed in the
master database:

• sp_addlogin

• sp_defaultdb

Manage Warm Standby Applications

64 Replication Server

• sp_defaultlanguage

• sp_displaylevel

• sp_droplogin

• sp_locklogin

• sp_modifylogin

Both the source and target Adaptive Servers must support the master database replication
feature if the database used is the master database.

If the database is the master database, both the source Adaptive Server and the target Adative
Server must be the same hardware architecture type (32-bit versions and 64-bit versions are
compatible) and the same operating system (different versions are also compatible).

Disable Replication
Use sp_reptostandby with the none option to turn off data and schema replication.

Log in to Adaptive Server and at the isql prompt, enter:
sp_reptostandby dbname,'none'

When replication is turned off, Adaptive Server locks all user tables in exclusive mode and
saves information about each of them. This process may take some time if there are a large
number of user tables in the database.

Use this procedure only if you are disabling the warm standby application.

Note: To turn off replication only for the current isql session, use the set replication
command.

Also, if the database is marked for replication to use indexes on text, unitext, image,
and rawobject columns, sp_reptostandby dbname, 'none' also drops indexes for
replication on tables not explicitly marked for replication.

See also
• Change Replication for the Current isql Session on page 69

Use sp_setreptable to Enable Replication
Use sp_setreptable to mark individual tables for replication to replicate or replicate and
standby databases.

Replication Server copies DML operations on those tables to the standby and replicate
databases.

Use sp_setreptable to mark tables for replication to the standby database if:

• You use Adaptive Server databases, or
• You choose not to use sp_reptostandby.

Using sp_setreptable maintains data, but not schema, consistency between the active and
standby databases. sp_setreptable normally does not copy supported DDL commands and

Manage Warm Standby Applications

Administration Guide Volume 2 65

procedures to the standby database. You can, however, use the set replication command to
force replication of DDL commands for the current isql session.

If the database is the master database, user tables are not replicated.

See also
• Change Replication for the Current isql Session on page 69

Use sp_setrepproc to Copy User Stored Procedures
To copy the execution of a user stored procedure to the standby database, mark the stored
procedure for replication with sp_setrepproc.

Procedures marked with sp_setrepproc are also reproduced at replicate databases if
subscriptions have been created for them.

There are two possible scenarios for stored procedure execution in warm standby
applications:

• If you have marked the stored procedure for replication with sp_setrepproc, Replication
Server copies execution of the procedure to the standby database. It does not copy the
effects of the stored procedure to the standby database.

• If you have not marked the stored procedure for replication, Replication Server copies
DML changes effected by the procedure to the standby database, if the affected tables have
been marked for replication.

See Replication Server Administration Guide Volume 1 > Manage Replicated Functions for
more information about the sp_setrepproc system procedure.

If the database is the master database, user procedures are not replicated.

Replication of Tables with the Same Name but Different Owners
Adaptive Server and Replication Server allow you to replicate tables with the same name but
different owners.

When you mark a database for replication with sp_reptostandby, updates are copied
automatically to the table of the same name and owner in the standby database.

When you mark a table for replication using sp_setreptable, you can choose whether the table
owner name is used to select the correct table in the standby database.

• If you set owner_on, Replication Server sends the table name and table owner name to the
standby database.

• If you set owner_off, Replication Server sends the table name and “dbo” as the owner
name to the standby database.

Note: If you are copying information to a replicate database and have used sp_setreptable to
set owner_off, Replication Server sends the table name to the replicate database. It does not
send owner information.

Manage Warm Standby Applications

66 Replication Server

See Replication Server Administration Guide Volume 1 > Manage Replicated Tables > Mark
Tables for Replication > Use the sp_setreptable System Procedure > Enable Replication with
owner_on Status.

Note: If you mark a table with a nonunique name for replication, then create a replication
definition for it, you must include owner information in the replication definition. Otherwise,
Replication Server cannot find the correct table in the replicate or standby database.

Replication of text, unitext, image, and rawobject Data in Warm
Standby Applications

If a database is marked with sp_reptostandby, the replication status is automatically
replicate_if_changed, and Adaptive Server logs only text, unitext, image, and
rawobject columns that have been changed.

This ensures that the standby database stays in sync with the active database. You cannot
change the replication status of such a table using sp_setrepcol.

If a table is marked for replication with sp_setreptable, the default replication status is
always_replicate, and Adaptive Server logs all text, unitext, image, and rawobject
column data. You can change the replication status of text, unitext, image, and
rawobject columns in tables marked with sp_setreptable. Use sp_setrepcol to change the
replication status to replicate_if_changed or do_not_replicate. A column or combination of
columns must uniquely identify each row.

If you use replication definitions, the primary key must be a set of columns that uniquely
identify each row in the table. Make sure the replication status is the same at the Adaptive
Server and the Replication Server.

Use the use_index Option in a Replicate Database
Use the use_index option to speed up the process of setting the text, unitext, image, or
rawobject columns for replication.

It is specially useful for large tables containing one or more text, unitext, image, or
rawobject columns. You can set use_index option at a database level, table level, or
column level. For example, a table can be marked without using indexes, but you can explicitly
mark only one column to use an index for replication.

When you use the use_index option with sp_reptostandby, the database is marked to use
indexes on text, unitext, image, or rawobject columns, and internal indexes are
created on tables that are not explicitly marked for replication.

For a database marked for replication to use indexes, if a new table with off-row columns is
created, the indexes for replication are created as well. Similarly, when an alter table...add
column command is executed in a database marked to use indexes, an internal index is created
in the new off-row column. With the alter table...drop column command, if the column being
dropped is marked to use an index, the internal index for replication is dropped as well.

Manage Warm Standby Applications

Administration Guide Volume 2 67

The replication index status at different object levels is in this order: column, table, and
database. If the database is marked to use indexes for replication, but you marked a table
without using indexes, the table status overrides the database status.

Note: The replication performance on off-row (text, unitext, image, or rawobject)
columns does not change. Only the process of marking a database, table or column for
replication is affected.

You can use the use_index option if the table has a large number of rows or if the database has
one or more tables with a considerable number of rows and several off-row columns.

Configure Warm Standby Database for SQL Statement Replication
By default, warm standby applications do not replicate the DML commands that support SQL
statement replication. However, there are several ways you can use SQL statement replication.

• Create table replication definitions using replicate SQLDML and send standby clauses.
• Set the ws_sqldml_replication parameter on. The default value is UDIS. However,

ws_sqldml_replication has a lower precedence than the table replication definition for
SQL replication. If your table replication definition contains send standby clause for a
table, the clause determines whether or not to replicate the DML statements, regardless of
the ws_sqldml_replication parameter setting.

Replication of Encrypted Columns
Considerations when working with encrypted columns in warm standby applications are
similar to non-warm standby environments.

See Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Replicate Encrypted Columns.

Replication of Quoted Identifiers
When replicating to a warm standby database and to replication definition subscribers, and the
primary table name is marked as quoted but the replicate table name is not, or vice-versa,
Replication Server sends both the primary table name and the replicate table name as quoted.

When Warm Standby Involves a Replicate Database
You can copy information from an active database to a standby database and also copy
information from the active database to a replicate database.

Replication Server must copy the text, unitext, image, and rawobject columns of
the table to the standby and replicate databases with the same replication status.

Do not change the replication status for the table if you want to copy all text, unitext,
image, and rawobject columns to the standby and replicate databases. By default, all
text, unitext, image, and rawobject columns are copied to standby and replicate
databases.

Manage Warm Standby Applications

68 Replication Server

To copy only text, unitext, image, and rawobject columns that have changed, use
sp_setrepcol to set the replication status to replicate_if_changed.

Change Replication for the Current isql Session
You can use set replication to control replication of DML and DDL commands and
procedures for an isql session.

Execute set replication at the Adaptive Server that manages the active database. The syntax
is:

set replication [on | force_ddl | default | off]

The default setting is “on.” Default behavior depends on whether or not the database has been
marked for replication with sp_reptostandby.

Table 8. Default Behavior of set replication

If the database has been marked for
replication with sp_reptostandby

If the database has not been marked for
replication with sp_reptostandby

Replication Server copies DML and supported
DDL commands to the standby database for
all user tables.

Replication Server copies DML commands to stand-
by and replicate databases for tables marked with
sp_setreptable.

See Replication Server Reference Manual > Adaptive Server Commands and System
Procedures > set replication.

Force Replication of DDL Commands to the Standby Database
Use set replication force to force replication of supported DDL commands and system
procedures.

For example, to force replication of all supported DDL commands and system procedures for
an isql session, enter:
set replication force_ddl

This command enables replication of DDL commands and system procedures for tables
marked with sp_setreptable.

To turn off force_ddl and return set replication to default status, enter:

set replication default

Turn off All Replication to the Standby Database
Use set replication force off to turn off all replication to the standby database.

To turn off all replication to the standby database for an isql session, enter:
set replication off

Manage Warm Standby Applications

Administration Guide Volume 2 69

Setting Up ASE Warm Standby Databases
Setting up databases for a warm standby application involves several high-level tasks.

1. Create a single logical connection that will be used by both the active and standby
databases.

2. Use Sybase Central or rs_init to add the active database to the replication system.

You need not add the active database if you have designated as the active database a
database that was previously added to the replication system.

3. Use sp_reptostandby or sp_setreptable to enable replication for tables in the active
database.

4. Use Sybase Central or rs_init to add the standby database to the replication system, then
initialize the standby database.

Before You Begin
There are several prerequisites for setting up ASE warm standby databases.

• The Replication Server that manages the active and standby databases must be installed
and running. A single Replication Server manages both the active and the standby
database.

• The Adaptive Servers that contain the active and standby databases must be installed and
running. Ideally, these databases should be managed by data servers running on different
machines.

• Before you can add a database to the replication system as an active or standby database, it
must already exist in the Adaptive Server.

See also
• Warm Standby Requirements and Restrictions on page 57

Client Application Issues
There are several client application issues to consider before you set up warm standby
databases.

Depending on your client applications and your method of initializing the standby database,
you may be suspending transaction processing in the active database until you have initialized
the standby database.

If you do not suspend transaction processing, ensure that Replication Server has sufficient
stable queue space to hold the transactions that execute while you are loading data into the
standby database.

Before you set up the warm standby databases, implement a mechanism for switching client
applications to the new active database.

Manage Warm Standby Applications

70 Replication Server

See also
• Set up Clients to Work with the Active Data Server on page 93

Task One: Creating the Logical Connection
Create the logical connection and reconfigure RepAgent for the active database if the active
database is already part of the replication system.

See also
• Database Connections in a Warm Standby Application on page 55

Name the Logical Connection
The name you assign to the logical connection depends on whether the active database has
been added to the replication system.

When you create the logical connection, use the combination of logical data server name and
logical database name, in the form data_server.database and:

• If the active database has not yet been added to the replication system – use a different
name for the logical connection than for the active database. Using unique names for the
logical and physical connections makes switching the active database more
straightforward.

• If the active database has previously been added to the replication system – use the
data_server and database names of the active database for the logical connection name.
The logical connection inherits any existing replication definitions and subscriptions that
reference this physical database.

When you create a replication definition or subscription for a warm standby application,
specify the logical connection instead of a physical connection. Specifying the logical
connection allows Replication Server to reference the currently active database.

See also
• Warm Standby Applications Using Replication on page 100

Procedure for Creating the Logical Connection
Use the create logical connection command to create the connection from Replication
Server.

1. Using a login name with sa permission, log in to the Replication Server that will manage
the warm standby databases.

2. Execute the create logical connection command:
create logical connection to data_server.database

The data server name can be any valid Adaptive Server name, and the database name can
be any valid database name.

Manage Warm Standby Applications

Administration Guide Volume 2 71

Reconfiguring and Restarting RepAgent
Reconfigure and restart RepAgent after you create the logical connection.

If you designate as the active database a database that was previously added to the replication
system, the RepAgent thread for the active database shuts down when you create the logical
connection.

1. Reconfigure RepAgent with sp_config_rep_agent, setting the
send_warm_standby_xacts configuration parameter.

See Replication Server Administration Guide Volume 1 > Manage RepAgent and Support
Adaptive Server > Set up RepAgent and Replication Server Reference Manual > Adaptive
Server Commands and System Procedures > sp_config_rep_agent.

2. Restart RepAgent.

Task Two: Add the Active Database
Use rs_init to add a database to the replication system as the active database for a warm
standby application.

Perform the steps for adding a database to the replication system as described in the
Replication Server installation and configuration guides for your platform.

Task Three: Enabling Replication for Objects in the Active Database
Use sp_reptostandby to enable replication of stored procedures, and sp_reptostandby or
sp_setreptable to enable replication for tables in the active database.

You can enable replication for tables in the active database in either of two ways:

• sp_reptostandby to mark the database for replication, enabling replication of data and
supported schema changes.

• sp_setreptable to mark individual tables for replication of data changes.

1. Log in to the Adaptive Server as the system administrator or as the database owner, and
execute:
use active_database

2. Mark database tables for replication, using one of three methods.

• Mark all user tables by executing the sp_reptostandby system procedure:
sp_reptostandby dbname, ['L1' | 'all']

where dbname is the name of the active database, L1 sets the replication level to that of
Adaptive Server version 11.5, and all sets the replication level to the current version of
Adaptive Server. This method replicates both DML and DDL commands and
procedures.

• Mark all user tables by executing sp_reptostandby with the use_index option:

Manage Warm Standby Applications

72 Replication Server

sp_reptostandby dbname, [[, 'L1' | 'ALL'][, use_index]]

where dbname is the name of the active database. With the use_index option, the
database is marked to use indexes on text, unitext, image, or rawobject
columns, and internal indexes are created on those tables not explicitly marked for
replication.

• Mark individual user tables for replication of data changes by executing the
sp_setreptable system procedure for each table that you want to replicate into the
standby database:
sp_setreptable table_name, 'true'

where table_name is the name of the table. This method replicates DML commands.

3. Execute sp_setrepproc with the relevant parameter for every stored procedure which has
executions you want to replicate into the standby database.

• If you are using the replicated functions feature described in Replication Server
Administration Guide Volume 1 > Manage Replicated Functions, execute
sp_setrepproc with the 'function' parameter:
sp_setrepproc proc_name, 'function'

• If you are using asynchronous procedures such as replicated stored procedures
associated with table replication definitions, execute sp_setrepproc with the 'table'
parameter:
sp_setrepproc proc_name, 'function'

See also
• Replicated Information for Warm Standby on page 58

• Asynchronous Procedures on page 363

Enable Replication for Objects Added Later
Mark and add new tables and user stored procedures for replication to the standby database.

• If you marked the database for replication with sp_reptostandby, new tables are
automatically marked for replication.

• If you marked database tables for replication to the standby database with sp_setreplicate,
you must mark each new table that you want to replicate with sp_setreplicate.

• You must mark each new user stored procedure that you want to replicate with
sp_setrepproc.

Task Four: Adding the Standby Database
Use rs_init to add the standby database and its RepAgent to the replication system, then you
initialize the standby database with data from the active database.

After you add the standby database to the replication system, you must prepare it for
operation.

Manage Warm Standby Applications

Administration Guide Volume 2 73

You can then enable replication for objects in the standby database and grant permissions to
the maintenance user in the standby database. Whether or not you need to perform these steps
depends on your method for initializing the standby database.

1. Create the standby database, if it does not already exist.

2. Determine how to initialize the standby database.

3. Add the standby database maintenance user—if you are using dump and load to initialize
the standby database.

4. Bring the new database online using the online database clause before replicating.

Create the Standby Database
If it does not already exist, you must create the standby database in the appropriate Adaptive
Server, according to your needs.

Refer to the Adaptive Server Enterprise System Administration Guide for details on creating
databases.

Determine How to Initialize the Standby Database
Initialize the standby database with data from the active database.

Use these Adaptive Server commands and utilities to initialize the standby database:

• dump and load, or
• bcp, or
• quiesce database ... to manifest_file to generate the manifest file and mount to copy the

data into the standby database.

See the Adaptive Server Enterprise Reference Manual: Commands.

Replication Server writes an “enable replication” marker into the active database transaction
log when you add the standby database using Sybase Central or rs_init. Adaptive Server writes
a dump marker into the active database transaction log when you perform either a dump
database or a dump transaction.

If you do not suspend transaction processing during initialization:

• Choose the “dump marker” option in Sybase Central or rs_init, and use the dump and load
commands.

If you suspend transaction processing during initialization:

• Do not choose the “dump marker” option in Sybase Central or rs_init, and use the dump
and load commands, or

• Use bcp, or
• Use quiesce database ... to manifest_file and mount.

The target database cannot be materialized with dump or load if the database used is the
master database. You may use other methodologies such as bcp where the data can be
manipulated to resolve inconsistencies.

Manage Warm Standby Applications

74 Replication Server

Summary of Database Initialization Methods
Consider the issues for each of the initialization methods and the role of these markers.

Table 9. Issues in Initializing the Standby Database

Issue Use dump
and load with
“dump mark-

er”

Use dump
and load
without

“dump mark-
er”

Use bcp Use mount

Working with
client applica-
tions.

Use if you can
not suspend
transaction pro-
cessing for client
applications.

Use if you can suspend transaction
processing for client applications.

Use if you can suspend
transaction processing
for client applications.

When does Rep-
lication Server
begin replicating
into the standby
database?

Replication
Server starts rep-
licating into the
standby data-
base from the
first dump mark-
er after the ena-
ble replication
marker.

Replication Server starts replicating
into the standby database from the

enable replication marker.

Replication Server
starts replicating into
the standby database
from the enable repli-
cation marker.

Creating mainte-
nance user login
names and mak-
ing sure all user
IDs match.

Add the login name for the standby
database maintenance user in both
the active Adaptive Server and the

standby Adaptive Server, and ensure
that the server user’s IDs match.

(You create login names in the active
Adaptive Server because using
dump and load to initialize the

standby database with data from the
active database overrides any previ-
ous contents of the standby database
with the contents of the active data-

base.)

When you add
the standby data-
base, Sybase
Central or rs_init
adds the mainte-
nance user login
name and user in
the standby
Adaptive Server
and the standby
database.

Add the login name for
the standby database
maintenance user in
both the active and
standby Adaptive
Servers. Ensure that
the server user’s IDs
match. (You create log-
in names in the active
Adaptive Server be-
cause using mount to
initialize the standby
database with data
from the active data-
base overrides any pre-
vious contents of the
standby database with
the contents of the ac-
tive database.)

Manage Warm Standby Applications

Administration Guide Volume 2 75

Issue Use dump
and load with
“dump mark-

er”

Use dump
and load
without

“dump mark-
er”

Use bcp Use mount

Initializing
standby data-
base.

Use dump and load to transfer data
from the active database to the stand-

by database.

You can use database dumps and/or
transaction dumps.

Use bcp to copy
each replicated
table from the
active database
to the standby
database.

Use quiesce data-
base ... to mani-
fest_file and mount
database to transfer
data from the active da-
tabase to the standby
database.

Active database
connection state.

The connection
to the active da-
tabase does not
change.

Replication Server suspends the
connection to the active database.

Replication Server
suspends the connec-
tion to the active data-
base.

Resuming con-
nections.

Resume connec-
tion to the stand-
by database.

Resume connections to the active
and standby databases; resume

transaction processing in the active
database.

Resume connections to
the active and standby
database; resume
transaction processing
in the active database.

Cross-Platform Dump and Load
You can use cross-platform dump and load to initialize a standby database with a RepAgent.

1. On the active database:

a) Stop the RepAgent with sp_stop_rep_agent database.
b) Remove the secondary truncation point with dbcc settrunc(‘ltm’, ‘ignore’).
c) Set the database in single-user mode in Adaptive Server.

Enter:
sp_dboption database_name, ‘single user’, true

d) Checkpoint the database.

Enter:
checkpoint

e) Dump the database transaction log by executing in Adaptive Server:
dump tran database_name with truncate_only
go

f) Obtain a dump of the database.

2. On the standby database:

a) Load the dump you obtained from the standby database.

Manage Warm Standby Applications

76 Replication Server

Sybase recommends that you run sp_post_xpload to check and rebuild indexes even if
the endian types of the platforms are the same.

b) Dump the transaction log to delete the log records that sp_post_xpload creates:
dump tran database_name with truncate_only
go

c) Execute the Adaptive Server sp_indsuspect system procedure to check user tables for
indexes marked as suspect.

d) Rebuild suspect indexes if required. If there is a change in characterset or sort order,
you must execute sp_indsuspect and rebuild indexes again until sp_indsuspect does
not show any tables with suspect indexes.

e) Execute dbcc settrunc ('ltm', 'valid') to restore the secondary truncation point in the
database log followed by rs_zeroltm to reset the database locater value to zero.

Executing these commands allows RepAgent to start at the secondary truncation point.
f) Start RepAgent with sp_start_rep_agent database.

See “Dumping and loading databases across platforms,” in Chapter 11 “Developing a Backup
and Recovery Plan” in the Adaptive Server Enterprise System Administration Guide Volume
2.

If You Do Not Suspend Transaction Processing
If you do not suspend transaction processing for the active database while initializing the
standby database, choose the “dump marker” option when you add the standby database.

Then initialize the standby database by using the dump and load commands.

Replication Server starts replicating into the standby database from the first dump marker
after the "enable replication" marker in the transaction log of the active database.

In this figure, transaction T1, executed after you added the standby database, appears after the
enable replication marker in the log. T1 is included in dumps, so it is present in the standby
database after you have loaded the dumps. Replication Server does not need to replicate it into
the standby database.

Figure 4: Using dump and load with Dump Marker

Manage Warm Standby Applications

Administration Guide Volume 2 77

Transactions can be executed in the active database between the time the enable replication
marker is written and the time the data in the active database is dumped.

You can load the last full database dump and any subsequent transaction dumps into the
standby database until both markers have been received and the standby database is ready for
operation. Then, optionally, you can use a final transaction dump of the active database to
bring the standby database up to date. Any transactions not included in dumps will be
replicated.

Replication Server does not replicate transactions from the active to the standby database until
it has received both the enable replication marker and the first subsequent dump marker. After
receiving both markers, Replication Server starts executing transactions in the standby
database.

If You Suspend Transaction Processing
If you suspend transaction processing for the active database while initializing the standby
database, do not choose the “dump marker” option when you add the standby database.

You can initialize the standby database by using the dump and load commands, by using bcp,
or by using mount.

Replication Server starts replicating into the standby database from the enable replication
marker in the transaction log of the active database. No transactions occur after the enable
replication marker, because client applications are suspended.

Figure 5: Using dump and load Without Dump Marker, or Using bcp

As shown in the figure, no transactions are executed in the active database between the time
the enable replication marker is written and the time the data in the active database is dumped
using the dump command, or copied using bcp or mount.

You can load the last full database dump or the last set of replicated tables copied with bcp into
the standby database until the standby database receives the enable replication marker.

After receiving this marker, Replication Server starts executing transactions in the standby
database.

Manage Warm Standby Applications

78 Replication Server

Add the Standby Database Maintenance User
If you plan to initialize the standby database using the dump and load commands, with or
without the “dump marker” option, you must create the maintenance user login name for the
standby database in both the standby and the active data servers before you add the standby
database.

Both Sybase Central and rs_init automatically add the active database maintenance user in the
active data server when you add the active database.

Making the Server User’s IDs Match
Within each data server, the server user’s ID (suid) for each login name must be the same in
the syslogins table in the master database and the sysusers table in each user
database.

This must be true for the active and standby databases in a warm standby application. The
server user’s ID and role settings must also be the same in the syslogins and
sysloginroles tables in the master database.

Make the server user’s IDs match using one of three methods:

• Add all login names, including maintenance user names, to both Adaptive Servers in the
same order. Adaptive Server assigns server user’s IDs sequentially, so the server user’s IDs
for all login names will match.

• After loading the dump into the standby, reconcile the sysusers table in the standby
database with the syslogins table in the master database of the standby Adaptive
Server.

• Maintain a master Adaptive Server with all of your login names and copy the syslogins
table from the master database for the master Adaptive Server to all newly created
Adaptive Servers.

Adding the Maintenance User
Add the maintenance user login name for the standby database to both the standby and the
active data servers.

1. In the standby data server, execute the sp_addlogin system procedure to create the
maintenance user login name.

See the Adaptive Server Enterprise System Administration Guide for more information
about using sp_addlogin.

2. In the active data server, execute sp_addlogin to create the same maintenance user login
name that you created in the standby data server.

When you set up the standby database using the dump and load commands, the
sysusers table is loaded into the standby database along with the other data from the
active database.

Manage Warm Standby Applications

Administration Guide Volume 2 79

Adding the Standby Database to the Replication System
Initialize the standby database, bring it online, and resume the connection to it, to add it to the
replication sysem.

1. Suspend transaction processing in the active database, if appropriate for your client
applications and your method of initializing the standby database.

You must use dump and load with the “dump marker” method if you do not suspend
transaction processing.

2. Use Sybase Central or rs_init to add the standby database to the replication system.
Perform the steps described for adding a database to the replication system.

3. To monitor the status of the logical connection at any time.

Enter:
admin logical_status, logical_ds, logical_db

The Operation in Progress and State of Operation in Progress
output columns indicate the standby creation status.

4. If you are initializing the standby database using dump and load, use the dump command
to dump the contents of the active database, and load the standby database.

For example:
dump database active_database to dump_device

load database standby_database from dump_device

5. If you have already loaded a previous database dump and subsequent transaction dumps,
you can just dump the transaction log and load it into the standby database.

For example:
dump transaction active_database to dump_device

load transaction standby_database from dump_device

6. After completing load operations, bring the standby database online:
online database standby_database

Refer to the Adaptive Server Enterprise Reference Manual for help with using the dump
and load commands and the online database command.

7. Initialize the standby database. Use bcp or quiesce ... to manifest_file and mount.

• To initialize the standby database using bcp, copy each of the replicated tables in the
active database to the standby database.
You must copy the rs_lastcommit table, which was created when you added the
active database to the replication system.
Refer to the Adaptive Server utility programs manual for help with using the bcp
program.

Manage Warm Standby Applications

80 Replication Server

• To initialize the standby database using quiesce ... to manifest_file and mount, quiesce
the database and create the manifest file. Make a copy of both the database and log
devices. Mount the devices on the standby database.

8. If you initialized the standby database by using dump and load without the “dump marker”
method, or by using bcp, or by using quiesce database ... to manifest_file and mount,
Replication Server suspended the connection to the active database. You must resume the
connection to the active database.

In the Replication Server enter:
resume connection to active_ds.active_db

9. Regardless of your method for initializing the standby database, you must resume the
connection to the standby database.

In the Replication Server enter:
resume connection to standby_ds.standby_db

10. Resume transaction processing in the active database, if it was suspended.

Use a Blocking Command for Standby Creation
Use the wait for create standby Replication Server blocking command to instruct Replication
Server not to accept commands until the standby database is ready for operation.

You can use this command in a script that creates a standby database. The syntax is:
wait for create standby for logical_ds.logical_db

Enable Replication for Objects in the Standby Database
To be ready to switch to the standby database, you must enable replication for the tables and
stored procedures in the standby database that you want to replicate into the new standby
database after the switch.

• If you initialized the standby database using the dump and load or mount commands, the
tables and stored procedures in the standby database will have the same replication settings
as the active database.

• If you initialized the standby database using bcp, enable replication for these objects by
using sp_setreptable or sp_reptostandby, and sp_setrepproc. To enable replication for
objects in the standby database, adapt the procedure for enabling replication for objects in
the active database.

See also
• Task Three: Enabling Replication for Objects in the Active Database on page 72

Manage Warm Standby Applications

Administration Guide Volume 2 81

Enable Replication for Objects Added Later
Later on, you may add new tables and user stored procedures that you want to replicate to the
new standby database.

• If you marked the standby database for replication with sp_reptostandby, any new tables
are automatically marked for replication.

• If you marked individual database tables for replication to the new standby database with
sp_setreplicate, you must mark each new table that you want to replicate with
sp_setreplicate.

• You must mark each new user stored procedure that you want to replicate with
sp_setrepproc.

Granting Permissions to the Maintenance User
After adding the standby database, you must grant the necessary permissions to the
maintenance user.

1. Log in to the Adaptive Server as the System Administrator or as the Database Owner, and
specify the database with which you want to work.

Enter:
use standby_database

2. Grant replication_role to the maintenance user.

Enter:
sp_role “grant”, replication_role, maintenance_user

replication_role ensures that the maintenance user can execute truncate table at the
standby database.

3. Execute the grant all command for each table.

Enter:
grant all on table_name to maintenance_user

Replication of the Master Database in a Warm Standby
Environment for ASE

There are several requirements and restrictions for replicating the master database in an
Adaptive Server warm standby environment.

You can replicate Adaptive Server logins from one master database to another.The master
database replication is limited to DDL, and the system commands used to manage logins and
roles. Master database replication does not replicate data from system tables, nor replicate
data or procedures from any other user tables in the master database.

Manage Warm Standby Applications

82 Replication Server

Both the source Adaptive Server and the target Adaptive Server must be the same hardware
architecture type (32-bit versions and 64-bit versions are compatible), and the same operating
system (different versions are also compatible).

Do not initialize the active and standby databases with a load from another master database. To
synchronize the syslogins, suids and roles at each master, use bcp to refresh the appropriate
tables or manually synchronize the IDs and roles prior to setting up your replication.

There are several restrictions and requirements when you set up your warm standby
application and enable replication with sp_reptostandby, and there are several supported
DDL and system procedures that apply to the master database.

Replication Server versions 12.0 and later support master database replication in a warm
standby environment, and in an MSA environment in Replication Server 12.6 and later. The
primary or active Adaptive Server must be version 15.0 ESD #2 or later.

See Replication Server Administration Guide Volume 1 > Manage Replicated Objects Using
Multisite Avaiability > Replicating the Master Database in an MSA Environment for
information about master database replication in an MSA environment.

See also
• Restrictions and Requirements when Using sp_reptostandby on page 61
• Supported DDL Commands and System Procedures on page 61

Setting Up Master Database Replication in a Warm Standby
Environment

Set up master database replication in a warm standby environment.

1. Set up the active master database and the standby master database in the Replication
Server as warm standby pair.

Do not use “initialize the standby with dump and load” nor “use the dump marker to start
replicating to standby”. To synchronize the syslogins and suids at each master, use bcp or
manually synchronize the IDs.

2. Mark the master database on both the active and the standby database to send system
procedures.

Enter:
sp_reptostandby master, ‘all’

3. Stop the RepAgent on the active master database.

Enter:
sp_stop_rep_agent master

4. Configure the Replication Agents on both the active and the standby databases to send
warm standby transactions.

Enter:

Manage Warm Standby Applications

Administration Guide Volume 2 83

sp_config_rep_agent master, ‘send warm standby
xacts’, ‘true’

5. Restart the RepAgent on the active master database.

Enter:
sp_start_rep_agent master

6. Resume the DSI connections to both the active and the standby master databases on the
Replication Server.

Enter:
resume connection to active_ds.master
go
resume connection to standby_ds.master
go

7. Verify the status of warm standby.

Enter:
admin logical_status

See also
• Setting Up ASE Warm Standby Databases on page 70

Switch the Active and Standby ASE Databases
You can switch to the standby database when the active database fails or when you want to
perform maintenance on the active database.

Determine if a Switch Is Necessary
Determining when it is necessary to switch from the active to the standby database depends on
the requirements of your applications.

In general, you should not switch when the active data server experiences a transient failure. A
transient failure is a failure from which the Adaptive Server recovers upon restarting with no
need for additional recovery steps. You probably should switch if the active database will be
unavailable for a long period of time.

Determining when to switch depends on issues such as how much recovery the active database
requires, to what degree the active and standby databases are in sync, and how much downtime
your users or applications can tolerate.

You may also want to switch the roles of the active and standby databases to perform planned
maintenance on the active database or its data server.

Manage Warm Standby Applications

84 Replication Server

Before Switching Active and Standby Databases
Learn the processes involved and the status of the components in a warm standby enviroment
before you switch from the active to the standby database.

This figure illustrates the normal operation of an example warm standby application.

Figure 6: Warm Standby Application

The "Warm Standby Application Example—before Switching" figure:

• Illustrates a warm standby application for a database that does not participate in the
replication system other than through the activities of the warm standby application itself.

• Represents the warm standby application in normal operation, before you switch the active
and standby databases.

• Adds internal detail to show that:
• Replication Server writes transactions received from the active database into an

inbound message queue.
See Replication Server Administration Guide Volume 1 > Replication Server
Technical Overview > Transaction Handling with Replication Server > Distributed
Concurrency Control for more information about inbound and outbound queues.

• This inbound queue is read by the DSI thread for the standby database, which executes
the transactions in the standby database.
Messages received from the active database cannot be truncated from the inbound
queue until the standby DSI thread has read them and applied them to the standby
database.

Manage Warm Standby Applications

Administration Guide Volume 2 85

Figure 7: Warm Standby Application Example—before Switching

In this example, transactions are simply replicated from the active database into the standby
database. The logical database itself does not:

• Contain primary data that is replicated to replicate databases or remote Replication
Servers, or

• Receive replicated transactions from another Replication Server

See also
• Warm Standby Applications Using Replication on page 100

Internal Switching Steps
When you switch active and standby databases, Replication Server performs several tasks.

Replication Server:

1. Issues log suspend against the active and standby RepAgent connections.
2. Reads all messages left in the inbound queue and applies them to the standby database and,

for subscription data or replicated stored procedures, to outbound queues.
All committed transactions in the inbound queue must be processed before the switch can
complete.

3. Suspends the standby DSI.
4. Enables the secondary truncation point in the new active database.
5. Places a marker in the transaction log of the new active database. Replication Server uses

this marker to determine which transactions to apply to the new standby database and to
any replicate databases.

6. Updates data in the RSSD pertaining to the warm standby databases.
7. Resumes the connection for the new active database, and resumes log transfer for the new

active database so that new messages can be received.

Manage Warm Standby Applications

86 Replication Server

After Switching Active and Standby Databases
Learn the processes involved and the status of the components in a warm standby environment
after you switch from the active to the standby database.

After you have switched the roles of the active and standby databases, the replication system
will have changed, as shown in this figure:

Figure 8: Warm Standby Application Example—After Switching

• The previous standby database is the new active database. Client applications will have
switched to the new active database.

• The previous active database, in this example, becomes the new standby database.
Messages for the previous active database are queued for application to the new active
database.

Note: After switching, the Replication Agent for the previous active database has shut down,
and the Replication Agent for the new active database has started.

Making the Switch
Making the switch from the active to the standby database consists of several tasks.

1. Disconnect client applications from the active database if they are still using it

2. In Replication Server, switch the active and standby databases

3. Restart client applications with the new active database

4. Start RepAgent for the new active database

5. Determine whether to drop the old active database or use it as the new standby database

Manage Warm Standby Applications

Administration Guide Volume 2 87

Disconnect Client Applications from the Active Database
Before you switch to the standby database, you must stop clients from executing transactions
in the active database.

If the database failed, of course, clients cannot execute transactions. However, you may need
to take steps to prevent them from updating that database after it is back online.

See also
• Set up Clients to Work with the Active Data Server on page 93

Switching the Active and Standby Databases
Learn the procedure to switch the active and standby databases for a logical connection.

Prerequisites

Before switching, you must set up clients to work with the active data server.

Task

1. At the Adaptive Server of the active database, ensure that the RepAgent is shut down.
Otherwise, use sp_stop_rep_agent to shut down the RepAgent.

2. Execute the switch active command at the Replication Server.

Enter:
switch active for logical_ds.logical_db
to data_server.database

data_server.database is the new active database.

3. Use admin logical_status to monitor the progress of a switch.

Enter:
admin logical_status, logical_ds, logical_db

See the Operation in Progress and State of Operation in Progress
output columns for the switch status.

4. When the active database switch is complete, you must restart RepAgent for the new active
database.

Enter:
sp_start_rep_agent dbname

Next

Note: If Replication Server stops in the middle of switching, the switch resumes after you
restart Replication Server.

Manage Warm Standby Applications

88 Replication Server

See also
• Set up Clients to Work with the Active Data Server on page 93

• Internal Switching Steps on page 86

Use a Blocking Command for Switch Active
Use the wait for switch Replication Server blocking command to instruct Replication Server
to wait until the standby database is ready for operation.

You can use this command in a script that switches the active database. The syntax is:
wait for switch for logical_ds.logical_db

Monitor the Switch
You can use admin logical_status to check for replication system problems that prevent the
switch from proceeding.

Such problems may include a full transaction log for the standby database or a suspended
standby DSI. If you cannot resolve the problems, you can abort the switch using the abort
switch command.

The Operation in Progress and State of Operation in Progress output
columns indicate the switch status.

For example, suppose admin logical_status persistently returns one of the following
messages in its State of Operation in Progress output column:

Standby has some transactions that have not been applied

or
Inbound Queue has not been completely read by Distributor

These messages may indicate a problem that you cannot resolve, in which case you may
choose to abort the switch. You can use admin who commands to obtain more information
about the state of the switching operation.

See also
• Commands for Monitoring Warm Standby Applications on page 92

Abort a Switch
Unless Replication Server has proceeded too far in switching the active and standby
databases, you can abort the process by using the abort switch command.

The syntax is:
abort switch for logical_ds.logical_db

If the abort switch command cancels the switch active command successfully, you may have
to restart the RepAgent for the active database.

Manage Warm Standby Applications

Administration Guide Volume 2 89

You cannot cancel the switch active command after it reaches a certain point. If this is the case,
you must wait for the switch active command to complete, then use it again to return to the
original active database.

Restart Client Applications
When the admin logical_status command indicates that there is no operation in progress, or
when the wait for switch command returns an isql prompt, you can restart client applications
in the new active database.

Client applications must wait until Replication Server switch to the new active database is
complete before they begin executing transactions in the new active database. You should
provide an orderly method for moving clients from the old active database to the new active
database.

See also
• Set up Clients to Work with the Active Data Server on page 93

Resolve Paper-trail Transactions
If the old active database failed, determine if any transactions were not transmitted to the new
active database. Such transactions are called paper-trail transactions if there is an external
record of their execution.

When you switch from an active to a standby database, all committed transactions in the
inbound queue are applied to the new active database before the switch is complete. However,
it is possible that some transactions that committed at the active database before the failure
were not received by Replication Server and, therefore, were not applied to the standby
database.

When you switch the active and standby databases, you can re-execute the paper-trail
transactions in the new active database. If there are dependencies, you may need to re-execute
the paper-trail transactions before you allow new transactions to execute. Be sure to execute
the paper-trail transactions using the original client’s login name, not the maintenance user
login name.

If you bring the old active database online as the new standby database, you must first reverse
the paper-trail transactions so they will not be duplicated in the standby database.

Manage the Old Active Database
After you have switched to the new active database, you must decide what to do with the old
active database.

You can:

• Bring the database online as the new standby database and resume the connection so that
Replication Server can apply new transactions, or

• Drop the database connection using drop connection, and add it again later as the new
standby database. If you drop the database, any queued messages for the database are

Manage Warm Standby Applications

90 Replication Server

deleted. See Replication Server Reference Manual > Replication Server Commands >
drop connection.

Bring the Old Active Database Online as the New Standby
If the old active database is undamaged, you can bring it back online as the new standby
database.

Enter:
resume connection to data_server.database

where data_server.database is the physical database name of the old active database.

You may need to resolve paper-trail transactions in the database in order to avoid duplicate
transactions. Depending on your applications, you may need to do this before you bring the
old active database back online as the new standby database.

Because paper-trail transactions must be re-executed in the new active database, you must
prepare the new standby database so that it can receive the transactions again when they are
delivered through the replication system.

To resolve the conflicts, you can:

• Undo or reverse the duplicate transactions in the new standby database, or
• Ignore the duplicate transactions and deal with them later.

Monitor a Warm Standby Application
You can use the Replication Server log file or several commands to monitor a warm standby
application between two Adaptive Server databases or Oracle databases.

Replication Server Log File
You can read the Replication Server log file for messages pertaining to warm standby
operations such as messages you see when you add the standby database.

Standby Connection Created
These are examples of the messages that Replication Server writes while creating the physical
connection for a standby database:
I. 95/11/01 17:47:50. Create starting : SYDNEY_DS.pubs2
I. 95/11/01 17:47:58. Placing marker in TOKYO_DS.pubs2 log
I. 95/11/01 17:47:59. Create completed : SYDNEY_DS.pubs2

In these examples, SYDNEY_DS is the standby data server and TOKYO_DS is the active data
server.

When you create the physical connection for the standby database, Replication Server writes
an “enable replication” marker in the active database transaction log. The standby DSI ignores
all transactions until it has received this marker. If, however, you chose the “dump marker”

Manage Warm Standby Applications

Administration Guide Volume 2 91

option, the standby DSI continues to ignore messages until it encounters the next dump marker
in the log.

When the appropriate marker arrives at the standby database from the active database
Replication Agent, the standby DSI writes a message in the Replication Server log file and
then begins executing subsequent transactions in the standby database.

In the example messages above, Replication Server has created the connection for the standby
database, SYDNEY_DS.pubs2, and suspended its DSI thread. At this point, the Database
Administrator dumps the contents of the active database, TOKYO_DS.pubs2, and loads it
into the standby database.

Standby Connection Resumed After Initialization
After the Database Administrator has loaded the dump into the standby database and resumed
the connection to the standby database, the standby DSI begins processing messages from the
active database. Replication Server writes in its log messages similar to this:
I. 95/11/01 18:50:34. The DSI thread for database 'SYDNEY_DS.pubs2'
is started.
I. 95/11/01 18:50:41. Setting LTM truncation to 'ignore' for
SYDNEY_DS.pubs2 log
I. 95/11/01 18:50:43. DSI for SYDNEY_DS.pubs2 received and processed
Enable
 Replication Marker. Waiting for Dump Marker
I. 95/11/01 18:50:43. DSI for SYDNEY_DS.pubs2 received and processed
Dump
 Marker. DSI is now applying commands to the Standby

When you see the final message in the log file, the warm standby database creation process has
completed.

Commands for Monitoring Warm Standby Applications
Use the admin commands to monitor the status of a warm standby application.

SeeReplication Server Reference Manual > Replication Server Commands for more
information about these commands.

admin logical_status
The admin logical_status command tells you:

• How the addition of a standby database or the switching between active and standby
databases is progressing.

• Whether the active or standby database connection is suspended.
• Whether the standby DSI is ignoring messages. The standby DSI ignores messages while

it waits for a marker to arrive in the transaction stream from the active database.

admin who, dsi
The admin who, dsi command provides another method to check the status of the standby
DSI. The IgnoringStatus output column contains either:

Manage Warm Standby Applications

92 Replication Server

• “Applying” – if the DSI is applying messages to the standby database, or
• “Ignoring” – if the DSI is waiting for a marker.

admin who, sqm
The admin who, sqm command provides information about the state of stable queues. In a
warm standby application, the inbound queue is read by the Distributor thread, if you have not
disabled it, and by the standby DSI thread. Replication Server cannot delete messages from
the inbound queue until both threads have read and delivered them.

If Replication Server is not deleting messages from the inbound queue, you can use the admin
who, sqm command to investigate the problem. The command tells you how many threads are
reading the queue and the minimum deletion point in the queue.

admin sqm_readers
The admin sqm_readers command monitors the read and delete points of the individual
threads that are reading the inbound queue. If the inbound queue is not being deleted, admin
sqm_readers will help you find the thread that is not reading the queue.

The admin sqm_readers command takes two parameters: the queue number and the queue
type for the logical connection.

You can find the queue number and queue type in the Info column of the admin who, sqm
command output: the queue number is the 3-digit number to the left of the colon, while the
queue type is the digit to the right of the colon.

Queue type 1 is an inbound queue. Queue type 0 is an outbound queue. The inbound queue for
a logical connection can be read by more than one thread. For example, to find out about the
threads reading inbound queue number 102, execute admin sqm_readers as follows:
admin sqm_readers, 102, 1

Set up Clients to Work with the Active Data Server
You must devise a method to switch client applications when you switch the active and
standby databases in Replication Server using the switch active command, as Replication
Server does not switch client applications to the new active data server and database
automatically.

There are three sample methods for setting up client applications to connect to the currently
active data server. You can create:

• Two interfaces files
• An interfaces file entry with a symbolic data server name for client applications
• A mechanism that automatically maps the client application data server connections to the

currently active data server

You must implement your method before you set up the warm standby databases.

Manage Warm Standby Applications

Administration Guide Volume 2 93

Regardless of your method for switching applications, do not modify the interfaces file entries
used by Replication Server.

Two Interfaces Files
With this method, you set up two interfaces files, one for the client applications and one for
Replication Server.

When you switch the clients, you can modify their interfaces file entry to use the host name
and port number of the data server with the new active database.

Symbolic Data Server Name for Client Applications
With this method, you create an interfaces file entry with a symbolic data server name for
client applications.

The interfaces file might contain entries for data server name, host name, and port number.

Table 10. Symbolic Data Server Name in Interfaces File

Data server name Host name Port number

Client applications CLIENT_DS machine_1 2800

Active database TOKYO_DS_X machine_1 2800

Standby database TOKYO_DS_Y machine_2 2802

You could create an interfaces entry for a data server named CLIENT_DS. Client applications
would always connect to CLIENT_DS. The CLIENT_DS entry would use the same host name
and port number as the data server with the active database.

Replication Server connects to the same host name and port number as the client applications
but uses a different data server name. In this example, Replication Server would switch
between the TOKYO_DS_X and TOKYO_DS_Y data servers.

After switching the active database, you would change the CLIENT_DS interfaces entry to the
host name and port number of the data server with the new active database—in this example,
machine_2 and port number 2802.

Map Client Data Server to Currently Active Data Server
With this method, you create a mechanism, such as an intermediate Open Server application,
that automatically maps the client application data server connections to the currently active
data server.

Refer to Open Server documentation, such as the Open Server Server-Library/C Reference
Manual, for more information about how to create such an Open Server application.

Manage Warm Standby Applications

94 Replication Server

Alter Warm Standby Database Connections
Learn the options for reconfiguring or modifying the logical database connection and the
physical database connections. Under ordinary circumstances, if you set up a warm standby
application through the usual procedure, the default settings will work correctly.

Alter Logical Connections
Use the alter logical connection command to modify parameters for warm standby logical
database connections.

Use alter logical connection to modify parameters that:

• Affect logical connections
• Enable or disable the Distributor thread
• Enable or disable the replication of truncate table to the standby database

Change Parameters Affecting Logical Connections
Use the alter logical connection command to update parameters that affect logical
connections.

Log in to the source Replication Server and, at the isql prompt, enter:
alter logical connection
 to logical_ds.logical_db
set logical_database_param to 'value'

where logical_ds is the data server name for the logical connection, logical_db is the database
name for the logical connection, logical_database_param is a logical database parameter, and
value is a character string setting for the parameter.

New settings take effect immediately.

Configuration Parameters Affecting Logical Connections
There are several parameters you can use to configure logical connections.

Warning! You should reset the logical connection parameters materialization_save_interval
and save_interval only when there is a serious lack of stable queue space. Resetting them
(from strict to a given number of minutes) may lead to message loss at the standby database.

Manage Warm Standby Applications

Administration Guide Volume 2 95

Table 11. Configuration Parameters Affecting Logical Connections

logical_data-
base_param

value

deferred_name_resolu-
tion

Enable deferred name resolution in Replication Server to support de-
ferred name resolution in Adaptive Server.

You must ensure that deferred name resolution is supported in the
replicate Adaptive Server before you enable deferred name resolution
support in Replication Server.

Default: off

Note: This parameter is only applicable to Adaptive Server.

materialization_save_in-
terval

Materialization queue save interval. This parameter is only used for
standby databases in a warm standby application.

Default: “strict” for standby databases

replicate_minimal_col-
umns

Specifies whether Replication Server should send all replication defi-
nition columns for all transactions or only those needed to perform
update or delete operations at the standby database. Values are “on” and
“off.”

Replication Server uses this value in standby situations only when a
replication definition does not contain a “send standby” parameter, or if
there is no replication definition at all.

Otherwise, Replication Server uses the value of the “replicate minimal
columns” or “replicate all columns” parameter in the replication defi-
nition.

Default: on

When you set dsi_compile_enable to ‘on’, Replication Server ignores
what you set for replicate_minimal_columns.

save_interval Specifies the save interval which is the number of minutes that the
Replication Server saves messages after they have been successfully
passed to the destination data server.

Default: 0 minutes

Manage Warm Standby Applications

96 Replication Server

logical_data-
base_param

value

send_standby_re-
pdef_cols

Specifies which columns Replication Server should send to the standby
database for a logical connection. Overrides “send standby” options in
the replication definition that tell Replication Server which table col-
umns to send to the standby database. Values are:

• on – send only the table columns that appear in the matching rep-
lication definition. Ignore the “send standby” option in the repli-
cation definition.

• off – send all table columns to the standby. Ignore the “send stand-
by” option in the replication definition.

• check_repdef – send all table columns to the standby based on
“send standby” option.

Default: check_repdef

See also
• Save Interval for Recovery on page 313

Disable the Distributor Thread
Use the alter logical connection command to disable the Distributor Thread.

If you do not replicate data from the active database into databases other than the standby
database, Replication Server does not need a Distributor thread for the logical connection. You
can disable the Distributor thread to save Replication Server resources.

To disable the Distributor thread, you must first drop any subscriptions for the data in the
logical database. Then execute alter logical connection at the Replication Server:
alter logical connection
 to logical_ds.logical_db
set distribution off

If you decide later to replicate data out of the active database, you can use this command to
reenable the Distributor thread.

Warning! If you disable the Distributor thread and then drop the standby database from the
replication system, no Replication Server threads will be left to read the inbound queue from
the active database. The inbound queue will continue to fill until you either add another
standby database, set distribution to “on” for the logical connection, or drop the active
database from the replication system.

Replicate Truncate Table To Standby Databases
Use the alter logical connection command to enable or disable replication of the truncate
table command.

Replication Server copies execution of truncate table to warm standby databases. The active
and standby databases must be Adaptive Server version 11.5 or later to support this feature.

Manage Warm Standby Applications

Administration Guide Volume 2 97

To enable or disable replication of truncate table, log in to the source Replication Server and
enter:
alter logical connection
 to logical_ds.logical_db
set send_truncate_table to {on | off}

If your warm standby application was created before you upgraded or installed Replication
Server version 11.5 or later, Replication Server does not copy truncate table to the standby
database unless you enable this feature with alter logical connection. To preserve
compatibility with existing warm standby applications, the default setting is “off.”

If your warm standby application was created after you upgraded or installed Replication
Server version 11.5 or later, Replication Server automatically copies truncate table to the
standby database unless you disable this feature with alter logical connection. The default
setting is “on.”

Alter Physical Connections
Use the alter connection command at the source Replication Server to modify parameters that
affect physical connections for warm standby applications.

The syntax is:
alter connection to data_server.database
set database_param to 'value'

where data_server is the destination data server, database is the database the data server
manages, database_param is a parameter that affects the connection and value is a setting for
database_param.

You must suspend the connection before altering it; then, after executing alter connection,
you resume the connection for new parameter settings to take effect. See Replication Server
Administration Guide Volume 1 > Manage Database Connections > Altering Database
Connections.

Configure Triggers in the Standby Database
You can use the alter connection command to configure a connection to fire or not fire
triggers.

By default, the standby DSI thread executes a set triggers off Adaptive Server command when
it logs in to a standby database. This prevents Adaptive Server from firing triggers for the
replicated transactions, thereby preventing duplicate updates in the standby database.

You can alter the default behavior by using alter connection command to configure a
connection to fire or not fire triggers. To do this, set the dsi_keep_triggers configuration
parameter to “on” or “off.” The default dsi_keep_triggers setting for all connections except
standby databases is “on.”

Manage Warm Standby Applications

98 Replication Server

Configure Replication in the Standby Database
Set the dsi_replication configuration parameter to specify whether or not transactions applied
by the DSI are marked in the transaction log as being replicated.

It must be set to “on” for the active replicate database. By default, it is set to “off” for the
standby database and set to “on” for all other databases.

When dsi_replication is set to “off,” the DSI executes set replication off in the database,
preventing Adaptive Server from adding replication information to log records for
transactions that the DSI executes. Since these transactions are executed by the maintenance
user and, therefore, are not replicated further (except if there is a standby database), setting this
parameter to “off” where appropriate writes less information into the transaction log.

Use admin who, dsi to see how this parameter is set for a connection.

Change Configuration Parameters in the Standby Database
When you create the standby database, several configuration parameters, if they are set for the
active database, are copied from the active database to the standby database. You can change
the setting of any of these configuration parameters.

Table 12. Configuration Parameters Copied to Standby Database

batch batch_begin command_retry

db_packet_size dsi_cmd_separator dsi_charset_convert

dsi_cmd_batch_size dsi_keep_triggers dsi_fadeout_time

dsi_isolation_level dsi_max_text_to_log dsi_large_xact_size

dsi_max_cmds_to_log dsi_replication dsi_num_large_xact_threads

dsi_num_threads dsi_xact_group_size dsi_serialization_method

dsi_sqt_max_cache_size dsi_xact_in_group dump_load

parallel_dsi use_batch_markers

See Replication Server Administration Guide Volume 1 > Manage Database Connections.

Drop Logical Database Connections
If you are dismantling a warm standby application, you may need to remove a logical database
from the replication system.

To do this, drop the standby database, then execute the drop logical connection command.
Before you execute the command, you must drop the standby database. See Replication
Server Administration Guide Volume 1 > Manage Database Connections > Drop Database
Connections for information about dropping physical database connections.

The syntax for drop logical connection is:

Manage Warm Standby Applications

Administration Guide Volume 2 99

drop logical connection to data_server.database

data_server and database represent the logical data server and logical database.

For example, to drop the connection to the pubs2 logical database in the LDS logical data
server, enter:
drop logical connection to LDS.pubs2

Drop a Logical Database from the ID Server
When a warm standby application exists in the replication system, logical databases, along
with physical databases, data servers, and Replication Servers, are listed in the rs_idnames
system table in the RSSD for the ID Server. Occasionally, it may be necessary to remove the
entry for a logical database from this system table.

For example, if a drop logical connection command fails, you may have to force the ID Server
to delete from the rs_idnames system table the row that corresponds to the logical
database. Logical database connections show an “L” in the ltype column.

The sysadmin dropldb command logs in to the ID Server and deletes the entry for the
specified logical database. The syntax is:

sysadmin dropldb, data_server, database

data_server and database refer to the logical data server and the logical database names.

You must have sa permission to execute any sysadmin command.

Warm Standby Applications Using Replication
Learn about warm standby applications that involve replication, where the logical database
serves as a primary or replicate database in the replication system.

Warm Standby Application for a Primary Database
Learn about warm standby applications for a primary database.

This figure illustrates an example of a warm standby application for a primary database. In the
example, one Replication Server manages three databases:

• The active database for a logical primary database,
• The standby database for a logical primary database, and
• A replicate database that has subscriptions for the data in the logical primary database.

Manage Warm Standby Applications

100 Replication Server

Figure 9: Warm Standby Application for a Primary Database

In this example, a single Replication Server manages both the primary and replicate databases.
In other instances, different Replication Servers may manage the primary and replicate
databases.

The numbers in the figure indicate the flow of transactions from client applications through
the replication system in a warm standby application for a primary database.

From Client Applications to Inbound Queue
In the figure, numbers 1 through 3 represent transactions from clients to an inbound queue in
the Replication Server:

• Clients execute transactions in the active primary data server.
• The active primary data server updates the active primary database.
• The Replication Agent for the active primary database reads transactions for replicated

data in the database log. It forwards the transactions to the Replication Server, which
writes them into an inbound queue.
All transactions for replicated data, including those executed by the maintenance user, are
sent to the Replication Server for application in the standby database.

From Inbound Queue to Replicate Database
In the figure, numbers 4 through 8 trace transactions from the inbound queue to the replicate
database:

Manage Warm Standby Applications

Administration Guide Volume 2 101

• The Distributor thread reads transactions from the inbound queue.
• The Distributor thread processes transactions against subscriptions and writes replicated

transactions into an outbound queue.
Transactions executed by the maintenance user, which are always replicated into the
standby database (because you set the send_warm_standby_xacts parameter when you
configure RepAgent with sp_config_rep_agent), are not replicated to replicate databases
unless you also set the send_maint_xacts_to_replicate parameter for RepAgent.

Note: For Oracle, transactions executed by the maintenance user, are always replicated to
the replicate database because the filter_maint_userid configuration parameter is invalid
for Replication Agent for Oracle irrespective of whether the parameter is set to “true” or
“false”.

• A DSI thread reads transactions from the outbound queue.
• The DSI thread executes the transactions in the replicate data server.
• The replicate data server updates the replicate database.

If the transactions are to be replicated to a database managed by a different Replication
Server, they are written into an RSI outbound queue managed by an RSI thread instead of a
DSI thread. The RSI thread delivers the transactions to the other Replication Server.

From Inbound Queue to Standby Database
In the figure, numbers 9 through 11 trace transactions from the inbound queue to the standby
database for the logical primary database:

• The standby DSI thread reads transactions from the inbound queue.
• The standby DSI thread executes transactions in the standby data server.
• The standby data server updates the standby database.

The inbound queue is read by the standby DSI and the Distributor. The two threads do their
work concurrently. Messages cannot be truncated from the inbound queue until both threads
have read them and delivered them to their destination. The messages remain in the queue until
the DSI has applied them to the standby database and, if there are subscriptions or replicated
stored procedure executions, the Distributor has written them to the outbound queue.

Depending on your replication system, the transactions may be replicated into the standby
database before the replicate database. However, Replication Server guarantees that the
standby primary database and replicate databases will be kept in sync with the active primary
database.

Warm Standby Application for a Replicate Database
Learn about warm standby applications for a replicate database.

This figure illustrates an example of a warm standby application for a replicate database. In
this example, a single Replication Server manages three databases:

• A primary database,

Manage Warm Standby Applications

102 Replication Server

• The active database for a logical replicate database, and
• The standby database for a logical replicate database.

Figure 10: Warm Standby Application for a Replicate Database

The logical replicate database has subscriptions for the data in the primary database.
Therefore, updates from the primary database are replicated to both the active and the standby
databases.

In this example, a single Replication Server manages both the primary and replicate databases.
In other instances, different Replication Servers may manage the primary and replicate
databases.

The numbers in the figure indicate the flow of transactions from client applications through
the replication system in a warm standby application for a replicate database.

From Client Applications to Primary and Active Databases
In the figure, numbers 1 through 8 trace transactions from clients to the primary database, and,
via normal replication, to the active replicate database:

• Clients execute transactions in the primary data server.

Manage Warm Standby Applications

Administration Guide Volume 2 103

• The primary data server updates the primary database.
• Replication Agent for the primary database reads transactions for replicated data in the

transaction log and forwards them to the Replication Server, which writes them into an
inbound queue.

• The Distributor thread reads transactions from the inbound queue.
• The Distributor processes transactions against subscriptions and writes replicated

transactions into an outbound queue.
If the Replication Server managing the warm standby application for the replicate
database does not also manage the primary database, replicated data is received from the
primary Replication Server and written directly to the outbound queue. Steps 1 through 5
are bypassed.

• A DSI thread reads transactions from the outbound queue.
• The DSI thread executes the transactions in the replicate data server, which is the active

data server for the warm standby application.
• The active data server updates the active database.

If the transactions originate in a primary database managed by a different Replication
Server, the Distributor thread in the primary Replication Server writes them into an RSI
outbound queue. Then they are replicated to a DSI outbound queue in the replicate
Replication Server in order to be applied in the active database for the logical replicate
database.

From Active Database to Standby Database
In the figure, numbers 9 through 12 trace transactions from the active database for the logical
replicate database to its standby database:

• Replication Agent for the active database reads the transactions in the active database log
and forwards them to the Replication Server, which writes them into an inbound queue.
All transactions for replicated data, including those executed by the maintenance user, are
sent to the Replication Server for application in the standby database.

• The standby DSI thread reads transactions from the inbound queue.
• The standby DSI thread executes transactions in the standby data server.
• The standby data server updates the standby database.

Configure Logical Connection Save Intervals
You can use the DSI queue save interval or the materialization queue save interval to
reconfigure the save intervals for a logical replicate database.

A save interval for a connection specifies how long messages will be retained in a stable queue
before they can be deleted. If you set up a warm standby application through the usual
procedure, the default settings will work correctly.

You can use configure logical connection to configure the DSI queue save interval and the
materialization queue save interval for the logical connection.

Manage Warm Standby Applications

104 Replication Server

See Replication Server Reference Manual > Replication Server Commands > configure
logical connection.

Warning! The DSI queue save interval and the materialization queue save interval settings for
a logical connection should be reset only under serious conditions stemming from a lack of
stable queue space. Resetting these save intervals (from strict to a given number of minutes)
may lead to message loss at the standby database. Replication Server cannot detect this type of
loss; you have to verify the integrity of the standby database yourself.

The DSI Queue Save Interval
By default, the DSI queue save interval for the logical connection is set to 'strict' when you
create a standby database.

This causes Replication Server to retain DSI queue messages until they are delivered to the
standby database. If you must change the DSI queue save interval for the logical connection,
use the configure logical connection command.

For example, to force a replicate Replication Server to save messages destined for its logical
replicate data server LDS for one hour (sixty minutes), enter the following command:
configure logical connection to LDS.logical_pubs2
set save_interval to '60'

To reset this save interval back to 'strict', enter:
configure logical connection to LDS.logical_pubs2
set save_interval to 'strict'

The Materialization Queue Save Interval
The materialization queue save interval for the logical connection is set to 'strict' by default
when you create a subscription.

This causes Replication Server to retain materialization queue messages until they are
delivered to the standby database. If you must change the materialization queue save interval
for the logical connection, use the configure logical connection command.

For example, to force a replicate Replication Server to save messages in the materialization
queue for its logical replicate data server LDS for one hour (sixty minutes), enter the following
command:
configure logical connection to LDS.logical_pubs2
set materialization_save_interval to '60'

To reset this save interval back to 'strict', enter:
configure logical connection to LDS.logical_pubs2
set materialization_save_interval to 'strict'

Manage Warm Standby Applications

Administration Guide Volume 2 105

Replication Definitions and Subscriptions for Warm
Standby Databases

You can create replication definitions and subscriptions for warm standby applications.

In a replication system containing only Adaptive Server databases, you can reduce the need
for replication definitions for tables in a warm standby environment or multisite availability
(MSA) environment if a replication definition exists solely to specify primary key or quoted
identifier information. See Replication Server Administration Guide Volume 1 > Manage
Replicated Objects Using Multisite Availability > Reduce the Use of Replication Definitions
and Subscriptions.

However, you can create a replication definition for each table in the logical database. You can
also use function replication definitions when replicating into a standby database. Replication
definitions can change how Replication Server replicates data into a standby database,
allowing you to optimize your warm standby application or enable a non-default behavior that
your application requires.

You can use replication definitions in a warm standby application in normal replication into or
out of the logical database.

See also
• Warm Standby Applications Using Replication on page 100

alter table Support for Warm Standby
Adaptive Server Enterprise version 12.0 and later allows users to alter existing tables—add
non-nullable columns, drop columns, and modify column datatypes.

For Oracle warm standby applications, you need replication definitions to enable replication
of user defined datatypes. Replication Agent for Oracle automatically creates replication
definition at the time of initialization. In such a scenario, you need to manually create new
replication definition or alter existing replication definition to explicitly specify in the
replication definition which user defined datatype is being replicated to the standby database.

Replication Server supports table changes resulting from the alter table command when the
table has no subscriptions.

Note: To support table changes that result from alter table when subscriptions exist for that
table, you need to alter the table’s replication definition. See Replication Server
Administration Guide Volume 1 > Manage Replicated Tables > Modify Replication
Definitions for instructions.

In previous releases, when a replication definition was defined for a table, Replication Server
always used the column datatype defined in the warm standby replication definition.

Manage Warm Standby Applications

106 Replication Server

Beginning with Replication Server version 12.0, and depending on the situation, Replication
Server may or may not use a table’s replication definition.

No Replication Definition
When you use the alter table command against a table without replication definitions,
Replication Server sends warm standby databases the same information it receives from the
primary server.

All options of alter table are supported. When you execute alter table at the primary, the
command is replicated to the warm standby, and replication to the standby continues—no
action is required in the Replication Server.

See Adaptive Server Enterprise Reference Manual: Commands > Commands > alter table for
syntax and information.

alter table Add Column with Default
Learn how to avoid a DSI error when you issue the alter table command in the active database
to add a column with a default value.

When you issue the alter table command in the active database to add a column with a default
value, Adaptive Server creates a constraint with an auto-generated name. When the command
is replicated to the standby database, the standby database also creates the same constraint
with another, different auto-generated name. When you drop the constraint in the active
database, the standby database does not recognize the constraint name and generates a data
server interface (DSI) error.

To avoid this, drop the constraint in the active database first. The data server interface (DSI)
shuts down automatically. Then drop the constraint created in the standby database and issue
the resume dsi skip transaction command.

An alternative workaround is to execute:

alter table table name
replace column name
default null

This automatically drops the constraints created on both active and standby sites.

Warm Standby with No send standby Clause
When there is no send standby clause associated with any replication definition, Replication
Server sends whatever data it receives from the primary table without referring to the
replication definitions.

Replication Server uses the original column names and datatypes to send data received from
the Replication Agent. The replication definition is used only to find the primary key. The
primary keys are the union of primary keys in all replication definitions for the table.

Manage Warm Standby Applications

Administration Guide Volume 2 107

If schema changes do not involve dropping all primary key columns in all replication
definitions of the table, the scenario is the same as one with no replication defintion. All
options of alter table are supported, and no action is required in the Replication Server.

You can alter the replication definition at any point to drop all primary keys in the replication
definitions, and add the new primary key columns to the replication definitions before you
alter the primary table.

Drop the old primary keys only after all of the old data rows are out of the replication system.
Otherwise, the Data Server Interface (DSI) shuts down. If this occurs, see for recovery
instructions.

See also
• No Replication Definition on page 107

Warm Standby with send standby all columns Clause
When send standby all columns is associated with a replication definition, Replication
Server sends whatever data it receives from the Replication Agent using the original column
names and datatypes. The replication definition is used only to find the primary key.

If schema changes do not involve dropping all primary key columns in the replication
definition with the send standby all columns clause, the scenario is the same as one with no
replication definition. All options of alter table are supported, and no action is required in the
Replication Server.

You can alter the replication definition at any time to drop all primary keys in the replication
definition with the send standby all columns clause, and add the new primary key columns to
the replication definition before you alter the primary table.

See also
• No Replication Definition on page 107

Warm Standby with send standby replication definition columns Clause
When there is a send standby replication definition columns clause in the replication
definition, the standby will continue to use the replicate table name and column names as well
as the datatype defined in the table’s corresponding replication definition.

If you want the replication definition datatype to be used in the standby, always create a
replication definition with a send standby replication definition columns clause.

Use Replication Definitions to Optimize Performance
Use replication definitions to improve the performance of the replication system in a warm
standby environment.

When you specify that you want to use a replication definition for replicating into a standby
database:

Manage Warm Standby Applications

108 Replication Server

• You can specify whether Replication Server uses the replication definition’s replicate
minimal columns setting for replicating into the standby database. This setting indicates
whether updates replace the values for all columns or only the columns with changed
values.

• You can specify whether Replication Server replicates all of a table’s columns or all of a
stored procedure’s parameters to the standby database or only those columns or
parameters listed in the table or function replication definition.

Create a Replication Definition for Replicating into a Standby Database
To create a replication definition just for replicating into the standby database, use the send
standby clause in the create replication definition command.

The replication definition’s primary key and replicate minimal columns setting will be used
in replicating into the standby database.

See Replication Server Reference Manual > Replication Server Commands > create
replication definition.

Specify a Primary Key
The presence or absence of a table replication definition determines how primary key columns
are packed in the where clause for a database. See Primary Key Columns and where Clause
Packing in Warm Standy and Multisite Availability Environments, in Replication Server
Administration Guide Volume 1 > Manage Replicated Objects Using Multisite Availability >
Reduce the Use of Replication Definitions and Subscriptions.

Update Minimal Columns
If you create a replication definition for replicating into a standby database, you can take
advantage of another replication system performance optimization— the minimal columns
setting.

When you use the replicate minimal columns clause, replicated update and delete
transactions include only the required columns. Values for unchanged columns can be omitted
from update commands. Omitting the unnecessary columns reduces the size of messages
delivered through the replication system and requires Adaptive Server to do less work.

If you are not using replication definitions for replicating into the standby, you can still attain
this performance benefit.

Minimal column replication occurs automatically if you have no replication definitions for a
table or if you have replication definitions for a table but do not use one for replicating into the
standby database.

Specify Columns to Replicate into the Standby Database
If you create a replication definition for replicating into a standby database, you can specify
which set of columns to replicate.

Manage Warm Standby Applications

Administration Guide Volume 2 109

• Specify send standby or send standby all columns to replicate all the columns in the
table into the standby database.

• Specify send standby replication definition columns to replicate only the replication
definition’s columns into the standby database.

See Replication Server Reference Manual > Replication Server Commands > create
replication definition for more information about using the send standby clause with the
command.

Specify Parameters to Replicate into the Standby Database
If you create a function replication definition, you can specify which set of parameters to
replicate.

• Specify send standby all parameters (or omit the all parameters clause) to replicate all
the parameters for the stored procedure into the standby database.

• Specify send standby replication definition parameters to replicate only the replication
definition’s parameters into the standby database.

If a replicated stored procedure has no function replication definition, when the stored
procedure is executed, Replication Server replicates all of its parameters from the active
database into the standby database. You can create only one function replication definition per
replicated stored procedure.

See Replication Server Reference Manual > Replication Server Commands for more
information about using the send standby clause with the create applied function replication
definition and create request function replication definitioncommands.

Use Replication Definitions to Copy Redundant Updates
If you want to replicate redundant updates, create a replication definition for the column that
includes the send standby replication definition parameter option

Without a replication definition, Replication Server does not replicate redundant updates to
the warm standby. That is, if an update merely changes the current value to the same value, and
thus the before and after images are identical, Replication Server does not replicate the update.

Include the send standby replication definition parameter option, if you want to replicate
redundant updates.

If you create a replication definition for a table, Replication Server always sends redundant
updates, even when the replication definition is created with the replicate minimal columns
option.

Use Subscriptions with Warm Standby Applications
You can use subscriptions with warm standby applications.

Although subscriptions are not used in replicating from the active to the standby database, you
can:

Manage Warm Standby Applications

110 Replication Server

• Create subscriptions for the data in a logical primary database, or
• Create subscriptions in order to replicate data from other databases into a logical replicate

database.

The create subscription and define subscription commands use the logical database and data
server names instead of the physical names.

See Replication Server Administration Guide Volume 1 > Manage Subscriptions for more
information about subscriptions and subscription materialization.

See also
• Warm Standby Applications Using Replication on page 100

Restrictions on Using Subscriptions
Several restrictions apply to the creation of subscriptions that replicate data from or into warm
standby databases.

Replication Server supports all forms of subscription materialization and dematerialization in
warm standby applications. Restrictions that apply to the creation of subscriptions include:

• When there is a logical connection for a database, you cannot create a subscription for the
physical active or standby database. You must create the subscription for the logical
database in order to replicate subscription data into or from both the active and standby
databases.

• You cannot create subscriptions while adding the standby database to the replication
system. You must wait until the standby database has been properly initialized.

• You cannot add the standby database to the replication system while any subscriptions are
being created.

• You cannot create new subscriptions while the switch active command is executing.

Subscription Materialization for Logical Primary Database
Learn about subscription materialization issues for a logical primary database, and what
happens if you execute the switch active command for a logical primary database during
subscription materialization.

During subscription materialization, data is selected from the active primary database into a
materialization queue.

When you execute the switch active command, the primary Replication Server replicates
RSSD information to notify replicate sites that the active database has been changed. When a
replicate Replication Server with a materializing subscription receives this information, the
materialization queue is dropped. A new queue is built by reselecting the subscription data
from the new active primary database.

Note: The Replication Agent for the RSSD of the primary Replication Server must be running
for replicate Replication Servers to detect that the active database has been changed.

Manage Warm Standby Applications

Administration Guide Volume 2 111

Subscription Materialization for Logical Replicate Database
Learn about subscription materialization issues for a logical replicate database, and what
happens if you execute the switch active command for a logical replicate database during
subscription materialization.

Atomic Materialization
When you use atomic materialization, Replication Server sets the save interval for the
materialization queue to 'strict'.

Transactions are not deleted from the materialization queue until the data has been applied to
the active database and replicated into the standby database.

Replication Server executes a marker in the active replicate database when the materialization
queue has been applied. The marker marks the start of transactions that execute after the
materialization queue is applied.

When the marker is executed at the active replicate database, Replication Server writes an
informational message like this in its log:
I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
publishers_sub for replication definition publishers_rep at active
replicate
for <LDS.pubs2>

When the marker arrives at the standby replicate database, Replication Server writes an
informational message like this in its log:
I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
publishers_sub for replication definition publishers_rep at standby
replicate for <LDS.pubs2>

Materialization is now complete and Replication Server drops the materialization queue. The
subscription is considered VALID at both the active and the standby replicate database.

If you execute the switch active command while the materialization queue is being processed,
Replication Server reapplies the materialization queue to the new active database. If you used
the incrementally option to create the subscription, only the batches of materialization rows
that were not already replicated into the new active database are reexecuted.

Nonatomic Materialization
When you use nonatomic materialization, the save interval is set to 0, allowing Replication
Server to delete rows from the materialization queue after they are applied to the active
database.

If a subscription is materializing when you execute the switch active command, Replication
Server finishes processing the materialization queue, but marks the subscription “suspect.”
Use the check subscription command to find the subscription status in the active and replicate
databases. You must drop and re-create suspect subscriptions.

Manage Warm Standby Applications

112 Replication Server

Note: Nonatomic materialization is not supported in heterogenous warm standby
applications. See Replication Server Heterogeneous Guide > Materialization.

Bulk Materialization
If you use bulk materialization to create a subscription that replicates data into a warm standby
application, you must ensure that the subscription data is loaded into the active and standby
replicate databases.

If you load the data with a method that logs the inserted rows, such as logged bcp, Replication
Server replicates the rows into the standby database. If you load the data with a non-logged
method, you must also load it into the standby database because the active database log
contains no insert records to replicate into the standby database.

During bulk materialization, you execute the activate subscription with suspension
command before you load the subscription data into the replicate database. By default,
activate subscription with suspension suspends the DSI threads for both the active database
and the standby database. Suspending DSI threads allows you to load the data into both
databases.

If you load the data using logged bcp or some other method that logs the rows, execute
activate subscription with suspension at active replicate only so that Replication Server
only suspends the DSI for the active database. This allows the inserted rows to be replicated
from the active database into the standby database.

Check Subscriptions
For a warm standby application for a logical replicate database, you can use the check
subscription command to check subscription status.

The Replication Server managing the warm standby application returns either one or two
status messages, depending on whether or not the status is different for the active and the
standby database.

For example, while you are creating a subscription, the materialization status may be VALID
at the active database and ACTIVATING at the standby database.

Drop Subscriptions
For a logical replicate database, you can drop a subscription using the drop subscription
command with the with purge option.

A drop subscription marker follows the dematerialization data from the DSI queue to the
active database, and then travels to the standby database. After the marker has been received at
both databases, subscription data is deleted from both databases.

While Executing Switch Active
You can execute the switch active command at the replicate Replication Server while you
drop a subscription using the drop subscription command with the with purge option.

Manage Warm Standby Applications

Administration Guide Volume 2 113

Replication Server suspends DSI threads and temporarily suspends dematerialization. After
switch active completes, the DSI threads are resumed and dematerialization restarts.

Suspect Drop Subscription
Dropping a subscription using the with purge option for a logical replicate database may lead
to a suspect drop subscription if:

• The subscription is materializing in the active database, and
• You switch the active and standby databases, then
• You drop the subscription while it is materializing in the new active database.

Dematerialization restarts and proceeds normally for the new active database, but the new
standby (old active) database may retain some subscription data that is not purged. To resolve
the discrepancy, you can reconcile the active and the standby database using the rs_subcmp
program, or you can drop and re-create the standby database.

For example, you may see a warning message like this when you try to execute drop
subscription:
W. 95/10/02 20:59:15. WARNING #28171 DSI(111 SYDNEY_DS.pubs2) - /
sub_dsi.c(1231)
 REPLICATE RS: Dropped subscription publishers_sub for replication
 definition publishers_rep at standby replicate for
<SYDNEY_DS.pubs2> before
 it completed materialization at the Active Replicate. Standby
replicate may
 have some subscription data rows left in the database

Missing Columns When You Create the Standby Database
When you create a standby database for an existing database that has replication definitions,
missing columns may result under a certain combination of circumstances.

Missing columns may result under the following combination of circumstances:

• If the existing database has a replication definition that does not include all columns in the
table, and

• An insert or update transaction that has not been committed is in the inbound queue, and
• You create a standby database for the existing database (now the active database), after

which
• The transaction commits.

Although, by default, a standby database is supposed to receive all columns, at the time the
transaction began, the standby database did not exist. Replication Server would have
discarded values for columns not in the replication definition. If a column is not in the
replication definition and the standby database allows a null value for the column, the row can
be inserted into or updated in the standby database without the missing value. Otherwise, you
must reconcile the databases yourself.

Manage Warm Standby Applications

114 Replication Server

Loss Detection and Recovery
Creating a warm standby application introduces additional types of loss detection messages
into a replication system.

If you rebuild queues in a Replication Server that participates in a warm standby application,
the Replication Server may detect losses between any of the following databases:

Table 13. Loss Detection in Warm Standby Applications

Loss Detected from To

Logical replicate database Logical primary database

Logical primary database Physical replicate database

Physical primary database Logical replicate database

Physical active database Physical standby database

Logical primary database Replication Server

To use the ignore loss command in database recovery operations where a warm standby
application is involved, use the same logical or physical data server and database designations
that appear in the loss detection messages you received.

See also
• Replication System Recovery on page 309

Manage Warm Standby Applications

Administration Guide Volume 2 115

Manage Warm Standby Applications

116 Replication Server

Performance Tuning

To meet the needs and demands of your Replication Server system, you must manage
resources effectively and optimize the performance of individual Replication Servers.

You can affect the performance of a Replication Server by changing the values of
configuration parameters, by using parallel DSI threads, or by choosing disk allocations. To
manage these resources successfully, you should understand something about Replication
Server internal processing.

Replication Server Internal Processing
During replication, data operations are carried out by several Replication Server threads.

On UNIX platforms, they are POSIX threads. On Windows platforms, they are WIN32
threads. Replication Server also stores data in queues and relies on the Replication Server
System Database (RSSD) for critical system information. These internal operations support
various processes within the primary and replicate Replication Servers.

Threads, Modules, and Daemons
Learn how threads, modules, and daemons work in Replication Server.

Replication Server runs multiple threads concurrently. The total number of threads depends
on the number of databases that a Replication Server manages and the number of Replication
Servers to which it has direct routes. Each thread performs a specific function such as
managing a user session, receiving messages from a RepAgent, receiving messages from
another Replication Server, or applying transactions to databases.

Some threads call specific portions (or “modules”) of Replication Server to determine the
destination of messages and transactions, and to determine what operations to replicate and
how to replicate them.

Daemon threads, which run in the background and perform specified operations at predefined
times or in response to certain events, run during such Replication Server activities as
subscription materialization.

When you troubleshoot the replication system, verify the status of Replication Server threads,
modules, and daemons.

See also
• Processes in the Primary Replication Server on page 118

• Verify and Monitor Replication Server on page 5

Performance Tuning

Administration Guide Volume 2 117

Processes in the Primary Replication Server
Learn how a transaction that originates in a primary data server is sent to the primary
Replication Server and subsequently distributed to a replicate Replication Server.

Figure 11: Threads Used for Processing in the Primary Replication Server

Replication Agent User Thread
Learn how RepAgent and other Replication Agents work with Replication Server to distribute
transaction information to subscribing replicate databases

RepAgent logs in to Replication Server through an Open Client™ interface. It scans the
transaction log, converts log records directly into LTL (Log Transfer Language) commands,
and sends them to Replication Server as soon as they are logged—either in batches or one at a
time. Replication Server then distributes the transaction information to subscribing replicate
databases.

Replication Server has one RepAgent user thread for each primary database that it manages.
Thus, Replication Server has one RepAgent user thread for each RepAgent. The RepAgent
user thread verifies that RepAgent submissions are valid and writes them into the inbound
stable queue for the database.

Stable Queue Manager Thread
There is one Stable Queue Manager (SQM) thread for each stable queue accessed by the
primary Replication Server, whether inbound or outbound. Each RepAgent user thread works

Performance Tuning

118 Replication Server

with a dedicated SQM thread that reclaims stable queue space after a transaction is forwarded
to a data server or to another Replication Server.

Stable Queue Transaction Thread
The Stable Queue Transaction (SQT) thread reassembles transactions and places the
transactions in commit order.

Commands stored in transaction log records and in the inbound queue are ordered according
to the sequence in which they were committed—although they are not necessarily grouped by
transaction. Transactions must be in commit order for final application on the destination’s
data servers and for materialization processing.

The SQT thread reassembles transactions as it reads commands from its stable inbound queue
and keeps a linked list of transactions. For the outbound queue, the DSI/S thread schedules
transactions, and performs the SQT function of assembling and ordering transactions. When it
reads a commit record, the SQT makes that transaction available to the distributor (DIST)
thread or to the DSI thread, depending on what process required the SQT ordering of the
transaction.

When it reads a rollback record, the SQT thread tells the SQM thread to delete affected records
from all stable queues. Operated by the DSI/S thread, the SQT library notifies the DSI when a
transaction exceeds the large transaction threshold.

See also
• Parallel DSI Threads on page 162

Distributor Thread and Related Modules
For each primary database managed by a Replication Server, there is a distributor (DIST)
thread, which in turn uses SQT to read from the inbound queue and SQM threads to write
transactions to the outbound queue.

Thus, for example, if there are three primary databases, then there are three inbound queues,
three DIST threads, and three SQT threads.

Note: If the only destination for transactions is a standby database, disable the DIST thread,
which also disables the SQT thread. The SQM thread is present and responsible for writing to
the queue.

In determining the destination of each transaction row, the DIST thread makes calls to the
following modules: Subscription Resolution Engine (SRE), Transaction Delivery, and
Message Delivery. All DIST threads share these modules.

Performance Tuning

Administration Guide Volume 2 119

Subscription Resolution Engine
The Subscription Resolution Engine (SRE) matches transaction rows with subscriptions.

When the SRE finds a match, it attaches a destination-database ID to each row. It marks only
rows required for subscriptions, thereby minimizing network traffic. If no subscriptions
match, the DIST thread discards the row data.

For each row, the SRE determines whether subscription migration occurs.

• A row migrates into a subscription when its column values change so that the row matches
the subscription and must be added to the replicate table.

• A row migrates out of a subscription when its column values change so that it no longer
matches the subscription and must be deleted from the replicate table.

When the SRE detects subscription migration, it determines which operation to replicate
(insert, delete, or update) to maintain consistency between the replicate and primary tables.

Transaction Delivery Module
The Transaction Delivery (TD) module is called by the DIST thread to package transaction
rows for distribution to data servers and other Replication Servers.

Message Delivery Module
The Message Delivery (MD) module is called by the DIST thread to optimize routing of
transactions to data servers or other Replication Servers.

The DIST thread passes the transaction row and the destination ID to the MD module. Using
this information and routing information in the RSSD, the module determines where to send
the transaction:

• To a data server via a DSI thread, or
• To a Replication Server via an RSI thread.

After determining how to send the transaction, the MD module places the transaction into the
appropriate outbound queue.

Distributor Status Recording
Replication Server records the DIST status of a distributor thread in the Replication Server
rs_databases system table in the RSSD

A distributor (DIST) thread reads transactions from the inbound queue and writes replicated
transactions into the outbound queue. A DIST thread is created when the Replication Server
connects to the primary database, and can be suspended or resumed manually, or through a
Replication Server configuration. Resuming and suspending a DIST thread modifies the
DIST status of the thread.

The record in rs_databases allows the DIST thread to retain its status even after the
Replication Server is shut down.

Performance Tuning

120 Replication Server

See Replication Server Reference Manual > Replication Server System Tables >
rs_databases.

Data Server Interface Threads
Replication Server starts DSI threads to submit transactions to a replicate database to which it
maintains a connection.

Each DSI thread is composed of a scheduler thread (DSI-S) and one or more executor threads
(DSI-E). Each DSI executor thread opens an Open Client connection to a database.

To improve performance in sending transactions from a Replication Server to a replicate
database it manages, you can configure a database connection so that transactions are applied
using more than one DSI executor thread, that is by using parallel DSI threads.

The DSI scheduler thread calls the SQT interface to:

• Collect small transactions into groups by commit order
• Dispatch transaction groups to the next available DSI executor thread

The DSI executor threads:

• Map functions using the function strings defined for the functions, according to the
function-string class assigned to the database connection

• Execute the transactions in the replicate database
• Take action on any errors returned by the data server; depending on the assigned error

actions, also record any failed transactions in the exceptions log

The DSI thread may apply a mixture of transactions from all primary databases supported by
the Replication Server. The transactions are read from a single outbound stable queue for the
replicate data server.

See also
• Parallel DSI Threads on page 162

Replication Server Interface Thread
RSI threads are asynchronous interfaces to send messages from one Replication Server to
another. One RSI thread exists for each destination Replication Server to which the source
database has a direct route.

The DIST thread in the primary Replication Server processes transactions, causing those
destined for other Replication Servers to be written to RSI outbound queues. An RSI thread
logs in to each replicate Replication Server and transfers messages from the stable queue to the
replicate Replication Server.

When a direct route is created from one Replication Server to another, an RSI thread in the
source Replication Server logs in to the replicate Replication Server. When an indirect route is
created, Replication Server does not create a new stable queue and RSI thread. Instead,

Performance Tuning

Administration Guide Volume 2 121

messages for indirect routes are handled by the RSI thread for the direct route. See Replication
Server Administration Guide Volume 1 > Manage Routes.

Miscellaneous Daemon Threads
There are several Replication Server daemon threads that perform miscellaneous tasks in the
replication system.

Table 14. Additional Replication Server Daemon Threads

Thread or Daemon Name Description

Alarm daemon (dALARM) The alarm daemon keeps track of alarms set by other threads, such
as the fade-out time for connections and the interval for the sub-
scription retry daemon.

Asynchronous I/O daemon
(dAIO)

The asynchronous I/O daemon manages asynchronous I/O to
Replication Server stable queues.

Connection manager daemon
(dCM)

The connection manager daemon manages connections to data
servers and other Replication Servers.

Recovery daemon (dREC) The recovery daemon takes care of various operations in connec-
tion with warm standby applications, routing, and recovery pro-
cedures.

Subscription retry daemon
(dSUB)

The subscription retry daemon wakes up after a configurable
timeout period (sub_daemon_sleep_time configuration parame-
ter in the rs_config system table) and attempts to resume
processing for subscriptions that may have failed.

Version daemon (dVERSION) The version daemon activates briefly when the Replication Server
is started for the first time after an upgrade. It communicates the
Replication Server new version number to the ID Server.

RS user thread The RS user thread manages connections from replicate Replica-
tion Servers during the process of creating or dropping subscrip-
tions.

See Replication Server Administration Guide Volume 1 > Manage
Subscriptions > Subscription Materialization Methods for the data
flow involved in creating and dropping subscriptions.

USER thread A USER thread is created when a user logs in to a Replication
Server to execute RCL commands.

Processes in the Replicate Replication Server
Learn the processes involved when a replicate Replication Server receives incoming messages
from a primary Replication Server.

Some of the same threads—SQM, RSI, DSI—also involved in processes in the primary
Replication Server are shown in the figure.

Performance Tuning

122 Replication Server

Figure 12: Transaction Processing in the Replicate Replication Server

See also
• Processes in the Primary Replication Server on page 118

RSI User Thread
The RSI user thread is a client connection thread for incoming messages from another
Replication Server.

It calls the Message Delivery (MD) module to determine whether to send the message to:

• A data server using the DSI thread. The DSI thread is composed of a scheduler thread
(DSI-S) and one or more executor threads (DSI-E).

• Another Replication Server using the RSI thread.

The RSI user thread writes commands destined for other Replication Servers or databases into
outbound queues. The threads involved in processes in the primary Replication Server process
messages after they are stored in the outbound queues.

See also
• Data Server Interface Threads on page 121

• Replication Server Interface Thread on page 121

• Processes in the Primary Replication Server on page 118

Configuration Parameters that Affect Performance
Replication Server provides configuration parameters for improving performance that affect
the entire server, or are targeted for individual connections or routes.

Performance Tuning

Administration Guide Volume 2 123

Replication Server Parameters that Affect Performance
You can change the values of the configuration parameters to improve Replication Server
performance.

rs_init sets default configuration parameters after you install your Replication Server.

See Replication Server Administration Guide Volume 1 > Manage a Replication System > Set
Replication Server Configuration Parameters > Change Replication Server Parameters for
information on how to modify these parameters using configure replication server.

Table 15. Replication Server Parameters that Affect Performance

Configuration parameter Description

block_size to 'value' with shutdown Specifies the queue block size which is the number of
bytes in a contiguous block of memory used by stable
queue structures.

Valid values: 16KB, 32KB, 64KB, 128KB, or 256KB

Default: 16KB

Note: When you execute the command to change the
block size, Replication Server shuts down. You must in-
clude the with shutdown clause after specifying the block
size in versions prior to Replication Server 15.6. In ver-
sion 15.6 and later the with shutdown clause is optional;
you need not restart Replication Server for the change in
queue block size to take effect. You should change this
parameter only with the configure replication server
command. Doing otherwise corrupts the queues.

License: Separately licensed under the Advanced Serv-
ices Option.

db_packet_size The maximum size of a network packet. During database
communication, the network packet value must be within
the range accepted by the database. You may change this
value if you have Adaptive Server that has been recon-
figured.

Maximum: 16,384 bytes

Default: 512-byte network packet for all Adaptive Server
databases

Performance Tuning

124 Replication Server

Configuration parameter Description

deferred_queue_size The maximum size of an Open Server deferred queue. If
Open Server limits are exceeded, increase the maximum
size. The value must be greater than 0.

Note: If modified, you must restart the Replication Server
for the change to take effect.

Default: 2,048 on Linux and HPIA32, 1024 on other
platforms

disk_affinity Specifies an allocation hint for assigning the next parti-
tion. Enter the logical name of the partition to which the
next segment should be allocated when the current parti-
tion is full. Values are “partition_name” and “off.”

Default: off

dist_direct_cache_read Enables the distributor (DIST) thread to read SQL state-
ments directly from the Stable Queue Thread (SQT)
cache. This reduces the workload from SQT and the de-
pendency between the two, and improves the efficiency of
both SQT and DIST.

Default: off

dsi_bulk_copy Turns the bulk copy-in feature on or off for a connection.
If dynamic_sql and dsi_bulk_copy are both on, DSI ap-
plies bulk copy-in. Dynamic SQL is used if bulk copy-in is
not used. Sybase recommends that you turn
dsi_bulk_copy on to improve performance if you have
large batches of inserts.

Default: off.

Performance Tuning

Administration Guide Volume 2 125

Configuration parameter Description

dsi_bulk_threshold The number of consecutive insert commands in a trans-
action that, when reached, triggers Replication Server to
use bulk copy-in. When Stable Queue Transaction (SQT)
encounters a large batch of insert commands, it retains in
memory the number of insert commands specified to de-
cide whether to apply bulk copy-in. Because these com-
mands are held in memory, Sybase suggests that you do
not configure this value much higher than the configura-
tion value for dsi_large_xact_size.

Replication Server uses dsi_bulk_threshold for Real-
time loading (RTL) replication to Sybase IQ and High
volume adaptive replication (HVAR) to Adaptive Server.
If the number of commands for an insert, delete, or update
operation on one table is less than the number you specify
after compilation, RTL and HVAR use language instead
of bulk interface.

Minimum: 1

Default: 20

dsi_cmd_batch_size The maximum number of bytes that Replication Server
places into a command batch.

Default: 8192 bytes

dsi_cmd_prefetch Allows DSI to build the next batch of commands while
waiting for the response from data server, and therefore
improves DSI efficiency. If you also tune your data server
to enhance performance, you are likely to gain an addi-
tional performance increase when you use this feature.

Default: off

When you set dsi_compile_enable to ‘on’, Replication
Server ignores what you set for dsi_cmd_prefetch.

License: Separately licensed under the Advanced Serv-
ices Option.

dsi_max_xacts_in_group Specifies the maximum number of transactions in a group.
Larger numbers may improve data latency at the replicate
database. Range of values: 1 – 1000.

Default: 20

This parameter is ignored when dsi_compile_enable is
turned on.

Performance Tuning

126 Replication Server

Configuration parameter Description

dsi_non_blocking_commit Specifies the number of minutes to extend the period of
time Replication Server saves messages after a commit.
Range of values: 0– 60 minutes.

Default: 0 – non-blocking commit is disabled.

Enable this parameter to improve replication performance
when you use the the delayed_commit option of Adaptive
Server 15.0 and later, or the equivalent feature in Oracle
10g v2 and later.

dsi_xact_group_size The maximum number of bytes, including stable queue
overhead, to place into one grouped transaction. A grou-
ped transaction is a set of transactions that the DSI applies
as a single transaction. A value of –1 means no grouping.

Sybase recommends that you set dsi_xact_group_size to
the maximum value and use dsi_max_xacts_in_group to
control the number of transactions in a group.

Note: Obsolete for Replication Server version 15.0 and
later. Retained for compatibility with older Replication
Servers.

Maximum: 2,147,483,647

Default: 65,536 bytes

This parameter is ignored when dsi_compile_enable is
turned on.

dynamic_sql Turns dynamic SQL feature on or off. Other dynamic SQL
related configuration parameters take effect onlyif this
parameter is on.

Default: off

dynamic_sql_cache_size Specifies to Replication Server how many database ob-
jects may use the dynamic SQL for a connection.

Default: 100

Minimum: 1

Maximum: 65,536

dynamic_sql_cache_management Manages the dynamic SQL cache for a DSI executor
thread. Values: mru - keeps the most recently used state-
ments and deallocates the rest to allocate new dynamic
statements when dynamic_sql_cache_size is reached.
fixed (default) - Replication Server stops allocating the
new dynamic statements once dynamic_sql_cache_size
is reached.

Performance Tuning

Administration Guide Volume 2 127

Configuration parameter Description

exec_cmds_per_timeslice Control the number of commands the RepAgent executor
can process by using exec_cmds_per_timeslice to spec-
ify the number of LTL commands an LTI or RepAgent
executor thread can process before yielding the CPU. By
increasing this value, you allow the RepAgent executor
thread to control CPU resources for longer periods of
time, which may improve throughput from RepAgent to
Replication Server.

Set this parameter at the connection level using alter con-
nection.

Default: 2,147,483,647

Minimum: 1

Maximum: 2,147,483,647

exec_nrm_request_limit Specifies the amount of memory available for messages
from a primary database waiting to be normalized.

Set nrm_thread to ‘on’ with configure replication server
before you use exec_nrm_request_limit.

Default: 1,048,576 bytes (1MB)

Minimum: 16,384 bytes (16KB)

Maximum: 2,147,483,647 bytes (2GB)

License: Separately licensed under the Advanced Serv-
ices Option.

exec_sqm_write_request_limit Specifies the amount of memory available for messages
waiting to be written to an inbound queue.

Default: 1MB Minimum: 16KB Maximum: 2GB

init_sqm_write_delay The initial amount of time an SQM Writer should wait for
more messages before writing a partially full block of
messages to the queue. The SQM Writer always tries to
write full blocks to the queue. If it has partially filled a
block, and cannot fill it, SQM Writer waits the amount of
time specified by init_sqm_write_delay before recheck-
ing whether messages are waiting to be added to the block.
If no messages exist, SQM Writer doubles the in-
it_sqm_write_delay time. The SQM Writer continues to
double the delay time until it reaches the value of in-
it_sqm_write_max_delay. At this point, SQM Writer
writes the partially full block.

Default: 100 milliseconds

Performance Tuning

128 Replication Server

Configuration parameter Description

init_sqm_write_max_delay The maximum amount of time an SQM Writer thread
should wait for more messages before writing a partially
full block of messages to the queue. See the description of
init_sqm_write_delay for more information.

Default: 1,000 milliseconds

mem_reduce_malloc Enable to allocate memory in larger chunks, which re-
duces the number of memory allocations and leads to
improved Replication Server performance.

Default: off

License: Separately licensed under the Advanced Serv-
ices Option.

mem_thr_dsi Specifies the percentage of the total memory used to force
the DSI thread to stop populating the SQT cache.

Default: 80% of memory_limit value.

Range: 1 – 100

mem_thr_exec Specifies the percentage of the total memory used to force
the EXEC thread to stop receiving commands from Rep-
Agent.

Default: 90% of memory_limit value.

Range: 1 – 100

mem_thr_sqt Specifies the percentage of the total memory used to force
the SQT thread to flush the largest transaction from its
cache if possible.

Default: 85% of memory_limit value.

Range: 1 – 100

mem_warning_thr1 Specifies the threshold percentage of the total memory
used before the first warning message is generated. See
memory_limit.

Default: 80% of memory_limit value.

Range: 1 – 100

mem_warning_thr2 Specifies the threshold percentage of the total memory
used before the second warning message is generated. See
memory_limit.

Default: 90% of memory_limit value.

Range: 1 – 100

Performance Tuning

Administration Guide Volume 2 129

Configuration parameter Description

memory_control Manages the memory control behavior of threads that
require significant amount of memory. See memory_lim-
it.

Values are:

• on – enables memory control
• off – disables memory control

Default: on

Performance Tuning

130 Replication Server

Configuration parameter Description

memory_limit The maximum total memory the Replication Server can
use, in megabytes.

Values for several other configuration parameters are di-
rectly related to the amount of memory available from the
memory pool indicated by memory_limit. These include
exec_nrm_request_limit, exec_sqm_write_re-
quest_limit, md_sqm_write_request_limit,
queue_dump_buffer_size, sqt_max_cache_size,
sre_reserve, and sts_cachesize.

Default: 2,047

For 32-bit Replication Server:

• Minimum – 0
• Maximum – 2,047

For 64-bit Replication Server:

• Minimum – 0
• Maximum – 2,147,483,647

When memory_control is:

• on – Replication Server does not shut down when
memory consumption exceeds memory_limit

• off – Replication Server automatically shuts down
when memory consumption exceeds memory_limit

Monitor memory usage and increase memory_limit if re-
quired.

In Replication Server, the threads that require significant
amount of memory are:

• EXEC
• SQT
• DST

These threads execute memory control by performing a
memory usage check before receiving or processing new
data. During memory control, if the memory usage is
found to be high, thread functioning is adjusted by:

• Stopping the thread from grouping new data, and
cleaning and processing existing data; or,

• Making the thread go into a sleep mode such that it
does not receive new data until memory is available.

Performance Tuning

Administration Guide Volume 2 131

Configuration parameter Description

If the value you set is larger than 2,047, downgrading
resets the value to 2,047 to protect against overflow.

md_sqm_write_request_limit Specifies the amount of memory available to the Distrib-
utor for messages waiting to be written to the outbound
queue.

Note: In Replication Server 12.1, md_sqm_write_re-
quest_limit replaces md_source_memory_pool.
md_source_memory_pool is retained for compatibility
with older Replication Servers.

Default: 1MB

Minimum: 16K

Maximum: 2GB

nrm_thread Enables the NRM thread which Replication Server can
use to normalize and pack Log Transfer Language (LTL)
commands in parallel with parsing by the RepAgent Ex-
ecutor thread. Parallel processing by the NRM thread re-
duces the response time of the RepAgent executor thread.
The NRM thread is a thread split from RepAgent executor
thread.

Use the configure replication server command to set
nrm_thread to on before you use exec_nrm_request_lim-
it.

Default: off

License: Separately licensed under the Advanced Serv-
ices Option.

rec_daemon_sleep_time Set wake up intervals by specifying the sleep time for the
recovery daemon, which handles “strict” save interval
messages in warm standby applications and certain other
operations.

Default: 2 minutes

Performance Tuning

132 Replication Server

Configuration parameter Description

smp_enable Enables symmetric multiprocessing (SMP). Specifies
whether Replication Server threads should be scheduled
internally by Replication Server or externally by the op-
erating system. When Replication Server threads are
scheduled internally, Replication Server is restricted to
one machine processor, regardless of how many may be
available. Values are “on” and “off.”

Default: on

Upgrading or downgrading does not change the value you
set.

sqm_async_seg_delete Set sqm_async_seg_delete to on to enable a dedicated
daemon for deleting segments and improve performance
for inbound and outbound queue processing.

Default: on

You must restart Replication Server for any change to the
parameter setting to take effect.

If sqm_async_seg_delete is on, Replication Server may
require a larger partition. Use alter partition to expand a
partition. See:

• Replication Server Configuration Guide > Prepara-
tion for Installing and Configuring Replication Server
> Plan the Replication System > Initial Disk Partition
for Each Replication Server.

• Replication Server Administration Guide Volume 1 >
Replication Server Technical Overview > Transaction
Handling with Replication Server > Stable Queues >
Partitions for Stable Queues.

sqm_cache_enable Indicates whether to enable SQM caching and large I/O in
a stable device.

Default: on

sqm_cache_size Indicates the number of pages in cache where size of a
page is specified by sqm_page_size. Range is 1 to 4096.

Default: 16

Performance Tuning

Administration Guide Volume 2 133

Configuration parameter Description

sqm_page_size Indicates the number of blocks in a page.

Sets server-wide stable queue page size in blocks per
page. Enclose page sizes in single quotes or double
quotes. For example, setting page size to 4 instructs Rep-
lication Server to write to the stable queue in 64K chunks.

Configuring the page size also sets the I/O size of Repli-
cation Server. The range is 1 to 64.

Default: 4

sqm_recover_segs Specifies the number of stable queue segments Replica-
tion Server allocates before updating the RSSD with re-
covery QID information.

Sybase recommends that you increase the value of
sqm_recover_segs to improve performance.

Default: 1

Minimum: 1

Maximum: 2,147,483,648

sqm_write_flush For stable device considerations, sqm_write_flush speci-
fies whether or not writes to memory buffers are flushed to
the disk before the write operation completes. Values are
“on,” “off,” and “dio”.

Default: on

sqt_init_read_delay The length of time an SQT thread sleeps while waiting for
an SQM read before checking to see if it has been given
new instructions in its command queue. With each expi-
ration, if the command queue is empty, SQT doubles its
sleep time up to the value set for sqt_max_read_delay.

Default: 1 milliseconds (ms)

Minimum: 0 ms

Maximum: 86,400,000 ms (24 hours)

Performance Tuning

134 Replication Server

Configuration parameter Description

sqt_max_cache_size Use sqt_max_cache_size for sizing the SQT cache to the
maximum SQT cache memory, in bytes.

For 32-bit Replication Server:

• Default – 1,048,576
• Minimum – 0
• Maximum – 2,147,483,647

For 64-bit Replication Server:

• Default – 20,971,520
• Minimum – 0
• Maximum – 2,251,799,813,685,247

If the value you set is larger than 2,147,483,647 bytes,
downgrading resets the value to 2,147,483,647 bytes to
protect against overflow.

sqt_max_read_delay The maximum length of time an SQT thread sleeps while
waiting for an SQM read before checking to see if it has
been given new instructions in its command queue.

Default: 1 ms

Minimum: 0 ms

Maximum: 86,400,000 ms (24 hours)

sts_cachesize For caching system tables, use sts_cachesize to specify
the total number of rows that are cached for each cached
RSSD system table. Increasing this number to the number
of active replication definitions prevents Replication
Server from executing expensive table lookups.

Monitor whether the STS cache is too small by reviewing
counter 11008 – STSCacheExceed or examining the Rep-
lication Server log for warnings that rows have been re-
moved from the STS cache.

Default: 1000

Performance Tuning

Administration Guide Volume 2 135

Configuration parameter Description

sts_full_cache_system_table_name For caching system tables, use sts_full_cache_sys-
tem_table_name to specify an RSSD system table that is
to be fully cached. Fully cached tables do not require
access to the RSSD for simple select statements. Only
some RSSD tables can be fully cached.

Default: rs_asyncfuncs, rs_clsfunc-
tionsrs_columns, rs_objects, rs_ob-
jfunctions, rs_repobjs, and rs_users are
fully cached. Sybase recommends that you cache these
tables to improve performance.

sub_daemon_sleep_time For setting wake up intervals, usesub_dae-
mon_sleep_time to set the number of seconds the sub-
scription daemon sleeps before waking up to recover sub-
scriptions. The range is 1 to 31,536,000.

Default: 120 seconds

sub_sqm_write_request_limit Specifies the memory available to the subscription mate-
rialization or dematerialization thread for messages wait-
ing to be written to the outbound queue.

Default: 1MB

Minimum: 16K

Maximum: 2GB

See also
• Increase Queue Block Size on page 232
• Advanced Services Option on page 216
• Set the Amount of Time SQM Writer Waits on page 147
• Set Wake up Intervals on page 154
• Stable Devices: Considerations on page 136
• Size the SQT Cache on page 154
• Cache System Tables on page 148
• Control the Number of Commands the RepAgent Executor Can Process on page 156
• Make SMP More Effective on page 158
• Specify the Number of Stable Queue Segments Allocated on page 157

Stable Devices: Considerations
Like any application, Replication Server is subject to standard I/O and I/O device best
practices. You should consider the impact of contention for disk Read/Write heads and I/O
channels when planning how your stable devices will be used to support your stable queues.

To the extent that you can dedicate one or more devices to each queue, I/O will be less of a
performance issue. This includes guarding the devices from use by other processes such as

Performance Tuning

136 Replication Server

primary or replicate databases or RSSDs. You can use the database connection parameter
disk_affinity to establish affinities between queues and specific partitions that are supported
by dedicated devices.

For stable queues initialized on UNIX operating system files, the sqm_write_flush
configuration parameter controls whether or not writes to memory buffers are flushed to the
disk before the write operation completes.

When sqm_write_flush is on, Replication Server opens stable queues using the O_DSYNC
flag. This flag ensures that writes are flushed from memory buffers to the disk before write
operations complete. Because the data is stored on physical media, Replication Server can
always recover the data in the event of a system failure. This is the default setting.

When sqm_write_flush is off, writes may be buffered in the UNIX file system. If subsequent
writes fail, automatic recovery is not guaranteed. Testing has shown that when comparing the
write rates of the various options for partition types and I/O flushing that writing to a buffered
file system with sqm_write_flush on is up to five times slower than writes to raw partitions.

Further, testing has shown that writes to raw partitions are up to seven times slower than writes
to buffered file systems with sqm_write_flush off. Turning sqm_write_flush off when using
UNIX Buffered file systems for stable devices provides peak I/O performance but with an
increased risk of data loss. Provided you keep primary database transaction log backups, that
risk can be reduced or eliminated.

For file system partitions, direct I/O reduces the I/O latency as compared to the synchronous
I/O, DSYNC. Configure direct I/O using:
configure replication server set sqm_write_flush to
"dio"

This command enables direct I/O and is effective only when the stable queue is on the file
system. The direct I/O method allows the Replication Server to read or write directly to the
disk without the buffering of the file system. Adjust the stable queue cache properly. A proper
cache size ensures that most read transactions are completed within the cache.

Note: Direct I/O is supported only on Solaris and Linux platforms for Replication Server 15.1
and later.

This command is static, which means you must restart the server for it to take effect.

Note: The sqm_write_flush setting is ignored for stable queues initialized on raw partitions or
Windows files. In these cases, write operations always take place directly to media.

To improve I/O performance, Replication Server 15.1 and later supports caching for stable
device.

See also
• Stable Queue Cache on page 151

Performance Tuning

Administration Guide Volume 2 137

Connection Parameters that Affect Performance
Replication Server provides several database connection parameters that can affect
performance.

See Replication Server Administration Guide Volume 1 > Manage Database Connections for
a complete list of connection parameters.

Table 16. Connection Parameters that Affect Performance

Configuration Pa-
rameter

Description

batch The default, “on,” allows command batches to a replicate database.

Default: on

cmd_direct_replicate Set cmd_direct_replicate on for the Executor thread to send parsed data
directly to the Distributor thread along with binary data. When required,
the Distributor thread can retrieve and process data directly from parsed
data, and improve replication performance by saving time otherwise
spent parsing data again.

Default: off

db_packet_size The maximum size of a network packet. During database communica-
tion, the network packet value must be within the range accepted by the
database.

Maximum: 16384 bytes

Default: 512-byte network packet for all Adaptive Server databases

disk_affinity Specifies an allocation hint for assigning the next partition. Enter the
logical name of the partition to which the next segment should be
allocated when the current partition is full. Values are “partition_name”
and “off.”

Default: off

Performance Tuning

138 Replication Server

Configuration Pa-
rameter

Description

dist_sqt_max_cache_size The maximum Stable Queue Transaction (SQT) cache size for the
inbound queue in bytes. The default, 0, means the current setting of the
sqt_max_cache_size parameter is used as the maximum cache size for
the connection.

Default: 0

For 32-bit Replication Server:

• Minimum – 0
• Maximum – 2,147,483,647

For 64-bit Replication Server:

• Minimum – 0
• Maximum – 2,251,799,813,685,247

dsi_cmd_batch_size The maximum number of bytes that Replication Server places into a
command batch.

Default: 8192 bytes

dsi_cmd_prefetch Allows DSI to pre-build the next batch of commands while waiting for
the response from data server, and therefore improves DSI efficiency. If
you also tune your data server to enhance performance, it is likely that
you will gain an additional performance increase when you use this
feature.

Default: off

When you set dsi_compile_enable to ‘on’, Replication Server ignores
what you set for dsi_cmd_prefetch.

License: Separately licensed under the Advanced Services Option.

dsi_com-
mit_check_locks_intrvl

The number of milliseconds (ms) the DSI executor thread waits be-
tween executions of the rs_dsi_check_thread_lock func-
tion string. Used with parallel DSI.

Default: 1000 ms (1 second)

Minimum: 0

Maximum: 86,400,000 ms (24 hours)

Performance Tuning

Administration Guide Volume 2 139

Configuration Pa-
rameter

Description

dsi_com-
mit_check_locks_max

The maximum number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before rolling
back and retrying a transaction. Used with parallel DSI.

Default: 400

Minimum: 1

Maximum: 1,000,000

dsi_commit_control Specifies whether commit control processing is handled internally by
Replication Server using internal tables (on) or externally using the
rs_threads system table (off). Used with parallel DSI.

Default: on

dsi_isolation_level Specifies the isolation level for transactions. ANSI standard and Adap-
tive Server supported values are:

• 0 – ensures that data written by one transaction represents the actual
data.

• 1 – prevents dirty reads and ensures that data written by one trans-
action represents the actual data.

• 2 – prevents nonrepeatable reads and dirty reads, and ensures that
data written by one transaction represents the actual data.

• 3 – prevents phantom rows, nonrepeatable reads, and dirty reads,
and ensures that data written by one transaction represents the ac-
tual data.

Through the use of custom function strings, Replication Server can
support any isolation level the replicate data server may use. Support is
not limited to the ANSI standard only.

Default: the current transaction isolation level for the target data server

dsi_large_xact_size The number of commands allowed in a transaction before the transac-
tion is considered to be large.

Default: 100

Minimum: 4

Maximum: 2,147,483,647

This parameter is ignored when dsi_compile_enable is turned on.

Performance Tuning

140 Replication Server

Configuration Pa-
rameter

Description

dsi_max_cmds_in_batch Defines the maximum number of source commands whose output
commands can be batched.

You must suspend and resume the connection for any change in the
parameter to take effect.

Range: 1 – 1000

Default: 100

dsi_max_xacts_in_group Specifies the maximum number of transactions in a group. Larger
numbers may improve data latency at the replicate database. Range of
values: 1 – 1000.

Default: 20

This parameter is ignored when dsi_compile_enable is turned on.

dsi_num_large_xact_thre
ads

The number of parallel DSI threads to be reserved for use with large
transactions. The maximum value is one less than the value of
dsi_num_threads.

Default: 0

dsi_num_threads The number of parallel DSI threads to be used. The maximum value is
255.

Default: 1

dsi_partitioning_rule Specifies the partitioning rules (one or more) the DSI uses to partition
transactions among available parallel DSI threads. Values are origin,
origin_sessid, time, user, name, and none.

Default: none

This parameter is ignored when dsi_compile_enable is turned on.

Performance Tuning

Administration Guide Volume 2 141

Configuration Pa-
rameter

Description

dsi_serialization_method Specifies the method used to determine when a transaction can start,
while still maintaining consistency. In all cases, commit order is pre-
served.

These methods are ordered from most to least amount of parallelism.
Greater parallelism can lead to more contention between parallel trans-
actions as they are applied to the replicate database. To reduce conten-
tion, use the dsi_partitioning_rule option.

• no_wait – specifies that a transaction can start as soon as it is ready
—without regard to the state of other transactions.

Note: You can only set dsi_serialization_method to no_wait if
dsi_commit_control is set to “on”.

• wait_for_start – specifies that a transaction can start as soon as the
transaction scheduled to commit immediately before it has started.

• wait_for_commit (default) – specifies that a transaction cannot start
until the transaction scheduled to commit immediately preceding it
is ready to commit.

• wait_after_commit – specifies that a transaction cannot start until
the transaction scheduled to commit immediately preceding it has
committed completely.

These options are retained only for backward compatibility with older
versions of Replication Server:

• none – same as wait_for_start.
• single_transaction_per_origin – same as wait_for_start with

dsi_partitioning_rule set to origin.

Note: The isolation_level_3 value is no longer supported as a seriali-
zation method but it is the same as setting dsi_serialization_method to
wait_for_start and dsi_isolation_level to 3.

Default: wait_for_commit

Performance Tuning

142 Replication Server

Configuration Pa-
rameter

Description

dsi_sqt_max_cache_size Maximum SQT (Stable Queue Transaction) interface cache size for the
outbound queue in bytes. The default, 0, means the current setting of the
sqt_max_cache_size parameter is used as the maximum cache size for
the connection.

Default: 0

For 32-bit Replication Server:

• Minimum – 0
• Maximum – 2,147,483,647

For 64-bit Replication Server:

• Minimum – 0
• Maximum – 2,251,799,813,685,247

dsi_xact_group_size The maximum number of bytes, including stable queue overhead, to
place into one grouped transaction. A grouped transaction is a set of
transactions that the DSI applies as a single transaction. A value of –1
means no grouping.

Sybase recommends that you set dsi_xact_group_size to the maximum
value and use dsi_max_xacts_in_group to control the number of trans-
actions in a group.

Note: Obsolete for Replication Server version 15.0 and later. Retained
for compatibility with older Replication Servers.

Maximum: 2,147,483,647

Default: 65,536 bytes

This parameter is ignored when dsi_compile_enable is turned on.

exec_cmds_per_timeslice Specifies the number of LTL commands an LTI or RepAgent executor
thread can process before yielding the CPU. By increasing this value,
you allow the RepAgent executor thread to control CPU resources for
longer periods of time, which may improve throughput from RepAgent
to Replication Server.

Set this parameter at the connection level using alter connection.

Default: 2,147,483,647

Minimum: 1

Maximum: 2,147,483,647

Performance Tuning

Administration Guide Volume 2 143

Configuration Pa-
rameter

Description

exec_max_cache_size Specifies the amount of memory to allocate for the Executor command
cache.

Default: 1,048,576 bytes

For 32-bit Replication Server:

• Minimum – 0
• Maximum – 2,147,483,647

For 64-bit Replication Server:

• Minimum – 0
• Maximum – 2,251,799,813,685,247

exec_nrm_request_limit Specifies the amount of memory available for messages from a primary
database waiting to be normalized.

Set nrm_thread to ‘on’ with configure replication server before you
use exec_nrm_request_limit.

Minimum: 16,384 bytes

Maximum: 2,147,483,647 bytes

Default for:

• 32-bit – 1,048,576 bytes (1MB)
• 64-bit – 8,388,608 bytes (8MB)

After you change the configuration for exec_nrm_request_limit, sus-
pend and resume the Replication Agent.

License: Separately licensed under the Advanced Services Option.

exec_sqm_write_re-
quest_limit

Specifies the amount of memory available for messages waiting to be
written to an inbound queue.

Default: 1MB Minimum: 16KB Maximum: 2GB

md_sqm_write_re-
quest_limit

Specifies the amount of memory available to the Distributor for mes-
sages waiting to be written to the outbound queue.

Note: In Replication Server 12.1, md_sqm_write_request_limit repla-
ces md_source_memory_pool. md_source_memory_pool is retained
for compatibility with older Replication Servers.

Default: 1MB

Minimum: 16K

Maximum: 2GB

Performance Tuning

144 Replication Server

Configuration Pa-
rameter

Description

parallel_dsi A shorthand method for configuring parallel DSI to default values. A
value of “on” sets dsi_num_threads to 5,
dsi_num_large_xact_threads to 2, dsi_serialization_method to
wait_for_commit, and dsi_sqt_max_cache_size to 1 million bytes. A
value of “off” sets the parallel DSI values to their defaults. You can set
this parameter to “on” and then set individual parallel DSI configuration
parameters to fine-tune your configuration.

Default: off

sqm_async_seg_delete Set sqm_async_seg_delete to on to enable a dedicated daemon for
deleting segments.

Default: on

sqm_cmd_cache_size The maximum size, in bytes, of parsed data that Replication Server can
store in the SQM command cache.

32-bit Replication Server:

• Default – 1,048,576
• Minimum – 0, which disables SQM command caching
• Maximum – 2,147,483,647

64-bit Replication Server:

• Default – 20,971,520
• Minimum – 0
• Maximum – 2,251,799,813,685,247

Replication Server ignores any value you set for sqm_cmd_cache_size
if cmd_direct_replicate or sqm_cache_enable is off.

Performance Tuning

Administration Guide Volume 2 145

Configuration Pa-
rameter

Description

sqm_max_cmd_in_block Specifies, in each SQM block, the maximum number of entries with
which the parsed data can associate.

Default: 320

Minimum: 0

Maximum: 4096

Set the value of sqm_max_cmd_in_block to the number of entries in
the SQM block. Depending on the data profile, each block has a dif-
ferent number of entries because the block size is fixed, and the message
size is unpredictable. If you set a value that is too large, there is memory
waste. If you set a value that is too small, replication performance is
compromised.

Replication Server ignores any value you set for
sqm_max_cmd_in_block if cmd_direct_replicate or sqm_cache_en-
able is off.

use_batch_markers If use_batch_markers is set to on, the function strings rs_batch_start
and rs_batch_end will be executed.

Note: This parameter will only need to be set to on for replicate data
servers that require additional SQL translation to be sent at the begin-
ning and end of a batch of commands that are not contained in the
rs_begin and rs_commit function strings.

Default: off

See also
• Advanced Services Option on page 216

• Parallel DSI Threads on page 162

• Partitioning Rules: Reducing Contention and Increasing Parallelism on page 173

• Specify the Number of Transactions in a Group on page 158

• Control the Number of Commands the RepAgent Executor Can Process on page 156

Route Parameters that Affect Performance
Replication Server provides several route configuration parameters that affect performance.

See Replication Server Administration Guide Volume 1 > Manage Routes for a complete list
of route parameters.

Performance Tuning

146 Replication Server

Table 17. Route Parameters that Affect Performance

Configuration pa-
rameter

Description

rsi_batch_size The number of bytes sent to another Replication Server before a trun-
cation point is requested.

Default: 256K

Minimum: 1K

Maximum: 128MB

rsi_packet_size Packet size, in bytes, for communications with other Replication Serv-
ers. The range is 1024 to 16384.

Default: 4096 bytes

rsi_sync_interval The number of seconds between RSI synchronization inquiry messag-
es. The Replication Server uses these messages to synchronize the RSI
outbound queue with destination Replication Servers. The value must
be greater than 0. Default: 60 seconds

Suggestions for Using Tuning Parameters
There are several basic recommendations for improving Replication Server performance.
Whether or not changing these configuration values improves your system performance
depends on your system configuration and how Replication Server is used at your site.

Set the Amount of Time SQM Writer Waits
Use the init_sqm_write_delay and init_sqm_write_max_delay Replication Server
configuration parameters to set the amount of time SQM writer waits.

In a low-volume system, set init_sqm_write_delay and init_sqm_write_max_delay to a low
value so that the SQM Writer need not wait long before writing a partially full block. In a
high-volume system, set these parameters higher because the SQM Writer rarely waits to fill a
block.

Monitor how often the SQM Writer waits by reviewing counter 6038 – WritesTimerPop.

Determine the number of full or partially full blocks that have been written by reviewing these
counters:

• 6002 – BlocksWriten
• 6041 – BlocksFullWrite

If counter 62006 – SleepsWriteQ is relatively high compared to counter 62002 – BlocksRead,
SQM Readers must too often wait for the next block of messages to deliver downstream—
which causes latency. Decrease the values of init_sqm_write_delay and

Performance Tuning

Administration Guide Volume 2 147

init_sqm_write_max_delay so that SQM Writer does not wait to long before writing a
partially full block.

Ideally, the ratio of counter 62004 – BlocksReadCached to counter 62002 – BlocksRead
should be high, and counter 62006 – SleepsWriteQ should be relatively low. Such numbers
would indicate that the SQM Writer is working approximately as fast as the SQM Reader,
handing off blocks from the former to the latter without reading from disk. However, these are
Replication Server–wide parameters, adjusting them to make one queue more efficient may
decrease the efficiency of another.

Cache System Tables
Use the sts_cache_size and sts_full_cache_table_name Replication Server configuration
parameters to cache system tables.

You can fully cache certain system tables so that simple select statements on those tables do
not require access to the RSSD. By default, rs_repobjs, rs_users rs_objects,
rs_columns, and rs_asyncfuncs are fully cached. Depending on the number of
replication definitions and subscriptions used, fully caching these tables may significantly
reduce RSSD access requirements. However, if the number of unique rows in rs_objects
is approximately equal to the value for sts_cachesize, these tables may already be fully
cached.

If you have a lot of replication definitions in the replication system, and you have many
replication definition change requests, each change may cause a refresh of the whole cache.

System Tables that Can Be Cached
Only certain system tables can be cached.

Table 18. System Tables that Can Be Cached

Tables

rs_classes rs_dbsubsets rs_version rs_datatype

rs_databases rs_columns rs_config rs_routes

rs_objects rs_diskaffin-
ity

rs_asyncfuncs rs_users

rs_sites rs_queues rs_repdbs rs_dbreps

rs_repobjs rs_systext rs_publica-
tions

rs_objfunc-
tions

rs_clsfunc-
tions

rs_transla-
tion

Performance Tuning

148 Replication Server

Replication Definition Change Process
If you are making many changes to the RSSD, such as creating, altering, or dropping
replication definitions, or customizing function strings, Sybase recommends that before you
start the replication definition change process, disable sts_full_cache for rs_objects,
rs_columns, and rs_objfunctions, and then set sts_full_cache for these tables to
their original values after the replication definition change process.

Tip: Execute the Adaptive Server update statistics command on the RSSD tables
periodically if there are many RSSD changes. For replication definition change requests, such
as to create, alter, or drop replication definitions, the affected tables are rs_objects,
rs_columns, and rs_objfunctions. For function string change requests, such as to
create, alter, or drop function strings, the affected tables are rs_funcstrings and
rs_systext.

To disable sts_full_cache where system_table_name is the name of the table:
configure replication server
set sts_full_cache_system_table_name to ‘off

See Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Modify Replication Definitions > Alter Replication Definitions > Replication Definition
Change Request Process.

Executor Command Cache
Use the Executor command cache to cache column names and datatypes for a primary
Adaptive Server database table, when a Sybase RepAgent initially sends an insert, delete, or
update LTL command for that table.

Metadata such as column name and datatype are part of the table schema that RepAgent sends
as well as the data associated with an insert, delete, or update command. However, with
caching:

• RepAgent sends the metadata and data associated with an insert, update, or delete
command only when the RepAgent processes an operation for that specific table the first
time since the RepAgent started, or since a connection with Replication Server was
restarted. Replication Agent does not send the table metadata when RepAgent
subsequently processes transactions for that table.

• RepAgent can resend metadata and data if there is not enough memory in the RepAgent to
keep all the schema definitions.

• RepAgent sends the metadata and data of a table when the RepAgent processes a
modification on a specific table after the table schema has been changed, for example, after
an Adaptive Server alter table operation.

To replicate subsequent operations on the same table, RepAgent sends only the column data,
since the Replication Server Executor command cache stores the metadata. The combination
of RepAgent metadata reduction and caching with the Replication Server Executor command
cache improves replication performance because caching:

Performance Tuning

Administration Guide Volume 2 149

• Reduces the time spent by RepAgent packing metadata into the Log Transfer Language
(LTL) packet.

• Reduces network traffic by increasing the amount of data sent in each packet.
• Allows RepAgent to dedicate the time saved to scanning the primary database log instead

of packing metadata.
• Allows the Replication Server Executor to process tables with large number of columns

more efficiently.

Note: The cache contains only metadata from tables that have been modified by an insert,
update, or delete operation.

System Requirements
Table metadata reduction requires LTL version 740 or later, and Adaptive Server 15.7 or later.

Enabling Table Metadata Reduction
Enable table metadata reduction for Sybase RepAgent. Replication Server enables the
Executor command cache automatically if you enable table metadata reduction in RepAgent.

1. At the Adaptive Server, execute:
sp_config_rep_agent database_name, ‘ltl metadata reduction’,
'true'

where database_name is the primary Adaptive Server database.

Note: By default, ltl metadata reduction is set to false and RepAgent for Adaptive Server
does not enable table metadata reduction.

2. Restart RepAgent for the change to take effect:
sp_start_rep_agent database_name

Setting the Executor Command Cache Size
Use exec_max_cache_size to specify the amount of memory to allocate for the Executor
command cache.

Insufficient memory allocated for the cache affects replication performance, and you see this
error message appearing frequently:
Executor Command Cache exceeds its maximum limit defined by
exec_max_cache_size (current value is current_exec_max_cache_size).

To avoid further replication performance degradation, either add more memory to the cache
with exec_max_cache_size, or disable table metadata reduction in your Replication Agent .

You can set values from 0 to 2,147,483,647 bytes for a 32-bit Replication Server, and 0 to
2,251,799,813,685,247 bytes for a 64-bit Replication Server. The default is 1,048,576 bytes
for both 32-bit and 64-bit Replication Servers.

For example, to set the Executor command cache size to 2,097,152 bytes at the:

Performance Tuning

150 Replication Server

• Server level – for all primary database connections to Replication Server, enter:
configure replication server
set exec_max_cache_size to '2097152'

• Connection level – for a specific primary database connection, enter:
alter connection to dataserver_name.database_name
set exec_max_cache_size to '2097152'

Replication Server always uses the connection level setting if there are settings at both levels.
You need not restart Replication Server for the change to take effect.

Stable Queue Cache
Replication Server uses a simple caching mechanism to optimize I/O. This mechanism
reduces write latency and improves reader speed, since data can usually be read quickly from
the cache.

A cache is made up of multiple pages and each page is made up of multiple adjoining blocks. A
cache is allocated for each queue at start-up time. Changing the page size changes the size of
I/O in the stable queue devices. When a page is full, the entire page is written in one single
write operation.

In stable queue caching, the page pointer moves forward and rotates back at the end of the
cache. SQM flushes the current page if the writer has filled the message queue and is blocked
when waiting for messages. Only blocks with data are written to a disk when flushing a page
that is not full.

Configure Stable Queue Cache Parameters
There are several stable queue cache parameters you can configure.

Set the server-wide caching default value using:

configure replication server set sqm_cache_enable to
"on|off"

Enable or disable the caching for a queue and override the server-level setting using:

alter queue q_number, q_type, set sqm_cache_enable to
"on|off"

When sqm_cache_enable parameter is disabled, SQM module returns back to the earlier
mechanism, which maintains a fixed 16K; one-block buffer.

Set the server-wide page size default value using:

configure replication server set sqm_page_size to
"num_of_blocks"

Set the page size for a specified queue using:

alter queue q_number, q_type, set sqm_page_size to
"num_of_blocks"

Performance Tuning

Administration Guide Volume 2 151

num_of_blocks specifies the number of 16K blocks in a page. Configuring the page size also
sets the I/O size of Replication Server. For example, if you set the page size to 4, this instructs
the Replication Server to write to stable queue in 64K chunks.

Set the server-wide cache size default value using:

configure replication server set sqm_cache_size to
"num_pages"

Set the cache size for a specified queue using:

alter queue q_number, q_type, set sqm_cache_size to
"num_pages"

num_pages specifies the number pages in the cache.

All SQM configuration commands are static, thus you must restart the server for these
commands to take effect.

See the Replication Server Reference Manual for detailed information about these
configuration parameters.

SQM Command Cache
Use the SQM command cache to store parsed data from the Executor thread that the
Distributor thread can retrieve directly, and therefore improve replication performance.

The Executor thread transfers LTL commands from a Replication Agent to Replication
Server. The Executor thread parses the LTL commands and stores them in an internal parsed
format. The parsed data is then packed in binary format. The Executor thread sends the binary
data to the SQM thread so that the Executor thread can receive new data from the Replication
Agent. The SQM thread stores the binary data in the SQM cache until the data is written to the
inbound stable queue. The Distributor thread retrieves the binary data, restores the data to the
original format, and determines where to send the data.

Set cmd_direct_replicate on for the Executor thread to send internal parsed data along with
the binary data. Replication Server stores the parsed data in a separate SQM command cache.
The parsed data in the SQM command cache maps to the binary data stored in SQM cache.
When required, the Distributor module can retrieve and process data from parsed data directly,
and save time otherwise spent parsing binary data.

Use the sqm_cmd_cache_size and sqm_max_cmd_in_block parameters to set the the SQM
command cache memory configuration. You can configure cmd_direct_replicate,
sqm_cmd_cache_size and sqm_max_cmd_in_block in the same command or separately.

Guidelines for Setting SQM Command Cache Memory Configuration
The SQM command cache memory configuration settings depend on the total amount of
memory available to Replication Server, the number of inbound queues, and the transaction
profile, which depends on the command size. When setting the SQM command cache memory
configuration:

Performance Tuning

152 Replication Server

• Increase sqm_cmd_cache_size if the Replication Server has a large total SQM cache.
Total SQM cache = sqm_cache_size (in pages) * sqm_page_size (in blocks) *
block_size (in kilobytes)

• Decrease sqm_max_cmd_in_block if command size or table row size is large.
• Increase sqm_max_cmd_in_block if block_size is large.

After you have set the initial values, tune the values based on replication performance and data
from monitoring counters:

• Increase sqm_cmd_cache_size if SQMNoDirectReplicateInCache shows a large value.
• Increase sqm_max_cmd_in_block if SQMNoDirectReplicateInBlock shows a large

value.

Use configure replication server to change the sqm_cache_size, sqm_page_size, and
block_size for all database connections to Replication Server. Otherwise, use alter
connection to set the configuration for a specific database connection.

See Replication Server Reference Manual > Replication Server Commands for the default
value and valid range of values for the parameters.

Example 1

To set the configuration for all connections and queues for a 64-bit Replication Server:
configure replication server
set cmd_direct_replicate to 'on'
set sqm_cmd_cache_size to '40971520'
set sqm_max_cmd_in_block to '640'
go

Example 2

To set the configuration for the connection to the pdb1primary database in the TOKYO_DS
data server and for inbound queue number 2 for a 32-bit Replication Server:
alter connection to TOKYO_DS.pdb1
set cmd_direct_replicate to 'on'
go
alter queue 2, 1,
set sqm_cmd_cache_size to '2048576'
set sqm_max_cmd_in_block to '640'
go

See also
• Increase Queue Block Size on page 232

• Monitor Performance Using Counters on page 273

• Configure Stable Queue Cache Parameters on page 151

Performance Tuning

Administration Guide Volume 2 153

SQM Command Cache Counters to Monitor Performance
If sqm_cache_enable and cmd_direct_replicate are on, and sqm_cmd_cache_size and
sqm_max_cmd_in_block are set to nonzero values, you can use several counters to monitor
replication performance, as the Executor and Distributor threads interact with the parsed data.

Table 19. SQM Command Cache Counters

Counter Description

RACmdsDirectRepSend The number of commands sent from the Executor thread as-
sociated with parsed data.

DISTCmdsDirectRepRecv Number of commands received by Distributor that have parsed
data associated with the statement directly from Executor, and
where the parsing processing can be skipped.

SQMNoDirectReplicateInCache The number of commands that have parsed data sent from the
Executor thread, but the parsed data cannot be sent further
along the replication pathway towards the Distributor because
the command cache exceeds sqm_cmd_cache_size

SQMNoDirectReplicateInBlock The number of commands that have parsed data sent from the
Executor thread, but the parsed data cannot be sent further
along the replication pathway towards the Distributor because
the number of parsed data entries for the current SQM block
exceeds sqm_max_cmd_in_block

Set Wake up Intervals
Use the rec_daemon_sleep_time and sub_daemon_sleep_time Replication Server
configuration parameters to set wake up intervals.

By default, the recovery and subscription daemons wake up every two minutes to check the
RSSD for messages. In a typical production environment, the subscription daemon is used
rarely. As a consequence, you may be able to set the subscription daemon wake-up interval to
the maximum value: 31,536,000 seconds. Similarly, you can evaluate whether you want to set
the recovery daemon to a longer wake-up interval.

Size the SQT Cache
Use the sqt_max_cache_size Replication Server configuration parameter and the
dsi_sqt_max_cache_size database connection configuration parameter to size the SQT
cache.

Monitor SQT cache usage by reviewing counter 24005 – CacheMemUsed. Instead, monitor
counter 24009 – TransRemoved. If TransRemoved remains zero, indicating that transactions

Performance Tuning

154 Replication Server

are not being flushed from the cache to make room for others, you may not need to adjust
sqt_max_cache_size.

Warning! Setting the sqt_max_cache_size too high can cause the server to shutdown and can
affect the overall resources of the Replication Server if the server memory_limit is not set high
enough to accommodate the SQT cache sizing.

sqt_max_cache_size applies to all SQT caches supporting DIST clients, and provides a
default value for SQT caches that support DSI clients. The DISTs can push through
transactions rapidly; their SQT caches do not need to be as large as SQT caches for DSIs.
Thus, it is advisable to set SQT cache sizes for DSIs individually using the connection
configuration parameter dsi_sqt_max_cache_size, and using sqt_max_cache_size for
DIST SQT caches only.

Note: In versions of Replication Server earlier than 15.5, setting sqt_max_cache_size too
high can slow down replication. This advice does not apply to Replication Server 15.5 and
later.

Control the Number of Outstanding Bytes
Use the exec_nrm_request_limit, exec_sqm_write_request_limit, and
md_sqm_write_request_limit database connection configuration parameters to control the
number of outstanding bytes of memory.

exec_nrm_request_limit is a separately licensed option you can use enhance RepAgent
Executor thread efficiency.

See also
• Enhanced RepAgent Executor Thread Efficiency on page 230

exec_sqm_write_request_limit Database Configuration Parameter
exec_sqm_write_request_limit controls the amount of memory available for messages
waiting to be written to an inbound queue.

md_sqm_write_request_limit Database Configuration Parameter
md_sqm_write_request_limit controls the number of outstanding bytes a DIST thread can
hold before it must wait for some of those bytes to be written to the outbound queue.

Use Counters to Monitor Performance
You can use counters to monitor RepAgent Executor and NRM thread performance.

Monitor the number of times and duration of time RepAgent Executor sleeps and waits for
normalization to complete, by reviewing this counter:

• 58038 – RAWaitNRMTime

Performance Tuning

Administration Guide Volume 2 155

Monitor the number of times and duration of time the thread which is sleeping, which can be
either RepAgent Executor or NRM, waits before writing messages into an inbound queue by
reviewing this counter:
• 58019 – RAWriteWaitsTime
If RAWriteWaitsTime is consistently large, review the StableDevice I/O.

See also
• Monitor Performance Using Counters on page 273

Control the Number of Network Operations
Use the dsi_cmd_batch_size database connection configuration parameter to control the size
of a DSI command batch.

dsi_cmd_batch_size controls the size of the buffer a DSI uses to send commands to a replicate
data server. When the DSI configuration batch is set on, the DSI places as many commands as
will fit into a single command batch before sending it to the replicate. In some cases,
increasing the value of dsi_cmd_batch_size improves throughput by providing the replicate
database with more work per command batch.

Counters to Monitor Batching and Batch Size
Replication Server provides counters to monitor batching and batch size.

You can monitor the average size of a batch by referring to counter 57076 – DSIEBatchSize.
You can monitor the average amount of time taken to process a batch (the time from when the
batch is created until it is flushed and the results processed) by referring to counter 57070 –
DSIEBatchTime.

The following counters may also be useful in monitoring the effectiveness of batching and
batch size:

57037 – SendTime 57079 – DSIEOCmd-
Count

57063 – DSIEResultTime

57070 – DSIEBatchTime 57092 – DSIEBFMaxBytes 57076 – DSIEBatchSize

Control the Number of Commands the RepAgent Executor Can
Process

Use the exec_cmds_per_timeslice database connection configuration parameter to control
the number of commands the RepAgent executor thread can process.

By default, the value of the exec_cmds_per_timeslice parameter is 2,147,483,647 which
indicates that the RepAgent executor thread can process no more than five commands before it
must yield the CPU to other threads. Depending on your environment, increasing or
decreasing these values may improve performance.

If the in-bound queue is slow to be processed, try increasing these values to give the RepAgent
executor thread and the DIST thread more time to perform their work. If, however, the out-

Performance Tuning

156 Replication Server

bound queue is slow to be processed, try decreasing these parameter values so that the DSI has
more time to work.

If CPU resources are limited with respect to the number of connections Replication Server
supports, increasing the value of exec_cmds_per_timeslice may result in decreased overall
performance. In this case, giving the RepAgent Executor more control of CPU resources may
reduce resources to other Replication Server threads.

Monitor the number of times and duration of time the RepAgent executor thread yields CPU
with this counter:

• 58016 – RAYieldTime

Specify the Number of Stable Queue Segments Allocated
Use the sqm_recover_segs Replication Server configuration parameter to specify the
number of stable queue segments Replication Server allocates before updating the RSSD with
recovery QID information.

If sqm_recover_segs is set low, more RSSD updates are performed, possibly slowing
performance. If sqm_recover_segs is set high, fewer RSSD updates are performed, possibly
improving performance at the expense of longer recovery times.

Monitor how often an SQM Writer makes updates to the rs_oqids table by reviewing
counter 6036 – UpdsRsoqid. Typically, increasing the value of sqm_recover_segs improves
performance by reducing the amount of time and system resources necessary to allocate
segments. However, queue start up and restart take longer as the SQM Writer must scan more
of the queue to determine the last message successfully written for each origin. Each segment
requires 1MB of queue space; determine the value of sqm_recover_segs by calculating the
number of megabytes the SQM Writer can afford to scan at startup or restart. For example, if
the SQM Writer can scan 50MB of queue without slowing Replication Server startup or
restart, set sqm_recover_segs to 50.

Select Disk Partitions for Stable Queues
Use the disk_affinity database connection configuration parameter to specify the logical name
of the partition to which the next segment should be allocated when the current partition is
full.

The Replication Server partition affinity feature allows you to choose the disk partition to
which Replication Server allocates segments for stable queues. Sybase suggests that to
improve overall throughput, you associate faster devices with stable queues that process more
slowly.

See also
• Allocation of Queue Segments on page 268

Performance Tuning

Administration Guide Volume 2 157

Make SMP More Effective
Use the smp_enable Replication Server configuration parameter to enable symmetric
multiprocessing (SMP).

To determine the number of processors required to make effective use of SMP, establish a base
of two processors plus one more for every four queues. Processor speed may determine
whether these numbers are correct to meet your performance needs. If you have outbound
queues supporting parallel DSI, and there are more than 12 DSI Executor threads, you may
want to increase the processor/thread ratio for outbound queues—one processor for every
three or even two outbound queues.

Replication Server always uses a finite number of threads based on the number of supported
connections and routes. Even if all threads are to be kept always busy, making more and more
processors available to Replication Server will eventually cause “CPU saturation”—beyond
which more processors will not increase performance. At that point, any performance issues
you experience as a result of CPU resources may best be addressed by introducing CPUs
running at faster speeds.

In some cases, there is evidence that making too many processors available to Replication
Server can actually decrease performance. In such cases, the issue seems to be the amount of
time taken to force thread context switches among the available processors. Use your
operating system (OS) monitoring utilities to monitor the operating system management of
the Replication Server process and its threads. These utilities will help you determine if a
reduction in CPUs made available to Replication Server reduces the number of such context
switches.

Specify the Number of Transactions in a Group
You can use different configuration parameters to control the number of transactions in a
group.

Database Configuration Parameter: dsi_max_xacts_in_group
Use the dsi_max_xacts_in_group to specify the maximum number of transactions in a group.

Larger numbers may reduce commit processing at the replicate database, and thereby improve
throughput.

Use dsi_max_xacts_in_group to control group size. Set dsi_xact_group_size to the
maximum value of 2,147,483,647 and do not change it. Contention among parallel
transactions may be reduced by reducing the value of dsi_max_cacts_in_group to 1, which
indicates no grouping.

Monitor the average number of transactions placed in a group per DSI-E thread by reviewing
counter 57001 – UnGroupedTransSched.

Monitor the average number of transactions per group for the total DSI connection by
reviewing these counters:

Performance Tuning

158 Replication Server

• 5000 – DSIReadTranGroups
• 5002 – DSIReadTransUngrouped

Monitor why groups are being closed by reviewing these counters:

• 5042 – GroupsClosedBytes
• 5043 – GroupsClosedNoneOrig
• 5044 – GroupsClosedMixedUser
• 5045 – GroupsClosedMixedMode
• 5049 – GroupsClosedTranPartRule
• 5051 – UserRuleMatchGroup
• 5053 – TimeRuleMatchGroup
• 5055 – NameRuleMatchGroup
• 5063 – GroupsClosedTrans
• 5068 – GroupsClosedLarge
• 5069 – GroupsClosedWSBSpec
• 5070 – GroupsClosedResume
• 5071 – GroupsClosedSpecial
• 5072 – OriginRuleMatchGroup
• 5074 – OSessIDRuleMatchGroup
• 5076 – IgOrigRuleMarchGroup

Database Configuration Parameters: dsi_xact_group_size and
dsi_max_xacts_in_group
Use these configuration parameters together to increase the number of transactions that can be
grouped as a single transaction for application to the replicate database.

If the average number of commands per transaction is small (five or fewer), you can use
dsi_xact_group_size and dsi_max_xact_in_group to improve transaction application time.

Sybase recommends that you set dsi_xact_group_size to the maximum value, and use
dsi_max_xact_in_group to control transaction group size.

Set Transaction Size
For single DSI connections, set the value of dsi_large_xact_size to the maximum value of
2,147,483,647. Even when parallel DSI is not configured, the DSI/S reads the statement limit
set by dsi_large_xact_size and performs several tasks related to parallel DSI.

Performance Tuning

Administration Guide Volume 2 159

Enable Nonblocking Commit
Use the dsi_non_blocking_commit Replication Server configuration parameter to enable
nonblocking commit by specifying the number of minutes to extend the period of time
Replication Server saves messages after a commit.

The nonblocking commit feature improves replication performance when the delayed commit
feature is available in Adaptive Server 15.0 and later, or the equivalent delayed commit feature
is available in Oracle 10g v2.

Range of values: 0– 60 minutes.

Default: 0 – Disable non-blocking commit.

Memory Consumption Controls
Replication Server can show warning messages when the memory consumption exceeds a
defined threshold, and you can control the memory used by the EXEC, DSI, and SQT threads.

Memory Threshold Warning Messages
Configure Replication Server to show warning messages when the memory consumption
exceeds a defined threshold percentage of the total available memory.

To configure warning messages, use:

• mem_warning_thr1 – specifies the threshold percentage of the total memory used before
the first warning message is generated.
Default: 80% of memory_limit value.
Range: 1 – 100.

• mem_warning_thr2 – specifies the threshold percentage of the total memory used before
the second warning message is generated.
Default: 90% of memory_limit value.
Range: 1 – 100.

Replication Server Threads Memory Control
You can avoid the automatic shutdown of Replication Server when the consumption of
memory by Replication Server threads exceeds the available memory defined by
memory_limit.

In Replication Server, the threads that require significant amount of memory are:

• DSI
• EXEC
• SQT

These threads execute memory control by performing a memory usage check before receiving
or processing new data. During memory control, if the memory usage is found to be high,
thread functioning is adjusted by:

Performance Tuning

160 Replication Server

• Stopping the thread from grouping new data, and cleaning and processing existing data;
or,

• Making the thread go into a sleep mode such that it does not receive new data until memory
is available.

To manage flow control in the EXEC, DST, and SQT threads, use:

• mem_thr_dsi – specifies the percentage of the total memory used to force the DSI thread to
stop populating the SQT cache.
Default: 80% of memory_limit value.

• mem_thr_exec – specifies the percentage of the total memory used to force the EXEC
thread to stop receiving commands from RepAgent.
Default: 90% of memory_limit value.

• mem_thr_sqt – specifies the percentage of the total memory used to force the SQT thread
to flush the largest transaction from its cache.
Default: 85% of memory_limit value.

Use memory_control to manage the memory control behavior of threads. Valid values for
memory_control are enable (the default value) or disable. In this way, Replication Server
controls the memory consumption and does not shut down because of memory issues.

Use configure replication server to alter the default values for the configuration parameters.
Use admin config to view the default or existing values.

See Replication Server Reference Manual > Replication Server Commands > configure
replication server.

Monitor Thread Information
Use admin who to provide information on the memory control behavior of the thread.

State Description

Controlling
Mem

The thread is executing memory control.

Sleeping For
Mem

The thread is sleeping until memory is available.

See Replication Server Reference Manual > Replication Server Commands > admin who.

Memory Management Statistics
Use admin stats to view the memory management statistics.

Memory counters are enabled in the rsh module. To report the memory counters, use:

admin stats,rsh display_name instance_id

where:

Performance Tuning

Administration Guide Volume 2 161

• display_name – is the name of a counter. Use rs_helpcounter to obtain valid display
names. display_name is used only with module_name.

• instance_id – identifies a particular instance of a module such as SQT or SQM. To view
instance IDs, execute admin who and view the Info column. For rsh module, the SPID
must be used. To view SPID, execute admin who and view the Spid column.

See Replication Server Reference Manual > Replication Server Commands > admin stats.

Parallel DSI Threads
You can configure a database connection so that transactions are applied to a replicate data
server using parallel DSI threads rather than a single DSI thread.

Applying transactions in parallel increases the speed of replication, yet maintains the serial
commit order of the transactions that occurred at the primary site.

When parallel DSI threads are active, Replication Server normally starts processing a
transaction before the preceding transaction has committed and after the DSI has seen the
commit record for the next transaction. The commit is delayed until it is determined that all
preceding transactions have committed. Replication Server can maintain the order in which
transactions are committed and detect conflicting updates in transactions that are executing in
parallel simultaneously, using either of these methods:

• Internally, using Replication Server internal tables and function strings, or
• Externally, using the rs_threads system table in the replicate database.

Replication Server can achieve additional parallelism in the way it processes transactions
containing a large number of operations with parallel DSI threads. Large transactions begin
processing before the DSI has seen the commit record. While this means a large transaction
can be processed sooner, it also means that in a warm standby situation, Replication Server
might start processing a transaction that is ultimately rolled back. However, with subscription
replication, the rollback transaction would be caught by the DIST thread.

Replication Server provides other options for maximizing parallelism and minimizing
contentions between transactions. For example:

• Transaction serialization methods allow you to choose the degree of parallelism your
system can handle without inducing conflicts.

• Transaction partitioning rules provide additional tuning to affect how transactions are
grouped and distributed to avoid contention in the replicate database.

Benefits and Risks of Using Parallel DSI Threads
For most primary databases, many users and applications can create transactions
simultaneously. Funneling all of these transactions to the replicate through a single connection

Performance Tuning

162 Replication Server

can create a serious bottleneck. This bottleneck can cause periods of unwanted latency
between the primary and the replicate.

The benefit of enabling parallel DSI within Replication Server is to reduce this potential
bottleneck by processing multiple transactions across multiple replicate databases at the same
time.

The risk in enabling parallel DSI is the introduction of contention between the multiple
replicate connections and their transactions. The simultaneous application of transactions
against the replicate may introduce competition between the transactions for replicate
resources, creating a different kind of bottleneck.

As a result, using parallel DSI threads successfully requires an in-depth knowledge of your
replication environment and iterative testing to determine which of the parallel DSI tuning
parameters are most beneficial. The objective is to provide high throughput while controlling
the amount of contention introduced at the replicate.

For example, consider a body of work that includes 1000 transactions that must be replicated.
It will take some time to send all 1000 transactions across a single replicate connection.
However, attempting to configure and use 1000 connections, one for each transaction, will
likely result in contentions and strained server resources. A successful configuration requires
a balance between the two scenarios; it depends on both the transaction profile and the impact
of issuing those transactions against the replicate using parallel DSI.

In a second example, two serial transactions issued at the primary each perform a single update
operation to the same table row. If these two transactions are attempted in parallel at the
replicate by two connections, the first transaction to access the table row is granted exclusive
access. The second transaction must wait until the first transaction has either committed or
rolled back and thus released the row. Although both transactions are ultimately applied, there
is no benefit from the parallel DSI configuration. The transactions are processed serially in the
same way they would have been processed without parallel DSI. The contention has nullified
any benefit from using parallel DSI.

Parallel DSI Parameters
You can customize the parallel DSI thread environment.

Use these configuration parameters with alter connection to tune parallel DSI threads for
individual connections.

To configure a connection for parallel DSI, set the parallel_dsi parameter to on and then set
individual parallel DSI configuration parameters to fine-tune your environment.

For example, to enable parallel DSI for the connection to the pubs2 database on the
SYDNEY_DS data server, enter:
alter connection to SYDNEY_DS.pubs2
 set parallel_dsi to 'on'

Performance Tuning

Administration Guide Volume 2 163

Note: You can also set individual parallel DSI configuration parameters using the configure
replication server command.

Parallel DSI Configuration Parameters
Replication Server provides several parallel DSI configuration parameters.

Table 20. Parallel DSI Configuration Parameters

Parameter Description

dsi_com-
mit_check_locks_intrvl

The number of milliseconds (ms) the DSI executor thread waits be-
tween executions of the rs_dsi_check_thread_lock
function string.

Default: 1000 ms (1 second)

Minimum: 0

Maximum: 86,400,000 ms (24 hours)

dsi_com-
mit_check_locks_log

The number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before log-
ging a warning message.

Default: 200

Minimum: 1

Maximum: 1,000,000

dsi_com-
mit_check_locks_max

The maximum number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before rolling
back and retrying a transaction.

Default: 400

Minimum: 1

Maximum: 1,000,000

dsi_commit_control Specifies whether commit control processing is handled internally by
Replication Server using internal tables (on) or externally using the
rs_threads system table (off).

Default: on

dsi_ignore_under-
score_names

When the dsi_partitioning_rule is set to “name,” specifies whether or
not Replication Server ignores transaction names that begin with an
underscore. Values are “on” and “off.”

Default: on

Performance Tuning

164 Replication Server

Parameter Description

dsi_isolation_level Specifies the isolation level for transactions. ANSI standard and
Adaptive Server supported values are:

• 0 – ensures that data written by one transaction represents the
actual data.

• 1 – prevents dirty reads and ensures that data written by one trans-
action represents the actual data.

• 2 – prevents nonrepeatable reads and dirty reads, and ensures that
data written by one transaction represents the actual data.

• 3 – prevents phantom rows, nonrepeatable reads, and dirty reads,
and ensures that data written by one transaction represents the
actual data.

Through the use of custom function strings, Replication Server can
support any isolation level the replicate data server may use. Support is
not limited to the ANSI standard only.

Default: the current transaction isolation level for the target data server

dsi_large_xact_size The number of statements allowed in a transaction before it is con-
sidered to be a large transaction.

Default: 100

Minimum: 4

Maximum: 2,147,483,647 (in bytes)

dsi_max_xacts_in_group Specifies the maximum number of transactions in a group. Larger
numbersmay improve data latency at the replicate database.

Range of values: 1 – 1000.Default: 20

dsi_max_cmds_in_batch Defines maximum number of source commands for which output
commands can be batched.

Range: 1 – 1000

Default: 100

dsi_num_large_xact_threa
ds

The number of parallel DSI threads to be reserved for use with large
transactions. The maximum value is one less than the value of
dsi_num_threads.

Default: 0

dsi_num_threads The number of parallel DSI threads to be used for a connection. A
value of 1 disables the parallel DSI feature.

Default: 1

Minimum: 1

Maximum: 255

Performance Tuning

Administration Guide Volume 2 165

Parameter Description

dsi_partitioning_rule Specifies the partitioning rules (one or more) the DSI uses to partition
transactions among available parallel DSI threads. Values are origin,
origin_sessid, time, user, name, none, and ignore_origin.

Default: none

dsi_serialization_method Specifies the method used to determine when a transaction can start,
while still maintaining consistency. In all cases, commit order is pre-
served.

These option methods are ordered from most to least amount of par-
allelism. Greater parallelism can lead to more contention between
parallel transactions as they are applied to the replicate database. To
reduce contention, use the dsi_partition_rule option.

• no_wait – specifies that a transaction can start as soon as it is ready,
without regard to the state of other transactions.

Note: You can only set dsi_serialization_method to no_wait if
dsi_commit_control is set to “on”.

• wait_for_start – specifies that a transaction can start as soon as the
transaction scheduled to commit immediately before it has started.

• wait_for_commit (default) – specifies that a transaction cannot
start until the transaction scheduled to commit immediately pre-
ceding it is ready to commit.

• wait_after_commit – specifies that a transaction cannot start until
the transaction scheduled to commit immediately preceding it has
committed completely.

These options are retained only for backward compatibility with ear-
lier versions of Replication Server:

• none – same as wait_for_start.
• single_transaction_per_origin – same as wait_for_start with

dsi_partitioning_rule set to origin.
• isolation_level_3 – same as wait_for_start with dsi_isola-

tion_level set to 3.

Performance Tuning

166 Replication Server

Parameter Description

dsi_sqt_max_cache_size The maximum SQT cache size for the outbound queue in bytes. The
default, 0, means the current setting of the sqt_max_cache_size pa-
rameter is used as the maximum cache size for the connection.

Default: 0

For 32-bit Replication Server:

• Minimum – 0
• Maximum – 2,147,483,647 (in bytes)

For 64-bit Replication Server:

• Minimum – 0
• Maximum – 2,251,799,813,685,247 (in bytes)

parallel_dsi A shorthand method for configuring parallel DSI threads. A value of
“on” sets dsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and
dsi_sqt_max_cache_size to 1 million bytes (on 32-bit platform) and
20 million bytes (64-bit platform). A value of “off” sets the parallel
DSI values to their defaults. You can set this parameter to “on” and
then set individual parallel DSI configuration parameters to fine-tune
your configuration.

Default: off

See also
• Partitioning Rules: Reducing Contention and Increasing Parallelism on page 173
• Size the SQT Cache on page 154
• Configuration of Parallel DSI for Optimal Performance on page 182

Components of Parallel DSI
Learn about the components of parallel DSI.

Figure 13: Parallel DSI Components

Performance Tuning

Administration Guide Volume 2 167

DSI Scheduler Thread
The DSI scheduler thread (DSI-S) collects small transactions into groups by commit order.

Once transactions are grouped, the DSI scheduler dispatches the groups to the next available
DSI executor thread. The DSI scheduler attempts to dispatch groups for different origins in
parallel, because they can commit in parallel. If contention between transactions from
different origins is too high, set the ignore_origin option for the dsi_partitioning_rule
parameter.

Transaction partitioning rules allow you to specify additional criteria the DSI scheduler can
use to group transactions.

See also
• Partitioning Rules: Reducing Contention and Increasing Parallelism on page 173

DSI Executor Threads
The DSI executor threads (DSI-E) map functions to function strings and execute the
transactions on the replicate database.

The DSI executor threads also take action on any errors the replicate data server returns.

Process Transactions with Parallel DSI Threads
You can define large and small transactions with the dsi_large_xact_size database connection
configuration parameter.

dsi_large_xact_size specifies the number of commands allowed in a transaction before the
transaction is considered to be large. Replication Server normally processes small and large
transactions differently.

Small Transactions
Replication Server attempts to group similar transactions to process them as one, larger
transaction.

In this way, Replication Server can issue one commit for the group rather than committing
each individual transaction. A group of transactions is complete and sent to the next available
DSI executor thread when one of several criteria is met. For example:

• The next transaction has been issued from a different origin.
• The number of transactions in the group exceeds the value specified by

dsi_max_xacts_in_group.
• The total size, in bytes, of the transactions in the group exceeds the value specified by

dsi_xact_group_size.
• The next transaction is a large transaction, which is always grouped by itself.
• A transaction partitioning rule determines that the next transaction cannot be grouped with

the existing group.

Performance Tuning

168 Replication Server

Once a group is complete, it can be sent to the next available DSI executor thread. Only
committed transactions can be added to a group. That is, transactions are not added to the
transaction group until their commit record is read.

Large Transactions
Large transactions are submitted to the next available DSI executor thread that is reserved for a
large transaction.

The DSI executor thread sends the transaction to the replicate data server without waiting to
see the commit record. If the transaction was rolled back at the primary data server, the DSI
executor thread rolls it back at the replicate data server.

If Replication Server encounters a large transaction, and a dedicated large transaction thread is
not available, the transaction is processed in the same way as a small transaction.

Select Isolation Levels
By selecting a transaction isolation level, you can control the degree to which data can be
accessed by other users during a transaction.

The ANSI SQL standard defines four levels of isolation for transactions. Each isolation level
specifies the kinds of actions that are not permitted while concurrent transactions are
processing. Higher levels include the restrictions imposed by lower levels. For more
information about isolation levels, see the Adaptive Server Enterprise Transact-SQL Guide.

Note: Replication Server supports not just the ANSI standard values, but all values needed to
replicate to any supported data servers.

• Level 0 – prevents other transactions from changing data that has already been modified by
an uncommitted transaction. However, other transactions can still read the uncommitted
data, which results in dirty reads.

• Level 1 – prevents dirty reads, which occur when one transaction modifies a row, and a
second transaction reads that row before the first transaction commits the change.

• Level 2 – prevents nonrepeatable reads, which occur when one transaction reads a row and
a second modifies that row. If the second transaction commits its change, subsequent reads
by the first transaction yield different results than the original read.

• Level 3 – ensures that data read by one transaction is valid until the end of the transaction. It
prevents “nonrepeatable reads” and “phantom rows” by applying an index page or table
lock until the end of the transaction.
Select isolation level 3 if you are using triggers to enforce referential integrity of data
across a database. Isolation level 3 prevents phantom rows from occurring in a table while
a trigger is executing.

You can set the isolation level using create connection or configure connection with the
dsi_isolation_level option. For example, to change the isolation level to 3 for the connection
to the pubs2 database on the SYDNEY_DS data server, enter:

alter connection to SYDNEY_DS.pubs2
 set dsi_isolation_level to ’3’

Performance Tuning

Administration Guide Volume 2 169

Replication Server sets the isolation-level value to the rs_set_isolation_level function string
using the rs_isolation_level system variable. rs_set_isolation_level executes when
Replication Server establishes the connection with the replicate data server. If no value has
been set, Replication Server does not execute rs_dsi_isolation_level, and instead uses the
isolation level of the data server. The default isolation level for Adaptive Server is 1.

Set Isolation Levels for Non-Sybase Replicate Data Servers
Isolation levels may vary depending on the replicate data server. This has an impact on
configuring parallel DSI in Replication Server.

The isolation levels you can set for non-Sybase replicate data servers are:

• Oracle – READ COMMITTED and SERIALIZABLE
• Microsoft SQL Server – READ UNCOMMITTED, READ COMMITTED,

REPEATABLE READ, SNAPSHOT, and SERIALIZABLE
• IBM DB2 UDB – REPEATABLE READ, READ STABILITY, CURSOR STABILITY,

and UNCOMMITED READ

The rs_set_isolation_level function string must be edited for non-Sybase replicate data
servers, and include the rs_isolation_level system-defined variable. See the Replication
Server Reference Manual for more information about rs_set_isolation_level.

If you are using a data server other than Adaptive Server, make sure you include the
rs_isolation_level variable when you modify the rs_set_isolation_level function string for
your data server.

To set an isolation level, create a function string in the appropriate function-string class. For
example, in:

• Oracle – to set the SERIALIZABLE isolation level:
create function string rs_set_isolation_level
for rs_oracle_function_class
output language
‘set transaction isolation level serializable’

• Microsoft SQL Server – to set the SERIALIZABLE isolation level:
create function string rs_set_isolation_level
for rs_msss_function_class
output language
‘set transaction isolation level serializable

• IBM DB2 UDB – to set the REPEATABLE READ isolation level:
create function string rs_set_isolation_level
for rs_udb_function_class
output language
‘set current isolation = RR’

Performance Tuning

170 Replication Server

Transaction Serialization Methods
Replication Server provides different serialization methods for specifying the level of
parallelization.

The method you choose depends on the amount of contention you expect between parallel
threads and your replication environment. Each serialization method defines how much of a
transaction can start before it must wait for the previous transaction to commit.

Use the dsi_partitioning_rule parameter to reduce the probability of contention without
reducing the degree of parallelism assigned by the serialization method.

The serialization methods are:

• no_wait

• wait_for_start

• wait_for_commit

• wait_after_commit

Use the alter connection command with the dsi_serialization_method parameter to select the
serialization method for a database connection. For example, enter the following command to
select the wait_for_commit serialization method for the connection to the pubs2 database on
the SYDNEY_DS data server:
alter connection to SYDNEY_DS.pubs2
 set dsi_serialization_method to 'wait_for_commit'

A transaction contains three parts:

• The beginning
• The body of the transaction, consisting of operations such as insert, update, or delete

• The end of the transaction, consisting or a commit or a rollback

While providing commit consistency, the serialization method defines whether the beginning
of the transaction waits for the previous transaction to become ready to commit or if the
beginning of the transaction can be processed earlier.

See also
• Partitioning Rules: Reducing Contention and Increasing Parallelism on page 173

no_wait
The no_wait method instructs the DSI to initiate the next transaction without waiting for the
previous transaction to commit.

This method assumes that your primary applications are designed to avoid conflicting
updates, or that dsi_partitioning_rule is used effectively to reduce or eliminate contention.
Adaptive Server does not hold update locks unless dsi_isolation_level has been set to 3. The
method assumes little contention between parallel transactions and results in the nearly
parallel execution shown in the figure.

Performance Tuning

Administration Guide Volume 2 171

no_wait provides the better opportunity for increased performance, but also provides the
greater risk of creating contentions.

Note: You can only set dsi_serialization_method to no_wait if dsi_commit_control is set to
“on”.

Figure 14: Thread Timing with the no_wait Serialization Method

wait_for_start
wait_for_start specifies that a transaction can start as soon as the transaction scheduled to
commit immediately before it has started.

Sybase recommends that you do not concurrently set dsi_serialization_method to
wait_for_start and dsi_commit_control to off.

Figure 15: Thread Timing with the wait_for_start Serialization Method

wait_for_commit
In the wait_for_commit method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is being sent.

This is the default setting. It assumes considerable contention between parallel transactions
and results in the staggered execution shown in the figure.

This method maintains transaction serialization by instructing the DSI to wait until a
transaction is ready to commit before initiating the next transaction. The next transaction can
be submitted to the replicate data server while the first transaction is committing, since the first
transaction already holds the locks that it requires.

Performance Tuning

172 Replication Server

Figure 16: Thread Timing with the wait_for_commit Serialization Method

wait_after_commit
wait_after_commit specifies that a transaction cannot start until the transaction scheduled to
commit immediately preceding it has committed completely.

Figure 17: Thread Timing with the wait_after_commit Serialization Method

Partitioning Rules: Reducing Contention and Increasing Parallelism
Partitioning rules set using dsi_partitioning_rule allow the parallel DSI feature to make
decisions about transaction groups and parallel execution based on transactions having
common names, users, overlapping begin/commit times, or a combination of these.

Partitioning rules allow the parallel DSI feature to more closely mimic processing order at the
primary, and are intended to be used in reducing contention at the replicate.

Each of the parallel DSI parameters provides a method for fine-tuning the feature based on
conditions at your installation. dsi_num_threads controls the number of DSI threads
available for a connection. dsi_serialization_method controls the amount of parallelism for
the connection, but must balance increased parallelism with the potential for contentions at the
replicate. dsi_partitioning_rule provides a method for reducing contentions without reducing
the overall capabilities of the parallel DSI feature.

Performance Tuning

Administration Guide Volume 2 173

Transaction-Partitioning Rules
Replication Server allows you to partition transactions for each connection according to one
or more attributes.

The attributes are:

• Origin
• Origin and session ID
• None, in which no partitioning rule is applied
• User name
• Origin begin and commit times
• Transaction name
• Ignore origin

Note: If partitioning rules are to be used to improve performance, dsi_serialization_method
must not be wait_for_commit. wait_for_commit removes contention by reducing parallelism.

To select partition rules, use the alter connection command with the dsi_partitioning_rule
option. The syntax is:
alter connection to data_server.database
 set dsi_partitioning_rule to ‘{ none|rule[, rule] }’

Values for rule are user, time, origin, origin_sessid, name, and ignore_origin.For example,
to partition transactions according to user name and origin begin and commit times, enter:
alter connection to TOKYO_DS.pubs2
 set dsi_partitioning_rule to ‘user,time’

Partitioning Rule: Origin
origin causes transactions from the same origin to be serialized when applied to the replicate
database.

Partitioning Rule: Origin and Process ID
origin_sessid causes transactions with the same origin and the same process ID to be
serialized when applied to the replicate database.

Sybase recommends that when first trying partitioning rules start with a setting of
origin_sessid,time.

Note: The process ID for Application Server is the Session Process ID (SPID).

Partitioning Rule: None
none is the default behavior, in which the DSI scheduler assigns each transaction group or
large transaction to the next available parallel DSI thread.

Performance Tuning

174 Replication Server

Partitioning Rule: User
If you choose to partition transactions according to user name, transactions entered by the
same primary database user ID are processed serially. Only transactions entered by different
user IDs are processed in parallel.

Use of this partitioning rule avoids contentions, but may in some cases cause unnecessary loss
of parallelism. For example, consider a DBA who is running multiple batch jobs. If the DBA
submits each batch job using the same user ID, Replication Server processes each one serially.

The user name partitioning rule is most useful if each user connection at the primary has a
unique ID. It is less useful if multiple users log on using the same ID, such as “sa.” In such
cases, orig_sessid may be a better option.

Partitioning Rule: Origin Time Begin and Commit Times
If the time partitioning rule is used, the DSI scheduler looks at the origin begin and commit
times of transactions to determine which transactions could not have been executed by the
same process at the primary database.

A transaction whose origin begin time is earlier than the commit time of the preceding
transaction can be processed by a different DSI executor thread.

Suppose the origin begin and commit times partitioning rule has been selected, and the
transactions and processing times shown in the figure are all from the same primary database.

Figure 18: Transaction Origin Begin and Commit Times

In this example, the DSI scheduler gives transaction A to DSI executor thread X. The
scheduler then compares the begin time of transaction B and the commit time of transaction A.
As transaction A has committed before transaction B begins, the scheduler gives transaction B
to executor thread X. That is, transactions A and B may be grouped together and may be
processed by the same DSI executor thread. Transaction C, however, begins before transaction
B commits. Therefore, the scheduler assumes that transactions B and C were applied by
different processes at the primary, and gives transaction C to executor thread Y. Transactions B

Performance Tuning

Administration Guide Volume 2 175

and C are not allowed in the same group and may be processed by different DSI executor
threads. Because transaction D begins before transaction C commits, the scheduler can safely
give transaction D to executor thread X.

Note: Use of the origin begin and commit times partitioning rule may lead to contentions
when large transactions are processed, as they are scheduled before the commits are seen.

Partitioning Rule: Name
The DSI scheduler can use transaction names to group transactions for serial processing.

When creating a transaction on Adaptive Server, you can use the begin transaction command
to assign a transaction name.

If the transaction name partitioning rule is applied, the DSI scheduler assigns transactions
with the same name to the same executor thread. Transactions with different transaction
names are processed in parallel. Transactions with a null or blank name are ignored by the
name parameter. Their processing is determined by other DSI parallel processing parameters
or the availability of other executor threads.

Note: This partitioning rule is available to non-Sybase data servers only if they support
transaction names.

Default Transaction Names
By default, Adaptive Server always assigns a name to each transaction. If a name has not been
assigned explicitly using begin transaction, Adaptive Server assigns a name that begins with
the underscore character and includes additional characters that describe the transaction. For
example, Adaptive Server assigns a single insert command the default name “_ins.”

Use the dsi_ignore_underscore_name option with alter connection to specify whether or
not Replication Server ignores these names when partitioning transactions based on
transaction name. By default, dsi_ignore_underscore_name is on, and Replication Server
treats transactions with names that begin with an underscore in the same way it treats
transactions with null names.

Partitioning Rule: Ignore Origin
ignore_origin overrides the default handling of transactions from different origins, and allows
them to be partitioned as if they all came from the same origin.

All partitioning rules, except ignore_origin, allow transactions from different origins to be
applied in parallel, regardless of other specified partitioning rules.

For example:
alter connection dataserver.db
 set dsi_partitioning_rule to "name"

In this case, transactions with different origins are applied in parallel, whether or not they have
the same name.

Performance Tuning

176 Replication Server

The name partitioning rule only affects transactions from the same origin. Thus, transactions
with the same origin and name are applied serially, and transactions with the same origin and
different names are applied in parallel.

If ignore_origin is listed first in the alter connection statement, Replication Server partitions
transactions with the same or different origins according to the second or succeeding rules in
the statement. For example:

alter connection dataserver.db
 set dsi_partitioning_rule to "ignore_origin, name"

In this case, all transactions with the same name are applied serially and all transactions with
different names are applied in parallel. The origin of the transaction is irrelevant.

If ignore_origin is listed in the second or a succeeding position in the alter connection
statement, Replication Server ignores it.

Use Multiple Transaction Rules
You can set multiple transaction rules for a single connection.

For example, applying both origin session ID and origin begin and commit times best
approximates the processing environment at the primary database.

When more than one transaction rule is specified, Replication Server applies the rules in the
order in which they are entered in the alter connection set dsi_partitioning_rule syntax.

For example, if dsi_partitioning_rule is set to “time, user,” Replication Server checks origin
begin and commit times before checking user ID. If no conflict exists for origin begin and
commit times, Replication Server checks user ID. If there is a conflict involving begin and
commit times, Replication Server applies the time rule without checking the user ID. Thus,
two transactions will be assigned to different parallel DSI threads if the origin begin time of
the later transaction is earlier than the commit time—even if both transactions have the same
user ID.

Grouping Logic and Transaction Partitioning Rules
Partitioning rules can affect grouping as well as scheduling decisions.

If a partitioning rule determines that two transactions occurred at overlapping times (time
rule), have different transaction names (name rule), or are from different users (user rule), the
two transactions are not allowed in the same group. Otherwise, normal group-size decisions
are applied, based on transaction size, origin, and so forth.

See also
• Small Transactions on page 168

Performance Tuning

Administration Guide Volume 2 177

Resolution of Conflicting Updates
Parallel DSI processing must duplicate the commit order of transactions at the primary
database, yet allow transaction updates to process simultaneously. It must then resolve any
transaction contentions that occur as a result.

Commit order deadlock transaction contentions—or contention deadlocks—can occur when
a transaction cannot commit because it must wait for an earlier transaction to commit, and the
earlier transaction cannot commit because needed resources are locked by the later
transaction.

For example, DSI threads A and B are processing transactions in parallel. Thread A’s
transaction must commit before thread B’s transaction. Thread B’s transaction locks
resources needed by thread A. Thread B’s transaction cannot commit until thread A’s
transaction commits, and thread A’s transaction cannot commit because needed resources are
locked by thread B.

Replication Server provides two methods for resolving commit order deadlocks:

• Internally, using Replication Server internal tables and a function string, or
• Externally, using the rs_threads system table in the replicate database and several

function strings.

The internal method is handled primarily within Replication Server, and uses the
rs_dsi_check_thread_lock function string for commit order deadlock detection.
The external method requires both Replication Server and the replicate database, and uses the
rs_threads system table for both commit order validation and commit order deadlock
detection.

Sybase recommends the internal method, which is the default, for both Sybase and non-
Sybase data servers. This method requires less network I/O than the external method, and, if a
commit order deadlock occurs, may require the rollback of only a single transaction. The
external method requires more network I/O and results in the rollback of several transactions.
The external method is included for compatibility with earlier versions of Replication Server.

If Replication Server encounters commit order deadlock and dsi_commit_control is on,
Replication Server rolls back and retries one transaction. If, however, Replication Server
encounters commit order deadlock and dsi_commit_control is off, Replication Server rolls
back and retries all transactions serially.

To select a method, enter the alter connection command with the dsi_commit_control option.
For example, to choose the internal method for the pubs2 database on the TOKYO_DS data
server, enter:
alter connection to TOKYO_DS.pubs2
set dsi_commit_control to ‘on’

Setting dsi_commit_control to “on” specifies the internal method; setting
dsi_commit_control to “off” specifies the external method.

Performance Tuning

178 Replication Server

Resolution of Conflicts Internally
Learn how Replication Server resolves commit order deadlocks in Replication Server using
the rs_dsi_check_thread_lock function string.

To preserve transactional integrity, Replication Server must maintain transaction commit
order and resolve commit order consistency deadlocks.

This figure describes the logic Replication Server uses to resolve commit order deadlocks.

Figure 19: Conflict Resolution Logic Using the rs_dsi_check_thread_lock
Function String

Note: The internal method resolves commit order deadlocks that Replication Server detects
and resolves conflicting updates only within Replication Server. If a deadlock is detected by
the replicate database, the replicate chooses a transaction to roll back. To guarantee commit
order, Replication Server must roll back all transactions currently executing against the
replicate database. Replication Server then reapplies the transactions serially.

Performance Tuning

Administration Guide Volume 2 179

Maintenance of Commit Order
Replication Server reads the commit information sent from the primary database and uses this
information to define and maintain the transaction commit order at the replicate database.

If a DSI executor thread’s transaction processing is complete and it is expected to be the “next”
transaction to commit, it is allowed to do so. If a thread’s transaction processing is complete
and it is not the “next” transaction expected to commit, the thread must await its turn to
commit.

Resolution of Commit Consistency Deadlocks
If a thread’s transaction processing is complete and it is not the next transaction expected to
commit, the transaction could be holding resources required by a transaction scheduled to
commit earlier. After waiting the amount of time specified in the
dsi_commit_check_locks_intrvl parameter, a DSI executor thread executes the
rs_dsi_commit_check_thread_lock function string to determine if the thread holds a lock on
resources needed by the earlier transaction:

• If the thread is blocking another transaction (rs_dsi_check_thread_lock > 0), the current
transaction rolls back, which resolves the commit order deadlock and allows the earlier
transaction to commit. Only the blocking transaction rolls back; other transactions process
normally.

• If the thread is not blocking another transaction, it checks to see if it has executed
rs_dsi_check_thread_lock more times than is defined by the
dsi_commit_check_locks_max parameter.
• If the thread has not executed rs_dsi_check_thread_lock more times than is defined in

dsi_commit_check_locks_max, the transaction commits if it is next, or it waits again
the amount of time specified in dsi_commit_check_locks_intrvl.

• If the thread has executed rs_dsi_check_thread_lock more times than is
defined in dsi_commit_check_locks_max, the current transaction rolls back.

Function Strings for Internal Commit Control
Replication Server uses the rs_dsi_check_thread_lock function to check whether the current
DSI executor thread is blocking another replicate database process.

rs_dsi_check_thread_lock determines whether or not the DSI executor thread is holding a
lock that blocks a replicate database process. A return value greater than 0 indicates that the
thread is holding resources required by another database process, and that the thread should
roll back and retry the transaction.

This function has function-string-class scope. It is called only if the DSI executor thread is
ready to commit but cannot because it is not next to commit, and the amount of time specified
for dsi_commit_check_locks_intrvl has elapsed. If commit order contention occurs
frequently, consider decreasing the wait time specified by dsi_commit_check_locks_intrvl.

Note: Replication Server automatically creates function strings for the above function in
function-string classes in which Replication Server generates default function strings. For

Performance Tuning

180 Replication Server

other function-string classes, you must create these function strings before you can use
parallel DSI features with dsi_commit_control set on.

Resolution of Conflicts Externally
Learn how Replication Server resolves commit order deadlocks externally using the
rs_threads table.

The rs_threads table is located in the replicate database. It contains a row for each DSI
executor thread. To simulate row-level locking, it has two columns, id and seq, and enough
dummy columns so that only one row fits on a page. The id column is used as a unique
clustered index.

At the beginning of a transaction, the DSI executor thread updates its row in the
rs_threads table with the next available sequence number. When it is ready to commit the
transaction, the thread sends a select statement to the replicate data server to select, from the
rs_threads table, the sequence number of the transaction that should have committed
prior to the transaction.

Because the preceding transaction holds a lock on this row in rs_threads, this thread is
blocked until the preceding transaction commits.

If the sequence number that is returned is less than the expected value, the thread determines
whether it should roll back the transaction or retry the select operation. Because the DSI
formats many commands into a single batch before submitting it to the Adaptive Server, a
thread may be ready to commit before the preceding transaction has submitted any commands
to the Adaptive Server. In this case, the select in the rs_threads table may be submitted
several times.

If the sequence number that is returned matches the expected value, the transaction can
commit.

Resolution of Deadlocks
Learn how Replication Server resolves deadlocks.

If a transaction is ready to commit, but cannot because it is not next in proper commit order,
and this transaction is holding locks on resources that are needed by a transaction that must
commit before this one, a database resource deadlock occurs at the replicate database.

The database resource deadlock consists of the lock on rs_threads held by the next
transaction in commit order, and the locks held on resources needed by that transaction. The
database resource deadlock is detected by the replicate database, which chooses a transaction
to roll back.

Since Replication Server must guarantee commit order, when this rollback is forced by the
replicate database, Replication Server rolls back all transactions executing against the
replicate database and reapplies them serially in commit order.

Performance Tuning

Administration Guide Volume 2 181

Function Strings for Commit Control Using rs_threads
Replication Server manipulates the rs_threads system table with several system
functions.

These functions have function-string-class scope. They are executed only when more than one
DSI thread is defined for a connection.

Note: These function strings are needed only when the external, rs_threads method is
used for commit control.

Table 21. System Functions that Modify the rs_threads System Table

Function Description

rs_initialize_threads Sets the sequence of each entry in the rs_threads system table to
0. This function is executed during the initialization of a connection.

rs_update_threads Updates the sequence number for the specified entry in the
rs_threads system table.

rs_get_thread_seq Returns the current sequence number for the specified entry in the
rs_threads system table.

rs_get_thread_seq_no-
holdlock

Returns the current sequence number for the specified entry in the
rs_threads system table, using the noholdlock option. This
thread is used when dsi_isolation_level is 3.

Configuration of Parallel DSI for Optimal Performance
Tune parallel DSI processing to provide the best replication performance, balancing parallel
processing with acceptable levels of contention.

Contentions will always occur. The only way to eliminate contentions is to turn off parallel
DSI processing.

At the same time, setting all parallel DSI parameters for maximum parallelism may cause
Replication Server to spend more time recovering from contentions than actually applying
transactions to the replicate. Optimal performance is achieved through a clear understanding
of your operating environment so that you can successfully balance parallel processing with
acceptable contention levels.

Preparing to Configure Parallel DSI for Optimal Performance
Before you begin tuning for performance, there are several considerations.

1. Understand your transaction profile.

What kinds of transactions are being replicated? Do these transactions affect the same
rows and tables? Are these transactions liable to conflict if applied in parallel? Is the
transaction profile constant, or does it change, perhaps with the time of day or month. A

Performance Tuning

182 Replication Server

clear understanding of your transaction profile helps you select those parameters and
settings that will be most useful.

2. Tune the replicate database to handle contentions.

Most primary databases have been tuned to minimize contentions through the use of
clustered indexes, partitioning, row-level locking, and so on. Make sure that your replicate
database has been tuned similarly.

3. Define a set of repeatable transactions that accurately reflect your replication
environment.

Tuning your parallel DSI environment is an iterative process. You will need to set
parameters, run a test, measure performance, compare against previous measurements,
and repeat until you have maximized your results.

4. Reset the dsi_serialization_method parameter.

Note: You can only set dsi_serialization_method to no_wait if dsi_commit_control is set
to “on”.

Set the dsi_serialization_method parameter to no_wait to enable maximum parallelism.
Then attempt to reduce contentions by testing other parameters. Because the
wait_for_commit (the default) setting supplies minimal parallelism and therefore minimal
benefit, only reset dsi_serialization_method to wait_for_commit after all attempts to
reduce contention using the no_wait setting have failed to increase performance.

5. Set the dsi_num_threads parameter correctly.

The dsi_num_threads parameter defines the total number of DSI executor threads; the
dsi_num_large_xact_threads parameter defines the total number of DSI executor threads
reserved for large transactions. Thus, the total number of DSI executor threads
(dsi_num_threads) equals the number of DSI threads reserved for large transactions plus
the number of threads available for small transactions.

To begin, try setting dsi_num_threads to 5, and dsi_num_large_xact threads to 2. After
selecting a dsi_serialization_method and a dsi_partitioning_rule:
• Increase dsi_num_threads if contention does not increase, or
• Decrease dsi_num_threads if contention does not decrease.
Make sure that dsi_num_threads is greater than the default, and that the value for
dsi_num_threads is greater than that for dsi_num_large_xact_threads.

Reduce Contention
Start tuning parallel DSI parameters to reduce contention when you have completed the tasks
to prepare configuration of parallel DSI for optimal performance, and performance tests
indicate that contentions are affecting performance.

For example:

• The replicate is blocking activity.

Performance Tuning

Administration Guide Volume 2 183

• Replication Server is rolling back and reapplying a large percentage of transactions due to
deadlock conditions. Refer to counter 5060 – TrueCheckThrdLock.

Start by tuning the dsi_max_xacts_in_group parameter, which determines the number of
transactions grouped in a single begin/commit block. By reducing the value of
dsi_max_xacts_in_group, you cause the DSI executor threads to commit more frequently.
Thus, the DSI executor threads hold fewer replicate resources for shorter periods of time and
contentions should decrease.

Adjusting the dsi_num_threads parameter also affects contention. The larger the number of
DSI executor threads available, the more likely contentions will arise among the threads. Try
decreasing the value of dsi_num_threads even to 3 with one reserved for large transactions.
Finding the values that provide best performance is iterative. Remember that some contention
is acceptable if overall performance improves.

See also
• Preparing to Configure Parallel DSI for Optimal Performance on page 182

Use Partitioning Rules
Partitioning rules can also reduce contention, but require a clear understanding of your
transaction profile.

The Transaction Name Rule
Find out if transactions have transaction names, and if the contention is caused by transactions
with the same name. Try setting the transaction name rule, which forces transactions with the
same name to be sent to the replicate one-by-one.

If transactions are not named, you could change the application so that names are added. Then
use the name rule to serialize only specified transactions. Suppose a particular type of large
transaction always causes problems if the DSI executor threads attempt to process two or more
in parallel. By giving the problem transactions the same name, and applying the name rule,
you can ensure that the problem transactions are processed serially. Remember, however, that
the name rule is applied to all transactions, and all transactions with the same name will be
processed serially.

The User Name Rule
Setting the user name rule may help reduce contentions caused by transactions processed in
parallel from the same user ID.

Like the transaction name rule, the user name rule, if set, is applied to all transactions, and
every transaction from the same user ID will be processed serially.

Performance Tuning

184 Replication Server

The Origin Begin and Commit Times Rule
The time rule forces serial execution of transactions with nonoverlapping commit/begin
times.

That is, if the commit time of the first transaction comes before the begin time of the next
transaction, these two transactions must execute serially.

Combine Partition Rules
You can combine rules. The first rule to be satisfied takes precedence.

Thus, if, for example, the origin_sessid, time rule is specified, two transactions with the same
origin session ID will be forced to run serially, and the time rule is not applied.

Frequent Conflicting Updates
Set values for the parallel DSI configuration parameters if your transactions frequently
conflict with each other.

Set these parallel DSI configuration parameters:

• dsi_serialization_method – set this parameter to wait_for_commit.
• dsi_num_large_xact_threads – set this parameter to 2. If you are configuring parallel DSI

in a warm standby application, set the dsi_num_larg_xact_threads parameter for the
standby database to one more than the number of simultaneous large transactions executed
at the active database.

• dsi_num_threads – set this parameter to 3 plus the value of the
dsi_num_large_xact_threads parameter. If your transactions are usually small, such as
one or two statements, set dsi_num_threads to 1 plus the value of
dsi_num_large_xact_threads.

Setting the parallel_dsi configuration parameter on provides a shorthand method for
configuring parallel DSI as described above. It also sets the dsi_sqt_max_cache_size
parameter to 1 million bytes.

Infrequent Conflicting Updates
Set values for the parallel DSI configuration parameters if your transactions conflict with each
other only occasionally.

Set these parallel DSI configuration parameters:

• dsi_isolation_level – set this parameter to isolation level 3 if your replicate data server is
Adaptive Server. For non-Sybase data servers, set to the level that corresponds to ANSI
standard level 3 through the use of the rs_set_isolation_level custom function string.
• Oracle and Microsoft SQL Server – SERIALIZABLE level equals the ANSI SQL

Isolation Level 3.
• DB2 – REPEATABLE READ level equals the ANSI SQL Isolation 3.

• dsi_num_large_xact_threads – set this parameter to 2. If you are configuring parallel DSI
in a warm standby application, set the dsi_num_larg_xact_threads parameter for the

Performance Tuning

Administration Guide Volume 2 185

standby database to one more than the number of simultaneous large transactions executed
at the active database.

• dsi_num_threads – set this parameter to 3 plus the value of the
dsi_num_large_xact_threads parameter.

See also
• Set Isolation Levels for Non-Sybase Replicate Data Servers on page 170

Set Isolation Levels
Use DSI isolation levels to prevent loss of parts of transactions when parallel DSI is enabled,
and the replicate table is configured for row-level locking.

In these cases, the order of individual operations within transactions may not match that seen
at the primary, even if the transactions themselves are committed in proper order.

For example, if the second transaction to commit updates a row inserted by the first transaction
to commit, the update may take place before the commit. In this case, the transactions commit
correctly, but the update is lost, even though the insert remains.

To avoid out-of-sequence DML operations, set dsi_isolation_level to 3. In the example, if
dsi_isolation_level is 3, the second transaction to commit acquires a range lock on the as-yet
nonexistent row it intends to update, which causes a deadlock with the first transaction to
commit. The data server declares a database resource deadlock. Replication Server rolls back
all open transactions and serially reapplies them, and the update is not lost.

Set the Size for Large Transactions
Setting dsi_large_xact_size to a large number, even the maximum (2,147,483,647), to
remove the overhead of handling large transactions may give better performance than
allowing large transactions to start before their commit point is read.

Parallel DSI and the rs_origin_commit_time System Variable
The value of the rs_origin_commit_time system variable depends on whether you are using
the parallel DSI feature.

• If you are not using parallel DSI to process large transactions, the value of
rs_origin_commit_time contains the time when the last transaction in the transaction
group committed at the primary site.

• If you are using parallel DSI to process large transactions (before their commit has been
read from the DSI queue), when the DSI threads start processing one of these transactions,
the value of rs_origin_commit_time is set to the value of rs_origin_begin_time.
When the commit statement for the transaction is read, the value of
rs_origin_commit_time is set to the actual commit time. Therefore, when the
configuration parameter dsi_num_large_xact_threads is set to a value greater than zero,
the value for rs_origin_commit_time is not reliable for any system function other than
rs_commit.

Performance Tuning

186 Replication Server

DSI Bulk Copy-in
Replication Server supports bulk-copy-in, which improves performance when replicating
large batches of insert statements on the same table in the replicate database.

In normal replication, when replicating to a replicate database, Replication Server forms a
SQL insert command, sends the command to the replicate database, and waits for the replicate
database to process the row and send back the result of the operation. This affects Replication
Server performance when large batches of data are being replicated, such as in end-of-day
batch processing or trade consolidation.

Database Support
Bulk-copy-in is supported for Adaptive Server databases, and Oracle replicate databases that
are updated by ExpressConnect for Oracle. If you turn on DSI bulk=copy-in and the replicate
database is not supported, DSI shuts down with an error. See Replication Server Options >
ExpressConnect for Oracle Installation and Configuration Guide > System Requirements.

DSI Bulk Copy-in Configuration Parameters
Database connection parameters that control bulk operations in DSI.

Parameter Description

dsi_bulk_copy Turns the bulk copy-in feature on or off for a connection. If dynamic_sql
and dsi_bulk_copy are both on, Replication Server applies bulk copy-in
when appropriate and uses dynamic SQL if Replication Server cannot use
bulk copy-in.

Default: off.

dsi_bulk_threshold The number of consecutive insert commands in a transaction that, when
reached, triggers Replication Server to use bulk copy-in. When Stable
Queue Transaction (SQT) encounters a large batch of insert commands, it
retains in memory the number of insert commands specified to decide
whether to apply bulk copy-in. Because these commands are held in
memory, Sybase suggests that you do not configure this value much
higher than the configuration value for dsi_large_xact_size.

Minimum: 1

Default: 20

Set Up Bulk Copy-in
Use alter connection or configure replication server to set the values of the bulk copy-in
parameters.

Use:

Performance Tuning

Administration Guide Volume 2 187

• alter connection to change the bulk copy-in connection parameters at the connection
level:

alter connection to dataserver.database
set {dsi_bulk_copy | dsi_bulk_threshold} to value

• configure replication server to change the server defaults:

configure replication server
set {dsi_bulk_copy | dsi_bulk_threshold} to value

To check the values of dsi_bulk_copy and dsi_bulk_threshold, use admin config.

When dsi_bulk_copy is on, SQT counts the number of consecutive insert statements on the
same table that a transaction contains. If this number reaches the dsi_bulk_threshold, DSI:

1. Bulk copies the data to Adaptive Server until DSI reaches a command that is not insert or
that belongs to a different replicate table.

2. Continues with the rest of the commands in the transaction.

Adaptive Server sends the result of bulk copy-in at the end of the bulk operation, when it is
successful, or at the point of failure.

Note: The DSI implementation of bulk copy-in supports multistatement transactions,
allowing DSI to perform bulk copy-in even if a transaction contains commands that are not
part of the bulk copy.

Changes to Subscription Materialization
Bulk copy-in improves the performance of subscription materialization.

When dsi_bulk_copy is on, Replication Server uses bulk copy-in to materialize the
subscriptions if the number of insert commands in each transaction exceeds
dsi_bulk_threshold.

Note: In normal replication, bulk operation is disabled for a table if autocorrection is on.
However, in materialization, bulk operation is applied even when autocorrection is enabled, if
dsi_bulk_threshold is reached and the materialization is not a nonatomic subscription
recovering from failure.

For more information about subscription materialization, see Replication Server
Administration Guide Volume 1 > Manage Subscriptions.

Counters for Bulk Copy-in
Counters that support bulk copy-in.

Counter Description

DSINoBulkDatatype The number of bulk operations skipped due to the data containing da-
tatype is incompatible with bulk copy-in.

Performance Tuning

188 Replication Server

Counter Description

DSINoBulkFstr The number of bulk operations skipped due to tables that have custom-
ized function strings for rs_insert or rs_writetext.

DSINoBulkAutoc The number of bulk operations skipped due to tables that have autocor-
rection enabled.

DSIEBFBulkNext The number of batch flushes that is executed because the next command
is a bulk copy.

DSIEBulkSucceed The number of times the Data Server Interface executor (DSI/E) invoked
blk_done(CS_BLK_ALL) at the target database.

DSIEBulkCancel The number of times DSI/E invoked blk_done(CS_BLK_CANCEL) at
the target database.

DSIEBulkRows The number of rows that DSI/E sent to the replicate data server using
bulk copy-in.

BulkTime The amount of time, in milliseconds, that DSI/E spent in sending data to
the replicate data server using bulk copy-in.

Limitations for Bulk Copy-in
There are several limitations to be aware of when you use bulk copy-in.

The Replication Server DSI does not use bulk copy-in when:

• Autocorrection is on and the data is not part of subscription materialization.
• rs_insert has a user-defined function string.
• text column has a user-defined function string for rs_writetext with output none or

rpc.

• The data row contains opaque datatype or a user-defined datatype (UDD) that has an
rs_datatype.canonic_type value of 255.

The bulk copy-in feature is not supported under the conditions listed below. In these instances,
disable bulk copy-in.

• The replicate database does not support bulk copy-in. In this case, if the DSI bulk copy-in
is enabled, DSI terminates with an error message. See Replication Server Heterogeneous
Replication Guide.

• The data size changes between Replication Server and the replicate Adaptive Server
character sets, and the datarow contains text columns. In this case, if the DSI bulk copy-in
is enabled, DSI terminates with this message:
Bulk-Lib routine 'blk_textxfer' failed.
Open Client Client-Library error: Error: 16843015,
Severity 1 -- 'blk_textxfer(): blk layer: user
error: The given buffer of xxx bytes exceeds the
total length of the value to be transferred.'

Performance Tuning

Administration Guide Volume 2 189

• The owner.tablename length is larger than 255 bytes and the replicate database is
earlier than version 15.0.3 Interim Release. If the DSI bulk copy-in is enabled, Replication
Server terminates with this message:
Bulk-Lib routine 'blk_init' failed.

To specify not to use bulk copy-in when owner.tablename length is larger than 255
bytes:
1. Turn trace on:

trace "on", rsfeature, ase_cr543639

2. Add this to the Replication Server configuration file:
trace=rsfeature,ase_cr543639

Other limitations:

• Unlike the insert command, bulk copy-in does not generate timestamps; NULL values are
inserted to the timestamp column if the timestamp column is not included in the
replication. Either disable bulk copy-in, or set up your replication definition to include the
timestamp column.

• Text and image columns are always logged, even if you change the writetext function
string to no log.

• Bulk copy does not invoke insert trigger in Adaptive Server.
• The configuration parameter send_timestamp_to_standby has no effect on bulk copy-in.

timestamp data is always replicated to standby.

SQL Statement Replication
Replication Server supports SQL statement replication in Adaptive Server which
complements log-based replication and addresses performance degradation caused by batch
jobs.

Sybase recommends that you use SQL statement replication when:

• DML (data manipulation language) statements affect a large number of rows on replicated
tables.

• You have difficulty altering the underlying application to enable stored procedure
replication

Note: Log Transfer Manager does not support SQL statement replication and SQL Statement
replication to non-Adaptive Server databases is not supported.

Introduction to SQL Statement Replication
In SQL statement replication, Replication Server receives the SQL statement that modified
the primary data, rather than the individual row changes from the transaction log.

Replication Server applies the SQL statement to the replicated site. The Adaptive Server
RepAgent sends both the SQL data manipulation language (DML) and individual row

Performance Tuning

190 Replication Server

changes. Depending on your configuration, Replication Server chooses either individual row
change log replication or SQL statement replication.

SQL statement replication includes row count verification to ensure that the number of rows
changed in the primary and replicate databases match after replication. If the number of rows
do not match, you can specify how Replication Server handles this error.

To enable and configure SQL statement replication:

• Configure the primary database to log SQLDML.
• Configure Replication Server to replicate SQLDML:

1. Create replications definitions with SQLDML for table and multisite availability
(MSA) replication.

2. In Replication Server, set WS_SQLDML_REPLICATION parameter on for warm
standby replication.

Performance Issues with Log-Based Replication
Learn how log-based replication affects performance and how to address the performance
issues.

Sybase replication technology is log-based. Modifications performed on replicated tables are
logged in the database transaction log. Adaptive Server generates a log record for each
modification to each affected row; a single DML statement may result in Adaptive Server
generating multiple log records. Depending on the type of DML statement, the Adaptive
Server may log one “before” image and one “after” image for every affected row. The Sybase
Replication Agent reads the log and forwards it to the Replication Server. The Replication
Server identifies the DML operation (insert, delete, update, insert, select, or stored
procedure execution) and generates the corresponding SQL statement for every operation.

Log-based replication has these inherent issues:

• When a single DML statement affects multiple rows, Replication Server applies multiple
DML statements on the replicate site, not just the single original DML statement. For
instance, if table t is replicated:

1> delete tbl where c < 4
2> go
(3 rows affected)

The delete statement logs three records in the transaction log, one for each of the rows
deleted. These log records are used for database recovery and replication. Replication
Agent sends the information pertaining to the three log records to the Replication Server,
which converts the information back into three delete statements:
delete t where c = 1
delete t where c = 2
delete t where c = 3

• Adaptive Server cannot perform optimizations on the replicate site that result in
asymmetric loading of resources on the replicate database.

Performance Tuning

Administration Guide Volume 2 191

• Processing large numbers of statements affecting multiple rows increases latency in the
system.

• Adaptive Server only partially logs information about select into; therefore, the
replication system cannot successfully replicate the DML command.

There are two different approaches to address all of these issues:

• Stored procedure replication
• SQL statement replication

Stored Procedure Replication
You may use stored procedure replication to encapsulate complex DML operations or those
affecting a large number of rows.

Stored procedure replication improves performance by replicating only the call to the stored
procedure and ignoring modifications to individual rows. Network traffic is decreased and
Replication Server needs less processing to apply the stored procedure at the replicate site.

In warm standby configurations that replicate DDL, select into operations cannot be
replicated as they are minimally logged. Stored procedure replication cannot be used because
of transaction management restrictions inherent to replication processing and to the select
into command.

Additionally, some third-party applications cannot be easily modified to support replication of
stored procedures. Consequently, even though stored procedure replication improves
Replication Server performance, it cannot be used in all circumstances.

How Replication Server Topologies Affect SQL Statement Replication
To use SQL statement replication, you must take into account the underlying Replication
Server topology.

Replication Server supports a wide range of topologies, including “basic primary copy”
models that may include several Replication Servers, warm standby configurations, and
multisite availability (MSA) configurations.

Like traditional replication, SQL statement replication is log-based; the information needed to
replicate SQL statements (executed in the primary databases) is stored in the transaction log.
The log reader, the Sybase Replication Agent, or other applications read the transaction log to
notify Replication Server about modifications to a replicated table.

In simple MSA or warm standby configurations, source and destination data are identical, and
a DML statement executed on the primary table affects the same data set on the replicate
table.

Note: SQL statement replication applies only to DML statements.

Performance Tuning

192 Replication Server

Identical Data in Replicate Sites
This figure shows a Replication Server topology with a single primary database in New York.
Tables are replicated to three other sites: London, Tokyo, and San Francisco. All tables are
fully replicated.

Figure 20: Basic Primary Copy Model: Identical Data in Replicate Sites

Consider the following statement executed by a client connected to the New York site:

delete t1 where a>5

If this command is executed at Tokyo, London, and San Francisco, the same data set is affected
at all the replicated sites, as data is identical in all the sites. In this case, all replicated sites can
be configured to use SQL statement replication.

Nonidentical Data in Replicate Sites
This figure represents a system wherein the replicated site Tokyo subscribes only to a subset of
data where the site is equal to “Tokyo”.

Figure 21: Basic Primary Copy Model: Nonidentical Data in Replicate Sites

Consider the following statement executed at the New York site:

Performance Tuning

Administration Guide Volume 2 193

delete t1 where a>5

Replication Servers can execute the same statement in London and San Francisco, but not in
Tokyo, as this site subscribes only to a subset of data. If SQL statement replication is used in
this case, some replicated databases, like the Tokyo site, receive individual log record
modifications from the primary transaction log, based on traditional replication. Other
replicated databases, like the London site, receive the SQL statement.

Different sets of data on the primary and replicate tables may also be affected when the
primary and replicate databases have different object schema, or the user executes a DML
statement using a join with another table. In these situations, different data is affected on the
primary and replicate. The table used for the join may not be marked for replication, or values
in that table may be partial or different from the primary database.

You must activate SQL statement replication in the Adaptive Server that holds primary data,
and in the Replication Server. Once you enable SQL statement replication on the primary
Adaptive Server, Adaptive Server logs additional information in the transaction log for each
executed DML statement for which SQL statement replication was activated. The Replication
Agent or other log readers deliver individual log record modifications and information for
SQL statement replication to the Replication Server.

Note: The Sybase Replication Agent sends SQL statement replication information for
Replication Server 15.2 and later.

Adaptive Server disallows SQL statement replication in situations where the statement may
affect a different data set when applied on the replicate site.

Enable SQL Statement Replication
You can enable SQL statement replication at the database, table or session level. Session
settings override both table and database settings. Table settings override database settings.

Several Adaptive Server stored procedures support SQL statement replication.

Enable SQL Statement Replication at the Database-level
Use sp_setrepdbmode to enable SQL statement replication at the database-level for a specific
DML operation.

The DML operations that apply to SQL statement replication include:

• U – update

• D – delete

• I – insert select

• S – select into

For example, to replicate delete statements as SQL statements and also enable replication of
select into, enter:

sp_setrepdbmode pdb, 'DS', 'on'

Performance Tuning

194 Replication Server

When an user executes a delete on a table in database pdb, Adaptive Server logs additional
information for SQL statement replication. The RepAgent sends both individual log records,
and the information needed by the Replication Server, to build the SQL statement.You can set
SQL statement replication at the database level only when the database has been marked for
replication by setting sp_setreptostandby to ALL or L1.

The threshold parameter defines the minimum number of rows that a DML statement must
affect, to activate SQL statement replication. The default threshold is 50 rows, which means
that Adaptive Server automatically uses SQL statement replication if the DML statement
affects at least 51 rows.

For example, to set the threshold at the database-level to trigger SQL statement replication
when a data manipulation language (DML) statement affects more than 100 rows:

sp_setrepdbmode pubs2, ‘threshold’, ‘100’
go

See Replication Server Reference Manual > Adaptive Server Commands and System
Procedures > sp_setrepdbmode.

See also
• Set SQL Statement Replication Threshold on page 197

Display SQL Statement Replication Status
Use sp_reptostandby to display the SQL statement replication status at the database level.

For example:
sp_reptostandby pdb
go
The replication status for database 'pdb' is 'ALL'.
The replication mode for database 'pdb' is 'off'.

Enable SQL Statement Replication at the Table Level
Use sp_setrepdefmode to configure SQL statement replication at the table-level. Table-level
settings override database-level settings.

sp_setrepdefmode includes options to:

• Enable or disable SQL statement replication for specific DML operations
• Configure the threshold that must be reached to activate SQL statement replication

The DML operations that apply to SQL statement replication include:

• U – update

• D – delete

• I – insert select

For example, to enable SQL statement replication for update, delete, and insert select
operations on table t, use:

Performance Tuning

Administration Guide Volume 2 195

sp_setrepdefmode t, 'UDI', 'on'
go

When a user executes deletes, updates, or insert select DML statements on table t, Adaptive
Server logs additional information for SQL statement replication. RepAgent reads the log and
sends both individual log records and the information needed by Replication Server to build
the SQL statement.

The threshold parameter defines the minimum number of rows that a DML statement must
affect, to activate SQL statement replication. The default threshold is 50 rows, which means
that Adaptive Server automatically uses SQL statement replication if the DML statement
affects at least 51 rows.

For example, to set the threshold to 100, use:

sp_setreptable t, true
go
sp_setrepdefmode t, 'UD', 'on'
go
sp_setrepdefmode t, 'threshold','100'
go

In this example, update and delete statements executed on table t use SQL statement
replication if the statement affects at least 101 rows.

See Replication Server Reference Manual > Adaptive Server Commands and System
Procedures > sp_setrepdefmode.

Note: You cannot configure a select into operation at the table level because the target table
does not yet exist.

See also
• Set SQL Statement Replication Threshold on page 197

Enable SQL Statement Replication at the Session Level
Use set repmode to configure SQL statement replication for the DML operation specified, for
the duration of the session. Session settings override both database-level and object-level
settings.

You can specify session-level settings either during login by using a login trigger, or at the
beginning of a batch.

For example, to replicate only select into and delete as SQL statements for the duration of the
session, use:
set repmode on 'DS'

Use set repmode off to remove all SQL statement replication settings at the session level.

The set options are active for the duration of the session. Options that you set inside a stored
procedure are reverted to the default values when the stored procedure finishes.

Performance Tuning

196 Replication Server

Note: When you set options inside a login trigger, the option settings are maintained after the
trigger has finished executing.

Executing set repmode on enables SQL statement replication only if session-level option set
replication on is set. This example does not enable SQL statement replication:

set replication off
go
set repmode on 'S'
go

This example enables SQL statement replication:

sp_reptostandby pdb, 'ALL'
go
set repmode on 'S'
go

The threshold parameter defines the minimum number of rows that a DML statement must
affect, to activate SQL statement replication. The default threshold is 50 rows, which means
that Adaptive Server automatically uses SQL statement replication if the DML statement
affects at least 51 rows.

This example shows how to define the threshold at the session-level as 1000 rows:

set repmode ‘threshold’, ‘1000’
go

See Replication Server Reference Manual > Adaptive Server Commands and System
Procedures > set repmode.

See also
• Set SQL Statement Replication Threshold on page 197

Set SQL Statement Replication Threshold
You can trigger SQL statement replication without having to set the threshold on individual
tables.

You can set the threshold at the:

• Database level – using Adaptive Server 15.0.3 ESD #1 and later.
• Session level – using Adaptive Server 15.0.3 ESD #2 and later.

In Adaptive Server 15.0.3, you could only set the threshold at the table level.

By default, SQL statement replication is triggered when the SQL statement affects more than
50 rows. You can set different threshold values at the session, database, and table-levels.

However, the threshold set at the session level overrides the threshold at the table level and
database level, and the threshold set for any table overrides the threshold set at the database
level.

Performance Tuning

Administration Guide Volume 2 197

Set Thresholds and Operations at Database Level
Use the threshold parameter for the sp_setrepdbmode command to set thresholds at the
database level.

These examples show how to set the threshold at the database and table levels, and at the same
time define operations at the different levels.

Example 1

This example shows how to set a different threshold at the database and table levels for the
pubs2 database and table1 table:

1. Reset the threshold at the database level to the default of 50 rows:
sp_setrepdbmode pubs2, ‘threshold’, ‘0’
go

2. Enable SQL statement replication of update, delete, insert, and select into operations for
pubs2:

sp_setrepdbmode pubs2, ‘udis’, ‘on’
go

3. Trigger SQL statement replication for table1 in pubs2 only for the operations you
defined in step 2 when these operations affect more than 1,000 rows:
sp_setrepdefmode table1, ‘threshold’, ‘1000’
go

Example 2

This example shows how to define the threshold at the database level for pubs2, and at the
same time define different operations for tables, such as table1 and table2 located in the
pubs2 database:

1. Set the threshold at the database-level to trigger SQL statement replication when a data
manipulation language (DML) statement affects more than 100 rows:
sp_setrepdbmode pubs2, ‘threshold’, ‘100’
go

2. Define a different set of operations for two specific tables, where you want operations
replicated using SQL statement replication. Update, delete, and insert operations are for
table1 and delete operations are for table2:

sp_setrepdefmode table1, ‘udi’, ‘on’
go
sp_setrepdefmode table2, ‘d’ ‘on’
go

When a delete operation executes against table2 or any DML on table1 executes, the
threshold of 100 rows that you defined at the database-level triggers SQL statement
replication when reached.

Performance Tuning

198 Replication Server

Set Thresholds and Operations at Session Level
Use set repthreshold to set thresholds at the session level.

The threshold that you define at the session level overrides the threshold you set at the table or
the database level. The threshold set at the table level overrides the threshold set at the database
level.

These examples show how to set the threshold at the session, database, and table levels, and at
the same time define operations at the different levels.

Example 1

This example shows how to define the threshold at the session-level to 23, in the absence of
any threshold setting at the database and table levels, or to override the threshold settings at the
table and database levels:

set repthreshold 23
go

Example 2

This example shows how to reset the threshold to the default of 50, at the session level:

set repthreshold 0
go

Example 3

This example shows how to set a different threshold at the database and table levels for the
pubs2 database and table1 table, and then have a different operation defined for this
session only:

1. Reset the threshold at the database level to the default 50 rows:
sp_setrepdbmod pubs2, ‘threshold’, ‘0’
go

2. Enable SQL statement replication of update, delete, insert, and select into operations for
pubs2:

sp_setrepdbmode pubs2, ‘udis’, ‘on’
go

3. Trigger SQL statement replication for table1 in pubs2 only when DML operations
affect more than 1,000 rows:
sp_setrepdefmode table1, ‘threshold’, ‘1000’
go

4. Enable SQL statement replication only for update operations on any table and only for this
session. This overrides the database-level setting in step 2:
set repmode on ‘u’
go

Performance Tuning

Administration Guide Volume 2 199

Example 4

You can invoke set reptheshold within an Adaptive Server stored procedure. This example
shows how to create the set_rep_threshold_23 stored procedure and invoke it within the
my_proc stored procedure:

1. Create the set_rep_threshold_23 stored procedure:
create procedure set_rep_threshold_23
as
set repthreshold 23
update my_table set my_col = 2 (statement 2)
go

2. Create the my_proc stored procedure:
create procedure my_proc
as
update my_table set my_col = 1 (statement 1)
exec set_rep_threshold_23
update my_table set my_col = 3 (statement 3)
go

3. Execute my_proc to invoke set_repthreshold_23:
exec my_proc
go

Within the my_proc stored procedure, statement 1 executes first with a threshold of 50.
Statement 2 executes next with a threshold of 23. Statement 3 executes next with a threshold of
50, because the set repthreshold 23 command is valid only while executing the
set_rep_threshold_23 procedure.

Example 5

The session-level threshold is exportable. Therefore, you can set the export_options setting to
‘on’ for a procedure, and set the SQL statement replication threshold, so that procedures in the
outer scope use the SQL statement replication threshold set by the stored procedure:

1. Create the set_repthreshold_23 stored procedure and set export_options on:
create procedure set_repthreshold_23
as
set repthreshold 23 (statement 4)
set export_options on
update my_table set my_col = 2 (statement 2)
go

2. Create the my_proc stored procedure:
create procedure my_proc
as
update my_table set my_col = 1 (statement 1)
exec set_rep_threshold_23
update my_table set my_col = 3 (statement 3)
go

3. Execute my_proc to invoke set_repthreshold_23:

Performance Tuning

200 Replication Server

exec my_proc
go

Statement 1 executes first, with a threshold of 50. Statement 2 executes next with a threshold
of 23. Statement 3 executes next with a threshold of 23, because the scope of the set
repthreshold 23 command is the scope of the session.

Example 6

You can create a login trigger to automatically set the replication threshold for a specific login
ID.

1. Create the threshold stored procedure with a threshold setting of 23 and enable export:
create proc threshold
as
set repthreshold 23
set export_options on
go

2. Instruct Adaptive Server to automatically run the theshold stored procedure when user
“Bob” logs in:
sp_modifylogin Bob, ‘login script’, threshold
go

When Bob logs in to Adaptive Server, the SQL statement replication threshold for the session
is set to 23.

Set Thresholds and Configure Replication
You can have a database that is not configured for replication and set the threshold for SQL
statement replication at the database level at the same time.

For example:
sp_reptostandby pubs2, ‘none’
go
sp_setrepdbmode pubs2, ‘threshold’, ‘23’
go

However, to define operations at the database level, you must also configure replication at the
database level. For example, you cannot execute:

sp_reptostandby pubs2, ‘none’
go
sp_setrepdbmode pubs2, ‘udis’, ‘on’
go

Configure Replication Definitions for SQL Statement Replication
You can change SQL statement replication options at the database and table levels for
replication definitions.

Performance Tuning

Administration Guide Volume 2 201

Database Replication Definition
To replicate SQL statements in an MSA environment, you must include the replicate SQLDML
clause with the create database replication definition or alter database replication
definition commands.

The syntax for create database replication definition or alter database replication
definition must include the clause:
[[not] replicate setname [in (table list)]]

where:

setname = DDL | tables | functions | transactions | system procedures | SQLDML |
‘options’.

The ‘options’ parameter is a combination of:

• U – update
• D – delete
• I – insert select
• S – select into

The SQLDML parameter is also defined as a combination of U, D, I, and, S statements.

This example shows how to use the ‘options’ parameter to replicate SQLDML on tables tb1
and tb2:

replicate 'UDIS' in (tb1,tb2)

This example shows how to use the SQLDML parameter that produces the same result as the
‘options’ parameter in the previous example:

replicate SQLDML in (tb1,tb2)

You can use multiple replicate clauses in a create database replication definition. However,
for an alter database replication definition, you can use only one clause.

If you do not specify a filter in your replication definition, the default is the not replicate
clause. Apply alter database replication definition to change the SQLDML filters. You can
either specify one or multiple SQLDML filters in a replicate clause.

This example shows how to filter out the select into statement for all tables. The second
clause, not replicate 'U' in (T), filters out updates on table T:

create database replication definition dbrepdef
 with primary at ds1.pdb1
 not replicate ‘S’
 not replicate ‘U’ in (T)
go

This example enables update and delete statements on all tables using the replicate 'UD'
clause:

Performance Tuning

202 Replication Server

create database replication definition dbrepdef_UD
 with primary at ds2.pdb1
 replicate 'UD'
go

You can use multiple clauses to specify a table multiple times in the same definition. However,
you can use each of U, D, I, and S only once per definition.

create database replication definition dbrepdef
 with primary at ds2.pdb1
 replicate tables in (tb1,tb2)
 replicate 'U' in (tb1)
 replicate 'I' in (tb1,tb2)
go

This example applies update and delete statements for tables tb1 and tb2:

alter database replication definition dbrepdef
 with primary at ds1.pdb1
 replicate 'UD' in (tb1,tb2)
go

Table Replication Definition
To support SQL statement replication, you must include the replicate SQLDML clause when
you create a table replication definition.

The syntax for create replication definition must include the clause:
[replicate {SQLDML [‘off’] | ‘options’}]

The ‘options’ parameter is a combination of these statements:

• U – update
• D – delete
• I – insert select

Note: If your replication definition has the [replicate {minimal | all} columns] clause, then the
[replicate {minimal | all} columns] clause must always precede the [replicate {SQLDML [‘off’]
| ‘options’}] clause.

This is a sample create replication definition for a table:

create replication definition repdef1
 with primary at ds3.pdb1
 with all tables named 'tb1'

 (id_col int,
 str_col char(40))

 primary key (id_col)
 replicate all columns
 replicate ‘UD’
go

A table replication definition with the send standby clause can specify a replicate ‘I’
statement. You can replicate an insert select statement as a SQL replication statement only in

Performance Tuning

Administration Guide Volume 2 203

warm standby or MSA environments. A table replication definition without a send standby
clause cannot replicate the insert select statement.

Warm Standby and SQL Statement Replication
Learn how to configure warm standby applications support for SQL statement replication.

By default, warm standby applications do not replicate the DML commands that support SQL
statement replication. To use SQL replication, you can:

• Create table replication definitions using replicate SQLDML and send standby clauses.
• Set the WS_SQLDML_REPLICATION parameter to on. The default value is UDIS.

However, WS_SQLDML_REPLICATION has a lower precedence than the table replication
definition for SQL replication. If your table replication definition contains a send standby
clause for a table, the clause determines whether or not to replicate the DML statements,
regardless of the WS_SQLDML_REPLICATION parameter setting.

Row Count Validation for SQL Statement Replication
You can specify how Replication Server responds to SQLDML row count errors that may
occur during SQL statement replication.

SQLDML row count errors occur when the number of rows changed in the primary and
replicate databases do not match after SQL statement replication. The default error action is to
stop replication.

Use the assign action command at the primary site for the Replication Server error class to
specify other error actions for SQLDML row count errors:

assign action
 {ignore | warn | retry_log | log | retry_stop | stop_replication}
 for error_class
 to server_error1 [, server_error2]...

where:

• error_class is the error class name for which the action is being assigned. You can specify
Replication Server error classes such as the default rs_repserver_error_class error class.

• server_error is the error number. You can specify error numbers for Replication Server.

For example, to assign the warn error action if Replication Server encounters error number
5186, enter:
assign action warn for rs_repserver_error_class to 5186

If there is a row count error, this is an example of the error message generated:

DSI_SQLDML_ROW_COUNT_INVALID 5186
Row count mismatch for SQLDML command executed on
'mydataserver.mydatabase'.
The command impacted 1000 rows but it should impact 1500 rows.

Performance Tuning

204 Replication Server

See also
• Data Server Error Handling on page 291

Error Actions for SQL Statement Replication
Replication Server supports several error actions for SQL statement replication errors.

Table 22. Error Actions for SQL Statement Replication

server_er-
ror

Error Message Default Error Ac-
tion

Description

5186 Row count mismatch for
the command executed
on
‘dataserver.database’.
The command impacted x
rows but it should
impact y rows.

stop_replication Row count verification error
for SQL statement replica-
tion if the affected number
of rows is different from
what is expected.

5193 You cannot enable
autocorrection if SQL
Statement Replication
is enabled. Either
enable SQL Statement
Replication only or
disable SQL
StatementReplication
before you enable
autocorrection.

stop_replication Cannot enable autocorrec-
tion if SQL statement repli-
cation is enabled. Either en-
able SQL statement replica-
tion only or disable SQL
statement replication before
you enable autocorrection

Scope of SQL Statement Replication
Learn how SQL statement replication applies to DML statements in batch processing,
triggers, and stored procedures.

Batch Processing
There are some requirements when you apply SQL statement replication to any DML
statement that is executed in a batch.

• The configuration must allow SQL statement replication.
• The DML statement does not conform to any of the conditions or exceptions to using SQL

statement replication.

In the example below, while executing the batch statement with delete and insert, only the first
statement uses SQL statement replication. table2 uses traditional replication because
table2 is not configured to use SQL statement replication:

create table table1 (c int, d char(5))
go
create table table2 (c int, d char(5))
go

Performance Tuning

Administration Guide Volume 2 205

insert table1 values (1, 'ABCDE')
go 100
sp_setreptable table1, true
go
sp_setreptable table2, true
go
sp_setrepdefmode table1, 'UDI', 'on'
go
delete table1 where c=1
insert table2 select * from table1
go

See also
• Exceptions to Using SQL Statement Replication on page 209

Stored Procedures
The replication status of a stored procedure determines if DML statements within it are
replicated as statements.

• If a stored procedure is not marked for replication, a DML statement within it is replicated
as a statement, provided that:
• The configuration allows SQL statement replication.
• The DML statement does not conform to any of the conditions or exceptions to using

SQL statement replication.
• If a stored procedure is marked for replication, only the call to it is replicated, not the

individual statements that make up the stored procedure.

See also
• Exceptions to Using SQL Statement Replication on page 209

Triggers
There are some requirements when Adaptive Server uses SQL statement replication for DML
statements within triggers.

• The configuration allows SQL statement replication.
• The DML statement does not conform to any of the conditions or exceptions to using SQL

statement replication.

In the example below, when a delete statement is executed on table1, it is replicated using
traditional replication. The delete executed on table2 via the trigger is replicated using SQL
statement replication as the table is configured for SQL statement replication and the delete
meets the conditions to be replicated as a statement:

create table table1 (c int, d char(5))
go
create table table2 (c int, d char(5))
go
sp_setreptable table1, true
go

Performance Tuning

206 Replication Server

sp_setreptable table2, true
go
insert table1 values (1,'one')
go
insert table2 values (2,'two')
go 100
sp_setrepdefmode table2, 'udi', 'on'
go
create trigger del_table1 on table1
for delete
as
begin
delete table2
end
go
delete table1 where c=1
go

See also
• Exceptions to Using SQL Statement Replication on page 209

Recompilation of Stored Procedures and Triggers
Stored procedures and triggers are automatically recompiled if SQL replication settings have
changed from “off” to “on” between two successive executions of the stored procedure or
trigger.

SQL Statement Replica-
tion Setting at Compile
Time

SQL Statement Replica-
tion Setting at Runtime

Automatically Recom-
pile Stored Procedure/
Trigger?

Off On Yes

On Off No

Cross-Database Transactions
A single transaction may affect tables from different databases. Modifications to tables
located in a different database are logged in the databases that hold the tables.

The Sybase Replication Agent configured for the database sends the Replication Server
information stored in its transaction log.

In this example, db1 and db2 are replicated databases with configured Sybase Replication
Agents. Database db1 is configured to use SQL statement replication:

use db2
go
begin tran
go
delete t1 where c between 1 and 10000000
delete db1..t1 where c between 1 and 1000000
commit tran
go

Performance Tuning

Administration Guide Volume 2 207

The second delete (on database db1) uses SQL statement replication whereas the first delete
(on database db2) uses traditional replication. The Sybase Replication Agent running on db1
replicates the statement.

Replication Server does not guarantee the integrity of transactions across different databases.
For example, if the DSI for the first delete suspends while the DSI for the second delete is
active, the second delete replicates ahead of the first delete.

Issues Resolved by SQL Statement Replication
In some cases, data cannot be replicated using traditional replication methods. SQL statement
replication provides a way to replicate data successfully in such situations .

Replication of the select into Operation In Warm Standby Configurations
select into creates a new table based on the columns specified in the select list and the rows
chosen in the where clause. This operation is minimally logged for recovery purposes, and
cannot be replicated using traditional replication.

select into can be replicated in warm standby configurations by using SQL statement
replication. To configure SQL statement replication at the database level, use:

sp_setrepdbmode pdb, 'S', 'on'
go

Once the option is active at database level, all select into operations in database pdb will be
replicated using SQL statement replication. Review the exceptions to using SQL statement
replication to verify that the query can be replicated using SQL statement replication. If only a
subset of select into needs to be replicated, use set repmode instead.

See also
• Exceptions to Using SQL Statement Replication on page 209

Replication of Deferred Updates on Primary Keys
Updates on tables that have a unique column index are not supported by traditional replication,
and the Replication Server reports errors.

For example, table t has a unique index on column c, with values: 1, 2, 3, 4 and 5. A single
update statement is applied to the table:
update t set c = c+1

Using traditional replication, this statement results in:

update t set c = 2 where c = 1
update t set c = 3 where c = 2
update t set c = 4 where c = 3
update t set c = 5 where c = 4
update t set c = 6 where c = 5

Performance Tuning

208 Replication Server

The first update attempts to insert a value of c=2 into the table; however, this value already
exists in the table. Replication Server displays error 2601—an attempt to insert a duplicate
key.

You can use SQL statement replication to address this issue. If the table has a unique index,
and SQL statement replication is configured for update statements, the Adaptive Server
replicates the update using SQL statement replication.

Exceptions to Using SQL Statement Replication
There are several limitations to using SQL statement replication.

SQL statement replication is not supported when:

• A replicate database has a different table schema than the primary database.
• Replication Server must perform data or schema transformation.
• Subscriptions or articles include where clauses.
• Updates include one or more text or image columns.

• Function strings rs_delete, rs_insert, and rs_update are customized.

• A DML statement matches one or more conditions listed here. In these cases, traditional
replication is used:
• The statement refers to views, temporary tables, or tables in other databases.

insert tbl select * from #tmp_info
where column = 'remove'

• The user executes the statement with set rowcount option set to a value greater than
zero.
set rowcount 1
update customers
set information = 'reviewed'
where information = 'pending'

• The statement uses the top n clause in select or select into statements, a Java function,
or a SQL User-Defined Function(UDF):
delete top 5
from customers
where information = 'obsolete'

• The base table includes encrypted columns, and the statement references one of those
columns in a set or where clause.

• The statement references system catalogs or fake tables such as ‘deleted’ or ‘inserted’.
In this example, the delete executed by the trigger will not use SQL statement
replication because it is using the fake table deleted:

create trigger customers_trg on customers for delete as
delete customers_hist
from customers_hist, deleted
where deleted.custID = customers_hist.custID
go
delete customers where state = 'MA'
go

Performance Tuning

Administration Guide Volume 2 209

• The statement is an insert statement that generates a new identity or timestamp
value.

• The statement is an update statement that changes a timestamp or identity
value.

• The statement is an update statement that assigns a value to a local variable. For
example:
update t set @a = @a + 2, c = @a where c > 1

• The statement makes references to materialized computed columns.
• The statement is a select into statement that affects a replicate table with encrypted

columns.
• The statement is an insert select or select into using a union clause:

select c1, c2 from tbl2
union
select cc1, cc2 from tbl3

• The statement is an update, insert select, or select into on a table with text/image
columns.

• The statement is a query that uses built-ins:
If the built-in can be resolved to a constant value, the query is replicated as a SQL
statement. For example:
update tbl set value = convert(int, "15")

However, the following query will not be replicated using SQL statement replication:
update tbl set value = convert(int, column5)

In warm standby topologies, queries containing the following built-ins can be
replicated using SQL statement replication even if the built-in cannot be resolved to a
constant value:

abs cot ltrim sqrt

acos datalength patindex str

ascii degrees power strtobin

asin exp replicate stuff

atan floor reverse substring

atn2 hextoint right tan

bintostr inttohex round to_unichar

ceiling len rtrim upper

char log sign

convert log10 soundex

Performance Tuning

210 Replication Server

cos lower space

SQL Statement Replication Does not Support Autocorrection
SQL statement replication cannot perform autocorrection. If Data Server Interface (DSI)
encounters a DML command for SQL statement replication and autocorrection is on, by
default, DSI is suspended and stops replication.

Use assign action with error number 5193 to specify how Replication Server handles this
error.

Replication Server does not replicate SQLDML until the table level subscription is validated.

RSSD System Table Modifications
There are several changes to system tables in the Replication Server System Database (RSSD)
to support SQL statement replication.

These system tables in the RSSD support SQL statement replication:

• rs_dbreps – status column includes 4 new sets of 2-bit sets, each of which
corresponds to a DML filter. The first bit of a set indicates if it is an empty filter and the
second bit indicates if it is a negative statement set.

• rs_dbsubsets – type column includes four new types: U, L, I, and, S corresponding
to the DML UDIS filters. In this case, L is used for delete instead of D.

• rs_objects – attributes column includes five new bits; one for each U, D, I, or S
operation, and one to indicate if a table replication definition has fewer columns than the
number of incoming data rows.
A system function replication definition, rs_sqldml, also supports SQL statement
replication.

Adaptive Server Monitoring Tables for SQL Statement Replication
Use Adaptive Server monitoring tables to provide a statistical snapshot of the state of Adaptive
Server during SQL statement replication. The tables allow you to analyze Adaptive Server and
Adaptive Server performance.

Table Description

monSQLRepActiv-
ity

Provides statistics for all open objects on DML statements replicated
using SQL statement replication.

monSQLRepMisses Provides statistics for replicated operations for which SQL statement
replication was not used. The threshold, querylimitation,

and configuration columns indicate the number of times that one

of these factors prevented SQL statement replication for the object.

See Adaptive Server Enterprise > Performance and Tuning Series: Monitoring Tables >
Introduction to Monitoring Tables > Monitoring Tables in Adaptive Server.

Performance Tuning

Administration Guide Volume 2 211

Product and Mixed-Version Requirements
SQL statement replication requires Adaptive Server version 15.0.3 and later, primary and
replicate Replication Server version 15.2 and later, and route version 15.2 and later.

Downgrades and SQL Statement Replication
Learn the downgrade procedures if you are using SQL statement replication and you wish to
downgrade Adaptive Server to a version earlier than 15.0.2 ESD #3, or Replication Server to a
version earlier than 15.2.

Downgrade of Adaptive Server
You can downgrade Adaptive Server to an earlier version while there still are transaction
records related to SQL statement replication in the log.

If you downgrade to a version earlier than 15.0.2 ESD #3, Sybase recommends that you use the
standard documented procedure to downgrade an Adaptive Server with replicated databases.
This procedure includes draining the transaction log. See the Adaptive Server Enterprise
15.0.3 Installation Guide.

Adaptive Server 15.0.3 provides the following downgrade support for Sybase Replication
Agents version 15.0.2 ESD #3 and later:

• Sybase Replication Agents continue to replicate data even if the log contains information
for SQL statement replication.

• When a Sybase Replication Agent reads a transaction containing SQL statement
replication, it sends atomic modifications for that statement and ignores information
related to SQL statement replication.

Downgrade of Replication Server
You may downgrade a Replication Server to a version earlier than 15.2.

The Sybase Replication Agent controls the amount and type of information sent to Replication
Server based on the Log Transfer Language (LTL) version negotiated when the connection is
established.

For Replication Servers earlier than 15.2, Sybase Replication Agent does not send
information for SQL statement replication, and proceeds with standard replication.

Performance Tuning

212 Replication Server

Dynamic SQL for Enhanced Replication Server
Performance

Dynamic SQL in Replication Server enhances replication performance by allowing
Replication Server Data Server Interface (DSI) to prepare dynamic SQL statements at the
target user database and to execute them repeatedly.

Instead of sending SQL language commands to the target database, only the literals are sent on
each execution, thereby eliminating the overheads brought by SQL statement syntax checks
and optimized query plan builds. In addition, DSI optimizes dynamic SQL statements by
generating the language command only when the dynamic SQL command fails, and
generating the prepared statement only once when the prepared statement is used for the first
time.

If enabled, dynamic SQL is used in a user database connection instead of a language command
if:

• The command is insert, update, or delete.
• There are no text, image, java or opaque columns in the command.

• There are no NULL values in the where clause for update or delete command.
• There are no more than 255 parameters in the command:

• insert commands can have no more than 255 columns.
• update commands can have no more than 255 columns in the set clause and where

clauses combined.
• delete commands can have no more than 255 columns in the where clause.

• The command does not use user-defined function strings.

Dynamic SQL Configuration Parameters
Use the dynamic SQL configuration parameters to enable and tune dynamic SQL.

• dynamic_sql – turns dynamic SQL on or off for a replicate connection. Other dynamic
SQL configuration parameters take effect only if this parameter is set to on.

• dynamic_sql_cache_size – tells the Replication Server how many database objects may
use the dynamic SQL for a connection. This parameter limits the resource demand on the
data server.

• dynamic_sql_cache_management – manages the dynamic SQL cache for a connection.
Once the dynamic SQL statements reaches dynamic_sql_cache_size for a connection, it
either stops allocating new dynamic SQL statements if the value is fixed, or it keeps the
most recently used statements and deallocates the rest to allocate new statements if the
value is mru.

Performance Tuning

Administration Guide Volume 2 213

Set up the Configuration Parameters to Use Dynamic SQL
You can enable or configure dynamic SQL at the server or database connection level.

Dynamic SQL is off by default at a server and connection level.

Set the dynamic SQL configuration parameters at the server-level to provide the default values
for the connections created or started in the future. To configure dynamic SQL at the server
level, enter:
configure replication server
set { dynamic_sql |
 dynamic_sql_cache_size |
 dynamic_sql_cache_management }
to value

To configure dynamic SQL at the connection level, enter:
alter connection to server.db
set { dynamic_sql |
 dynamic_sql_cache_size |
 dynamic_sql_cache_management }
to value

Table-Level Dynamic SQL Control
create replication definition and alter replication definition allow you to control the
application of dynamic SQL on each table through replication definitions.

See create replication definition and alter replication definition in Replication Server
Reference Manual > Replication Server Commands.

You can change the dynamic SQL execution at the table level for a specific replicate database
by using:

set dynamic_sql {on | off}
for replication definition with replicate at
data_server.database

At the replication definition level, the default is to use dynamic SQL. Change the default only
to exclude tables from dynamic SQL. To check for dynamic SQL usage, turn on
stats_sampling and run admin stats, dsi command and look for DSIEDsqlPrepared,
DSIEDsqlExecuted, and other dynamic SQL counters.

Use rs_helprep, rs_helpsub, and rs_helppubsub to display dynamic SQL settings for each
replication definition.

See Replication Server Reference Manual > RSSD Stored Procedures.

Performance Tuning

214 Replication Server

replicate minimal columns Clause and Dynamic SQL
Replication processing uses dynamic SQL when the replication definition contains replicate
minimal columns or, when you set replicate_minimal_columns on for a connection.

You can use replicate_minimal_columns for physical connections and warm standby
environments. DSI can use the parameter to determine whether to use minimal columns when
there is no replication definition, or when the replication definition does not contain the
replicate minimal columns clause.

By default, replicate_minimal_columns is on for all connections. The
replicate_minimal_columns setting for a connection overrides replication definitions set with
the replicate all columns clause.

With custom function strings, the behavior of the current replication environment may change
when you set replicate_minimal_columns on for a connection. If the application is relying on
a command to be sent to the replicate database for trigger processing, the default
replicate_minimal_columns setting of on does not send the command when there are no
changes to any columns in the row. To restore the original behavior, set
replicate_minimal_columns off for the connection.

For example, to enable replicate_minimal_columns for the connection to the pubs2
database in the SYDNEY_DS data server:

alter connection to SYDNEY_DS.pubs2
set replicate_minimal_columns to ‘on’

replicate_minimal_columns can affect trigger processing if you expect triggers to fire even if
there is no change in values to any columns in the row.

You can use admin config to display the replicate_minimal_columns setting.

Note: When you set dsi_compile_enable ‘on’, Replication Server ignores the
replicate_minimal_columns setting.

Limitations for Dynamic SQL
There are several limitations to be aware of when you use dynamic SQL.

• If a table is replicated to a standby or MSA connection using an internal replication
definition, and dynamic SQL is enabled for the connection, any new replication definition
for the table should define the column order consistent with the column order in the
primary database. Otherwise, the existing prepared statements may be invalidated, and
may require the standby or MSA connection to be restarted.

• Replication Server converts user-defined datatypes to Open Client/Server™ (OCS)
datatype in a dynamic SQL command.
If data falls outside Sybase ranges that cause dynamic SQL to fail, DSI logs an error
message and resends dynamic SQL using the language command. DSI shuts down only if
the language command also fails.

Performance Tuning

Administration Guide Volume 2 215

If this condition happens frequently, disable dynamic SQL from the table replication
definition or use the set dynamic_sql off command.

Disable Dynamic SQL
There are several commands you can use to disable dynamic SQL.

• alter connection... set dynamic_sql off – turns dynamic SQL off for all commands in this
connection.

• create/alter replication definition...without dynamic_sql – turns dynamic SQL off for all
commands using this replication definition.

• set dynamic_sql off for replication definition with replicate at... – turns dynamic SQL off
for all commands using this replication definition at this replicate connection.

Advanced Services Option
Replication Server includes the Advanced Services Option which contains enhancements to
replication performance.

To activate any of the enhancements in the Advanced Services Option, you must have the
REP_HVAR_ASE license file. See Replication Server Installation Guide > Planning Your
Installation > Obtaining a License.

See also
• High Volume Adaptive Replication to Adaptive Server on page 216

• Enhanced Retry Mechanism on page 224

• Enhanced DSI Efficiency on page 229

• Enhanced RepAgent Executor Thread Efficiency on page 230

• Enhanced Distributor Thread Read Efficiency on page 231

• Enhanced Memory Allocation on page 232

• Increase Queue Block Size on page 232

High Volume Adaptive Replication to Adaptive Server
Replication Server includes high volume adaptive replication (HVAR), which provides better
performance compared to the current continuous replication mode when replicating into
databases with identical database schema.

In continuous replication mode, Replication Server sends each logged change to the replicate
database according to the log order in primary database. HVAR achieves better performance
by using:

• Compilation – rearranges replicate data by each table, and each insert, update, and delete
operation, and compiling the operations into net-row operations.

Performance Tuning

216 Replication Server

• Bulk apply – applies the net result of the compilation operations in bulk using the most
efficient bulk interface for the net result. Replication Server uses an in-memory net-change
database to store the changes, which it then applies to the replicate database.

Instead of sending every logged operation, compilation removes the intermediate insert,
update, or delete operations in a group of operations and sends only the final compiled state of
a replicated transaction. Depending on the transaction profile, this generally means that
Replication Server sends a smaller number of commands to the replicate database to process.

HVAR groups as many compilable transactions as possible, compiles the transactions in the
group into a net change, and then uses the bulk interface in the replicate database to apply the
net changes to the replicate database.

As Replication Server compiles and combines a larger number of transactions into a group,
bulk operation processing improves; therefore, replication throughput and performance also
improves. You can adjust group sizes to control the amount of data that is grouped together for
bulk apply.

HVAR is especially useful for creating online transaction processing (OLTP) archiving and
reporting systems where the replicate databases have the same schemas as the primary
databases.

Database and Platform Support
HVAR supports replication into Adaptive Server 12.5 and later and you can achieve optimal
performance using 64-bit hardware platforms.

See Replication Server 15.5 New Features Guide > New Features in Replication Server
Version 15.5 > Operating System and Platform Support > 64-Bit Support.

HVAR Compilation and Bulk Apply
During compilation, HVAR rearranges data to be replicated by clustering the data together
based on each table, and each insert, update, and delete operation, and then compiling the
operations into net row operations.

HVAR distinguishes different data rows by the primary key defined in a replication definition.
If there is no replication definition, all columns except for text and image columns are
regarded as primary keys.

For the combinations of operations found in normal replication environments, and given a
table and row with identical primary keys, HVAR follows these compilation rules for
operations:

• An insert followed by a delete results in no operation.
• A delete followed by an insert results in no reduction.
• An update followed by a delete results in a delete.

Performance Tuning

Administration Guide Volume 2 217

• An insert followed by an update results in an insert where the two operations are reduced
to a final single operation that contains the results of the first operation, overwritten by any
differences in the second operation.

• An update followed by another update results in an update where the two operations are
reduced to a final single operation that contains the results of the first operation,
overwritten by any differences in the second operation.

Other combinations of operations result in invalid compilation states.

Example 1
This is an example of log-order, row-by-row changes. In this example, T is a table created
earlier by the command: create table T(k int , c int)

1. insert T values (1, 10)
2. update T set c = 11 where k = 1
3. delete T where k = 1
4. insert T values (1, 12)
5. delete T where k =1
6. insert T values (1, 13)

With HVAR, the insert in 1 and the update in 2 can be converted to insert T values (1,
11). The converted insert and the delete in 3 cancel each other and can be removed. The
insert in 4 and the delete in 5 can be removed. The final compiled HVAR operation is the last
insert in 6:
insert T values (1, 13)

Example 2

In another example of log-order, row-by-row changes:

1. update T set c = 14 where k = 1
2. update T set c = 15 where k = 1
3. update T set c = 16 where k = 1

With HVAR, the update in 1 and 2 can be reduced to the update in 2. The updates in 2 and 3
can be reduced to the single update in 3 which is the net-row change of k = 1

Replication Server uses an insert, delete, and update table in an in-memory net-change
database to store the net row changes which it applies to the replicate database. Net row
changes are sorted by replicate table and by type of operations—insert, update, or delete—
and are then ready for bulk interface. HVAR loads insert operations into the replicate table
directly. Since Adaptive Server does not support bulk update and delete, HVAR loads update
and delete operations into temporary worktables that HVAR creates inside the replicate
database. HVAR then performs join-update or join-delete operations with the replicate tables
to achieve the final result. The work tables are created and dropped dynamically.

In Example 2, where compilation results in update T set c = 16 where k = 1:

1. HVAR creates the #rs_uT(k int, c int) worktable.

2. HVAR performs an insert into the worktable with this statement:

Performance Tuning

218 Replication Server

insert into #rs_uT(k, c) location ‘idemo.db’ {select * from rs_uT}

3. HVAR performs the join-update:
update T set T.c=#rs_uT.c from T,#rs_uT where T.k=#rs_uT.k

As HVAR compiles and combines a larger number of transactions into a group, bulk operation
processing improves; therefore, replication throughput and performance also improves. You
can control the amount of data that HVAR groups together for bulk apply by adjusting HVAR
sizes with configuration parameters.

There is no data loss, although HVAR does not apply row changes in the same order in which
the changes are logged because for:

• Different data rows, the order in which the row changes are applied does not affect the
result.

• The same row, applying delete before insert after compilation maintains consistency.

Net-Change Database
Replication Server has a net-change database that acts as an in-memory repository for storing
the net row changes of a transaction, that is, the compiled transaction.

There is one net-change database instance for each transaction. Each replicate table can have
up to three tracking tables within a net-change database. You can inspect the net-change
database and the tables within the database to monitor HVAR replication and troubleshoot
problems.

Monitor the Net-Change Database
Use the sysadmin cdb command to monitor a net-change database and to access net-change
database instances.

See Replication Server Reference Manual > Replication Server Commands > sysadmin
cdb.

HVAR Processing and Limitations
HVAR applies only the net-row changes of a transaction while maintaining the original
commit order, and guarantees transactional consistency even as it skips intermediate row
changes.

This has several implications:

• To avoid high memory consumption by HVAR, Replicaton Server processes and applies
large transaction through the continuous replication mode instead of HVAR. The threshold
for large transactions depends on the size of the SQT cache that you can set with
dsi_sqt_max_cache_size and the size of the net-change database that you can control
with dsi_compile_max_cmds and dsi_cdb_max_size.

• Insert triggers do not fire, as the HVAR process performs a bulk load of net new rows
directly into the table. Update and delete triggers continue to fire when Replication Server
applies the net results of compilation to the replicate database. However, row

Performance Tuning

Administration Guide Volume 2 219

modifications that Replication Server compiles, and that are no longer in the net results,
are invisible to the triggers. Triggers can detect only the final row images.
Suppose you use Replication Server to audit user updates using a last_update_user
column in a table schema with a trigger logic that associates a user to any column in the
table modified by the user. If userA modifies colA and colC in the table and then userB
modifies colB and colD, when the trigger fires, the trigger logic can detect only the last
user who modified the table, and therefore the trigger logic associates userB as the user that
modified all four columns. If you define triggers that contain similar logic where every
individual row modification must be detected, you may have to disable HVAR compilation
for that table.

• HVAR does not apply row changes in the same order in which the row changes are logged.
To apply changes to a replicated table in log order, disable HVAR compilation for that
table.

• If there are referential constraints on replicate tables, you must specify the constraints in
replication definitions. To avoid constraint errors, HVAR loads tables according to
replication definitions.

• Replication Server does not support customized function strings or any parallel DSI
serialization methods, except for the default wait_for_commit method, when you enable
HVAR. HVAR treats customized function strings as noncompilable commands.

• Replication Server reverts to log-order row-by-row continuous replication when it
encounters:
• Noncompilable commands – stored procedures, SQL statements, data definition

language (DDL) transactions, system transactions, and Replication Server internal
markers.

• Noncompilable transactions – a transaction that contains noncompilable commands.
• Noncompilable tables – tables with HVAR disabled, with modified function strings,

and with referential constraint relationships with tables that HVAR cannot compile.
• If the replication definition does not include the replicate minimal columns clause, HVAR

automatically changes a primary-key update to a delete followed by an insert. A primary-
key update is either one of:
• An update that affects the primary key of a table where the primary key is defined in the

replication definition of the table, or,
• An update that affects any column, except for text and image columns, when no

replication definition exists. In this case, Replication Server assumes all the columns
are part of the primary key since there is no specific primary-key definition from a
replication definition.

• If the replication definition includes the replicate minimal columns clause, and if the
group being compiled by HVAR contains an update command that modifies the primary-
key columns, HVAR automatically identifies the table as noncompilable at runtime for the
remaining portion of the group. The update operation applied to the table is
noncompilable because HVAR cannot transform the update to a pair of operations
consisting of a delete and an insert. Within the transaction group that HVAR is processing,
HVAR can successfully compile into the net-change database all operations that HVAR

Performance Tuning

220 Replication Server

processed before HVAR encountered the noncompilable primary-key update operation.
However, within the transaction group, HVAR marks as noncompilable, the initial
noncompilable primary-key update and all operations that follow it. The noncompilable
state of the table is transient and lasts only for the duration of the same transaction group
that HVAR is processing .

• HVAR ignores parameters, such as dsi_partition_rule that can stop transaction grouping.
• If errors occur during HVAR processing, Replication Server retries compilation with

progressively smaller transaction groups until it identifies the transaction that failed
compilation, then applies the transaction using continuous replication.

• To realize performance benefits, keep the primary and replicate databases synchronized to
avoid the overhead of additional processing by Replication Server when errors occur. You
can set dsi_command_convert to i2di,u2di to synchronize the data although this also
incurs a processing overhead. If the databases are synchronized, reset
dsi_command_convert to none.

• HVAR performs row-count validation to ensure replication integrity. The row-count
validation is based on compilation. The expected row count is the number of rows
remaining after compilation.

• When there are columns with identity datatype in a replication definition, Replication
Server executes these commands in the replicate database:
• set identity_insert_table_name on before identity column inserts and set

identity_insert_table_name off after identity column inserts.
• set identity_update_table_name on before identity column updates and set

identity_update_table_name off after identity column updates.

See also
• Tables with Referential Constraints on page 227

Enable HVAR
Use dsi_compile_enable to enable HVAR for the connection to the replicate database.

If you set dsi_compile_enable off, Replication Server uses continuous log-order, row-by-row
replication mode. For example, set dsi_compile_enable off for an affected table if replicating
net-row changes causes problems, such as when there is a trigger on the table that requires all
operations on the table to be replicated in log order, and therefore compilation is not allowed.

Note: When you set dsi_compile_enable on, Replication Server disables dsi_cmd_prefetch
and dsi_num_large_xact_threads.

To enable and configure HVAR at the database level to affect only the specified database,
enter:

alter connection to data_server.database
set dsi_compile_enable to ‘on’
go

You can also enable and configure HVAR at the server or table levels.

Performance Tuning

Administration Guide Volume 2 221

• Server level – affects all database connections to Replication Server:
configure replication server
set dsi_compile_enable to ‘on’

• Table level – affects only the replicate tables you specify. If you specify a parameter at both
the table level and database level, the table-level parameter takes precedence over the
database-level parameter. If you do not specify a table-level parameter, the setting for the
parameter applies at the database level. To set a parameter for a table, use alter connection
and the for replicate table named clause, for example:
alter connection to data_server.database
for replicate table named dbo.table_name
set dsi_compile_enable to ‘on’

Using the for replicate table name clause alters connection configuration at the table level.
The configuration changes apply to replicate data from all the subscriptions and all the
replication definitions of the tables you specify.

Note: For table-level configuration, you can use only alter connection, as Replication
Server does not support the for clause with create connection.

After you execute dsi_compile_enable, suspend and resume the connection to the replicate
database.

HVAR Configuration Parameters
Replication Server automatically sets the Sybase-recommended default values of several
parameters. You can change the values of these parameters to tune replication performance.

You must execute a separate alter connection command for each parameter you want to
change. Do not enter more than one parameter after entering alter connection.

HVAR automatically sets the Sybase-recommended default values for dsi_cdb_max_size,
dsi_compile_max_cmds, dsi_bulk_threshold, dsi_command_convert, and
dsi_compile_retry_threshold. However, you can specify your own values to tune
performance in your replication environment:

See Replication Server Reference Manual > Replication Server Commands > alter
connection for full descriptions of the parameters.

dsi_bulk_threshold
dsi_bulk_threshold specifies the number of net row change commands after compilation has
occurred on a table for a command type, that when reached, triggers Replication Server to use
bulk copy-in on that table for the same command type.

Default is 20 net row change commands.

Example:
alter connection to SYDNEY_DS.pubs2
set dsi_bulk_threshold to ‘15’
go

Performance Tuning

222 Replication Server

dsi_cdb_max_size
dsi_cdb_max_size specifies, in megabytes, the maximum size of a transaction that HVAR can
compile if the transaction does not exceed the DSI SQT cache or if the number of commands in
the transaction does not exceed dsi_compile_max_cmds.

When the size of transactions in the current group that HVAR is compiling reaches
dsi_compile_max_cmds, HVAR starts a new group. If there is no more data to read, and even
if the group does not reach the maximum size set in dsi_cdb_max_size, HVAR completes
grouping the current set of transactions into the current group.

Default is 1024MB.

Example:
alter connection to SYDNEY_DS.pubs2
set dsi_cdb_max_size to ‘2048’
go

dsi_compile_max_cmds
dsi_compile_max_cmds specifies, in number of commands, the maximum size of a
transaction that HVAR can compile if the transaction does not exceed the DSI SQT cache or if
the transaction size does not exceed dsi_cdb_max_size. Replication Server replicates
noncompilable transactions through the continuous replication mode.

When the number of commands in the current group that HVAR is compiling reaches
dsi_compile_max_cmds, HVAR starts a new group. If there is no more data to read, and even
if the group does not reach the maximum number of commands set in
dsi_compile_max_cmds, HVAR completes grouping the current set of transactions into the
current group.

Default is 10,000 commands.

Example:
alter connection to SYDNEY_DS.pubs2
set dsi_compile_max_cmds to ‘50000’
go

dsi_compile_retry_threshold
dsi_compile_retry_threshold specifies a threshold value for the number of commands in a
group. If the number of commands in a group containing failed transactions is smaller than the
value of dsi_compile_retry_threshold, Replication Server does not retry processing the
group in HVAR mode, and saves processing time, thus improving performance. Instead,
Replication Server switches to continuous replication mode for the group. Continuous
replication mode sends each logged change to the replicate database according to the primary
database log order.

Default is 100 commands.

Example:

Performance Tuning

Administration Guide Volume 2 223

alter connection to SYDNEY_DS.pubs2
set dsi_compile_retry_threshold to '200'
go

dsi_command_convert
dsi_command_convert – specifies how to convert a replicate command. A combination of
these operations specifies the type of conversion:

• d – delete
• i – insert
• u – update
• t - truncate
• none – no operation

Combinations of operations for dsi_command_convert include i2none, u2none, d2none,
i2di, t2none, and u2di. The operation before conversion precedes the “2” and the operations
after conversion are after the “2”. For example:

• d2none – do not replicate the delete command. With this option, you need not customize
the rs_delete function string if you do not want to replicate delete operations.

• i2di,u2di – convert both insert and update to delete followed by insert, which is
equivalent to an autocorrection. If you disable row count validation by setting
dsi_row_count _validation off, Sybase recommends that you set dsi_command_convert
to i2di,u2di to avoid duplicate key errors and allow autosynchronization of databases
during replication.

• t2none – do not replicate truncate table.

Default for dsi_command_convert is none which means there is no command conversion.

Example:
alter connection to SYDNEY_DS.pubs2
set dsi_command_convert to ‘i2di,u2di’
go

Enhanced Retry Mechanism
The enhanced retry mechanism improves replication performance by reducing the number of
times Replication Server retries compilation and bulk apply.

HVAR attempts to group as many compilable transactions as possible together, compile the
transactions in the group into a net change, and then use the bulk interface in the replicate
database to apply the net changes to the replicate database. HVAR invokes the retry
mechanism when a replicate transaction resulting from HVAR processing fails. If transactions
in a group fail, HVAR splits the group into two smaller groups of equal size, and retries the
compilation and bulk application on each group. The retry mechanism identifies the failed
transaction, allows Replication Server to execute error action mapping, and applies all
transactions preceding the failed transaction in case DSI shuts down.

The net-change database in HVAR acts as an in-memory repository for storing the net row
changes of a transaction, that is, the compiled transaction. The content of the net-change

Performance Tuning

224 Replication Server

database is an aggregation of commands from different primary transactions that HVAR is not
applying in log order. Therefore, there is no means to identify a failed transaction without a
retry mechanism. The retry mechanism splits a group and retries compilation and bulk
application continuously as long as a transaction in the group fails. This continuous retry
process can degrade performance.

The enhanced retry mechanism splits the group into three groups of equal size when HVAR
encounters a group containing transactions that fail, enabling the mechanism to more
efficiently identify the group containing the failed transaction.

In addition, you can use the dsi_compile_retry_threshold parameter to specify a threshold
value for the number of commands in a group. If the number of commands in a group
containing failed transactions is smaller than the value of dsi_compile_retry_threshold,
Replication Server does not retry processing the group in HVAR mode, and saves processing
time, thus improving performance. Instead, Replication Server switches to continuous
replication mode for the group. Continuous replication mode sends each logged change to the
replicate database according to the primary database log order.

Memory Consumption Control
To reduce memory consumption in HVAR, control the size of compilable groups.

Memory consumption refers to Replication Server data structures such as the net-change
database, and the data that the structures store. Net-change databases are in-memory data
structures. Net-change database memory consumption can increase drastically when
Replication Server compiles commands applied on a table with a large number of columns, or
tables with large text and image datatype values. For example, compiling 1,000,000 rows
in a table with 100 columns may consume approximately 10 times more memory than
compiling the same number of rows in a table with 10 columns. Replication performance
suffers when there is insufficient memory available for other processes and modules.

Replication Server marks a transaction as noncompilable if the transaction is larger than the
DSI SQT cache size. If a transaction can fit into the DSI SQT cache, Replication Server checks
the size of the transaction against the values of dsi_cdb_max_size and
dsi_compile_max_cmds. Replication Server marks the transaction as noncompilable if
Replication Server estimates that the size of the net-change database the transaction requires is
larger than dsi_cdb_max_size, or if the transaction contains more commands than
dsi_compile_max_cmds. Replication Server applies this large noncompilable transaction in
the continuous replication mode. Using the continuous replication mode avoids generating a
single large net-change database to accommodate the large transaction and reduces memory
consumption.

Replication Server tries to group as many compilable transactions as possible into a
compilable group. Replication Server also uses dsi_cdb_max_size and
dsi_compile_max_cmds as thresholds for the size of compilable groups. Once a group
reaches either the size you set in dsi_cdb_max_size or dsi_compile_max_cmds, Replication

Performance Tuning

Administration Guide Volume 2 225

Server stops compiling transactions into the group and applies each compilable group as a
single transaction to the replicate database.

Memory Control Parameters and Replication Server Processing
Replication modes and actions depend on the values you set for memory control parameters.

Replication Server Processing

1. Replication Server reads a transaction from the outbound queue and estimates the net-
change database size.

2. Replication Server flags the transaction as compilable if the transaction only contains
insert, update , and delete commands.

3. Replication Server flags a transaction as noncompliable when:
• The number of commands in the transaction exceeds dsi_compile_max_cmds,
• The estimated net-change database size for the transaction exceeds

dsi_cdb_max_size, or
• The transaction size is larger than the DSI SQT cache.
Replication Server processes noncompilable transactions in continous log order mode.

4. After Replication Server checks if a transaction is compilable, it aggregates successive
compilable transactions into a compilable group. However, Replication Server stops
increasing the size of a compilable group based on two thresholds:
• If Replication Server calculates that the number of commands in the group of

compilable transaction it is processing added to the number of commands in the new
transaction exceeds the dsi_compile_max_cmds threshold value, Replication Server
closes and dispatches the group, and adds the new transaction to a new empty group.
Otherwise, Replication Server adds the new compilable transaction to the group.

• If the estimated size of the next net-change database resulting from aggregation of the
new transaction to the new group exceeds dsi_cdb_max_size, Replication Server
closes and dispatches the group, and adds the new transaction to a new empty group.
Otherwise, Replication Server adds the new compilable transaction to the group.

5. If there are no more compilable transactions in the outbound queue, Replication Server
immediately closes and dispatches the group it is processing. Replication Server does not
wait for new transactions to enter the outboud queue.

Setting dsi_cdb_max_size to Different Values

Examples that show Replication Server applying a transaction with 100,000 updates on two
tables. Table1 has 100 columns and requires approximately 4GB of memory, and Table2 has
10 columns requiring approximately one-tenth the memory—400MB.

dsi_cdb_max_size
Value (MB)

Table
Name

Impact on Replication Processing

1024 (default) Table1 Replication Server applies the transaction in continuous log-or-
der replication mode.

Performance Tuning

226 Replication Server

dsi_cdb_max_size
Value (MB)

Table
Name

Impact on Replication Processing

1024 (default) Table2 Prerequisite: Set memory_limit in Replication Server to a value
large enough to allow the construction of 400MB net-change
databases.

Replication Server applies the transaction using HVAR.

4096 Table1 Replication Server applies the transaction using continuous log
order replication mode.

4096 Table2 Prerequisite: Set memory_limit in Replication Server to a value
large enough to allow the construction of 400MB net-change
databases.

Replication Server applies the transaction using HVAR.

Tables with Referential Constraints
You can use a replication definition to specify tables that have referential contraints, such as a
foreign key and other check constraints, so that HVAR is aware of these tables.

Usually the referencing table contains referential constraints for a referenced table within the
same primary database. However, HVAR extends referential constraints support to referenced
tables from multiple primary databases.

You can specify the referencing table in a replication definition for each primary database.
However, if multiple referential constraints conflict with each other, Replication Server
randomly selects one.

See also
• HVAR Processing and Limitations on page 219

Replication Definitions Creation and Alteration
Use the create replication definition command with the references parameter to specify the
table with referential constraints.

create replication definition
 ...
 (column_name [as replicate_column_name]
 ...
 [map to published_datatype]] [quoted]
 [references [table_owner.]table_name [(column_name)]] …)
 ]

Use the alter replication definition command with the references parameter to add or change
a referencing table. Use the null option to drop a reference.

alter replication definition

add column_name [as replicate_column_name]

Performance Tuning

Administration Guide Volume 2 227

[map to published_datatype] [quoted]
[references [table_owner.]table_name [(column_name)]
...
| alter columns with column_name references
{[table_owner.]table_name [(column_name)] | NULL}
[, column_name references {[table_owner.]table_name [(column_name)]
| NULL}
 ...

For both alter replication definition and create replication definition with the reference
clause, Replication Server:

• Treats the reference clause as a column property. Each column can reference only one
table.

• Does not process the column name you provide in the column_name parameter within the
reference clause.

• Does not allow referential constraints with cyclical references. For example, the original
referenced table cannot have a referential constraint to the original referencing table.

During replication processing, HVAR loads:

• Inserts to the referenced tables before the referencing table you specify in the replication
definition.

• Deletes to the referenced tables after the table you specify in the replication definition.

In some cases, updates to both tables fail because of conflicts. To prevent HVAR from retrying
replication processing, and thus decreasing performance, you can:

• Stop replication updates by setting dsi_command_convert to “u2di,” which converts
updates to deletes and inserts.

• Turn off dsi_compile_enable to avoid compiling the affected tables.

HVAR cannot compile tables with customized function strings, and tables that have referential
constraints to an existing table that it cannot compile. By marking out these tables, HVAR
optimizes replication processing by avoiding transaction retries due to referential constraint
errors.

Display HVAR Information
You can display information on configuration parameter properties and table references.

Display Configuration Parameter Properties
Use admin config to view information about database-level and table-level configuration
parameters as shown in the examples.

• Database-level:
• To display all database-level configuration parameters for the connection to the

nydb1 database of the NY_DS data server (NY_DS.nydb1), enter:

admin config, “connection”, NY_DS, nydb1

Performance Tuning

228 Replication Server

• To verify that dsi_compile_enable is on for the connection to NY_DS.nydb1, enter:

admin config, “connection”, NY_DS, nydb1,dsi_compile_enable

• To display all the database-level configuration parameters that have "enable" as part of
the name, such as dsi_compile_enable, enter:
admin config, “connection”, NY_DS, nydb1,"enable"

Note: You must enclose "enable" in quotes because it is a reserved word in Replication
Server. See Replication Server Reference Manual > Topics > Reserved Words.

• Table-level:
To display all configuration parameters after using dsi_command_convert to set d2none
on the tb1 table in the nydb1 database of the NY_DS data server, enter:

admin config, “table”, NY_DS, nydb1

See Replication Server Reference Manual > Replication Server Commands > admin
config.

Display Table References
Use rs_helprep, which you can execute on the Replication Server System Database (RSSD),
to view information about table references and RTL information.

To display information about the authors_repdef replication definition created using create
replication definition, enter:
rs_helprep authors_repdef

See Replication Server Reference Manual > RSSD Stored Procedures > rs_helprep.

System Table Support in Replication Server
Replication Server uses the rs_tbconfig table to store support table-level configuration
parameters, and the ref_objowner and ref_objname columns in the rs_columns
table to support referential constraints.

See Replication Server Reference Manual > Replication Server System Tables for full table
descriptions.

Mixed-Version Support and Backward Compatibility
HVAR can replicate referential constraints specified in replication definitions only if the
outbound route version is later than 15.5.

HVAR works if the outbound route version is earlier than 15.5. However, no referential
constraint information is available to a Replication Server with version 15.5 or later.

Continuous replication is the default replication mode available to all supported versions of
Replication Server. HVAR is only available with Replication Server 15.5 and later.

Enhanced DSI Efficiency
Enabling dsi_cmd_prefetch reduces data replication latency which decreases the length of
time that Replication Server waits for results from the replicate data server through the

Performance Tuning

Administration Guide Volume 2 229

ct_results routine, and subsequently reduces the length of time the data server waits for
Replication Server.

dsi_cmd_prefetch works by :

• Allowing Replication Server to prepare the next batch of commands for the replicate data
server before Replication Server processes results of the current batch from the replicate
data server.

• Improving concurrency between the DSI executor (DSI/E) and DSI scheduler (DSI/S)
threads.

Set dsi_cmd_prefetch on with alter connection or create connection.

For example, to enable dsi_cmd_prefetch for the connection to the pubs2 database in the
SYDNEY_DS data server, enter:
alter connection to SYDNEY_DS.pubs2
set dsi_cmd_prefetch to ‘on’

Default: off.

dsi_cmd_prefetch is a dynamic parameter. You need not suspend and resume the database
connection after you enable the parameter for the change to take effect.

If you also tune your data server to enhance performance, you may gain an additional
performance increase when you enable dsi_cmd_prefetch.

Note: When you set dsi_compile_enable to ‘on’, Replication Server ignores what you set for
dsi_cmd_prefetch.

Enhanced RepAgent Executor Thread Efficiency
You can improve performance in Replication Server by using the NRM thread to normalize
and pack Log Transfer Language (LTL) commands in parallel with parsing by the RepAgent
executor thread.

When you instruct Replication Server to enable the NRM thread, a thread splits from the
RepAgent executor thread to become the NRM thread. Parallel processing by the NRM thread
reduces the response time of the RepAgent executor thread.

After you enable the NRM thread, you can specify the memory available for the message
queue from the RepAgent executor thread to the NRM thread.

Enable NRM Thread
Set nrm_thread to on with configure replication server to enable the NRM thread.

Enter:
configure replication server
set nrm_thread to ‘on'

Default: off

Performance Tuning

230 Replication Server

nrm_thread is a server-level parameter. You must restart Replication Server after you change
the parameter value.

Specify Memory Available to RepAgent Executor
After you set nrm_thread to on, use the exec_nrm_request_limit parameter with configure
replication server or alter connection to specify the total amount of memory available to
RepAgent Executor thread for the message queue the NRM threads.

If the total amount of memory used by commands on the message queue is larger than than
what you specify with exec_nrm_request_limit, the RepAgent Executor thread sleeps,and
waits for memory to become available. As the NRM thread processes commands on the
message queue, it frees the memory for the RepAgent Executor thread.

For example, to set exec_sqm_nrm_request_limt to 1GB for the connection to the pubs2
database in the SYDNEY_DS data server, enter:
alter connection to SYDNEY_DS.pubs2
set exec_nrm_request_limit to ‘1073741824’

exec_nrm_request_limit values:

• Default:
• 32-bit – 1,048,576 bytes (1MB)
• 64-bit – 8,388,608 bytes (8MB)

• Maximum – 2,147,483,647 bytes (2GB)
• Minimum – 16,384 bytes (16KB)

After you change the configuration for exec_nrm_request_limit, suspend and resume the
Replication Agent. To suspend and resume:

• RepAgent for Adaptive Server, execute in Replication Server; sp_stop_rep_agent and
then sp_start_rep_agent.

• Replication Agent for supported non-ASE databases; execute suspend and then resume
in the Replication Agent.

Enhanced Distributor Thread Read Efficiency
Enables the distributor (DIST) thread to read SQL statements directly from the Stable Queue
Thread (SQT) cache. This reduces the workload from SQT and the dependency between the
two, and improves the efficiency of both SQT and DIST.

Use the dist_direct_cache_read parameter with configure replication server to use this
enhancement:

Enter:
configure replication server
set dist_direct_cache_read to ‘on’

Performance Tuning

Administration Guide Volume 2 231

By default, dist_direct_cache_read is set to ‘off’. If you disable the parameter, the distributor
thread requests SQL statements from SQT through the message queue. This leads to inbound
and outbound queue contention.

dist_direct_cache_read is a server-level parameter. You must restart Replication Server after
you enable or disable the parameter.

Enhanced Memory Allocation
Use the mem_reduce_malloc parameter with configure replication server to allocate
memory in larger chunks in Replication Server.

This reduces the number of memory allocations needed, and leads to improved Replication
Server performance.

Enter:
configure replication server
set mem_reduce_malloc to ‘on’

By default, mem_reduce_malloc is set to ‘off’.

mem_reduce_malloc is a dynamic parameter. You do not need to suspend or resume the
database connection when you change parameter settings.

Increase Queue Block Size
Increase the queue block size to improve replication performance.

The queue block size is the number of bytes in a contiguous block of memory used by stable
queue structures. Setting a larger queue block size allows Replication Server to process more
transactions in a single block. You can increase the queue block size from the default of 16KB
to 32KB, 64KB, 128KB, or 256KB. Performance improvement is also dependent on the
transaction profile and the environment.

Note: You must have the Advanced Services Options license, named REP_HVAR_ASE, to
use the increase queue block size feature.

Recommendations
Sybase strongly recommends that you:

• Verify you have sufficient memory before you increase the queue block size.
• Experiment with different queue block sizes to determine the optimum value for your

replication system.

Restrictions

• Make sure that there is no data flowing into Replication Server while the queue block size
change is in progress.

• You cannot change the queue block size while a subscription is being materialized, if
dematerialization is in progress, or if routes are being created or destroyed. The queue

Performance Tuning

232 Replication Server

block size change terminates with an error message while Replication Server continues
operating.

• Once you start the procedure to change the queue block size, Replication Server does not
accept another command to change the queue block size until the first change is
completed.

• Do not use any other procedures to change the queue block size in the RSSD directly, as
these procedures may result in inconsistencies in the queue block size configuration and
cause Replication Server to shut down.

Note: All queues are drained after the block size changes.

Changing the Queue Block Size
Modifying the queue block size is a major change to the Replication Server configuration and
affects all connections to the Replication Server. You must suspend log transfer and quiesce
Replication Server.

In the queue block size change procedure, "upstream" refers to all replication system
components that feed data to the Replication Server where you want to change the queue block
size and "downstream" refers to the components that receive data from the affected
Replication Server.

1. To maintain data integrity, stop data flowing into the Replication Server you want to
configure before you change the queue block size.:

a) Suspend log transfer from all Replication Agents to the Replication Server you want to
configure.

b) Suspend all upstream log transfer from Replication Agents.
c) Quiesce all upstream Replication Servers.
d) Suspend all incoming routes to the Replication Server you want to configure.
e) Quiesce the Replication Server you want to configure.

2. Use configure replication server with the set block_size to 'value' clause to set the queue
block size on the Replication Server you want to configure.

This command:
• Verifies that there is no subscription materialization in progress.
• Verifies that all log transfer is suspended.
• Verifies that all incoming routes are suspended.
• Verifies that the Replication Server is quiesced.
• Purges queues.
• Zeros the values in the rs_locater RSSD system table to allow Replication Agents

to resend transactions that may have not been applied to the replicate database when
you started the queue block size change procedure.

• Sets the queue block size to the value you entered.

Performance Tuning

Administration Guide Volume 2 233

• (Optional) If you include the with shutdown option, Replication Server shuts down.
The queue block size change takes effect when you restart the Replication Server.
Shutting down ensures that Replication Server clears all memory.

3. After you change the queue block size to a larger value, delete, or delete and recreate raw
partitions that you had created with the smaller block size value.

Partitions register the correct number of segments only if you create the partitions after you
change the block size.

4. Resume data flow:

a) If you used the with shutdown option, restart the Replication Server.
b) Resume log transfer from Replication Agents.
c) Resume all incoming routes.

5. Check for data loss at all downstream Replication Server RSSDs and data servers. Usually,
there is data loss from the RSSD of the Replication Server you configured. Ignore the data
loss from a replicate RSSD that receives data from the RSSD of the configured Replication
Server.

Follow the procedures to fix data loss at the data servers. If there is data loss at an RSSD,
you see a message similar to this in the log of the affected Replication Server:
E. 2010/02/12 14:12:58. ERROR #6067 SQM(102:0 primaryDS.rssd) - /
sqmoqid.c(1071)
Loss detected for replicateDS.rssd from primaryDS.RSSD

replicateDS is the replicate data server name and primaryDS is the primary data server
name.

Increasing Queue Block Size in a Simple Replication System
Set the queue block size of the primary and replicate Replication Servers in a simple
replication system.

The replication system consists of:

• primary database – pdb

• replicate database – rdb

• primary Replication Server – PRS
• RSSD of primary Replication Server – pRSSD

• replicate Replication Server – RRS
• RSSD of replicate Replication Server – rRSSD

 pRSSD rRSSD

 | |

pdb -----> PRS -----> RRS -----> rdb

In this example, RSSD refers to both Adaptive Server as the Replication Server System
Database (RSSD) and SQL Anywhere® as the Embedded Replication Server System

Performance Tuning

234 Replication Server

Database (ERSSD). See the Replication Server Reference Manual for the full syntax,
examples, and usage information for all commands.

1. Configure the primary Replication Server:

a) Suspend log transfer from all Replication Agents. At the primary Replication Server,
execute:
suspend log transfer from all

b) Quiesce the primary Replication Server:
admin quiesce_force_rsi

c) Set the queue block size at the primary Replication Server to 64KB:
configure replication server
set block_size to ‘64’

(Optional) Use the with shutdown option to set the block size and shut down the
primary Replication Server. For example:
configure replication server
set block_size to ‘64’ with shutdown

d) Look at the transaction log to verify that the primary Replication Server is not
materializing, that log transfer and routes are suspended, and that the primary
Replication Server is quiesced.

e) Restart the primary Replication Server if you have shut it down. See Replication Server
Administration Guide Volume 1 > Manage a Replication System > Starting
Replication Server.

f) Look at the primary Replication Server transaction log to verify that the block size is
changed.

g) Resume log transfer to allow Replication Agents to connect to the primary Replication
Server. At the primary Replication Server execute:
resume log transfer from all

h) Check the replicate Replication Server log file for information about data losses.
Ignore data loss occurring from the primary Replication Server RSSD to the replicate
Replication Server RSSD by executing the ignore loss command on the replicate
Replication Server:
ignore loss from PRS.pRSSD to RRS.rRSSD

2. Configure the replicate Replication Server:

a) Suspend log transfer from all Replication Agents. At the primary Replication Server
and at the replicate Replication Server, execute:
suspend log transfer from all

b) Quiesce the primary Replication Server:
admin quiesce_force_rsi

c) At all Replication Servers that originate routes to the replicate Replication Server,
suspend the routes:
suspend route to RRS

Performance Tuning

Administration Guide Volume 2 235

d) Quiesce the replicate Replication Server:
admin quiesce_force_rsi

e) Set the block size at the replicate Replication Server to 64KB:
configure replication server
set block_size to ‘64’

(Optional) Use the with shutdown option to shut down the replicate Replication
Server. For example:
configure replication server
set block_size to ‘64’ with shutdown

f) Look at the transaction log to verify that the replicate Replication Server is not
materializing, that log transfer and routes are suspended, and that the replicate
Replication Server is quiesced.

g) Restart the replicate Replication Server if you have shut it down.
h) Look at the the replicate Replication Server transaction log to verify that the block size

is changed.
i) Resume log transfer to allow Replication Agents to connect to the replicate Replication

Server. At the replicate Replication Server, execute:
resume log transfer from all

j) Resume log transfer to allow Replication Agents to connect to the primary Replication
Server. At the primary Replication Server execute:
resume log transfer from all

k) Resume the routes you suspended:
resume route to RRS

l) Check the the primary and replicate Replication Server log files for information about
data losses. Ignore data loss occurring between the primary RSSD and the replicate
RSSD if the replicate RSSD is replicated to the primary RSSD by executing the ignore
loss command on the primary Replication Server.
ignore loss from RRS.rRSSD to PRS.pRSSD

See also
• Ignore a Loss on page 345

Increasing Queue Block Size in a Replication System with an Intermediate
Route
Set the queue block size of the primary Replication Server in a replication system with an
intermediate route.

The replication system consists of:

• primary database – pdb

• replicate database – rdb

• primary Replication Server – PRS

Performance Tuning

236 Replication Server

• RSSD of primary Replication Server – pRSSD
• replicate Replication Server – RRS
• RSSD of replicate Replication Server – rRSSD
• intermediate Replication Server – IRS
• RSSD of intermediate Replication Server – iRSSD

 pRSSD iRSSD rRSSD

 | | |

pdb -----> PRS -----> IRS -----> RRS -----> rdb

In this example, RSSD refers to both Adaptive Server as the Replication Server System
Database (RSSD) and SQL Anywhere as the Embedded Replication Server System Database
(ERSSD). See the Replication Server Reference Manual for the full syntax, examples, and
usage information for all commands.

1. Suspend log transfer from all Replication Agents. At the primary Replication Server,
execute:
suspend log transfer from all

2. Quiesce PRS:
admin quiesce_force_rsi

3. Set the block size at the primary Replication Server to 64KB:
configure replication server
set block_size to ‘64’

(Optional) Use the with shutdown option to set the block size and shut down the primary
Replication Server. For example:
configure replication server
set block_size to ‘64’ with shutdown

4. Look at the transaction log to verify that the primary Replication Server is not
materializing, that log transfer and routes are suspended, and that the primary Replication
Server is quiesced.

5. Restart the primary Replication Server if you have shut it down. See Replication Server
Administration Guide Volume 1 > Manage a Replication System > Starting Replication
Server.

6. Look at the primary Replication Server transaction log to verify that the block size is
changed.

7. Resume log transfer to allow Replication Agents to connect to the primary Replication
Server. At the primary Replication Server execute:
resume log transfer from all

8. Check the intermediate and replicate Replication Server log files for information about
data losses. Ignore data loss occurring from the primary Replication Server RSSD to the
replicate Replication Server and from the primary RSSD to the intermediate RSSD by
executing the ignore loss command twice on the intermediate Replication Serve:

Performance Tuning

Administration Guide Volume 2 237

ignore loss from PRS.pRSSD to RRS
go
ignore loss from PRS.pRSSD to IRS.iRSSD

See also
• Ignore a Loss on page 345

Multi-Path Replication
Use multiple replication paths to increase replication throughput and performance, and reduce
contention.

In a single-path replication environment, transactions replicate serially from the primary
database to the replicate database to ensure the primary database transaction commit order,
and therefore to ensure that the replicate database is consistent with the primary database. The
serial mode of applying transactions to the replicate database remains, even though multiple
applications typically execute their respective transactions in parallel at the primary database,
or even if there are transactions arriving from multiple primary databases.

There are replication environments that can maintain data consistency within a subset of
tables, without serializing all transactions that originate from the same primary database. A
typical example of this environment is when different applications that access different sets of
data modify a single primary database. The different sets of data within the subset of tables
that are modified by a specific application continue to replicate serially. Data in different
subsets of tables can replicate in parallel.

Multi-Path Replication™ supports the replication of data through different streams, while still
maintaining data consistency within a path, but not adhering to the commit order across
different paths.

A replication path encompasses all the components and modules between the Replication
Server and the primary or replicate database. In multipath replication, you can create multiple
primary replication paths for multiple Replication Agent connections from a primary database
to one or more Replication Servers, and multiple replicate paths from one or more Replication
Servers to the replicate database. You can configure multi-path replication in warm standby
and multisite availability (MSA) environments. You can convey transactions over dedicated
routes between Replication Servers to avoid congestion on shared routes, and you can
dedicate an end-to-end replication path from the primary database through Replication
Servers to the replicate database, to objects such as tables and stored procedures.

License
Multi-Path Replication is licensed as part of the Advanced Services Option. See Replication
Server Installation Guide > Planning Your Installation > Obtaining a License.

Performance Tuning

238 Replication Server

System Requirements
Replication Server supports multipath replication between Adaptive Server databases where
the primary data server is Adaptive Server 15.7 and later.

Multi-Path Replication Quick Start
Set up a multi-path replication replication system comprising of two primary and replicate
paths for end-to-end replication.

1. Select or create two sets of tables or stored procedures that you want to replicate through
two replication paths.

2. Use rs_init to add the primary and replicate Adaptive Server databases to the replication
system.

3. Enable multithreaded RepAgent.
At the primary Adaptive Server, enter:
sp_config_rep_agent primary_database_name, ‘multithread rep
agent’, ‘true’

4. Set the number of replication paths for RepAgent.
For example, to enable two paths, enter:
sp_config_rep_agent primary_database_name, 'max number of
replication paths', '2'

5. Create an alternate replication path from the primary database to Replication Server.

a) Create the alternate physical RepAgent replication path named alternate_path_name.
At the primary Adaptive Server, enter:
sp_replication_path "primary_database_name", 'add',
"alternate_path_name", "repserver_name",
"repserver_user", "repserver_password"

b) Create the corresponding alternate primary connection from Replication Server to the
primary database and bind it to the alternate physical RepAgent replication path by
using the same RepAgent replication path name—alternate_path_name.
At the Replication Server, enter:
create alternate connection to
primary_dataserver.primary_database
named primary_dataserver.alternate_path_name
set error class to rs_sqlserver_error_class
set function string class to rs_sqlserver_function_class
set username to primary_db_maintenance_user
set password to primary_db_maintenance_password
with primary only

The replication system contains two primary replication paths—the default and
alternate_path_name

6. Create an alternate replicate connection from Replication Server to the replicate database
using the same alternate replication path name—alternate_path_name.

Performance Tuning

Administration Guide Volume 2 239

create alternate connection to
replicate_dataserver.replicate_database
named replicate_dataserver.alternate_path_name

The replication system contains two replicate replication paths—the default and
alternate_path_name

7. Bind one set of objects such as tables or stored procedures to the alternate replication
path.
sp_replication_path pdb, 'bind', "table",
"[table_owner].table_name", "alternate_path_name"

The other set of objects uses the default replication path. You can only bind objects to
alternate replication paths. All objects that you do not bind to an alternate replication path,
use the default path instead.

8. Create a replication definition against the primary database.
For example to create the authors_rep replication definition for the authors table:

create replication definition authors_rep
with primary at primary_dataserver.primary_database
with all tables named 'authors'
...
go

If the default primary connection and the alternate primary connection are on different
Replication Servers, create replication definitions on each Replication Server.

9. Create a subscription against the default primary connection and the default replicate
connection.
create subscription subscription_default_path for
replication_definition
with primary at primary_dataserver.primary_database
with replicate at replicate_dataserver.replicate_database

10. Create a subscription against the alternate primary connection and the alternate replicate
connection.
create subscription subscription_alternate_path for
replication_definition
with primary at primary_dataserver.alternate_path_name
with replicate at replicate_dataserver.alternate_path_name

Parallel Transaction Streams
Multi-path replication can improve replication performance as long as transactions can be
divided into parallel streams, and do not have to be serially committed across different
streams.

You can improve replication performance by:

• Dividing transactions into parallel replication paths to reduce congestion. You can divide
transactions according to parallelization rules such as transaction attributes or derived data

Performance Tuning

240 Replication Server

values. For example, you can divide transactions by the session ID on the primary database
or by the user who originated the transaction.

• Dedicating paths to specific objects such as tables or stored procedures.
• Dedicating a Replication Server to each path.
• Allocating dedicated paths or less congested paths for priority replication.

Default and Alternate Connections
In multipath replication, connections include the default and one or more alternate
connections.

A connection that accepts data from a Replication Agent is a primary connection, and a
connection that applies data to a database is replicate connection. A default or alternate
connection can be a primary or replicate connection.

The default connection is the one that you create from a Replication Server to a specific
primary or replicate database when you add the database to the replication domain. You can
use rs_init, the Replication Manager Sybase Central plug-in, create connection, or create
connection ... using profile to create the default connection depending on whether the data
server is Adaptive Server or a supported non-ASE data server.

The default connection uses the data server and database names in the form of
dataserver.database as the connection name, where dataserver and database are the actual data
server and database names, respectively.

You can create multiple alternate connections after you create the default connection, which is
required. Each alternate connection must have a unique name.

After you create an alternate connection, you can alter the connection properties or drop the
connection. You can also display the status of all connections and create subscriptions for the
connection.

Multiple Connections to the Replicate Database
Create multiple connections from Replication Server to the replicate database.

When you create multiple connections to the replicate database, each replication connection
subscribes to one transaction stream. Transactions in the same stream adhere to the primary
commit order. Transactions in different streams are applied in parallel and may not be in
primary commit order.

Default and Alternate Replicate Connections
You can also create replicate connections from multiple Replication Servers to the same
replicate database in the same replication domain. Only one Replication Server in the
replication domain can possess and control the default replicate connection. You cannot create
multiple default replicate connections from other Replication Servers in the domain. Other
Replication Servers can have only alternate replicate connections.

Performance Tuning

Administration Guide Volume 2 241

After you create an alternate replicate connection, you can alter the connection properties or
drop the connection. You can also display the status of all connections and create subscriptions
for the connection.

Creating Alternate Replicate Connections
Use create alternate connection to create alternate connections from Replication Server to
the replicate database.

Enter:
create alternate connection to dataserver.database
named conn_server.conn_db
[set error class [to] error_class
set function string class [to] function_class
set username [to] user
set password [to] pwd]
[set database_param [to] ‘value’]

where:
• dataserver and database – are the replicate data server and database.
• conn_server.conn_db – the alternate replicate connection, which comprises the data server

name and a connection name.
• If conn_server is different from dataserver, there must be an entry for conn_server in

the interface file.
• If conn_server is the same as dataserver, conn_db must be different from database.
• Each replicate connection name must be unique in a replication system.

• set function string class [to] function_class, set username [to] user, and set password
[to] pwd – existing clauses for alter connection and create connection that you can use
when you create alternate connections.
• If you omit these clauses, the alternate replicate connection inherits the values that you

set with the default replicate connection.
• If you omit these clauses when you create an alternate connection on a (current)

Replication Server that is different from the (controller) Replication Server that
controls the default connection, the current Replication Server returns an error.

• The alternate connection can inherit the values from the default connection only if the
same Replication Server controls both alternate and default connections.

• If you do not set the maintenance user for the alternate connection, it inherits the
default connection maintenance user. The alternate connection uses any new
maintenance user that you specify for the alternate connection.

• set param – clauses for existing optional connection parameters for alter connection and
create connection.
• Any value you set for the alternate replicate connection overrides inherited values from

the default connection or the default values.
• The alternate connection can inherit the values from the default connection only if the

same Replication Server controls both alternate and default connections.

Performance Tuning

242 Replication Server

For example, to create an alternate replicate connection named
FINANCE_DS2.rdb_conn2 to the rdb replicate database in the FINANCE_DS data
server:
create alternate connection to FINANCE_DS.rdb
named FINANCE_DS2.rdb_conn2
go

Note: You must define FINANCE_DS and FINANCE_DS2 in the interfaces or
sql.ini file

Altering or Dropping Alternate Replicate Connections
Alter or drop default or alternate replicate connections using the alter connection and drop
connection commands.

The data server and database names that you specify in the commands can be the default or
alternate replicate connection names.

You can use configuration parameters available to alter connection when you configure an
alternate or default replicate connection.

For example, to set dsi_max_xacts_in_group to 40 for the TOKYO_DS.rdb_conn2
alternate replicate connection, enter:
alter connection to TOKYO_DS.rdb_conn2
set dsi_max_xacts_in_group to '40'
go

Displaying Replicate Connection Information
Use the replicate parameter with admin show_connections to display information on all
replicate connections.

For example, at the Replication Server controlling the replicate databases in the
FINANCE_DS and NY_DS data servers, enter:
admin show_connections, 'replicate'

You see:
Connection Name Server Database User
------------------- ---------- -------- ----------
FINANCE_DS.fin_rdb FINANCE_DS fin_rdb rdb_maint
NY_DS.ny_rdb_conn2 NY_DS ny_rdb rdb_maint

FINANCE_DS.fin_rdb is the default connection between the Replication Server and the
fin_rdb database of the FINANCE_DS data server because the connection matches the
combination of the data server and database names.

NY_DS.ny_db_conn2 is an alternate connection between the Replication Server and
ny_rdb database of the NY_DS data server because the connection name does not match the
combination of the data server and database names.

Performance Tuning

Administration Guide Volume 2 243

Optionally, use the rs_databases system table to list both default and alternate
connections to the Replication Server.

Creating a Replication System with Multiple Replicate Connections
Create default and alternate replicate connections, and create the corresponding subscriptions
to build a multiple replicate connection replication system.

Prerequisites
Ensure that the transactions can be run in parallel, and then divide the replicate transactions
into two sets.

Task

This example scenario, which you can use as a model for creating a replication system with
multiple replicate connections, consists of the pdb primary database on the PDS primary data
server, containing the T1 and T2 tables with corresponding repdef1 and repdef2 replication
definitons. There is a transaction set affecting each table. The corresponding subscriptions are
sub1 and sub2. The rdb replicate database is on the RDS replicate data server and the primary
and replicate Replication Servers are RS1 and RS2.

1. In RS1, use rs_init or create connection to create the default replicate connection to the
replicate database.
create connection to RDS.rdb
using profile ase_to_ase;standard
set username to rdb_maint
set password to rdb_maint_ps
go

2. In RS1, create an alternate replicate connection named RDS.rdb1 to the rdb replicate
database.
create alternate connection to RDS.rdb
named RDS.rdb1
go

Optionally, create another alternate replicate connection to the replicate database from
RS2. In RS2, enter:
create connection to RDS.rdb
named RDS.rdb2
set error class to rs_sqlserver_error_class
set function string class to rs_sqlserver_function_class
set username to rdb_maint
set password to rdb_maint_ps
go

3. Create the sub1 subscription and specify the default replicate connection to replicate
transactions in the first transaction set.

Performance Tuning

244 Replication Server

create subscription sub1 for repdef1
with replicate at RDS.rdb
go

4. Create the sub2 subscription and specify an alternate replicate connection to replicate
transactions in the second transaction set.
create subscription sub2 for repdef2
with replicate at RDS.rdb2
go

Multiple Connections from the Primary Database
Create and manage multiple connections from Replication Server to the primary database that
you can associate with RepAgent paths from the primary database to Replication Server.

Creating Alternate Primary Connections
Use create alternate connection to create alternate connections from Replication Server to
the primary database.

Enter:
create alternate connection to dataserver.database
named conn_server.conn_db
[with {log transfer on | primary only}]

where:
• dataserver and database – are the primary data server and database.
• conn_server.conn_db – is the alternate primary connection name, which comprises the

data server name and a connection name.
• If conn_server is the same as dataserver, conn_db must be different from database.
• conn_server.conn_db must match the name of the connection between the Replication

Agent and Replication Server.
• Each primary connection name must be unique in a replication system.

• with log transfer on – instructs Replication Server to create an alternate primary
connection and an alternate replicate connection to the database you specify in
dataserver.database, with both connections having the name you specify in
conn_server.conn_db

• primary only – instructs Replication Server to create only an alternate primary connection
to the primary database with the name you specify in conn_server.conn_db.

For example, to create an alternate primary connection named SALES_DS.pdb_conn2 to
the pdb database in the SALES_DS data server, enter:

create alternate connection to SALES_DS.pdb
named SALES_DS.pdb_conn2
with primary only
go

Performance Tuning

Administration Guide Volume 2 245

Altering or Dropping Alternate Primary Connections
Alter or drop default or alternate primary connections using the existing alter connection and
drop connection commands respectively.

For example, you can use alter connection to enable or disable a default primary connection to
the primary database you specify in dataserver.database:
alter connection to dataserver.database
set primary only [on|off]

Set to off to enable the replicate connection.

Displaying Primary Connection Information
Use the primary parameter with admin show_connections to display information on all
primary connections.

For example, at the Replication Server controlling the primary databases in the SALES_DS
data server, enter:
admin show_connections, 'primary'

You see:
Connection Name Server Database User
---------------- ---------- --------- ----------
SALES_DS.pdb SALES_DS pdb pdb_maint
SALES_DS.pdb_conn2 SALES_DS pdb pdb_maint

SALES_DS.pdb is the default connection between the Replication Server and the pdb
database of the SALES_DS data server because the connection name matches the
combination of the data server and database names.

SALES_DS.pdb_conn2 is an alternate connection between the Replication Server and the
pdb database of the SALES_DS data server because the connection name does not match the
combination of the data server and database names.

Optionally, use the rs_databases system table to list both default and alternate
connections to the Replication Server.

Replication Definitions and Subscriptions
Use replication definitions and subscriptions to define replication across multiple alternate
connections

Replication Definitions and Subscriptions for Alternate Connections
A replication definition that you create for a primary database applies to all primary
connections, default and alternate, between the Replication Server that controls the
replication definition and the primary database. Therefore, you must drop all replication
definitions for the primary database before you drop the last primary connection to the
primary database.

Performance Tuning

246 Replication Server

With system version 1570, you can create replication definitions and publications only against
a database. The name you specify for the with primary at clause of the create replication
definition command must be the primary database name.

Since all primary connections between a primary database and a Replication Server share all
replication definitions, you must specify in the subscription which primary connection is the
data source and which replicate connection is the replication target. Specify the corresponding
default or alternate connection name in the with primary and the with replicate clause of
create subscription. If you do not specify a connection name in the with primary clause,
Replication Server creates the subscription against the default primary connection to the
primary database.
create subscription sub_name
for {table_repdef | func_repdef | publication pub |
database replication definition db_repdef}
with primary at data_server.database
with replicate at data_server.database
[where {column_name | @param_name}
 {< | > | >= | <= | = | &} value
[and {column_name | @param_name}
 {< | > | >= | <= | = | &} value]...]
[without holdlock | incrementally | without materialization]
[subscribe to truncate table]
[for new articles]

When you upgrade from a Replication Server version that does not support alternate
connections, all subscriptions remain defined against the default primary connection and
default replicate connection in the upgraded Replication Server.

Example 1 – Subscribe to an Alternate Primary Connection

To create the sub_conn2 susbcription against the repdef_conn2 replication definition on the
LON_DS.pdb_conn2 alternate primary connection to the LON_DS primary data server
where NY_DS.rdb is the default replicate connection, enter:
create subscription sub_conn2 for repdef_conn2
with primary at LON_DS.pdb_conn2
with replicate at NY_DS.rdb
without materialization
go

Example 2 – Subscribe to an Alternate Replicate Connection

To create the sub_conn2 susbcription for the repdef_conn2 replication definition on the
NY_DS.rdb_conn2 alternate replicate connection, enter:

create subscription sub_conn2 for repdef_conn2
with replicate at NY_DS.rdb_conn2
without materialization
go

Performance Tuning

Administration Guide Volume 2 247

Moving Subscriptions Between Connections
Use alter subscription to move a subscription between replicate connections of the same
replicate database that use the same Replication Server, without the need to rematerialize.

Execute alter subscription at the replicate Replication Server:
alter subscription sub_name
for {table_repdef|func_repdef|{{publication pub|
database replication definition db_repdef}
with primary at primary_dataserver_name.primary_database_name}}
move replicate from ds_name.db_name
to ds_name1.db_name1

where you are moving the subscription from the ds_name.db_name replicate connection to
the ds_name1.db_name1 replicate connection.

For example, to move the sub1 subscription for the rep1 replication definition from the
RDS.rdb1 connection to the RDS.rdb2 connection, enter:

alter subscription sub1 for rep1
move replicate from RDS.rdb1
to RDS.rdb2

You cannot use alter subscription if the primary Replication Server version is earlier than
1570. Instead, you must drop and re-create the subscription at the connection you want.

To move multiple subscriptions that must replicate through the same path, suspend log
transfer for the primary connections and then resume log transfer after you move all the
subscriptions.

Multiple Primary Replication Paths
Create multiple primary replication paths from the primary database to one or more
Replication Servers to increase replication throughput and avoid contention, or to route data to
different Replication Servers.

Each primary replication path consists of a RepAgent path from the primary database to a
Replication Server and an associated primary connection from the Replication Server to the
primary database. You can bind objects, such as tables or stored procedures, to one or more of
these paths.

A physical path defines the Replication Server that is going to receive data that you bind to the
path, and the RepAgent sender thread that connects to the same Replication Server. Use the
same connection name to associate the RepAgent physical path from the primary database to
the Replication Server with the corresponding connection from the Replication Server to the
primary database.

A logical path groups one or more physical paths under a single name to distribute data to
multiple Replication Servers. If you need to replicate a table to multiple destinations, you can
bind the table to a logical path that groups the relevant physical paths, instead of binding the
table to the physical path for each destination

Performance Tuning

248 Replication Server

Creating Multiple Primary Replication Paths
You can create multiple primary replication paths from the primary database to one or more
Replication Servers. Each primary path consists of a RepAgent path and an associated
primary connection.

1. Enable multithreaded RepAgent and enable RepAgent for multiple replication paths.

2. Create the default primary connection and RepAgent replication path with rs_init.

3. Create alternate primary replication paths where each consists of an alternate primary
connection linked to an alternate RepAgent replication path.

4. Bind objects that you want to replicate through a specific primary replication path.

Enabling Multithreaded RepAgent and Multiple Paths for RepAgent
Enable multithreaded RepAgent and configure it to use additional paths from the primary
database.

By default, the Adaptive Server RepAgent consists of a single thread that scans the primary
database log, generates LTL, and sends the LTL to Replication Server. With multithreaded
RepAgent, the scanning and sending activities are performed by separate threads.

If you use multithreaded RepAgent, there is always a default path to send data to the
Replication Server. RepAgent creates the default path when you initially enable RepAgent on
a database.

Multiple replication paths can process only SQL statement replication transactions that are
generated by Adaptive Server 15.7 and later.

1. Set the Memory Available to RepAgent

You must provide sufficient memory for the RepAgent thread in Adaptive Server before
you enable and configure multiple RepAgent sender threads.

2. Enable Multithreaded RepAgent

Enable or disable a multithreaded RepAgent which uses separate threads for the RepAgent
scanner and sender activities.

3. Set the Number of Send Buffers

Set the maximum number of send buffers that the scanner and sender tasks of
multithreaded RepAgent can use.

4. Set the Maximum Number of Replication Paths for RepAgent

Set the maximum number of paths that you allow RepAgent to use to replicate data out of
the primary database. RepAgent generates one RepAgent sender thread for each
RepAgent path.

5. Display Configuration Parameter Settings

Performance Tuning

Administration Guide Volume 2 249

Use Adaptive Server stored procedures to display the settings of the RepAgent
configuration parameters and other information on RepAgent multithreaded and multiple
path status.

Setting the Memory Available to RepAgent
You must provide sufficient memory for the RepAgent thread in Adaptive Server before you
enable and configure multiple RepAgent sender threads.

The default size for the memory pool dedicated to the RepAgent thread in Adaptive Server is
4096 pages.

1. Display the current RepAgent thread pool size and the settings of other RepAgent thread
parameters. At the primary Adaptive Server, enter:
sp_configure 'Rep Agent Thread administration'
go

You see:
Group: Rep Agent Thread Administration

Parameter Default Memory Config Run Unit Type
Name Used Value Value

enable rep 0 0 1 1 switch dynamic
agent threads

replication 4096 8194 4096 4096 memory dynamic
agent memory pages(2k)
size

This example shows that enable rep agent threads is a dynamic parameter that you switch
on or off. Changes to dynamic parameters do not require a RepAgent restart.

2. Change the memory that Adaptive Server allocates to the RepAgent thread pool.
For example, to set the pool size to 8194 pages, at the primary Adaptive Server enter :
sp_configure 'replication agent memory size', 8194
go

You see:
Group: Rep Agent Thread Administration

Parameter Default Memory Config Run Unit Type
Name Used Value Value

replication 4096 16430 8194 8194 memory dynamic
agent memory pages(2k)
size
(1 row affected)
Configuration option changed. ASE need not be rebooted since the
option is dynamic.
Changing the value of 'replication agent memory size' to '8194'
increases the amount of memory ASE uses by 8236 K.

Performance Tuning

250 Replication Server

Enabling Multithreaded RepAgent
Enable or disable a multithreaded RepAgent which uses separate threads for the RepAgent
scanner and sender activities.

Log in to the primary Adaptive Server and enter:
sp_config_rep_agent dbname, 'multithread rep agent', {'true' |
'false'}

where dbname is the Adaptive Server primary database.

Set to true to enable multithreaded RepAgent. The default is false. You must restart RepAgent
for the change to take effect.

Setting the Number of Send Buffers
Set the maximum number of send buffers that the scanner and sender tasks of multithreaded
RepAgent can use.

You can set the number of send buffers when you enable multithreaded RepAgent or even after
you complete the process of enabling and configuring RepAgent for multi-path replication.

At the primary Adaptive Server, enter:
sp_config_rep_agent dbname, 'number of send buffers',
'num_of_send_buffers'

where dbname is the Adaptive Server primary database.

For example, to set the number of send buffers to 40 for the pdb1 database, enter:

sp_config_rep_agent pdb1, 'number of send buffers', '40'

The default for number of send buffers is 50 buffers. You can set values between 1 and the
value of MAXINT which is 2,147,483,647. The parameter is dynamic; you need not restart
RepAgent.

Each send buffer is the same size, which you can set using the send buffer size RepAgent
parameter. See Replication Server Reference Manual > Adaptive Server Commands and
System Procedures > sp_config_rep_agent.

Setting the Maximum Number of Replication Paths for RepAgent
Set the maximum number of paths that you allow RepAgent to use to replicate data out of the
primary database. RepAgent generates one RepAgent sender thread for each RepAgent path.

At the primary Adaptive Server, enter:

sp_config_rep_agent dbname, 'max number replication paths', 'max
number replication paths value'

where dbname is the Adaptive Server primary database.

For example, to set max number replication paths to 3 on the pdb1 database, enter:

sp_config_rep_agent pdb1, 'max number replication paths', '3'

Performance Tuning

Administration Guide Volume 2 251

If max number replication paths is greater than 1, RepAgent continues to use the default path
for all replicated objects that you do not specifically bind to a path.

If max number replication paths is less than the number of paths with replication objects
bound to the paths, RepAgent reports an error and terminates.

Display Configuration Parameter Settings
Use Adaptive Server stored procedures to display the settings of the RepAgent configuration
parameters and other information on RepAgent multithreaded and multiple path status.

• sp_config_rep_agent – specify only the database name to display the settings of
parameters you set with sp_config_rep_agent

• sp_help_rep_agent – to display additional information on the RepAgent status, specify:
• send – displays the number of send buffers that you have allocated to RepAgent.
• config – displays information on the RepAgent multiple path configuration

parameters.
• process – displays information about the multiple Rep Agent processes when you

enable multithread rep agent.
• sp_who – displays information on RepAgent processes and threads running in Adaptive

Server

See Replication Server Administration Guide Reference Manual > Adaptive Server
Commands and System Procedures for sp_config_rep_agent and sp_help_rep_agent.

See Adaptive Server Reference Manual: Procedures > System Procedures > sp_who.

Creating Alternate Replication Paths for the Primary Database
Use the add parameter with sp_replication_path to create alternate physical paths between
the primary database and a Replication Server by associating a RepAgent replication path
with a primary connection from the Replication Server.

Prerequisites
Create the default replication path between the primary database and Replication Server with
rs_init.

Task

Using the example replication system consisting of the PDS primary data server, pdb
database, and RS1 and RS2 Replication Servers, create two alternate replication paths on the
primary database to make a total of three primary replication paths including the default
primary replication path.

1. Create an alternate primary replication path between pdb and RS2 named pdb_1:

a) Create an alternate physical replication path named pdb_1 between pdb and RS2.
At PDS, enter:

Performance Tuning

252 Replication Server

sp_replication_path "pdb", 'add', "pdb_1", "RS2", "RS2_user",
"RS2_password"

b) Create the corresponding alternate primary connection named pdb_1 from RS2 to pdb
At RS2, enter:
create alternate connection to PDS.pdb
named PDS.pdb_1
set error class to rs_sqlserver_error_class
set function string class to rs_sqlserver_function_class
set username to pdb1_maint
set password to pdb1_maint_ps
with primary only

2. Create another primary replication path between pdb and RS1 named pdb_2:

a) Create an alternate physical replication path named pdb_2 between pdb and RS1.
At PDS, enter:
sp_replication_path "pdb", 'add', "pdb_2", "RS1", "RS1_user",
"RS1_password"

b) Create the corresponding alternate primary connection named pdb_2 from RS1 to pdb
At RS1, enter:
create alternate connection to PDS.pdb
named PDS.pdb_2
with primary only

Dropping a Replication Server Definition
Use the drop parameter with sp_replication_path to remove a Replication Server as a
destination from a physical replication path that is not the default primary replication path.

You cannot drop a default primary replication path and you cannot drop any primary
replication path if there are objects bound to the path.
To drop RS1 as a destination, at PDS enter:
sp_replication_path 'pdb', 'drop', "RS1"

Creating Logical Primary Replication Paths
Use the add and logical parameters with sp_replication_path to create logical primary
replication paths that you can use to distribute data and objects bound to a physical path to
multiple Replication Servers.

Prerequisites
Create the relevant physical primary replication paths to support the logical primary
replication paths.

Task

If you bind a replication object such as the dt1 dimension table to pdb_1, dt1 always travels
through pdb_1 to RS2. Using the example replication system and the three physical primary
replication paths—default, pdb_1, and pdb_2, you can create a logical replication path named
logical_1 to distribute dt1 through pdb_2 to RS2.

Performance Tuning

Administration Guide Volume 2 253

Note: You cannot add the default path to a logical path.

1. Create the logical_1 logical path and add pdb_1 as a physical primary replication path:
At PDS, enter:
sp_replication_path 'pdb', 'add', 'logical', 'logical_1', 'pdb_1'

logical_1 sends data through pdb_1 to RS1 only.

2. Add pdb_2 as a physical primary replication path for logical_1:
At PDS, enter:
sp_replication_path 'pdb, 'add', 'logical', 'logical_1', 'pdb_2'

logical_1 sends data through pdb_1 to RS1 and pdb_2 to RS2.

Dropping Elements in a Logical Primary Replication Path
Use the drop and logical parameters with sp_replication_path to remove elements from a
logical replication path.

In this example, the logical_1 logical path contains the pdb_1 and pdb_2 physical paths, which
are called elements of logical_1. You can remove an element from the logical path.

Warning! If you remove a path from, or add a path to an existing logical path, the set of
destinations can change and replicated objects may not get to the destinations that the
replicated objects did go to before the change.

1. Remove pdb_1 from logical_1:
sp_replication_path 'pdb', 'drop', 'logical', 'logical_1',
'pdb_1'

The logical_1 logical path now contains only the pdb_2 physical path. Any objects bound
to logical_1 replicate only through pdb_2.

2. Remove pdb_2 from logical_1:
sp_replication_path 'pdb', 'drop', 'logical', 'logical_1',
'pdb_2'

If you remove the last element, and if there are no objects bound to the logical path,
Replication Server removes the last element and the entire logical path together because a
logical path cannot exist without its elements.

Removing a Logical Path
Use the drop and logical parameters with sp_replication_path to remove an entire logical
replication path.

To remove the entire logical path, do not specify a Replication Server or element in the
command. If you remove the last element in a logical path, Replication Server removes the
entire logical path.

Note: You cannot remove a logical path or a physical path if objects are still bound to it.

To remove the logical_1 logical path, enter:

Performance Tuning

254 Replication Server

sp_replication_path 'pdb', 'drop', 'logical', 'logical_1'

Binding Objects to a Replication Path
Use the bind parameter with sp_replication_path to associate an object with a physical or
logical primary replication path. The bound object always follows the same path during
replication.

You can bind objects, such as tables or stored procedures, to one or more primary replication
paths. When you bind an object to a path, RepAgent sends any replicable actions that you
perform upon that object through the path to the Replication Servers that you define in your
multiple replication path configuration. If you do not bind an object to a path, RepAgent uses
the default path to send the object to the Replication Server defined in the default path. You
cannot bind an object to the default path and you do not need to do anything to send an object
through the default path.

To bind an object to a primary replication path, enter:
sp_replication_path dbname, 'bind', "object_type",
"[table_owner].object_name", "path_name"

where:
• object_type – table or sproc (stored procedure).
• [table_owner.]object_name – the table or stored procedure name.

Note: If you do not specify a table owner if the object is a table, the binding applies only to
tables owned by dbo, the database owner.

• path_name – a physical or logical path name.

For example, to bind the:
• t1 table to the pdb_2 replication path:

sp_replication_path pdb, 'bind', "table", "t1", "pdb_2"

• t2 table belonging to owner1 to the pdb_2 replication path:

sp_replication_path pdb, 'bind', "table", "owner1.t2", "pdb_2"

• sproc1 stored procedure to the pdb_2 replication path:
sp_replication_path pdb, 'bind', "sproc", "sproc1", "pdb_2"

• dt1 dimension table object to the everywhere logical path:

sp_replication_path pdb, 'bind', "table", "dt1", "everywhere"

Optionally, use the asterisk "*" or percent "%" wildcard characters, or a combination of both in
object_name to specify a range of names or matching characters that you want to bind to a
path. For example, to bind tables with names that match various wildcard character
combinations to the pdb_2 replication path:
• sp_replication_path pdb, 'bind', 'table', 'a*', "pdb_2"

• sp_replication_path pdb, 'bind', 'table', 'au%rs', "pdb_2"

• sp_replication_path pdb, 'bind', 'table', 'a*th%s', "pdb_2"

• sp_replication_path pdb, 'bind', 'table', 'authors%', "pdb_2"

Performance Tuning

Administration Guide Volume 2 255

Unbinding Objects from a Replication Path
Use the unbind parameter with sp_replication_path to remove the association between a
bound object and a physical or logical replication path.

To remove the binding between an object and one or more primary replication paths, enter:
sp_replication_path dbname, 'unbind', "object_type", "object_name",
{"path_name"|all}

where:
• object_type – specifies the type of object that can be either path, table, or sproc (stored

procedure).
• [table_owner.]object_name – name of the table, stored procedure, or path that you want to

unbind.

Note: If you do not specify a table owner if the object is a table, the binding applies only to
tables owned by dbo, the database owner.

• path_name | all – specifies a physical or logical path name, or all paths. If you specify path
as the object_type, provide the path name as object_name, and specify the all option,
Replication Agent unbinds all objects from the path name you specified.

For example:
• To remove the binding t1 table from the pdb_2 replication path:

sp_replication_path pdb, 'unbind', "table", "t1", "pdb_2"

• To remove all bindings on the t1 table:

sp_replication_path pdb, 'unbind', "table", "t1", "all"

• To remove the binding of all objects to the pdb_2 replication path:
sp_replication_path pdb, 'unbind', 'path', 'pdb_2', "all"

Object Binding and Replication of SQL and DDL Statements
You can send SQL and DDL statements over the default path or over all paths for any object
that is not bound to a path.

With SQL statement replication and DDL replication, when you bind an object such as a table
to a specific replication path, any SQL or DDL statement that includes the object uses the
specified replication path. The SQL or DDL statement uses either the default replication path
or all replication paths if the statement includes any object that you have not bound to a path.

Use ddl path for unbound objects with sp_config_rep_agent to send SQL or DDL
statements for unbound objects over all paths or the default path:
sp_config_rep_agent dbname, 'ddl path for unbound objects', {'all' |
'default'}

The default setting is all.

Performance Tuning

256 Replication Server

Object Binding and Database Resynchronization
Multi-path replication sends the resync, resync purge, and resync init database
resynchronization markers through all available replication paths.

See Replication Server Administration Guide Volume 2 > Replication System Recovery >
Replicate Database Resynchronization for Adaptive Server > Configuring Database
Resynchronization > Send the Resync Database Marker to Replication Server.

Object Binding and rs_ticket
Multi-path replication sends the result of executing rs_ticket through all available replication
paths. You must filter the data to obtain the data relevant to you.

See Replication Server Reference Manual > RSSD Stored Procedures > rs_ticket.

Changing Configuration Values in a Replication Path
Use the config parameter with sp_replication_path to set parameter values in alternate
replication paths.

You can change only the password and user ID for alternate replication paths.

To change the value of a parameter for an alternate path, enter:
sp_replication_path dbname, 'config', "path_name",
 "config_parameter_name", "config_value"

where config_parameter_name is rs_username or rs_password.

For example, to change the:
• User name that pdb_1 uses to connect to RS1 to "RS1_user", enter at PDS:

sp_replication_path pdb, 'config', "pdb_1", "rs_username",
“RS1_user”

• Password that pdb_1 uses to connect to RS1 to "january", enter at PDS:

sp_replication_path pdb, 'config', "pdb_1", "rs password",
“january”

Use sp_config_rep_agent to configure parameters for the default replication path. See
Replication Server Reference Manual > Adaptive Server Commands and System Procedures
> sp_config_rep_agent.

Display Replication Path Information
Use the list parameter with sp_replication_path at the primary database to display
information on bindings and replication objects.

sp_replication_path dbname, 'list', ['object_type'], ['object_name']

• object_type – specify the type of object: path, table , sproc (stored procedure).
• object_name – display the binding relationships for a particular object. You must specify

object_type when you want to specify the name of an object.

Performance Tuning

Administration Guide Volume 2 257

Example 1
To display the path relationships of all bound objects, do not specify object_type or
object_name:
sp_replication_path 'pdb','list'
go

You see:
Binding Type Path
-------------------- -------- --------------------
dbo.dt1 T everywhere
dbo.sproc1 P pdb_1
dbo.sproc1 P pdb_2
dbo.t1 T pdb_2
dbo.t2 T pdb_1

(5 rows affected)

Logical Path Physical Path
---------------------------- ---------------------
everywhere pdb_1
everywhere pdb_2

(2 rows affected)
Physical Path Destination
------------------------------ -------------------
pdb_1 RS2
pdb_2 RS1

(2 rows affected)
(return status = 0)

Example 2
To display information on all bound tables:
sp_replication_path 'pdb','list','table'
go

You see:
Binding Type Path
-------------------- -------- --------------------
dbo.dt1 T everywhere
dbo.t1 T pdb_2
dbo.t2 T pdb_1

(3 rows affected)
(return status = 0)

Example 3
To display information on all stored procedures:
sp_replication_path 'pdb','list','sproc'
go

You see:

Performance Tuning

258 Replication Server

Binding Type Path
-------------------- -------- --------------------
dbo.sproc1 P pdb_2
dbo.sproc1 P pdb_1
dbo.sproc2 P pdb_1

(3 rows affected)
(return status = 0)

Example 4

To display information on only the sproc1 stored procedure:
sp_replication_path 'pdb','list','sproc','sproc1'
go

You see:
Binding Type Path
-------------------- -------- --------------------
dbo.sproc1 P pdb_2
dbo.sproc1 P pdb_1

(2 rows affected)
(return status = 0)

Example 5

To display information on all replication paths:
sp_replication_path 'pdb','list','path'
go

You see:
Path Type Binding
-------------------- -------- ----------------------
everywhere T dbo.dt1
pdb_1 P dbo.sproc1
pdb_1 T dbo.t2
pdb_2 P dbo.sproc1
pdb_2 T dbo.t1

(5 rows affected)
Logical Path Physical Path
----------------------------- ------------------------
everywhere pdb_1
everywhere pdb_2

(2 rows affected)
Physical Path Destination
----------------------------- ----------------------
pdb_1 RS2
pdb_2 RS1

(2 rows affected)
(return status = 0)

Performance Tuning

Administration Guide Volume 2 259

Example 6

To display information only on the "everywhere" logical replication path:
sp_replication_path 'pdb','list','path','everywhere'
go

You see:
Path Type Binding
-------------------- -------- -------------------------
everywhere T dbo.dt1

(1 rows affected)
Logical Path Physical Path
----------------------------- --------------------------
everywhere pdb_1
everywhere pdb_2

(2 rows affected)
Physical Path Destination
----------------------------- -------------------------
pdb_1 RS2
pdb_2 RS1

(2 rows affected)
(return status = 0)

Note: You also see the physical paths underlying the logical path.

Example 7

To display information only on the pdb_1 physical path:
sp_replication_path 'pdb','list','path','pdb_1'
go

You see:
Path Type Binding
-------------------- -------- --------------------
pdb_1 P dbo.sproc1
pdb_1 T dbo.t2

(2 rows affected)
Physical Path Destination
------------------------------ -------------------
pdb_1 RS2

(1 rows affected)
(return status = 0)

Creating Multiple Replication Paths for MSA Environments
Use replication definitions and subscriptions to bind a replicate connection for a replicate
database and a primary connection for a primary database to create two complete replication
paths in an MSA environment.

Performance Tuning

260 Replication Server

1. Divide transactions into two sets and ensure the transactions can be run in parallel.

For example, you can divide the transactions into two sets of objects such as tables or
stored procedures.

2. Create a default primary connection to the primary database and create a default replicate
connection to the replicate database.

3. Create an alternate primary connection to the primary database and create an alternate
replicate connection to the replicate database.

4. Enable multithreaded RepAgent and two replication paths for RepAgent, and bind the
objects to the replication paths.

5. Create a replication definition against the primary database.

If the default primary connection and the alternate primary connection are on different
Replication Servers, create replication definitions on each Replication Server.

6. Create a subscription against the default primary connection and the default replicate
connection.

7. Create a subscription against the alternate primary connection and the alternate replicate
connection.

Multiple Replication Paths for Warm Standby Environments
You can improve replication performance in warm standby environments with alternate
connections and alternate logical connections, or by building end-to-end replication paths.

Creating Alternate Logical Connections in a Warm Standby Environment
Use create alternate logical connection to create alternate logical connections for an existing
default logical connection in a warm standby environment.

You can use different Replication Servers to control the default logical connection and the
alternate logical connection. Both the active and standby databases must support having
multiple Replication Agents. When you switch the active and standby databases, execute the
switch active command for every logical connection—alternate and default. The warm
standy process is complete when you switch all the paths.

At the Replication Server that manages the warm standby pair, enter:
create alternate logical connection to LDS.ldb
named conn_lds.conn_ldb

where:
• LDS and ldb – the logical data server and database names
• conn_lds.conn_ldb – the data server and database connection components of the alternate

logical connection name.

Creating Alternate Connections in a Warm Standby Environment
Create an alternate primary connection to the active database or an alternate replicate
connection to the standby database for an alternate logical connection.

Performance Tuning

Administration Guide Volume 2 261

At the Replication Server that manages the warm standby pair, enter:
create alternate connection to ds_name.db_name
named conn_server.conn_db
...
[as {active|standby} for conn_lds.conn_ldb]

where:
• ds_name.db_name – the data server name and either the active or standby database name.
• conn_server.conn_db – the alternate active or standby connection, which comprise a data

server name a connection name. conn_ds must be the same as ds_name to support
incoming Replication Agent connections.

• conn_lds.conn_ldb – the data server and database connection components of the alternate
logical connection name.

• active | standby – specify whether to create an alternate connection to the active or standby
database.

Creating Multiple Replication Paths for Warm Standby Environments
Use logical connections to bind a replicate connection for a standby database and a primary
connection for an active database to create two complete replication paths between an active
database and a standby database in a warm standby environment.

1. Divide transactions into two sets and ensure the transactions in the two sets can be run in
parallel.

For example, you can divide the transactions into two sets of objects such as tables or
stored procedures.

2. Enable multithreaded RepAgent and two replication paths for RepAgent for both the
active database and replicate database, and bind the objects to the replication paths.

3. Create a logical connection. See create logical connection in the Replication Server
Reference Manual.

4. Use rs_init to add the active and the standby databases to the replication system.

5. Create an alternate logical connection

6. Create an alternate active connection for the alternate logical connection.

7. Use admin who to check for the REP AGENT thread and verify that the default and
alternate connections to the active database of the warm standby pair are active.
For example, you see:
31 REP AGEN Awaiting Command TOKYO_DS.pubs2

8. Create an alternate standby connection for the alternate logical connection.

Switching Active and Standby Databases
You must switch all the replication paths in a warm standby environment with multiple
replication paths when you switch from the active to the standby database.

The switching procedure is the same for alternate and default replication paths.

Performance Tuning

262 Replication Server

1. Switch all the alternate replication paths.

2. Switch the default replication path.

See also
• Switch the Active and Standby ASE Databases on page 84

Dedicated Routes
A dedicated route distributes only transactions for a specific primary connection. You can
create a dedicated route to the replicate Replication Server to replicate high priority
transactions or to maintain a less congested path for a specific primary connection.

A shared route is between a primary Replication Server and a replicate Replication Server that
distributes transactions for all the primary connections originating from the primary
Replication Server. You do not bind shared routes to a specific connection. Connections that
you do not bind to a dedicated route use any available valid shared route.

You can create a dedicated route only if:

• A shared route exists from the primary Replication Server to the destination Replication
Server and the shared route is a direct route. You cannot create a dedicated route if there is
only an indirect route between the Replication Servers.

• The shared route is valid and not suspended.
• The route version of the shared route is 1570 or later.

Creating Dedicated Routes
Use create route and the with primary at clause to create a dedicated route.

For example, to create a dedicated route between the RS_NY primary Replication Server and
the RS_LON replicate Replication Server for the NY_DS.pdb1 primary connection, at
RS_NY enter:
create route to RS_LON
 with primary at NY_DS.pdb1
 go

After you create a dedicated route for a specific connection, all transactions from the
connection to the destination Replication Server follow the dedicated route.

Commands to Manage Dedicated Routes
Use create route, drop route, resume route, and suspend route to manage and monitor
dedicated routes.

Include the with primary at dataserver.database clause in the command to specify a dedicated
route, where dataserver.database is the primary connection name.

See Replication Server Reference Manual > Replication Server Commands.

Performance Tuning

Administration Guide Volume 2 263

Com-
mand

Syntax Command and Parameter
Changes

create

route

create route to dest_repli-
cation_server {
 with primary at dataserv-
er.database |
 set next site [to]
thru_replication_server |
 [set username [to] user]
 [set password [to] passwd]
 [set route_param to 'val-
ue'
 [set route_param to
'value']...]
 [set security_param to
'value'
 [set security_param to
'value']...]}

Performance Tuning

264 Replication Server

Com-
mand

Syntax Command and Parameter
Changes

drop

route

drop route to dest_replica-
tion_server
 [with primary at dataserv-
er.database]
 [with nowait]

You must drop the dedicated route before you
drop a shared route.

After you drop a dedicated route, transactions
from the specified primary connection to the
destination Replication Server go through the
shared route.

Warning! Use the with nowait clause only as
a last resort.

The clause forces Replication Server to drop a
route even if the route contains transactions in
the outbound queue of the route. As a result,
Replication Server may discard some trans-
actions from the primary connections. The
clause instructs Replication Server to drop the
dedicated route even if the route cannot com-
municate with the destination Replication
Server.

If you use the clause, use sysadmin

purge_route_at_replicate at the former des-
tination site to remove subscriptions and route
information from the system tables at the des-
tination.

See Replication Server Administration Guide
Volume 1 > Manage Routes > Drop Routes >
drop route comand.

suspend

route

suspend route to dest_rep-
lication_server
 [with primary at dataserv-
er.database]

resume

route

resume route to dest_repli-
cation_server
 [with primary at dataserv-
er.database]
 [skip transaction with
large message]

Performance Tuning

Administration Guide Volume 2 265

Display Dedicated Route Information
Use admin who to display information on dedicated routes between Replication Servers.

In this example, there is a dedicated route from the RS_NY primary Replication Server to the
RS_LON replicate Replication Server for the NY_DS.pdb1 primary connection. Enter
admin who at the two Replication Servers and you see:

• At RS_LON:

Spid Name State Info
45 SQT Awaiting Wakeup 103:1 DIST NY_DS.pdb1
13 SQM Awaiting Message 103:1 NY_DS.pdb1
32 REP AGENT Awaiting Command NY_DS.pdb1
16 RSI Awaiting Wakeup RS_LON
11 SQM Awaiting Message 16777318:0 RS_LON
55 RSI Awaiting Wakeup RS_LON(103) /* Dedicated RSI
thread */
53 SQM Awaiting Message 16777318:103 RS_LON(103) /
*Dedicated RSI outbound queue */

• At RS_NY:

Spid Name State Info
37 RSI USER Awaiting Command RS_NY(103) /*Dedicated RSI user
*/
32 RSI USER Awaiting Command RS_NY

See Replication Server Reference Manual > Replication Server Commands > admin who.

Adaptive Server Monitoring Tables for Multiple Replication Paths
Use Adaptive Server monitoring tables to provide a statistical snapshot of the state of Adaptive
Server during replication using multiple paths involving RepAgent for Adaptive Server
primary databases. The tables allow you to analyze Adaptive Server performance.

Table Description

monRepLogActiv-
ity

Provides information from monitor counters updated by Replication
Agent

monRepScanners Provides statistics for the RepAgent Scanner task

monRepScanner-
sTotalTime

Provides information on where the RepAgent Scanner task is spending its
time

monRepSenders Provides processing information on RepAgent Sender tasks

See Adaptive Server Enterprise > Performance and Tuning Series: Monitoring Tables >
Introduction to Monitoring Tables > Monitoring Tables in Adaptive Server.

Performance Tuning

266 Replication Server

System Table Support for Alternate Primary and Replicate
Connections

Replication Server creates a row for each primary and replicate connection in the
rs_databases table and has a column—conn_id to uniquely identify the primary or
replicate connection in a particular row.

Replication Server uses the dsname and dbname columns to identify an alternate
connection by the connection name and identifies the default primary or replicate connection
by the data server and database names. dbid identifies the ID of the database that the
connection connects to. If the row is for a default connection, connid is equal to the dbid. If
the row is for an alternate connection, connid is not equal to the dbid. See Replication
Server Reference Manual > Replication Server System Tables.

Multiprocessor Platforms
You can run Replication Server on symmetric multiprocessor (SMP) or single-processor
platforms because the Replication Server multithreaded architecture supports both hardware
configurations. On a multiprocessor platform, Replication Server threads can run in parallel,
thereby improving performance and efficiency.

On a single processor platform, Replication Server threads run serially.

Replication Server is an Open Server application. Replication Server support for multiple
processors is based on Open Server support for multiple processors. Both servers use the
POSIX thread library on UNIX platforms and the WIN32 thread library on Windows
platforms. For detailed information about Open Server support for multiple processing
machines, see the Open Server Server-Library/C Reference Manual.

When Replication Server is in single-processor mode, a server-wide mutual exclusion lock
(mutex) enforces serial thread execution. Serial thread execution safeguards global data,
server code, and system routines, ensuring that they remain thread-safe.

When Replication Server is in multiprocessor mode, the server-wide mutex is disengaged and
individual threads use a combination of thread management techniques to ensure that global
data, server code, and system routines remain secure.

Enable Multiprocessor Support
Use configure replication server with the smp_enable option to specify whether Replication
Server takes advantage of a multiprocessor machine.

Enter:
configure replication server set smp_enable to 'on'

Performance Tuning

Administration Guide Volume 2 267

Setting smp_enable on specifies multiprocessor support; setting smp_enable off specifies
single-processor support. The default is on.

smp_enable is a static option. You must restart Replication Server after changing the status of
smp_enable.

Commands to Monitor Thread Status
You can verify Replication Server thread status using admin who commands or the
sp_help_rep_agent stored procedure.

• admin who – provides information on all Replication Server threads
• admin who_is_up or admin who_is_down – lists Replication Server threads that are

running, or not running.
• sp_help_rep_agent – provides information on the RepAgent thread and the RepAgent

User thread.

See also
• Verify and Monitor Replication Server on page 5

Monitor Performance
Replication Server provides monitors and counters to monitor performance.

See also
• Monitor Performance Using Counters on page 273

Allocation of Queue Segments
You can choose the disk partition to which Replication Server allocates segments for stable
queues. By choosing the stable queue placement, you can enhance load balancing and read/
write distribution.

Replication Server stores messages destined for other sites on partitions. It allocates space in
partitions to stable queues and operates in 1MB chunks called segments. Each stable queue
holds messages to be delivered to another Replication Server or to a data server. The queues
hold data until it is sent to its destination.

rs_init assigns Replication Server initial partition. You may need additional partitions,
depending on the number of databases and remote Replication Servers to which the
Replication Server distributes messages.

A Replication Server can have any number of partitions of varying sizes. The sum of the
partition sizes is the Replication Server capacity for queued transactions.

Performance Tuning

268 Replication Server

Default Allocation Mechanism
By default, Replication Server assigns queue segments to the first partition in an ordered list of
partitions.

When the first partition becomes full, the first partition becomes the last partition, and the next
queue segment is allocated to the new first partition. When the default method is used, the
rolling allocation of segments is automatic and cannot be controlled by the user.

Figure 22: Default Allocation Mechanism

Choose Disk Allocations
To choose the segment allocation, use the alter connection or alter route command with the
set disk_affinity option.

The syntax is:
alter connection to dataserver.database
 set disk_affinity to ['partition' | 'off']

alter route to replication_server
 set disk_affinity to ['partition' | 'off']

partition is the logical name of the partition to which you want to allocate the next segment for
the connection or route.

Each allocation directive is called a “hint” because Replication Server can override the
allocation if, for example, the allocated partition is full or has been dropped. If Replication
Server overrides the hint, it allocates segments according to the default allocation mechanism.

Performance Tuning

Administration Guide Volume 2 269

Replication Server checks for an allocation hint each time it allocates a new segment for a
queue. Each hint is stored in the rs_diskaffinity system table. Each partition may have
many hints, but each stable queue can have only one hint.

Successfully using disk allocation to improve performance depends on the architecture and
other characteristics of your site. One way to improve overall throughput is to associate faster
devices with those stable queues that process more slowly.

In addition, if new partitions are added after all connections are in place, the new partitions are
not used until the existing ones are filled. You can force a connection to use the new partition
by adding allocation hints.

Allocating Disk Partitions to Stable Queues
You can allocate different disk partitions to different stable queues.

You could, for example, make partitions of different sizes available to different database
connections. In this example, we add partitions of 10MB and 20MB to the Replication Server
and specify allocation hints for the TOKYO_DS and SEATTLE_DS data servers.

1. Make the partitions P1 and P2 on the device named /dev/rds0a available to
Replication Server.

Enter:
create partition P1 on '/dev/rds0a' with size 20

and

create partition P2 on '/dev/rds0a' with size 10

2. Suspend the connection to the TOKYO_DS and SEATTLE_DS data servers.

Enter:
suspend connection to TOKYO_DS

and
suspend connection to SEATTLE_DS

3. Specify allocation hints for the connection to the TOKYO_DS and SEATTLE_DS data
servers.

Enter:
alter connection to TOKYO_DS.db1
set disk_affinity to 'P1'

and
alter connection to SEATTLE_DS.db5
set disk_affinity to 'P2'

4. Resume the connections to the TOKYO_DS and SEATTLE_DS data servers.

Enter:
resume connection to TOKYO_DS

Performance Tuning

270 Replication Server

and
resume connection to SEATTLE_DS

Drop Hints and Partitions
You can remove an allocation hint using the alter connection or alter route command with the
set disk_affinity to 'off' parameter.

For example:
alter connection to TOKYO_DS.db1
set disk_affinity to 'P1' to 'off'

This command deletes the allocation hint for P1 from the rs_diskaffinity table.

You can remove a partition from Replication Server using the drop partition command. If the
partition you are dropping has one or more allocation hints in the rs_diskaffinity table,
Replication Server marks the allocation hints for deletion, but does not delete them until all
data stored on the partition has been successfully delivered and the partition has been dropped.

Heartbeat Feature in RMS
To view latency information, use the heartbeat feature in the command line service,
Replication Monitoring Services (RMS).

The heartbeat feature uses the stored procedure rs_ticket to generate latency information,
which is the amount of time it takes a transaction to move from the primary to the replicate
database. At a specified interval, the RMS executes rs_ticket at a primary database. The
latency information that has been generated is stored in a table in the replicate database.

RMS provides commands to set up the heartbeat process and to retrieve that latency
information from the replicate database. The heartbeat feature is available only through RMS.
See get heartbeat and get heartbeat tickets in Replication Server Reference Manual >
Replication Monitoring Services API .

Performance Tuning

Administration Guide Volume 2 271

Performance Tuning

272 Replication Server

Monitor Performance Using Counters

Replication Server has several hundred different counters that can monitor performance at
various points and areas in the replication process.

By default, counters are not active until you choose to activate them—with the exception of a
few counters that are always active.

To monitor performance using the RepAgent counters, see Replication Server Administration
Guide Volume 1 > Manage RepAgent and Support Adaptive Server > Use Counters to
Monitor RepAgent Performance.

Commands to View Counter Values
You can view current counter values and other performance information at any time using
several commands.

You can use:

• admin stats – displays current values for specified counters.
• admin stats, backlog – displays the current backlog in the Replication Server stable

queues.
• admin stats, { tps | cps | bps } – displays throughput in terms of transactions per second,

commands per second, or bytes per second.
• admin stats, { md | mem | mem_in_use } – displays message and memory information

Counter values can also be saved (or flushed) to the RSSD, where averages and rates can be
calculated and viewed using standard Transact-SQL statements or the rs_dump_stats stored
procedure.

Modules
In Replication Server, a module is a group of components that work together to perform
specific services.

For example, the Stable Queue Manager (SQM) consists of logically related components that
provide stable queue services. Replication Server provides counters that can track activity at
each instance (occurrence) of each module.

Some modules have exactly one instance in Replication Server. Instances of those modules
can be identified by the module name alone. Examples of this type of module are:

• System Table Services (STS)

Monitor Performance Using Counters

Administration Guide Volume 2 273

• Connection Manager (CM)

Other modules can have multiple instances in Replication Server. To uniquely identify each
instance of the module, you must include both the module name and the instance ID.
Examples include:

• Replication Server Interface (RSI)
• Distributor (DIST)
• Data Server Interface, scheduler thread (DSI/S)

Still other modules require three identifiers to differentiate them: the module name, the
instance ID, and an instance value. Examples include:

• Stable Queue Transaction thread (SQT)
• Stable Queue Manager (SQM)
• Data Server Interface, executor thread (DSIEXEC)

Replication Server Modules
Replication Server has several commonly used modules.

Counters for independent modules can be addressed directly using Replication Server
commands. To access counters for dependent modules, use the name of their parent modules.

Table 23. Replication Server Modules

Module name Acronym Independent/dependent

Connection Manager CM Independent

Distributor DIST Independent

Data Server Interface DSI Independent

DSI Executor DSIEXEC Dependent of DSI

RepAgent thread REPAGENT Independent

Replication Server Interface RSI Independent

RSI User RSIUSER Independent

Replication Server Global SERV Independent

Stable Queue Manager SQM Independent

SQM Reader SQMR Dependent of SQM

SQM Transaction Manager SQT Independent

System Table Services STS Independent

Thread Synchronization SYNC Independent

Monitor Performance Using Counters

274 Replication Server

Module name Acronym Independent/dependent

SYNC Element SYNCELE Dependent of SYNC

Counters
Each counter has a descriptive name and a display name that you use to identify the counter
when you enter RCL commands and when you view displayed information.

To view descriptive and status information about Replication Server counters, use the
rs_helpcounter stored procedure.

Different kinds of counters provide different types of information. Although not all counters
can be divided into discrete categories, when Replication Server displays counter information
it uses these categories:

• Observers – collect the number of occurrences of an event over a time period. For example,
observers might collect the number of times a message is read from a queue. Replication
Server reports the number of occurrences and the number of occurrences per second.

• Monitors – collect measurements at a given time or times. For example, monitors might
collect the number of operations per transaction. Replication Server reports the number of
observations, the last value collected, the maximum value, and the average value.

• Counters – collect a variety of measurements. Counters that measure duration are in this
group as are counters that collect total numbers of bytes. For this category, Replication
Server can report number of observations, total value, last value, maximum value, an
average, and rate per second.

See also
• View Information About the Counters on page 284

Data Sampling
You have several options for gathering data. You can choose whether to sample data over a
long period of time, a short period of time (seconds), or a single occurrence.

You can collect counter statistics in either of two ways:

• By executing admin stats with the display option, which instructs Replication Server to
collect information for a specified time period and then, at the end of that time period, to
display the information collected on the computer screen.

• By executing admin stats with the save option, which instructs Replication Server to
collect information for a specified number of observations within a specified time period,
and save that information to the RSSD.

By default, information is not collected from the counters until you turn them on. You can turn
them on for a specific time period when you execute admin stats. You can also turn on

Monitor Performance Using Counters

Administration Guide Volume 2 275

sampling for an indefinite time period by setting the stats_sampling configuration parameter
on.

Turning on sample collection activates all counters. However, you can display or save
statistics only for those counters or modules that are of interest.

Statistics shown on the computer screen record the number of events and computed values
—such as averages and rates—for a single observation period. When statistics are sent to the
RSSD, Replication Server saves raw values—such as observations, totals, last value, and
maximum value—for multiple consecutive observation periods. You can then compute
averages and rates from these stored values.

Collect Statistics for a Specific Time Period
Use admin stats to collect statistics for a specific time period.

The syntax for admin stats is:
admin { stats | statistics } [, sysmon | "all"
 | module_name [, inbound | outbound] [, display_name]]
 [, server[, database] | instance_id]
 [, display |, save [, obs_interval]]
 [, sample_period]

admin stats lets you specify:

• The counters to be sampled
• The length of the observation interval and the sample period
• Whether to save statistics to the RSSD or display them on the computer screen

Note: admin stats also supports the cancel option. This stops the currently running
command.

By default, Replication Server does not report counters that show 0 (zero) observations for the
sample period. You can change that behavior by setting the stats_show_zero_counter
configuration on using configure replication server. See the Replication Server Reference
Manual > Replication Server Commands for complete syntax and usage information.

Specify the Counters to Be Sampled
You can specify all counters or as few as a single instance of a counter.

Use these parameters with admin stats to specify the counters:

• sysmon – samples all counters marked by Sybase as most important to performance and
tuning. This is the default value.
To view a list of the sysmon counters, enter:
rs_helpcounter sysmon

• "all" – samples all counters.
• module_name – samples all counters for a particular module.

Monitor Performance Using Counters

276 Replication Server

• module_name, display_name – samples all instances of a particular counter. Use
sp_helpcounter for a list of counters.

• module_name, display_name, instance_id – samples a particular instance of a counter.
To find the numeric ID for an instance, execute admin_who and see the Info column.

Note: If the instance ID is specified and the module is either SQT or SQM, you can specify
whether you want information supplied by the inbound or outbound queue for the counter
instance.

For example, to collect statistics for the sysmon counters for one second and send the
information to the computer screen, enter:
admin stats, sysmon, display, 1

See also
• Modules on page 273

Specify the Sample Period
Specify a sampling period in numbers of seconds.

Replication Server collects statistics for the named counters for that number of seconds and
reports to the screen or the RSSD. The default value is 0 (zero) seconds—which causes all
counters to report their current value.

For example, to collect statistics for all counters for one minute and display them on the
computer screen, enter:
admin stats, "all", display, 60

Specify How Statistics Are to Be Reported
You can send statistics to the computer screen or to the RSSD.

Display Statistics on the Computer Screen
To send statistics to the computer screen, include the display option.

In this case, Replication Server makes a single observation at the end of the specified time
period. The observed statistics are sent only to the computer screen.

For example, to report the number of blocks read from all queues and by all readers over a
five-minute interval, enter:
admin stats, sqm, blocksread, display, 300

When you execute admin stats with a nonzero time period using the display option,
Replication Server:

1. Resets all counters to zero.
2. Turns on all counters.
3. Puts your session to sleep for the specified time period.

Monitor Performance Using Counters

Administration Guide Volume 2 277

4. Turns off all counters.
5. Reports the requested data.

Save Statistics in the RSSD
To save statistics in the RSSD, include the save option, which immediately returns the session.

When you send statistics to the RSSD, you can specify the length for each observation interval
with obs_interval during the specified sampling period. obs_interval can be a numeric value in
seconds, or a quoted time format string hh:mm[:ss].

For example, to start sampling and saving statistics to the RSSD for one hour and thirty
minutes at 20-second intervals, enter:
admin stats, "all", save, 20, "01:30:00"

To collect statistics for the outbound SQT for connection 108 for two minutes at 30-second
intervals, enter:
admin stats, sqt, outbound, 108, save, 30, 120

Replication Server determines the number of observation intervals by dividing the sampling
period by the observation interval. The remainder in seconds, if any, is added to the last
observation interval.

Table 24. Sampling Periods and Observation Intervals

Sampling period
(sample_period)

Observation interval
(obs_interval)

Number of observation in-
tervals

60 seconds 15 Four 15-second intervals

75 seconds 5 Not allowed – observation interval
must be => 15 seconds

60 seconds 30 Two 30-second intervals

130 seconds 20 Five 20-second intervals and a final
30-second interval

10 seconds Not specified One 10-second interval

When you execute admin stats with a nonzero time period using the save option, Replication
Server starts a background thread to collect sampling data and returns your session
immediately. Once the session is returned, you can use admin stats, status command to check
the sampling progress. The background thread:

1. Truncates the rs_statrun and rs_statdetail system tables if the configuration
parameter stats_reset_rssd is set to on.

2. Resets all counters.
3. Turns on all counters.
4. Writes the requested counters to the RSSD at the end of each observation period.

Monitor Performance Using Counters

278 Replication Server

5. Turns off all counters.

Note: To keep old sampling data, set the configuration parameter stats_reset_rssd to off or
make sure that you have dumped any needed information from rs_statrun and
rs_statdetail before executing admin stats with the save option. You can use the
rs_dump_stats procedure to dump information from these tables.

See also
• Use the rs_dump_stats Procedure on page 282

Collect Statistics for an Indefinite Time Period
To turn on sampling for an indefinite period, configure Replication Server using the
stats_sampling parameter.

Enter:
configure replication server
 set stats_sampling to "on"

Replication Server continues to collect data until you reconfigure Replication Server to turn
sampling off.
configure replication server
 set stats_sampling to "off"

Then, when you want to view data on the computer screen or send the collected data to the
RSSD, use admin stats.

Note: Use admin stats with care when stats_sampling is on. If you execute admin stats and
specify a nonzero time period, Replication Server clears the counters, executes the command,
and turns stats_sampling off.

For example, to collect statistics for two consecutive 24-hour periods, reporting results to the
computer screen, you might follow this sequence:

Day 1, 8am

1. Clear all statistics:
Enter:
admin statistics, reset

2. Turn on sampling:
Enter:
configure replication server
set stats_sampling to "on"

Day 2, 8am

1. Turn off sampling to ensure Replication Server does not collect statistics as statistics are
dumped to the screen.

Monitor Performance Using Counters

Administration Guide Volume 2 279

Enter:
configure replication server
set stats sampling to "off"

2. Dump statistics to the screen.
Enter:
admin statistics, "all"

3. Clear all statistics:
Enter:
admin statistics, reset

4. Turn on sampling:
Enter:
configure replication server
set stats_sampling to "on"

Day 3, 8am

1. Turn off sampling to ensure Replication Server does not collect statistics as statistics are
dumped to the screen.
Enter:
configure replication server
set stats sampling to "off"

2. Dump statistics to the screen.
Enter:
admin statistics, "all"

3. Clear all statistics:
Enter:
admin statistics, reset

View Statistics on Screen
Use admin statsto display statistics on the computer screen from a single sample run.

You can display statistics for a single counter instance, a single counter, all counters for a
particular module, the generally most useful or sysmon counters, or all counters.

You can choose whether to display statistics on the screen when you configure the sample run
using admin stats.

See the Replication Server Reference Manual > Replication Server Commands > admin stats
for example output and complete syntax and usage information.

See also
• Collect Statistics for a Specific Time Period on page 276

Monitor Performance Using Counters

280 Replication Server

View Throughput Rates
Use admin stats with the tps, cps, or bps option to view the current throughput in terms of
transactions, commands, or bytes per second.

Transactions Per Second
Replication Server calculates the transaction rate based on the number of processed
transactions and the number of elapsed seconds since the counters were last reset. The data is
obtained from several modules, including the SQT, DIST, and DSI modules.

To view throughput in transactions per second, enter:

admin stats, tps

Commands Per Second
The number of commands per second is calculated from the number of commands processed
and the number of elapsed seconds since the last reset. The data is obtained from the
REPAGENT, RSIUSER, RSI, SQM, DIST, and DSI modules.

To view throughput in commands per second, enter:
admin stats, cps

Bytes Per Second
The number of bytes per second is calculated from the number of bytes processed and the
number of elapsed seconds since the last reset. The data is obtained from the REPAGENT,
RSIUSER, SQM, DSI, and RSI modules.

To view throughput in bytes per second, enter:
admin stats, bps

View Statistics About Messages and Memory Use
Use admin stats with the md option to view information about the number of messages. Use
admin stats with the mem, or mem_in_use options to view information about memory use.

• To view statistics for message delivery, which is associated with Distributors and RSI
users, enter:
admin stats, md

• To view current segment usage according to segment size, enter:
admin stats, mem

• To view current memory use in bytes, enter:
admin stats, mem_in_use

Monitor Performance Using Counters

Administration Guide Volume 2 281

View the Number of Transactions in the Stable Queues
Use admin stats with the backlog option to view the number of transactions in both the
inbound and outbound stable queues awaiting distribution.

Replication Server reports the data in terms of segments and blocks, where one segment is
equal to 1MB, and one block is equal to 16K. The data is obtained from the SQMRBacklogSeg
and the SQMRBacklogBlock counters.

To view the stable queue backlog, enter:
admin stats, backlog

View Statistics Saved in the RSSD
There are several commands and procedures you can use to view statistics in the RSSD.

Statistics sent to the RSSD are stored in these system tables:

• rs_statcounters – contains descriptive information for each counter
• rs_statdetail – contains observed metrics for each sampling run for each counter
• rs_statrun – describes each sampling run

See Replication Server Reference Manual > Replication Server System Tables for detailed
information about these tables.

You can view statistics stored in these tables using:

• select and other Transact-SQL commands
• rs_dump_stats
• rs_helpcounter to display information from rs_statcounters

Use the rs_dump_stats Procedure
rs_dump_stats dumps the contents of the rs_statrun and rs_statdetail system
tables to a CSV file that can be loaded into a spreadsheet for analysis.

See Replication Server Reference Manual > RSSD Stored Procedures > rs_dump_stats for
complete syntax and usage information.

To use rs_dump_stats, log in to the RSSD and execute the stored procedure. For example:
1> rs_dump_stats
2> go

Sample Output from rs_dump_stats

Note: Comments to the right of the output are included to explain the example. They are not
part of the rs_dump_stats output.

Comment: Sample of rs_dump_stats output
Nov 5 2005 12:29:18:930AM *Start time stamp*

Monitor Performance Using Counters

282 Replication Server

Nov 5 2005 12:46:51:350AM *End time stamp*
16 *No of observation
intervals*
1 *No of min between
 observations*
16384 *SQM bytes per block*
64 *SQM blocks per segment*
CM *Module name*
13 *Instance ID*
-1 *Instance value*
dCM *Module name*
CM: Outbound database connection request *Counter external
name*
CMOBDBReq *Counter display name*
13003 , , 13, -1 *Counter ID, instance
ID,
 instance value*
ENDOFDATA *EOD for counter*

CM: Outbound non-database connection requests *Counter external
name*
CMOBNonDBReq *Counter display name*
13004 , , 13, -1 *Counter ID, instance
ID,
 instance value*
Nov 5 2005 12:29:18:930AM, 103, 103, 1, 1 *Dump ts, obs,
total,
 last, max*
Nov 5 2005 12:30:28:746AM, 103, 103, 1, 1
Nov 5 2005 12:31:38:816AM, 107, 107, 1, 1
Nov 5 2005 12:32:49:416AM, 104, 104, 1, 1
Nov 5 2005 12:33:58:766AM, 114, 114, 1, 1
...
Nov 5 2005 12:46:51:350AM, 107, 107, 1, 1
ENDOFDATA *EOD for counter*

CM: Outbound 'free' matching connections found *Counter external
name*
CMOBFreeMtchFound *Counter display name*
13005 , , 13, -1 *Counter ID, instance
ID,
 instance value*

Nov 5 2005 12:29:18:930AM, 103, 103, 1, 1 *Dump ts, obs,
total,
 last, max*

Nov 5 2005 12:30:28:746AM, 103, 103, 1, 1
...
Nov 5 2005 12:46:51:350AM, 2, 2, 1, 1
ENDOFDATA *EOD for counter*

Monitor Performance Using Counters

Administration Guide Volume 2 283

View Information About the Counters
You can view descriptive information about the counters stored in the rs_statcounters
table using the rs_helpcounter system procedure.

• To view a list of modules that have counters and to view the syntax of the rs_helpcounter
procedure, enter:
rs_helpcounter

• To view descriptive information about all counters for a specified module, enter:
rs_helpcounter module_name[, short | long]

If you enter short, Replication Server prints the display name, module name, and counter
descriptions for each counter.
If you enter long, Replication Server prints every column in rs_statcounters for
each counter.
If you do not enter a second parameter, Replication Server prints the display name, the
module name, and the external name of each counter.

• To list all counters that match a keyword, enter:
rs_helpcounter keyword [, short |, long]

• To list counters with a specified status, the syntax is:
rs_helpcounter { sysmon | internal | must_sample
 | no_reset | old | configure }

See Replication Server Reference Manual > RSSD Stored Procedures > rs_helpcounter for
detailed syntax and usage information.

Resetting of Counters
Use the admin stats, reset command to reset all counters, except those that are never reset, to 0
(zero).

Enter:
admin stats, reset

If sampling has not been enabled using the stats_sampling parameter, counter values are zero.
Running admin stats with a nonzero sample period sets the counters to zero, turns on
sampling, turns off counter sampling after the sampling run is completed, and resets the
counters to zero. If the sampling period is zero, current counter values are reported.

If sampling has been enabled, use admin stats with care. With sampling enabled using the
stats_sampling configuration, counter values are accumulating. Issuing admin stats and
specifying a sample period causes Replication Server to clear all counters and disable
sampling (stats_sampling off) after the sampling run.

Monitor Performance Using Counters

284 Replication Server

Generate Performance Reports
Use the rs_stat_populate and rs_stat_genreport stored procedures to generate performance
reports.

You must load this script into the RSSD after upgrading to Replication Server 15.1:

$SYBASE/$SYBASE_REP/scripts/
rs_install_statreport_v1510_[ase|asa].sql

After loading the script, run rs_stat_populate and rs_stat_genreport to generate these
performance reports:

• Replication Server performance overview – overview information about your Replication
Servers, such as DIST processing, DSI processing, and so on.

• Replication Server performance analysis – performance analysis and tuning suggestions
based on critical Replication Server counters. The detailed description is available in the
script file.

• Active object identification result – lists the active table and procedure names, owner
names, execution times, and so on.

For more information about rs_stat_populate and rs_stat_genreport, see the script file,
which contains syntax, examples, and other information.

Monitor Performance Using Counters

Administration Guide Volume 2 285

Monitor Performance Using Counters

286 Replication Server

Errors and Exceptions Handling

Learn the various error handing methods for Replication Server.

See theReplication Server Troubleshooting Guide for information about resolving specific
errors.

General Error Handling
Replication Server passes messages to data servers and other Replication Servers while they
are accessible, and queues messages when connections are down. You can use Sybase Central
to monitor the replication system status, and troubleshoot problems as they arise.

Normally, short-term failures of networks and data servers do not require special error
handling or intervention. When the failure is corrected, replication system components
automaticallyresume their work. Lengthier failures may require intervention if there is not
enough disk space to queue messages, or if you must reconfigure the replication system to
work around the failure.

Failures of some system components, such as Replication Server partitions or primary
databases, also require user intervention with replication system recovery procedures.

A Replication Server response to errors depends on the kind of error, source of the error, and
how the Replication Server is configured. Replication Server:

• Logs errors in its error log file.
• Responds to data server errors based on configuration settings.
• If transactions fail to commit in a database, writes the transactions to the exceptions log for

manual resolution.
• Detects duplicate transactions after system restart.

See also
• Replication System Recovery on page 309

Error Log Files
Learn about error log files in the replication system that you can access to troubleshoot
Replication Server and RepAgent.

To view skipped transactions that are written to system tables, you can access the Adaptive
Server for the Replication Server managing a specified database. See the Replication Server
Troubleshooting Guide.

Replication Server allows user-definable error processing in response to data server errors.

Errors and Exceptions Handling

Administration Guide Volume 2 287

See also
• Data Server Error Handling on page 291

Replication Server Error Log
The Replication Server error log is a text file where Replication Server writes informational
and error messages.

By default, the Replication Server error log file name is repserver.log, and resides in the
directory where you started the Replication Server. You can specify the name and location of
the error log file by using the -E command line flag when you start the Replication Server or in
a Replication Server run file.

Message Types in the Replication Server Error Log
There are several message types in the Replication Server error log. Each log message begins
with a letter to indicate the message type.

Table 25. Message Types in the Replication Server Error Log

Error
code

Description

I An informational message.

W A warning about a condition that has not yet caused an error, but may require attention. An
example is running out of a resource.

E An error that does not prevent further processing, such as a site that is unavailable.

H A Replication Server thread has died. An example is a lost network connection.

F Fatal. A serious error caused Replication Server to exit. An example is starting the Rep-
lication Server with an incorrect configuration.

N Internal error. These errors are caused by anomalies in the Replication Server software.
Report these errors to Sybase Technical Support.

Informational Messages
Informational messages in the Replication Server error log.

The format of informational messages in the error log is:
I. date: message

The letter “I” at the beginning of a message means that the message is provided for
information. It does not mean that an error occurred. For example, Replication Server outputs
the following messages as it drops a subscription:
I. 95/11/01 05:41:54. REPLICATE RS: Dropping
subscription authors_sub for replication definition
authors with replicate at <SYDNEY_DS.pubs2>

Errors and Exceptions Handling

288 Replication Server

I. 95/11/01 05:42:02. SQM starting: 104:-2147483527
authors.authors_sub

I. 95/11/01 05:42:12. SQM Stopping: 104:-2147483527
authors.authors_sub

I. 95/11/01 05:42:20. REPLICATE RS: Dropped
subscription authors_sub for replication definition
authors with replicate at <SYDNEY_DS.pubs2>

Error and Warning Messages
Errors and warning messages in the Replication Server error log.

The format of messages other than informational messages is:
severity, date. ERROR #error_number thread_name(context) -
source_file(line) message

If the message is a warning, “ERROR” in the format becomes “WARNING.”

The parameters are:

• severity – W, E, H, F, or N, corresponding to the message types in the Replication Server
error log.

• date – date and time that the error occurred.
• error_number – Replication Server error number.
• thread_name – name of the Replication Server thread that received the error. See

Replication Server Administration Guide Volume 1 > Replication Server Technical
Overview for details about Replication Server threads.

• context – provides some information about the thread’s context at the time the error
occurred.

• source_file – program file in the Replication Server source code where the error was
reported.

• line – line number in the program file in the Replication Server source code where the error
was reported.

• RS_language – specifies the language for the Replication Server message.
• message – full text of a message from a Replication Server, in the language specified in the

RS_language configuration parameter. Some messages also include a message from a data
server, or one of the component libraries that Replication Server uses.

Note: Replication Server places question marks (?) in messages when specific information is
not available. For example, if an error occurs during initialization, Replication Server may not
yet have completed some internal structures, so it prints question marks in place of
information it has not yet collected.

This is a Replication Server error log entry for a data server:
E. 95/11/01 05:30:52. ERROR #1028 DSI(SYDNEY_DS.pubs2)
- dsiqmint.c(3522)Message from server:
 Message: 2812, State: 4, Severity: 16 --
 ’Stored procedure ’upd_authors’ not found.

Errors and Exceptions Handling

Administration Guide Volume 2 289

H. 95/11/01 05:30:53. THREAD FATAL ERROR #5049
DSI(SYDNEY_DS.pubs2) - dsiqmint.c(3529)
The DSI thread for database ’SYDNEY_DS.pubs2’ is being
shutdown because of error action mapped from data server
error ’2812’. The error was caused by output command ’1’
mapped from source command ’2’ of the transaction.

The messages indicate that Adaptive Server returned error number 2812, causing Replication
Server to take the stop_replication action. You can assign other actions for data server errors.

Find the Name of the Replication Server Error Log
Use the admin log_name command to find the name of the current Replication Server error
log file.

Replication Server displays the path to the log file, as this UNIX example shows:
Log File Name

 /work/sybase/SYDNEY_RS/SYDNEY_RS.log

Change to a New Replication Server Log File
Use the admin set_log_name command to begin a new error log file.

This command closes the current log file and opens a new one. Subsequent messages are
written in the new log file.

For example in UNIX, enter:
admin set_log_name, '/work/sybase/SYDNEY_RS/951101.log'

The previous log remains active if Replication Server fails to create and open the new log
file.

RepAgent Error Log Messages
All RepAgent error, trace, and information messages are logged in the Adaptive Server error
log file.

Each message identifies the RepAgent that logged the error in the string “RepAgent (dbid)”,
which appears in the first line of the message. dbid is the database identification number of the
RepAgent that logged the error.

This is an information message:
RepAgent(dbid): Recovery of transaction log is
complete. Please load the next transaction log dump and
then start up the Rep Agent Thread with
sp_start_rep_agent, with 'recovery' specified.

The Adaptive Server error log is a text file. The messages are printed in the language specified
at Adaptive Server. RepAgent records errors and informational messages that occur when
transferring replicated objects from the Adaptive Server transaction log and converting them
into commands. RepAgent errors are generally in the 9200 to 9299 range.

Errors and Exceptions Handling

290 Replication Server

Adaptive Server performs actions based on the severity and recoverability of an error. Some
errors are for information only, others cause Adaptive Server to retry the operation that caused
the error until it succeeds, and still others indicate an error too severe to continue and
RepAgent shuts down. See Adaptive Server Enterprise Troubleshooting: Error Messages
Advanced Resolutions.

Sample RepAgent Error Messages
Common RepAgent error messages and possible solutions.

• In this example, the RepAgent login name is not present on the Replication Server:
RepAgent(6): Failed to connect to Replication
Server. Please check the Replication Server,
username, and password specified to
sp_config_rep_agent. RepSvr = repserver_name, user =
RepAgent_username

RepAgent(6): This Rep Agent Thread is aborting due
to an unrecoverable communications or Replication
Server error.

You must either add RepAgent’s login name to Replication Server or change RepAgent’s
login name.

• In this example, RepAgent cannot connect to Replication Server:
RepAgent(7): The Rep Agent Thread will retry the
connection to the Replication Server every 60
second(s). (RepSvr = repserver_name.)

Check Replication Server status. If Replication Server is down, resolve the problem and
restart. Otherwise, wait for a possible network problem to resolve.

Data Server Error Handling
Replication Server allows user-definable error processing for data server errors. Assign
appropriate error class to a specified connection and customize the assigned error class. The
error actions should match the errors returned by the data server.

RCL Commands and System Procedures for Error Processing
There are several RCL commands and Adaptive Server system procedures that manage errors
and error classes.

Table 26. RCL Commands and System Procedures for Error Processing

Command Description

assign action Specifies an error processing action for one or more data server or Repli-
cation Server errors

Errors and Exceptions Handling

Administration Guide Volume 2 291

Command Description

alter error class Changes an existing error class

create error class Creates a new error class

drop error class Drops an existing error class

alter connection Associates an error class with an existing database connection

create connection Associates an error class with a new database connection

rs_helpclass Adaptive Server stored procedure that displays the name of each existing
error class, function-string class, and their primary Replication Server, and
in the case of inherited classes, the parent class.

rs_helperror Adaptive Server stored procedure that displays the Replication Server error
actions mapped to a given data server or Replication Server error number

Default Error Classes
Replication Server provides rs_sqlserver_error_class as the default Adaptive Server error
class, rs_repserver_error_class as the default Replication Server error class, and default
error classes for non-ASE databases. You cannot modify these default error classes.

Table 27. Non-ASE Error Classes

Database Class name

IBM DB2 rs_db2_error_class

IBM UDB rs_udb_error_class

Microsoft SQL Server rs_msss_error_class

Oracle rs_oracle_error_class

Sybase IQ rs_iq_error_class

See also
• Designate Primary Site for an Error Class on page 293

Native Error Codes for Non-ASE Databases
When Replication Server establishes a connection to a non-ASE replicate server, Replication
Server verifies whether the option to return native error codes from the non-ASE replicate
server is enabled for the connection.

If the option is not enabled, Replication Server logs a warning message that the connection
works but that error action mapping may be incorrect.

See Replication Server Options > Enterprise Connect Data Access Option for ODBC Users
Guide for Access Services > Configuring the Access Service Library > Configuration

Errors and Exceptions Handling

292 Replication Server

Property Categories > Target Interaction Properties > ReturnNativeError to set the option in
the Enterprise Connect™ Data Access (ECDA) Option for ODBC for your replicate server.

Create an Error Class
Use create error class to create your own error classes.

An error class is a name used to group error action assignments. create error class copies the
error actions from the template error class to the new error class.

You can define a single error class to use with all databases managed by the same type of data
server. For example, you can use the default Adaptive Server error class,
rs_sqlserver_error_class, with any Adaptive Server database. There is no need to
create another error class unless a database has special error-handling requirements.

Note: When you create a connection using a connection profile, the error class is assigned by
the connection profile. The connection profile predefines the error class for a specific data
server. See Replication Server Administration Guide Volume 1 > Manage Database
Connections > Prepare Databases for Replication > Prepare Non-ASE Servers for Replication
> Connection Profiles.

To create an error class, enter:
create [replication server] error class error_class
[set template to template_error_class]

The replication server option specifies that you want to create a Replication Server error
class. You can use the set template to option, and another error class as a template to create an
error class.

Examples

This example creates an error class named pubs2_error_class without a template error class:
create error class pubs2_error_class

This example creates the my_rs_err_class Replication Server error class based on
rs_repserver_error_class, which is the default Replication Server error class:
create replication server error class my_rs_err_class
set template to rs_repserver_error_class

This example creates the my_error_class error class for an Oracle database based on
rs_oracle_error_class as a template:
create error class my_error_class
set template to rs_oracle_error_class

Designate Primary Site for an Error Class
You must specify a primary site before you can modify a default error class.

Initially, rs_sqlserver_error_class and the other default non-ASE error classes, do
not have a primary site. Since you can only create server-wide error classes at a primary site for

Errors and Exceptions Handling

Administration Guide Volume 2 293

a class, use create error class to designate one of the Replication Servers as a primary site for
an error class.

For Adaptive Server for example, execute create error class rs_sqlserver_error_class at the
primary site. Verify that all other Replication Servers have direct or indirect routes from the
primary site.

See also
• Change the Primary Replication Server for an Error Class on page 295

Assign Error Actions
You can assign different error actions for errors returned by a data server.

The default error action for all errors returned by a data server is stop_replication.

This is also the most serious action: it suspends replication for the database, as if you entered
the suspend connection command. To assign less severe actions to errors you want to handle
differently, use the assign action command.

See also
• Assign Actions to Data Server Errors on page 296

Alter Error Classes
alter error class copies error actions from a template error class to the error class you want to
alter and overwrites error actions which have the same error code.

To alter an error class, enter:
alter [replication server] error class error_class
set template to template_error_class

The replication server option specifies that you want to alter a Replication Server error class.

For example, to alter my_error_class for an Oracle database based on
rs_sqlserver_error_class as a template:

alter error class my_error_class
set template to rs_sqlserver_error_class

Initialize a New Error Class
After you have create a new error class, you can initialize it with error actions from an error
class such as the system-provided rs_sqlserver_error_class.

To do this, use the rs_init_erroractions stored procedure:

rs_init_erroractions new_error_class, template_class

For example, to initialize the error class pubs2_error_class, based on the template error
class rs_sqlserver_error_class, enter:

Errors and Exceptions Handling

294 Replication Server

rs_init_erroractions pubs2_error_class, rs_sqlserver_error_class

Then use the assign action command to change the actions for individual errors.

Drop an Error Class
The drop error class command drops an error class and all actions associated with it.

The error class must not be in use with an active database connection when you drop it. The
syntax for drop error class is:

drop [replication server] error class error_class

For example, to drop the pubs2_error_class error class, enter:

drop error class pubs2_error_class

You cannot drop the rs_sqlserver_error_class or any of the default non-ASE error
classes.

See also
• Default Error Classes on page 292

Change the Primary Replication Server for an Error Class
Use the move primary command to change the primary site for an error class.

This is necessary when you are changing the primary site from one Replication Server to
another so that error actions can be distributed through new routes. For example, you must use
this command if you are dropping from the replication system the Replication Server that is
the current primary site for an error class.

Before you execute move primary, make sure that a route exists from:

• The new primary site to each Replication Server that will use the error class
• The current primary to the new primary site
• The new primary to the current primary site

The syntax for the move primary command, for error classes, is:

move primary
 of [replication server] error class class_name
 to replication_server

Execute the move primary command at the Replication Server that you want to designate as
the new primary site for the error class.

The parameters are:

Errors and Exceptions Handling

Administration Guide Volume 2 295

• replication server – option that specifies that you want to change the primary Replication
Server for a Replication Server error class. Leave this if you want to modify a data server
error class.

• class_ name – the name of the error class whose primary Replication Server is to be
changed.

• replication_server – specifies the new primary Replication Server for the error class.

The following command changes the primary site for the pubs2_error_class error class
to the TOKYO_RS Replication Server where the command is entered:
move primary of error class pubs2_error_class
 to TOKYO_RS

For the default error class, rs_sqlserver_error_class, no Replication Server is the
primary site until you assign one as the primary site. You must specify a primary site before
you can use the assign action command to change default error actions.

To specify a primary site for the default error class, execute the following command in that
Replication Server:
create error class rs_sqlserver_error_class

After you have executed this command, you can use the move primary command to change the
primary site for the error class.

Display Error Class Information
Use the rs_helpclass stored procedure to display the names of existing error classes and
function-string classes in their primary Replication Servers and in the replication system.

For example:
rs_helpclass error_class

Error Class(es) PRS for class
 -------------- ---------
rs_sqlserver_error_class Not Yet Defined

See Replication Server Reference Manual > RSSD Stored Procedures > rs_helpclass.

Assign Actions to Data Server Errors
Use the assign action command to specify the action to take for errors that a data server can
return to Replication Server.

assign action
 {ignore | warn | retry_log | log | retry_stop | stop_replication}
 for error_class
 to server_error1 [, server_error2]...

You must create a default error class at a primary site before you can use assign action to
change default error actions. The data_server_error parameter is the data server error number.

Errors and Exceptions Handling

296 Replication Server

You can assign error classes to specific connections on replication databases using create
connection and alter connection.

Enter one of the six possible error actions at the Replication Server where the error class was
created: ignore is the least severe action and stop_replication is the most severe. See
Replication Server Reference Manual > Replication Server Commands > assign action for
error numbers, error messages, corresponding default error actions, and descriptions.

When a transaction causes multiple errors, Replication Server chooses just one action—the
most severe action assigned to any of the errors that occurred. To return an error to the default
error action, stop_replication, you must reassign it explicitly.

You can also specify how Replication Server responds to SQLDML row count errors that may
occur during SQL statement replication. In SQLDML row count errors, the number of rows
changed in the primary and replicate databases do not match after SQL statement replication.
The Replication Server default error action is to stop replication. The default Replication
Server error class is rs_repserver_error_class.

This is an example of a row count error message:
DSI_SQLDML_ROW_COUNT_INVALID 5186
Row count mismatch for the SQL Statement Replication
command executed on 'mydataserver.mydatabase'. The
command impacted 10 rows but it should impact 15 rows.

Examples of Assigning an Error Action

For example, to instruct Replication Server to ignore Adaptive Server errors 5701 and 5703:
assign action ignore
 for rs_sqlserver_error_class
 to 5701, 5703

For example, to warn if Replication Server encounters row count errors, which is indicated by
error number 5186:
assign action warn
 for rs_repserver_error_class to 5186

See also
• Error Actions for Data Server Errors on page 298

• Default Error Classes on page 292

Errors and Exceptions Handling

Administration Guide Volume 2 297

Error Actions for Data Server Errors
There are several errror actions you can assign for data server errors.

Table 28. Replication Server Actions for Data Server Errors

Action Description

ignore Assume that the command succeeded and that there is no error or warning condition
to process. This action can be used for a return status that indicates successful exe-
cution.

warn Log a warning message, but do not roll back the transaction or interrupt execution.

retry_log Roll back the transaction and retry it. The number of retry attempts is set with the
configure connection command. If the error continues after retrying, write the
transaction into the exceptions log, and continue, executing the next transaction.

log Roll back the current transaction and log it in the exceptions log; then continue,
executing the next transaction.

retry_stop Roll back the transaction and retry it. The number of retry attempts is set with the
configure connection command. If the error recurs after retrying, suspend replica-
tion for the database.

stop_replica-
tion

Roll back the current transaction and suspend replication for the database. This is
equivalent to using the suspend connection command. This action is the default.

Since this action stops all replication activity for the database, it is important to
identify the data server errors that can be handled without shutting down the database
connection, and assign them to another action.

Display Assigned Actions for Error Numbers
Use the rs_helperror stored procedure to display the action assigned for an error number.

The syntax for rs_helperror is:
rs_helperror server_error_number [, v]

where server_error_number parameter is the data server error number of the error you want
information for. The v parameter specifies “verbose” reporting. When you supply this option,
rs_helperror also displays the Adaptive Server error message text, if available. See
Replication Server Reference Manual > RSSD Stored Procedures > rs_helperror.

Row Count Validation
Replication Server enables row count validation by default and automatically displays error
messages and performs default error actions in reaction to different row count validation
errors such as row count mismatch. You can configure the Replication Server error class to
enable different error actions.

A connection associates itself with two error class types—a data server error class and a
Replication Server error class. You must associate a Replication Server error class with a

Errors and Exceptions Handling

298 Replication Server

connection before Replication Server can query the Replication Server error class for
overrides to the default Replication Server error actions. You can associate a connection with
only one Replication Server error class. However, you can associate one Replication Server
error class with multiple connections. Use the set replication server error class parameter for
the create connection and alter connection commands to associate a Replication Server error
class with a connection.

When Replication Server responds to errors, it looks first for the Replication Server error class
assigned to the connection. If Replication Server does not find the Replication Server error
class, Replication Server uses the default rs_repserver_error_class error class assigned to the
server.

Note: Replication Server ignores row count validation for those commands that are in a
customized function string.

Control Row Count Validation
Use dsi_row_count_validation to disable row count validation.

If you have table rows that are not synchronized, and you want to bypass the default error
actions and messages, you can set dsi_row_count_validation to off to disable row count
validation.

dsi_row_count_validation is set to on, by default, to enable row count validation.

Use configure replication server to set dsi_row_count_validation at the server level to affect
all replicate database connections, or use alter connection to set the parameter for a
connection to a database and data server that you specify. For example, to:

• Disable row count validation for all database connections, enter:
configure replication server
set dsi_row_count_validation to 'off'

You must suspend and resume all database connections to Replication Server after you
execute configure replication server with dsi_row_count_validation. The change in
setting takes effect after you resume database connections.

• Enable row count validation for a specific connection — pubs2 database in
SYDNEY_DS data server, enter:
alter connection to SYDNEY_DS.pubs2
set dsi_row_count_validation to 'on'

You need not suspend and resume a database connection when you set
dsi_row_count_validation for the connection; the parameter takes effect immediately.
However, the new setting affects the batch of replicated objects that Replication Server
processes after you execute the command. Changing the setting does not affect the batch of
replicated objects that Replication Server is currently processing.

Errors and Exceptions Handling

Administration Guide Volume 2 299

Table Names Display in Row Count Validation Error Messages
Row count validation error messages display table names.

If you are using:

• Continuous mode log-order row-by-row replication – Replication Server logs and
displays the table name, table owner name, and the number that identifies the output
command that caused the transaction to fail. Replication Server logs only the first 30 bytes
of the table name. You can enable the DSI_CHECK_ROW_COUNT_FULL_NAME
trace to expand the maximum length of the table name that displays to 255 bytes.

• High volume adaptive replication (HVAR) or real-time loading (RTL) – Replication
Server logs and displays the internal join-update and join-delete statements that result
from HVAR and RTL compilation. You cannot obtain the specific command that caused
the failed transaction since HVAR or RTL have already compiled the command as part of
HVAR and RTL processing. The maximum length of the join-update and join-delete
statements that Replication Server can display is 128 bytes including the "...\0" tail
string.

This example consists of:

• Primary site – pdb1 primary database with a table named
ThisTableHasANameLongerThan30Characters that has three columns and
three rows.

id name age

1 John 40

2 Paul 38

3 George 37

• Replicate site – rdb1 primary database with a table with the same name
ThisTableHasANameLongerThan30Characters that has two rows with values
of 1 and 3 for the id column.

If you execute this command against pdb1:

update ThisTableHasANameLongerThan30Characters set age = 20

the error messages appear differently for each type of replication mode. In:

• Continuous mode log-order row-by-row replication:
I. 2010/06/07 01:30:21. DSI received Replication Server
error #5185 which is mapped to WARN by error action mapping.

W. 2010/06/07 01:30:21. WARNING #5185 DSI EXEC(103(1)
ost_replnx6_61.rdb1) - /dsiexec.c(11941)

Errors and Exceptions Handling

300 Replication Server

Row count mismatch for the command executed on
'ost_replnx6_61.rdb1'. The command impacted 0 rows but it
should impact 1 rows.

I. 2010/06/07 01:30:21. The error was caused by output
command #3 of the failed transaction on table
'dbo.ThisTableHasANameLongerThan30C'.

Note: The table name is truncated to the default of 30 bytes.

If you turn on the DSI_CHECK_ROW_COUNT_FULL_NAME trace to enable the maximum
table name length of 255 bytes that the error message can display, the last line of the error
message displays the full table name:
I. 2010/06/07 02:22:55. The error was caused by output
command #3 of the failed transaction on table
'dbo.ThisTableHasANameLongerThan30Characters'.

• HVAR or RTL replication:
W. 2010/06/07 02:06:56. WARNING #5185 DSI EXEC(103(1)
ost_replnx6_61.rdb1) - i/hqexec.c(4047)

Row count mismatch for the command executed on
'ost_replnx6_61.rdb1'. The command impacted 1 rows but it
should impact 2 rows.

I. 2010/06/07 02:06:56. (HQ Error): update
ThisTableHasANameLongerThan30Characters set age = w.age
from ThisTableHasANameLongerThan30Characters
t,#rs_uThisTab...

I. 2010/06/07 02:06:57. The DSI thread for database
'ost_replnx6_61.rdb1' is shutdown.

Exceptions Handling
When a transaction submitted by Replication Server fails, Replication Server records the
transaction in the exceptions log in the RSSD. The replication system administrator at the site
must resolve the transactions in the exceptions log.

Transactions can fail due to errors such as duplicate keys, column value checks, and
insufficient disk space. They may also be rejected for reasons such as insufficient permissions,
version control conflicts, and invalid object references.

Because skipping a transaction causes inconsistency and can have an adverse affect on the
system, you should review on a regular basis any transactions that have been recorded in the
exceptions log and resolve them. The best resolution for a transaction may depend on the
client application that originated it. For example, if a failed transaction corresponds to a real-
world event, such as a cash withdrawal, the transaction must somehow be applied.

Errors and Exceptions Handling

Administration Guide Volume 2 301

Refer to the Replication Server Troubleshooting Guide for more information on the
implications of skipping a transaction.

See also
• Access the Exceptions Log on page 303

Handling of Failed Transactions
Learn the recommended process for handling failed transactions that require manual
intervention.

Suspend Database Connection
When a data server begins rejecting transactions because of a temporary failure, such as lack
of space in a database or log file, you can suspend the database connection until the error is
corrected.

If the database connection is not suspended, Replication Server writes the transactions into the
exceptions log for the database. Since these transactions must then be resolved manually, you
can save time by shutting down the connection until the error condition is corrected.

While a database connection is suspended, Replication Server stores transactions in a stable
queue. When the connection is resumed, the stored transactions are sent to the data server.

To stop the flow of transactions from a Replication Server to a database, use the suspend
connection:
suspend connection to data_server.database

The command requires sa permission and must be entered at the Replication Server that
manages the database.

Analyzing and Resolving the Problem
Determine why a transaction failed, make corrections or adjustments, and resubmit the
transaction.

1. Retrieve a list of the transactions from the exceptions log.

2. Investigate the transactions to determine the cause of failure and the best method for
resolution.

3. Resolve the transactions according to your plan. For example, you might correct a
permissions problem and then resubmit a transaction.

4. Delete resolved transactions from the exceptions log.

For example, if a transaction failed because the maintenance user had insufficient
permissions, grant the maintenance user the needed permissions and retry the transaction.

See also
• Access the Exceptions Log on page 303

Errors and Exceptions Handling

302 Replication Server

• Delete Transactions from the Exceptions Log on page 305

Resume the Connection
Use resume connection to restart the flow of transactions for a suspended database
connection.

The same command is used whether you suspended the connection intentionally, using the
suspend connection command, or whether it was suspended by Replication Server as the
result of an error action.
resume connection to data_server.database
[skip transaction]

The command requires sa permission and must be entered at the Replication Server that
manages the database.

Use the skip transaction clause to instruct Replication Server to ignore the first transaction in
the queue. You may need to do this if a transaction continues to fail each time you resume the
connection.

Access the Exceptions Log
Replication Manager provides a graphical interface to view and manage the transactions in the
exceptions log.

Display Transactions in the Exceptions Log
Use the rs_helpexception stored procedure to display a summary of all transactions in the
exceptions log.

rs_helpexception [transaction_id, [, v]]

If you supply a valid transaction_id and v for “verbose” reporting, rs_helpexception displays
a detailed description of a transaction. Use rs_helpexception with no parameters to obtain
transaction_id numbers for all transactions in the exceptions log.

Query the Exceptions Log System Tables
You can join the rs_exceptshdr and rs_exceptscmd system tables on the
sys_trans_id column to retrieve information about exceptions.

You can also join the rs_exceptscmd and rs_systext system tables to retrieve the text
of a transaction. To do this, join the cmd_id column in rs_exceptscmd to the parentid
column in rs_systext.

Errors and Exceptions Handling

Administration Guide Volume 2 303

Figure 23: Exceptions Log System Tables

The rs_exceptshdr system table contains descriptive information about the transactions
in the exceptions log, including:

• User-assigned transaction name
• Site and database where the transaction originated
• User at the origin site who submitted the transaction
• Information about the error that caused the transaction to be recorded in the exceptions

log

To retrieve a list of the excepted transactions for a given database, use, for example, the
following query:
select * from rs_exceptshdr
 where error_site = 'data_server'
 and error_db = 'database'
 order by log_time

To retrieve the source and output text for a transaction with a given system transaction ID,
use:
select t.texttype, t.sequence,
 t.textval

Errors and Exceptions Handling

304 Replication Server

 from rs_systext t, rs_exceptscmd e
 where e.sys_trans_id = sys_trans_id
and t.parentid = e.cmd_id
 order by e.src_cmd_line, e.output_cmd_index,
 t.sequence

See Replication Server Reference Manual > Replication Server System Tables for a list of all
of the columns in these Replication Server system tables.

Delete Transactions from the Exceptions Log
Use stored procedures to delete transactions from the RSSD exceptions log.

• rs_delexception – deletes a single transaction from the exceptions log. The syntax is:
rs_delexception [transaction_id]

With no parameters, rs_delexception displays a summary of transactions in the
exceptions log. If you supply a valid transaction_id, rs_delexception deletes a transaction.
You can find the transaction_id for a transaction by using either rs_helpexception or
rs_delexception with no parameters.
For example, to delete the transaction with ID number 1234, enter:
rs_delexception 1234

• rs_delexception_id – deletes a range of transactions identified by transaction ID. The
syntax is:
rs_delexception_id transaction_id_start [,transaction_id_end]

For example, to delete all transactions with ID numbers between 1234 and 9800,
inclusive,enter:
rs_delexception_id 1234, 9800

• rs_delexception_date – deletes a range of transactions identified by transaction date. The
syntax is:
rs_delexception_date transaction_date_start
[,transaction_date_end]

For example, to delete from the exceptions log all transactions that have originating dates
between 1st October 2010 and 31st October 2010, inclusive, enter:
rs_delexception_date "10/01/2010", "10/31/2010"

• rs_delexception_range – deletes a range of transactions identified by originating site or
user, or destination site. The syntax is:
rs_delexception_range
{{"origin"|"org"}, "origin_data_server.origin_database" |
, {"destination"|"dest"},
"destination_data_server.destination_database" |
, "user", "origin_user"}

For example, to delete from the exceptions log the transactions that originated from the
south_db database of the SYDNEY_DS data server, enter:

rs_delexception_range "org", "SYDNEY_DS.south_db"

Errors and Exceptions Handling

Administration Guide Volume 2 305

See the descriptions of the stored procedures in Replication Server Reference Manual > RSSD
Stored Procedures for complete usage information and more examples.

See Replication Server Administration Guide Volume 1 > Manage Replication Environment
with Sybase Central > Set up a Replication Environment > Manage Replication Server
Objects > Queues > Viewing Queue Data .

DSI Duplicate Detection
The DSI records the last transaction committed or written into the exceptions log so that it can
detect duplicates after a system restart. Each transaction is identified by a unique origin
database ID and an origin queue ID that increases for each transaction.

The last transaction committed from each origin database is recorded at a data server by
executing the function strings defined for the data server’s function-string class. For the
system-defined classes, this is done in the function string for a commit command, that is, the
rs_commit function. Every function-string class supports the rs_get_lastcommit function,
which returns the origin_qid and secondary_qid for each origin database. The
secondary_qid is the ID of the queue used for subscription materialization or
dematerialization.

The origin_qid and secondary_qid for the last transaction written into the exceptions
log from each origin is recorded into the rs_exceptslast system table. However,
transactions logged explicitly by the sysadmin log_first_tran command are not recorded in
this system table. These transactions are logged, but they are not skipped.

When a DSI is started or restarted, it gets the origin_qid returned by the
rs_get_lastcommit function and the one stored in the rs_exceptslast system table. It
assumes that any transaction in the queue with an origin_qid less than the larger of these
two values is a duplicate and ignores it.

If the origin_qid values stored in a data server or the rs_exceptslast system table
are modified by mistake, non-duplicate transactions may be ignored or duplicate transactions
may be reapplied. If you suspect that this is happening in your system, check the values stored
and compare them with the transactions in the database’s stable queue to determine the
validity of the values. If the values are wrong, you must modify them directly.

Refer to the Replication Server Troubleshooting Guide for details on how to dump
transactions in a queue.

Errors and Exceptions Handling

306 Replication Server

Duplicate Detection for System Transactions
Learn how to detect and resolve system transaction execution failures.

truncate table and certain supported DDL commands are not logged, although they can be
replicated to standby and replicate databases. See the Adaptive Server Enterprise Reference
Manual for information about each DDL command.

Replication Server copies these commands as system transactions, in which Replication
Server “sandwiches” the truncate table or similar command between two complete
transactions. Execution of the first transaction is recorded in the replicate database in the
secondary_qid column of the rs_lastcommit table and in the origin_qid column
of that table. If Replication Server records the second transaction, the system transaction has
completed, and Replication Server clears the secondary_qid column.

The following message, after a system failure, indicates that a system command has not
completed. The connection shuts down.
5152 DSI_SYSTRAN_SHUTDOWN,"There is a system
transaction whose state is not known. DSI will be
shutdown."

You must verify whether the command within the system transaction has executed at the
replicate database.

• If the command has executed, or if you execute the command yourself, you can skip the
first transaction in the queue and continue with the second transaction when you resume
the connection. At the replicate Replication Server, enter:
resume connection to data_server.database
skip transaction

• If the command has not executed, you can fix the problem, then execute the first command
in the queue. At the replicate Replication Server, enter:
resume connection to data_server.database
execute transaction

You must include the skip transaction or execute transaction clause with resume
connection. Otherwise, Replication Server does not reset the secondary_qid correctly,
and the error message reappears.

See also
• Supported DDL Commands and System Procedures on page 61

Errors and Exceptions Handling

Administration Guide Volume 2 307

Errors and Exceptions Handling

308 Replication Server

Replication System Recovery

While Replication Server tolerates most failure conditions and recovers from them
automatically, some failures require user intervention. Learn to identify those failures, and the
procedures for recovery which are designed to maintain the integrity of the replication system
by recovering lost and corrupted data and restoring that data to its previous state.

Design, install, and administer your replication system with backup and recovery in mind. We
assume that dumps are performed on a regular basis and that appropriate tools and settings for
handling recovery are in place.

In discussions about recovery, the "current" Replication Server refers to the one with a
database (for example, RSSD) that you are recovering. An "upstream" Replication Server has
a direct or indirect route to the current Replication Server. A "downstream" Replication Server
is one to which the current Replication Server has a direct or indirect route.

You can resynchronize the replicate databases in your replication environment if, for example,
there is replication latency between primary and replicate databases such that to recover a
database using replication alone is not feasible.

See also
• Create Coordinated Dumps on page 316
• Replicate Database Resynchronization for Adaptive Server on page 350

How to Use Recovery Procedures
When using recovery procedures, always write down or check off recovery steps as you
perform them. Such information can help Sybase Technical Support determine where you are
in the recovery procedure, if necessary.

For each failure condition, there are corresponding failure symptoms and recovery
procedures.

Warning! Use the recovery procedures only for the failure condition specific to the procedure.
Do not use recovery procedures for replication system problems such as failure to replicate
data. Attempting to use recovery procedures on conditions other than those specified can
complicate your problem and require more drastic recovery actions.

See the Replication Server Troubleshooting Guide for help in diagnosing and correcting
problems.

See also
• Recovery from Partition Loss or Failure on page 317
• Recovery from Truncated Primary Database Logs on page 321

Replication System Recovery

Administration Guide Volume 2 309

• Recovery from Primary Database Failures on page 323
• Recovery from RSSD Failure on page 326
• Replicate Database Resynchronization for Adaptive Server on page 350

Configure the Replication System to Support Sybase
Failover

Learn how Replication Server version 12.0 and later supports Sybase Failover available in
Adaptive Server Enterprise version 12.0 and later.

Sybase Failover allows you to configure two version 12.0 and later Adaptive Servers as
companions. If the primary companion Adaptive Server fails, that server’s devices, databases,
and connections can be taken over by the companion Adaptive Server.

You can configure a high availability system either asymmetrically or symmetrically.

An asymmetric configuration includes two Adaptive Servers that are physically located on
different machines, but share the same system devices, system/master databases, user
databases, and user logins. These two servers are connected so that if one of the servers is
brought down, the other assumes its workload. The companion Adaptive Server acts as a “hot
standby” and does not perform any work until failover occurs.

A symmetric configuration also includes two Adaptive Servers running on separate machines,
but each Adaptive Server is fully functional with its own system devices, system/master
databases, user databases, and user logins. If failover occurs, either Adaptive Server can act as
a companion for the other Adaptive Server.

In either setup, the two machines are configured for dual access, which makes the disks visible
and accessible to both servers.

In a replication system, where Replication Server makes many connections to Adaptive
Servers, you can enable or disable Failover support of the database connections initiated by a
Replication Server to Adaptive Servers. When you enable Failover support, Replication
Servers connected to an Adaptive Server that fails are automatically switched to the
companion machine, reestablishing network connections.

See Adaptive Server Enterprise > Using Sybase Failover in a High Availability System.

See also
• High Availability on Sun Cluster 2.2 on page 379

Enable Failover Support in Replication Server
You enable Failover support for each Replication Server in your system; once for the RSSD
connection, and once for all other database connections from the specified Replication Server
to Adaptive Servers.

You cannot enable Failover support for individual connections, except the RSSD connection.

Replication System Recovery

310 Replication Server

The default for Failover support in Replication Server is “off” for all connections from a
Replication Server to Adaptive Servers.

For continuing replication, you should enable Failover support for all connections. However,
in some cases you may want to disable connection Failover when the companion server’s
workload exceeds its capacity.

How Sybase Failover Works with Replication Server
To configure Sybase Failover from Replication Server to Adaptive Server, the Adaptive
Server must be configured to allow connection failover.

When Adaptive Servers are in failover companion mode and the primary companion fails, the
secondary companion takes over the workload. Incomplete transactions or operations that
require updates to the RSSD fail. Replication Server retries existing connections, but new
connections are failed over.

For Data Server Interface (DSI) connections, the DSI retries failed transactions after a brief
sleep.

For RSSD connections, user commands that are executed during failover do not succeed.
Internal operations such as, updates to locator and disk segment should not fail. Replication of
RSSD objects should be covered by the DSI.

Asynchronous commands (for example, subscription, routing, and standby commands) may
be rejected or encounter errors and require recovery if the commands have been accepted but
not completed. For example, a create subscription command may have been accepted, but the
subscription may still be being created.

Note: Failover support is not a substitute for warm standby. While warm standby keeps a copy
of a database, Failover support accesses the same database from a different machine. Failover
support works the same for connections from Replication Server to warm standby databases.

Requirements for Sybase Failover Support
There are several requirements for Failover support.

• To enable Failover support, a Replication Server must connect to Adaptive Servers that are
version 12.0 or later and configured for Failover.

• Failover of Replication Server System Databases (RSSDs) and user databases is
configured directly through the Adaptive Server.

• Failover support responds only to failover of the Adaptive Servers; that is, failover of
Replication Servers is not supported.

• Adaptive Server is responsible for the RepAgent thread failover and its reconnection to
Replication Server after failover/failback.

• Each Replication Server configures its own connections.

Replication System Recovery

Administration Guide Volume 2 311

Enabling Failover Support for an RSSD Connection
Edit the configuration file to enable Failover support for an RSSD connection after you have
installed the Replication Server.

You can also use rs_init to enable Failover support when you install a new Replication Server.
See Replication Server Configuration Guide > Configure Replication Server and Add
Databases Using rs_init.

1. Use a text editor to open the Replication Server configuration file.

The default file name is the Replication Server name with a “.cfg” extension. The
configuration file contains one line per entry.

2. Find the line RSSD_ha_failover=no and change it to
RSSD_ha_failover=yes.

You can disable Failover support for an RSSD connection by setting
RSSD_ha_failover=no

These changes take effect immediately; that is, you do not have to restart Replication
Server to enable Failover support.

Enabling Failover Support for Non-RSSD Database Connections
Use configure replication server with ha_failover to enable Failover support for new
database connections from the Replication Server to Adaptive Servers.

See Adaptive Server Enterprise > Using Sybase Failover in a High Availability System.

1. If necessary, start the Replication Server.

See Replication Server Administration Guide Volume 1 > Manage a Replication System >
Starting Replication Server.

2. Log in to the Replication Server:

isql -Uuser_name -Ppassword -Sserver_name

where user_name must have Administrator privileges. Specify the name of the Replication
Server using the -S flag.

When your login is accepted, isql displays a prompt:
1>

3. Set ha_failover on.

configure replication server
set ha_failover to 'on'

Replication System Recovery

312 Replication Server

Configure the Replication System to Prevent Data Loss
Learn the recommended measures for preventing data loss in the event of an irrecoverable
database error. If used properly, these measures allow you to restore replicated data using the
system recovery procedures.

Save Interval for Recovery
Replication Servers are designed to store messages from their source and forward them to
their destinations. To increase the chances of recovering online messages after rebuilding
stable queues, you can set save intervals, measured in minutes, for routes between Replication
Servers.

A save interval is the amount of time that a message is stored after it has been forwarded. You
can also set save intervals for a physical or logical database connection from a Replication
Server, allowing Replication Server to save messages in a DSI outbound queue.

To find the current save interval for a route or connection, use the admin who, sqm command.
The Save_Int:Seg column holds two values. The value preceding the colon is the save
interval. The value after the colon is the first saved segment in the stable queue.

Routes Between Replication Servers
You can set save intervals for routes between Replication Servers for recovery of messages.

If the Replication Server has suspended routes, or if a network or data server connection is
down, a backlog of messages may accumulate in the Replication Server stable queues. The
chance of recovering these messages decreases with time. Source Replication Servers may
already have deleted messages from their stable queues and database logs may already have
been truncated.

When you set the save_interval parameter for each route between Replication Servers, you
allow each Replication Server to retain messages for a minimum period of time after the next
site in the route acknowledges that it has received the messages. The availability of these
messages increases the chance of recovering online messages after queues are rebuilt.

For example, in this figure, Replication Server TOKYO_RS maintains a direct route to
MANILA_RS, and MANILA_RS maintains a direct route to SYDNEY_RS.

Replication System Recovery

Administration Guide Volume 2 313

Figure 24: Save Interval Example

TOKYO_RS retains messages for a period of time after MANILA_RS has received them. If
MANILA_RS experiences a partition failure, it requires that TOKYO_RS to resend the
backlogged messages. MANILA_RS can also retain messages to allow SYDNEY_RS to
recover from failures.

When all of the messages stored on a stable queue segment are at least as old as the
save_interval setting, Replication Server deletes the segment so it can be reused.

Set the Save Interval for Routes
Execute the alter route command with the save_interval parameter at the source Replication
Server to set the save interval for a route.

Figure 25: Save Interval Example

For example, to set Replication Server TOKYO_RS to save for one hour any messages
destined for MANILA_RS, enter:
alter route to MANILA_RS
 set save_interval to '60'

By default, save_interval is set to 0 (minutes). For systems with low volume, this may be an
acceptable setting for recovery, since Replication Server does not delete messages
immediately after receiving acknowledgment from destination servers. Rather, messages are
deleted periodically in large chunks.

Replication System Recovery

314 Replication Server

However, to accommodate the volume and activity of sites that receive distributions from the
Replication Server and to increase the chance of full recovery from database or partition
failures, you may want to change the save_interval setting.

In case of a partition failure on the stable queues, be sure your setting allows adequate time to
restore your system. Consider also the size of the partitions that are allocated for backlogged
messages. Partitions must be large enough to hold the extra messages.

Refer to the Replication Server Design Guide capacity planning guidelines for help in
determining queue space requirements.

Connections Between Replication Servers and Data Servers
You can set save intervals for connections between Replication Servers for recovery of
messages

When you set save_interval for a physical or logical connection between a Replication Server
and a data server and database, you allow Replication Server to save transactions in the DSI
queue. You can restore the backlogged transactions using sysadmin
restore_dsi_saved_segments. See Replication Server Reference Manual > Replication
Server Commands > sysadmin restore_dsi_saved_segments.

You can use these saved transactions to resynchronize a database after it has been loaded to a
previous state from transaction dumps and database dumps.

Figure 26: Save Interval Example

For example, in this figure, if the replicate data server SYDNEY_DS that is connected to
Replication Server SYDNEY_RS experiences a failure, it can obtain the messages saved in
the DSI queue at SYDNEY_RS to resynchronize the replicate database after it has been
restored.

You can also use save_interval for setting up a warm standby of a database that holds some
replicate data or one that receives applied functions.

Replication System Recovery

Administration Guide Volume 2 315

Set the Save Interval for Connections
Execute the alter connection command with the save_interval parameter at the Replication
Server to set the save interval for a database connection.

For example, to set Replication Server SYDNEY_RS to save for one hour any messages
destined for its replicate data server SYDNEY_DS, enter:
alter connection to SYDNEY_DS.pubs2
 set save_interval to '60'

By default, the save_interval is set to 0 (minutes).

You can also configure the save intervals for the DSI queue and the materialization queue for a
logical connection.

See also
• Configure Logical Connection Save Intervals on page 104

Back up the RSSDs
Perform a dump of your RSSDs following any replication DDL, such as changing routes or
adding subscriptions.

If you cannot recover the most recent state of an RSSD, recovery can be complex. The
procedure you use depends on how much RSSD activity there has been since the last dump.

See also
• Procedures to Recover an RSSD from Dumps on page 327

Create Coordinated Dumps
When you must recover a primary database by restoring backups, you must also make sure
that replicate data in the affected databases at other sites is consistent with the primary data.

To provide for consistency after a restore on multiple data servers, Replication Server provides
a method for coordinating database dumps and transaction dumps at all sites in a replication
system.

You initiate a database dump or transaction dump from the primary database. RepAgent
retrieves the dump record from the log and submits it to Replication Server so that the dump
request can be distributed to the replicate sites. The method ensures that all of the data can be
restored to a known point of consistency.

You can only use a coordinated dump with databases that store either primary data or
replicated data but not both. You initiate a coordinated dump from within a primary database.

The process for coordinating dumps works as follows:

• In each function-string class assigned to the databases involved, the Replication System
Administrator at each site creates function strings for the rs_dumpdb and rs_dumptran

Replication System Recovery

316 Replication Server

system functions. The function strings should call stored procedures that execute the
dump database and dump transaction or equivalent commands and update the
rs_lastcommit system table. Refer to the Replication Server Reference Manual for
examples.

• You must be using a function-string class, such as a derived class, in which you can create
and modify function strings.

• Using the alter connection command, the replication system administrator at each
replicate site configures the Replication Servers to enable a coordinated dump.

• When a dump is started in a primary database, the RepAgent transfers the dump database
or dump transaction log record to the Replication Server.

• Replication Server distributes an rs_dumpdb or rs_dumptran function call to sites that
have subscriptions for the replicated tables in the database.

• The rs_dumpdb and rs_dumptran function strings at the replicate sites execute the
customized stored procedures at each replicate site.

See also
• Manage Function-String Classes on page 26

Recovery from Partition Loss or Failure
When a Replication Server detects a failed or missing partition, it shuts down the stable queues
that are using the partition and logs messages about the failure. Restarting Replication Server
does not correct the problem. You must drop the damaged partition and rebuild the stable
queues.

Complete recovery depends on the volume of messages cleared from the queue and on how
soon you apply the recovery procedure after the failure occurs. If a Replication Server
maintains minimal latency in the replication system, only the most recent messages are lost
when its queues are rebuilt.

If a partition fails in a primary Replication Server, you can usually resend lost messages from
their source using an off-line database log. If partitions fail in a replicate Replication Server,
you need to recover from the stable queue of the upstream Replication Server.

In some cases, using an off-line log may be the only way you can recover your messages. If the
Replication Server has suspended routes or connections, or if a network or data server
connection goes down, a backlog may have accumulated in the Replication Server stable
queues. Unless you have specified a save interval setting that can cover the backlog, your
chance of recovering these messages decreases with time. Source Replication Servers may
have already deleted messages from their stable queues and may have truncated the database
logs.

Note: You can set save intervals for recovery.

Replication System Recovery

Administration Guide Volume 2 317

See also
• Save Interval for Recovery on page 313

Symptoms of and Relevant Recovery Procedures for Partition Loss or
Failure

Learn when to use and where to locate the appropriate recovery procedure for partition loss or
failure.

Table 29. Symptoms of and Relevant Recovery Procedures for Partition Loss or
Failure

Symptom Use this procedure

Replication Server detects lost, damaged, or failed
stable queue.

Recovering from partition loss or failure.

Message loss occurred because a backlog existed in
the failed Replication Server and there were insuffi-
cient messages saved at the previous site.

Message recovery from off-line database
logs.

In addition to message loss, database logs have been
truncated. Either the secondary truncation point is
invalid or the dbcc settrunc('ltm', 'ignore') command,
was executed to truncate log records that have not
been transferred by RepAgent to the Replication
Server.

Use the truncated message recovery from the
database log to recover the database log.
Then use message recovery from off-line da-
tabase logs to rebuild the stable queues and
recover lost messages.

See also
• Recovering from Partition Loss or Failure on page 318

• Recovering Messages from Off-line Database Logs on page 319

• Recovering Messages from Truncated Primary Database Logs on page 322

Recovering from Partition Loss or Failure
Recover from Replication Server partition loss or failure when Replication Server detects a
lost, damaged,or failed stable queue.

1. Log in to the Replication Server and drop the failed partition:

drop partition logical_name

Replication Server does not immediately drop a partition that is in use. If the partition is
undamaged, Replication Server drops it only after all of the messages it holds are delivered
and deleted. See Replication Server Reference Manual > Replication Server Commands >
drop partition.

2. If the failed partition was the only one available to the Replication Server, add another one
to replace it:

Replication System Recovery

318 Replication Server

create partition logical_name
on 'physical_name' with size size
[starting at vstart]

See Replication Server Reference Manual > Replication Server Commands > create
partition.

3. Since the partition is damaged, you must rebuild the stable queues:

rebuild queues

When all stable queues on the partition are removed, Replication Server drops the failed
partition from the system and rebuilds the queues online using the remaining partitions.

4. After rebuilding the queues, check the Replication Server logs for loss detection messages.

5. If Replication Server detected message loss, do one of:

• Perform message recovery from off-line database logs
• Request that Replication Server ignore the loss by executing the ignore loss command

for the database on the Replication Server where the loss was detected.

Next
If you specify that Replication Server ignore message losses and you have rebuilt the queues
of a Replication Server that is part a route, re-create subscriptions at the destination or use the
rs_subcmp program with the -r flag to reconcile primary and replicate data.

See also
• Rebuild Queues Online on page 340
• Loss Detection After Rebuilding Stable Queues on page 342
• Recovering Messages from Off-line Database Logs on page 319

Recovering Messages from Off-line Database Logs
Recover messages from off-line logs after a partition failure.

If the online log does not contain all the data needed to recover, you must load an older version
of the primary database into a separate database and start RepAgent for the database.
Although RepAgent is accessing a different database, it submits messages as if they were from
the database whose messages you are recovering.

1. Restart Replication Server in standalone mode, using the -M flag.

2. Rebuild the stable queues. Log in to the Replication Server, and enter:

rebuild queues

3. Inspect the Replication Server logs at each site for “Checking Loss” messages and use the
date and time in the error log messages to determine which dumps to load.

4. Enable RepAgent for a temporary recovery database:

sp_config_rep_agent temp_dbname, 'enable', \
'rs_name', 'rs_user_name', 'rs_password'

Replication System Recovery

Administration Guide Volume 2 319

See Replication Server Administration Guide Volume 1 > Manage RepAgent and Support
Adaptive Server > Set up RepAgent.

5. Load the database dump and the first transaction log dump in to a temporary recovery
database.

6. Start RepAgent in recovery mode for the temporary database:

sp_start_rep_agent temp_dbname, 'recovery', \
'connect_dataserver', 'connect_database', \
'rs_name', 'rs_user_name', 'rs_password'

where 'connect_dataserver' and 'connect_database' specify the original primary data
server and database.

RepAgent transfers data in the transaction log of the temporary recovery database to the
original primary database. When RepAgent completes scanning the transaction log, it
shuts down.

7. Verify that RepAgent has replayed the transaction log of the temporary database. Use
either of these methods:

• Check the Adaptive Server log for a message similar to the following:
Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp_start_rep_agent,
with ‘recovery’ specified.

Then, perform the appropriate actions.
• From Adaptive Server, execute:

sp_help_rep_agent dbname, 'recovery'

This procedure displays RepAgent’s recovery status. If the recovery status is “not
running” or “end of log,” then recovery is complete. You can load the next transaction
log dump. If the recovery status is “initial” or “scanning,” either the log has not been
replayed, or the replay is not complete.

8. If you have performed another recovery procedure since you performed the last database
dump, you may need to change the database generation number after loading a transaction
log dump.

9. If there are more transaction log dumps to load, repeat the following three steps for each
dump:

a) Load the next transaction log dump. (Be sure to load the dumps in the correct order.)
b) Restart RepAgent in recovery mode.
c) Watch the Adaptive Server log for the completion message or use

sp_help_rep_agent.

10. Check the Replication Server logs for loss detection messages.

No losses should be detected unless you failed to load the database to a state old enough to
retrieve all of the messages.

Replication System Recovery

320 Replication Server

11. Restart the Replication Server in normal mode.

12. Restart RepAgent for the original primary data server and database in normal mode.

See also
• Rebuild Queues Online on page 340

• Determine Which Dumps to Load on page 347

• Determine Database Generation Numbers on page 348

• Loss Detection After Rebuilding Stable Queues on page 342

Recovering Messages from the Online Database Log
Recover messages that are still in the online log at the primary database.

1. Stop all client activity.

2. Restart RepAgent for the primary database in recovery mode.

This process causes RepAgent to scan the log from the beginning so that it retrieves all
messages.

Recovery from Truncated Primary Database Logs
Recover from failures caused by truncating a primary transaction log before Replication
Server has received the messages.

This situation typically occurs if RepAgent, a Replication Server (managing a primary
database), or a network between them is down for a long time and RepAgent or Replication
Server cannot read records from the transaction log. The secondary truncation point cannot be
moved, which prevents Adaptive Server from truncating the log and causes the transaction log
of the primary database to fill up. You can then remove the secondary truncation point by
executing sp_stop_rep_agent followed by dbcc settrunc (ltm, ignore).

When a failed component returns to service, messages are missing at the Replication Server.
Depending on the status of the lost messages, use one of the following procedures:

• If messages are still in the online log at the primary database (which is unlikely), recover
messages from the online database log.

• If messages have been truncated from the online database log, recover the truncated
messages from the database log.
In this procedure, you must load a previous database dump and transaction log dumps into
a temporary recovery database. Then connect a RepAgent to that database to transmit the
truncated log to the Replication Server. After the missing log records are recovered, you
can restart the system using the regular primary database.
Using a temporary recovery database permits transaction recovery from clients that
continued to use the primary database after its log was truncated.

Replication System Recovery

Administration Guide Volume 2 321

Note: Use the temporary database exclusively for recovering messages. Any modification
to the database prevents you from loading the next transaction log dump. Also limit the
activity on the original primary database so that the recovery can be completed before the
transaction log on the original primary database must be dumped and truncated again.

See also
• Recovering Messages from the Online Database Log on page 321

Recovering Messages from Truncated Primary Database Logs
Recover truncated messages from the primary database log by replaying off-line transaction
logs.

1. Create a temporary database such that the sysusages tables are similar in both the original
and the temporary databases.

To do this, you must use the same sequence of create database and alter database
commands when creating the temporary database as were used to create the original
database.

2. Shut down Replication Server.

3. Restart Replication Server in standalone mode, using the -M flag.

4. Log in to the Replication Server and execute the set log recovery command for each
primary database you are recovering.

This command puts the Replication Server into loss detection mode for the databases.
Replication Server logs a message similar to the following:
Checking Loss for DS1.PDB from DS1.PDB
 date=Nov-01-1995 10:35am
 qid=0x01234567890123456789

5. Execute the allow connections command to allow Replication Server to accept
connections only from other Replication Servers and from RepAgents in recovery mode.

Note: If you attempt to connect to this Replication Server by automatically restarting
RepAgent in normal mode with scripts, the Replication Server rejects the connection. You
must restart RepAgent in recovery mode while pointing to the correct off-line log. This
step allows you to resend old transaction logs before current transactions are processed.

6. Load the database dump into the temporary primary database.

7. Load the first or next transaction log dump into the temporary primary database.

8. Start the RepAgent for the temporary database in recovery mode:

sp_start_rep_agent temp_dbname, 'recovery',
'connect_dataserver', 'connect_database',
'repserver_name', 'repserver_username',
'repserver_password'

where connect_dataserver and connect_database specify the original primary data server
and database.

Replication System Recovery

322 Replication Server

RepAgent transfers data in the transaction log of the temporary recovery database to the
original primary database. When RepAgent completes scanning the current transaction
log, it shuts down.

9. Verify that RepAgent has replayed the transaction log of the temporary database by doing
either one of:

• Check the Adaptive Server log for the following message:
Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp_start_rep_agent,
with ‘recovery’ specified.

and perform the appropriate actions.
• Execute admin who_is_down.

If the RepAgent reports “down,” load the next transaction log.

10. Repeat steps 7 through 9 until all transaction logs have been processed.

You are now ready to resume normal replication from the primary database.

11. Shut down Replication Server, which is still in standalone mode.

12. You may need to execute rs_zeroltm to clear the locator information:

rs_zeroltm data_server, database
dbcc settrunc('ltm', 'valid')

13. Restart Replication Server in normal mode.

14. Restart RepAgent for both the primary database and RSSD using sp_start_rep_agent.

15. If you have performed another recovery procedure since you performed the last database
dump, you may need to change the database generation number after loading a transaction
log dump.

See also
• Set Log Recovery for Databases on page 346
• Determine Database Generation Numbers on page 348

Recovery from Primary Database Failures
If a primary database fails and you are unable to recover all committed transactions, you must
load the database to a previous state and follow a recovery procedure designed to restore
consistency at the replicate sites.

Most database failures are recovered without losing any committed transactions. No special
Replication Server recovery procedure is needed if the database recovers on restart—
Replication Server performs a handshake with the database, ensuring that no transactions are
lost or duplicated in the replication system.

Here are two possible scenarios for recovering from primary database failures:

Replication System Recovery

Administration Guide Volume 2 323

• Recovering with primary dumps only.
If you do not have coordinated dumps, you can load the failed primary database and then
verify the consistency of the replicate databases with the restored primary database.

• Recovering with coordinated dumps.
If you have coordinated dumps of primary and replicate databases, you can use them to
load all databases in the replication system to a consistent state.

Loading a Primary Database from Dumps
If you are loading only a primary database in a replication system, load the database to a
previous state and resolve any inconsistencies with replicate databases.

1. Log in to the primary Replication Server to get the database generation number for the
primary database:
admin get_generation, data_server, database

Make note of this number, which you will need for a later step.

2. Shut down the RepAgent for the primary database:

sp_stop_rep_agent database

3. Suspend the DSI connection to the primary database (for exclusive use).

4. Load the database to the most recent or previous state.

This step entails loading the most recent database dump and all subsequent transaction log
dumps.

Refer to the Adaptive Server Enterprise System Administration Guide for instructions.

5. Resume the DSI connection.

6. Dump the transaction log.

Enter:
use database
go
dbcc settrunc('ltm', 'ignore')
go
dump tran database with truncate_only
go
dbcc settrunc('ltm', 'valid')
go

7. Execute the dbcc settrunc command in the restored primary database to set the generation
number to the next higher number.

For example, if the admin get_generation command in step 1 returned 0, enter :
use database
go
dbcc settrunc('ltm', 'gen_id', 1)

8. Clear the locator information.

Enter:

Replication System Recovery

324 Replication Server

rs_zeroltm data_server, database

9. Start RepAgent for the primary database. To do this, execute the following command:

sp_start_rep_agent database

10. Run the rs_subcmp program for each subscription at the replicate sites. Use the -r flag to
reconcile the replicate data with the restored primary data, or drop all the subscriptions and
re-create them.

See Replication Server Administration Guide Volume 1 > Manage Subscriptions > Obtain
Subscription Information > Verify Subscription Consistency > Use rs_subcmp To Locate
and Correct Inconsistencies, and Replication Server Reference Manual > Executable
Programs > rs_subcmp.

Loading from Coordinated Dumps
Use this procedure only if you have coordinated dumps of both primary and replicate
databases.The procedure loads a primary database and all replicate databases to the same
state.

1. Perform steps 1 through 10 from the procedure for loading a primary database from
dumps.

2. Suspend connections to the replicate databases that must be restored.

3. For each replicate database, log in to its managing Replication Server and suspend the
connection to the database.

Enter:
suspend connection to data_server.database

4. Load the replicate databases from the coordinated dumps that correspond to the restored
primary database state.

5. For each replicate database, log in to its managing Replication Server and execute a
sysadmin set_dsi_generation command to set the generation number for the database to
the same generation number used in step 1

Enter:
sysadmin set_dsi_generation, 101,
 primary_data_server, primary_database,
 replicate_data_server, replicate_database

The parameters primary_data_server and primary_database specify the primary database
for loading. The parameters replicate_data_server and replicate_database specify the
replicate database for loading.

Setting the generation numbers in this manner prevents Replication Servers from applying
to the replicate databases any old messages that may be in the queues.

6. For each replicate database, log in to its managing Replication Server and resume the
connection to the database to restart the DSI for the database.

Enter:

Replication System Recovery

Administration Guide Volume 2 325

resume connection to data_server.database

7. Restart the primary Replication Server in normal mode.

8. Restart RepAgent for the primary database in normal mode.

Next

If any subscriptions were materializing when the failure occurred, drop them and re-create
them.

See also
• Loading a Primary Database from Dumps on page 324

Recovery from RSSD Failure
If you cannot recover the most recent database state of the RSSD, recovering from an RSSD
failure is a complex process. In this case, you must load the RSSD from old database dumps
and transaction log dumps.

Note: It is not possible to migrate an RSSD database across platforms using commands such
as, cross-platform dump and load, or bcp. To migrate, you must rebuild the replication system
on the new platform.

The procedure for recovering an RSSD is similar to that for recovering a primary database.
However, it requires more steps, since the RSSD holds information about the replication
system itself. RSSD system tables are closely associated with the state of the stable queues and
of other RSSDs in the replication system.

If a Replication Server RSSD has failed, you first need to determine the extent of recovery
required. To do this, perform one or more of the following actions:

• When the RSSD becomes available, log in to the Replication Server and execute admin
who_is_down. Some Replication Server threads may have shut down during the RSSD
period of inactivity.
• If an SQM thread for an inbound or outbound queue or an RSI outbound queue is down,

restart the Replication Server.
• If a DSI thread is down, resume the connection to the associated database.
• If an RSI thread is down, resume the route to the destination database.

• Check all connecting RepAgents to see if they are running with the sp_help_rep_agent
system procedure. (RepAgents may have shut down in response to errors resulting from
RSSD shutdown.) Restart them if necessary.

• If you cannot recover the RSSD’s most recent database state, you must load it from old
database dumps and transaction log dumps.

Replication System Recovery

326 Replication Server

See also
• Procedures to Recover an RSSD from Dumps on page 327

Procedures to Recover an RSSD from Dumps
The procedure you use to recover an RSSD depends on how much RSSD activity there has
been since the last RSSD dump. There are four increasingly severe levels of RSSD failure,
with corresponding recovery requirements.

Table 30. Procedures to Recover from RSSD Failures

Activity since last RSSD dump Use this procedure

No DDL activity Basic RSSD Recovery Procedure.

DDL activity, but no new routes or subscriptions
created

Subscription Comparison Procedure

DDL activity, but no new routes created Subscription Comparison Procedure

New routes created Deintegration/reintegration Procedure

See also
• Using the Basic RSSD Recovery Procedure on page 327

• Using the Subscription Comparison Procedure on page 330

• Using the Subscription Re-Creation Procedure on page 336

• Using the Deintegration and Reintegration Procedure on page 339

Using the Basic RSSD Recovery Procedure
Restore the RSSD if you have executed no DDL commands since the last RSSD dump. DDL
commands in RCL include those for creating, altering, or deleting routes, replication
definitions, subscriptions, function strings, functions, function-string classes, or error classes.

Certain steps in this procedure are also referenced by other RSSD recovery procedures.

Warning! Do not execute any DDL commands until you have completed this recovery
procedure.

1. Shut down all RepAgents that connect to the current Replication Server.

2. Since its RSSD has failed, the current Replication Server is down. If for some reason it is
not down, log in to it and use the shutdown command to shut it down.

Note: Some messages may still be in the Replication Server stable queues. Data in those
queues may be lost when you rebuild these queues in later steps.

3. Restore the RSSD by loading the most recent RSSD database dump and all transaction
dumps.

Replication System Recovery

Administration Guide Volume 2 327

4. Restart the Replication Server in standalone mode, using the -M flag.

You must start the Replication Server in standalone mode, because the stable queues are
now inconsistent with the RSSD state. When the Replication Server starts in standalone
mode, reading of the stable queues is not automatically activated.

5. Log in to the Replication Server, and get the generation number for the RSSD.

Enter:
admin get_generation, data_server, rssd_name

For example, the Replication Server may return a generation number of 100.

6. In the Replication Server, rebuild the queues.

Enter:
rebuild queues

7. Start all RepAgents (except the RSSD RepAgent) that connect to the current Replication
Server in recovery mode.

Enter:
sp_start_rep_agent dbname, recovery

Wait until each RepAgent logs a message in the Adaptive Server log that it is finished with
the current log.

8. Check the loss messages in the Replication Server log, and in the logs of all the Replication
Servers with direct routes from the current Replication Server.

• If all your routes were active at the time of failure, you probably will not experience any
real data loss.

• However, loss detection may indicate real loss. Real data loss may be detected if the
database logs were truncated at the primary databases, so that the rebuild process did
not have enough information to recover. If you have real data loss, reload database logs
from old dumps using the procedure to recover from truncated primary database logs.

9. Shut down RepAgents for all primary databases managed by the current Replication
Server.

Enter:
sp_stop_rep_agent dbname

10. Shut down Replication Server.

11. Move up the secondary truncation point.

Execute the dbcc settrunc command at the Adaptive Server for the restored RSSD:
use rssd_name
go
dbcc settrunc('ltm', 'ignore')
go
dump tran rssd_name with truncate_only
go

Replication System Recovery

328 Replication Server

begin tran commit tran
go 40

Note: The begin tran commit tran go 40 command moves the Adaptive Server log onto the
next page.

12. Clear the locator information.

Enter:
rs_zeroltm rssd_server, rssd_name
go

13. Execute the dbcc settrunc command at the Adaptive Server for the restored RSSD to set
the generation number to one higher than the number returned by admin get_generation
in step 5.

Enter:
dbcc settrunc ('ltm', 'gen_id', generation_number)
go
dbcc settrunc('ltm', 'valid')
go

Make a record of this generation number and of the current time, so that you can return to
this RSSD recovery procedure, if necessary. Or, you can dump the database after setting
the generation number.

14. Restart the Replication Server in normal mode.

If you performed this procedure as part of the subscription comparison or subscription
re-creation procedure, the upstream RSI outbound queue may contain transactions, bound
for the RSSD of the current Replication Server, that have already been applied using
rs_subcmp. If this is the case, after starting the Replication Server, the error log may
contain warnings referring to duplicate inserts. You can safely ignore these warnings.

15. Restart RepAgents for the RSSD and for user databases in normal mode.

If you performed this procedure as part of the subscription comparison or subscription
re-creation RSSD recovery procedure, you should expect to see messages regarding RSSD
losses being detected in all Replication Servers that have routes from the current
Replication Server.

See also
• Rebuild Queues Online on page 340

• Recovery from Truncated Primary Database Logs on page 321

• Loss Detection After Rebuilding Stable Queues on page 342

Replication System Recovery

Administration Guide Volume 2 329

Using the Subscription Comparison Procedure
Follow this RSSD recovery procedure if you have executed some DDL commands since the
last transaction dump but you have not created any new subscriptions or routes.

DDL commands in RCL include those for creating, altering, or deleting routes, replication
definitions, subscriptions, function strings, functions, function-string classes, or error classes.

Warning! Do not execute any DDL commands until you have completed this recovery
procedure.

Following this procedure makes the failed RSSD consistent with upstream RSSDs or
consistent with the most recent database and transaction dumps (if there is no upstream
Replication Server). It then makes downstream RSSDs consistent with the recovered RSSD.

If DDL commands have been executed at the current Replication Server since the last
transaction dump, you may have to re-execute them.

Warning! This procedure may fail if you are operating in a mixed-version environment; that
is, the Replication Servers in your replication system are not all at the same version level.

1. To prepare the failed RSSD for recovery, perform steps 1 through 4 of the basic RSSD
recovery procedure.

2. To prepare all upstream RSSDs for recovery, execute the admin quiesce_force_rsi
command at each upstream Replication Server.

• This step ensures that all committed transactions from the current Replication Server
have been applied before you execute the rs_subcmp program.

• Execute this command sequentially, starting with the Replication Server that is furthest
upstream from the current Replication Server.

• Make sure that RSSD changes have been applied, that is, that the RSSD DSI outbound
queues are empty.

• The Replication Server that is directly upstream from the current Replication Server
cannot be quiesced.

3. To prepare all downstream RSSDs for recovery, execute the admin quiesce_force_rsi
command at each downstream Replication Server.

• This step ensures that all committed transactions bound for the current Replication
Server have been applied before you execute the rs_subcmp program.

• Execute this command sequentially, starting with Replication Servers that are
immediately downstream from the current Replication Server.

• Make sure that RSSD changes have been applied, that is, that the RSSD DSI outbound
queues are empty.

4. Reconcile the failed RSSD with all upstream RSSDs, using the rs_subcmp program.

Replication System Recovery

330 Replication Server

• First execute rs_subcmp without reconciliation to get an idea of what operations it will
perform. When you are ready to reconcile, use the -r flag to reconcile the replicate data
with the primary data.

• You must execute rs_subcmp as the maintenance user. See Replication Server
Administration Guide Volume 1 > Manage Replication Server Security for more
information on the maintenance user.

• In each instance, specify the failed RSSD as the replicate database.
• In each instance, specify the RSSD of each upstream Replication Server as the primary

database.
• Start with the furthest upstream Replication Server, and proceed downstream for all

other Replication Servers with routes (direct or indirect) to the current Replication
Server.

• Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions,
rs_functions, rs_funcstrings, rs_objects, rs_publications,
rs_systext, and rs_whereclauses.

• When you execute rs_subcmp on replicated RSSD tables, the where and order by
clauses of the select statement must include all rows to be replicated.
The failed RSSD should now be recovered.

5. Reconcile all downstream RSSDs with the RSSD for the current Replication Server, which
was recovered in the previous step, using the rs_subcmp program.

• First execute rs_subcmp without reconciliation to get an idea of what operations it will
perform. When you are ready to reconcile, use the -r flag to reconcile the replicate data
with the primary data.

• You must execute rs_subcmp as the maintenance user. See Replication Server
Administration Guide Volume 1 > Manage Replication Server Security for more
information on the maintenance user.

• In each instance, specify as the primary database the recovered RSSD.
• In each instance, specify as the replicate database the RSSD of each downstream

Replication Server.
• Start with the Replication Servers that are immediately downstream, then proceed

downstream for all other Replication Servers with routes (direct or indirect) from the
current Replication Server.

• Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions,
rs_functions, rs_funcstrings, rs_objects, rs_publications,
rs_systext, and rs_whereclauses.

• When you execute rs_subcmp on replicated RSSD tables, the where and order by
clauses of the select statement must select all rows to be replicated.
All downstream RSSDs should now be fully recovered.

6. If the recovering Replication Server is an ID Server, you must restore the Replication
Server and database IDs in its RSSD.

Replication System Recovery

Administration Guide Volume 2 331

a) For every Replication Server, check the rs_databases and rs_sites system
tables for their IDs.

b) Insert the appropriate rows in the recovering RSSD rs_idnames system table if they
are missing.

c) Delete from the recovering RSSD rs_idnames system table any IDs of databases or
Replication Servers that are no longer part of the replication system.

d) Ensure that the rs_ids system table is consistent.

Execute in the RSSD of the current Replication Server this stored procedure:
rs_mk_rsids_consistent

7. If the recovering Replication Server is not an ID Server, and a database connection was
created at the recovering Replication Server after the last transaction dump, delete the row
corresponding to that database connection from the rs_idnames system table in the ID
Server’s RSSD.

8. Perform steps 5 through 14 of the basic RSSD recovery procedure.

9. To complete RSSD recovery, re-execute any DDL commands executed at the current
Replication Server since the last transaction dump.

See also
• select Statements to Use for rs_subcmp on Replicated RSSD System Tables on page
332

• Using the Basic RSSD Recovery Procedure on page 327

select Statements to Use for rs_subcmp on Replicated RSSD System Tables
When executing rs_subcmp on replicated RSSD tables during RSSD recovery procedures,
formulate the where and order by clauses of the select statement to select all rows that must be
replicated for each system table.

In the select statements listed , sub_select represents the following sub-selection statement,
which selects all site IDs that are the source Replication Servers for the current Replication
Server:
(select source_rsid from rs_routes
 where
 (through_rsid = PRS_site_ID
 or through_rsid = RRS_site_ID)
 and
 dest_rsid = RRS_site_ID)

where PRS_site_ID is the site ID of the Replication Server managing the primary RSSD, and
RRS_site_ID is the site ID of the Replication Server managing the replicate RSSD for the
rs_subcmp operation.

For the rs_columns, rs_databases, rs_funcstrings, rs_functions, and
rs_objects system tables, if rowtype = 1, then the row is a replicated row. Only
replicated rows need be compared using rs_subcmp.

Replication System Recovery

332 Replication Server

For each system table, the primary_keys are its unique indexes. See Replication Server
Reference Manual > Replication Server System Tablesfor more information on the tables.

Note: These are the general form of the select statements. You may need to adjust these select
statements in a mixed-version environment.

Table 31. General Form of select Statements for rs_subcmp Procedure

RSSD table name select statement

rs_articles select * from rs_articles,rs_objects where
rs_objects.prsid in
sub_select and rs_articles.objid = rsob-
jects.objid order by articleid

rs_classes select * from rs_classes where prsid in sub_se-
lect order
by classid

rs_columns select * from rs_columns where prsid in sub_se-
lect and
rowtype = 1 order by objid, basecolnum, col-
name, colnum, version

rs_databases select * from rs_databases where prsid in
sub_select and
rowtype = 1 order by dbid, dbname, dsname,
ldbid, ltype, ptype

rs_errorac-
tions

select * from rs_erroractions where prsid in
sub_select order
by ds_errorid, errorclassid

rs_funcstrings select * from rs_funcstrings where prsid in
sub_select and
rowtype = 1 order by fstringid

rs_functions select * from rs_functions where prsid in
sub_select and
rowtype = 1 order by funcid, funcname, objid

rs_objects select * from rs_objects where prsid in sub_se-
lect and
rowtype = 1 order by active_inbound, dbid,
has_baserepdef,
objid, objname, objtype, phys_tablename,
phys_objowner, version

Replication System Recovery

Administration Guide Volume 2 333

RSSD table name select statement

rs_publica-
tions

select * from rs_publications where prsid in
sub_select
order by pubid

rs_systext select * from rs_systext where prsid in sub_se-
lect and texttype
in ('O', 'S') order by parentid, texttype, se-
quence

rs_whereclau-
ses

select * from rs_whereclauses,rs_arti-
cles,rs_objects where
rs_objects.prsid in sub_select and rs_arti-
cles.objid = rsobjects.objid
and rs_whereclauses.articleid = rs_artil-
ces.articleid order by wclauseid

Classes and System Tables
Learn the impact of the subscription comparison procedure on classes and system tables and
how to bring the RSSDs to a consistent state.

The system-provided function-string classes and error class do not initially have a designated
primary site, that is, their site ID equals 0. The classes rs_default_function_class
and rs_db2_function_class cannot be modified, and thus can never have a designated
primary site. The classes rs_sqlserver_function_class and
rs_sqlserver_error_class may be assigned a primary site and modified. The
primary site of a derived function-string class is the same as its parent class.

If the recovering Replication Server was made the primary site for a function-string class or
error class since the last transaction dump, the rs_subcmp procedure finds orphaned rows in
downstream RSSDs.

In that event, run rs_subcmp again on the rs_classes, rs_erroractions,
rs_funcstrings, and rs_systext system tables. Set prsid = 0 in order to repopulate
these tables with the necessary default settings.

For example, use this select statement for the rs_classes table:

select * from rs_classes where prsid = 0
 order by primary_keys

Example
Bring RSSDs to a consistent state.

Suppose you have the following Replication Server sites in your replication system, where an
arrow (→) indicates a route. Site B is the failed site, and there are no indirect routes.

• A > B

Replication System Recovery

334 Replication Server

• C > B
• C > D
• B > E

These Replication Servers have the following site IDs:

• A = 1
• B = 2
• C = 3
• D = 4
• E = 5

In this example, to bring the RSSDs to a consistent state, you would perform the following
tasks, in the order presented, on the rs_classes, rs_columns, rs_databases,
rs_erroractions, rs_funcstrings, rs_functions, rs_objects, and
rs_systext system tables.

Reconciling with Upstream RSSDs
Reconcile system tables with upstream RSSDs.

1. Run rs_subcmp against the tables, specifying site B as the replicate and site A as the
primary, with prsid = 1 in the where clauses.

For example, the select statement for rs_columns should look like:

select * from rs_columns where prsid in
 (select source_rsid from rs_routes
 where
 (through_rsid = 1 or through_rsid = 2)
 and dest_rsid = 2)
 and rowtype = 1
 order by objid, colname

2. Run rs_subcmp against the above tables, specifying site B as the replicate and site C as the
primary, with prsid = 3 in the where clauses.

For example, the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
 (select source_rsid from rs_routes
 where
 (through_rsid = 3 or through_rsid = 2)
 and dest_rsid = 2)
 and rowtype = 1
 order by objid, colname

Reconciling Downstream RSSDs
Reconcile system tables with downstream RSSDs.
Run rs_subcmp against the above tables, specifying site B as the primary and site E as the
replicate, with prsid = 2 in the where clauses.

For example, the select statement for rs_columns should look like:

Replication System Recovery

Administration Guide Volume 2 335

select * from rs_columns where prsid in
 (select source_rsid from rs_routes
 where
 (through_rsid = 2 or through_rsid = 5)
 and dest_rsid = 5)
 and rowtype = 1
 order by objid, colname

See Replication Server Reference Manual > Executable Programs > rs_subcmp, and see
Replication Server Reference Manual > Replication Server System Tables.

Using the Subscription Re-Creation Procedure
Restore an RSSD that requires that lost subscriptions be re-created if you have created new
subscriptions or other DDL since the last transaction dump, and you have not created new
routes.

DDL commands in RCL include those for creating, altering, or deleting routes, replication
definitions, subscriptions, function strings, functions, function-string classes, or error classes.

Warning! Do not execute any DDL commands until you have completed the subscription
re-creation recovery procedure.

This task makes the failed RSSD consistent with upstream RSSDs, or with the most recent
database and transaction dumps, if there is no upstream Replication Server. It then makes
downstream RSSDs consistent with the recovered RSSD. You also either delete or re-create
subscriptions that are in limbo due to the loss of the RSSD.

In this procedure, however,

If DDL commands have been executed at the current Replication Server since the last
transaction dump, you may have to reexecute them.

See Replication Server Reference Manual > Executable Programs > rs_subcmp, and see
Replication Server Reference Manual > Replication Server System Tables.

1. To prepare the failed RSSD for recovery, perform steps 1 through 4 of the basic RSSD
recovery procedure.

2. To prepare the RSSDs of all upstream and downstream Replication Servers for recovery,
perform step 2 through 3 of the subscription comparison procedure.

3. Shut down all upstream and downstream Replication Servers affected by the previous step.
Use the shutdown command.

4. Restart all upstream and downstream Replication Servers in standalone mode, using the -M
flag.

All RepAgents connecting to these Replication Servers shut down automatically when
you restart the Replication Servers in standalone mode.

5. To reconcile the failed RSSD with all upstream RSSDs, perform step 4 of the subscription
comparison procedure.

Replication System Recovery

336 Replication Server

The failed RSSD should now be recovered.

6. To reconcile all downstream RSSDs with the RSSD for the current Replication Server,
perform step 5 of the subscription comparison procedure.

7. If the recovering Replication Server is an ID Server, to restore the IDs in its RSSD, perform
step 6 of the subscription comparison procedure.

8. If the recovering Replication Server is not an ID Server and a database connection was
created at the recovering Replication Server after the last transaction dump, perform step 7
of the subscription comparison procedure.

9. Query the rs_subscriptions system table of the current Replication Server for the
names of subscriptions and replication definitions or publications and their associated
databases.

• Also query all Replication Servers with subscriptions to primary data managed by the
current Replication Server, or with primary data to which the current Replication
Server has subscriptions.

• You can query the rs_subscriptions system table by using the rs_helpsub
stored procedure.

10. For each user subscription in the rs_subscriptions system table, execute the check
subscription command using the information obtained in step 9.

• Execute this command at the current Replication Server and at all Replication Servers
with subscriptions to primary data managed by the current Replication Server, or with
primary data to which the current Replication Server has subscriptions.

• Subscriptions with a status other than VALID must be deleted or re-created, as
described below.

11. For each Replication Server that has a non-VALID subscription with the current
Replication Server as the primary:

• Note its subid, and delete the appropriate row from the primary
rs_subscriptions system table.

• Use the subid from rs_subscriptions to find corresponding rows in the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

• If a subscription is in the primary table and not in the replicate table (because it was
dropped), delete the subscription row from the primary table.

• If a subscription is in the replicate table and not in the primary table, delete the
subscription row from the replicate table. After completing the rest of this procedure,
re-create the subscription, as described in steps 17 through 19.

• If a subscription is in both the primary and replicate tables but is not VALID at one of
the sites, delete the rows from both tables. After completing the rest of this procedure,
re-create the subscription, as described in steps 17 through 19.

12. For each primary Replication Server for which the current Replication Server has a non-
VALID user subscription:

Replication System Recovery

Administration Guide Volume 2 337

• Note its subid, and delete the appropriate row from the primary
rs_subscriptions system table.

• Use the subid from rs_subscriptions to find corresponding rows in the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

• If a subscription is in the primary table and not in the replicate table, delete the
subscription row from the primary table. After completing the rest of this procedure,
re-create the subscription, as described in steps 17 through 19.

• If a subscription is in the replicate table and not in the primary table (because it was
dropped), delete the subscription row from the replicate table.

• If a subscription is in both the primary and replicate tables, but not VALID at one of the
sites, delete the rows from both tables. After completing the rest of this procedure, re-
create the subscription, as described in steps 17 through 19.

13. At both the primary and replicate Replication Server, execute the sysadmin drop_queue
command for all existing materialization queues for subscriptions deleted in steps 17
through 19.

14. Restart in normal mode all Replication Servers, and their RepAgents, that had
subscriptions to primary data managed by the current Replication Server or with primary
data to which the current Replication Server had subscriptions.

15. Perform steps 5 through 13 of the basic RSSD recovery procedure.

16. Reexecute any DDL commands that executed at the current Replication Server since the
last transaction dump.

17. Enable autocorrection for each replication definition.

18. Re-create the missing subscriptions using either the bulk materialization method or no
materialization.

Use the define subscription, activate subscription, validate subscription, and check
subscription commands for bulk materialization.

19. For each re-created subscription, restore consistency between the primary and replicate
data in either of two ways:

• Drop a subscription using the drop subscription command and the with purge option.
Then re-create the subscription.

• Use the rs_subcmp program with the -r flag to reconcile replicate and primary
subscription data.

See also
• Using the Basic RSSD Recovery Procedure on page 327

• Using the Subscription Comparison Procedure on page 330

Replication System Recovery

338 Replication Server

Using the Deintegration and Reintegration Procedure
If you created routes since the last time the RSSD was dumped, you are required to follow the
deintegration and reintegration procedure.

1. Remove the current Replication Server from the replication system.

See Replication Server Administration Guide Volume 1 > Remove a Replication Server.

2. Reinstall the Replication Server.

Refer to the Replication Server installation and configuration guides for your platform for
complete information on reinstalling Replication Server.

3. Re-create Replication Server routes and subscriptions.

See Replication Server Administration Guide Volume 1 > Manage Routes and Replication
Server Administration Guide Volume 1 > Manage Subscriptions.

Recovery Support Tasks
Standard recovery tasks let you manipulate and identify critical data in the replication system.

Use recovery tasks only for the procedure to which they apply.

Recovery support tasks include:

• Rebuilding stable queues
• Checking for Replication Server loss detection messages after rebuilding stable queues
• Putting Replication Server in log recovery mode and setting log recovery for databases
• Checking for Replication Server loss detection messages after setting log recovery for

databases
• Determining which dumps and logs to load
• Adjusting database generation numbers

See also
• Rebuild Stable Queues on page 340

• Loss Detection After Rebuilding Stable Queues on page 342

• Set Log Recovery for Databases on page 346

• Loss Detection After Setting Log Recovery on page 347

• Determine Which Dumps to Load on page 347

• Adjust Database Generation Numbers on page 348

Replication System Recovery

Administration Guide Volume 2 339

Rebuild Stable Queues
The rebuild queues command removes all existing queues and rebuilds them. It cannot
rebuild individual stable queues.

You can rebuild queues online or off-line, depending on your situation. Generally, you rebuild
queues online first to detect if there are lost stable queue messages. If there are lost messages,
you can retrieve them by first putting the Replication Server in standalone mode and
recovering the data from an off-line log.

See Replication Server Reference Manual > Replication Server Commands > rebuild
queues.

Rebuild Queues Online
During the online rebuild process, the Replication Server is in normal mode. All RepAgents
and other Replication Servers are automatically disconnected from the Replication Server.

Connection attempts are rejected with the following message:
Replication Server is Rebuilding

Replication Servers and RepAgents retry connections periodically until rebuild queues has
completed. At this time, the connections are successful.

When the queues are cleared, the rebuild is complete. The Replication Server then attempts to
retrieve the cleared messages from the following sources:

• Other Replication Servers that have direct routes to the rebuilt Replication Server. If you
have set a save interval from other Replication Servers, you have a greater likelihood of
recovery.

• Database transaction logs for primary databases the Replication Server manages.

If there are loss detection messages, you need to check the status of these messages.
Depending on the failure condition, if these messages are no longer available at their source,
you may need to rebuild the queues using off-line logs. Or, you can request that Replication
Server ignore the lost messages.

See also
• Rebuild Queues from Offline Database Logs on page 340

• Loss Detection After Rebuilding Stable Queues on page 342

Rebuild Queues from Offline Database Logs
You can recover data from off-line database logs.

You use the rebuild queues command only after you have restarted the Replication Server in
standalone mode. Executing rebuild queues in standalone mode puts Replication Server in
recovery mode.

Replication System Recovery

340 Replication Server

In recovery mode, the Replication Server allows only RepAgents in recovery mode to
connect. If a RepAgent that is not in recovery mode attempts to connect, Replication Server
rejects it with following error message:
Rep Agent not in recovery mode

If you use a script that automatically restarts RepAgent and connects it to the Replication
Server, you must start RepAgent using the for_recovery option. RepAgents are not allowed to
connect in normal mode.

This figure illustrates the progression from normal mode to standalone mode to recovery
mode using the rebuild queues command.

Figure 27: Enter Recovery Mode with the Rebuild Queues Command

See also
• Replication Server Standalone Mode on page 341

Replication Server Standalone Mode
Standalone mode allows you to review the contents of the stable queues because no messages
are being written to or read from the queues.

To start Replication Server in standalone mode, use the -M flag. Standalone mode is useful for
looking at the state of Replication Server because the state is static.

Standalone mode differs from the Replication Server normal mode in the following ways:

Replication System Recovery

Administration Guide Volume 2 341

• No incoming connections are accepted. If any RepAgent or Replication Server attempts to
connect to a Replication Server in standalone mode, the message Replication
Server is in Standalone Mode is raised.

• No outgoing connections are started. A Replication Server in standalone mode does not
attempt to connect to other Replication Servers.

• No DSI threads are started, even if there are messages in the DSI queues that have not been
applied.

• No Distributor (DIST) threads are started. A DIST thread reads messages from the
inbound queues, performs subscription resolution, and writes messages to the outbound
queues.

Loss Detection After Rebuilding Stable Queues
Replication Server performs loss detection to determine if any messages could not be
recovered after the stable queues were rebuilt.

By checking Replication Server loss-detection messages, you can determine what kind of user
intervention, if any, is necessary to restore all data to the system.

Replication Server detects two types of losses after rebuilding stable queues:

• SQM loss – data lost between two Replication Servers, detected at the next downstream
site

• DSI loss – data lost between a Replication Server and a replicate database that the
Replication Server manages

If all data is available, no intervention is necessary and the replication system can return to
normal operations. For example, if you know that the save interval for the route or connection
is set for a longer length of time than the failure, you can recover all messages with no
intervention. However, if the save interval is not set or is set too low, some messages may be
lost.

Note: A Replication Server that has detected a loss does not accept messages from the source.
Loss detection prevents the source from truncating its stable queues.

For example, if Replication Server RS2 detects that replicate data server DS2.RDB has lost
data from primary data server DS1.PDB, Replication Server RS1 cannot truncate its queues
until you decide how to handle the loss. As a result, RS1 may run out of stable storage. Before a
loss is detected (that is, after the Checking Loss message is reported), you can choose to
ignore losses for a source and destination pair.

SQM Loss Between Two Replication Servers
Learn how Replication Server detects data loss between two Replication Servers.

Every time you rebuild stable queues during a recovery procedure, Replication Server
requests backlogged messages from sites that send its distributions. If the Replication Server
manages primary databases, it instructs their RepAgents to send messages from the beginning

Replication System Recovery

342 Replication Server

of the online transaction logs. The backlogged messages repopulate the emptied stable
queues.

Replication Server enables loss detection mode at those sites you are rebuilding that have a
direct route from the Replication Server. In the figure, Replication Server RS3 detects losses if
you rebuild the queues of Replication Server RS2. Similarly, RS2 detects losses if you rebuild
the queues of Replication Server RS1.

Figure 28: Replication System Loss Detection Example

When you execute the rebuild queues command at RS2, RS3 performs loss detection for all
primary databases whose updates are routed to RS3 through RS2. RS3 logs messages for each
of these databases. If you rebuild queues at RS3, no SQM loss detection is performed, because
there are no routes originating from RS3.

Replication Server detects loss by looking for duplicate messages. If RS3 receives a message
that it had received before the rebuild queues command, then no messages were lost. If the
first message RS3 receives after rebuild queues has not been seen before, then either
messages were lost, or no messages were in the stable queue.

Even if there are no messages in the stable queue from a specific source, RS3 identifies them as
lost because it has no duplicate messages to use for a comparison. You can prevent this false
loss detection by creating a heartbeat with an interval that is less than the save interval. This
guarantees that there will always be at least one message in the stable queue.

SQM Example
When RS3 performs SQM loss detection for the rebuilt RS2, it logs in to its log file messages
similar to the following Checking Lossmessage examples. These messages mark the
beginning of the loss detection process. Subsequent messages are logged with the results.
Each message contains a source and destination pair.

The first example message indicates that RS3 is checking loss for the RSSD at RS3 from the
RSSD at RS2:
Checking Loss for DS3.RS3_RSSD from DS2.RS2_RSSD
date=Nov-01-95 10:15 am
qid=0x01234567890123456789

Replication System Recovery

Administration Guide Volume 2 343

The second example message indicates that RS3 is checking loss for the replicate database
RDB at RS3, from the primary database PDB at RS1:

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-95 11:00am
qid=0x01234567890123456789

The third example message indicates that RS3 is checking loss for the RSSD at RS3 from the
RSSD at RS1:
Checking Loss for DS3.RS3_RSSD from DS1.RS1_RSSD
date=Nov-01-95 10:00am
qid=0x01234567890123456789

RS3 reports whether it detects a loss. For example, the results of such loss-detection tests
might read as follows:
No Loss for DS3.RS3_RSSD from DS2.RS2_RSSD

Loss Detected for DS3.RDB from DS1.PDB

No Loss for DS3.RS3_RSSD from DS1.RS1_RSSD

DSI Loss Between a Replication Server and Its Databases
Learn how Replication Server detects data loss between between a Replication Server and a
replicate database that the Replication Server manages.

Some messages in Replication Server queues are destined for databases, rather than for other
Replication Servers. The DSI performs loss detection in a way that is similar to stable queue
loss detection.

If you rebuild queues at a Replication Server that has no originating routes, no SQM loss
detection is performed, but the Replication Server performs DSI loss detection for its
messages.

DSI Example
The DSI at Replication Server RS2 generates the following message for the RSSD at RS2:
DSI: detecting loss for database DS2.RS2_RSSD from origin
DS1.RS1_RSSD
date=Nov-01-95 10:58pm
qid=0x01234567890123456789

When retained messages begin arriving from previous sites, the DSI detects a loss, depending
on whether the first message from the origin has already been seen by the DSI. If it detects no
loss, a message similar to the following one is generated:
DSI: no loss for database DS2.RS2_RSSD from origin DS1.RS1_RSSD

If the DSI does detect a loss, a message like the following one is generated:
DSI: loss detected for database DS2.RS2_RSSD from origin DS1.RS1_RSSD

Replication System Recovery

344 Replication Server

Handling of Losses
When Replication Server detects a loss, no further messages are accepted on the connection to
the SQM or the DSI.

For example, when RS3 detects an SQM message loss for the RDB database from the PDB
database, it rejects all subsequent messages from the PDB database to the RDB database.

Recover a Loss
To recover the loss, you need to choose from one of three options.

You can choose to:

• Ignore the loss and continue, even though some messages may be lost. You can use the
subscription comparison procedure that includes the rs_subcmp program with the -r flag
to reconcile primary and replicate data.
See also Replication Server Administration Guide Volume 1 > Manage Subscriptions, and
Replication Server Reference Manual > Executable Programs > rs_subcmp.

• Ignore the loss, then drop and re-create the subscriptions.
• Recover by replaying transactions from off-line logs (primary Replication Server loss

only). In this case, you are not ignoring the loss.

See also
• Using the Subscription Comparison Procedure on page 330

Ignore a Loss
You must execute an ignore loss command in certain situations.

Execute ignore loss:

• If you choose to recover the lost messages by re-creating subscriptions or replaying logs.
• For an SQM loss, at the Replication Server that reported that loss, to force the Replication

Server to begin accepting messages again. For example, to ignore a loss at Replication
Server RS3 detected from DS1.PDB, enter the following command at RS3:

ignore loss from DS1.PDB to DS3.RDB

• For a DSI loss, at the database on the Replication Server where the loss was detected. For
example, to ignore a loss reported in DS2.RS2_RSSD from origin DS1.RS1_RSSD, enter
the following command at RS2:
ignore loss from DS1.RS1_RSSD to DS2.RS2_RSSD

• For both an SQM and a DSI loss that is detected by a Replication Server at the destination
of the route when you rebuild two Replication Servers in succession.
In this case, you need to execute ignore loss twice, once for SQM losses and once for DSI
losses. The ignore loss command that you execute to ignore DSI loss at the destination
Replication Server is the same command you use to ignore SQM loss from the previous
site.

Replication System Recovery

Administration Guide Volume 2 345

Set Log Recovery for Databases
Manually setting log recovery is part of recovering from truncated primary database logs off-
line, or restoring primary and replicate databases from dumps.

While the procedure to rebuild queues off-line automatically sets log recovery for all
databases, manually setting log recovery allows you to recover each database without
reconstructing the stable queue.

The set log recovery command places Replication Server in log recovery mode for a database.
You execute this command after placing Replication Server in standalone mode. To connect
the RepAgents only to those databases that have been set for log recovery mode, execute the
allow connections command. This puts the Replication Server in recovery mode.

This figure illustrates the progression from normal mode to standalone mode to recovery
mode using the set log recovery and allow connections commands.

For databases specified with the set log recovery command, Replication Server only accepts
connections from other Replication Servers and from RepAgents that are in recovery mode.
You then recover the transaction dumps into a temporary recovery database.

Figure 29: Entering Recovery Mode with the Allow Connections Command

Replication System Recovery

346 Replication Server

Loss Detection After Setting Log Recovery
While you are applying the temporary recovery database to the primary database, Replication
Server may detect SQM loss between a primary database and the Replication Server that
manages that primary database.

If all data is available, no intervention is necessary and the replication system can return to
normal operations. The Replication Server logs a message such as:
No Loss Detected for DS1.PDB from DS1.PDB

If there were not enough messages, Replication Server logs a loss detection message similar
such as:
Loss Detected for DS1.PDB from DS1.PDB

You must decide whether to ignore the losses by executing the ignore loss command, or repeat
the recovery procedure from the beginning. To ignore the loss, enter the following command at
the primary Replication Server:
ignore loss for DS1.PDB from DS1.PDB

If you received loss detection messages, you failed to reload the database to a state old enough
to retrieve all of the messages. You must correctly determine which dumps to load.

See also
• Determine Which Dumps to Load on page 347

Determine Which Dumps to Load
When loading transaction log dumps, always examine the Checking Loss message that is
displayed during loss detection.

If there is more than one message, choose the earliest date and time to determine which dumps
to load.

For example, if the following message is generated by a Replication Server, load the dumps
taken just before November 1, 2011 at 10:58 p.m.:
Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-2011 10:58pm
qid=0x01234567890123456789

The date in the message is the date and time of the oldest open transaction in the log when the
last message received by the Replication Server was generated by the origin queue. Locate the
most recent transaction dump with a timestamp before the date and time in the message.
Then find the full database dump taken before that transaction dump.

The origin queue ID, or qid, is formed by the RepAgent and identifies a log record in the
transaction log. The date is embedded in the qid as a timestamp. Replication Server
converts the timestamp to a date for RepAgents for Adaptive Server.

Replication System Recovery

Administration Guide Volume 2 347

Replication agents for non-Sybase data servers may also embed the timestamp in the qid.
Replication Server converts the timestamp for non-Sybase data servers in bytes 20–27. The
use of these bytes depends on the Replication Agent.

Note: If the data server is not an Adaptive Server, the date in the message may appear
nonsensical. You may need to decode the qid in bytes 20–27 to identify the dumps to load.

Adjust Database Generation Numbers
Any time you load a database for recovery, you may be required to change the database
generation number, as instructed in the recovery procedure you are using.

Each primary database in a replication system includes a database generation number. This
number is stored both in the database and in the RSSD of the Replication Server that manages
the database.

The maximum value for the database generation number is 65,535. Sybase recommends that
you avoid incrementing the number to high values unless absolutely necessary.

If you want to reset the database generation number, you must rebuild the replication
environment. Rebuilding the environment includes deleting the connection to the primary
database where you want to reset the database generation number, recreating the connection,
and then rebuilding the replication configuration of the primary database.

Determine Database Generation Numbers
Learn when to adjust database generation numbers.

RepAgent for a primary database places the database generation number in the high-order 2
bytes of the qid that it constructs for each log record it passes to the Replication Server.

The remainder of the qid is constructed from other information that gives the location of the
record in the log and also ensures that the qid increases for each record passed to Replication
Server.

The requirement for increasing qid values allows Replication Server to detect duplicate
records. For example, when a RepAgent restarts, it may resend some log records that
Replication Server has already processed. If Replication Server receives a record with a lower
qid than the last record it processed, it treats the record as a duplicate and ignores it.

If you are restoring a primary database to an earlier state, increment the database generation
number so that the Replication Server does not ignore log records submitted after the database
is reloaded. This step applies only if you are loading a primary database from dumps or
loading from coordinated dumps.

If you are replaying log records, increment the database generation number only if RepAgent
previously sent the reloaded log records with the higher generation number. This situation
arises only if you have to restore the database and log to a previous state for the first failure and
then later replay the log due to a second failure.

Replication System Recovery

348 Replication Server

Warning! Only change the database generation number as part of a recovery procedure.
Changing the number at any other time can result in duplicate or missing data at replicate
databases.

See also
• Loading a Primary Database from Dumps on page 324

• Loading from Coordinated Dumps on page 325

Dumps and Database Generation Numbers
Learn how and when to adjust database generation numbers after reloading dumps.

When you reload a database dump, the database generation number is included in the restored
database. Since the database generation number is also stored in the RSSD of the Replication
Server that manages the database, you may need to update that number so that it matches the
one in the restored database.

However, when you reload a transaction log, the database generation number is not included in
the restored log. For example, assume the following operations have occurred in a database:

Table 32. Dumps and Database Generation Numbers

Operation Database generation number

database dump D1 100

transaction dump T1 100

dbcc settrunc('ltm', 'gen_id', 101) 101

transaction dump T2 101

database dump D2 101

If you reload database dump D1, database generation number 100 is restored with it. If you
reload transaction dump T1, the generation number remains at 100. After transaction dump
T2, the generation number remains at 100, because reloading transaction dumps does not alter
the database generation number. In this case, you need to change the database generation
number to 101 using the dbcc settrunc command before having RepAgent scan transaction
dump T2.

However, if you load database dump D2 before resuming replication, you do not have to alter
the database generation number, since the number 101 is restored.

Resetting Primary Database Generation Number
Learn how to reset database generation numbers.

In this procedure, the primary database refers to the primary database where you want to reset
the database generation number.

Replication System Recovery

Administration Guide Volume 2 349

1. At the replicate Replication Server, drop all subscriptions that reference replication
definitions and publications defined for the connection to the primary database.

2. Drop all publications referenced by the subscriptions you dropped in step 1.

3. Drop all articles referenced by the publications you dropped in step 2.

4. In the primary Replication Server, drop all replication definitions for the primary database
connection.

5. In the primary Replication Server, drop the connection to the primary database, and all
connections to replicate databases that subscribe to the primary database.

6. Set the database generation number to 0 on the primary database:

• In Adaptive Server:
dbcc settrunc(‘ltm’, ‘gen_id’, 0)

• In Replication Agent for IBM DB2 UDB on UNIX and Windows, Microsoft SQL
Server, and Oracle:
pdb_gen_id 0

7. In the primary Replication Server, create a new connection to the primary database, and
create connections to the replicate databases.

8. Re-create all the replication definitions, publications, articles, and subscriptions you
dropped. See Replication Server Administration Guide Volume 1 > Manage Replication
Environment with Sybase Central > Set up a Replication Environment.

Support for Non-ASE Databases
You can reset database generation numbers for all supported non-ASE databases acting as the
primary database.

See the Replication Server Heterogeneous Replication Guide for supported primary
databases.

Replicate Database Resynchronization for Adaptive Server
Replication Server allows you to resynchronize and materialize the replicate database, and
resume further replication without losing or risking inconsistency of data, and without forcing
a quiesce of your primary database.

Database resynchronization is based on obtaining a dump of data from a trusted source and
applying the dump to the target database you want to resynchronize.

To resynchronize Oracle databases, see Replication Server Heterogeneous Replication Guide
> Oracle Replicate Databases Resynchronization.

Configuring Database Resynchronization
Use commands and parameters from both Replication Server and RepAgent to configure
database resynchronization.

Replication System Recovery

350 Replication Server

1. Stop replication processing by suspending RepAgent.

2. Place Replication Server in resync mode.
In resync mode, Replication Server skips transactions and purges replication data from
replication queues in anticipation of the replicate database being repopulated from a dump
taken from the primary database or trusted source.

3. Restart RepAgent and send a resync database marker to Replication Server to indicate that
a resynchronization effort is in progress.

4. Verify that DSI receives the resync database marker.

5. Obtain a dump from the primary database.

When Replication Server detects a dump marker that indicates the completion of the
primary database dump, Replication Server stops skipping transactions and can determine
which transactions to apply to the replicate database.

6. Verify that DSI receives the dump database marker.

Note: Sending a dump database marker does not apply in cases where you send the resync
marker with the init instruction.

7. Apply the dump to the replicate database.

8. Resume replication.

Instructing Replication Server to Skip Transactions
Use the skip to resync parameter with the resume connection command to instruct
Replication Server to skip transactions in the DSI outbound queue for the specified replicate
database until Replication Server receives and acknowledges a dump database marker sent by
RepAgent.

Replication Server does not process records in the outbound queue, since the data in the
replicate database is expected to be replaced with the dump contents.

See Replication Server Reference Manual > Replication Server Commands > resume
connection.

Run:
resume connection to data_server.database skip to resync marker

Warning! If you execute resume connection with the skip to resync marker option on the
wrong connection, data on the replicate database becomes unsynchronized.

When you set skip to resync marker, Replication Server does not log the transactions that are
skipped in the Replication Server log or in the database exceptions log. Replication Server
logs transactions that are skipped when you set skip [n] transaction.

Replication System Recovery

Administration Guide Volume 2 351

Send the Resync Database Marker to Replication Server
Instruct RepAgent to send a resync database marker to Replication Server to indicate that a
resynchronization effort is in progress.

When you restart RepAgent in resync mode, RepAgent sends the resync database marker to
Replication Server as the first message before it sends any SQL data definition language
(DDL) or data manipulation language (DML) transactions. Multiple replicate databases for
the same primary database all receive the same resync marker since they each have a DSI
outbound queue.

For each DSI that resumes with the skip to resync marker parameter, the DSI outbound queue
records in the Replication Server system log that DSI has received the resync marker and also
records that from that point forward, DSI rejects committed transactions until it receives the
dump database marker.

In Adaptive Server, use sp_start_rep_agent with the resync, resync purge, or resync init
parameters to support the corresponding options for sending the resync database marker.

Sending a Resync Marker Without Any Option
Send a resync marker using sp_start_rep_agent without any option when there is no change
to the truncation point and the expectation is that the RepAgent should continue processing the
transaction log from the last point that it processed.

Syntax: sp_start_rep_agent database_name, 'resync'

Each outbound DSI thread and queue receives and processes the resync database marker. DSI
reports to the Replication Server system log when a resync marker has been received,
satisfying the skip to resync marker request of DSI. Subsequently, DSI rejects committed
transactions while it waits for a dump database marker. With this message and the change of
behavior to one of waiting for the dump database marker, you can apply any dump to the
replicate database.

Sending a Resync Marker with a purge Instruction
Send a resync marker using sp_start_rep_agent with the purge option to instruct Replication
Server to purge all open transactions from the inbound queue, and reset duplicates detection,
before receiving any new inbound transactions.

Syntax: sp_start_rep_agent database_name, 'resync purge'

Use the purge option when the truncation point of the primary database has been moved,
which occurs when you:

• Manually change the truncation point.
• Disable RepAgent.
• Execute Adaptive Server commands such as, dbcc dbrepair.

Since the truncation point has changed, open transactions in the Replication Server inbound
queue must be purged because these transactions do not match new activity sent from the new

Replication System Recovery

352 Replication Server

secondary truncation point. Replication Server resets checking for duplicates since the
changed truncation point could send a record with a previous origin queue ID (OQID). Since
the prior data is purged from the queues, Replication Server does not treat any new activity
from the RepAgent as duplicate activity, and consequently does not reject the new activity.
The purge option does not change DSI processing because Replication Server continues to
reject outbound queue commands while waiting for the dump database marker.

Sending a Resync Marker with the init Command
Send a resync marker with an init command using sp_start_rep_agent with the init option to
instruct Replication Server to purge all open transactions from the inbound queue, reset
duplicate detection, and suspend the outbound DSI.

Syntax: sp_start_rep_agent database_name, 'resync init'

Use this option to reload the primary database from the same dump as the replicate database.
Since there is no dump taken from the primary database, RepAgent does not send a dump
database marker. Instead of waiting for a dump database marker after the resync marker, the
init option suspends the DSI connection immediately after Replication Server processes the
resync marker.

After DSI is suspended, all subsequent activity through DSI consists of new transactions. You
can resume DSI once you reload the replicate database from the same dump you used for the
primary.

Obtain a Dump of the Database
Use the dump database Adaptive Server command.

See Adaptive Server Enterprise > System Administration Guide: Volume 2 > Developing a
Backup and Recovery Plan > Using the dump and load Commands.

Send the Dump Database Marker to Replication Server
RepAgent automatically generates and sends a dump database marker to Replication Server
when you obtain a dump of the primary database.

Note: Sending a dump database marker does not apply when you send the resync marker with
the init instruction.

You can manually resume DSI after you apply the dump to the replicate database.Transactions
that commit after the dump point, which is indicated by the dump database marker, are
replicated.

Replication System Recovery

Administration Guide Volume 2 353

Monitor DSI Thread Information
Use the admin who command to provide information on DSI during database
resynchronization.

State Description

SkipUntil Re-
sync

DSI resumes after you execute skip to resync. This state remains until DSI receives a
resync database marker.

SkipUntil
Dump

DSI has received a resync database marker. This state remains until DSI has pro-
cessed a subsequent dump database marker.

Apply the Dump to a Database to be Resynchronized
You can load the primary database dump to the replicate database only after you see the
relevant messages in the system log.

• When Replication Server receives the resync database marker with or without the purge
option, and the dump database marker:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after database has been
reloaded.

• When Replication Server receives the resync database with init marker:
DSI for data_server.database received and processed
Resync Database Marker. DSI is now suspended. Resume after
database has been reloaded.

See Adaptive Server Enterprise Reference Manual: Commands > Commands > load
database for instructions about loading the dump to the database you want to resynchronize.

Database Resynchronization Scenarios
Follow the procedure to resynchronize databases in different scenarios. After completing a
procedure, the primary and replicate databases are transactionally consistent.

To execute a procedure, you must:

• Be a replication system administrator
• Have an existing replication environment that is running successfully
• Have methods and processes available to copy data from the primary database to the

replicate database

For commands and syntax for RepAgent for Adaptive Server and Replication Server, see the
Replication Server Reference Manual and Replication Server Administration Guide Volume 1
> Manage RepAgent and Support Adaptive Server.

Replication System Recovery

354 Replication Server

Resynchronize One or More Replicate Databases Directly from a Primary
Database
Resynchronize one or multiple replicate databases from a single primary database.

This procedure with minor variations, allows you to:

• Repopulate the replicate database when the replication latency between primary and
replicate databases is such that to recover a database using replication is not feasible, and
reporting based on the replicate data may not be practical because of the latency.

• Repopulate the replicate database with trusted data from the primary database.
• Coordinate resynchronization when the primary database is the source for multiple

replicate databases.
• Coordinate resynchronization if the primary site is a logical database that consists of a

warm standby pair of databases that you want to resynchronize with one or more replicate
databases. In a warm standby pair, the active database acts as the primary database, and the
standby acts as the replicate database. Therefore, the active database of a warm standby
pair at a primary site also appears as a primary database to one or multiple replicate
databases.

Resynchronizing Directly from a Primary Database
Resynchronize a replicate database from a primary database.

1. Stop replication processing by RepAgent. In Adaptive Server, execute:
sp_stop_rep_agent database

2. Suspend the Replication Server DSI connection to the replicate database:
suspend connection to dataserver.database

3. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database RepAgent:
resume connection to data_server.database skip to
resync marker

4. Instruct RepAgent to start in resync mode and send a resync marker to Replication
Server:

• If the truncation point has not been moved from its original position, in Adaptive
Server execute:
sp_start_rep_agent database, 'resync'

• If the truncation point has been moved from its original position, in Adaptive Server
execute:
sp_start_rep_agent database, 'resync purge'

5. In the Replication Server system log, verify that DSI has received and accepted the resync
marker from RepAgent by looking for this message:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

Replication System Recovery

Administration Guide Volume 2 355

Note: If you are resynchronizing multiple databases, verify that the DSI connection for
each of the databases you want to resynchronize has accepted the resync marker.

6. Obtain a dump of the primary database contents. See Adaptive Server Enterprise
Reference Manual: Commands > Commands > dump database. Adaptive Server
automatically generates a dump database marker.

7. Verify that Replication Server has processed the dump database marker by looking for this
message in the Replication Server system log:
DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after database has been
reloaded.

When Replication Server receives the dump marker, the DSI connection automatically
suspends.

8. Apply the dump of the primary database to the replicate database. See Adaptive Server
Enterprise Reference Manual: Commands > Commands > load database.

9. After you apply the dump to the replicate database, resume DSI:
resume connection to data_server.database

Resynchronizing Using a Third-Party Dump Utility
Coordinate resynchronization after you dump the primary database using a third-party dump
utility, such as a disk snapshot.

Third-party tools do not interact as closely with the primary database as native database dump
utilities. If your third-party tool does not record anything in the primary database transaction
log that RepAgent can use to generate a dump database marker, generate your own dump
database markers to complete the resynchronization process. See your third-party tool
documentation.

1. Stop replication processing by RepAgent. In Adaptive Server, execute:

sp_stop_rep_agent database

2. Suspend the Replication Server DSI connection to the replicate database:

suspend connection to dataserver.database

3. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database RepAgent:

resume connection to data_server.database skip to
resync marker

4. Obtain a dump of the primary database contents using the third-party dump utility.

5. Determine the dump point based on information from the primary database when you took
the dump, or information from the third-party tool. With a third-party tool, you are
responsible for determining the dump point. For example, if you are using a disk
replication tool, you can temporarily halt activity at the primary database to eliminate
transactions in progress from the disk snapshot, and then use the “end of transaction log”
point as the dump database marker.

Replication System Recovery

356 Replication Server

6. Execute the rs_marker stored procedure on the primary database for RepAgent to mark the
end of the dump position that you obtained in step 5:

rs_marker “dump database database_name 'current date' oqid"

where current date is any value in datetime format and oqid is any valid hexadecimal
value. See Replication Server Reference Manual > Topics > Datatypes > Date/time, and
Date and Time Datatypes > Entry Format for Date/Time Values.

For example, you can mark the end of the dump position on the rdb1 database with a date
and time value of "20110915 14:10:10" and a value of 0x0003 for oqid:
rs_marker “dump database rdb1 '20110915 14:10:10' 0x0003"

RepAgent automatically generates a dump database marker for the point you marked in
step 6, and sends the dump database marker to Replication Server.

7. Instruct RepAgent to start in resync mode and send a resync marker to Replication Server:

• If the truncation point has not been moved from its original position, execute this
command in Adaptive Server:
sp_start_rep_agent database, 'resync'

• If the truncation point has been moved from its original position, execute this
command in Adaptive Server:
sp_start_rep_agent database, 'resync purge'

8. Verify that DSI has received and accepted the resync marker from Replication Agent by
looking for this message in the Replication Server system log:

DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

9. Verify that Replication Server has processed the dump database marker by looking for this
message in the Replication Server system log:

DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after
database has been reloaded.

When Replication Server receives the dump marker, the DSI connection automatically
suspends.

10. Apply the dump of the primary database from the third-party tool to the replicate database.
See your Adaptive Server and third-party tool documentation.

11. After you apply the dump to the replicate database, resume DSI:

resume connection to data_server.database

Resynchronizing if There is No Support for the Resync Database Marker
Coordinate resynchronization if the RepAgent or the primary database have not been updated
to support automatic generation of a resync marker.

Note: You can use this procedure for Adaptive Server only.

Replication System Recovery

Administration Guide Volume 2 357

1. Suspend the Replication Server DSI connection to the replicate database:

suspend connection to dataserver.database

2. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database RepAgent:

resume connection to data_server.database skip to
resync marker

3. Ensure that there are no open transactions in system log, and then in the primary database,
manually generate the resync marker:
execute rs_marker ‘resync database’

4. In the Replication Server system log, verify that DSI has received and accepted the resync
marker from RepAgent by looking for this message:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

5. Obtain a dump of the primary database contents.
Adaptive Server automatically generates a dump database marker.See Adaptive Server
Enterprise Reference Manual: Commands > Commands > dump database.

6. Verify that Replication Server has processed the dump database marker by looking for this
message in the Replication Server system log:

DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after database has been
reloaded.

When Replication Server receives the dump marker, the DSI connection automatically
suspends.

7. Apply the dump of the primary database to the replicate database. See Adaptive Server
Enterprise Reference Manual: Commands > Commands > load database.

8. After you apply the dump to the replicate database, resume DSI:

resume connection to data_server.database

Resynchronizing Both the Primary and Replicate Databases from the Same
Dump
Coordinate resynchronization to reload both the primary database and replicate database from
the same dump or copy of data. No dump database marker is needed, since you are not
obtaining a dump from the primary database.

1. Stop replication processing by RepAgent. Do not alter the truncation point.

In Adaptive Server, execute:
sp_stop_rep_agent database

2. Suspend the Replication Server DSI connection to the replicate database:

suspend connection to data_server.database

3. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database RepAgent:

Replication System Recovery

358 Replication Server

resume connection to data_server.database skip to
resync marker

4. Obtain the RepAgent settings before you apply the dump.

Note: Adaptive Server stores, within the database, the connectivity settings and other
configurations that RepAgent uses. If you load the primary database from a dump that you
took from a different database, RepAgent loses its configuration settings, or the settings
change to match the settings of the database from which you took the dump.

5. Apply the dump of the data from the external source to the primary database.

After you apply the dump, reset the RepAgent configurations to the settings that existed
before you applied the dump.

6. Make sure that the last primary database transaction log page does not contain any
operation that can affect replicate database tables by executing at the primary Adaptive
Server database:
rs_update_lastcommit 0, 0, 0, ""
go 100

7. Move the truncation point to the end of the transaction log for the primary database. In
Adaptive Server, execute:

dbcc settrunc(‘ltm’, ‘end’)
go

8. Instruct RepAgent to start in resync mode with the init instruction. In Adaptive Server,
execute:

sp_start_rep_agent database, 'resync init'

9. Verify that DSI has received and accepted the resync marker from the RepAgent by
looking for this message in the Replication Server system log:

DSI for data_server.database received and processed
Resync Database Marker. DSI is now suspended. Resume
after database has been reloaded.

When Replication Server receives and processes the resync database with init marker, the
DSI connection suspends.

10. Apply the dump of the data from the external source to the replicate database.

11. After you apply the dump to the replicate database, resume DSI to the replicate database to
allow Replication Server to apply transactions from the primary database:
resume connection to data_server.database

Resynchronizing the Active and Standby Databases in a Warm Standby
Application
Resynchronize the active and standby databases in a warm standby environment, when the
warm standby pair is the replicate site for a single primary database.

In this scenario, the replicate site is a warm standby pair that consists of the active and standby
databases that act as a single logical database.

Replication System Recovery

Administration Guide Volume 2 359

Primary ---> Replication ---> Replicate logical database

database Server [Active+Standby warm standby

 pair]

The resynchronization scenario procedure is a two-step process—resynchronize the replicate
active database of the warm standby pair with a dump from the primary database, and then
resynchronize the replicate standby database of the warm standby pair with a dump from the
active database or the existing dump from the primary database.

1. Stop replication processing by both the primary database RepAgent and the warm standby
active database RepAgent.

In Adaptive Server, execute:
sp_stop_rep_agent database

2. Suspend the Replication Server DSI connection to the active and standby databases:
suspend connection to dataserver.database

3. Instruct Replication Server to remove data from the outbound queue of the active and
standby databases, and wait for a resync marker from the primary database RepAgent:
resume connection to data_server.database skip to
resync marker

4. Instruct the primary database RepAgent to start in resync mode and send a resync marker
to Replication Server.

• If the truncation point has not been moved from its original position, execute this
command in Adaptive Server:
sp_start_rep_agent database, 'resync'

• If the truncation point has been moved from its original position, execute this
command in Adaptive Server:
sp_start_rep_agent database, 'resync purge'

5. Verify that DSI for the active database has received and accepted the resync marker from
the primary database RepAgent by looking for this message in the Replication Server
system log:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

6. Obtain a dump of the primary database contents. See Adaptive Server Enterprise
Reference Manual: Commands > Commands > dump database. Adaptive Server
automatically generates a dump database marker.

7. Obtain the RepAgent settings before you apply the dump.

Note: Adaptive Server stores, within the database, the connectivity settings and other
configurations that RepAgent uses. If you load the primary database from a dump that you
took from a different database, RepAgent loses its configuration settings, or the settings
change to match the settings of the database that you took the dump from.

Replication System Recovery

360 Replication Server

8. Verify that the Replication Server DSI for the active database has processed the dump
database marker by looking for this message from the active database in the Replication
Server system log:
DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after database has been
reloaded.

9. Apply the dump of the primary database to the active database. See Adaptive Server
Enterprise Reference Manual: Commands > Commands > load database.

After you apply the dump, reset the RepAgent configurations to the settings that existed
before you applied the dump.

10. Make sure that the last primary database transaction log page does not contain any
operation that can affect replicate database tables by executing at the primary Adaptive
Server database:
rs_update_lastcommit 0, 0, 0, ""
go 100

11. Move the truncation point to the end of the transaction log for the active database. In
Adaptive Server, execute:
dbcc settrunc(‘ltm’, ‘end’)
go

12. Instruct RepAgent to start in resync mode with the init instruction. In Adaptive Server,
execute:
sp_start_rep_agent database, 'resync init'

13. Verify that DSI for the standby database has received and accepted the resync marker from
the active database RepAgent by looking for this message in the Replication Server system
log:
DSI for data_server.database received and processed
Resync Database Marker. DSI is now suspended. Resume
after database has been reloaded.

When Replication Server receives and processes the resync database with init marker, the
DSI connection suspends.

14. Obtain a dump of the active database contents and apply the dump to the standby database.
You can also apply the dump of the primary database from step 6 if the dump does not
include database configuration information.

15. Resume DSI to the active and standby databases:
resume connection to data_server.database

Replication System Recovery

Administration Guide Volume 2 361

Replication System Recovery

362 Replication Server

Asynchronous Procedures

Learn about asynchronous stored procedures, and the method for replicating stored
procedures that are associated with table replication definitions. This method is supported for
applications that require it.

See Replication Server Administration Guide Volume 1 > Manage Replicated Functions for
information about replicated stored procedures that are associated with function replication
definitions.

See Replication Server Design Guide for information about replication system design issues
relating to replicated stored procedures.

Introduction to Asynchronous Procedure Delivery
Asynchronous procedure delivery allows you to execute SQL stored procedures that are
designated for replication at primary or replicate databases.

Because these stored procedures are marked for replication using the sp_setreplicate or
sp_setrepproc system procedures, they are called replicated stored procedures.

To satisfy the requirements of distributed applications, Replication Server provides two types
of asynchronous stored procedure delivery: applied stored procedures and request stored
procedures.

Replicated Stored Procedures Logging by Adaptive Server
Learn how Adaptive Server determines the database in which a replicated stored procedure
execution is logged.

Stored procedure are logged in the database in which the enclosing transaction was started.

• If the user does not explicitly begin a transaction, Adaptive Server begins one in the user’s
current database before the stored procedure execution.

• If the user begins the transaction in one database, and then executes a replicated stored
procedure in another database, the execution is still ogged in the database where the user
began the transaction.

If the execution of a table-style replicated stored procedure (marked for replication by using
either sp_setreplicateproc_name, 'true' or sp_setrepprocproc_name, 'table') is logged in one
database and changes replicated tables in another database, the table’s changes and the
procedure execution are logged in different databases. Therefore, the effects of the stored
procedure execution can be replicated twice: the first time, the stored procedure execution
itself is replicated; the second time, table changes that have been logged in the other database
are replicated.

Asynchronous Procedures

Administration Guide Volume 2 363

Restriction to Logging of Replicated Stored Procedures
Replicated Adaptive Server stored procedures cannot contain parameters with the text,
unitext, or image datatypes.

See the Adaptive Server Reference Manual

Mixed-Mode Transactions
If a single transaction that invokes one or more request stored procedures is a mixed-mode
transaction that also executes applied stored procedures or contains data modification
language, Replication Server processes the request stored procedures after all the other
operations.

All request operations are processed together in a single separate transaction. This may occur
when a single Replication Server manages both primary and replicate data.

Applied Stored Procedures
Replicated stored procedures that Replication Server delivers from a primary database to a
replicate database are called applied stored procedures.

You use applied stored procedure delivery to replicate transactions first performed on primary
data to replicate databases. Data changes are applied at a primary database and then distributed
at a later time to replicate databases that subscribe to replication definitions for the data.
Replication Server executes the replicated stored procedure in the replicate database as the
maintenance user, which is consistent with normal data replication.

You can use applied stored procedures to realize important performance benefits. For
example, if your organization has a large amount of row changes, you can create an applied
stored procedure which changes many rows, rather than replicating the rows individually. You
can also use applied stored procedures to replicate data set changes which are difficult to
express using normal subscriptions. Refer to the Replication Server Design Guide for more
information.

You set up applied stored procedures by making the first statement in the stored procedure
update a table. You must also make sure that the destination databases have subscriptions to
the before and after images of that updated row. The applied stored procedure must update
only one row in a replicated table. Replication Server uses the first row updated by the stored
procedure to determine where to send the user-defined function for the procedure.

If the rules in setting up the applied stored procedure are not met, Replication Server fails to
distribute the stored procedure to replicate databases. There are several warning conditions
and corresponding actions that Replication Server takes if it fails to deliver the applied stored
procedure.

See also
• Warning Conditions on page 368

Asynchronous Procedures

364 Replication Server

Request Stored Procedures
Replicated stored procedures that Replication Server delivers from a replicate database to a
primary database are called request stored procedures.

You use a request stored procedure to deliver a transaction from a replicate database back to
the primary database.

For example, a client application at a remote location may need to make changes to primary
data. In this case, the application at the remote location executes a request stored procedure
locally to change the primary data. Replication Server delivers this request stored procedure to
the primary database by executing, in the replicate database, a stored procedure that has the
same name as the stored procedure in the primary database. The stored procedure in the
primary database updates the primary data that the transaction changes.

Replication Server executes the replicated stored procedure in the primary database as the user
who executed the stored procedure in the replicate database. This ensures that only authorized
users may change primary data.

In an application, Replication Server may replicate some or all of the data that is changed in the
primary database. The changes are propagated to replicate databases managed by Replication
Servers with subscriptions for the related data, either as data rows (insert, delete, or update
operation) or as stored procedures. Using this mechanism, the effect of a transaction quickly
arrives at both the primary and replicate databases.

Warning! Do not execute a request stored procedure in a primary database. This can lead to
looping behavior, in which replicate Replication Servers cause the same procedure to execute
in the primary database.

Using request stored procedures ensures that all updates are made at the primary database,
preserving the Replication Server basic primary copy data model while keeping the
replication system invulnerable to network failures and excess traffic. Even when there is
primary database failure, or network failure from the replicate database to the primary
database, Replication Server remains fault tolerant. It queues any undelivered request stored
procedure invocations until the failed components come back online. When the components
are again in service, Replication Server completes delivery.

By using the Replication Server guaranteed request stored procedure delivery feature, you can
obtain all the benefits of having a single, definitive copy of your data that includes all the latest
changes. At the same time, Replication Server provides the availability and performance
benefits of de-coupling applications at replicate databases from the primary database.

Refer to the Replication Server Design Guide for more information on replication system
design issues relating to asynchronous procedure delivery.

Asynchronous Procedures

Administration Guide Volume 2 365

Asynchronous Stored Procedure Prerequisites
There are several prerequisites for implementing applied or request stored procedures.

• Understand how you will use asynchronous procedure delivery to meet your application
needs. See the Replication Server Design Guide.

• Set up a RepAgent for the stored procedure, even if the database contains no primary data
(such as when using request functions). See the Replication Server installation and
configuration guides for your platform.

• Create a function string for user-defined functions for function-string classes for which
Replication Server does not generate default function strings. You can use the alter
function string command to replace a default function string with one that performs the
action your application requires.

Note: For function-string classes for which default generated function strings are provided,
Replication Server creates a default function string that executes a stored procedure with the
same name as the user-defined function. The tasks in this section assume that Replication
Server processes applied or request stored procedures for such classes. For all other classes,
you must create function strings for the user-defined function string.

See also
• Function Strings and Function-string Classes on page 32

Implementing an Applied Stored Procedure
Learn the steps to implement an applied stored procedure.

Prerequisites
Verify that you have completed the asynchronous stored procedure prerequisites.

Task

See Replication Server Reference Manual > RSSD Stored Procedures for information about
stored procedures used to query the RSSD for system information.

1. Set up replicate databases that contain replicate tables. These tables may or may not match
the replication definition for the primary table.

2. As necessary, set up routes from the primary Replication Server to the replicate
Replication Servers that have subscriptions to replication definitions for the primary table.

See Replication Server Administration Guide Volume 1 > Manage Routes.

Asynchronous Procedures

366 Replication Server

3. Locate or create a replication definition on the primary Replication Server that identifies
the table to be modified.

See Replication Server Administration Guide Volume 1 > Manage Replicated Tables.

4. In the primary database, mark the table for replication using either the sp_setreplicate or
sp_setreptable system procedure.

For example, for a table named employee, enter one of:

• sp_setreplicate employee, 'true'

Follow the guidelines when specifying stored procedures and tables and for
replication.

• sp_setreptable employee, 'true'

For sp_setreptable, the single quotes are optional. See Replication Server
Administration Guide Volume 1 > Manage Replicated Tables > Mark Tables for
Replication > Use the sp_setreptable System Procedure.

5. Create the stored procedure on the primary database.

The first statement in the stored procedure must contain an update command for the first
row of the primary table. For example:
create proc upd_emp
 @emp_id int, @salary float
 as
 update employee
 set salary = salary * @salary
 where emp_id = @emp_id

Warning! If the first statement in the stored procedure contains an operation other than
update, Replication Server cannot distribute the stored procedure to replicate databases.
Check the warning conditions. Never include dump transaction or dump database
commands in the stored procedure. If the stored procedure contains commands with
statement level errors, the error may occur at the replicate DSI. Depending on the error
actions, the DSI may shut down.

6. In the primary database, mark the stored procedure for replication using either
sp_setreplicate or sp_setrepproc.

For example, enter one of:
• sp_setreplicate upd_emp, 'true'

Follow the guidelines when specifying stored procedures and tables and for
replication.

• sp_setrepproc upd_emp, 'table'

See Replication Server Administration Guide Volume 1 > Manage Replicated
Functions > Mark Stored Procedures for Replication.

7. At the replicate Replication Servers, create subscriptions to a replication definition for the
table that the stored procedure at the primary database updates.

Asynchronous Procedures

Administration Guide Volume 2 367

See Replication Server Administration Guide Volume 1 > Manage Subscriptions.

Warning! Be sure the replicate database subscribes to both the before image and after
image of the updated row. If it does not, Replication Server cannot distribute the stored
procedure to the replicate database.

8. Create a stored procedure on the replicate database with the same name and parameters as
the stored procedure on the primary database, but do not mark the procedure as replicated.

For example:
create proc upd_emp
 @emp_id int, @salary float
 as
 update employee
 set salary = salary * @salary
 where emp_id = @emp_id

9. Grant execute permission on the stored procedure to the maintenance user.

For example:
grant execute on upd_emp to maint_user

10. Create a user-defined function on the primary Replication Server that associates the stored
procedure to the name of a replication definition for the table it updates.

For example:
create function employee_rep.upd_emp
 (@emp_id int, @salary float)

Only one user-defined function is shared by all replication definitions for the same table.
You can specify the name of any of these replication definitions.

11. Verify that all Replication Server and database objects in all the steps exist at the
appropriate locations.

See also
• Asynchronous Stored Procedure Prerequisites on page 366

• Specify Stored Procedures and Tables for Replication on page 372

Warning Conditions
Replication Server warning conditions occur when an applied stored procedure is not
delivered at a replicate database.

If the first statement in the applied stored procedure is an operation other than update, or the
replicate database does not subscribe to the before image and after image of the updated row,
Replication Server fails to deliver the applied stored procedure to the replicate database.
Instead, Replication Server performs other actions that you can interpret as warnings.

The actions Replication Server takes are based on:

Asynchronous Procedures

368 Replication Server

• The first operation (other than update) contained in the applied stored procedure at the
primary database

• Whether the row modification stays in the subscription for the replicate database, and
whether it matches the subscription’s before image or after image

Warning Conditions and Replication Server Actions

• Condition: The first row operation is an insert operation.
Action: Replication Server distributes the insert operation instead of the applied stored
procedure.

• Condition: The first row operation is a delete operation.
Action: Replication Server distributes the delete operation instead of the applied stored
procedure.

• Condition: Replicate Replication Servers have subscriptions that match the before image,
but not the after image, of the modified row.
Action: Replication Server distributes a delete operation (rs_delete system function) to
replicate databases with subscriptions to the before image but not the after image of the
row modification.
Example: Assume there is a table T1 that has a column named C1 with a value of 1. A
replicate database has a subscription to a replication definition for table T1 where C1 =
1.
If the associated stored procedure is executed with the parameters= 1 (before image) and =
2 (after image), the replicate database does not subscribe to the after image value of 2.
Therefore, Replication Server distributes the delete operation to the replicate database.

• Condition: Replicate Replication Servers have subscriptions that match the after image,
but not the before image of the modified row.
Action: Replication Server distributes an insert operation (rs_insert system function) to
replicate databases with subscriptions to the after image but not the before image of the
row modification.
Example: Assume there is a table T1 that has a column named C1 with a value of 1. A
replicate database has a subscription to a replication definition for table T1 where C1 =
2.
If the associated stored procedure is executed with the parameters = 1 (before image) and =
2 (after image), the replicate database does not subscribe to the before image value of 1.
Therefore, Replication Server distributes the insert operation to the replicate database.

• Condition: Replicate Replication Servers have subscriptions that match neither the before
image nor the after image of the row modification.
Action: Replication Server does not distribute any operation or stored procedure to the
replicate databases.
Example: Assume there is a table T1 that has a column named C1 with a value of 1. A
replicate database has a subscription to a replication definition for table T1 where C1 >
2.
If the associated stored procedure is executed with the parameters equal to 1 (before
image) and equal to 2 (after image), the replicate Replication Server does not subscribe to

Asynchronous Procedures

Administration Guide Volume 2 369

either the before image value of 1 or the after image value of 2. Therefore, Replication
Server performs no distribution to the replicate database.

Implementing a Request Stored Procedure
Learn the steps to implement an request stored procedure.

Prerequisites
Verify that you have completed the asynchronous stored procedure prerequisites.

Task

SeeReplication Server Reference Manual > RSSD Stored Procedures for information about
stored procedures used to query the RSSD for system information.

1. As necessary, set up a route from the replicate Replication Server to the primary
Replication Server where the data is updated, and from the primary Replication Server to
the replicate Replication Server that sends the update.

See Replication Server Administration Guide Volume 1 > Manage Routes.

2. Create a login name and password at the primary Replication Server for the user at the
replicate Replication Server.

See Replication Server Administration Guide Volume 1 > Manage Replication Server
Security.

3. At the replicate Replication Server, create the necessary permissions for this user to
execute the stored procedure at the primary Replication Server.

See Replication Server Administration Guide Volume 1 > Manage Replication Server
Security.

4. At the primary Replication Server, locate or create a replication definition that identifies
the table to be modified.

See Replication Server Administration Guide Volume 1 > Manage Replicated Tables for
information on creating replication definitions.

The replicate Replication Server may have subscriptions on the replication definition.

5. Create the stored procedure, which does not perform any updates, on the replicate
database.

For example:
create proc upd_emp
 @emp_id int, @salary float
 as
 print "Transaction accepted."

Asynchronous Procedures

370 Replication Server

If you want the stored procedure to have the same name as those in different replicate
databases, follow the guidelines for specifying a nonunique name for a user-defined
function.

6. In the replicate database, use the sp_setreplicate or sp_setrepproc system procedure to
mark the stored procedure for replication.

For example, enter one of:
sp_setreplicate upd_emp, 'true'

Follow the guidelines when specifying stored procedures and tables and for replication.

or
sp_setrepproc upd_emp, 'table'

See Replication Server Administration Guide Volume 1 > Manage Replicated Functions >
Mark Stored Procedures for Replication.

7. Create a stored procedure on the primary database with the same name as the stored
procedure on the replicate database, but do not mark the procedure as replicated. This
stored procedure modifies a primary table.

For example:
create proc upd_emp
 @emp_id int, @salary float
 as
 update employee
 set salary = salary * @salary
 where emp_id = @emp_id

Note: The stored procedure names on the primary and replicate databases can differ if you
alter the function string for the function to execute a stored procedure with a different
name.

You can map the function to a different stored procedure name.

8. Grant permission on the stored procedure to the replicate Replication Server users who
will execute this stored procedure.

For example:
grant all on upd_emp to public

9. Create a user-defined function on the primary Replication Server that associates the stored
procedure to the name of a replication definition for the table it updates.

For example:
create function employee_rep.upd_emp
 (@emp_id int, @salary float)

10. Verify that all Replication Server and database objects in all the exist at the appropriate
locations.

Asynchronous Procedures

Administration Guide Volume 2 371

See also
• Asynchronous Stored Procedure Prerequisites on page 366

• Specify a Nonunique Name for a User-defined Function on page 376

• Specify Stored Procedures and Tables for Replication on page 372

• Map a Function to a Different Stored Procedure Name on page 375

Specify Stored Procedures and Tables for Replication
You can use the sp_setreplicate system procedure in Adaptive Server to mark database tables
and stored procedures for replication.

You can also use the sp_setreptable system procedure to mark tables for replication and the
sp_setrepproc system procedure to mark stored procedures for replication. These system
procedures extend the capabilities of sp_setreplicate and are intended to replace it.

The syntax for the sp_setreplicate system procedure is:
sp_setreplicate [object_name [, {' true' | 'false']]

object_name can be either a table name or a stored procedure name.

The “true” and “false” parameters change the replication status of a specified object. (The
single quotes are optional.)

• Use sp_setreplicate with no parameters to list all replicated objects in the database.
• Use sp_setreplicate with just the object name to check the replication status of the object.

Adaptive Server reports 'true' if replication is enabled for the object, or 'false' if it is not.
• Use sp_setreplicate with the object name and either 'true' or 'false' to enable or disable

replication for the object. You must be the Adaptive Server System Administrator or the
Database Owner to use sp_setreplicate to change the replication status of an object.

Warning! A replicated stored procedure should only modify data in the database in which
it is executed. If it modifies data in another database, Replication Server replicates the
updated data and the stored procedure.

Manage User-Defined Functions
Learn the commands for managing user-defined functions.

You can customize database operations by altering function strings for user-defined functions
and you can display function-related information.

Also see Replication Server Administration Guide Volume 1 > Manage Replication Server
Security for a list of permissions that are required to use the commands.

Asynchronous Procedures

372 Replication Server

See also
• Customize Database Operations on page 13

Create a User-Defined Function
Use the create function command to register a replicated stored procedure with Replication
Server.

When a stored procedure is executed, Replication Server maps it to a replication definition.
The replication definition contains a user-defined function name that matches the name of the
stored procedure.

Replication Server delivers the function to the Replication Server that is primary for the
replication definition. When the destination Replication Server that owns the replication
definition receives the function, it maps the stored procedure parameters into the commands
for the user-defined function.

The syntax for the create function command is:

create function replication_definition.function
([@parameter datatype [, @parameter datatype]...])

The replication_definition must be an existing replication definition.

Observe these guidelines when using this command:

• Execute this command at the Replication Server where the replication definition was
created.

• Do not use the names of system functions which are reserved.
• Include the parentheses surrounding the listed parameters, even when you are defining

functions with no parameters.
• If you are not using a function-string class for which default generated function strings are

provided, after you have created a user-defined function, use the create function string
command to add a function string.

The following example creates a user-defined function named Stock_receipt. The function is
associated with the Items_rd replication definition:

create function Items_rd.Stock_receipt
 (@Location int, @Recpt_num int,
 @Item_no char(15), @Qty_recd int)

When a user executes the replicated stored procedure, Replication Server now delivers it.

See also
• Create Function Strings on page 38

• Summary of System Functions on page 17

Asynchronous Procedures

Administration Guide Volume 2 373

Adding Parameters to a User-Defined Function
Use the alter function command to tell Replication Server about new parameters you add to a
replicated stored procedure.

1. Alter the stored procedure at the primary or replicate data server and provide defaults for
new parameters.

2. As a precaution, quiesce the system. Altering functions while updates are in process can
have unpredictable results.

See Replication Server Administration Guide Volume 1 > Manage a Replication System >
Quiesce Replication Server.

3. Alter the function using the alter function command.

4. If you are not using a function-string class for which default generated function strings are
provided, alter function strings to use the new parameters.

The syntax for the alter function command is:
alter function replication_definition.function
add parameters @parameter datatype
[, @parameter datatype]...

The replication_definition is the name of the replication definition for the function. A function
can have up to 255 parameters.

The following example adds an int parameter named Volume to the New_issue function
for the Tokyo_quotes replication definition:

alter function Tokyo_quotes.New_issue
 add parameters @Volume int

See also
• Alter Function Strings on page 40

Drop a User-defined Function
Use the drop function command to drop a user-defined function.

This command drops a function name and any function strings that have been created for it.
You cannot drop system functions.

Before you drop the user-defined function, be sure to:

1. Drop the stored procedure at the primary database using the drop procedure Adaptive
Server command.
Optionally, use the sp_setreplicate or sp_setrepproc system procedure and specify
'false' to disable replication for the stored procedure.

Asynchronous Procedures

374 Replication Server

Follow the guidelines when specifying stored procedures and tables and for replication.
See Replication Server Administration Guide Volume 1 > Manage Replicated Functions >
Mark Stored Procedures for Replication for details on using sp_setrepproc.

2. As a precaution, quiesce the system before executing the drop function command.
Dropping functions while updates are in process can have unpredictable results.
See Replication Server Administration Guide Volume 1 > Manage a Replication System >
Quiesce Replication Server.

The syntax for the drop function command is:
drop function replication_definition.function

Execute the command on the Replication Server where the replication definition was created.

The following command drops the Stock_receipt user-defined function created in the
previously:
drop function Items_rd.Stock_receipt

See also
• Specify Stored Procedures and Tables for Replication on page 372

Map a Function to a Different Stored Procedure Name
Learn how to map a user-defined function to a different stored procedure name.

When you create a user-defined function in a database that uses the a function-string class for
which default generated function strings are provided, Replication Server generates a default
function string. The default generated function string executes a stored procedure with the
same name and parameters as the user-defined function.

For example, if you are using a default function string, you can set up a request stored
procedure to execute in the replicate database by creating a stored procedure in the primary
database with the same name and parameters as the user-defined function.

If you want to map the user-defined function to a different stored procedure name, use the alter
function string command to configure Replication Server to deliver the stored procedure by
executing a stored procedure with a different name. You can also do so in function-string
classes that allow you to customize function strings.

Example

This example illustrates how to map a user-defined function to a different stored procedure
name.

1. Assume the stored procedure upd_sales exists on the primary Adaptive Server, and that it
performs an update on the Adaptive Server sales table:

create proc upd_sales
 @stor_id varchar(10),
 @ord_num varchar(10),
 @date datetime
 as

Asynchronous Procedures

Administration Guide Volume 2 375

64 update sales set date = @date
 where stor_id = @stor_id
 and ord_num = @ord_num

2. To register the upd_sales stored procedure with the Replication Server, create the
following function, whose name includes in its name the sales_def replication
definition on the sales table and the upd_sales replicated stored procedure:

create function sales_def.upd_sales
 (@stor_id varchar(10), @date datetime)

3. On the replicate Adaptive Server, a version of the stored procedure upd_sales that
performs no work is created with the same name:
create proc upd_sales
 @stor_id varchar(10),
 @ord_num varchar(10),
 @date datetime
 as
 print "Attempting to Update Sales Table"
 print "Processing Update Asynchronously"

4. To execute the upd_sales stored procedure with the name real_update instead of
upd_sales:
• The default generated function string is altered:

alter function string sales_def.upd_sales
 for rs_sqlserver_function_class
 output rpc
 'execute real_update
 @stor_id = ?stor_id!param?,
 @date = ?date!param?'

• A stored procedure in the primary database is created with the name real_update. It
accepts two parameters.

Specify a Nonunique Name for a User-defined Function
The name of a user-defined function must be globally unique in the replication system so that
Replication Server can locate the particular replication definition for which the user-defined
function is defined.

If you create more than one replication definition for the same primary table, there is only one
user-defined function for all of that table’s replication definitions.

If the user-defined function name is not unique, the first parameter of the stored procedure
must be @rs_repdef, and the name of the replication definition must be passed in this
parameter when the stored procedure is executed.

Do not define the @rs_repdef parameter in the create function command for the user-defined
function. The Replication Agent extracts the replication definition name and sends it with the
LTL commands. This convention works with RepAgent for Adaptive Server, but may not be
supported by Replication Agents for other data servers.

Asynchronous Procedures

376 Replication Server

Example

This example assumes that the user-defined function is not unique and the replication
definition name is passed to the @rs_repdef parameter when the following stored procedure is
executed:
create proc upd_sales
 @rs_repdef varchar(255),
 @stor_id varchar(10),
 @date datetime
 as
 print "Attempting to Update Sales Table"
 print "Processing Update Asynchronously"

Asynchronous Procedures

Administration Guide Volume 2 377

Asynchronous Procedures

378 Replication Server

High Availability on Sun Cluster 2.2

Learn the background and procedures for configuring Sybase Replication Server for high
availability (HA) on Sun Cluster 2.2.

Introduction to Sybase Replication for Sun Cluster HA
There are several assumptions if you want to use Sybase Replication for Sun Cluster HA.

The assumptions are:

• You are familiar with Sybase Replication Server.
• You are familiar with Sun Cluster HA.
• You have a two-node cluster hardware system with Sun Cluster HA 2.2.

Documentation references:

• Sun Cluster 2.2 Software Planning and Installation Guide
• Sun Cluster 2.2 System Administration Guide
• Configuring Sybase Adaptive Server Enterprise 12.0 Server for High Availability: Sun

Cluster HA (see White Papers)

Terminology
Learn the terms discussed in Sybase Replication Server for Sun Cluster HA.

The terms used are:

• Cluster – multiple systems, or nodes, that work together as a single entity to provide
applications, system resources, and data to users.

• Cluster node – a physical machine that is part of a Sun Cluster. Also called a physical
host.

• Data service – an application that provides client service on a network and implements
read and write access to disk-based data. Replication Server and Adaptive Server
Enterprise are examples of data services.

• Disk group – a well-defined group of multihost disks that move as a unit between two
servers in an HA configuration.

• Fault monitor – a daemon that probes data services.
• High availability (HA) – very low downtime. Computer systems that provide HA usually

provide 99.999% availability, or roughly five minutes unscheduled downtime per year.

High Availability on Sun Cluster 2.2

Administration Guide Volume 2 379

http://www.sybase.com/products/databaseservers/ase

• Logical host – a group of resources including a disk group, logical host name, and logical
IP address. A logical host resides on (or is mastered by) a physical host (or node) in a
cluster machine. It can move as a unit between physical hosts on a cluster.

• Master – the node with exclusive read and write access to the disk group that has the logical
address mapped to its Ethernet address. The current master of the logical host runs the
logical host’s data services.

• Multihost disk – a disk configured for potential accessibility from multiple nodes.
• Failover – the event triggered by a node or a data service failure, in which logical hosts and

the data services on the logical hosts move to another node.
• Failback – a planned event, where a logical host and its data services are moved back to the

original hosts.

Technology Overview
Sun Cluster HA is a hardware- and software-based solution that provides high availability
support on a cluster machine and automatic data service failover in just a few seconds. It
accomplishes this by adding hardware redundancy, software monitoring, and restart
capabilities.

Sun Cluster provides cluster management tools for a system administrator to configure,
maintain, and troubleshoot HA installations.

The Sun Cluster configuration tolerates these single-point failures:

• Server hardware failure
• Disk media failure
• Network interface failure
• Server OS failure

When any of these failures occur, HA software fails over logical hosts onto another node and
restarts data services on the logical host in the new node.

Sybase Replication Server is implemented as a data service on a logical host on the cluster
machine. The HA fault monitor for Replication Server periodically probes Replication Server.
If Replication Server has stopped responding, the fault monitor attempts to restart Replication
Server locally. If Replication Server fails again within a configurable period of time, the fault
monitor fails over to the logical host so the Replication Server is restarted on the second node.

To Replication Server clients, it appears as though the original Replication Server has
restarted. The fact that it has moved to another physical machine is transparent to the users.
Replication Server is affiliated with a logical host, not the physical machine.

As a data service, the Replication Server includes a set of scripts registered with Sun Cluster as
callback methods. Sun Cluster calls these methods at different stages of Failover:

• FM_STOP – to shut down the fault monitor for the data service to be failed over.

High Availability on Sun Cluster 2.2

380 Replication Server

• STOP_NET – to shut down the data service itself.
• START_NET – to start the data service on the new node.
• FM_START – to start the fault monitor on the new node for the data service.

Each Replication Server is registered as a data service using the hareg command. If you have
multiple Replication Servers running on the cluster, you must register each of them. Each data
service has its own fault monitor as a separate process.

Note: For detailed information about the hareg command, see the appropriate Sun Cluster
documentation.

Configuration of Replication Server for High Availability
Learn the tasks required to configure a Replication Server for HA on Sun Cluster (assuming a
two-node cluster machine).

The system should have following components:

• Two homogenous Sun Enterprise servers with similar configurations in terms of resources
like CPU, memory, and so on. The servers should be configured with cluster interconnect,
which is used for maintaining cluster availability, synchronization, and integrity.

• The system should be equipped with a set of multihost disks. The multihost disk holds the
data (partitions) for a highly available Replication Server. A node can access data on a
multihost disk only when it is a current master of the logical host to which the disk belongs.

• The system should have Sun Cluster HA software installed, with automatic failover
capability. The multihost disks should have unique path names across the system.

• For disk failure protection, disk mirroring (not provided by Sybase) should be used.
• Logical hosts should be configured. Replication Server runs on a logical host.
• Make sure the logical host for the Replication Server has enough disk space in its

multihosted disk groups for the partitions, and that any potential master for the logical host
has enough memory for the Replication Server.

Installing Replication Server for HA
During Replication Server installation, you need to perform several tasks in addition to the
tasks described in the Replication Server installation guide for your platform.

1. As a Sybase user, load Replication Server either on a shared disk or on the local disk.

If it is on a shared disk, the release cannot be accessed from both machines concurrently. If
it is on a local disk, make sure the release paths are the same for both machines. If they are
not the same, use a symbolic link, so they will be the same.

For example, if the release is on /node1/repserver on node1, and /node2/
repserver on node2, link them to /repserver on both nodes so the $SYBASE
environment variable is the same across the system.

High Availability on Sun Cluster 2.2

Administration Guide Volume 2 381

2. Add entries for Replication Server, RSSD server, and primary/replicate data servers to the
interfaces file in the $SYBASE directory on both machines.

Use the logical host name for Replication Server in the interfaces file.

Note: To use LDAP directory services instead of interfaces files, supply multiple entries in
the DIRECTORY section of the Replication Server configuration file. If the connection to
the first entry fails, the directory control layer (DCL) attempts to connection to the second
entry and so on. If a connection cannot be made to any entry in the DIRECTORY section,
Open Client/Server does not use the default interfaces file to attempt a connection.

See the configuration guide for your platform for information about setting up LDAP
directory services.

3. Start the RSSD server.

4. Follow the installation guide for your platform to install Replication Server on the node
that is currently the master in the logical host. Make sure that you:

a) Set the environment variables SYBASE, SYBASE_REP, and SYBASE_OCS

For example enter:
setenv SYBASE /REPSERVER1210
setenv SYBASE_REP REP-12_1
setenv SYBASE_OCS OCS-12_0

/REPSERVER1210 is the release directory.
b) Choose a run directory for the Replication Server that will contain the Replication

Server run file, configuration file, and log file.

The run directory should exist on both nodes and have exactly the same paths on both
nodes (the path can be linked if necessary).

c) Choose the multihosted disks for the Replication Server partitions.
d) Initiate the rs_init command from the run directory.

Enter:
cd RUN_DIRECTORY
$SYBASE/$SYBASE_REP/install/rs_init

5. Make sure that Replication Server is started.

6. As a Sybase user, copy the run file and the configuration file to the other node in the same
path. Edit the run file on the second node to make sure it contains the correct path of the
configuration and log files, especially if links are used.

Note: The run file name must be RUN_repserver_name, where repserver_name is the
name of the Replication Server. You can define the configuration and log file names.

High Availability on Sun Cluster 2.2

382 Replication Server

Installing Replication Server as a Data Service
You also need to perform several specialized tasks to install Replication Server as a data
service.

1. As root, create the directory /opt/SUNWcluster/ha/repserver_name on both
cluster nodes, where repserver_name is the name of your Replication Server.

Each Replication Server must have its own directory with the server name in the path.
Copy the following scripts from the Replication Server installation directory $SYBASE/
$SYBASE_REP/sample/ha to:

/opt/SUNWcluster/ha/repserver_name

on both cluster nodes, where repserver_name is the name of your Replication Server:

repserver_start_net
repserver_stop_net
repserver_fm_start
repserver_fm_stop
repserver_fm
repserver_shutdown
repserver_notify_admin

If the scripts already exist on the local machine as part of another Replication Server data
service, you can create the following as a link to the script directory instead:

/opt/SUNWcluster/ha/repserver_name

2. As root, create the directory /var/opt/repserver on both nodes if it does not exist.

3. As root, create a file /var/opt/repserver/repserver_name on both nodes for
each Replication Server you want to install as a data service on Sun Cluster, where
repserver_name is the name of your Replication Server.

This file should contain only two lines in the following form with no blank space, and
should be readable only by root:

repserver:logicalHost:RunFile:releaseDir:SYBASE_OCS:SYBASE_REP

probeCycle:probeTimeout:restartDelay:login/password

where:

• repserver – the Replication Server name.
• logicalHost – the logical host on which Replication Server runs.
• RunFile – the complete path of the runfile.
• releaseDir – the $SYBASE installation directory.
• SYBASE_OCS – the $SYBASE subdirectory where the connectivity library is

located.
• SYBASE_REP – the $SYBASE subdirectory where the Replication Server is located.

High Availability on Sun Cluster 2.2

Administration Guide Volume 2 383

• probeCycle – the number of seconds between the start of two probes by the fault
monitor.

• probeTimeout – time, in seconds, after which a running Replication Server probe is
aborted by the fault monitor, and a timeout condition is set.

• restartDelay – minimum time, in seconds, between two Replication Server restarts. If,
in less than restartDelay seconds after a Replication Server restart, the fault monitor
again detects a condition that requires a restart, it triggers a switch over to the other host
instead. This resolves situations where a database restart does not solve the problem.

• login/password – the login/password the fault monitor uses to ping Replication Server.

To change probeCycle, probeTimeout, restartDelay, or login/password for the probe after
Replication Server is installed as data service, send SIGINT(2) to the monitor process
(repserver_fm) to refresh its memory.
kill -2 monitor_process_id

4. As root, create a file /var/opt/repserver/repserver_name.mail on both
nodes, where repserver_name is the name of your Replication Server.

This file lists the UNIX login names of the Replication Server administrators. The login
names should be all in one line, separated by one space.

If the fault monitor encounters any problems that need intervention, this is the list to which
it sends mail.

5. Register the Replication Server as a data service on Sun Cluster.

hareg -r repserver_name \

-b "/opt/SUNWcluster/ha/repserver_name" \

-m START_NET="/opt/SUNWcluster/ha/repserver_name/
repserver_start_net" \

-t START_NET=60 \

-m STOP_NET="/opt/SUNWcluster/ha/repserver_name/
repserver_stop_net" \

-t STOP_NET=60 \

-m FM_START="/opt/SUNWcluster/ha/repserver_name/
repserver_fm_start" \

-t FM_START=60 \

-m FM_STOP="/opt/SUNWcluster/ha/repserver_name/repserver_fm_stop"
\

-t FM_STOP=60 \

[-d sybase] -h logical_host

where -d sybase is required if the RSSD is under HA on the same cluster, and
repserver_name is the name of your Replication Server and must be in the path of the
scripts.

High Availability on Sun Cluster 2.2

384 Replication Server

6. Turn on the data service

Enter: hareg -y repserver_name

Administration of Replication Server as a Data Service
Learn how to start and shut down Replication Server as a data service, and learn about useful
logs for monitoring and troubleshooting.

Data Service Start and Shutdown
Learn the commands to start and shut down Replication Server once a Replication Server is
registered as data service.

To start Replication Server if it is not already running, and also start the fault monitor for
Replication Server, enter:

hareg -y repserver_name

To shut down Replication Server, enter:

hareg -n repserver_name

The fault monitor restarts or fails over this Replication Server if it is shut down or stopped
(killed) any other way.

Logs for Sun Cluster for HA
There are several logs you can use for debugging.

You can use:

• Replication Server log – the Replication Server logs its messages here. Use the log to find
informational and error messages from Replication Server. The log is located in the
Replication Server Run directory.

• Script log – the data service START and STOP scripts log messages here. Use the log to
find informational and error messages that result from running the scripts. The log is
located in /var/opt/repserver/harep.log.

• Console log – the operating system logs messages here. Use this log to find informational
and error messages from the hardware. The log is located in /var/adm/messages.

• CCD log – the Cluster Configurations Database, which is part of the Sun Cluster
configuration, logs messages here. Use this log to find informational and error messages
about the Sun Cluster configuration and health. The log is located in /var/opt/
SUNWcluster/ccd/ccd.log.

High Availability on Sun Cluster 2.2

Administration Guide Volume 2 385

High Availability on Sun Cluster 2.2

386 Replication Server

Implement a Reference Replication
Environment

You can quickly set up an Adaptive Server-to-Adaptive Server or Oracle-to-Oracle reference
replication environment using the products available in your environment.

Reference Replication Environment Implementation
Replication Server includes a toolset for quickly setting up a reference implementation of
Adaptive Server-to-Adaptive Server or Oracle-to-Oracle replication using the products
available in your environment.

You can implement a replication environment to demonstrate Replication Server features and
functionalities. Use the toolset to:

1. Build a reference environment containing Replication Server and the primary and
replicate databases.

2. Configure the replication environment.
3. Perform simple transactions on the primary database and replicate the changes by database

level replication.
4. Collect statistics and monitors counters from the replication processing in step 3.
5. Clean up the reference replication environment.

The reference implementation toolset consists of scripts that are in $SYBASE/refimp.

Note: The reference implementation builds a replication environment containing a single
Replication Server, primary database server, and replicate database server. You cannot
configure the reference environment topology for multiple replication system components.

Platform Support
You can implement a reference environment on all platforms that Replication Server supports
except for Linux on IBM p-Series (Linux on Power) 64-bit. You must use Cygwin to run the
reference implementation scripts to set up the reference environment on any Microsoft
Windows platform that Replication Server supports.

See the Cygwin Web site:http://www.cygwin.com.

Implement a Reference Replication Environment

Administration Guide Volume 2 387

http://www.cygwin.com/

Components for Reference Implementation
You must have supported versions of the components of a replication environment before you
can implement a reference environment.

Adaptive Server
You can build a reference implementation environment for Adaptive Server-to-Adaptive
Server replication with the supported versions of Replication Server and Adaptive Server.

Table 33. Supported Product Component Versions for Adaptive Server
Reference Implementation

Replication Server Adaptive Server

15.5 15.0.3, 15.5

For example, you can build an Adaptive Server reference environment with Replication
Server 15.5 and Adaptive Server version 15.0.3 or 15.5.

Oracle
You can also build a reference implementation environment for Oracle-to-Oracle replication
with the supported versions of Replication Server, Oracle, Replication Agent for Oracle, and
ECDA Option for Oracle.

Table 34. Supported Product Component Versions for Oracle Reference
Implementation

Replication Server Oracle Replication Agent
for Oracle

ECDA Option for
Oracle

15.5 10.2 15.2 15.0 ESD #3

For example, you can build a reference implementation environment for Oracle with
Replication Server 15.5, Oracle 10.2, Replication Agent 15.2, and ECDA Option for Oracle
15.0 ESD #3.

Prerequisites for the Reference Environment
There are several prerequisites and some information you must be aware of before you build
the reference environment.

1. For Oracle, verify that you have execute permission in the Oracle release directory. For
example, verify whether you can manually create an instance.

Implement a Reference Replication Environment

388 Replication Server

2. Verify that the environment variable settings in the SYBASE.sh file in the Replication
Server or Adaptive Server release directory is correct. If you cannot verify this, remove or
rename the file.

3. Verify that you have the UNIX grep, kill, awk, and ps commands available in your bash
shell.

The reference implementation procedure uses the interfaces file in the Replication
Server release directory. If the file exists before you run the reference implementation
procedure, the procedure backs up the existing file by incrementing the file name extension.

For Oracle, the reference implementation procedure renames the existing tnsname.ora,
listener.ora files and creates new files for the Oracle reference implementation.

Build the Reference Environment
Execute the buildenv script to automatically create a Replication Server, and the primary and
replicate data servers and databases.

Enter:
buildenv -f config_file

Use config_file to specify the name and location of the build configuration file that contains
the parameters you can specify in the file.

If buildenv executes successfully, you see:
Environment setup successfully completed.

Reference Implementation Configuration Files
Sybase provides configuration file templates for Adaptive Server-to-Adaptive Server, and
Oracle-to-Oracle replication on supported UNIX and Microsoft Windows platforms, that you
can use to create a configuration file for your environment.

The files are located in $SYBASE/REP-15_5/REFIMP-01_0.

Table 35. Reference Implementation Configuration Files

Primary to replicate data server
and platform

Configuration file

ASE-to-ASE on UNIX ase_unix_refimp.cfg

ASE-to-ASE on Windows ase_win_refimp.cfg

Oracle-to-Oracle on UNIX ora_unix_refimp.cfg

Oracle-to-Oracle on Windows ora_win_refimp.cfg

Implement a Reference Replication Environment

Administration Guide Volume 2 389

Example of ase_unix_refimp.cfg Template File
Provide values such as directory locations and host names according to your environment.

###
#######
--- Part 1. release directory of repserver/ase/oracle/refimp ----#
###
#######
#
--- PLATFORM('unix': UNIX/Linux platform, 'win': Windows) ---#
#
os_platform=unix
--- DATABASE ('ase': Adaptive Server Enterprise, 'ora': ORACLE) ---
#
#
db_type=ase
#
--- RS RELEASE DIRECTORY ---
#
rs release directory=/remote/repeng4/users/xiel/repserver
#
--- RS RELEASE SUBDIRECTORY ---
#
rs_sub_directory=REP-15_2
#
--- ASE RELEASE DIRECTORY ---
#
ase_release=/remote/repeng4/users/xiel/ase
#
--- ASE/ORACLE RELEASE SUBDIRECTORY ---
#
ase_subdir=ASE-15_0
#
--- REFERENCE IMPLEMENTATION RELEASE DIRECTORY ---
#
refimp_release_dir=/calm/repl/svr/refimp
#
#
#
--- REFERENCE IMPLEMENTATION WORK DIRECTORY ---
#
refimp_work_dir=/remote/repeng4/users/xiel/test
#
--- OCS RELEASE DIRECTORY ---
#
ocs_release_directory=OCS-15_0
#
--- PDS DEVICE NAME WITH FULL PATH ---
#
pds_device_file=/remote/repeng4/users/xiel/pds
#
--- RDS DEVICE NAME WITH FULL PATH ---
#
rds_device_file=/remote/repeng4/users/xiel/rds

Implement a Reference Replication Environment

390 Replication Server

#
--- rs_init RELEASE DIRECTORY ---
#
rsinit_release=/remote/repeng4/users/xiel/repserver
#
#
--- interface FILE NAME ---
#
ini_filename=interfaces
#
--- HOST NAME ---
#
host_name=newgarlic
###
#######
--- Part 2. login information of replication server and data server
---#
###
#######
#
--- RS NAME ---
#
rs_name=SAMPLE_RS
#
--- RS USER NAME ---
#
rs_username=sa
#
--- RS PASSWORD ---
#
rs_password=
#
#
#
--- ERSSD NAME ---
#
rssd_name=SAMPLE_RS_ERSSD
#
--- ERSSD USER NAME ---
#
rssd_username=rssd
#
--- ERSSD PASSWORD ---
#
rssd_password=rssd_pwd
#
--- PDS NAME ---
#
primary_ds=PDS
#
--- PDB NAME ---
#primary_db=pdb
#
--- PDB USER NAME ---
#
pdb_username=sa

Implement a Reference Replication Environment

Administration Guide Volume 2 391

#
--- PDB PASSWORD ---
#
pdb_password=
#
--- RDS NAME ---
#
replicate_ds=RDS
#
--- RDB NAME ---
#
replicate_db=rdb
#
--- RDB USER NAME ---
#
rdb_username=sa
#
--- RDB PASSWORD ---
#
rdb_password=
#
--- PORT FOR RS ---
#
rs_port=11754
#
--- PORT FOR RSSD ---
#
rssd_port=11755
#
--- PORT FOR PDS ---
#
pds_port=20000
#
--- PORT FOR RDS ---
#
rds_port=20001
#
###
#######
--- Part 3. transaction profile configuration parameters ---
###
#######
#
--- number of transactions to be executed ---
#
tran_number=100
#
--- what kind of transction will be executed ---
1."Tran_Profile_1(insert--48% delete--4% update 48%)"
2."Tran_Profile_2(insert--30% delete--5% update 65%)"
3."Tran_Profile_3(insert--61% delete--2% update 37%)"
4."Tran_Profile_LargeTran"
#
tran_option=1
#
###

Implement a Reference Replication Environment

392 Replication Server

#######
--- Part 4. system settings ---
###
#######
#
--- WAIT TIME FOR CONNECTING SERVERS, SPECIFIED BY SECOND(S) ---
#
wait_time=10

Configure the Reference Environment
After you build the reference replication environment, execute the refimp script with the
config parameter and a configuration file to create tables and stored procedures on the
reference primary and replicate databases, and create a database replication definition and a
subscription on the reference Replication Server.

Enter:
refimp config -f config_file

Use config_file to specify the name and location of the configuration file that contains the
parameters you can specify in the file.

You must use the same configuration file information you specified for buildenv in the build
process.

If refimp config executes successfully, you see:
Task succeeded: configuring database replication environment
completed.

See also
• Objects Created for the Reference Environment on page 396

Run Performance Tests on the Reference Environment
Execute the refimp script with the run parameter to automatically insert, update, and delete
data on the primary data server using database level replication.

Enter:
refimp run -f config_file

Use config_file to specify the same configuration file that you use for refimp config.

If refimp run executes successfully, you see:
Task succeeded: insert data into primary database completed.

Implement a Reference Replication Environment

Administration Guide Volume 2 393

Obtain Tests Results from the Reference Environment
Execute the refimp script with the analyze parameter to collect statistics and performance
information.

Enter:
refimp analyze -f config_file

Use config_file to specify the same configuration file that you use for refimp config.

If refimp analyze executes successfully, you see:
Task succeeded: fetch performance data completed.

Obtain the rs_ticket_history report, and the monitors and counters report from
$refimp_work_dir/report where refimp_work_dir is the location you specified in
the configuration file.

rs_ticket_history Report
The rs_ticket_history report describes the time that the ticket data took to pass through each
Replication Server module from the time stamp reported by the ticket at each module.

The report is generated by the rs_ticket stored procedure. See Replication Server Reference
Manual > RSSD Stored Procedures > rs_ticket.

You can calculate the total replication duration from the times reported by a ticket at the
primary and replicate databases. In the report, the columns are:

• cnt – the ticket sequence number.
• pdb_t – the time the rs_ticket stored procedure was executed at the primary database.
• rdb_t – the time the ticket arrived at the replicate database.
• ticket – information about the ticket, including the time that it passed through each module.

Sample rs_ticket_history Report
cnt pdb_t rdb_t
--- ------------------- -------------------
 1 Jan 19 2010 2:17AM Jan 19 2010 2:17AM

ticket

V=2;H1=profile1;H2=start;PDB(pdb)=01/19/10 02:17:19.406;
EXEC(40)=01/19/10 02:17:19.423;B(40)=1332;
DIST(26)=01/19/10 02:17:19.669;
DSI(35)=01/19/10 02:17:19.916;
DSI_T=1;DSI_C=3;RRS=SAMPLE_RS_XIEL

cnt pdb_t rdb_t
--- ------------------- -------------------

Implement a Reference Replication Environment

394 Replication Server

 2 Jan 19 2010 2:20AM Jan 19 2010 2:20AM

ticket

V=2;H1=profile1;H2=end;PDB(pdb)=01/19/10 02:20:32.206;
EXEC(40)=01/19/10 02:20:32.211;B(40)=5044893;
DIST(26)=01/19/10 02:20:32.249;DSI(35)=01/19/10 02:20:32.524;
DSI_T=5410;DSI_C=18297;RRS=SAMPLE_RS_XIEL

Monitors and Counters Report
The monitors and counters report describes the performance figures reported by Replication
Server counters that monitor the commands you execute during the reporting period,

Sample Monitors and Counters Report
This is a long report; only one counter is shown.

Note: Comments to the right of the output are included to explain the example. They are not
part of the output.

Comment: refimp
Jan 19 2010 02:17:39:606AM *Start time stamp*
Jan 19 2010 02:20:22:576AM *End time stamp*
9 *No of obs intervals*
0 *No of min between obs*
16384 *SQM bytes per block*
64 *SQM blocks per segment*
AOBJ *Module name*
10305 *Instance ID*
11 *Instance value*
AOBJ dbo.district *Module name*
AOBJ: Insert command *Counter external name*
AOBJInsertCommand *Counter display name*
65000, , 10305, 11 *Counter ID, instance
ID,
 instance value*
ENDOFDATA *EOD for counter*

AOBJ: Update command *Counter external name*
AOBJUpdateCommand *Counter display name*
65000, , 10305, 11 *Counter ID, instance
ID,
 instance value*
Jan 19 2010 02:17:39:606AM, 50, 50, 1, 1 *Dump ts, obs, total,
 last, max*
....
ENDOFDATA *EOD for counter*

See also
• Monitor Performance Using Counters on page 273

Implement a Reference Replication Environment

Administration Guide Volume 2 395

Shut Down the Reference Implementation Servers
Execute the cleanenv script to shut down Replication Server and the data servers after you
have cleaned up the environment.

Enter:
cleanenv -f config_file

Use config_file to specify the same configuration file that you use for refimp config.

If cleanenv executes successfully, you see:
Task succeeded: shut down all the servers.

Clean Up the Reference Environment
Execute the refimp script with the cleanup parameter to delete test data, and drop replication
definitions, subscriptions, tables, and stored procedures to prepare for the next test.

Enter:
refimp cleanup -f config_file

Use config_file to specify the same configuration file that you use for refimp config.

If refimp cleanup executes successfully, you see:
Task succeeded: clean up database replication environment completed.

Objects Created for the Reference Environment
The reference implementation toolset creates stored procedure, replication definition,
subscription, and table objects in the reference replication environment.

Table 36. Stored Procedures Created for Reference Implementation

Stored procedure Location

sp_load_warehouse_data Primary and replicate databases

sp_load_district_data Primary and replicate databases

sp_load_customer_data Primary and replicate databases

sp_load_history_data Primary and replicate databases

sp_load_item_data Primary and replicate databases

sp_load_stock_data Primary and replicate databases

Implement a Reference Replication Environment

396 Replication Server

Stored procedure Location

sp_load_order_orderline_data Primary and replicate databases

sp_load_neworder_data Primary and replicate databases

sp_load_data_multi_tran Primary and replicate databases

sp_gen_neworder_data Primary database

sp_gen_payment_data Primary database

sp_gen_delivery_data Primary database

sp_gen_neworder_data_large_tran Primary database

sp_gen_payment_data_large_tran Primary database

sp_gen_delivery_data_large_tran Primary database

sp_generator_data_1 Primary database

sp_generator_data_2 Primary database

sp_generator_data_3 Primary database

sp_generator_data_4 Primary database

Table 37. Replication Definition and Subscription Created for Reference
Implementation

Stored procedure Subscribing for

Replication definition: pdbrepdefforrdb

Subscription: rdbsubforpdb pdbrepdefforrdb

Table 38. Tables Created for Reference Implementation

Table Location

WAREHOUSE Primary and replicate databases

DISTRICT Primary and replicate databases

CUSTOMER Primary and replicate databases

HISTORY Primary and replicate databases

NEW_ORDER Primary and replicate databases

ORDER Primary and replicate databases

ORDER_LINE Primary and replicate databases

Implement a Reference Replication Environment

Administration Guide Volume 2 397

Table Location

ITEM Primary and replicate databases

Stock Primary and replicate databases

Table Schema
Table schema for the tables created for reference implementation.

Table 39. WAREHOUSE

Field name Field definition Comments

W_ID 2*W unique IDs W is the warehouse number

W_NAME Variable text, size 10

W_STREET1 Variable text, size 20

W_STREET2 Variable text, size 20

W_CITY Variable text, size 20

W_STATE Fixed text, size 2

W_ZIP Fixed text, size 9

W_TAX Numeric, 4 digits Sales tax

W_YTD Numeric, 12 digits Year to date balance

Keys:

• Primary key: (W_ID)

Table 40. DISTRICT

Field name Field definition Comments

D_ID 20 unique IDs 10 are populated per warehouse

D_W_ID 2*W unique IDs

D_NAME Variable text, size 10

D_STREET1 Variable text, size 20

D_STREET2 Variable text, size 20

D_CITY Variable text, size 20

D_STATE Fixed text, size 2

Implement a Reference Replication Environment

398 Replication Server

Field name Field definition Comments

D_ZIP Fixed text, size 9

D_TAX Numeric, 4 digits Sales tax

D_YTD Numeric, 12 digits Year to date balance

D_NEXT_O_ID 10, 000 unique IDs Unique IDs for next available or-
der number

Keys:

• Primary key (D_W_ID, D_ID)
• Foreign key (D_W_ID) references (W_ID)

Table 41. CUSTOMER

Field name Field definition Comments

C_ID 96, 000 unique IDs 3, 000 are populated per ware-
house

C_D_ID 20 unique IDs

C_W_ID 2*W unique IDs

C_FIRST Variable text, size 16

C_MIDDLE Fixed text, size 2

C_LAST Variable text, size 16

C_STREET1 Variable text, size 20

C_STREET2 Variable text, size 20

C_CITY Variable text, size 20

C_STATE Fixed text, size 2

C_ZIP Fixed text, size 9

C_PHONE Fixed text, size 16

C_SINCE Date and time The date of registration

C_CREDIT Fixed text, size 2 Credit: "GC"=good credit,
"BC"=bad credit

C_CREDIT_LIM Numeric, 12 digits

Implement a Reference Replication Environment

Administration Guide Volume 2 399

Field name Field definition Comments

C_DISCOUNT Numeric, 4 digits

C_BALANCE Signed numeric, 12 digits

C_YTD_PAYMENT Numeric, 12 digits

C_PAYMENT_CNT Numeric, 4 digits

C_DELIVERY_CNT Numeric, 4 digits

C_DATA Variable text, size 500 For remarks

Keys:

• Primary key (C_W_ID, C_D_ID, C_ID)
• Foreign key (C_W_ID, C_D_ID) references (D_W_ID, D_ID)

Table 42. HISTORY

Field name Field definition Comments

H_C_ID 96, 000 unique IDs

H_C_D_ID 20 unique IDs

H_C_W_ID 2*W unique IDs

H_D_ID 20 unique IDs

H_W_ID 2*W unique IDs

H_DATE Date and time

H_AMOUNT Numeric, 6 digits

H_DATA Variable text, size 24

Keys:

• Primary key: None
• Foreign key (H_C_W_ID, H_C_D_ID, H_C_ID) references (C_W_ID, C_D_ID, C_ID)
• Foreign key (H_W_ID, H_D_ID) references (D_W_ID, D_ID)

Table 43. NEW_ORDER

Field name Field definition Comments

N_O_ID 10, 000, 000 unique IDs

Implement a Reference Replication Environment

400 Replication Server

Field name Field definition Comments

N_D_ID 20 unique IDs

NO_W_ID 2*W unique IDs

Keys:

• Primary key (NO_W_ID, NO_D_ID, NO_O_ID)
• Foreign key (NO_W_ID, NO_D_ID, NO_O_ID) references (O_W_ID, O_D_ID, O_ID)

Table 44. ORDER

Field name Field definition Comments

O_ID 10, 000, 000 unique IDss

O_D_ID 20 unique IDs

O_W_ID 2*W unique IDs

O_C_ID 96, 000 unique IDs

O_ENTRY_D Date and time

O_CARRIER_ID 10 unique IDs, or null

O_OL_CNT From 5 to 15

O_ALL_LOCAL Numeric, 1digit

Keys:

• Primary key (O_W_ID, O_D_ID, O_ID)
• Foreign key (O_W_ID, O_D_ID, O_C_ID) references (C_W_ID, C_D_ID, C_ID)

Table 45. ORDER_LINE

Field name Field definition Comments

OL_O_ID 10, 000, 000 unique IDs

OL_D_ID 20 unique IDs

OL_W_ID 2*W unique IDs

OL_NUMBER 15 unique IDs

OL_I_ID 200,000 unique IDs

OL_SUPPLY_W_ID 2*W unique IDs

Implement a Reference Replication Environment

Administration Guide Volume 2 401

Field name Field definition Comments

OL_DELIVERY_D Date and time, or null

OL_QUANTITY Numeric, 2 digits

OL_AMOUNT Numeric, 6 digits

OL_DIST_INFO Fixed text, size 24

Keys:

• Primary key (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER)
• Foreign key (OL_W_ID, OL_D_ID, OL_O_ID) references (O_W_ID, O_D_ID, D_ID)
• Foreign key (OL_SUPPLY_W_ID, OL_I_ID) references (S_W_ID, S_I_ID)

Table 46. ITEM

Field name Field definition Comments

I_ID 200, 000 unique IDs

I_IM_ID 200, 000 unique IDs

I_NAME Variable text, size 50

I_PRICE Numeric, 5 digits

I_DATA Variable text, size 50

Keys:

• Primary key (I_ID)

Table 47. STOCK

Field name Field definition Comments

S_I_ID 200, 000 unique IDs

S_W_ID 2*W unique IDs

S_QUANTITY Numeric, 4 digits

S_DIST_01 Fixed text, size 24

S_DIST_02 Fixed text, size 24

S_DIST_03 Fixed text, size 24

S_DIST_04 Fixed text, size 24

Implement a Reference Replication Environment

402 Replication Server

Field name Field definition Comments

S_DIST_05 Fixed text, size 24

S_DIST_06 Fixed text, size 24

S_DIST_07 Fixed text, size 24

S_DIST_08 Fixed text, size 24

S_DIST_09 Fixed text, size 24

S_DIST_10 Fixed text, size 24

S_YTD Numeric, 8 digits

S_ORDER_CNT Numeric, 4 digits

S_REMOTE_CNT Numeric, 4 digits

S_DATA Variable text, size 50

Keys:

• Primary key (S_W_ID, S_I_ID)
• Foreign key (S_W_ID) references (W_ID)
• Foreign key (S_I_ID) references (I_ID)

Implement a Reference Replication Environment

Administration Guide Volume 2 403

Implement a Reference Replication Environment

404 Replication Server

Glossary

Glossary of terms used in replication systems.

• active database – In a warm standby application, a database that is replicated to a standby
database. See also warm standby application.

• Adaptive Server – The Sybase version 11.5 and later relational database server. If you
choose the RSSD option when configuring Replication Server, Adaptive Server maintains
Replication Server system tables in the RSSD database.

• application programming interface (API) – A predefined interface through which users
or programs communicate with each other. Open Client and Open Server are examples of
APIs that communicate in a client/server architecture. RCL, the Replication Command
Language, is the Replication Server API.

• applied function – A replicated function, associated with a function replication
definition, that Replication Server delivers from a primary database to a subscribing
replicate database. The function passes parameter values to a stored procedure that is
executed at the replicate database. The stored procedure executed at the replicate database
by the maintenance user. See also replicated function delivery, request function, and
function replication definition.

• article – A replication definition extension for tables or stored procedures that can be an
element of a publication. Articles may or may not contain where clauses, which specify a
subset of rows that the replicate database receives.

• asynchronous procedure delivery – A method of replicating, from a source to a
destination database, a stored procedure that is associated with a table replication
definition.

• asynchronous command – A command that a client submits where the client is not
prevented from proceeding with other operations before the completion status is received.
Many Replication Server commands function as asynchronous commands within the
replication system.

• atomic materialization – A materialization method that copies subscription data from a
primary to a replicate database through the network in a single atomic operation, using a
select operation with a holdlock. No changes to primary data are allowed until data
transfer is complete. Replicate data may be applied either as a single transaction or in
increments of ten rows per transaction, which ensures that the replicate database
transaction log does not fill. Atomic materialization is the default method for the create
subscription command. See also nonatomic materialization, bulk materialization and no
materialization.

• autocorrection – Autocorrection is a setting applied to replication definitions, using the
set autocorrection command, to prevent failures caused by missing or duplicate rows in a
copy of a replicated table. When autocorrection is enabled, Replication Server converts
each update or insert operation into a delete followed by an insert. Autocorrection should

Glossary

Administration Guide Volume 2 405

only be enabled for replication definitions whose subscriptions use nonatomic
materialization.

• base class – A function-string class that does not inherit function strings from a parent
class. See also function-string class.

• bitmap subscription – A type of subscription that replicates rows based on bitmap
comparisons. Create columns using the int datatype, and identify them as the
rs_address datatype when you create a replication definition. When you create a
subscription, compare each rs_address column to a bitmask using a bitmap
comparison operator (&) in the where clause. Rows matching the subscription’s bitmap
are replicated.

• bulk copy-in – A feature that improves Replication Server performance when replicating
large batches of insert statements on the same table in Adaptive Server® Enterprise 12.0
and later. Replication Server implements bulk copy-in in Data Server Interface (DSI), the
Replication Server module responsible for sending transactions to replicate databases,
using the Open Client™ Open Server™ Bulk-Library.

Bulk copy-in also improves the performance of subscription materialization. When
dsi_bulk_copy is on, Replication Server uses bulk copy-in to materialize the subscriptions
if the number of insert commands in each transaction exceeds dsi_bulk_threshold.

• bulk materialization – A materialization method whereby subscription data in a replicate
database is initialized outside of the replication system. For example, data may be
transferred from a primary database using media such as magnetic tape, diskette, CD-
ROM, or optical storage disk. Bulk materialization involves a series of commands, starting
with define subscription. You can use bulk materialization for subscriptions to table
replication definitions or function replication definitions. See also atomic materialization,
nonatomic materialization, and no materialization.

• centralized database system – A database system where data is managed by a single
database management system at a centralized location.

• class – See error class and function-string class.
• class tree – A set of function-string classes, consisting of two or more levels of derived and

parent classes, that derive from the same base class. See also function-string class.
• client – A program connected to a server in a client/server architecture. It may be a front-

end application program executed by a user or a utility program that executes as an
extension of the system.

• Client/Server Interfaces (C/SI) – The Sybase interface standard for programs executing
in a client/server architecture.

• concurrency – The ability of multiple clients to share data or resources. Concurrency in a
database management system depends upon the system protecting clients from conflicts
that arise when data in use by one client is modified by another client.

• connection – A connection from a Replication Server to a database. See also Data Server
Interface (DSI) and logical connection.

• connection profiles – Connection profiles allow you to configure your connection with a
pre-defined set of properties.

Glossary

406 Replication Server

• coordinated dump – A set of database dumps or transaction dumps that is synchronized
across multiple sites by distributing an rs_dumpdb or rs_dumptran function through the
replication system.

• database – A set of related data tables and other objects that is organized and presented to
serve a specific purpose.

• database generation number – Stored in both the database and the RSSD of the
Replication Server that manages the database, the database generation number is the first
part of the origin queue ID (qid) of each log record. The origin queue ID ensures that the
Replication Server does not process duplicate records. During recovery operations, you
may need to increment the database generation number so that Replication Server does not
ignore records submitted after the database is reloaded.

• database replication definition – A description of a set of database objects—tables,
transactions, functions, system stored procedures, and DDL—for which a subscription
can be created.

You can also create table replication definitions and function replication definitions. See
also table replication definition and function replication definition.

• database server – A server program, such as Sybase Adaptive Server, that provides
database management services to clients.

• data definition language (DDL) – The set of commands in a query language, such as
Transact-SQL, that describes data and their relationships in a database. DDL commands in
Transact-SQL include those using the create, drop, and alter keywords.

• data manipulation language (DML) – The set of commands in a query language, such as
Transact-SQL, that operates on data. DML commands in Transact-SQL include select,
insert, update, and delete.

• data server – A server whose client interface conforms to the Sybase Client/Server
Interfaces and provides the functionality necessary to maintain the physical representation
of a replicated table in a database. Data servers are usually database servers, but they can
also be any data repository with the interface and functionality Replication Server
requires.

• Data Server Interface (DSI) – Replication Server threads corresponding to a connection
between a Replication Server and a database. DSI threads submit transactions from the
DSI outbound queue to a replicate data server. They consist of a scheduler thread and one
or more executor threads. The scheduler thread groups the transactions by commit order
and dispatches them to the executor threads. The executor threads map functions to
function strings and execute the transactions in the replicate database. DSI threads use an
Open Client connection to a database. See also outbound queue and connection.

• data source – A specific combination of a database management system (DBMS) product
such as a relational or non-relational data server, a database residing in that DBMS, and the
communications method used to access that DBMS from other parts of a replication
system. See also database and data server.

• decision support application – A database client application characterized by ad hoc
queries, reports, and calculations and few data update transactions.

Glossary

Administration Guide Volume 2 407

• declared datatype – The datatype of the value delivered to the Replication Server from
the Replication Agent:

• If the Replication Agent delivers a base Replication Server datatype, such as
datetime, to the Replication Server, the declared datatype is the base datatype.

• Otherwise, the declared datatype must be the UDD for the original datatype at the
primary database.

• default function string – The function string that is provided by default for the system-
provided classes rs_sqlserver_function_class and
rs_default_function_class and classes that inherit function strings from these
classes, either directly or indirectly. See also function string.

• dematerialization – The optional process, when a subscription is dropped, whereby
specific rows that are not used by other subscriptions are removed from the replicate
database.

• derived class – A function-string class that inherits function strings from a parent class.
See also function-string class and parent class.

• direct route – A route used to send messages directly from a source to a destination
Replication Server, with no intermediate Replication Servers. See also indirect route and
route.

• disk partition – See partition.
• distributed database system – A database system where data is stored in multiple

databases on a network. The databases may be managed by data servers of the same type
(for example, Adaptive Server) or by heterogeneous data servers.

• Distributor – A Replication Server thread (DIST) that helps to determine the destination
of each transaction in the inbound queue.

• dump marker – A message written by Adaptive Server in a database transaction log when
a dump is performed. In a warm standby application, when you are initializing the standby
database with data from the active database, you can specify that Replication Server use
the dump marker to determine where in the transaction stream to begin applying
transactions in the standby database. See also warm standby application.

• Embedded Replication Server System Database (ERSSD) – The SQL Anywhere (SA)
database that stores Replication Server system tables. You can choose whether to store
Replication Server system tables on the ERSSD or the Adaptive Server RSSD. See also
Replication Server System Database (RSSD).

• Enterprise Connect Data Access (ECDA) – An integrated set of software applications
and connectivity tools that allow access to data within a heterogeneous database
environment, such as a variety of LAN-based, non-ASE data sources, and mainframe data
sources.

• ExpressConnect for Oracle – A set of libraries that can be used to provides direct
communication between Replication Server and an Oracle database.

Glossary

408 Replication Server

• error action – A Replication Server response to a data server error. Possible Replication
Server error actions are ignore, warn, retry_log, log, retry_stop, and stop_replication.
Error actions are assigned to specific data server errors.

• error class – A name for a collection of data server error actions that are used with a
specified database.

• exceptions log – A set of three Replication Server system tables that holds information
about transactions that failed on a data server. The transactions in the log must be resolved
by a user or by an intelligent application. You can use the rs_helpexception stored
procedure to query the exceptions log.

• Failover – Sybase Failover allows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion fails, that server’s devices, databases,
and connections can be taken over by the secondary companion.

For more detailed information about how Sybase Failover works in Adaptive Server, refer
to Using Sybase Failover in a High Availability System, which is part of the Adaptive
Server Enterprise documentation set.

• fault tolerance – The ability of a system to continue to operate correctly even though one
or more of its component parts is malfunctioning.

• function – A Replication Server object that represents a data server operation such as
insert, delete, select, or begin transaction. Replication Server distributes such operations to
other Replication Servers as functions. Each function consists of a function name and a set
of data parameters. In order to execute the function in a destination database, Replication
Server uses function strings to convert a function to a command or set of commands for a
type of database. See also user-defined function, and replicated function delivery.

• function replication definition – A description of a replicated function used in replicated
function delivery. The function replication definition, maintained by Replication Server,
includes information about the parameters to be replicated and the location of the primary
version of the affected data. There are two types of function replication definition, applied
and request. See also replicated function delivery.

• function scope – The range of a function’s effect. Functions have replication definition
scope or function-string class scope. A function with replication definition scope is
defined for a specific replication definition, and cannot be applied to other replication
definitions. A function with function-string class scope is defined once for a function-
string class and is available only within that class.

• function string – A string that Replication Server uses to map a database command to a
data server API. For the rs_select and rs_select_with_lock functions only, the string
contains an input template, used to match function strings with the database command. For
all functions, the string also contains an output template, used to format the database
command for the destination data server.

• function-string class – A named collection of function strings used with a specified
database connection. Function-string classes include those provided with Replication
Server and those you have created. Function-string classes can share function string
definitions through function-string inheritance. The three system-provided function-
string classes are rs_sqlserver_function_class,

Glossary

Administration Guide Volume 2 409

rs_default_function_class, and rs_db2_function_class. See also base
class, class tree, derived class, function-string inheritance, and parent class.

• function-string inheritance – The ability to share function string definitions between
classes, whereby a derived class inherits function strings from a parent class. See also
derived class, function-string class, and parent class.

• function-string variable – An identifier used in a function string to represent a value that
is to be substituted at run time. Variables in function strings are enclosed in question marks
(?). They represent column values, function parameters, system-defined variables, or user-
defined variables.

• function subscription – A subscription to a function replication definition (used in both
applied and request function delivery).

• gateway – Connectivity software that allows two or more computer systems with different
network architectures to communicate.

• generation number – See database generation number.
• heterogeneous data servers – Multi-vendor data servers used together in a distributed

database system.
• hibernation mode – A Replication Server state in which all DDL commands, except

admin and sysadmin commands, are rejected; all routes and connections are suspended;
most service threads, such as DSI and RSI, are suspended; and RSI and RepAgent users are
logged off and not allowed to log on. Used during route upgrades, and may be turned on for
a Replication Server to debug problems.

• high availability (HA) – Very low downtime. Computer systems that provide HA usually
provide 99.999% availability, or roughly five minutes unscheduled downtime per year.

• high volume adaptive replication (HVAR) – Compilation of a group of insert, delete,
and update operations to produce a net result and the subsequent bulk application of the
net result to the replicate database.

• hot standby application – A database application in which the standby database can be
placed into service without interrupting client applications and without losing any
transactions. See also warm standby application.

• ID Server – One Replication Server in a replication system is the ID Server. In addition to
performing the usual Replication Server tasks, the ID Server assigns unique ID numbers to
every Replication Server and database in the replication system, and maintains version
information for the replication system.

• inbound queue – A stable queue used to spool messages from a Replication Agent to a
Replication Server.

• indirect route – A route used to send messages from a source to a destination Replication
Server, through one or more intermediate Replication Servers. See also direct route and
route.

• interfaces file – A file containing entries that define network access information for server
programs in a Sybase client/server architecture. Server programs may include Adaptive
Servers, gateways, Replication Servers, and Replication Agents. The interfaces file entries
enable clients and servers to connect to each other in a network.

Glossary

410 Replication Server

• latency – The measure of the time it takes to distribute to a replicate database a data
modification operation first applied in a primary database. The time includes Replication
Agent processing, Replication Server processing, and network overhead.

• local-area network (LAN) – A system of computers and devices, such as printers and
terminals, connected by cabling for the purpose of sharing data and devices.

• locator value – The value stored in the rs_locater table of the Replication Server’s
RSSD that identifies the latest log transaction record received and acknowledged by the
Replication Server from each previous site during replication.

• logical connection – A database connection that Replication Server maps to the
connections for the active and standby databases in a warm standby application. See also
connection and warm standby application.

• login name – The name that a user or a system component such as Replication Server uses
to log in to a data server, Replication Server, or Replication Agent.

• Log Transfer Language (LTL) – A subset of the Replication Command Language
(RCL). A Replication Agent such as RepAgent uses LTL commands to submit to
Replication Server the information it retrieves from primary database transaction logs.

• Log Transfer Manager (LTM) – The Replication Agent program for Sybase SQL Server.
See also Replication Agent and RepAgent thread.

• maintenance user – A data server login name that Replication Server uses to maintain
replicate data. In most applications, maintenance user transactions are not replicated.

• materialization – The process of copying data specified by a subscription from a primary
database to a replicate database, thereby initializing the replicate table. Replicate data can
be transferred over a network, or, for subscriptions involving large amounts of data, loaded
initially from media. See also atomic materialization, bulk materialization, no
materialization, and nonatomic materialization.

• materialization queue – A stable queue used to spool messages related to a subscription
being materialized or dematerialized.

• missing row – A row missing from a replicated copy of a table but present in the primary
table.

• mixed-version system – A replication system containing Replication Servers of different
software versions that have different capabilities based on their different software versions
and site versions. Mixed-version support is available only if the system version is 11.0.2 or
greater.

For example, a replication system containing Replication Servers version 11.5 or later and
version 11.0.2 is a mixed-version system. A replication system containing Replication
Servers of releases earlier than release 11.0.2 is not a mixed-version system, because any
newer Replication Servers are restricted by the system version from using certain new
features. See also site version and system version.

• more columns – Columns in a replication definition exceeding 250, but limited to 1024.
More columns are supported by Replication Server version 12.5 and later.

Glossary

Administration Guide Volume 2 411

• multi-site availability (MSA) – Methodology for replicating database objects—tables,
functions, transactions, system stored procedures, and DDL from the primary to the
replicate database. See also database replication definition.

• name space – The scope within which an object name must be unique.
• nonatomic materialization – A materialization method that copies subscription data

from a primary to a replicate database through the network in a single operation, without a
holdlock. Changes to the primary table are allowed during data transfer, which may cause
temporary inconsistencies between replicate and primary databases. Data is applied in
increments of ten rows per transaction, which ensures that the replicate database
transaction log does not fill. Nonatomic materialization is an optional method for the
create subscription command. See also autocorrection, atomic materialization, no
materialization, and bulk materialization.

• network-based security – Secure transmission of data across a network. Replication
Server supports third-party security mechanisms that provide user authentication, unified
login, and secure message transmission between Replication Servers.

• no materialization – A materialization method that lets you create a subscription when
the subscription data already exists at the replicate site. Use the create subscription
command with the without materialization clause. You can use this method to create
subscriptions to table replication definitions and function replication definitions. See also
atomic materialization and bulk materialization.

• online transaction processing (OLTP) application – A database client application
characterized by frequent transactions involving data modification (inserts, deletes, and
updates).

• Origin Queue ID (qid) – Formed by the RepAgent, the qid uniquely identifies each log
record passed to the Replication Server. It includes the date and timestamp and the
database generation number. See also database generation number.

• orphaned row – A row in a replicated copy of a table that does not match an active
subscription.

• outbound queue – A stable queue used to spool messages. The DSI outbound queue
spools messages to a replicate database. The RSI outbound queue spools messages to a
replicate Replication Server.

• parallel DSI – Configuring a database connection so that transactions are applied to a
replicate data server using multiple DSI threads operating in parallel, rather than a single
DSI thread. See also connection and Data Server Interface (DSI).

• parameter – An identifier representing a value that is provided when a procedure
executes. Parameter names are prefixed with an @ character in function strings. When a
procedure is called from a function string, Replication Server passes the parameter values,
unaltered, to the data server. See also searchable parameter.

• parent class – A function-string class from which a derived class inherits function strings.
See also function-string class and derived class.

• partition – A raw disk partition or operating system file that Replication Server uses for
stable queue storage. Only use operating system files in a test environment.

Glossary

412 Replication Server

• physical connection – See connection.
• primary data – The definitive version of a set of data in a replication system. The primary

data is maintained on a data server that is known to all of the Replication Servers with
subscriptions for the data.

• primary database – Any database that contains data that is replicated to another database
via the replication system.

• primary fragment – A horizontal segment of a table that holds the primary version of a set
of rows.

• primary key – A set of table columns that uniquely identifies each row.
• primary site – A Replication Server where a function-string class or error class is defined.

See error class and function-string class.
• principal user – The user who starts an application. When using network-based security,

Replication Server logs in to remote servers as the principal user.
• profiles – Profiles allow you to configure your connection with a pre-defined set of

properties.
• projection – A vertical slice of a table, representing a subset of the table’s columns.
• publication – A group of articles from the same primary database. A publication lets you

collect replication definitions for related tables and/or stored procedures and then
subscribe to them as a group. You collect replication definitions as articles in a publication
at the source Replication Server and subscribe to them with a publication subscription at
the destination Replication Server. See also article and publication subscription.

• publication subscription – A subscription to a publication. See also article and
publication.

• published datatype – The datatype of the column after the column-level translation (and
before a class-level translation, if any) at the replicate data server. The published datatype
must be either a Replication Server base datatype or a UDD for the datatype in the target
data server. If the published datatype is omitted from the replication definition, it defaults
to the declared datatype.

• query – In a database management system, a query is a request to retrieve data that meets a
given set of criteria. The SQL database language includes the select command for queries.

• quiescent – A quiescent replication system is one in which all updates have been
propagated to their destinations. Some Replication Server commands or procedures
require that you first quiesce the replication system.

• quoted identifiers – Object names that contain special characters such as spaces and non-
alphanumeric characters, start with a character other than an alphabet, or that correspond
to a reserved word, need to be enclosed in double quote characters to be parsed correctly.

• real time loading (RTL) – High volume adaptive replication (HVAR) to a Sybase IQ
database. Uses relevant commands and processes to apply HVAR changes to a Sybase IQ
replicate database. See high volume adaptive replication.

• remote procedure call (RPC) – A request to execute a procedure that resides in a remote
server. The server that executes the procedure could be a Adaptive Server, a Replication
Server, or a server created using Open Server. The request can originate from any of these

Glossary

Administration Guide Volume 2 413

servers or from a client application. The RPC request format is a part of the Sybase Client/
Server Interfaces.

• RepAgent thread – The Replication Agent for Adaptive Server databases. RepAgent is an
Adaptive Server thread; it transfers transaction log information from the primary database
to a Replication Server for distribution to other databases.

• replicate database – Any database that contains data that is replicated from another
database via the replication system.

• replicated function delivery – A method of replicating, from a source to a destination
database, a stored procedure that is associated with a function replication definition. See
also applied function, request function, and function replication definition.

• replicated stored procedure – An Adaptive Server stored procedure that is marked as
replicated using the sp_setrepproc or the sp_setreplicate system procedure. Replicated
stored procedures can be associated with function replication definitions or table
replication definitions. See also replicated function delivery and asynchronous procedure
delivery.

• replicated table – A table that is maintained by Replication Server, in part or in whole, in
databases at multiple locations. There is one primary version of the table, which is marked
as replicated using the sp_setreptable or the sp_setreplicate system procedure; all other
versions are replicated copies.

• Replication Agent – A program or module that transfers transaction log information
representing modifications made to primary data from a database server to a Replication
Server for distribution to other databases. RepAgent is the Replication Agent for Adaptive
Server databases.

• Replication Command Language (RCL) – The commands used to manage information
in Replication Server.

• replication definition – Usually, a description of a table for which subscriptions can be
created. The replication definition, maintained by Replication Server, includes
information about the columns to be replicated and the location of the primary version of
the table.

You can also create function replication definitions; sometimes the term “table replication
definition” is used to distinguish between table and function replication definitions. See
also function replication definition.

• Replication Server – The Sybase server program that maintains replicated data, typically
on a LAN, and processes data transactions received from other Replication Servers on the
same LAN or on a WAN.

• Replication Server Interface (RSI) – A thread that logs in to a destination Replication
Server and transfers commands from the RSI outbound stable queue to the destination
Replication Server. There is one RSI thread for each destination Replication Server that is
a recipient of commands from a primary or intermediate Replication Server. See also
outbound queue and route.

Glossary

414 Replication Server

• Replication Monitoring Services (RMS) – A small Java application built using the
Sybase Unified Agent Framework (UAF) that monitors and troubleshoot a replication
environment.

• replication system administrator – The system administrator that manages routine
operations in the Replication Server.

• Replication Server System Database (RSSD) – The Adaptive Server database
containing a Replication Server system tables. You can choose whether to store
Replication Server system tables on the RSSD or the SQL Anywhere (SA) ERSSD. See
also Embedded Replication Server System Database (ERSSD).

• Replication Server system Adaptive Server – The Adaptive Server with the database
containing a Replication Server’s system tables (the RSSD).

• replication system – A data processing system where data is replicated in multiple
databases to provide remote users with the benefits of local data access. Specifically, a
replication system that is based upon Replication Server and includes other components
such as Replication Agents and data servers.

• replication system domain – All replication system components that use the same ID
Server.

• request function – A replicated function, associated with a function replication
definition, that Replication Server delivers from a primary database to a replicate database.
The function passes parameter values to a stored procedure that is executed at the replicate
database. The stored procedure is executed at the replicate site by the same user as it is at
the primary site.See also replicated function delivery, request function, and function
replication definition.

• resync marker – When you restart Replication Agent in resync mode, Replication Agent
sends the resync database marker to Replication Server to indicate that a
resynchronization effort is in progress. The resync marker is the first message Replication
Agent sends before sending any SQL data definition language (DDL) or data manipulation
language (DML) transactions.

• route – A one-way message stream from a source Replication Server to a destination
Replication Server. Routes carry data modification commands (including those for
RSSDs) and replicated functions or stored procedures between Replication Servers. See
also direct route and indirect route.

• route version – The lower of the site version numbers of the route’s source and destination
Replication Servers. Replication Server version 11.5 and later use the route version
number to determine which data to send to the replicate site. See also site version.

• row migration – The process whereby column value changes in rows in a primary version
of a table cause corresponding rows in a replicate version of the table to be inserted or
deleted, based on comparison with values in a subscription’s where clause.

• SQL Server – The Sybase relational database pre-11.5 server.
• SQL statement replication – In SQL statement replication, the Replication Server

receives the SQL statement that modified the primary data, rather than the individual row
changes from the transaction log. Replication Server applies the SQL statement to the
replicated site. RepAgent sends both the SQL Data Manipulation Language (DML) and

Glossary

Administration Guide Volume 2 415

individual row changes. Depending on your configuration, Replication Server chooses
either individual row change log replication or SQL statement replication.

• schema – The structure of the database. DDL commands and system procedures change
system tables stored in the database. Supported DDL commands and system procedures
can be replicated to standby databases when you use Replication Server version 11.5 or
later and Adaptive Server version 11.5 or later.

• searchable column – A column in a replicated table that can be specified in the where
clause of a subscription or article to restrict the rows replicated at a site.

• searchable parameter – A parameter in a replicated stored procedure that can be
specified in the where clause of a subscription to help determine whether or not the stored
procedure should be replicated. See also parameter.

• secondary truncation point – See truncation point.
• site – An installation consisting of, at minimum, a Replication Server, data server, and

database, and possibly a Replication Agent, usually at a discrete geographic location. The
components at each site are connected over a WAN to those at other sites in a replication
system. See also primary site.

• site version – The version number for an individual Replication Server. Once the site
version has been set to a particular level, the Replication Server enables features specific to
that level, and downgrades are not allowed. See also software version, route version, and
system version.

• software version – The version number of the software release for an individual
Replication Server. See also site version and system version.

• Stable Queue Manager (SQM) – A thread that manages the stable queues. There is one
Stable Queue Manager (SQM) thread for each stable queue accessed by the Replication
Server, whether inbound or outbound.

• Stable Queue Transaction (SQT) interface – A thread that reassembles transaction
commands in commit order. A Stable Queue Transaction (SQT) interface thread reads
from inbound stable queues, puts transactions in commit order, then sends them to the
Distributor (DIST) thread or a DSI thread, depending on which thread required the SQT
ordering of the transaction.

• stable queues – Store-and-forward queues where Replication Server stores messages
destined for a route or database connection. Messages written into a stable queue remain
there until they can be delivered to the destination Replication Server or database.
Replication Server builds stable queues using its disk partitions. See also inbound queue,
outbound queue, and materialization queue.

• standalone mode – A special Replication Server mode used for initiating recovery
operations.

• standby database – In a warm standby application, a database that receives data
modifications from the active database and serves as a backup of that database. See also
warm standby application.

• stored procedure – A collection of SQL statements and optional control-of-flow
statements stored under a name in a Adaptive Server database. Stored procedures supplied

Glossary

416 Replication Server

with Adaptive Server are called system procedures. Some stored procedures for querying
the RSSD are included with the Replication Server software.

• subscription – A request for Replication Server to maintain a replicated copy of a table, or
a set of rows from a table, in a replicate database at a specified location. You can also
subscribe to a function replication definition, for replicating stored procedures.

• subscription dematerialization – See dematerialization.
• subscription materialization – See materialization.
• subscription migration – See row migration.
• Sybase Central – A graphical tool that provides a common interface for managing Sybase

and Powersoft products. Replication Server uses Replication Manager as a Sybase Central
plug-in. See also Replication Monitoring Services (RMS).

• symmetric multiprocessing (SMP) – On a multiprocessor platform, the ability of an
application’s threads to run in parallel. Replication Server supports SMP, which can
improve server performance and efficiency.

• synchronous command – A command that a client considers complete only after the
completion status is received.

• system function – A function that is predefined and part of the Replication Server product.
Different system functions coordinate replication activities, such as rs_begin, or perform
data manipulation operations, such as rs_insert, rs_delete, and rs_update.

• system-provided classes – Replication Server provides the error class
rs_sqlserver_error_class and the function-string classes
rs_sqlserver_function_class, rs_default_function_class, and
rs_db2_function_class. Function strings are generated automatically for the
system-provided function-string classes and for any derived classes that inherit from these
classes, directly or indirectly. See also error class and function-string class.

• system version – The version number for a replication system that represents the version
for which new features are enabled, for Replication Servers of release 11.0.2 or earlier, and
below which no Replication Server can be downgraded or installed. For a Replication
Server version 11.5, your use of certain new features requires a site version of 1150 and a
system version of at least 1102. See also mixed-version system, site version, and software
version.

• table replication definition – See replication definition.
• table subscription – A subscription to a table replication definition.
• thread – A process running within Replication Server. Built upon Sybase Open Server,

Replication Server has a multi-threaded architecture. Each thread performs a certain
function such as managing a user session, receiving messages from a Replication Agent or
another Replication Server, or applying messages to a database. See also Data Server
Interface (DSI), Distributor, and Replication Server Interface (RSI).

• transaction – A mechanism for grouping statements so that they are treated as a unit:
either all statements in the group are executed or no statements in the group are executed.

• Transact-SQL – The relational database language used with Adaptive Server. It is based
on standard SQL (Structured Query Language), with Sybase extensions.

Glossary

Administration Guide Volume 2 417

• truncation point – An Adaptive Server database that holds primary data has an active
truncation point, marking the transaction log location where Adaptive Server has
completed processing. This is the primary truncation point.

The RepAgent for an Adaptive Server database maintains a secondary truncation point,
marking the transaction log location separating the portion of the log successfully
submitted to the Replication Server from the portion not yet submitted. The secondary
truncation point ensures that each operation enters the replication system before its portion
of the log is truncated.

• user-defined function – A function that allows you to create custom applications that use
Replication Server to distribute replicated functions or asynchronous stored procedures
between sites in a replication system. In replicated function delivery, a user-defined
function is automatically created by Replication Server when you create a function
replication definition.

• variable – See function-string variable.
• version – mixed-version system

See mixed-version system, site version, software version, and system version.
• warm standby application – An application that employs Replication Server to maintain

a standby database for a database known as the active database. If the active database fails,
Replication Server and client applications can switch to the standby database.

• wide-area network (WAN) – A system of local-area networks (LANs) connected
together with data communication lines.

• wide columns – Columns in a replication definition containing char, varchar,
binary, varbinary, unichar, univarchar, or Java inrow data that are wider
that 255 bytes. Wide columns are supported by Replication Server version 12.5 and later.

• wide data – Wide data rows, limited to the size of the data page on the data server.
Adaptive Server supports page sizes of 2K, 4K, 8K, and 16K. Wide data is supported by
Replication Server version 12.5 and later.

• wide messages – Messages larger that 16K that span blocks. Wide messages are supported
by Replication Server version 12.5 and later.

Glossary

418 Replication Server

Obtaining Help and Additional Information

Use the Sybase Getting Started CD, Product Documentation site, and online help to learn
more about this product release.

• The Getting Started CD (or download) – contains release bulletins and installation guides
in PDF format, and may contain other documents or updated information.

• Product Documentation at http://sybooks.sybase.com/ – is an online version of Sybase
documentation that you can access using a standard Web browser. You can browse
documents online, or download them as PDFs. In addition to product documentation, the
Web site also has links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, Community Forums/Newsgroups, and other resources.

• Online help in the product, if available.

To read or print PDF documents, you need Adobe Acrobat Reader, which is available as a free
download from the Adobe Web site.

Note: A more recent release bulletin, with critical product or document information added
after the product release, may be available from the Product Documentation Web site.

Technical Support
Get support for Sybase products.

If your organization has purchased a support contract for this product, then one or more of
your colleagues is designated as an authorized support contact. If you have any questions, or if
you need assistance during the installation process, ask a designated person to contact Sybase
Technical Support or the Sybase subsidiary in your area.

Downloading Sybase EBFs and Maintenance Reports
Get EBFs and maintenance reports from the Sybase Web site.

1. Point your Web browser to http://www.sybase.com/support.

2. From the menu bar or the slide-out menu, under Support, choose EBFs/Maintenance.

3. If prompted, enter your MySybase user name and password.

4. (Optional) Select a filter from the Display drop-down list, select a time frame, and click
Go.

5. Select a product.

Padlock icons indicate that you do not have download authorization for certain EBF/
Maintenance releases because you are not registered as an authorized support contact. If

Obtaining Help and Additional Information

Administration Guide Volume 2 419

http://sybooks.sybase.com/
http://www.adobe.com/
http://www.sybase.com/support

you have not registered, but have valid information provided by your Sybase
representative or through your support contract, click My Account to add the “Technical
Support Contact” role to your MySybase profile.

6. Click the Info icon to display the EBF/Maintenance report, or click the product description
to download the software.

Sybase Product and Component Certifications
Certification reports verify Sybase product performance on a particular platform.

To find the latest information about certifications:

• For partner product certifications, go to http://www.sybase.com/detail_list?id=9784
• For platform certifications, go to http://certification.sybase.com/ucr/search.do

Creating a MySybase Profile
MySybase is a free service that allows you to create a personalized view of Sybase Web pages.

1. Go to http://www.sybase.com/mysybase.

2. Click Register Now.

Accessibility Features
Accessibility ensures access to electronic information for all users, including those with
disabilities.

Documentation for Sybase products is available in an HTML version that is designed for
accessibility.

Vision impaired users can navigate through the online document with an adaptive technology
such as a screen reader, or view it with a screen enlarger.

Sybase HTML documentation has been tested for compliance with accessibility requirements
of Section 508 of the U.S Rehabilitation Act. Documents that comply with Section 508
generally also meet non-U.S. accessibility guidelines, such as the World Wide Web
Consortium (W3C) guidelines for Web sites.

Note: You may need to configure your accessibility tool for optimal use. Some screen readers
pronounce text based on its case; for example, they pronounce ALL UPPERCASE TEXT as
initials, and MixedCase Text as words. You might find it helpful to configure your tool to
announce syntax conventions. Consult the documentation for your tool.

Obtaining Help and Additional Information

420 Replication Server

http://www.sybase.com/detail_list?id=9784
http://certification.sybase.com/ucr/search.do
http://www.sybase.com/mysybase

For information about how Sybase supports accessibility, see the Sybase Accessibility site:
http://www.sybase.com/products/accessibility. The site includes links to information about
Section 508 and W3C standards.

You may find additional information about accessibility features in the product
documentation.

Obtaining Help and Additional Information

Administration Guide Volume 2 421

http://www.sybase.com/products/accessibility

Obtaining Help and Additional Information

422 Replication Server

Index
A
abort switch command 89
abstract plans, replication of 57
activate subscription command

with suspension at replicate only clause 113
with suspension clause 113

active database 53
managing old active after switching 90
restarting clients 90

Adaptive Server
error handling 297
resynchronizing replicate database 350

Adaptive Server monitoring tables
for multiple replication paths 266
for SQL statement replication 211

adding
logical paths 253
physical paths 252

admin commands 88
described 10

admin config command 188
admin logical_status command 92
admin show connection, 'primary' configuration

parameter 246
admin show connection, 'replicate' configuration

parameter 243
admin sqm_readers command 93
admin who command

for dedicated routes 266
admin who, dsi command 92
admin who, sqm command 93
Advanced Services Option 216
alarm daemon (dAlarm) 122
allocating queue segments 268
allow connections command 346
alter connection command 188

assigning databases to function-string classes
30

alter function command 374
alter function string command 40

mapping user-defined functions 375
replacing default function string 366

alter logical connection command 97
alter replication definitions 149
alter subscription configuration parameter 248

alter table command support for warm standby 106
alternate connections

creating subscriptions 246
subscriptions, creating 246

alternate primary connections
displaying 246

alternate replicate connections
altering 243
creating 242
displaying 243
example of, creating 244
subscriptions, moving 248

applied stored procedures
prerequisites for implementing 366
setting up 366

assign action command 296
asynchronous I/O daemon (dAIO) 122
asynchronous stored procedures

adding parameters to 374
and non-unique user-defined function name

376
applied 364
executing 363
request stored procedures 365
user-defined functions 373

atomic materialization
in warm standby applications 112

B

base function-string classes
creating 28

batch commands in function strings 43
batch configuration parameter 138
bcp utility program 74, 113
bind objects

to replication paths 255
binding objects

database resynchronization markers 257
DDL statement replication 256
multi-path replication 256, 257
SQL statement replication 256

block size
changing 233

block size, setting 124

Index

Administration Guide Volume 2 423

block_size to ’value’ with shutdown configuration
parameter 124

bulk copy-in support
commands for 187
connection parameters 187
connection parameters, checking value of 188
connection parameters, setting value of 188
Data Server Interface (DSI), implementation in

187
multi-statement transactions, support for 188
subscription materialization, changes to 188

bulk insert
See bulk-copy-in support

bulk materialization
in warm standby applications 112

bulk-copy-in support
Data Server Interface (DSI), implementation in

187

C
cache

SQM commands 152
caching

commands dynamically 149
LTL commands in SQL command cache 152
stable queue 151
table metadata 149

changing
function strings 17

check subscription command
after executing switch active command 112,

113
cleanenv 396
client application

restarting after active switch 90
clusters

Sun 379
terminology 379

cmd_direct_replicate configuration parameter 138
command batching

for non-ASE servers 44
commands

admin config 188
alter connection 188
configure replication server 188
hareg 385

commands and configuration parameters
for dedicated route 263

compilation and bulk apply in HVAR 217

config parameter
multiple primary replication paths 257

configuration overview 350
configuration parameters

affecting performance 124
dsi_bulk_copy 125, 187, 188
dsi_bulk_threshold 126, 187, 188
dsi_row_count_validation 299
dynamic_sql 213
dynamic_sql_cache_management 213
dynamic_sql_cache_size 213
mem_thr_dst 160
mem_thr_exec 160
mem_thr_sqt 160
mem_warning_thr1 160
mem_warning_thr2 160
memory_control 160
rs_config system table 123
stats_reset_rssd 279

configure connection command, setting save
interval 316

configure logical connection command 104
setting DSI queue save interval 105
setting materialization queue save interval

105
configure replication server command 188
configure route, setting save interval 314
configuring

stable queue cache parameters 151
configuring database resynchronization 350

applying dump to a database to be
resynchronized 354

instructing Replication Server to skip
transactions 351

monitoring DSI thread information 354
obtaining a dump of the database 353
sending resync database marker to Replication

Server 352
sending the dump database marker to

Replication Server 353
connection 406, 413
connection manager daemon (dCM) 122
connections

setting save interval 315
consistency

maintaining for replicate databases 316
conventions

style 1
syntax 1

Index

424 Replication Server

coordinated dumps
creating 316
loading primary and replicate databases 325
recovering databases 324

counter names 275
counters

commands to view 273
overview 273
resetting 284
SQM command cache 154
viewing 273
viewing information about 284

create altenate connection configuration parameter
242

create connection command 30
create error class 293
create function command 373
create function string class command 27–29
create function string command 38
create logical connection command 71
create route command 264
create subscription configuration parameter 246
creating

base function-string classes 28
derived function-string classes 28
function strings 38
function-string classes 27
user-defined functions 373

creating an example
multiple replicate connections 244

cross-platform dump and load 326

D

daemons
alarm (dAlarm) 122
asynchronous I/O (dAIO) 122
connection manager (dCM) 122
described 117
miscellaneous 122
recovery (dREC) 122
subscription retry (dSUB) 122
version (dVERSION) 122

data server
error handling 291, 298

Data Server Interface 187, 188
data service

Replication Server as 385
start/shuntdown 385

database connections
configuration parameters

for parallel DSI 163
configuring for parallel DSI 163
parallel DSI

parameters for 163
for warm standby applications 55

database generation numbers
adjusting during database recovery 348
and dumps 349
qid 348

database logs
determining for reload 347
recovering messages off-line 319
recovering messages online 321
reloading 349
truncated primary recovery 321

database regeneration numbers, resetting 349
database resynchronization

multi-path replication, binding objects for
257

database resynchronization scenarios 354
resynchronizing both the primary and replicate

databases from the same dump 358
resynchronizing if there no resync database

marker support 357
resynchronizing replicate databases directly

from a primary database 355
resynchronizing the active and standby

databases in a warm standby
application 359

resynchronizing using a third-party dump
utility 356

databases
active 55
assigning function-string classes 30
customizing operations 13, 47
failures 323
logical 55
setting log recovery 346
standby 55

datatypes
text and image 60

db_packet_size configuration parameter 124, 138
DB2 databases, function-string class 13
dbcc settrunc Transact-SQL command 321
DDL statement replication

multi-path replication, binding objects for
256

Index

Administration Guide Volume 2 425

deadlock detection, parallel dsi 181
debugging

high availability 385
declare statements, using in language output

templates 45
dedicated routes 263

commands and configuration parameters 263
creating 263

default function strings, restoring 42
default partition allocation mechanism 269
deferred_name_resolution configuration parameter

96
deferred_queue_size configuration parameter 125
deleting

transactions in the exceptions log 305
derived function-string class, described 26
derived function-string classes

creating 28
direct I/O 137
disk partitions 268
disk_affinity configuration parameter 125, 138,

157
disk_direct_cache_read configuration parameter

125
display

dedicated route information 266
displaying

assigned actions for error numbers 298
error class information 296
function-related information 46
rs_helpclass stored procedure 296
transactions in the exceptions log 303

dist_direct_cache_read in enhanced distributor
thread read efficiency 231

dist_sqt_max_cache_size configuration parameter
139

distributor thread (DIST)
described 119
disabling 97

drop
elements from logical paths 254
logical paths 254
physical paths 253

drop connection command 90
drop connection configuration parameter 243
drop error class 295
drop function command 374
drop function string class command 31
drop function string command 41

drop logical connection command 100
drop route command 265
dropping

function string class 31
function strings 41
logical database connections 99
logical databases from the ID Server 100
user-defined functions 374

DSI
DSI efficiency 229
DSI threads

described 121
detecting duplicate transactions 306
detecting losses 344
executor 121, 168
handling losses 345
parallel 162
scheduler 121, 168
for standby database 85
suspending to load bulk materialization data

113
dsi_bulk_copy connection parameter 125, 187,

188
checking value of 188
setting value of 188

See also bulk copy-in support
dsi_bulk_threshold connection parameter 126, 187,

188
checking value of 188
setting value of 188

See also bulk copy-in support
dsi_bulk_threshold in HVAR 222
dsi_cdb_max_size in HVAR 223
dsi_cmd_batch_size configuration parameter 126,

139
dsi_cmd_batch_size parameter 156
dsi_cmd_prefetch configuration parameter 126,

139
dsi_command_convert in HVAR 224
dsi_command_prefetch in enhanced DSI efficiency

229
dsi_commit_check_locks_intrvl configuration

parameter 139, 164
dsi_commit_check_locks_log configuration

parameter 164
dsi_commit_check_locks_max configuration

parameter 140, 164
dsi_commit_control configuration parameter 140,

164

Index

426 Replication Server

dsi_compile_enable in HVAR 221
dsi_compile_max_cmds in HVAR 223
dsi_compile_retry_threshold configuration

parameter 224
dsi_compile_retry_threshold in HVAR 223
dsi_ignore_underscore_name configuration

parameter 164
dsi_isolation_level configuration parameter 140,

165
dsi_large_xact_size configuration parameter 140,

165
dsi_max_cmds_in_batch 165
dsi_max_cmds_in_batch configuration parameter

141
dsi_max_xacts_in_group 165
dsi_max_xacts_in_group configuration parameter

141
dsi_non_blocking_commit configuration parameter

127
dsi_num_large_xact_thread configuration

parameter 165
dsi_num_large_xact_threads configuration

parameter 141
dsi_num_threads configuration parameter 141, 165
dsi_partitioning_rule configuration parameter 141,

166
dsi_row_count_validation configuration parameter

299
dsi_serialization_method configuration parameter

142, 166
dsi_sqt_max_cache_size configuration parameter

143
dsi_text_max_xacts_in_group configuration

parameter 126
dsi_xact_group_size configuration parameter 127,

143
dsitributor thread read thread efficiency 231
dump database 353
dump database command 80, 316
dump database marker, sending 353
dump marker option for rs_init program 77, 91
dump of database, applying 354
dump of database, obtaining a 353
dump transaction command 80, 316
dumps

creating 316
database generation numbers 349
determining for reload 347
initializing warm standby databases 74, 80

transaction timestamp 347
dynamic SQL 213

configuring parameters 214
limitations 215
replicate minimal columns, using with 215
table-level control 214

dynamic_sql configuration parameter 127
dynamic_sql_cache_management configuration

parameter 127
dynamic_sql_cache_size configuration parameter

127

E
empty function strings, creating 43
enable replication marker 74
encrypted columns

warm standby 68
enhanced distributor thread read efficiency 231
enhanced DSI efficiency 229
enhanced memory allocation 232
enhanced RepAgent executor thread efficiency 230
enhancements

for Replication Server performance 187
SQL statement replication 190

error class
designate primary site 293

error classes
changing primary Replication Server 295
creating 293
dropping 295
initializing 294
rs_sqlserver_error_class 293

error handling
assigning actions 296
data server 291, 298
general 287
Replication Server 288
system transactions 307

error log files
beginning a new Replication Server log file

290
described 287
displaying current log file name 290
Replication Server 5, 288

error messages
format 289
Replication Server login name 8
severity levels 289
system transactions 307

Index

Administration Guide Volume 2 427

errors
log file for Replication Server 5
standard error output 6

examples
DSI loss detection 344
SQM loss detection 343
warm standby application 85

exceptions log
accessing 303
deleting transactions 305
displaying transactions 303
exceptions handling 301

exceptions system log transactions
querying 303

exec_cmds_per_timeslice configuration parameter
128, 143, 156

exec_max_cache_size configuration parameter 144
exec_nrm_request_limit configuration parameter

128, 144
exec_nrm_request_limit in enhanced RepAgent

Executor thread efficiency 231
exec_sqm_write_request_limit configuration

parameter 128, 144
exec_sqm_write_request_limit parameter 156
executor command cache

table metadata reduction 150
Executor command cache 149

size, setting 150

F
failed transactions

handling 302
process for resolving 302

failover, support for in Replication Server 310
failure

data server 287
network 287

files
Replication Server error log 5
standard error output 6

finding current save interval 313
flushed values

viewing 282
function replication definitions

sending parameters to standby database 110
function scope, described 16
function string efficiency 34, 39
function strings

changing 17

creating 38
creating empty 43
defining multiple commands 43
described 20
dropping 41
examples 39
generated for standby databases 58
input templates 32
managing 31, 44
none 49
output templates 32
restoring default 42
restoring defaults with output template 42
updating 40
variables 36
variables, formatting 37
variables, modifiers 36
writetext 49

function-string classes
assigning to databases 30
changing primary Replication Server for 295
changing the primary Replication Server 29
creating 27
creating, base 28
creating, derived 28
described 22
dropping 31
for DB2 databases 13
managing 26, 29
rs_default_function_class 58

function-string inheritance 26
functions

described 14

G

generating
performance analysis 285
performance overview 285
performance reports 285

grant command 82

H

ha_failover configuration parameter 312
hareg command 385
heartbeat feature in RMS, using 271
high availability

configuring Replication Server for 381

Index

428 Replication Server

configuring Sun Cluster for 381
installing Replication Server for 381
scripts 380
technology overview 380
terminology 379

High Volume Adaptive Replication 216
hints 269
HVAR 216

admin config command 228
backward compatibility 229
compilation and bulk apply 217
configuration parameters 222
displaying 228
displaying database-level configuration

parameters 228
displaying net-change database 219
displaying table references 229
displaying table-level configuration

parameters 228
dsi_bulk_threshold 222
dsi_cdb_max_size 223
dsi_command_convert 224
dsi_compile_enable 221
dsi_compile_max_cmds 223
dsi_compile_retry_threshold 223
enabling 221
mixed-version suppport 229
noncompilable commands, tables 220
platform support 217
processing and limitations 219
referential constraints 220, 227
rs_helprep stored procedure 229
system table support 229

HVAR, retry mechanism enhanced 224

I
ID Server

dropping a logical database from 100
ignore loss command

handling losses 345
ignoring SQM and DSI losses 345
ignoring SQM loss after setting log recovery

347
and warm standby applications 115

inbound queue
displaying reader threads 93
multiple reader threads 97

increasing queue block size 232
informational messages

format 288

init_sqm_write_delay configuration parameter 128
init_sqm_write_max_delay configuration

parameter 129
input templates 21
input templates, example 35
installing Replication Server

as a data service 383
for HA 381

interfaces file
checking for accuracy 7
modifying for warm standby application 94

isolation levels 169
isolation levels, setting for non-Sybase data servers

170
isql interactive SQL utility

verifying server status 8

L
language

function string output templates 33
large transactions 168
list binding and objects

to replication paths 257
load database command 80
load transaction command 80
loading

primary database from dumps 324
log recovery

detecting losses 347
setting for databases 346

logical connection
configuring materialization queue save interval

105
configuring save interval 105
creating 71
send standby_repdef_cols configuration

parameter 97
logical database connections

dropping 99
logical paths

adding 253
drop 254
dropping elemenst from 254

loss detection
after setting log recovery 347
checking messages 343
DSI loss 342, 344
handling losses 345
preventing false losses in stable queue 343

Index

Administration Guide Volume 2 429

rebuilding stable queues 342
SQM loss 342
with warm standby applications 115

LTL commands
caching 152

M
maintenance user

adding 79
for standby database 82

master database
DDL commands and system procedures 63,

64
replication 82
replication limitations 64
and warm standby applications 57

master database replication for warm standby
setting up 83

materialization queue save interval
setting for logical connections 105
strict setting 105

materialization_save_interval configuration
parameter

for logical connections 96
md_sqm_write_request_limit configuration

parameter 132, 144
md_sqm_write_request_limit parameter 156
mem_reduce_malloc configuration parameter 129
mem_reduce_malloc in enhanced memory

allocation 232
mem_thr_dsi configuration parameter 129
mem_thr_exec configuration parameter 129
mem_thr_sqt configuration parameter 129
mem_warning_thr1 configuration parameter 129
mem_warning_thr2 configuration parameter 129
memory allocation 232
memory consumption control 160

DSI, EXEC, SQT threads 160
HVAR 225, 226
memory management statistics 161
memory threshold warning messages 160
monitor thread information 161

memory consumption parameters interaction 226
memory_control configuration parameter 130
memory_limit configuration parameter 131
Message Delivery module (MD) 120
messages

handling loss in stable queues 345
recovering from off-line database logs 319

recovering from online database logs 321
SQM loss detection 347

metadata reduction, for tables 150
migrate RSSD 326
modifiers

in function string variables 36
function strings 36

modules
described 117
Message Delivery 120
overview 273
Transaction Delivery 120

monitoring
partition percentages 12
Replication Server 7

monitoring DSI, for resynchronizing database 354
monitoring of status 8
monSQLRepActivity monitoring table 211
monSQLRepMisses monitoring table 211
mount command 74
move primary command 29, 295
moving subscriptions 248
multi-part replication

parallelization 240
multi-path replication

alternate connections, concept of 241
database resynchronization markers, binding

objects for 257
DDL statement replication, binding objects for

256
logical paths, adding 253
MSA 239, 260
multithreaded RepAgent 251
number of send buffers configuration

parameter 251
physical paths, adding 252
repliction definitions for multiple connections

246
SQL statement replication, binding objects for

256
subscriptions for multiple connections 246

Multi-path Replication 238
multipath replication 241, 245, 263

alternate connections 261
alternate logical connections 261
multiple RepAgent paths, setting memory

250
warm standby environment 261

multiple RepAgent connections 248, 249

Index

430 Replication Server

multiple RepAgent paths 249
setting memory 250

multiple replicate connections
example of, creating 244

multiple replication definitions
and function strings 21

multiple replication paths 238
Adaptive Server monitoring tables 266
bind objects 255
config parameter 257
dedicated routes 263
from the primary database 245
list bindings 257
list replication objects 257
logical paths, drop 254
logical paths, dropping elements from 254
monRepLogActivity monitoring table 266
monRepScanners monitoring table 266
monRepScannersTotalTime monitoring table

266
monRepSenders monitoring table 266
multiple RepAgent connections 248, 249
multiple RepAgent paths, enable 249
multithreaded RepAgent 249
physical paths, drop 253
switching active 262
to the replicate database 241
unbind objects 256
warm standby 262
warm standby, switching active 262

multiprocessor platforms 267
multiprocessors

enabling 267
monitoring 268

multisite availability
multi-path replication 239, 260

multithreaded RepAgent 249
multithreaded RepAgent, enabling 251

N
net-change database

displaying 219
new features

Replication Server 15.1 ESD #1 187
no resync database marker support

resynchronizing databases 357
non-ASE error class support

default non-ASE error classes 292
native error codes 292

nonatomic materialization
in warm standby applications 112

none
transaction serialization method 172

none function string output templates 34, 49
nrm_thread configuration parameter 132
nrm_thread in enhanced RepAgent Executor thread

efficiency 230
number of send buffers configuration parameter

251

O

online database command 80
OQID commit stack 179
origin queue ID (qid) 347

determining database generation numbers 348
output templates 21

creating empty function strings 43
language 33
none 34, 39, 49
restoring default function strings 42
rpc 33
writetext 49

P

parallel DSI
benefits and risks 162
components for 167
conflicting updates 185
deadlocks 181
described 162
function strings for 180, 182
grouping logic 177
infrequent conflicting updates 185
isolation levels for 169
optimal performance 182
OQID commit stack 179
partitioning rules 173, 184
reducing contentions 183
resolving conflicts 178
setting isolation levels for non-Sybase replicate

data servers 170, 185
setting parameters for 163

parallel_dsi configuration parameter 145, 167
parameters

disk_affinity 157
dsi_cmd_batch_size 156

Index

Administration Guide Volume 2 431

exec_cmds_per_timeslice 156
exec_sqm_write_request_limit 156

parameters, stored procedure
adding to user-defined functions 374

parent function-string class 26
partition affinity

allocation hint 269
alter connection command 269
alter route command 269
default allocation 269
rs_diskaffinity system table 270

partition failure
recovering 317, 321

partitioning rules 173, 184
none 174
origin begin and commit times 175
transaction name 176
user name 175

partitions 268
monitoring percentages 12
recovering from loss or failure 317, 321
space requirements 315

physical paths
add 252
drop 253

primary connections
alternate, displaying 246

primary databases
loading from dumps 324
recovering from failure 323
recovering truncated logs 321

primary dumps
recovering primary databases 324

primary key
for tables in a warm standby database 109

primary Replication Server
changing for an error class 295
changing function-string class to another

Replication Server 29
processing in 118, 122

primary site
designate for error class 293

profiles 406, 413

Q
queries

for exceptions log system tables 304
queue block size

changing 233

example, simple replication system 234
example, with intermediate route 236
recommendations 232
restrictions 232

queue block size, increasing 232
queue block size, setting 124
queue ID 347
queue segments, alllocating 268
quiesce database ... to manifest_file command 74
quoted identifiers

warm standby 68

R
RCL commands 373

abort switch command 89
admin log_name command 290
admin logical_status command 88, 92
admin set_log_name 290
admin set_log_name command 6
admin sqm_readers command 93
admin who, dsi command 92
admin who, sqm command 93, 313
allow connections command 346
alter connection command 30, 98, 317
alter function command 374
alter function string command 40
assign action command 296
configure connection command 44, 98, 317
create connection command 30
create error class command 293
create function string class command 29
create function string command 39
create logical connection command 71
drop connection command 90
drop error class command 295
drop function string class command 31
drop function string command 41
ignore loss command 345, 347
move primary command 29, 295
rebuild queues command 340
resume connection 81
resume connection command 81, 303
set log recovery command 346
suspend connection command 302
sysadmin dropldb command 100
sysadmin restore_dsi_saved_segments

command 315
wait for create standby command 81
wait for switch command 89

Index

432 Replication Server

rebuild queues command 340
rec_daemon_sleep_time configuration parameter

132, 154
recording

distributor status 120
recovery

of messages from off-line database logs 319
overview 326
partition loss or failure 317, 321
from primary database failures 323
from RSSD failure 326, 339
of RSSD from dumps 327
setting save intervals 313
support tasks 339, 349
from truncated primary database logs 321,

323
using procedures 309

recovery daemon (dREC) 122
recovery mode

Replication Server 340, 346
reducing replication definitions

warm standby 106
reference implementation 387

before you begin 388
building the environment 389
cleanenv 396
configuration file 389
configuring 393
monitors and counters report 395
objects created 396
obtaining test results 394
platform support 387
refimp analyze 394
refimp config 393
refimp run 393
required components 388
rs_ticket history report 394
running performance tests 393
shutting down servers 396

referential constraints in HVAR 227
refimp analyze 394
refimp config 393
refimp run 393
regeneration numbers, resetting 349
REP_HVAR_ASE license 216
RepAgent

error log messages 290
multiple connections 248, 249
multiple paths 249

RepAgent executor thread efficiency 230
RepAgent user thread 118
replicate connections

alternate, altering 243
alternate, creating 242
alternate, displaying 243
alternate, moving subscriptions 248

replicate databases
preventing data loss 313

replicate minimal columns
and non-default function strings 48
and rs_default_fs system variable 48

replicate minimal columns clause, using 48
replicate minimal columns, using with dynamic

SQL 215
replicate Replication Server

processing in 122
replicate_minimal_columns configuration

parameter 96
replicated stored procedures

enabling for replication 372
replicating

data, large batch of 187
replication

configuring in standby databases 99
master database 82

replication definitions
sending columns to standby database 109
warm standby 106

replication definitions, configuring for SQL
statement replication 201

replication paths
bind objects 255
list bindings 257
list replication objects 257
unbind objects 256

Replication Server
checking for errors 5
error log 91, 288
handling lost messages 345
informational messages 288
internals 117, 123
log recovery mode 346
monitoring 7
partitions 11, 12
processing in primary 118, 122
processing in replicate 122
rebuilding stable queues 340
recovery mode 340, 346

Index

Administration Guide Volume 2 433

standalone mode 319, 340, 341
standard errors 6
verifying a working system 6
verifying status 8

Replication Server error class
parameter 297

Replication Server programs
rs_subcmp 345

Replication Server System Database (RSSD)
recovering from failure 326
updating database generation numbers 349

replication system
error log files 287
preventing data loss 313

request stored procedures 365
prerequisites for implementing 366
setting up 370

resetting database generation numbers 349
restoring

dumps 316
primary and replicate databases 325
RSSD 327

restrictions
warm standby applications 57

resume connection command 81, 303
resume connection, with skip to resync marker 351
resume route command 265
resync marker, sending 352
resync marker, with a purge instruction 352
resync marker, with init command 353
resync marker, without any option 352
resynchronizing Adaptive Server databases

Adaptive Server and RepAgent versions
supported 350

introduction 350
resynchronizing database 350

applying dump of database 354
configuration 350
monitoring DSI 354
obtaining database dump 353
resuming connection with skip to resync

parameter 351
resync marker, sending 352
scenarios 354
scenarios, no resync database marker support

357
scenarios, warm standby 359
sending dump database marker 353
skip to resync parameter 351

skipping transactions 351, 352
retry mechanism, enhanced for HVAR 224
RMS heartbeat feature 271
routes

RSSD recovery 339
setting save interval 313

row count validation
disabling 299
displaying table names 300
enhancements 299, 300
non-SQL statement replication 298

row count validation, in SQL statement replication
204

row count verification
example 297

RPC function string output templates 33
RS user thread 122
rs_batch_end system function 17
rs_batch_start system function 17
rs_begin system function 17
rs_check_repl system function 17
rs_commit system function 17
rs_config system table

configuration parameters 123
rs_datarow_for_writetext system function 20
rs_db2_function_class, described 23
rs_default_function_class 58

described 23
rs_delete system function 20
rs_delexception stored procedure 305
rs_diskaffinity system table 270
rs_dumpdb system function 17, 316
rs_dumptran system function 17, 316
rs_get_charset system function 17
rs_get_lastcommit system function 17
rs_get_sortorder system function 17
rs_get_textptr system function 20
rs_get_thread_seq system function 18, 182
rs_get_thread_seq_noholdlock system function 18,

182
rs_helpclass stored procedure 47
rs_helperror stored procedure 298
rs_helpexception stored procedure 303
rs_helpfstring stored procedure 47
rs_helpfunc stored procedure 47
rs_idnames system table

dropping logical database from 100
rs_init program

adding a standby database 80

Index

434 Replication Server

adding warm standby databases 72
rs_init_erroractions stored procedure 294
rs_initialize_threads system function 18, 182
rs_insert system function 20
rs_iq_function_class, described 23
rs_marker system function 18
rs_mk_rsids_consistent stored procedure 332
rs_mss_function_class, described 23
rs_non_blocking_commit system function 18
rs_non_blocking_commit_flush system function

18
rs_oracle_function_class, described 23
rs_raw_object_serialization function 18
rs_repl_off system function 18
rs_repl_on system function 18
rs_rollback system function 18
rs_select system function 20

updating function strings 40
rs_select_with_lock system function 20

updating function strings 40
rs_set_ciphertext system function 19
rs_set_deml_on_computed system function 19
rs_set_isolation_level function string 170
rs_set_isolation_level system function 19
rs_set_non_blocking_commit system function 19
rs_set_proxy function 19
rs_sqlserver_error_class error class 293
rs_sqlserver_function_class 29

described 23
rs_statcounters system table 284
rs_subcmp program 114, 345
rs_textptr_init system function 20
rs_thread_check_lock system function 19
rs_triggers_reset system function 19
rs_trunc_reset system function 19
rs_trunc_set system function 19
rs_truncate function 20
rs_update system function 20
rs_update_threads system function 19, 182
rs_usedb system function 19
rs_writetext system function 20
RSI threads

described 121
RSI user thread 123
rsi_batch_size configuration parameter 147
rsi_packet_size configuration parameter 147
rsi_sync_interval configuration parameter 147
RSSD failure

recovering 326, 339

S
save interval

described 313
setting for connections 316
setting for logical connections 104
setting for routes 314
strict setting 105, 112

save_interval configuration parameter 313
for logical connection 96

scenarios, database resynchronization 354
scenarios, database resynchronization, no resync

database marker support 357
scenarios, database resynchronization, warm

standby 359
scope of SQL statement replication 205
scope, of functions 16
scripts

verifying server status 8
send standby clause

for columns 110
for parameters 110

send standby_repdef_cols configuration parameter
for logical connections 97

serialization methods
no_wait 171
none 171
wait_for_commit 172
wait_for_start 172

server user’s ID
for warm standby databases 79

servers
verifying operation 8

set function string class clause 30
set log recovery command 346
set replication Transact-SQL command 69, 99
set triggers off Transact-SQL command 98
setting isolation levels for non-Sybase replicate data

servers 170, 185
severity levels

data server errors 297
error messages 289
Replication Server 297

skip to resync marker, sending to Replication Server
from RepAgent 352

skip to resync parameter 351
skip transaction clause 303
small transactions 168
smp_enable configuration parameter 133
sp_helpcounter command system procedure 284

Index

Administration Guide Volume 2 435

sp_reptostandby system procedure 61, 81
sp_setreplicate system procedure

marking stored procedures for replication 372
sp_setrepproc system procedure 66

marking stored procedures in a warm standby
active database 81

sp_setreptable system procedure
marking tables in a warm standby active

database 81
SQL statement replication

Adaptive Server monitoring tables 211
autocorrection 211
configuring replication definitions 201
database replication definition 202
enabling 194
enhancement 190
issues resolved by 208
multi-path replication, binding objects for

256
product and mixed version requirements 212
replicate SQLDML clause 202
Replication Server topologies, effect of 192
restrictions 209
row count validation 204
RSSD modifications 211
scope of 205
table replication definition 203
threshold setting 197
WS_SQLDML_REPLICATION parameter

204
SQL Statement Replication

monSQLRepActivity monitoring table 211
monSQLRepMisses monitoring table 211

SQM command cache 152
counters 154

sqm_async_seg_delete configuration parameter
133, 145

sqm_cache_enable configuration parameter 133
sqm_cache_size configuration parameter 133
sqm_cmd_cache_size configuration parameter 145
sqm_max_cmd_in_block configuration parameter

146
sqm_page_size configuration parameter 134
sqm_recover_segs configuration parameter 134
sqm_write_flush configuration parameter 134, 137
sqt_init_read_delay configuration parameter 134
sqt_max_cache_size configuration parameter 135,

167
sqt_max_read_delay configuration parameter 135

stable queue
caching 151

Stable Queue Manager thread (SQM) 118
detecting loss during stable queue rebuild 342
handling losses 345
loss detection after log recovery 347

Stable Queue Transaction thread (SQT) 119
stable queues 137

detecting losses 342
DSI loss 342
handling partition failure 315
off-line rebuild from database logs 340
online rebuild 340
rebuilding 340

standalone mode
Replication Server 319, 340, 341

standby database 53
adding 73
monitoring status of add 91
switching to 84

stats_reset_rssd configuration parameter 279
status

monitoring 8
verifying data servers 8
verifying RepAgents 8
verifying Replication Servers 8

stored procedures
dropping 374
marking for replication using sp_setreplicate

372
rs_delexception 305
rs_helpclass 47
rs_helperror 298
rs_helpexception 303
rs_helpfstring 47
rs_init_erroractions 294
rs_mk_rsids_consistent 332

sts_cachesize configuration parameter 135
sts_full_cache configuration parameter 136
sub_daemon_sleep_time configuration parameter

136
sub_sqm_write_request_limit configuration

parameter 136
subscribing

to data in warm standby databases 110
subscription materialization
subscription migration

described 120
subscription resolution engine (SRE) 120

Index

436 Replication Server

subscription retry daemon (dSUB) 122
subscriptions

comparing after restoring backups 330
re-creating after backups 336
restrictions in warm standby applications 111

Sun Cluster HA 379, 380
references 379

support
See bulk-copy-in support

suspect subscriptions 112
suspend connection command 302, 303
suspend route command 265
switch active command

during atomic materialization 112
during subscription dematerialization 113
during subscription materialization 111

sysadmin dropldb command 100
sysadmin restore_dsi_saved_segments command

315
system functions

described 15
rs_dumpdb 316
rs_dumptran 316

system functions, list of
with function-string class scope 17
with replication definition scope 19

system procedures
sp_helpcounter command 284
sp_setreplicate 372
sp_setrepproc 81
sp_setreptable 81

system tables
rs_diskaffinity 270
rs_idnames 100
rs_statcounters 284

system transactions 307

T
table metadata

caching 149
table metadata reduction

enabling 150
testing

Replication Server components 6
Replication Server connections 7

threads
described 117
displaying for replication system 9
distributor (dist) 119

DSI executor 121, 168
DSI scheduler 121, 168
in primary replication server described 118
in primary Replication Server described 122
for parallel DSI 162
RS user 122
RSI 121
RSI user 123
Stable Queue Manager (SQM) 118
Stable Queue Transaction (SQT) 118
USER 122

threads, miscellaneous 122
threshold levels

setting and using for partitions 11
threshold, setting in SQL statement replication 197
timestamp

qid 347
Transact-SQL commands

dump database 316
dump transaction 316
set replication off 99
set triggers off 98

Transaction Delivery module (TD) 120
transaction names, default 176
transactions

exceptions handling 301
large 169
loading log dumps 347
processing with parallel DSI threads 162
reasons for failure 301
serialization methods 171
small 168
timestamp 347

triggers
configuring in standby databases 98

truncate table command 307
RCL 59
replication 97

truncated database logs, recovering 321

U

unbind objects
to replication paths 256

updating function strings 40
use_batch_markers configuration parameter 146
USER thread 122
user-defined functions

adding parameters 374

Index

Administration Guide Volume 2 437

associating replicated stored procedures with
373

described 15
dropping 374
managing 372
mapping to a different stored procedure 375
specifying a non-unique function name 376

V

variables
function strings 36
modifiers 36
system-defined 36

version daemon (dVERSION) 122
version support

resynchronizing Adaptive Server 350
visual monitoring of status 8

W

wait for create standby command 81
wait for switch command 89
warm standby

encrypted columns 68
master database replication 83
multiple replication paths 262
multiple replication paths, switching active

262
quoted identifiers 68
reducing replication definitions 106
replication definitions 106

resynchronizing databases 359
subscriptions 106

warm standby applications
comparing methods 59
database connections 55
databases 55
effects of switching to the standby database

87
forcing replication of DDL commands 69
logical connections 55
monitoring 91
physical connections 55
for a primary database 100
for a replicate database 102
restrictions 57
setting up databases 70, 97
switching to the standby database 84
tables with the same name 66
turning off replication 69
what Information Is replicated 58

warm standby environment
alternate connections 261
alternate logical connections 261
multipath replication 261

warm standby, alter table command support 106
write operations 137
writetext function string output templates 49
writing directly to media 137

X

xpdl 326

Index

438 Replication Server

	Administration Guide Volume 2
	Contents
	Conventions
	Verify and Monitor Replication Server
	Check Replication System Log Files for Errors
	Verifying a Replication System
	Monitor Replication Server
	Verify Server Status
	Visual Monitoring of Status
	Display Replication System Thread Status
	Use System Information Commands

	Set and Use Threshold Levels
	Monitor Partition Percentages

	Customize Database Operations
	Functions, Function Strings, and Function-string Classes
	Work with Functions, Function Strings, and Classes
	Functions
	System Functions
	User-Defined Functions
	Function Scope

	Summary of System Functions
	System Functions with Function-String-Class Scope
	System Functions with Replication-Definition Scope

	Function Strings
	Input and Output Templates
	Applications for Customized Function Strings

	System Functions with Multiple Function Strings

	Function-String Classes
	System-Provided Classes
	Function-String Inheritance
	Restrictions in Mixed-Version Systems

	Manage Function-String Classes
	Creating a Function-String Class
	Create a Derived Class
	Create a Base Class
	Primary Site for a Function-String Class
	Change the Primary Site for a Function-String Class

	Assign a Function-String Class to a Database
	Drop a Function-String Class

	Manage Function Strings
	Function Strings and Function-string Classes
	Function-string Input and Output Templates
	Requirements for Using Input and Output Templates

	Output Templates
	Language Output Templates
	RPC Output Templates
	Output Templates That Use the none Parameter
	Output Templates for rs_writetext Function Strings

	Input Templates
	Determining Where to Create Function Strings

	Function-string Variables
	Function-string Variable Modifiers
	Function-string Variable Formatting

	Create Function Strings
	Guidelines for Creating Function Strings
	Create Function Strings Examples

	Alter Function Strings
	Drop Function Strings
	Drop Function Strings Examples

	Restore Default Function Strings
	Create Empty Function Strings with the Output Template
	Define Multiple Commands in a Function String
	Command Batching for Non-ASE Servers
	Function Strings to Support Command Batching
	Connection Settings to Support Command Batching
	Order of Processing
	DSI Configuration

	Use Declare Statements in Language Output Templates

	Display Function-Related Information
	Obtain Information Using the admin Command
	Obtain Information Using Stored Procedures

	Default System Variable
	Extend Default Function Strings
	Use the replicate minimal columns Clause

	Use Function Strings with text, unitext, image, and rawobject Datatypes
	Use the writetext Output Template Option for rs_writetext Function Strings
	Use the none Output Tempate for rs_writetext Function Strings
	Heterogeneous Replication and text, unitext, image, and rawobject Data

	Manage Warm Standby Applications
	Warm Standby Applications
	How a Warm Standby Works
	Database Connections in a Warm Standby Application
	Primary and Replicate Databases and Warm Standby Applications
	Warm Standby Requirements and Restrictions
	Function Strings for Maintaining Standby Databases

	Replicated Information for Warm Standby
	Comparison of Replication Methods
	Use sp_reptostandby to Enable Replication
	Restrictions and Requirements when Using sp_reptostandby
	Supported DDL Commands and System Procedures
	Replication of alter table: Limitations
	Replication of the Master Database: Limitations

	Disable Replication

	Use sp_setreptable to Enable Replication
	Use sp_setrepproc to Copy User Stored Procedures
	Replication of Tables with the Same Name but Different Owners
	Replication of text, unitext, image, and rawobject Data in Warm Standby Applications
	Use the use_index Option in a Replicate Database

	Configure Warm Standby Database for SQL Statement Replication
	Replication of Encrypted Columns
	Replication of Quoted Identifiers
	When Warm Standby Involves a Replicate Database
	Change Replication for the Current isql Session
	Force Replication of DDL Commands to the Standby Database
	Turn off All Replication to the Standby Database

	Setting Up ASE Warm Standby Databases
	Before You Begin
	Client Application Issues

	Task One: Creating the Logical Connection
	Name the Logical Connection
	Procedure for Creating the Logical Connection
	Reconfiguring and Restarting RepAgent

	Task Two: Add the Active Database
	Task Three: Enabling Replication for Objects in the Active Database
	Enable Replication for Objects Added Later

	Task Four: Adding the Standby Database
	Create the Standby Database
	Determine How to Initialize the Standby Database
	Summary of Database Initialization Methods
	Cross-Platform Dump and Load
	If You Do Not Suspend Transaction Processing
	If You Suspend Transaction Processing

	Add the Standby Database Maintenance User
	Making the Server User’s IDs Match
	Adding the Maintenance User

	Adding the Standby Database to the Replication System
	Use a Blocking Command for Standby Creation

	Enable Replication for Objects in the Standby Database
	Enable Replication for Objects Added Later

	Granting Permissions to the Maintenance User

	Replication of the Master Database in a Warm Standby Environment for ASE
	Setting Up Master Database Replication in a Warm Standby Environment

	Switch the Active and Standby ASE Databases
	Determine if a Switch Is Necessary
	Before Switching Active and Standby Databases
	Internal Switching Steps
	After Switching Active and Standby Databases
	Making the Switch
	Disconnect Client Applications from the Active Database
	Switching the Active and Standby Databases
	Use a Blocking Command for Switch Active
	Monitor the Switch
	Abort a Switch

	Restart Client Applications
	Resolve Paper-trail Transactions

	Manage the Old Active Database
	Bring the Old Active Database Online as the New Standby

	Monitor a Warm Standby Application
	Replication Server Log File
	Commands for Monitoring Warm Standby Applications

	Set up Clients to Work with the Active Data Server
	Two Interfaces Files
	Symbolic Data Server Name for Client Applications
	Map Client Data Server to Currently Active Data Server

	Alter Warm Standby Database Connections
	Alter Logical Connections
	Change Parameters Affecting Logical Connections
	Configuration Parameters Affecting Logical Connections

	Disable the Distributor Thread
	Replicate Truncate Table To Standby Databases

	Alter Physical Connections
	Configure Triggers in the Standby Database
	Configure Replication in the Standby Database
	Change Configuration Parameters in the Standby Database

	Drop Logical Database Connections
	Drop a Logical Database from the ID Server

	Warm Standby Applications Using Replication
	Warm Standby Application for a Primary Database
	Warm Standby Application for a Replicate Database
	Configure Logical Connection Save Intervals

	Replication Definitions and Subscriptions for Warm Standby Databases
	alter table Support for Warm Standby
	No Replication Definition
	alter table Add Column with Default
	Warm Standby with No send standby Clause
	Warm Standby with send standby all columns Clause
	Warm Standby with send standby replication definition columns Clause

	Use Replication Definitions to Optimize Performance
	Use Replication Definitions to Copy Redundant Updates
	Use Subscriptions with Warm Standby Applications
	Restrictions on Using Subscriptions
	Subscription Materialization for Logical Primary Database
	Subscription Materialization for Logical Replicate Database
	Check Subscriptions
	Drop Subscriptions

	Missing Columns When You Create the Standby Database

	Loss Detection and Recovery

	Performance Tuning
	Replication Server Internal Processing
	Threads, Modules, and Daemons
	Processes in the Primary Replication Server
	Replication Agent User Thread
	Stable Queue Manager Thread
	Stable Queue Transaction Thread
	Distributor Thread and Related Modules
	Subscription Resolution Engine
	Transaction Delivery Module
	Message Delivery Module

	Distributor Status Recording
	Data Server Interface Threads
	Replication Server Interface Thread
	Miscellaneous Daemon Threads

	Processes in the Replicate Replication Server
	RSI User Thread

	Configuration Parameters that Affect Performance
	Replication Server Parameters that Affect Performance
	Stable Devices: Considerations

	Connection Parameters that Affect Performance
	Route Parameters that Affect Performance

	Suggestions for Using Tuning Parameters
	Set the Amount of Time SQM Writer Waits
	Cache System Tables
	System Tables that Can Be Cached
	Replication Definition Change Process

	Executor Command Cache
	Enabling Table Metadata Reduction
	Setting the Executor Command Cache Size

	Stable Queue Cache
	Configure Stable Queue Cache Parameters

	SQM Command Cache
	SQM Command Cache Counters to Monitor Performance

	Set Wake up Intervals
	Size the SQT Cache
	Control the Number of Outstanding Bytes
	exec_sqm_write_request_limit Database Configuration Parameter
	md_sqm_write_request_limit Database Configuration Parameter
	Use Counters to Monitor Performance

	Control the Number of Network Operations
	Counters to Monitor Batching and Batch Size

	Control the Number of Commands the RepAgent Executor Can Process
	Specify the Number of Stable Queue Segments Allocated
	Select Disk Partitions for Stable Queues
	Make SMP More Effective
	Specify the Number of Transactions in a Group
	Database Configuration Parameter: dsi_max_xacts_in_group
	Database Configuration Parameters: dsi_xact_group_size and dsi_max_xacts_in_group

	Set Transaction Size
	Enable Nonblocking Commit
	Memory Consumption Controls
	Memory Threshold Warning Messages
	Replication Server Threads Memory Control
	Monitor Thread Information
	Memory Management Statistics

	Parallel DSI Threads
	Benefits and Risks of Using Parallel DSI Threads
	Parallel DSI Parameters
	Parallel DSI Configuration Parameters

	Components of Parallel DSI
	DSI Scheduler Thread
	DSI Executor Threads

	Process Transactions with Parallel DSI Threads
	Small Transactions
	Large Transactions

	Select Isolation Levels
	Set Isolation Levels for Non-Sybase Replicate Data Servers

	Transaction Serialization Methods
	no_wait
	wait_for_start
	wait_for_commit
	wait_after_commit

	Partitioning Rules: Reducing Contention and Increasing Parallelism
	Transaction-Partitioning Rules
	Partitioning Rule: Origin
	Partitioning Rule: Origin and Process ID
	Partitioning Rule: None
	Partitioning Rule: User
	Partitioning Rule: Origin Time Begin and Commit Times
	Partitioning Rule: Name
	Partitioning Rule: Ignore Origin

	Use Multiple Transaction Rules
	Grouping Logic and Transaction Partitioning Rules

	Resolution of Conflicting Updates
	Resolution of Conflicts Internally
	Function Strings for Internal Commit Control

	Resolution of Conflicts Externally
	Resolution of Deadlocks
	Function Strings for Commit Control Using rs_threads

	Configuration of Parallel DSI for Optimal Performance
	Preparing to Configure Parallel DSI for Optimal Performance
	Reduce Contention
	Use Partitioning Rules
	The Transaction Name Rule
	The User Name Rule
	The Origin Begin and Commit Times Rule
	Combine Partition Rules

	Frequent Conflicting Updates
	Infrequent Conflicting Updates
	Set Isolation Levels
	Set the Size for Large Transactions

	Parallel DSI and the rs_origin_commit_time System Variable

	DSI Bulk Copy-in
	DSI Bulk Copy-in Configuration Parameters
	Set Up Bulk Copy-in

	Changes to Subscription Materialization
	Counters for Bulk Copy-in
	Limitations for Bulk Copy-in

	SQL Statement Replication
	Introduction to SQL Statement Replication
	Performance Issues with Log-Based Replication
	Stored Procedure Replication
	How Replication Server Topologies Affect SQL Statement Replication

	Enable SQL Statement Replication
	Enable SQL Statement Replication at the Database-level
	Display SQL Statement Replication Status

	Enable SQL Statement Replication at the Table Level
	Enable SQL Statement Replication at the Session Level

	Set SQL Statement Replication Threshold
	Set Thresholds and Operations at Database Level
	Set Thresholds and Operations at Session Level
	Set Thresholds and Configure Replication

	Configure Replication Definitions for SQL Statement Replication
	Database Replication Definition
	Table Replication Definition
	Warm Standby and SQL Statement Replication

	Row Count Validation for SQL Statement Replication
	Error Actions for SQL Statement Replication

	Scope of SQL Statement Replication
	Batch Processing
	Stored Procedures
	Triggers
	Recompilation of Stored Procedures and Triggers
	Cross-Database Transactions

	Issues Resolved by SQL Statement Replication
	Replication of the select into Operation In Warm Standby Configurations
	Replication of Deferred Updates on Primary Keys

	Exceptions to Using SQL Statement Replication
	SQL Statement Replication Does not Support Autocorrection

	RSSD System Table Modifications
	Adaptive Server Monitoring Tables for SQL Statement Replication
	Product and Mixed-Version Requirements
	Downgrades and SQL Statement Replication
	Downgrade of Adaptive Server
	Downgrade of Replication Server

	Dynamic SQL for Enhanced Replication Server Performance
	Dynamic SQL Configuration Parameters
	Set up the Configuration Parameters to Use Dynamic SQL
	Table-Level Dynamic SQL Control
	replicate minimal columns Clause and Dynamic SQL
	Limitations for Dynamic SQL
	Disable Dynamic SQL

	Advanced Services Option
	High Volume Adaptive Replication to Adaptive Server
	Database and Platform Support
	HVAR Compilation and Bulk Apply
	Net-Change Database
	Monitor the Net-Change Database

	HVAR Processing and Limitations
	Enable HVAR
	HVAR Configuration Parameters
	Enhanced Retry Mechanism
	Memory Consumption Control
	Memory Control Parameters and Replication Server Processing

	Tables with Referential Constraints
	Replication Definitions Creation and Alteration

	Display HVAR Information
	System Table Support in Replication Server
	Mixed-Version Support and Backward Compatibility

	Enhanced DSI Efficiency
	Enhanced RepAgent Executor Thread Efficiency
	Enable NRM Thread
	Specify Memory Available to RepAgent Executor

	Enhanced Distributor Thread Read Efficiency
	Enhanced Memory Allocation
	Increase Queue Block Size
	Changing the Queue Block Size
	Increasing Queue Block Size in a Simple Replication System
	Increasing Queue Block Size in a Replication System with an Intermediate Route

	Multi-Path Replication
	Multi-Path Replication Quick Start
	Parallel Transaction Streams
	Default and Alternate Connections
	Multiple Connections to the Replicate Database
	Creating Alternate Replicate Connections
	Altering or Dropping Alternate Replicate Connections
	Displaying Replicate Connection Information
	Creating a Replication System with Multiple Replicate Connections

	Multiple Connections from the Primary Database
	Creating Alternate Primary Connections
	Altering or Dropping Alternate Primary Connections
	Displaying Primary Connection Information

	Replication Definitions and Subscriptions
	Replication Definitions and Subscriptions for Alternate Connections
	Moving Subscriptions Between Connections

	Multiple Primary Replication Paths
	Creating Multiple Primary Replication Paths
	Enabling Multithreaded RepAgent and Multiple Paths for RepAgent
	Setting the Memory Available to RepAgent
	Enabling Multithreaded RepAgent
	Setting the Number of Send Buffers
	Setting the Maximum Number of Replication Paths for RepAgent
	Display Configuration Parameter Settings

	Creating Alternate Replication Paths for the Primary Database
	Dropping a Replication Server Definition

	Creating Logical Primary Replication Paths
	Dropping Elements in a Logical Primary Replication Path
	Removing a Logical Path

	Binding Objects to a Replication Path
	Unbinding Objects from a Replication Path
	Object Binding and Replication of SQL and DDL Statements
	Object Binding and Database Resynchronization
	Object Binding and rs_ticket

	Changing Configuration Values in a Replication Path
	Display Replication Path Information

	Creating Multiple Replication Paths for MSA Environments
	Multiple Replication Paths for Warm Standby Environments
	Creating Alternate Logical Connections in a Warm Standby Environment
	Creating Alternate Connections in a Warm Standby Environment
	Creating Multiple Replication Paths for Warm Standby Environments
	Switching Active and Standby Databases

	Dedicated Routes
	Creating Dedicated Routes
	Commands to Manage Dedicated Routes
	Display Dedicated Route Information

	Adaptive Server Monitoring Tables for Multiple Replication Paths
	System Table Support for Alternate Primary and Replicate Connections

	Multiprocessor Platforms
	Enable Multiprocessor Support
	Commands to Monitor Thread Status
	Monitor Performance

	Allocation of Queue Segments
	Default Allocation Mechanism
	Choose Disk Allocations
	Allocating Disk Partitions to Stable Queues

	Drop Hints and Partitions

	Heartbeat Feature in RMS

	Monitor Performance Using Counters
	Commands to View Counter Values
	Modules
	Replication Server Modules

	Counters
	Data Sampling
	Collect Statistics for a Specific Time Period
	Specify the Counters to Be Sampled
	Specify the Sample Period
	Specify How Statistics Are to Be Reported
	Display Statistics on the Computer Screen
	Save Statistics in the RSSD

	Collect Statistics for an Indefinite Time Period

	View Statistics on Screen
	View Throughput Rates
	View Statistics About Messages and Memory Use
	View the Number of Transactions in the Stable Queues

	View Statistics Saved in the RSSD
	Use the rs_dump_stats Procedure

	View Information About the Counters
	Resetting of Counters
	Generate Performance Reports

	Errors and Exceptions Handling
	General Error Handling
	Error Log Files
	Replication Server Error Log
	Message Types in the Replication Server Error Log
	Informational Messages
	Error and Warning Messages
	Find the Name of the Replication Server Error Log
	Change to a New Replication Server Log File

	RepAgent Error Log Messages
	Sample RepAgent Error Messages

	Data Server Error Handling
	RCL Commands and System Procedures for Error Processing
	Default Error Classes
	Native Error Codes for Non-ASE Databases
	Create an Error Class
	Designate Primary Site for an Error Class
	Assign Error Actions

	Alter Error Classes
	Initialize a New Error Class
	Drop an Error Class
	Change the Primary Replication Server for an Error Class
	Display Error Class Information
	Assign Actions to Data Server Errors
	Error Actions for Data Server Errors

	Display Assigned Actions for Error Numbers
	Row Count Validation
	Control Row Count Validation
	Table Names Display in Row Count Validation Error Messages

	Exceptions Handling
	Handling of Failed Transactions
	Suspend Database Connection
	Analyzing and Resolving the Problem
	Resume the Connection

	Access the Exceptions Log
	Display Transactions in the Exceptions Log
	Query the Exceptions Log System Tables

	Delete Transactions from the Exceptions Log

	DSI Duplicate Detection
	Duplicate Detection for System Transactions

	Replication System Recovery
	How to Use Recovery Procedures
	Configure the Replication System to Support Sybase Failover
	Enable Failover Support in Replication Server
	How Sybase Failover Works with Replication Server
	Requirements for Sybase Failover Support
	Enabling Failover Support for an RSSD Connection
	Enabling Failover Support for Non-RSSD Database Connections

	Configure the Replication System to Prevent Data Loss
	Save Interval for Recovery
	Routes Between Replication Servers
	Set the Save Interval for Routes

	Connections Between Replication Servers and Data Servers
	Set the Save Interval for Connections

	Back up the RSSDs
	Create Coordinated Dumps

	Recovery from Partition Loss or Failure
	Symptoms of and Relevant Recovery Procedures for Partition Loss or Failure
	Recovering from Partition Loss or Failure
	Recovering Messages from Off-line Database Logs
	Recovering Messages from the Online Database Log

	Recovery from Truncated Primary Database Logs
	Recovering Messages from Truncated Primary Database Logs

	Recovery from Primary Database Failures
	Loading a Primary Database from Dumps
	Loading from Coordinated Dumps

	Recovery from RSSD Failure
	Procedures to Recover an RSSD from Dumps
	Using the Basic RSSD Recovery Procedure
	Using the Subscription Comparison Procedure
	select Statements to Use for rs_subcmp on Replicated RSSD System Tables
	Classes and System Tables
	Example
	Reconciling with Upstream RSSDs
	Reconciling Downstream RSSDs

	Using the Subscription Re-Creation Procedure
	Using the Deintegration and Reintegration Procedure

	Recovery Support Tasks
	Rebuild Stable Queues
	Rebuild Queues Online
	Rebuild Queues from Offline Database Logs
	Replication Server Standalone Mode

	Loss Detection After Rebuilding Stable Queues
	SQM Loss Between Two Replication Servers
	DSI Loss Between a Replication Server and Its Databases
	Handling of Losses
	Recover a Loss
	Ignore a Loss

	Set Log Recovery for Databases
	Loss Detection After Setting Log Recovery
	Determine Which Dumps to Load
	Adjust Database Generation Numbers
	Determine Database Generation Numbers
	Dumps and Database Generation Numbers
	Resetting Primary Database Generation Number
	Support for Non-ASE Databases

	Replicate Database Resynchronization for Adaptive Server
	Configuring Database Resynchronization
	Instructing Replication Server to Skip Transactions
	Send the Resync Database Marker to Replication Server
	Obtain a Dump of the Database
	Send the Dump Database Marker to Replication Server
	Monitor DSI Thread Information
	Apply the Dump to a Database to be Resynchronized

	Database Resynchronization Scenarios
	Resynchronize One or More Replicate Databases Directly from a Primary Database
	Resynchronizing Directly from a Primary Database

	Resynchronizing Using a Third-Party Dump Utility
	Resynchronizing if There is No Support for the Resync Database Marker
	Resynchronizing Both the Primary and Replicate Databases from the Same Dump
	Resynchronizing the Active and Standby Databases in a Warm Standby Application

	Asynchronous Procedures
	Introduction to Asynchronous Procedure Delivery
	Replicated Stored Procedures Logging by Adaptive Server

	Applied Stored Procedures
	Request Stored Procedures
	Asynchronous Stored Procedure Prerequisites
	Implementing an Applied Stored Procedure
	Warning Conditions

	Implementing a Request Stored Procedure
	Specify Stored Procedures and Tables for Replication
	Manage User-Defined Functions
	Create a User-Defined Function
	Adding Parameters to a User-Defined Function
	Drop a User-defined Function
	Map a Function to a Different Stored Procedure Name
	Specify a Nonunique Name for a User-defined Function

	High Availability on Sun Cluster 2.2
	Introduction to Sybase Replication for Sun Cluster HA
	Terminology
	Technology Overview
	Configuration of Replication Server for High Availability
	Installing Replication Server for HA
	Installing Replication Server as a Data Service

	Administration of Replication Server as a Data Service
	Data Service Start and Shutdown
	Logs for Sun Cluster for HA

	Implement a Reference Replication Environment
	Reference Replication Environment Implementation
	Platform Support
	Components for Reference Implementation

	Prerequisites for the Reference Environment
	Build the Reference Environment
	Reference Implementation Configuration Files
	Example of ase_unix_refimp.cfg Template File

	Configure the Reference Environment
	Run Performance Tests on the Reference Environment
	Obtain Tests Results from the Reference Environment
	rs_ticket_history Report
	Monitors and Counters Report

	Shut Down the Reference Implementation Servers
	Clean Up the Reference Environment
	Objects Created for the Reference Environment
	Table Schema

	Glossary
	Obtaining Help and Additional Information
	Technical Support
	Downloading Sybase EBFs and Maintenance Reports
	Sybase Product and Component Certifications
	Creating a MySybase Profile
	Accessibility Features

	Index

