
Administration Guide: Volume 1

Replication Server®

15.1

DOCUMENT ID: DC32511-01-1510-01

LAST REVISED: May 2008

Copyright © 1992-2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Administration Guide iii

About This Book ... xiii

CHAPTER 1 Introduction ... 1
About Replication Server ... 1

Asynchronous transaction replication.. 2
Advantages of replicating local data.. 3

Replication Server and distributed database systems 4
Replication Server basic primary copy model 6
Other distributed data models ... 9
Replication Server and heterogeneous data servers 16

Warm standby applications .. 17
Mixed-version replication systems ... 18

Restrictions in mixed-version systems 19
Mixed versions of Adaptive Server.. 19

Replication system security.. 20
Replication Server security features.. 20
Network-based security features... 21

Replication Server roles and responsibilities.................................. 21
Replication system administrator .. 22
Database administrator ... 22
Replication Server tasks and responsibilities 22

CHAPTER 2 Replication Server Technical Overview 25
Replication system components... 25

Replication Server ... 26
Adaptive Server or other data server 28
Client applications ... 31
Sybase Central .. 31
Replication Manager (RM) plug-in to Sybase Central 32
Replication Monitoring Services (RMS)................................... 32

Specifying data for replication .. 32
Replication definitions and subscriptions for tables................. 33
Replication definitions for database objects 33

Contents

iv Replication Server

Replication definitions for stored procedures 34
Publications ... 35
Overview of replicating tables ... 36
Commands for managing replicated data 37

Establishing Replication Server connections 38
Interfaces file ... 38
LDAP server .. 39
Making Replication Server connections 40

Specifying database operations ... 42
Function strings ... 42
Function-string classes.. 43

Transaction handling with Replication Server 43
Stable queues ... 44
Distributed concurrency control... 48
Transaction processing by the Replication Agent 50

CHAPTER 3 Managing Replication Server with Sybase Central 53
Using Replication Manager from Sybase Central 53

Starting and stopping Sybase Central..................................... 53
Getting started... 54
Using online help... 54
Using the Replication Manager GUI.. 55

Setting up a replication environment.. 64
Preparing for a two-tier solution .. 64
Creating an environment ... 65
Connecting to and disconnecting from

a replication environment ... 66
Setting up a replication environment

using Replication Manager ... 67
Managing Replication Server objects...................................... 70

Monitoring a replication environment using RMS........................... 75
Preparing for a three-tier solution.. 75
Connecting to RMS ... 75
Adding and dropping servers through RMS 76
Viewing managed objects ... 76
Adding event triggers .. 76

CHAPTER 4 Managing a Replication System... 79
Setting up a replication system .. 79

Creating connections and routes... 80
Setting permissions and security... 80
Verifying the replication system... 81
Creating replication definitions .. 81

Contents

Administration Guide v

Creating subscriptions... 82
Performing Replication Server tasks.. 82

Using rs_init... 83
Managing Replication Server with Sybase Central 83
Using isql ... 84

Starting Replication Server .. 86
Replication Server executable program 86
Replication Server configuration file.. 87

Shutting down Replication Server .. 87
Adding a Replication Server... 88
Adding a replication system domain .. 89

Guidelines for adding replication system domains 89
Setting Replication Server configuration parameters..................... 90

About configuration parameters .. 91
Changing Replication Server parameters 94

Managing the RSSD .. 95
Enabling Failover support for an RSSD connection 96

Managing Embedded Replication Server
System Database ... 97

Overview ... 97
Before you start ... 98
Configuring ERSSD... 98
Configuration parameters and command 99
ERSSD routing .. 100
Moving ERSSD files .. 100
ERSSD users .. 100
Backup .. 101
Recovery instructions .. 101

Quiescing Replication Server... 104
Quiescing a replication system.. 104

Removing a Replication Server.. 105
Removing an active Replication Server 105
Removing an inactive Replication Server.............................. 107

CHAPTER 5 Setting Up and Managing RepAgent... 111
Setting up RepAgent .. 112

Defining the local Adaptive Server .. 112
Enabling RepAgent on Adaptive Server................................ 113
Enabling RepAgent for the database 113

Configuring RepAgent.. 114
Starting RepAgent.. 118
Stopping RepAgent .. 119
Disabling RepAgent ... 119
Checking log files for information and error messages 120

Contents

vi Replication Server

Configuring RepAgent for network security.................................. 120
Handling extended limits .. 121
Support for longer identifiers .. 122
Adaptive Server shared-disk cluster support 123
Reviewing status and configuration information........................... 124

Viewing RepAgent information .. 124
Viewing configuration parameter values 125
Viewing RepAgent thread information................................... 125

Managing log transfer activity .. 126
Using the log transfer commands.. 126
Using alter connection and the set log transfer option 128

Using counters to monitor RepAgent performance 128
Invoking sp_sysmon.. 130
RepAgent counter activity ... 130

CHAPTER 6 Managing Routes... 137
Overview .. 137
Before you begin .. 138

Routing preparations ... 139
Routing schemes ... 140

Direct routes .. 140
Indirect routes.. 141
Unsupported routing schemes .. 144

Creating routes... 144
Using the create route command .. 145
Configuring a Replication Server to manage primary tables . 148

Suspending and resuming routes .. 150
Using the suspend route command....................................... 150
Using the resume route command .. 150

Changing routes... 151
Changing route topology ... 151
Changing the password for the RSI user for a direct route ... 154
Changing parameters affecting direct routes 155
Routing modification example ... 156

Dropping routes.. 158
Using the drop route command ... 159
Using the sysadmin purge_route_at_replicate command 160

Upgrading routes.. 160
Monitoring routes ... 161

Displaying RSI thread status using admin who 161
Using the rs_helproute stored procedure 162

CHAPTER 7 Managing Database Connections .. 163

Contents

Administration Guide vii

Preparing databases for replication ... 163
Steps in preparing databases for replication 164
Upgrading an existing Adaptive Server database 165

Managing maintenance user login names 165
Finding the current maintenance user................................... 166
Granting permissions in the database................................... 166

Creating database connections.. 167
Information for adding a database connection 168
Using the create connection command 169

Altering database connections ... 170
Suspending database connections 171
Setting and changing parameters affecting

physical connections .. 172
Resuming database connections .. 183
Changing replicate databases to primary databases 184
Changing primary databases to replicate databases 186

Dropping database connections... 187
Dropping a database from the ID Server............................... 187

Monitoring database connections .. 188
Viewing current database connections.................................. 188
Listing databases managed by a Replication Server 188
Displaying DSI thread status ... 189

CHAPTER 8 Managing Replication Server Security...................................... 191
Overview .. 191
Managing Replication Server system security 192

RSSD login names and passwords....................................... 193
Replication Server login name and password

for the RepAgent .. 194
ID Server login name and password 194
Replication Server login name and password for Replication

Servers ... 195
Maintenance user Adaptive Server login name and password 195
Sending encrypted passwords for Replication Server client

connections .. 196
Existing Encrypted Password Migration 196
Extended password encryption support 197
Sybase Central dependencies .. 198
Replication Server object creation dependencies 198

Managing Replication Server user security.................................. 199
Managing Replication Server login names and passwords... 200
Enabling and disabling password encryption in sysattributes 201
Managing Replication Server permissions 202
Examining users, passwords, and permissions 208

Contents

viii Replication Server

Managing network-based security ... 210
How security services work ... 211
Requirements and restrictions... 212
Setting up network-based security .. 213
Modifying configuration parameters and

environment variables .. 213
Configuring objectid.dat... 215
Configuring the interfaces file.. 215
Setting environment variables (Kerberos) 216
Establishing the principal user... 216
Identifying principal users to Replication Server 218
Activating network-based security... 218
Starting server and clients... 219
Configuring security services for Replication Server............. 219
Maintaining network security ... 232

Managing SSL security .. 237
SSL overview .. 237
SSL on Replication Server .. 238
Setting up SSL security ... 239
Enabling SSL security ... 239

CHAPTER 9 Managing Replicated Tables .. 241
Introduction .. 242
Planning a replication system .. 243

Design considerations ... 243
Restrictions on data replication ... 244
Preparing a replication system .. 244

Summarizing the process... 245
Replication procedure ... 246
Commands for managing table replication definitions........... 249

Creating replication definitions ... 250
Replication definition settings.. 250
Using the create replication definition command................... 251
Creating replication definitions using extended limits............ 263
Creating multiple replication definitions per table.................. 265
Replication definitions and function strings 267
Replication definition restrictions in mixed-version systems . 268

Marking tables for replication ... 270
Using the sp_setreptable system procedure 270

Replicating Java columns .. 273
Restrictions.. 273
Upgrade considerations .. 273
Java datatypes in Replication Server 274
Creating replication definitions for Java columns 274

Contents

Administration Guide ix

Function strings for Java columns... 275
Replicating text, unitext, image, and rawobject columns 277

Replicating large objects to non-ASE servers using DirectConnect
Anywhere.. 279

Creating a text, unitext, image, or rawobject
replication definition.. 279

Marking tables with text, unitext, image, or rawobject columns 280
Changing column status for text, unitext, image, or rawobject

columns .. 281
Altering replication status for text, unitext, image, and rawobject

columns .. 283
Resolving inconsistencies in replication status 284
Subscription issues for replicate_if_changed status 286
Function strings for replicating text, unitext, and image data 287

Replicating new large-object (LOB) datatypes............................. 287
Replicating computed columns .. 288
Replicating encrypted columns .. 289
Working with special datatypes.. 291

Using the rs_address datatype.. 291
Replicating identity columns.. 291
Replicating timestamp columns... 292

Modifying replication definitions ... 293
Maintaining table schema.. 294
Viewing existing replication definitions 298
Altering replication definitions.. 298
Dropping replication definitions ... 304

Modifying replicated data ... 305
Adding a new table.. 305
Renaming replicated tables... 305
Dropping a replicated table ... 305
Adding columns in source and destination tables 306
Deleting columns in a source or destination table................. 306
Changing searchable columns .. 307
Changing column datatypes in a source or destination table 307

Using publications .. 308
Using publications to replicate data at the command line 309

Translating datatypes using HDS... 317
Overview ... 317
Getting started... 318
Creating class-level translations.. 319
Creating column-level translations .. 322
Using class-level and column-level translations together...... 326
Verifying translations ... 327

Contents

x Replication Server

CHAPTER 10 Managing Replicated Functions... 329
Prerequisites and restrictions... 330

Replicated function prerequisites .. 330
Replicated function restrictions ... 331
Commands for managing function replication definitions...... 333

Using replicated functions .. 334
Applied functions ... 335
Request functions.. 336

Implementing an applied function .. 337
Implementing a request function .. 340
Marking stored procedures for replication.................................... 344
Subscribing to replicated functions .. 345
Modifying or dropping replicated functions................................... 345

Before modifying a function replication definition 345
Altering a function replication definition................................. 346
Modifying a function replication definition.............................. 346
Dropping a function replication definition 347
Creating or modifying a function string for

a replicated function ... 348
Using publications for stored procedures..................................... 349

CHAPTER 11 Managing Subscriptions ... 351
Overview .. 351
Subscription materialization methods .. 353

Atomic materialization ... 354
Nonatomic materialization ... 355
No materialization.. 357
Bulk materialization ... 357

Dematerialization processing ... 365
Dematerializing and purging rows ... 365
Dematerialization without purging rows................................. 366

Monitoring materialization and dematerialization 366
Before you create subscriptions... 368
Using subscription commands ... 370

Using the where clause ... 371
Enabling replication of truncate table 373
Using the create subscription command 374
Using the define subscription command 377
Using the activate subscription command............................. 378
Using the validate subscription command............................. 379
Using the check subscription command................................ 379
Using the drop subscription command 380

Subscription example... 382
Description of replication system... 382

Contents

Administration Guide xi

Procedures for replicating tables... 383
Materializing text, unitext, image, and rawobject data 386

Nonatomic materialization ... 386
Row migration ... 386

Subscriptions for columns with heterogeneous datatypes 387
Bitmap subscriptions .. 388
Obtaining subscription information... 390

Displaying subscription information....................................... 391
Verifying subscription consistency .. 391

Using publication subscriptions.. 395
Commands for creating and managing

publication subscriptions .. 396
Creating publication subscriptions... 397
Dropping subscriptions for publications and articles 401
Viewing publication subscription information......................... 402

CHAPTER 12 Managing Replicated Objects Using Multisite Availability 405
Overview .. 406
Setting up an MSA system... 408

Replicating the database... 408
Replicating tables and functions.. 410
Using replicate databases as warm standby databases 411

Marking data for replication.. 414
Managing database replication definitions 415

Altering database replication definitions................................ 415
Dropping database replication definitions 416
Using database replication filters .. 417

Viewing information about database replication definitions 418
Using database, table, and function replication

definitions concurrently... 418
Altering database replication definitions................................ 419
Altering table and function replication definitions 420

Managing database subscriptions.. 420
Materialization ... 421
Altering database subscriptions .. 422
Dropping database subscriptions .. 422

Viewing information about database subscriptions 423
Using database, table, and function subscriptions concurrently .. 423

Creating and dropping subscriptions..................................... 424
Replicating the master database in an MSA environment 424
Replicating DDL and system procedures..................................... 426
Replicating user stored procedures ... 427
Customizing function strings .. 427

Contents

xii Replication Server

Index ... 429

Administration Guide xiii

About This Book

Sybase® Replication Server® maintains replicated data at multiple sites
on a network. Organizations with geographically distant sites can use
Replication Server to create distributed database applications with better
performance and data availability than a centralized database system can
provide.

This book, Replication Server Administration Guide, provides an
overview of how Replication Server works, and describes Replication
Server administrative tasks.

Audience The Replication Server Administration Guide is for replication system
administrators, who manage the routine operation of their Replication
Servers. Any user who has been granted the sa permission can be a
replication system administrator, although each Replication Server
usually has just one.

How to use this book This book contains the following chapters:

• Chapter 1, “Introduction” introduces you to Replication Server,
describing the role it plays in a distributed database system and its
concepts and components.

• Chapter 2, “Replication Server Technical Overview” provides a
technical overview of the replication system, giving you the
background necessary to maintain and troubleshoot the system.

• Chapter 3, “Managing Replication Server with Sybase Central”
describes using Sybase Central’s Replication Manager plug-in, which
is a graphical tool for managing Replication Server.

• Chapter 4, “Managing a Replication System” describes basic
operations such as starting, stopping, and configuring Replication
Server.

• Chapter 5, “Setting Up and Managing RepAgent,” describes how to
set up, configure, and manage RepAgent.

• Chapter 6, “Managing Routes” describes how to create and manage
routes between source and destination Replication Servers.

xiv Replication Server

• Chapter 7, “Managing Database Connections” describes how to prepare
databases for replication and how to create and manage connections
between databases and Replication Servers.

• Chapter 8, “Managing Replication Server Security” describes how to
create and modify login names, passwords, and permissions and how to set
up network-based security.

• Chapter 9, “Managing Replicated Tables” describes how to set up and
manage replicated tables.

• Chapter 10, “Managing Replicated Functions” describes how to copy the
execution of user stored procedures to remote sites in a replication system
using replication definitions.

• Chapter 11, “Managing Subscriptions” describes how to create and
manage subscriptions, which allow Replication Server to replicate data
between databases.

• Chapter 12, “Managing Replicated Objects Using Multisite Availability,”
describes how to create and manage database replication definitions and
database subscriptions.

Volume 2 of the System Administration Guide contains these chapters:

• Chapter 1, “Verifying and Monitoring Replication Server” describes
checking error logs, verifying that the components of a replication system
are running, and monitoring the status of system components and
processes.

• Chapter 2, “Customizing Database Operations” describes how to use
functions, function strings, and function-string classes to customize data
replication with Adaptive Server® Enterprise and data servers from other
vendors.

• Chapter 3, “Managing Warm Standby Applications” describes how to
create and manage warm standby applications.

• Chapter 4, “Performance Tuning” describes how to manage resources
effectively and optimize the performance of individual Replication
Servers.

• Chapter 5, “Using Counters to Monitor Performance” describes
Replication Server counters and how to use them.

• Chapter 6, “Handling Errors and Exceptions” discusses error conditions
and failed transactions and how to customize data server responses to
errors.

 About This Book

Administration Guide xv

• Chapter 7, “Replication System Recovery” describes replication system
failure conditions and provides procedures for recovering from them.

• Appendix A, “Asynchronous Procedures” describes a method for
replicating stored procedures associated with table replication definitions.

• Appendix B, “High Availability on Sun Cluster 2.2,” provides
background and procedures for configuring Sybase Replication Server for
high availability (HA) on Sun Cluster 2.2.

• Appendix C, “Pre-15.1 Request Function Replication” provides
information about request function replications with versions earlier than
15.1.

Related documents The Sybase Replication Server documentation set consists of:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase Product
Manuals at http://www.sybase.com/support/manuals/.

• Installation Guide for your platform – describes installation and upgrade
procedures for all Replication Server and related products.

• New Features Guide – describes the new features in Replication Server
version 15.1 and the system changes added to support those features.

• Administration Guide (this book) – contains an introduction to replication
systems. This manual includes information and guidelines for creating and
managing a replication system, setting up security, recovering from
system failures, and improving performance.

• Configuration Guide for your platform – describes configuration
procedures for all Replication Server and related products, and explains
how to use the rs_init configuration utility.

• Design Guide – contains information about designing a replication system
and integrating heterogeneous data servers into a replication system.

• Getting Started with Replication Server – provides step-by-step
instructions for installing and setting up a simple replication system.

• Heterogeneous Replication Guide – describes how to use Replication
Server to replicate data between databases supplied by different vendors.

xvi Replication Server

• Reference Manual – contains the syntax and detailed descriptions of
Replication Server commands in the Replication Command Language
(RCL); Replication Server system functions; Sybase Adaptive Server®
commands, system procedures, and stored procedures used with
Replication Server; Replication Server executable programs; and
Replication Server system tables.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Troubleshooting Guide – contains information to aid in diagnosing and
correcting problems in the replication system.

• Replication Manager plug-in help, which contains information about
using Sybase Central™ to manage Replication Server.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

 About This Book

Administration Guide xvii

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

xviii Replication Server

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions This section describes the style and syntax conventions, RCL command
formatting conventions, and icons used in this book.

Style conventions Syntax statements that display the syntax and options for
a command are printed as follows:

alter user user
set password new_passwd
[verify password old_passwd]

See “Syntax conventions” on page xviii for more information.

Examples that show the use of Replication Server commands are printed as
follows:

alter user louise
 set password somNIfic
 verify password EnnuI

Command names, command option names, program names, program flags,
keywords, functions, and stored procedures are printed as follows:

Use alter user to change the password for a login name.

Variables, parameters, and user-supplied words are in italics in syntax and in
paragraph text, as follows:

The set password new_passwd clause specifies a new password.

Names of database objects such as databases, tables, columns, and datatypes,
are in italics in paragraph text, as follows:

The base_price column in the Items table is a money datatype.

Names of replication objects, such as function-string classes, error classes,
replication definitions, and subscriptions, are in italics.

Syntax conventions Syntax formatting conventions are summarized in the
following table. Examples combining these elements follow.

 About This Book

Administration Guide xix

Table 1: Syntax formatting conventions

Obligatory choices • Curly braces and vertical bars – choose only one option.

{red | yellow | blue}

• Curly braces and commas – choose one or more options. If you choose
more than one, separate your choices with commas.

{cash, check, credit}

Optional choices • One item in square brackets – choose it or omit it.

[anchovies]

• Square brackets and vertical bars – choose none or only one.

[beans | rice | sweet_potatoes]

• Square brackets and commas – choose none, one, or more options. If you
choose more than one, separate your choices with commas.

[extra_cheese, avocados, sour_cream]

Repeating elements An ellipsis (...) means that you may repeat the last unit as many times as
necessary. For the alter replication definition command, for example, you can list
one or more columns and their datatypes for the add clause or the add
searchable columns clause:

alter replication definition replication_definition
{add column datatype [, column datatype]... |
 add searchable columns column [, column]... |
 replicate {minimal | all} columns}

Key Definition
{ } Curly braces mean you must choose at least one of the enclosed

options. Do not include braces in the command.

[]

Brackets mean you may choose or omit enclosed options. Do not
include brackets in the command.

|

Vertical bars mean you may choose no more than one option
(enclosed in braces or brackets).

,

Commas mean you may choose as many options as you need
(enclosed in braces or brackets). Separate your choices with
commas, to be typed as part of the command.

Commas may also be required in other syntax contexts.

()

Parentheses are to be typed as part of the command.

... An ellipsis (three dots) means you may repeat the last unit as
many times as you need. Do not include ellipses in the command.

xx Replication Server

RCL command
formatting

RCL commands are similar to Transact-SQL® commands. The following
sections present the formatting rules.

Command format and
command batches

• You can break a line anywhere except in the middle of a keyword or an
identifier. You can continue a character string on the next line by typing a
backslash (\) at the end of the line.

• Extra spaces are ignored, except after a backslash. Do not enter any spaces
after a backslash.

• You can enter more than one command in a batch unless otherwise
instructed.

• RCL commands are not transactional. Each command is executed
independently and is not affected by the completion status of other
commands in the batch. However, syntax errors in a command prevent
Replication Server from executing subsequent commands in a batch.

Case sensitivity • Keywords in RCL commands are not case sensitive. You can enter them
in any combination of uppercase or lowercase letters.

• Case sensitivity in identifiers and character data depends on the sort order
that is in effect.

• If you use a case-sensitive sort order such as “binary,” you must enter
identifiers and character data in the correct combination of uppercase
and lowercase letters.

• If you use a sort order that is not case sensitive, such as “nocase,” you
can enter identifiers and character data in any combination of
uppercase or lowercase letters.

Identifiers Identifiers are names you give to servers, databases, variables, parameters,
database objects, and replication objects. Database object names include
names for tables, columns, and views. Replication object names include names
for replication definitions, subscriptions, functions, and publications.

• Identifiers can be 1 – 255 bytes long (equivalent to 1 – 255 single-byte
characters) and must begin with a letter, the @ sign, or the _ character. See
“Support for longer identifiers” on page 122 for a list of identifiers that
have been extended to 255 bytes.

• Replication Server function parameters are the only identifiers that can
begin with the @ character. Function parameter names can include 255
characters after the @ character.

• After the first character, identifiers can include letters, digits, and the #, $,
or _ characters. Spaces are not allowed.

 About This Book

Administration Guide xxi

Parameters in function
strings

Parameters in function strings have the same rules as identifiers, except that:

• They are enclosed in question marks (?). This allows Replication Server to
locate them in the function string. Use two consecutive question marks
(??) to represent a literal question mark in a function string.

• The exclamation point (!) introduces a parameter modifier that indicates
the source of the data to be substituted for a parameter at runtime. Refer to
the Replication Server Reference Manual for a list of modifiers.

Data support Replication Server supports all Adaptive Server datatypes.

User-defined datatypes are not supported. The double precision, nchar, and
nvarchar datatypes are indirectly supported; they are mapped to other
datatypes.

For more information about the supported datatypes, including how to format
them, see “Datatypes,” in Chapter 2, “Topics” of the Replication Server
Reference Manual.

Icons Illustrations in this book use icons to represent the components of a replication
system.

Description

This icon represents Replication Server, the Sybase server
program maintains replicated data on a local-area network (LAN)
and processes data transactions received from other Replication
Servers on wide-area network (WAN).

This icon represents Adaptive Server, the Sybase data server. Data
servers manage databases containing primary or replicated data.
Replication Server also works with heterogeneous data servers,
so, unless otherwise noted, this icon can represent any data server
in a replication system.

This icon represents Replication Agent™, a replication system
process or module that transfers transaction log information for
primary database to a Replication Server. The Replication Agent
for Adaptive Server is RepAgent. Sybase provides Replication
Agent products for Adaptive Server® Anywhere, DB2, Microsoft
SQL Server, and Oracle data servers.

Except for RepAgent, which is an Adaptive Server thread, all
Replication Agents are separate processes. In general, this icon
only appears when representing a Replication Agent that is a
separate process.

xxii Replication Server

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Replication Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

This icon represents client application. A client application is a
user process or application connected to a data server. It may be a
front-end application program executed by a user or a program
that executes as an extension of the system.

This icon represents the Sybase Central Replication Manager
plug-in (RM), a management utility that lets a replication system
administrator develop, manage, and monitor a Sybase Replication
Server environment.

Description

Administration Guide 1

C H A P T E R 1 Introduction

This chapter introduces you to Replication Server and its role in a
distributed database system. It also discusses the benefits and features of
Replication Server, methods and concepts for replicating data, and
Replication Server support for heterogeneous data servers, as well as
defining user roles in maintaining a replication system.

About Replication Server
Replication Server maintains replicated data in multiple databases while
ensuring the integrity and consistency of the data. It provides clients using
databases in the replication system with local data access, thereby
reducing load on the network and centralized computer systems.

The Replication Command Language (RCL) enables you to customize
replication functions and to monitor and maintain the replication system.
For example, you can request subsets of data for replication at the table,
data row, or column level. This feature further reduces overhead by
allowing you to replicate only the data that is needed at the replicate site.

Replication Server supports heterogeneous data servers. You can build a
replication system from existing databases and applications without
having to convert them. As your enterprise grows and changes, you can
add data servers to your replication system to meet your needs.

Topic Page
About Replication Server 1

Replication Server and distributed database systems 4

Warm standby applications 17

Mixed-version replication systems 18

Replication system security 20

Replication Server roles and responsibilities 21

About Replication Server

2 Replication Server

Replication Server uses a basic publish-and-subscribe model for replicating
data across networks. Users “publish” data that is available in a primary
database, and other users “subscribe” to the data for delivery in a replicate
database. Users can replicate both changes to the data (update/insert/delete
operations) and stored procedures using this method.

Instructions to publish and subscribe to data are given at Replication Servers
that control, or have a connection to, each database. The user creates a
replication definition at a primary Replication Server, which controls the
primary database containing the data to be published. The replication definition
specifies information such as which columns are to be replicated, or in the case
of a database replication definition, of the database objects to be replicated.
The user creates a subscription at a replicate Replication Server, which
controls the replicate database that will receive the information.

Replication Servers communicate with each other via user-defined routes.
Most commonly, a primary Replication Server sends data to a replicate
Replication Server through one or more routes set up to transmit data from the
primary database to the replicate database. Users may also transmit stored
procedures from the replicate to the primary to request updates of the primary
data; in this case, data flows through one or more routes from the replicate
Replication Server to the primary Replication Server.

Connections and routes define the structure of the replication system. They
allow Replication Servers to send messages to each other and to send
commands to databases. A connection transfers messages from a Replication
Server to a database. A route transfers requests from a source Replication
Server to a destination Replication Server.

Asynchronous transaction replication
Replication occurs asynchronously—that is, updates to data at the primary are
transferred to replicate databases in transactions separate from the update itself.
While asynchronous replication provides important advantages, system
designers should remain aware of the latency between initial and replicated
updates.

CHAPTER 1 Introduction

Administration Guide 3

Advantages of replicating local data
Replicating tables on local data servers provides clients with local access to
enterprise data, which results in improved performance and greater data
availability.

Improved performance

In a typical Replication Server system, data requests are completed on the local
data server without accessing the WAN. Therefore, local clients gain improved
performance because:

• Data transfer rates are faster on a LAN than they are on a WAN.

• Local access remains unaffected by network traffic over the WAN. Local
clients that share local data server resources do not compete with the
enterprise-wide user community for central resources.

Greater data availability

Because data is replicated at local and remote databases in a Replication Server
system, clients can operate in a fault-tolerant environment so that:

• When a failure occurs at a remote database, clients can use local copies of
replicated data.

• When a WAN failure occurs, clients can use local copies of replicated data.

• When the local data server fails, clients can use replicated data at another
site.

Network failure or database failure at other locations do not halt work at the
local database. When WAN communications fail, Replication Server stores
operations on replicated tables in stable queues (disk storage). The replicated
tables at the unavailable databases are updated when communications resume.
If a local data server fails, clients can continue working by temporarily
accessing a replicate copy of the data.

Replication Server and distributed database systems

4 Replication Server

Replication Server and distributed database systems
Distributed database systems allow client applications to access data on
multiple database servers throughout an enterprise—even geographically
dispersed enterprises. Replication Server ensures that data on replicate
databases stays updated while off-loading processing responsibilities from the
source database.

As Figure 1-1 illustrates, these enterprises may consist of many LANs and one
or more WANs.

Figure 1-1: Replication system in a distributed environment

CHAPTER 1 Introduction

Administration Guide 5

Replication Server minimizes performance and data-availability problems
typically associated with remote access in distributed systems. Since
Replication Server provides multiple copies of data, clients can rely on their
own local data instead of remote, centralized databases. In addition, you can
copy only the data you want to destination databases. Replication Server
allows you to create a replication definition that identifies all or part of a table
to replicate. You can then subscribe to only the rows you want. You can create
a database replication definition that identifies the database objects—tables,
functions, system procedures, transactions, and data definition language
(DDL)—to replicate. You can also create a replication definition of a stored
procedure (called function replication definition) to facilitate rapid
replication of large amounts of data and to replicate updates from replicate
databases back to the primary database. If your application requires it, you can
consolidate or “roll up” replicated data from primary tables into a centralized
database.

You can group replication definitions, both table replication definitions and
functions replication definitions, in a publication and subscribe to them all at
once. Publications allow you to organize subscriptions and then monitor them
with a single command.

A Replication Agent—RepAgent for sites running Adaptive Server—
transfers transaction information from a database to a Replication Server for
distribution to replicate databases. Sybase also offers Replication Agent for
Microsoft SQL Server, DB2, and Oracle. You can make Replication Agents for
IMS and VSAM using the Sybase Replication Toolkit™ for MVS. RepAgent
is an Adaptive Server thread; all other Replication Agents are separate
processes.

Several models for replicating data in distributed systems exist in Replication
Server. Consult the Replication Server Design Guide to help you determine
which model best suits your application. The model that you choose
determines how you set up your system.

Setting up a replication system based on your distribution model involves:

• Creating tables to store primary and replicate data

• Setting up routes and connections between Replication Servers and
establishing permissions that control access to primary data

• Creating replication definitions that identify the data you want replicated

• Creating subscriptions from replicate databases to those replication
definitions

Replication Server and distributed database systems

6 Replication Server

See Chapter 2, “Replication Server Technical Overview” for a discussion of
Replication Server components, concepts, and terminology. See Chapter 4,
“Managing a Replication System” for a more detailed overview of setting up
a Replication Server system.

Replication Server basic primary copy model
The simplest approach Replication Server uses to copy data is to distribute
updates from one source (primary) database to one or more destination
(replicate) databases. To ensure consistency, a source table is designated as the
primary table. All other versions of the table are replicates. In this approach,
replicate tables are read-only and used for operations that do not modify the
data.

As updates occur at the primary table, Replication Server captures the updates
and sends them to replicate data servers. In this model, clients at remote sites
can also update primary data, either directly by accessing the primary database
over the network or indirectly through replicated stored procedures.

For more information, see “Specifying data for replication” on page 32, and
Chapter 10, “Managing Replicated Functions.”

If communication between the primary and destination databases fails,
operations executed in the primary database are stored in Replication Server
stable queues until they can be delivered to replicate sites. Likewise, operations
executed remotely are held in stable queues until they can be delivered to the
primary database.

This arrangement lets remote client applications take advantage of Replication
Server fault tolerance while preserving the basic primary copy model. See
“Transaction handling with Replication Server” on page 43 for more
information about stable queues.

Figure 1-2 illustrates Replication Server configurations using the primary copy
method of replicating data.

CHAPTER 1 Introduction

Administration Guide 7

Figure 1-2: Replication Server basic primary copy model

Replication system processing

This section describes a typical replication system, according to the basic
primary copy model, in which a primary Replication Server and a data server
are separated across a WAN from replicate Replication Servers. It does not
cover the case where primary data is updated at the replicate database.

Replication Server and distributed database systems

8 Replication Server

Figure 1-3: Replication system overview

Figure 1-3 illustrates how data is replicated from a primary database to
replicate databases. The following actions take place:

1 RepAgent reads the primary database log and converts transactions for
tables or stored procedures that are marked for replication into commands
that are sent to Replication Server.

The Replication Server stores the transactions in a stable queue (see
“Distributed concurrency control” on page 48).

2 The primary Replication Server:

a Determines which Replication Servers manage replicate databases
with subscriptions for the data

The primary Replication Server may have a direct route to a
subscribing Replication Server or an indirect route, with one or more
intermediate Replication Servers in between.

b Forwards the transaction to the appropriate replicate Replication
Server, where it is stored in a stable queue

c Applies the transaction to any local replicate database for which there
is a subscription for the data

3 The replicate Replication Server performs one or both of the following
actions:

CHAPTER 1 Introduction

Administration Guide 9

• Routes the transaction to another Replication Server

• Applies the transaction to replicate databases that it manages

Setting up a primary copy model system

In order to set up a system according to the basic primary copy model, you need
to:

• Set up routes and connections between Replication Servers.

For information on these topics, see Chapter 6, “Managing Routes” and
Chapter 7, “Managing Database Connections.”

• Create the table in the primary and replicate databases. The table should
have the same structure in each database.

• Create indexes and grant appropriate permissions on the tables.

For information on setting permissions for a Replication Server system,
see Chapter 8, “Managing Replication Server Security.”

• Allow replication on the tables using the sp_setreptable system procedure.

• Create a replication definition for the table at the primary site.

For information about creating replication definitions, see Chapter 9,
“Managing Replicated Tables.”

• At each site, create a subscription for the table replication definition at the
primary site.

For information about creating subscriptions, see Chapter 11, “Managing
Subscriptions.”

Other distributed data models
Besides the basic primary copy model, Replication Server also lets you design
your system based on other distributed data models, including:

• Distributed primary fragments

• Corporate rollup

• Redistributed corporate rollup

Replication Server and distributed database systems

10 Replication Server

These models are discussed briefly in this section. For complete information
about these distributed data models, refer to Chapter 3, “Implementation
Strategies,” in the Replication Server Design Guide.

Warm standby applications represent another type of application model. See
Chapter 3, “Managing Warm Standby Applications” in the Replication Server
Administration Guide Volume 2 for more information.

Distributed primary fragments

Applications that use the distributed primary fragments model include
distributed tables that contain both primary and replicated data. The
Replication Server at each site distributes modifications made to local primary
data to other sites and applies modifications received from other sites to the
data that is replicated locally.

Figure 1-4 diagrams the flow of data for distributed primary fragments.

CHAPTER 1 Introduction

Administration Guide 11

Figure 1-4: Distributed primary fragments model

The tasks needed to set up a distributed primary fragment system are similar to
those for creating a basic primary copy system, with the following exceptions
and additions:

• Your application should avoid or handle cases where multiple sites update
the same data at the same time. Sybase recommends that each fragment
have a single “owner” site.

• Databases can be both primary and replicate. Make sure that tables with
the same structure exist at both primary and replicate sites.

• Create routes from each primary site to all sites that subscribe to its data.

Replication Server and distributed database systems

12 Replication Server

• Create a replication definition at any site where there is primary data, even
if it is a “remote” site.

• Create subscriptions at each site for the replication definitions at the other
sites. If n is the number of sites, create n-1 subscriptions for each
replication definition.

Corporate rollup

The corporate rollup model has distributed primary fragments and a single,
centralized consolidated replicate table. The table at each primary site contains
only the data that is primary at that site. No data is replicated to these sites. The
corporate rollup table is a “roll-up” of the data at the primary sites.

Figure 1-5 illustrates the flow of data for a corporate rollup application model:

CHAPTER 1 Introduction

Administration Guide 13

Figure 1-5: Distributed primary fragments with corporate rollup

The corporate rollup model requires distinct replication definitions at each
primary site. The site where the data is consolidated subscribes to the
replication definition at each primary site.

Replication Server and distributed database systems

14 Replication Server

To create a corporate rollup application from distributed primary fragments:

• Activate a Replication Agent at each primary site. However, you do not
need to activate a Replication Agent at the central site, since data is not
replicated from that site.

• Create tables in each primary database and in the database at the central
site.

• Allow for replication on tables at each remote database where primary
data is stored.

• Create replication definitions for tables at each remote site where primary
data is stored.

• At the headquarters site, where the data is to be consolidated, create
subscriptions for the replication definitions at the remote sites.

Redistributed corporate rollup

The redistributed corporate rollup model is similar to the corporate rollup
model. Primary fragments distributed at remote sites are rolled up into a
consolidated table at a central site. At the site where the fragments are
consolidated, however, a Replication Agent processes the consolidated table as
if it were primary data. The data is then forwarded to Replication Server for
distribution to subscribers.

Figure 1-6 illustrates the flow of data in an application based on the
redistributed corporate rollup model:

CHAPTER 1 Introduction

Administration Guide 15

Figure 1-6: Distributed fragments with redistributed corporate rollup

The consolidated table is described with a replication definition. Other sites
can then subscribe to this table. Do not allow applications to update the
corporate rollup table directly. All updates should originate from the primary
sites.

The tasks associated with creating a redistributed corporate rollup replication
system are identical to the corporate rollup model, except that:

• A Replication Agent must be activated at the headquarters site for the
consolidated database so that all updates are submitted to the Replication
Server as if they were made by a client application.

Replication Server and distributed database systems

16 Replication Server

RepAgent must be configured with its send_maint_xacts_to_replicate
option set to “true.” Otherwise, the Replication Agent filters will not
redistribute replicated data as primary data.

For information about configuring RepAgent, see Chapter 4, “Managing
a Replication System.”

• A Replication Agent is required for the headquarters Replication Server,
since data will be redistributed from that site.

• At the headquarters site a replication definition must be created for each
table. Other sites can create subscriptions to this replication definition, but
the primary sites cannot subscribe to their own primary data.

• The headquarters Replication Server must have routes to the other sites
that create subscriptions for the consolidated replicate table. If the primary
sites create subscriptions, routes must be created to them from
headquarters.

• Do not allow rollup sites to re-create subscriptions to their primary data. If
they do, transactions could loop endlessly through the system.

Replication Server and heterogeneous data servers
Replication Server supports heterogeneous data servers through an open
interface. You can use any data-storage system as a data server if it supports a
set of required basic data operations and transaction-processing directives.

Sybase Client/Server Interfaces (C/SI) include routines and protocols for
client/server communication. Replication Server connects with data servers as
a client using C/SI. If a data server does not support C/SI, you can create an
Open Server™ gateway to allow Replication Server to access the data server
or you can use a Sybase DirectConnect™ product, which provides access to
other databases. When the data server returns results, the Open Server gateway
can return them to the client using C/SI routines.

For detailed information about using Replication Server with databases from
different vendors, see the Replication Server Heterogeneous Replication
Guide.

Other open architecture components include:

• Replication Agents

A Replication Agent detects modifications made to primary data and
submits them to Replication Server for distribution to other databases.

CHAPTER 1 Introduction

Administration Guide 17

The RepAgent thread in Adaptive Server is the Replication Agent for
Adaptive Server databases.

Replication Agents for Microsoft SQL Server, SQL Anywhere™, DB2,
Oracle, IMS, and VSAM databases are available from Sybase. If you use
non-Adaptive Server data servers, you must provide a Replication agent
for them. For details, see the Replication Server Design Guide and Sybase
documentation for Replication Agents.

• Error classes and error processing actions

Error classes allow you to tailor your system to handle database errors for
a type of data server. You can specify error actions in response to errors
that a data server returns to Replication Server. Replication Server
provides a default error class for Adaptive Server. See Chapter 6,
“Handling Errors and Exceptions” in the Replication Server
Administration Guide Volume 2 for details.

• Functions, function strings, and function-string classes

Replication Server uses function strings to format replicated operations
correctly for a type of destination database. To aid replication system
administrators, Replication Server groups all the function strings for a
particular type of database into a function-string class.

Replication Server provides default function-string classes for Adaptive
Server, Oracle, Microsoft SQL Server, Adaptive Server Anywhere, IMS,
VSAM, and DB2 databases. You can customize function strings to execute
commands appropriate for your database and application. See Chapter 2,
“Customizing Database Operations” in the Replication Server
Administration Guide Volume 2 for details.

Warm standby applications
Warm standby applications are used to maintain a set of databases, one or more
of which functions as standby copies of an active database. As clients update
the active database, Replication Server copies transactions to the standby
databases, maintaining consistency between them. Should the active database
fail for any reason, you can switch to a standby database, making it the active
database, and resume operations with little interruption.

Mixed-version replication systems

18 Replication Server

Replication Server provides two methods for setting up a warm standby
application. In both methods, the active and standby databases must be
Adaptive Server databases. They can act as either a primary or replicate
database with respect to other databases in the system.

• One method uses the multisite availability (MSA) feature to set up an
active and one or more standby databases. See Chapter 12, “Managing
Replicated Objects Using Multisite Availability,” for detailed
information.

• The second method lets you set up an active and a single standby database,
both of which must be managed by the same Replication Server. This
warm standby application is considered a single logical unit in a
Replication Server system. See Chapter 3, “Managing Warm Standby
Applications” in the Replication Server Administration Guide Volume 2
for detailed information.

Mixed-version replication systems
A replication system can include Replication Servers or Adaptive Servers of
different versions. Each program presents different issues.

You can use Replication Server version 11.5 and later with earlier versions of
Replication Server. In earlier versions, all Replication Servers had to be at the
same version before you could set the system version and enable certain
features. This restriction has been relaxed for systems running Replication
Server version 11.0.2 and later.

• When all Replication Servers are at least version 11.0.2 and the system
version is set to 11.0.2, each Replication Server uses features according to
its site version. Replication Servers running version 12.5 can use all 12.5
features among themselves, while Replication Servers running 11.0.2 can
only use 11.0.2 features. Such a system is called a mixed-version system;
each Replication Server can use all of its features.

See “Restrictions in mixed-version systems” on page 19 for more
information.

CHAPTER 1 Introduction

Administration Guide 19

• If the replication system includes Replication Servers prior to version
11.0.2, the system version number must be set to match the Replication
Server with the earliest software version, for example 11.0.1 or 10.1.1.
Certain new features that were introduced in later versions, including
features of version 12.5, will not be available to any Replication Server.
Such a replication system is not called a mixed-version system, because
new feature use is restricted.

Restrictions in mixed-version systems
Interaction between Replication Servers of different versions is restricted to the
capabilities of the oldest version. Information associated with new features
may not be available to Replication Servers of earlier versions.

See the documentation for each feature introduced in a new version, such as
function-string inheritance or multiple replication definitions, for additional
information about usage restrictions in mixed-version environments.

Refer to the installation and configuration guides and the release bulletin for
your platform for more information about mixed-version systems and about
setting the site version and system version.

Mixed versions of Adaptive Server
You can use Replication Server version 15.0 or later with different versions of
Adaptive Server. Although you can use data sources and destinations other
than Adaptive Server, Replication Server requires either Adaptive Server or
Adaptive Server Anywhere for warm standby databases and for Replication
Server System Databases (RSSD).

Note Sybase does not support replication of Adaptive Server system
databases, such as tempdb, model, sybsystemprocs, sybsecurity, and
sybsystemdb. The replication of the Adaptive Server system database master is
supported only if the Adaptive Server supports master database replication.

Some capabilities of Replication Server version 15.0.1 require you to use an
Adaptive Server version 15.0.1 or later.

Refer to the installation and configuration guides and the release bulletin for
your platform for more information about using Adaptive Server with
Replication Server.

Replication system security

20 Replication Server

Replication system security
Replication Server provides careful management of the login names,
passwords, and permissions that are essential for system security. In addition,
Replication Server supports third-party security mechanisms that safeguard
data transmission across the network.

See Chapter 8, “Managing Replication Server Security” for more information
about security.

Replication Server security features
Replication Server enforces security using the following features:

• Replication Server login names

Each Replication Server has its own set of login names, which are distinct
from data server login names. This distinction gives the replication system
administrator control over replicated data and other aspects of the
replication system.

• Data server login names

Data server login names are used with client applications to connect to
data servers. Clients are generally given permission to update primary
data. On replicate tables, however, clients are generally granted
permission to select or view data, but are prohibited from making changes
to data. These permissions are controlled in the data server, according to
the application.

• Data server maintenance user login names

Replication Server uses a special data server maintenance user login
name for each local data server database that contains replicate tables. This
allows Replication Server to maintain and update the replicate tables in the
database.

• Password encryption

You can encrypt passwords in sensitive areas of the replication system.

• Permission system

Replication Server permissions are assigned to and cancelled from
Replication Server login names using the grant and revoke commands.

CHAPTER 1 Introduction

Administration Guide 21

See “Replication Server roles and responsibilities” on page 21 for more
information about Replication Server and data server login names and roles.

Network-based security features
Replication Server supports third-party, network-based security mechanisms
that can:

• Establish unified logins to servers on the network

The security mechanism authenticates users at login. Each authenticated
user is given a security credential that can be presented to remote servers
as needed. As a result, users can seamlessly access different servers using
a single login.

• Ensure secure data transmission across the network

A choice of different data protection services can:

• Encrypt and decrypt data transmissions

• Verify that a transmission has not been tampered with

• Verify the origin of each transmission

• Verify that a transmission has not been captured and re-sent

• Verify that transmissions are received in the order sent

See “Managing network-based security” on page 210 for more information
about establishing network security.

Replication Server roles and responsibilities
Administering the replication system is primarily the role of the replication
system administrator. The database administrator plays a subsidiary role by
supporting some Replication Server administration tasks. At some sites, role
distinctions may not be clear-cut and some responsibilities can overlap. The
following sections describe user roles and Replication Server tasks.

Replication Server roles and responsibilities

22 Replication Server

Replication system administrator
The replication system administrator installs, configures, and administers the
replication system. On a WAN, this role may be performed by different people
at different locations. If this is the case, various tasks for administering
Replication Server may require coordination between replication system
administrators.

The replication system administrator has sa user permissions, which provide
that person with the ability to execute nearly all commands in the replication
system. In managing the system, the replication system administrator may need
to coordinate with database administrators for both local and remote databases.

Database administrator
The database administrator is responsible for:

• Administering local data servers, including login names and permissions.

• Managing data in a distributed database system. Various tasks may require
coordination between Database Administrators for different databases.

Replication Server tasks and responsibilities
Table 1-1 lists the tasks required to maintain the replication system.

Table 1-1: Replication Server tasks and responsibilities

Task and reference Roles

Installing Replication Server. Refer to the Replication Server installation and configuration
guides for your platform.

replication system
administrator (RSA),
database
administrator (DBA)

Starting up and shutting down Replication Server. See Chapter 4, “Managing a Replication
System.”

RSA

Quiescing Replication Server. See Chapter 4, “Managing a Replication System.” RSA, DBA

Adding login names, database users, and administering appropriate permissions. See
Chapter 8, “Managing Replication Server Security.”

RSA, DBA

Monitoring Replication Server. See Chapter 4, “Managing a Replication System.” RSA

Configuring Replication Server. See Chapter 4, “Managing a Replication System.” RSA

CHAPTER 1 Introduction

Administration Guide 23

Adding replicated tables and stored procedures or changing table schemas.

• Creating and modifying replicated tables and stored procedures.

• Creating and modifying table and function replication definitions.

• Creating and materializing subscriptions at replicate sites.

See Chapter 9, “Managing Replicated Tables” Chapter 10, “Managing Replicated
Functions” and Chapter 11, “Managing Subscriptions.”

RSA, DBA

Defining data server function-string classes and function strings. See Chapter 2,
“Customizing Database Operations,” in the Replication Server Administration Guide
Volume 2.

RSA, DBA

Maintaining routes.

• Creating and modifying routes.

See Chapter 6, “Managing Routes”

RSA

Maintaining and monitoring database connections.

• Suspending and resuming connections.

See Chapter 7, “Managing Database Connections.”

RSA

Creating a warm standby application. See Chapter 3, “Managing Warm Standby
Applications” in the Replication Server Administration Guide Volume 2.

RSA, DBA

Localizing Replication Server. Refer to the Replication Server Design Guide. RSA

Adding a primary or replicate database. See Chapter 7, “Managing Database Connections.” RSA, DBA

Adding or removing a Replication Server. See Chapter 4, “Managing a Replication
System.”

RSA

Processing rejected transactions. See Chapter 6, “Handling Errors and Exceptions” in the
Replication Server Administration Guide Volume 2.

RSA, DBA

Administering local data server.

• Suspending or resuming data server.

See Adaptive Server or local server documentation.

DBA

Managing the RSSD. See Chapter 4, “Managing a Replication System.” RSA, DBA

Managing Embedded Replication Server System Database (ERSSD). See Chapter 4,
“Managing a Replication System.”

RSA, DBA

Creating, deleting, and modifying databases for replication. See Adaptive Server or local
server documentation.

DBA

Setting up database user login names and passwords. See Adaptive Server or local server
documentation.

DBA

Performing regular backups. See Chapter 1, “Verifying and Monitoring Replication
Server” in the Replication Server Administration Guide Volume 2.

DBA

Applying database recovery procedures. See Chapter 7, “Replication System Recovery” in
the Replication Server Administration Guide Volume 2.

RSA, DBA

Reconciling database inconsistencies. See Chapter 11, “Managing Subscriptions.” RSA, DBA

Task and reference Roles

Replication Server roles and responsibilities

24 Replication Server

Administration Guide 25

C H A P T E R 2 Replication Server Technical
Overview

This chapter provides a technical overview of Replication Server and the
replication system.

This chapter introduces the components of a distributed database system
based on Replication Server and illustrates the movement of transactions
from a primary database to a replicate database. It identifies the aspects of
Replication Server that play a role in receiving and distributing data at
primary and replicate sites.

This chapter can aid in diagnosing and troubleshooting replication system
problems.

Replication system components
This section describes the components and resources that must be present
or assembled before you can run Replication Server. Components in a
Replication Server environment can include:

• Replication Server

• Adaptive Server or other data server

• Client applications

• Sybase Central

• Replication Manager (RM) plug-in to Sybase Central

Topic Page
Replication system components 25

Specifying data for replication 32

Establishing Replication Server connections 38

Specifying database operations 42

Transaction handling with Replication Server 43

Replication system components

26 Replication Server

• Replication Monitoring Services (RMS)

Each component uses the Open Client/Server™ Interface to communicate with
other components.

Figure 2-1 illustrates a simple configuration for a WAN-based distributed
database system based on Replication Server.

Figure 2-1: Replication Server Domain

Replication Server
Replication Server coordinates data replication activities for local databases
and exchanges data with Replication Servers that manage data at other sites. A
Replication Server:

CHAPTER 2 Replication Server Technical Overview

Administration Guide 27

• Receives transactions from primary databases and distributes them to
subscribing replicate databases

• Receives requests for data updates from a replicate database and applies
them to a primary database

See “Replication Server internal processing” on page 123 in the Replication
Server Administration Guide Volume 2 for more information about the internal
elements of the Replication Server.

ID Server

The ID Server is a Replication Server that registers all Replication Servers and
databases in the replication system. The ID Server must be running each time a:

• Replication Server is installed

• Route is created

• Database connection is created or dropped

Because of this requirement, the ID Server is the first Replication Server that
you start when you install a replication system.

The ID Server must have a login name for Replication Servers to use when they
connect to the ID Server. The login name is recorded in the configuration files
of all Replication Servers in the replication system by the rs_init configuration
program.

Note Once you have selected a login name for the ID Server, you cannot
change to a different Replication Server. Sybase does not support any
procedures that change the login name of the ID Server in the configuration
files.

See Chapter 4, “Managing a Replication System” for information about the
configuration file.

Replication system domain

Replication system domain refers to all replication system components that
use the same ID Server. You can set up multiple replication system domains,
with the following restrictions:

Replication system components

28 Replication Server

• Replication Servers in different domains cannot exchange data. Each
domain must be treated as a separate replication system with no cross-
communication between them. You cannot create a route between
Replication Servers in different domains.

• A database can be managed by only one Replication Server in one domain.
Any given database is in one, and only one, ID Server’s domain. This
means that you cannot create multiple connections to the same database
from different domains.

See “Adding a replication system domain” on page 89 for guidelines and
restrictions on adding multiple system domains.

Adaptive Server or other data server
Adaptive Server manages databases containing either primary or replicate data.
Client applications use Adaptive Server to store and retrieve data and to
process transactions and queries.

Each Replication Server requires an Adaptive Server database for its
Replication Server System Database (RSSD) or an Adaptive Server Anywhere
database for its Embedded Replication Server System Database (ERSSD),
which contains the Replication Server system tables.

Replication Server also supports heterogeneous data servers through an open
interface. You can use any system for storing data if it supports a set of required
basic data operations and transaction processing directives. For data servers
that contain primary databases, you must use a compatible Replication Agent
program.

See the Replication Server Heterogeneous Replication Guide for details on
heterogeneous data server support.

Replication Agent

A Replication Agent notifies Replication Server of actions in a primary
database that must be copied to other databases. The Replication Agent reads
the database transaction log and transfers log records for replicated tables and
stored procedures to the Replication Server managing the database, which
distributes the modifications to databases that subscribe to the data.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 29

A Replication Agent is needed for every database that contains primary data
and for every database where stored procedures that need to be replicated are
executed. A database that contains replicated data and no stored procedures
marked for replication does not require a Replication Agent.

Replication Agents communicate with Replication Server by executing
commands in Log Transfer Language (LTL).

Refer to Chapter 5, “Introduction to Replication Agents,” in the Replication
Server Design Guide for more information about LTL commands.

Which Replication Agent for your system?

The Replication Agent you use depends on the data servers in your replication
system. Supported Replication Agents are:

• RepAgent – for Adaptive Server data servers. RepAgent, a thread in
Adaptive Server, is the Replication Agent described in this book.

• Replication Agents for non-Sybase data servers:

• SQL Anywhere

• DB2

• Oracle

• IMS

• VSAM

You also can create a Replication Agent to replicate data from a foreign data
server. Refer to Chapter 5, “Introduction to Replication Agents,” in the
Replication Server Design Guide for details.

Replication Server System Database (RSSD)

The Replication Server System Database (RSSD) is a database that contains
the Replication Server system tables. Each Replication Server requires an
RSSD or an ERSSD, which holds the system tables for one Replication Server.
The RSSD is managed by the Adaptive Server. The ERSSD is managed by
Adaptive Server Anywhere.

System tables

The Replication Server system tables are loaded into the RSSD during
Replication Server installation. System tables hold information that
Replication Server requires to send and receive replicated data, and include:

Replication system components

30 Replication Server

• Descriptions of replicated data and related information

• Security records for Replication Server users

• Routing information for other sites

• Access methods for the local databases

• Other administrative information

Refer to Chapter 8, “Replication Server System Tables,” in the Replication
Server Reference Manual for a comprehensive list of system tables.

System table contents are modified during Replication Server activities, such
as the execution of RCL commands or Sybase Central procedures. Only the
replication system administrator, or members of the rs_systabgroup group, can
alter the system tables.

To query the system tables and find status information:

• Use Sybase Central to view replication system details and properties.

• Use Replication Server system information or system administration
commands. See “System Information Commands” and “System
Administration Commands” in Chapter 1, “Introduction to the Replication
Command Language,” in the Replication Server Reference Manual.

• Use Adaptive Server stored procedures to display information about the
replication system. Refer to Chapter 5, “Adaptive Server Commands and
System Procedures” in the Replication Server Reference Manual.

 Warning! RSSD tables are for internal use by Replication Server only. You
should never modify RSSD tables directly unless directed by Sybase Technical
Support.

RSSD and Replication Agent specifications

The RSSD is dedicated to the Replication Server that it supports; do not use it
to store user data. However, a single data server may contain the RSSD and
user databases. The database device space for the RSSD must be at least 20MB
(10MB for data and 10MB for the log). It is best to put the database and the
database log on separate devices.

A Replication Agent is needed for the RSSD if the Replication Server is the
source for any route. If this is true, Replication Server distributes some of the
information in its RSSD to other Replication Servers. See Chapter 6,
“Managing Routes” for more information.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 31

Client applications
A client application is a program that accesses a data server. When the data
server is Adaptive Server, applications can be programs created with Open
Client Client-Library™ or DB-Library™, Embedded SQL™, or any other
front-end development tool that is compatible with the Open Client/Server
Interfaces such as PowerBuilder®. Open Client/Server includes routines and
protocols for client/server communications.

In a simple replication system, clients update primary databases and
Replication Server updates replicate databases. By replicating stored
procedures, clients can update primary data from any replicate database.

Sybase Central
Sybase Central is a graphical management tool for Sybase products. It
implements the Sybase enterprise management strategy, which calls for a
single management console, seamlessly integrated, across all server and
middleware products. It connects to and manages Sybase products that are
running on any Sybase-supported platform.

The Replication Manager is a plug-in to Sybase Central, which allows you to
develop, manage, and monitor a replication environment.

With its easy-to-use interface, Replication Manager allows you to perform
many administrative tasks that you would otherwise use RCL commands to
perform, including:

• Creating, altering, and deleting Replication Server objects.

• Managing, monitoring, and troubleshooting replication system
components.

• Monitoring the availability of servers and the state of connections and
routes.

• Generating the RCL scripts for all Replication Server objects. Providing a
script editor window that allows users to submit RCL or SQL to a server.

• Managing a replication domain, including configuration parameters for
Replication Servers, Replication Agents, RepAgent threads , connections,
and routes.

• Controlling the flow of data by suspending and resuming connections and
routes.

• Displaying transactions in Replication Server stable queues.

Specifying data for replication

32 Replication Server

• Displaying transactions in Replication Server exception log and allowing
the user to edit and resubmit transactions.

• Managing a warm standby environment.

Note Sybase Central is available on Windows 2000, Windows 2003, and all
UNIX platforms that Replication Server supports.

Replication Manager (RM) plug-in to Sybase Central
Replication Manager is a management utility for developing, managing, and
monitoring replication environments. It allows you to create replication objects
such as connections, routes, replication definitions, and subscriptions.

Replication Monitoring Services (RMS)
Replication Monitoring Services is a monitoring tool that you can use if your
replication environment is fairly complex, involving ten or more servers. RMS
allows you to monitor various servers and components in your environment,
acting as a middle layer between the Replication Manager and the servers in
the replication environment. RMS also provides the ability to control the flow
of data and set the configuration parameters.

Specifying data for replication
Replication Server uses the relational database model to represent data in tables
that have a fixed number of columns and a varying number of rows. Each table
you want to replicate must have one or more columns that can be used as a
primary key to uniquely identify each row.

Replication Server lets you define the data and stored procedures that you want
to replicate at remote databases, as well as letting you specify the destination
databases themselves. As part of design and planning, you designate source
and destination databases for your replication system and create the routes that
replicated data follows from one Replication Server to another.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 33

In general, a source database contains primary data and may be called the
primary database, while a destination database contains replicate data and
may be called the replicate database. Depending on your implementation, the
same database may contain both primary and replicate data. Transactions or
stored procedure executions are replicated from primary to replicate databases.
Stored procedure executions may also be replicated from replicate to primary
databases.

See “Replication Server basic primary copy model” on page 6 for details.

Replication definitions and subscriptions for tables
You create one or more replication definitions to describe each primary
(source) table. A replication definition lists a table’s columns and datatypes, the
columns that make up the primary key, the columns that can be used in
subscribing to the primary data, and specifies the location of the primary
version of the table.

A replication definition may include additional settings to let you customize
how you will use it. For example, you can create a replication definition just
for replicating into a standby database in a warm standby application. Or, see
Chapter 9, “Managing Replicated Tables” for more information.

You then create subscriptions for transactions on the data defined in the
replication definition. A subscription instructs Replication Server to copy
transactions for all rows or for qualifying rows only. Copies of a table can be
limited to only the rows or columns needed.

Typically, creating a subscription causes Replication Server to copy the initial
requested data from the primary database to the replicate database. This
process is called subscription materialization. Once the subscription is
created and materialized, Replication Server begins distributing database
operations for the primary data as they occur. See Chapter 11, “Managing
Subscriptions” for details.

Replication definitions for database objects
Using multisite availability (MSA), you create a single database replication
definition to describe the data to be sent to the replicate database. The database
replication definition describes the database objects that are to be replicated.
You can choose to replicate, or not replicate, individual tables, transactions,
functions, system stored procedures, and DDL.

Specifying data for replication

34 Replication Server

You then create a single database subscription at each subscribing database
for the data described in the database replication definition. Database
subscriptions cannot limit the data copied.

MSA provides a simple replication methodology that requires only one
replication definition for the primary database and only one subscription for
each subscribing database. If you want to transform the data, replicate minimal
columns, or use primary keys to improve performance, you must add table and
function replication definitions.

 See Chapter 12, “Managing Replicated Objects Using Multisite Availability,”
for more information.

Replication definitions for stored procedures
For certain operations, replication of stored procedures may offer significant
performance improvements over table replication. In addition, you can
replicate stored procedures to update data from a replicate database to a
primary database. A replication definition of a stored procedure is called a
function replication definition.

Benefits of replicated functions over normal replication

Adaptive Server logs a record for each row modified by a Transact-SQL
command. When a single Transact-SQL command modifies multiple rows,
Replication Server treats each log record received from the Replication Agent
as a separate command in the transaction. For example, to replicate the results
of a single update command that modifies 1000 rows in the primary database,
Replication Server may execute 1000 update commands in each replicate
database.

Commands that modify many rows can affect performance of replicate
Adaptive Servers and the replication system. The volume of rows delivered
through the replication system may use all available space in stable queues.

If an application updates multiple rows in a primary table, you can use
replicated stored procedures to maintain data in destination databases. Because
commands in stored procedures can modify multiple rows, using stored
procedures allows you to update rows in replicate databases without passing
images of the rows through the replication system. Only a single record
reflecting stored-procedure execution and its parameters replicates through the
system.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 35

Using replicated functions

A function replication definition describes a replicated stored procedure and
includes:

• The parameters and datatypes

• The location of the primary data that the stored procedure may modify

• Parameters that can be used in subscribing to stored-procedure executions

• The name of the stored procedure to execute at the destination database

There are two types of replicated function delivery:

• Applied – executed at primary databases first and affect primary data.
Replication Servers propagate the stored procedure and its parameters,
applying data changes asynchronously at replicate sites that have
subscriptions for an applied function replication definition. The
maintenance user executes the applied function at the replicate sites.

• Request – executed at primary databases first and affect primary data.
Replication Servers propagate the stored procedure and its parameters,
applying data changes asynchronously at replicate sites that have
subscriptions for a request function replication definition. The same user
who executes the stored procedure at the primary databases executes the
request function at the replicate sites.

Typically, the request function delivery is used to modify the remote data
asynchronously at databases on other sites. The changes are replicated
back to the originating site via either normal data replication or applied
function delivery.

See Chapter 10, “Managing Replicated Functions” and Chapter 11,
“Managing Subscriptions” for details.

Publications
A publication lets you collect replication definitions for related tables and
stored procedures and then subscribe to them as a group. You create
publications at the primary Replication Server and subscribe to them at the
destination Replication Server.

When you use publications, you create and manage these objects:

Specifying data for replication

36 Replication Server

Article – identifies a replication definition, primary database, and publication.
It may also limit the number of rows or parameters sent to the replicate
database.

Publication – a collection of articles from a primary database.

Publication subscription – a subscription to a publication. When you create a
publication subscription, Replication Server creates a subscription for each
article in the publication.

Publications allow you to group replication definitions and subscriptions in a
manner that makes sense for your system. It also allows you to create and check
the status of only one subscription for a set of tables and procedures.

Overview of replicating tables
This section summarizes how to replicate transaction data between a primary
(source) and destination table. For more details, see “Marking tables for
replication” on page 270 and “Subscription example” on page 382.

• At the destination data server: Create a copy of a table into which data will
be replicated from the primary table. The copy may contain all or a subset
of the columns from the primary table.

At the primary Replication Server: Create a replication definition to
identify the table data you want to replicate. You can create one or more
replication definitions per table that can be replicated into different
destination databases. You can also create replication definitions for stored
procedures. See Chapter 10, “Managing Replicated Functions” for
details.

Once you have created a replication definition, transactions are available
for replication to qualifying destination Replication Servers that subscribe
to the replication definition.

You can create a set of articles that reference replication definitions and
group them in a publication. If you want to limit the transactions sent to
the destination database to those that affect certain rows, use a where
clause in the article.

• At the primary Adaptive Server: Use the sp_setreptable system procedure
to mark a table as replicated.

When you mark a table as replicated in the primary data server, the
Replication Agent for the primary database can forward the table’s
transactions to the primary Replication Server.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 37

If you want to replicate text, unitext, or image columns, you may also need
to use the sp_setrepcol system procedure.

If you use a different data source with a Replication Agent, refer to your
Replication Agent documentation for information about marking primary
objects for replication.

• At destination Replication Servers: Create a subscription for replication
definitions that were created in primary Replication Servers. A
subscription allows the destination table to receive the initial data from the
primary (source) table through a process known as materialization, and to
begin receiving subsequent replicated data updates.

You can create multiple subscriptions for each replication definition, but a
replicate table can subscribe to only one replication definition. You can set
up a subscription to receive all transactions for a destination table, or use
a where clause to receive just the transactions that affect certain rows.

Create publication subscriptions for publications created at the primary
Replication Server. When you do so, Replication Server creates an article
subscription for each article in the publication.

Creating subscriptions completes the process of replicating data. See
Chapter 11, “Managing Subscriptions” for details.

Commands for managing replicated data
Refer to the following resources for detailed information about each command
used to manage replicate data:

• Replication Manager plug-in help lists tasks and concepts for working
with table replication definitions, function replication definitions, and
subscriptions in Sybase Central.

• Table 9-1 on page 249 lists the Replication Server commands for working
with table replication definitions.

• Table 10-1 on page 333 lists the Replication Server commands for
working with function replication definitions.

• Table 9-3 on page 309 lists the Replication Server commands for working
with publications.

• Table 11-3 on page 370 lists the Replication Server commands for
working with subscriptions.

Establishing Replication Server connections

38 Replication Server

• Table 11-5 on page 396 lists the commands for working with publication
subscriptions.

Establishing Replication Server connections
Replication Server uses the Open Client/Server Interfaces to communicate
between client applications and servers.

Server programs, including Replication Servers, Adaptive Servers, and
gateway software for other data servers, are registered in a directory service—
either an interfaces file or a Lightweight Directory Access Protocol (LDAP)
server—so that client applications and other server programs can locate them.

Note If you are using network-based security, use the directory services of
your network security mechanism to register Replication Servers, Adaptive
Servers, and gateway software. Refer to the documentation that comes with
your network-based security mechanism for details.

Interfaces file
The interfaces file contains network definitions for servers in the replication
system, including Replication Servers and data servers.

Generally, one interfaces file at each site contains entries for all local and
remote Replication Servers and data servers. The entry for each server includes
its unique name and the network information that other servers and client
programs need to connect with it. The interfaces file at a site requires entries
for these components:

• ID Server (if Replication Server is not also the ID Server)

• Replication Server

• RSSD Adaptive Server or ERSSD Adaptive Server Anywhere for this
Replication Server

• ERSSD Replication Agent if a route is to be created from the current site

• Data servers with databases managed by this Replication Server

• Backup Server to back up Adaptive Server databases, including RSSDs

CHAPTER 2 Replication Server Technical Overview

Administration Guide 39

• Replication Servers at other sites that manage databases containing
primary data that is replicated to this site

• Replication Servers at other sites with subscriptions for primary data
maintained at this site

• Other Replication Servers to which this Replication Server has a route
with no intermediate Replication Servers

You can use the default interfaces file or you can specify an alternative
interfaces file at the command line when you start Replication Server. The
interfaces file is usually located in the Sybase release directory. Use a text
editor to modify the interfaces file. Refer to the Replication Server installation
and configuration guides for your platform for more information.

LDAP server
An LDAP server provides global directory services for sharing component
information such as server names and connection properties. LDAP directory
services allow components to look up directory information in a network-based
system.

Any type of LDAP service or gateway is an LDAP server. An LDAP driver
calls LDAP client libraries to establish connections to an LDAP server. The
LDAP driver and client libraries define the communication protocol and
content of messages exchanged between clients and servers. LDAP runs
directly over the Transmission Control Protocol (TCP).

When the LDAP driver connects to the LDAP server, the server establishes the
connection based on one of two authentication models:

• Anonymous access – which does not require any authentication
information, and is used typically for read-only privileges, or

• User name and password access – which is different from the user name
and password used to access Replication Server.

Replication Server uses the access information as an extension to the LDAP
URL. Access information is taken from this file:

• $SYBASE/$SYBASE_OCS/config/libtcl.cfg

• %SYBASE%\%SYBASE_OCS%\ini\libtcl.cfg (Windows 2000, 2003)

Establishing Replication Server connections

40 Replication Server

Replication Server uses Open Client/Server libraries to connect to LDAP
servers and Open Client/Server configurations and procedures to set up and
maintain LDAP services. See the Replication Server Configuration Guide for
your platform for directions on how to set up an LDAP directory. For detailed
information about Open Client/Server LDAP support, see the Open Client
Client-Library/C Reference Manual.

Making Replication Server connections
To connect data servers and Replication Servers at the sites on a LAN or WAN,
the replication system administrator at each site defines connections and
routes.

Organizing connections and routes is fundamental in planning replication. The
connections and routes you establish determine the number of Replication
Server components you need. In addition, how you map replication between
source and destination databases can impact system performance and data
availability.

To specify where data is copied requires that you create the following paths or
message streams between Replication Servers and between Replication
Servers and databases in the system:

• A connection from a Replication Server to a database

Replication Servers distribute transactions received from primary
databases through connections to the replicate databases they manage. A
Replication Server may have connections to several databases, but each
database can have only one connection from a Replication Server.

Warm standby applications also use a logical connection, which
represents both a database and its standby database.

• A route from a Replication Server to another Replication Server

From each source Replication Server that manages databases containing
primary data, you must specify a route to each destination Replication
Server that subscribes to the data.

You can specify a direct route from a source Replication Server to a
destination Replication Server, or an indirect route, with intermediate
Replication Servers between the source and destination Replication
Servers.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 41

Figure 2-2 depicts an enterprise with several locations in Europe. A New York
Replication Server routes all information for Europe through the London
Replication Server. This arrangement reduces the number of direct connections
the New York Replication Server makes and reduces WAN traffic. Data is sent
once from New York to London, rather than from New York to each European
location. The London Replication Server distributes the replicated data to the
other European locations.

Refer to the Replication Server Design Guide for details and rules on designing
routes and connections for a replication system.

See Chapter 6, “Managing Routes” and Chapter 7, “Managing Database
Connections” for guidelines and procedures on when and how to create routes
and connections.

See Chapter 3, “Managing Warm Standby Applications” in the Replication
Server Administration Guide Volume 2 for more information about logical
connections.

Figure 2-2: Routes and connections

New York

London
 Intermediate

Rome Bonn

 Source Replication Server

Destination
Replication

Servers

Connection Indirect routeDirect route

 Replication Server

Specifying database operations

42 Replication Server

Specifying database operations
Replication Server distributes database operations from a primary database to
destination Replication Servers as functions that consist of a name and a set of
data parameters. The destination Replication Server then uses function strings
to map functions to the commands recognized by the destination data server.
These commands represent transaction-control directives (begin transaction or
commit transaction) or data-manipulation instructions (insert, update, or delete).
The function string serves as a template or meta-command that transforms a
function to a data-server-specific command. The use of function strings makes
it possible for a primary site to replicate data to multiple heterogeneous data
servers. Function strings are categorized into function-string classes
according to data server type.

For example, a primary Replication Server transmits the rs_insert function to a
destination Replication Server, which uses the appropriate function string to
translate the function into the insert command specific for the data server in use
at that site, whether the database is Adaptive Server, DB2, or another database.

There are two types of functions:

• System functions – represent data-server operations with function strings
supplied by Replication Server or available when you install a new
database to the replication system.

• User-defined functions – allow you to customize Replication Server
applications to distribute stored procedures.

See Chapter 2, “Customizing Database Operations” in the Replication Server
Administration Guide Volume 2 for details.

Function strings
Function strings for functions can be automatically generated for function-
string classes that come with Replication Server. Function strings must be
customized for any function-string class that the user creates that does not
inherit its functions strings from one of the provided classes. To customize a
function string, you modify an existing function string with data-server-
specific commands or by invoking a remote procedure call (RPC). A
customized function string can also contain function string variables that
represent the values of columns, procedure parameters, system-defined
information, and user-defined variables. Replication Server replaces the
variables with actual values before sending function strings to the data server.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 43

See Chapter 2, “Customizing Database Operations” in the Replication Server
Administration Guide Volume 2 for details.

Function-string classes
A function-string class comprises all of the function strings used with a type of
database. Replication Server provides three function-string classes: two for
Adaptive Server and one for DB2. Although function strings may contain data-
server-specific instructions, they can often be used with several databases
maintained by the same data server type. You can create classes with all new
function strings or create a derived class that inherits function strings from an
existing parent class.

Transaction handling with Replication Server
Replication Server depends on data servers to provide the transaction-
processing services needed to protect stored data. To ensure the integrity of
distributed data, data servers must comply with the following transaction-
processing conventions:

• A transaction is one unit of work. Either all operations in the transaction
are performed or none are performed.

• Transaction results are permanent. A transaction cannot be arbitrarily
undone after it is committed.

Replication Server copies committed transactions from primary sites to
destination sites. It distributes transactions in the order they are committed so
that copied data passes through the same states as the primary (source) data.

Figure 2-3 illustrates Replication Server method for translating transactions.

Transaction handling with Replication Server

44 Replication Server

Figure 2-3: Translating transactions

Once the primary Replication Server sends transactions to subscribing sites,
destination Replication Servers store the transactions in the outbound Data
Server Interface (DSI) stable queue.

Stable queues
When you install Replication Server, you set up a disk partition that
Replication Server uses to establish stable queues. During replication
operations, Replication Server temporarily stores updates in these queues. You
can add more partitions later if your replication system requires more space for
stable queues.

There are three types of stable queues, each of which stores a different type of
data:

• Inbound queue – holds messages only from a Replication Agent. If the
database you add contains primary data, or if request stored procedures are
to be executed in the database for asynchronous delivery, Replication
Server creates an inbound queue and prepares to accept messages from a
Replication Agent for the database.

• Outbound queue – holds messages for a replicate database or a replicate
Replication Server. There is one outbound queue for each of these
destinations:

CHAPTER 2 Replication Server Technical Overview

Administration Guide 45

• For each replicate database managed by a Replication Server, there is
a Data Server Interface (DSI) outbound queue.

• For every Replication Server to which a Replication Server has a
route, there is a Replication Server Interface (RSI) outbound queue.

• Subscription materialization queue – holds messages related to newly
created or dropped subscriptions. This queue stores a valid transactional
“snapshot” from the primary database during subscription materialization
or from a replicate database during dematerialization.

See “Partitions for stable queues” on page 47 for physical queue requirements.

See the Replication Server Troubleshooting Guide for information on how to
examine queue contents for troubleshooting purposes.

Queue management

Each queue is managed by a Stable Queue Manager (SQM) thread. Threads are
subprocesses that manage specific tasks, such as receiving messages. Some
queues also have an additional Stable Queue Transaction (SQT) thread. See
“Processing in the primary Replication Server” on page 124 in the Replication
Server Administration Guide Volume 2 for details on the SQM and SQT
threads.

When transactions are ready to leave the stable queue, one of these threads
submits the transactions in the queue:

• Data Server Interface (DSI) thread – manages the connection with the
data server.

• Replication Server Interface (RSI) thread – manages the connection
with the replicate Replication Server.

The enhanced queue dump commands, gives you flexibility in identifying the
stable queues, controlling the stable queue contents to dump, and supporting
additional output file options. Replication Server also introduces commands
that allow you to delete and restore specific transactions from the SQM.

These are the commands that you can use for managing stable queues:

• sysadmin dump_queue

• sysadmin sqt_dump_queue

• resume connection

• sysadmin log_first_tran

Transaction handling with Replication Server

46 Replication Server

• sysadmin sqm_zap_tran

• sysadmin sqm_unzap_tran

• sysadmin dump_tran

See the Replication Server Reference Manual for detailed information about
these commands.

DSI thread

The DSI thread translates the transaction modifications into RPCs or the
language as specified by the function strings in the function-string class
assigned to the destination database.

Replication Server starts DSI threads to submit transactions to a replicate
database to which it has a connection.

The DSI thread performs the following tasks:

• Collects small transactions into groups by commit order.

• Maps functions to function strings according to the function-string class
assigned to the database connection.

• Executes the transactions in the replicate database.

• Takes action on any errors returned by the data server; depending on the
assigned error actions, also records any failed transactions in the
exceptions log.

To improve performance in sending transactions from a Replication Server to
a replicate database, you can configure a database connection so that
transactions are applied using multiple DSI threads. See “Using parallel DSI
threads” on page 151 in the Replication Server Administration Guide Volume
2 for a description of this feature.

The DSI thread may apply a mixture of transactions from all data sources
supported by the Replication Server. The transactions are processed in the
single outbound stable queue for the destination data server.

RSI thread

RSI threads send messages from one Replication Server to another. There is
one RSI thread for each destination Replication Server.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 47

The primary Replication Server processes transactions, causing those destined
for other Replication Servers to be written to RSI outbound queues. An RSI
thread logs in to each destination Replication Server and transfers messages
from the stable queue to the destination Replication Server.

When a direct route is created from one Replication Server to another, an RSI
thread in the source Replication Server logs in to the destination Replication
Server. When an indirect route is created, Replication Server does not create a
new stable queue and RSI thread. Messages for indirect routes are handled by
the RSI thread for the direct route. For more information, see “Establishing
Replication Server connections” on page 38.

Partitions for stable queues

Replication Server stores messages destined for data servers or other sites on
partitions. It allocates the space in partitions to stable queues and operates in
1MB chunks called segments. Each stable queue holds messages to be
delivered to another Replication Server or to a database.

The rs_init program assigns the initial partition to the Replication Server. Refer
to the Replication Server installation and configuration guides for more
information about working with partitions in rs_init.

The minimum initial partition is 20MB. You may need additional partitions,
depending on the number of databases the Replication Server manages and the
number of remote sites to which the Replication Server distributes messages.
Larger partitions may also be necessary when subscriptions are initiated or
when there are long-running transactions.

A Replication Server can have any number of partitions of varying sizes. The
sum of the partition sizes is the Replication Server capacity for queued
transactions.

Use the create partition command to assign additional partitions. See the
Replication Server Reference Manual for details.

When choosing a partition for Replication Server, consider these guidelines:

• Replication Server partitions should be operating system raw partitions.

• Do not mount the partition for use by the operating system.

• Do not use the partition for any other purpose, such as storing file systems,
maintaining swap space, or locating Adaptive Server devices.

Transaction handling with Replication Server

48 Replication Server

• Allocate the entire partition to Replication Server. If you allocate just a
portion of a partition for Replication Server, you cannot use the remainder
for any other purpose.

• Do not allow any users read/write permissions on the partition unless the
user is going to start Replication Server.

You can choose how Replication Server allocates queue segments to partitions
or you can use the default mechanism. The default mechanism assigns queue
segments to the next partition in an ordered list. Use the alter connection or alter
route command to choose a different allocation mechanism. See “Allocating
queue segments” on page 182 in the Replication Server Administration Guide
Volume 2 for more information.

Using disk files for stable queues

Partitions can be either raw disk partitions, which is preferable, or operating
system files. Where a choice is available, raw disk partitions provide the best
recoverability, since disk writes to raw disk partitions are not buffered by the
operating system.

To use a disk file for a partition, create the file before you execute the create
partition command. You can create an empty file and set its permissions so that
Replication Server can read and write to the file. Replication Server extends the
file to the size you specify.

Distributed concurrency control
Data servers that store primary data provide most of the concurrency control
needed for the distributed database system. If a transaction fails to update a
primary version of a table, the primary Replication Server does not distribute
the update to other sites.

When a transaction succeeds in updating primary data, the Replication Server
distributes the changes. Unless a failure occurs, the update succeeds at all sites
with subscriptions to the data.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 49

Transactions that modify data in multiple databases

A transaction that modifies primary data in more than one data server may
require additional concurrency control. According to the transaction
processing requirements, either all of the operations in the transaction must be
performed, or none of them. If a transaction fails on one data server, it must be
rolled back on all other data servers updated in the transaction.

If a multi-database transaction is replicated, updates to each database flow to
replicate databases as independent transactions because there is one
Replication Agent per database.

Failed replicate table updates

A modification to primary data may fail to update a copy of the data at a
subscribing site. The primary version is the “official” copy and updates that
succeed there are expected to succeed at subscribing sites with copies.

If the updates do not succeed, one of the following reasons may explain why:

• Replicate and primary versions are out of sync following a system
recovery and a loss has been detected.

See Chapter 7, “Replication System Recovery” in the Replication Server
Administration Guide Volume 2 for more information.

• The data server storing the copy of the table has constraints that are not
enforced by the data server storing the primary version.

• The data server storing the copy of the table rejects the transaction due to
a system failure, such as lack of space in the database or a full transaction
log.

When a transaction fails, Replication Server records the transaction in an
exceptions log for handling that is appropriate to the application. Replication
Server offers error handling flexibility through its error action feature. This
feature allows responses to data server errors based on your own defined
configuration settings. For example, you can specify that transactions be
retried at the site where they failed.

A client at each site must resolve transactions in the exceptions log, because
the appropriate resolution is application-dependent. In some cases, you can
automate the resolution by encapsulating the logic for handling rejected
transactions in an intelligent application program.

Transaction handling with Replication Server

50 Replication Server

Transaction processing by the Replication Agent
The Replication Agent scans the database transaction log and sends transaction
information to the Replication Server for distribution to subscribing databases.

This section describes transaction processing by Adaptive Server RepAgent
thread. Other Replication Agents may work differently.

Coordinating Adaptive Server log truncation

As long as there is space in the Adaptive Server database transaction log,
Adaptive Server continues to process transactions. To prevent the log from
filling up, it must be emptied (“truncated”) periodically. You can use the
Adaptive Server dump transaction command or set the Adaptive Server trunc
log on chkpt option to “on” so that the log truncates automatically.

Each primary database maintains primary and secondary truncation points in
its database log. The primary truncation point marks the last log record
Adaptive Server has finished processing. The secondary truncation point
normally marks the log record that contains the begin transaction command for
the oldest open transaction not yet fully applied by Replication Server.
Replication Server stores a copy of the latest secondary truncation point in the
rs_locater table of the RSSD.

RepAgent requests a new secondary truncation point when it has scanned a
predetermined number (batch) of records or has reached the end of the log and
there is no new activity. Replication Server acknowledges receipt of a batch of
transaction records by giving RepAgent the information that allows it to move
the secondary transaction point.

Adaptive Server makes sure that only transactions already processed and
passed to the Replication Server are deleted by never truncating the log past the
secondary truncation point.

RepAgent updates the secondary truncation point as shown in Figure 2-4.

CHAPTER 2 Replication Server Technical Overview

Administration Guide 51

Figure 2-4: Adaptive Server log truncation

1 RepAgent requests a new secondary truncation point from the primary
Replication Server.

2 The primary Replication Server returns the latest secondary truncation
point to the RepAgent and also writes it into the rs_locater system table.

3 RepAgent updates the secondary truncation point in the transaction log.

4 At the next checkpoint or dump transaction command, the log is truncated
up to the new secondary truncation point.

Schema information describes the structure of the database. Each time you
change the schema of a database object—such as dropping a table, creating a
clustered index, or renaming a column—Adaptive Server records current
schema information for that object. Thus, when RepAgent scans the
transaction log, it can always retrieve the correct schema for a table or
procedure—even if the original database object has been changed or no longer
exists. You do not need to drain the transaction log before executing schema
changes at the primary site.

Transaction handling with Replication Server

52 Replication Server

Administration Guide 53

C H A P T E R 3 Managing Replication Server
with Sybase Central

This chapter describes how you can manage your replication environment
using the Replication Manager (RM) plug-in and Replication Monitoring
Services (RMS). Sybase integrates its systems management tools into one
desktop product, called Sybase Central. Each server product, such as
Replication Server or Adaptive Server, can be managed from Sybase
Central.

See “Replication system components” on page 25, for a detailed
description of Replication Manager and Replication Monitoring Services.

Using Replication Manager from Sybase Central
This section describes how to use the Replication Manager plug-in with
Sybase Central.

Starting and stopping Sybase Central
This section explains how to start and stop Sybase Central.

Starting Sybase Central
On Windows Start Sybase Central using any of the standard methods for your Windows

operating system, such as:

• Select Start | Programs | Sybase | Sybase Central v6.0.

Topic Page
Using Replication Manager from Sybase Central 53

Setting up a replication environment 64

Monitoring a replication environment using RMS 75

Using Replication Manager from Sybase Central

54 Replication Server

• Create a shortcut on your desktop for Sybase Central.

• Double-click scjview.exe in the to %SYBASE%\Shared\Sybase Central
6.0.0/win32 and double-click .

• Add Sybase Central to your Startup program group.

On UNIX Start Sybase Central by going to $SYBASE/shared/sybcentral600 and
executing scjview.sh.

Stopping Sybase Central

To stop Sybase Central on Windows or UNIX, select File | Exit.

Getting started
After installing and configuring Replication Server:

1 Start Sybase Central.

2 Use RM to create a new replication environment that includes all data
servers, Replication Servers, and Replication Agents that participate in the
replication.

Replication Manager displays a two-pane window that contains icons for the
servers managed in the environment. Use this window to monitor the status of
the servers and to execute menu commands to diagnose and manage the servers
and other components of your replication system.

Using online help
The Replication Manager plug-in provides online help that presents
information on a broad range of help topics. The instructions for performing
specific tasks using the Replication Manager through Sybase Central are
detailed in the online help.

There are two types of help in the Replication Manager plug-in:

• Topic help

• Tooltips and status bar messages

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 55

Topic help

Topic help describes how to use Sybase Central to manage your replication
system. To display topic-level help, select Help from the Sybase Central main
menu, then select Replication Manager Online Help.

The Replication Manager help browser opens with two panes. The left pane
displays the table of contents, and the right pane displays contents of the
selected topic.

Click the Contents tab to browse through the topics by category.

• Book icons represent headings. Double-click a book icon to see the sub
entries under that heading. Sub entries can be other book icons or page
icons.

Topic headings are organized around Replication Server concepts (for
example, Managing Users, Managing Database Connections, and others)
for easy reference.

• Page icons represent topics that describe tasks, or concepts that
correspond to the heading under which they are listed. Topics are generally
organized in the order that you would perform procedures under that
heading. Double-click a page icon to display a topic.

Tooltips

Tooltips are small pop-up windows that provide a description of a control (that
is, a toolbar button or menu option) when a pointer is moved over that control.

Using the Replication Manager GUI
The Replication Manager user interface displays within the Sybase Central
framework. The main window allows you to access replication environment
and server objects.

Figure 3-1 shows Replication Manager in the Sybase Central main window.

Using Replication Manager from Sybase Central

56 Replication Server

Figure 3-1: Replication Manager in Sybase Central main window

The main window is divided into left and right panes. When you are connected
to a replication environment:

• The left pane displays a hierarchical list, or object tree, which shows:

• Icons for folders and objects in the replication environment

• Icons for other plug-ins, such as the Sybase Central plug-in for
Adaptive Server Enterprise, if they are installed

• The right pane displays the contents of the folder or object selected in the
left pane.

To adjust the size of the panes, use the mouse pointer to drag the splitter bar to
the left or right.

Selecting folder and object icons

The main window includes folder icons and object icons:

}Toolbar

Object
tree

Folder
icons

Status bar

Splitter bar

Object
icons

Event
Log

Details
pane

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 57

• Each folder icon contains all objects of its type within the replication
environment. For example, the Connections folder shows all connections.
Folder icons can appear in either the left or right pane.

Note A Replication Server connection is associated with one database in
an Adaptive Server.

• Each object icon represents one server object, such as a database, a table,
a replication definition, or a connection. Some objects contain other
objects, such as a database containing tables.

To select an object, click its icon. The type of object selected determines the
range of commands available. For most activities, you must select an object
before you can perform any operation on it.

Using the Details list

When you select an object in the left pane, one or more tabs appear in the right
pane. For most objects, a single tab called “Details” is displayed, containing a
list of general information about the object.

The Details list displays:

• Sub components, which are replication or database objects that are
contained in another object.

• Function components, which invoke a wizard when double-clicked.

Note When you select a thread object, several tabs appear in the right
pane.

Moving through the Sybase Central object tree

To see different parts of the object tree, use the following techniques:

• To move vertically through the current display, use the scroll bar on the left
or right pane.

• To expand or collapse the list to show different levels of detail, do one of
the following:

• Click the plus or minus buttons. A plus button next to an icon
indicates that the list of objects for that icon can be expanded. A minus
button indicates that the list of objects for the icon is fully expanded.

Using Replication Manager from Sybase Central

58 Replication Server

• Double-click a folder icon, which expands the list in the right pane
and changes the view to a list of objects in the folder. For most objects,
double-clicking an object icon in the right pane opens a property sheet
that displays information.

Customizing the display

To hide the folders, toolbar, status bar, or event log, select Folders, Toolbar
Status Bar, or Event Log from the View menu. To redisplay, repeat the
procedure.

To move the display of the right pane tabs from top to bottom or from left to
right, select Tools | Options.

Using keyboard shortcuts

In addition to using a mouse, you can use keyboard shortcuts to choose menu
commands and navigate through dialog boxes.

Every menu title and menu command has an underlined letter, called a
mnemonic. To select a menu, press Alt+mnemonic. To choose a menu
command, press the mnemonic key. You can execute some commands directly
by pressing Ctrl plus another key, or by pressing a function key. These
shortcuts are listed on the menus.

To navigate to different controls (for example, fields, lists, and buttons) in a
dialog box or property sheet, use the Tab key. To select different tabs in a
property sheet, use the Tab key to select the current tab, then use the left and
right arrow keys to select other tabs.

Using menus and toolbars

This section describes the Sybase Central menus and toolbar.

Context menu

To activate a context menu, right-click an object icon. From the menu that
appears, choose the appropriate command.

A context menu is specific to the selected object and contains commands that
are executed against the selected objects. You can execute some commands
against multiple objects at once.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 59

Toolbar and status bar

The Sybase Central toolbar provides quick alternatives for executing
frequently used menu commands. The status bar provides information about
the selected menu item.

To display or hide the toolbar or status bar, toggle the Toolbar or Status Bar
command on the View menu.

Toolbar The toolbar has the following controls:

• A drop-down list box that displays the hierarchy of the currently selected
object. You can select an object higher up the hierarchy to change the focus
of the main window.

• Buttons, which provide a quick way to execute menu commands.

Status bar The status bar is an information display bar located at the bottom of the
application window. In Sybase Central, the status bar displays a brief
description of the menu command at which the cursor is currently pointed. The
help line appears on the left side of the status bar.

Viewing events in the log pane

The Replication Manager displays the Event Log pane, which shows events
that occur in the replication environment. These events can be:

• Component state changes for connections, routes, and queues

• Server availability changes

• Background thread completion

• Background processes status

• RMS event trigger execution

Background processing

Several tasks performed by the Replication Manager can be very time-
consuming, such as creating a subscription that also materializes the table.
These tasks are performed in the background, allowing Replication Manager to
perform other tasks. When you start a time-consuming task, Replication
Manager displays a message window to indicate a running process. Click Stop
Process to cancel the background process or click Close to close the window,
to continue running the process in the background.

When a background task is completed, Replication Manager puts an event
entry in the event log.

Using Replication Manager from Sybase Central

60 Replication Server

To see the status of a background process at a later time, open the Background
Processes dialog, which displays a list of all the currently running processes.

To access the Background Processes dialog, select Search | Background
Processes. The Background Processes dialog opens, displaying the following:

• Process – the name of the process.

• Start time – the start time of the process.

• Status – the status of the process.

Using script editors

Replication Manager provides two script editors; the Replication Command
Language (RCL) script editor and the Structured Query Language (SQL) script
editor. Both editors operate in the same way, except the RCL script editor
highlights the RCL keywords while the SQL script editor highlights the SQL
keywords.

You can use the script editors to view generated RCL commands, which
include syntax to create any objects such as connection, routes, and replication
definitions.

❖ Accessing the script editor

1 Select the Replication Server object for which you want to generate RCL.

2 Right-click that object.

3 Select Generate RCL from the context menu. The selected script editor
window opens and contains the RCL needed to create the selected object.

Monitoring of status

The status of an environment is the state of its components. The status of a
server or component includes its current state and a list of reasons that describe
the state.

Replication Manager graphically displays the status of the servers and
components in the environment. It shows an object icon, which changes
depending on the state of an object. The status of the servers, connections,
routes, and queues also displays in the Properties dialog.

As you work, information in open dialog boxes and the Sybase Central window
may become unsynchronized. To update the contents of the main window,
select View | Refresh Folder or Refresh All, or press F5.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 61

Using Hide options for connection status

You can hide (or filter out) the connection status if you do not want to see the
it either on the individual connection icon or as part of the rollup status for
Replication Server.

The options for hiding connection status are as follows:

• Hide the State of the Replication Agent –– hides the state of the
Replication Agent thread in the Details list, on the Connection Properties
dialog box, and in the rollup status for the Replication Server to which that
Replication Agent thread is connected.

• Hide the State of the DSI Thread –– hides the state of the DSI thread in the
Details list, on the Connection Properties dialog box, and in the rollup
status for the Replication Server to which the DSI thread is associated.

❖ Hiding connection status

1 Right-click the connection for which to hide the status.

2 Select Hide Connection Status from the drop-down menu.

A dialog box displays which shows options for hiding the connection
status.

3 Select an option.

The state for the connection now reads “Hidden.” The state on the
Connection Properties dialog box and in the rollup status for the
Replication Server is also hidden. The Event Log records this change.

Filtering connection status different instances of Replication Manager

The filtering state of a connection status is stored locally by the Replication
Manager, therefore, different instances of Replication Manager do not share
filtering states. For example, if you create a connection using one instance of
Replication Manager, and then set the Replication Status to hide for that
connection, another Sybase Central plug-in instance monitoring the same
environment does not filter the connection status; filtering information is
available only to the original Replication Manager instance.

In addition, any connection created outside of Sybase Central (by rs_init or
from the command line) is not filtered automatically by the Replication
Manager. You must set the filtering manually from within Sybase Central.

Using Replication Manager from Sybase Central

62 Replication Server

Filtering connection status in warm standby environments

If you are creating a warm standby environment, the Replication Manager
automatically sets the filtering state for the active Data Server Interface (DSI)
thread and standby RepAgent thread connections. You must set filtering for the
physical connection manually by selecting one of the connection status hide
options from the context menu.

Performing common tasks

This section describes how to do these tasks, which are common to most
Sybase Central objects:

• Create an object

• View an object’s properties

• Delete an object

Creating an object

You can create new replication definitions, subscriptions, connections, and
other Replication Server objects in Sybase Central.

To create an object:

1 Select the folder for the type of object you want to create.

2 Select File | New.

3 From the cascading menu, choose the object name.

One of the following occurs:

• If a wizard exists to help you create the object, the wizard opens.
Respond to the wizard prompts.

• If no wizard exists, a property sheet displays. Fill in the information
for the new object.

Viewing an object’s properties

After you create an object, it is represented by an icon in any pane of the Sybase
Central window. You can display or update the object by opening its Properties
dialog.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 63

A Properties dialog contains information about the object and how it relates to
other objects in the replication environment. The Properties dialog can also
provide a direct navigation path to its related objects. It enables you to enter
information for a new object on tabbed pages.

The Properties dialog box generally has three tabs.

• General tab ––– displays all status.

• Communications tab ––– displays information on how Replication
Manager communicates with the server.

• Parameters tab ––– displays and allows modification to configuration
parameters for servers and components.

Note Some Properties dialogs may have different tabs. For example, a
connection has General, Security, and Parameters tabs.

To view an object’s properties:

1 Select the object icon.

2 Select File | Properties.

Deleting an object

To delete an object:

1 Select the object icon.

2 Select Edit | Delete.

3 Confirm the deletion in the confirmation dialog.

Naming data servers in RM

Data servers in RM must have unique names, and the names of the non-Sybase
data servers must match the Replication Agent configuration parameter
rs_source_ds. If an existing environment uses the same name for the
Replication Agent and the configuration parameter, change the name of the
agent by manually adding the server name, host, and port number in page 3 of
the Add Server wizard.

Setting up a replication environment

64 Replication Server

Setting up a replication environment
A replication environment includes replication objects such as Replication
Servers, data servers, and Replication Agents. Before any replication activities
can be performed, you must create and configure an environment.

Depending upon the scale and complexity of your replication environment, you
can set up either a two-tier or a three-tier solution for your environment.

Two-tier management
solution

In a two-tier management solution, Replication Manager (RM) connects
directly to the servers in the environment without communicating through a
management layer.

This lets you manage small, simple replication environments with fewer than
10 servers, and provides you the ability to create, alter, and delete components
in the replication environment.

Three-tier
management solution

In a three-tier management solution, Replication Manager can monitor larger
and complex replication environments with the help of Replication Monitoring
Services (RMS). RM connects to the servers in the environment through RMS.

RMS provides the monitoring capabilities for the replication environment. In
this solution, RMS monitors the status of the servers and other components in
the replication environment, and RM provides the client interface that displays
the information provided by the RMS.

Preparing for a two-tier solution
To prepare for a two-tier solution:

1 Install the Replication Server and Sybase Central software. See the release
bulletin and Replication Server Installation Guide for your platform.

2 Identify the data servers to be used in your replication system. If the data
servers are not yet installed, do so using the installation guide for your
specific data server.

3 Use rs_init to configure the Replication Server. See the Replication Server
Configuration Guide for your platform.

4 Start Sybase Central. See “Starting Sybase Central” on page 53.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 65

5 In Sybase Central, create a replication environment and add the data
servers and Replication Servers.

Note Replication Manager does not require a Sybase interfaces file, but you
have the option to use it.

Creating an environment
Creating the replication environment involves giving a name to your
environment, creating an environment object, setting up permissions, and
adding servers.

❖ Creating a replication environment object

1 In Sybase Central, click the Replication Manager icon in the left pane of
the Replication Manager window. The Add Replication Environment icon
displays on the Details pane.

2 Double-click the Add Replication Environment icon in the right pane.

3 Enter the name of your environment and click Next.

4 Enter a user name and password that will let you access the environment.
Click Next.

5 From the list of servers, select the ones to add to your environment, then
add a user name and password for each. If you are adding a Replication
Server, enter a user name and password for the RSSD. Click Next.

When adding servers, you must provide a user name and password that
have been granted certain permissions:

• Replication Server – sa permissions.

• Adaptive Server Enterprise – the sa_role and the sso_role.

• Replication Server RSSD – the database owner.

Note You can either select a server from the list or enter a server name,
host, and port number. This list is from the interfaces file found in the
$SYBASE directory.

Setting up a replication environment

66 Replication Server

6 Check the summary page to make sure you have added all the servers you
need. Then click Finish.

Note You are not required to add all servers when you create the environment.
You can add new servers to an existing environment by using the Add Server
wizard.

The new environment object displays in the left pane under the Replication
Manager object with the name you assigned.

Note If you update the sql.ini or interfaces file while Sybase Central is
running, you need only restart the wizard, or reopen any dialog box in progress.
You need not restart Sybase Central for the changes to take effect.

❖ Dropping a server from a replication environment in Sybase Central

1 Select the server you want to drop.

2 Do one of the following:

• Click the Delete icon from the toolbar.

• Right-click the selected server, select Delete.

Note Although Sybase Central removes the server from the replication
environment’s server list and removes the server icon from the environment,
the server is not removed from your replication system. If there are routes or
database connections still associated with a deleted server, the server name
may still appear in dialog boxes.

Connecting to and disconnecting from
a replication environment

The Replication Manager saves the environment information so that you do not
have to re-create it when you restart Sybase Central.

❖ Connecting to an existing replication environment

1 Select the environment to which you want to connect.

2 In the login dialog box, enter your user name and password.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 67

3 Click OK. This allows you to start managing the environment.

You can be connected to more than one environment or RMS domain at a time.

❖ Disconnecting from a replication environment

1 Select the environment from which you want to disconnect.

2 Select Tools | Disconnect. The Details view displays the state of the
environment you disconnected from.

Setting up a replication environment
using Replication Manager

The Replication Manager provides a wizard to help you quickly set up one of
several types of working replication environments, including:

• warm standby environment

• An environment consisting of one primary and multiple replicates

• A bidirectional replication environment

After you have created the replication environment, use the Configure
Replication wizard to create connections, database replication definitions, and
subscriptions for your replication tasks.

❖ Configuring replication

1 Select the environment object you created.

2 In the right pane, double-click Configure Replication. The Configure
Replication wizard appears.

3 In the Configure Replication wizard, select the type of environment you
want to create:

• Standard Replication Server warm standby environment. To
configure, go to “Configuring a standard warm standby
environment” on page 68.

• An environment where the primary database is replicated to several
replicate sites. To configure, go to “Configuring an environment with
one primary and multiple replicates” on page 69.

• Bidirectional replication environment. To configure, go to “Creating
a bidirectional replication environment” on page 70.

Setting up a replication environment

68 Replication Server

❖ Configuring a standard warm standby environment

Note If the active server you want to configure does not appear in the list, click
Add Server to open the Add Server wizard. Follow the procedure to add servers
in “Creating a replication environment object” on page 65.

1 After selecting the type of environment to create from the Configure
Replication wizard, click Next.

2 Select the active server and active database.

3 Select the Replication Server that will manage the database connections.

4 Select the standby server and standby database.

5 Enter the name of the logical connection.

When using an existing connection to create a warm standby logical
connection, you must use the existing data server and database names of
the active database for the logical connection name. See the Replication
Server Administration Guide Volume 2 for more information.

6 Enter the user name and password of the maintenance user. If the
maintenance user does not exist, the wizard creates one for you. Accept the
defaults, or enter your own values.

7 Select the user name and password that the RepAgent will use to connect
to the Replication Server. If the RepAgent user does not exist, the wizard
creates one for you. Accept the defaults, or enter your own values.

8 Select the materialization method.

9 Review the summary information about the replication environment.

10 If everything looks correct, click Finish. Otherwise, click Back to return to
an earlier window and change the replication environment information.
Then, return to the final wizard window and click Finish.

Replication Manager creates the following replication objects:

• Logical connections

• Physical connections

• Maintenance user in both active and standby Adaptive Server Enterprise
servers.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 69

❖ Configuring an environment with one primary and multiple replicates

Use this procedure to set up a warm standby environment where data is
replicated from one site to many replicate sites using multisite availability
(MSA).

Note If the active server you want to configure does not appear in the list, click
Add Server to open the Add Server wizard. Follow the procedure to add servers
in “Creating a replication environment object” on page 65.

1 Select the primary server and the primary database. Click Next.

2 Select the Replication Server that will manage the database connections.
Click Next.

3 Select a replicate server, then a corresponding database, and click Add.

The corresponding server.database connection displays in the
Connections list.

Repeat this step for each replicate server and replicate database pair you
need in your environment. Click Next.

4 Enter the user name and password of the maintenance user. If the
maintenance user does not exist, the wizard creates one for you. Accept the
defaults, or enter your own values. Click Next.

All selected connections will use this maintenance user login.

5 Select the user name and password that the RepAgent will use to connect
to Replication Server. If the RepAgent user does not exist, the wizard
creates one for you, assigning a default name and password. Accept the
defaults, or enter your own values. Click Next.

All connections will use this RepAgent login.

6 Specify how replicated tables will materialize:

• Create Subscription Without Materialization – use this method if the
primary data is already loaded at the replicate and updates are not in
progress.

• Define Subscription for Bulk Materialization – in this method, a
subscription is initialized by a user-specified mechanism outside the
replication system.

Setting up a replication environment

70 Replication Server

7 If you chose Define Subscription for Bulk Materialization, click Use
Dump Marker in the Transaction Log to use dump and load coordination.
Click Next.

8 Click Finish if everything looks correct in the information summary of
replication environment. Otherwise, click Back to return to an earlier
window and change the replication environment information. Then, return
to the final wizard window and click Finish.

At the end of the configuration, Replication Manager creates the following
replication objects:

• Physical connections

• A database replication definition for the primary database

• One or more database subscriptions for each of the replicate databases

• Maintenance user in Adaptive Server Enterprise servers

❖ Creating a bidirectional replication environment

Use this procedure to define an environment where data is updated at multiple
locations and replicated on each site.

1 Identify the servers and databases that will be part of the bidirectional
replication environment.

2 Follow steps 3 through 8 in configuring an environment with one primary
and multiple replicates.

Managing Replication Server objects
The Replication Server objects include connections, replication definitions,
subscriptions, and queues.

For non-Sybase data servers, RM uses DirectConnect to communicate with the
data servers and to act as an interface for RM. The status of DirectConnect is
reflected in the status of the non-Sybase data server.

Note RM does not support database replication definition, database
subscription, and creation of logical connection for non-Sybase data servers.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 71

Connections

Connections go from a database to a Replication Server, or from a Replication
Server to a database. Replication Servers distribute transactions received from
primary databases through connections to the replicate databases they manage.

❖ Creating a connection

1 Select the Connection folder from the Sybase Central object tree.

2 Double-click the Add Connection icon on the Details pane. The Add
Database Connection wizard opens. Click Next.

3 Select an active server and database from the drop-down list. Click Next.

4 Enter a user name or accept the default value.

5 Enter a password. Then, click Next.

6 Select from the given options. Click Next.

7 Click Finish after checking the summary of information.

8 If you created a replicate connection through DirectConnect to a non-
Sybase data server, manually execute the script that generates the tables
and procedures required for replication.

Replication definitions

A replication definition describes the source table to Replication Server,
specifying the columns you want to copy. It may also describe attributes of the
destination table. Destination tables that match the specified characteristics can
subscribe to the replication definition.

Replication Server provides replication at the database, table, and stored
procedure levels. RM allows you to create a replication definition for a
database, a table, or a stored procedure. A replication definition for a stored
procedure is called a “function replication definition”. You can create, edit, and
delete function replication definitions and function subscriptions.

This procedure describes how to create a replication definition for a database.

❖ Creating a replication definition on the primary database

1 In the object tree, double-click the database where you want to create a
replication definition. The Database Replication Definitions folder
displays.

2 Double-click the Database Replication Definitions folder. The Add New
Database Replication Definition window appears.

Setting up a replication environment

72 Replication Server

3 In the General tab, enter a replication definition name.

Note You can specify other replication definition settings on the other
given tabs.

4 Click Replicate all DDL if you want the DDL that is executed at the
primary database to be replicated to the replicate database.

5 Click OK.

Subscriptions

A subscription is created on the replicate database to subscribe to a specific
replication definition. It identifies the primary database, which contains the
data to be replicated.

You can create a subscription for any type of replication definition: databases,
tables, and stored procedures.

❖ Creating a subscription for a database replication definition

1 In the object tree, double-click the database where you want to create a
subscription.

2 Double-click the Database Subscriptions folder.

3 In the Details pane, double-click the Add Subscription icon.

4 Enter the name of the subscription.

5 Under Primary, select the Connection and the database replication
definition that you want to subscribe to.

6 Select a materialization method from the drop-down list (optional).

7 Specify whether to Subscribe to truncate table (optional).

8 Click OK.

Queues

Data that is passed between servers (Adaptive Server, Replication Server, and
so on) is stored in stable queues within Replication Server. Replication
Manager displays the statistics of queue usage and the content of the queues.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 73

Using the View Queue Data dialog box

The View Queue Data dialog box lets you filter and sort the data from a queue
as an aid in troubleshooting transactions in the queue. You can also edit, delete,
or undelete a given command, or purge the first transaction in the queue.

The View Queue Data dialog box contains these options:

• Filter fields, which let you select the type of filters that RM uses to display
data from the queue. These filters include:

• Column

• Column value

• Segment

• Number of blocks displayed

• Number of rows displayed

• Whether to start at the first segment

• Whether to include all data to the end of the segment

• Whether to include all rows

• Whether to show deleted data

• Whether to view all data to the end of the queue

• General buttons, which let you:

• Display the queue data with the current filters

• Close the dialog box

• Purge the first transaction from the queue

• Edit transactions

• Delete transactions

• Undelete transactions

• Group transactions, which returns the Queue Data scrolling list
display back to grouped transactions

Setting up a replication environment

74 Replication Server

• Queue Data scrolling list, which contains rows of data from the current
queue. Each column contains specific information about the command and
transaction contained in each row. For example, to sort the queue data by
a specific column, select the column name. The Queue Data scrolling list
refreshes, sorting the data according to that column. An arrow displays
next to the column name to show that you have sorted the data by that
column. The columns you can sort by include:

• Segment

• Transaction Name

• Command

• Origin Site

• Origin Commit Time

• Origin User

• Transaction ID

• Origin QID

Note You can delete, undelete, or purge queue transactions only when
Replication Server is in standalone mode.

❖ Viewing queue data

1 In the object tree, click the Queues folder. Queues display in the Details
pane.

2 In the Details pane, right-click the queue whose data you want to view.

3 Select View Data from the context menu. The View Data dialog box
opens.

4 To filter data shown, select one of the filter fields. See “Using the View
Queue Data dialog box” on page 73 for more information.

5 To sort the data, select segment, transaction, origin, size, status, commit
time, or user.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 75

Monitoring a replication environment using RMS
To monitor a replication environment, the Replication Manager connects to the
servers in the environment through the Replication Monitoring Services—a
middle-management layer that provides monitoring capabilities for replication
environment. RMS is an optional component of a replication system. It is used
to monitor large or complex environments. It also provides the ability to
control the flow of data and set the configuration parameters.

In a three-tier solution, you set up an RMS server to help you monitor your
replication environment. In this solution, RMS monitors the health and
availability of the servers and other components in your replication
environment.

Preparing for a three-tier solution
When you are creating a three-tier environment, you must connect to an RMS
server. In this environment, you must edit the interfaces file (UNIX) or the
sql.ini file (Windows) with the host name, port number, and server name. You
can edit this file using a text editor or the dsedit utility. You can use the same
interfaces file that the other servers in the replication environment use.

RM does not need an entry in the interfaces file for RMS. You can provide the
host name and port number of RMS directly to RM. The servers that are
managed by RMS must be in the RMS’s interfaces file.

See the Replication Server Configuration Guide for your platform for
information about configuring RMS.

Connecting to RMS
To connect to RMS:

1 Click the Connect icon from the toolbar; The Connect to a Replication
Domain window opens.

2 Select RMS Server.

3 Enter the user name and password needed to connect to RMS.

4 Select RMS from the list of servers in the drop-down list or click the
Options button to provide the connection information for the RMS.

5 Enter a server name, host, and port number.

Monitoring a replication environment using RMS

76 Replication Server

6 Click OK. The RMS server is added to your object tree.

See the Replication Server Configuration Guide for your platform for
information about starting/stopping RMS.

Adding and dropping servers through RMS
Servers in a three-tier environment are added and dropped in the same way as
in the two-tier environment. The difference is in the properties that display if
you select the object and view its properties. RMS is designed to monitor
servers and components, thus you can only view properties that RMS uses to
monitor and troubleshoot the replication environment.

Viewing managed objects
In the object tree, double-click or expand the RMS folder to view replication
objects managed by RMS. Under RMS, you can still see the connections,
routes, queues, and threads. When you select a replication object such as the
Routes folder, you can view the list of created routes. You can manage these
replication objects using the Replication Manager.

Viewing objects in the Replication Manager for RMS is exactly the same as
viewing objects in a two-tier environment.

Adding event triggers
Replication Monitoring Services is designed to monitor the replication
environment. When something happens in your environment, the server and
component status changes. These changes are displayed in the event log. You
can use RMS to create event triggers to monitor these changes.

Event triggers notify you when some event occurs in the replication
environment. RMS executes a script when the specified event occurs. For
example, a user can set up a script to request an e-mail message when a
connection becomes suspended. This capability lets you specify a method of
notification when an event occurs. You can create an event trigger for any
server or component that the RMS monitors.

❖ Creating an event trigger for a Replication Server

1 In the object tree, select the Replication Server.

CHAPTER 3 Managing Replication Server with Sybase Central

Administration Guide 77

2 On the right side of the desktop, select the Event Log pane.

3 Double-click the Add Server Event Trigger icon.

4 Select the status change that will trigger the event.

5 Enter a “Wait before executing” value (optional). This causes RMS to wait
for the event to change before executing the trigger.

6 Select “Execute at each interval” (optional). This causes RMS to execute
the trigger at each monitoring interval instead of just once.

7 Enter the name of the script for RMS to execute when the event occurs.

8 Click OK. The new event displays in the Event Log pane.

Monitoring a replication environment using RMS

78 Replication Server

Administration Guide 79

C H A P T E R 4 Managing a Replication System

This chapter tells you how to perform various Replication Server
operations, including starting and shutting down Replication Server, and
monitoring, maintaining, and configuring the replication system.

Setting up a replication system
This section lists the basic steps in setting up a replication system. This
process requires planning and careful attention to the replication needs of
your organization. If you are new to Replication Server, refer first to the
Replication Server Design Guide for information that can help you plan
your replication system.

You can perform some of these steps in rs_init, Replication Server
configuration utility, which allows you to configure Replication Servers
and add databases to your system. You can use Sybase Central to perform
most of the tasks listed here, including adding databases, creating
replication definitions, and creating subscriptions.

Installing the software Install your Sybase software according to the Replication Server
installation guide for your platform.

Topic Page
Setting up a replication system 79

Performing Replication Server tasks 82

Starting Replication Server 86

Shutting down Replication Server 87

Adding a Replication Server 88

Adding a replication system domain 89

Setting Replication Server configuration parameters 90

Managing the RSSD 95

Managing Embedded Replication Server System Database 97

Quiescing Replication Server 104

Removing a Replication Server 105

Setting up a replication system

80 Replication Server

Configuring the
replication system

After you install Replication Server, use the rs_init utility program to start and
configure the replication system and to add databases.

Refer to the Replication Server Configuration Guide for more information
about rs_init.

Creating connections and routes
To replicate data from one database into another, you must first establish the
routes and connections that allow Replication Server to move the data from its
source to its destination.

• Create connections

When you use Sybase Central or rs_init to add a database to your
replication system, the program creates the connection for you. You never
have to create a connection using the command-line option create
connection unless you are replicating data into a database that is not an
Adaptive Server database.

Refer to the Replication Server Configuration Guide for information about
using rs_init.

Refer to Chapter 7, “Managing Database Connections” for detailed
information about connections.

• Create routes

Create routes using Sybase Central or the create route command at the
source Replication Server.

Refer to Chapter 6, “Managing Routes” for more information about how
to create routes.

Setting permissions and security
Set up login names, passwords, and permissions to establish Replication Server
security for the replication system. Replication Server login names and specific
permissions are required for:

• Users who are setting up replicated data or monitoring and managing the
Replication Server. You can create these users in Sybase Central or at the
command line.

CHAPTER 4 Managing a Replication System

Administration Guide 81

See “Managing Replication Server user security” on page 199 for
information about creating users at the command line.

• Components of the replication system, such as the data server and the
Replication Server. You can create system users in rs_init or at the
command line.

Refer to the installation and configuration guides for your platform for
information about rs_init. See “Managing Replication Server system
security” on page 192 for information about creating system users at the
command line.

If network-based security is enabled at your site, you can set up secure
pathways and choose message protection options for Replication Server to
Replication Server communications. See “Managing network-based security”
on page 210 for detailed information about setting up network-based security.

Verifying the replication system
You must verify that the entire replication system is working before you create
replication definitions or subscriptions or perform system diagnostics.

See “Verifying a replication system” on page 2 of Replication Server
Administration Guide Volume 2 for a detailed description of verifying the
replication system.

Creating replication definitions
To set up a table for replication, mark it as replicated in Adaptive Server and
define a replication definition for it in Replication Server. The replication
definition describes the table and contains information about the columns to be
replicated.

• If you plan to replicate stored procedures, create the stored procedure in
both the primary and replicate database.

• If you are replicating the procedure from the primary to replicate database,
mark the stored procedure for replication in the primary database.

• If you are replicating the procedure from the replicate to the primary
database, mark the stored procedure for replication in the replicate
database.

Performing Replication Server tasks

82 Replication Server

Create a function replication definition for the stored procedure at the primary
Replication Server, even if you are replicating the stored procedure from a
replicate database to the primary database.

Refer to Chapter 9, “Managing Replicated Tables” for more information about
creating replication definitions. Refer to Chapter 10, “Managing Replicated
Functions” for more information about replicated function delivery.

Creating subscriptions
A subscription instructs Replication Server to copy data from primary tables to
specified replicate databases. If you create a replication definition for a table at
Replication Server, you must create a subscription for that table replication
definition at the replicate database. Similarly, if you create a function
replication definition for a stored procedure, you must create a subscription for
that function replication definition at the replicate database. However, you do
not need to create subscriptions for table or function replication definitions that
update primary databases.

Refer to Chapter 11, “Managing Subscriptions” for more information.

Performing Replication Server tasks
This section describes several tools that you use when interacting with
Replication Server.

rs_init allows you to set up a new Replication Server and add new databases to
the system.

You execute RCL commands by connecting to Replication Server using a
client application. You can use a utility program such as Sybase Central or isql,
or you can use a custom application program that you create with Open Client
Client-Library.

Sybase Central Replication Manager plug-in component provides a graphical
user interface for performing many of the tasks associated with managing a
Replication Server system.

Since many of the commands described in this book are used on an as-needed
basis, isql is a convenient way to execute them.

CHAPTER 4 Managing a Replication System

Administration Guide 83

RCL commands are similar to Transact-SQL commands. Refer to Chapter 3,
“Replication Server Commands,” in the Replication Server Reference Manual
for complete syntax for all RCL commands.

Using rs_init
Use the rs_init utility to configure a new Replication Server and to add
databases to your replication system. If you have an existing Replication
Server, you can use rs_init to upgrade to a new version or downgrade to a
previous version. rs_init is installed with the Sybase software. You can use it
interactively or with a resource file.

Refer to the Replication Server Configuration Guide for your platform for
complete instructions on using rs_init.

Managing Replication Server with Sybase Central
Sybase Central is a Replication Server system management tool. It provides a
graphical user interface that allows you to monitor the components of the
replication system and perform Replication Server tasks.

With Sybase Central, you can view a graphical representation of the topology
of the replication system, which allows you to group objects and view status
information. Sybase Central also provides menus for performing tasks and
monitoring objects.

With Sybase Central, you can:

• Perform many of the tasks available from the Replication Server command
line and isql, often more quickly than using equivalent Transact-SQL or
RCL commands. For example, you can manage users, create routes and
connections, create replication definitions and subscriptions, and manage
warm standby applications.

• Display multiple Replication Server connections and selectively view the
contents of queues.

Refer to Chapter 3, “Managing Replication Server with Sybase Central” for
information about navigating Sybase Central.

Performing Replication Server tasks

84 Replication Server

Using isql
You can use the isql utility to execute:

• ERSSD (Embedded Replication Server System Database) commands,
using the primary user name and password from the Replication Server
configuration file.

• RCL commands interactively

• Scripts stored in text files

For simple operations, using isql interactively may be easiest.

For more complex operations, Sybase recommends using isql to execute
scripts, so you can keep a record of the RCL commands you have executed to
set up a Replication Server. You can edit scripts and resubmit them whenever
necessary. Scripts are also useful when you are verifying a new system or
investigating the cause of a failure.

You can use isql to log in to Replication Server or Adaptive Server. This section
describes both the interactive and script methods for using isql with Replication
Server. For information about using isql with Adaptive Server, refer to the
Adaptive Server utility programs manual for your operating system.

Using isql interactively

To use isql interactively:

1 If necessary, start the Replication Server, as described in “Starting
Replication Server” on page 86.

2 Log in to the Replication Server using the following command:

isql -Uuser_name -Ppassword -Sserver_name

Specify the name of the Replication Server using the -S flag.

If your login is accepted, isql displays a prompt:

1>

3 Enter the RCL command you want to execute.

When you press the Return key at the end of a line, isql increases the line
number. Some commands require more than one line.

4 To execute the command, enter “go” (on a line by itself, with no blanks)
and press Return.

CHAPTER 4 Managing a Replication System

Administration Guide 85

To cancel the command, enter “reset” and press Return. The prompt’s line
number is reset to 1.

Some RCL commands display immediate results. Others execute
asynchronously, that is, they return a system prompt without necessarily
having completed the desired action and report only syntax errors.

5 To exit isql, enter “quit” at the beginning of a line.

Note You can check the status of asynchronous commands by executing
RCL commands that display status or by querying the RSSD system tables
at the affected sites. Refer to Chapter 8, “Replication Server System
Tables,” in the Replication Server Reference Manual for more information
on system tables and the stored procedures you can use to query them.

Using isql to execute scripts

You can create scripts of RCL commands and execute them using isql. This
procedure is useful when you need to execute the same set of commands in
Replication Servers at multiple sites.

To create and execute a script for isql:

1 As necessary, start the Replication Server, as described in “Starting
Replication Server” on page 86.

2 Create a text file for your script, and enter into it the RCL commands you
want to execute. As with the interactive method, separate each command
with the word “go” on a line by itself.

3 Execute the script using the following isql syntax:

isql -Uuser_name -Ppassword -Sserver_name
-iscript_name

The isql utility displays the results from the script’s commands on your
screen (standard output). Or, you can redirect the output to a file:

isql -Uuser_name -Ppassword -Sserver_name
-iscript_name > output_file

Starting Replication Server

86 Replication Server

Starting Replication Server
Normally, you need to restart Replication Server only if you are reconfiguring
system files or if your system experienced a failure that brought down
Replication Server. Initially, the installation process starts the replication
system for you.

To bring up a Replication Server site, start system components in this
sequence:

1 Start the data server containing the databases that Replication Server
manages.

2 If Replication Server uses Adaptive Server Enterprise for the RSSD, start
the RSSD. For more details, see the Replication Server Installation Guide
for your platform.

3 Start Replication Server by running the repserver command on UNIX
systems, or the repsrvr.exe command on Windows 2000 or 2003 systems,
or by executing the Replication Server run file.

See “Replication Server executable program” on page 86.

4 Start RepAgent for the data server and for the RSSD if RepAgent has not
been configured to start automatically at server startup.

5 To ensure that Replication Server started with no errors:

• Check the repserver.log file for error messages (indicated with the
letter “E” on the left), as described in “Replication Server error log”
on page 204 in the Replication Server Administration Guide Volume
2.

• Use isql to log in to each Replication Server, or use a script that logs
in to each server. See “Verifying server status” on page 4 in the
Replication Server Administration Guide Volume 2.

Replication Server executable program
You use the repserver or repsrvr.exe command at the operating system prompt
to run the Replication Server program.

For example, to run repserver, log in to the operating system as the “sybase”
user, and execute repserver using the following syntax:

CHAPTER 4 Managing a Replication System

Administration Guide 87

repserver [-C config_file] [-i id_server] [-S rs_name]
[-I interfaces_file] [-E errorlog_file] [-M] [-v]
[-K keytab_file]

Refer to Chapter 7, “Executable Programs,” in the Replication Server
Reference Manual for complete information about each of the parameters of
the repserver command.

The rs_init program creates the run file “RUN_name,” where name is the name
of the Replication Server. The run file specifies the repserver command with
parameters set for the installed Replication Server. Normally, you start
Replication Server by executing the run file.

The Replication Server executable program and the Replication Server run file
are located in the bin subdirectory of the Sybase release directory. Refer to your
platform’s Replication Server installation and configuration guides for more
information.

Replication Server configuration file
Replication Server finds the startup information it needs in a configuration file.
The file is created by the rs_init program, but it can be edited with a text editor.
If it contains encrypted passwords, however, you must modify them using
rs_init. Refer to your platform’s Replication Server installation and
configuration guides for more information. The default name for the
Replication Server configuration file is the Replication Server name with
“.cfg” appended.

Shutting down Replication Server
To shut down a Replication Server, log in to it and enter this command at the
isql prompt:

shutdown

When you shut down a Replication Server, it refuses additional connections,
terminates threads, and exits.

Adding a Replication Server

88 Replication Server

Adding a Replication Server
The first Replication Server you install must be the ID Server. It must be
running when you install new Replication Servers or add databases to the
replication system.

To add a Replication Server to a replication system, use the rs_init program, as
described in your platform’s installation and configuration guides. Always
conduct a careful review and analysis of how the additional Replication Server
will fit into your system. Determine the other processes that are required for the
server and designate required names and accounts for these processes.

See “Creating an environment” on page 65 for instructions on adding
Replication Server in Sybase Central.

When you install each Replication Server, rs_init performs the following tasks:

• Creates a configuration file for the Replication Server

• Creates an executable run file to start the Replication Server

• Sets RepAgent parameters at Adaptive Server

• Creates and initializes the RSSD or the ERSSD.

• Starts the Replication Server and RepAgent for the RSSD, as necessary

After you have executed rs_init for each Replication Server you are adding:

1 Determine the routing for the Replication Server, and modify the routes in
the existing system to accommodate the new Replication Server.

See Chapter 6, “Managing Routes” for details.

2 If you want to add a new database, prepare that database for replication.

See Chapter 7, “Managing Database Connections” for details.

3 Grant users the appropriate permissions for Replication Server commands.

See Chapter 8, “Managing Replication Server Security” for details.

4 If applicable, add replication definitions, subscriptions, function-string
classes, and error classes for the Replication Server.

See Chapter 9, “Managing Replicated Tables” and Chapter 11,
“Managing Subscriptions”. See also Chapter 2, “Customizing Database
Operations” and Chapter 6, “Handling Errors and Exceptions” in the
Replication Server Administration Guide Volume 2 for more information.

CHAPTER 4 Managing a Replication System

Administration Guide 89

Adding a replication system domain
A replication system domain includes all replication system components that
use the same ID Server. Most replication systems should be set up as a single
domain with a single ID Server. However, you may require replicates of two
separate data environments in the following situations if:

• Your enterprise requires data management by separate groups, sites, or
independent organizations.

• You need to eliminate an ID Server as a single point of failure, thereby
creating a fault-tolerant system.

An ID Server failure in a domain results in system degradation. New
Replication Servers and databases cannot be added to a domain as long as
the ID Server is shut down.

If you do use multiple replication system domains, be sure to have completely
independent data environments. For example, assume you have one data
environment tracking personnel, and another tracking inventory. As long as
there is no data sharing or relationship between these two groups, you can
create two separate domains, one for each data environment.

Guidelines for adding replication system domains
When creating multiple ID Servers for multiple replication system domains,
observe these guidelines:

• Make sure all Replication Server and data server names are globally
unique across domains.

By using unique names, you simplify your administration and prevent
confusion, especially in the interfaces files, which contain network access
information for servers.

• Maintain unique names and distinct ID numbers to accommodate the
future possibility of data transfer between domains (that is, merging of
domains).

• Provide a different range of database and Replication Server ID
numbers for each domain.

• Make sure the ID numbers of any additional domains are large enough
so that they do not overlap with the ranges of the first domain. See
“Example of assigning ID numbers” on page 90.

Setting Replication Server configuration parameters

90 Replication Server

• Make sure that replication definition names are globally unique within and
between ID Server domains.

Example of assigning
ID numbers

The ID number is increased each time a Replication Server or database is added
to the replication system. By default, your first ID number for a data server is
101. For a Replication Server it is 16,777,317. The last possible ID number for
a data server is 16,777,316. For a Replication Server it is 33,554,431.

If you are creating two domains, you could assign ID numbers according to
Table 4-1.

Table 4-1: Suggested ID numbers for multiple ID Servers

When you are installing an ID Server using the rs_init program, you can specify
the Starting Replication Server ID and the Starting Database ID.

Note Make sure your ranges do not overlap from one domain to another. Make
your ranges large enough so that ID numbers can never increase to the next
range. For example, a range of 99,999 accommodates nearly all possible cases.

Setting Replication Server configuration parameters
You can configure Replication Server or specific objects within the replication
system by using one of several methods that update configuration parameters
in the rs_config system table in the RSSD or the ERSSD. You can also check
configuration status information in this table. This section includes:

• An overview of configuration parameters and the objects that these
parameters affect

Component First ID number Last ID number

1st domain data server 101 99,999

2nd domain data server 100,000 16,777,316

1st domain Replication Server 16,777,317 17,777,316

2nd domain Replication Server 17,777,317 33,554,431

CHAPTER 4 Managing a Replication System

Administration Guide 91

• Information about displaying parameters related to the current Replication
Server

Note Replication Server startup information is stored in a configuration file
created by rs_init. The default name for the Replication Server configuration
file is the Replication Server name with “.cfg” appended. Refer to Chapter 7,
“Executable Programs,” in the Replication Server Reference Manual for more
information about the configuration parameters stored in this file.

About configuration parameters
Replication Server reads configuration parameters from the rs_config system
table in the RSSD or ERSSD.

All configuration parameters have default values, which are inserted in the
table when you use the rs_init utility to create the RSSD or ERSSD. The default
values are sufficient for most replication systems. Normally, you change
default values only for unusual environments or special situations. For
example, you may need to adjust parameters for performance tuning if your
system has a large number of replication definitions or subscriptions. You can
change default values using the configure replication server command. See
“Configuration parameters that affect performance” on page 131 in the
Replication Server Administration Guide Volume 2 for information on these
parameters.

Parameters governing the names and version numbers of the Replication
Server and its components can also be set with rs_init. Table 4-2 describes these
basic parameters.

 Warning! Do not change the values for the parameters listed in Table 4-2. The
values are set when you run rs_init and should only be modified by the rs_init
program when you upgrade or downgrade Replication Server.

Table 4-2: Basic configuration parameters

Configuration
parameter Description

current_rssd_version The Replication Server version supported by this RSSD. The Replication Server checks
this value at startup.

id_server The name of the ID Server for this Replication Server.

Setting Replication Server configuration parameters

92 Replication Server

rs_init also sets the password encryption configuration parameter. For
information about it, refer to “Enabling and disabling password encryption in
sysattributes” on page 201.

Many configuration parameters also have values for specific objects. You set
these values after installation when your system requires the fine-tuning that
these parameters allow. For example, default route parameters affect all routes
that originate at the current Replication Server. If necessary, you change the
default settings for these parameters with configure replication server. You also
can set parameter values for individual routes by using the alter route
command.

Setting some configuration parameters requires a technical understanding of
the replication system. See Chapter 2, “Replication Server Technical
Overview” in this book and Chapter 4, “Performance Tuning” in the
Replication Server Administration Guide Volume 2 for information on how the
replication system works.

It is important to back up the RSSD periodically, and whenever you do
anything to change its state. ERSSD is already configured for daily automated
backup. See “Managing the RSSD” on page 95 for more information, or
“Managing Embedded Replication Server System Database” on page 97.

minimum_rssd_version The minimum version of the Replication Server that can use this RSSD. When the
current_rssd_version is greater than the version of the Replication Server, this value is
checked when the Replication Server is started.

oserver The name of the current Replication Server.

prev_min_rssd_version Following an rs_init installation upgrade, this value contains the previous value of
minimum_rssd_version.

prev_rssd_version Following an rs_init installation upgrade, this value contains the previous value of
current_rssd_version.

rssd_error_class Error class for the RSSD. Default: “rs_sqlserver_error_class”

send_enc_pw Ensures that Replication Server makes client connections to the RSSD with an encrypted
password. Values are “on” and “off” (the default).

See “Sending encrypted passwords for Replication Server client connections” on page
196.

Configuration
parameter Description

CHAPTER 4 Managing a Replication System

Administration Guide 93

Different types of configuration parameters

Configuration parameters in the rs_config system table affect the Replication
Server and different database objects. The method for changing a parameter
also varies according to the object that the parameter affects. The different
types of configuration parameters are as follows:

• Local Replication Server – parameters whose effects are restricted to the
current Replication Server. These parameters are listed in Table 4-2 on
page 91 and Table 4-2 on page 132 in the Replication Server
Administration Guide Volume 2. See “Changing Replication Server
parameters” on page 94 for instructions about setting Replication Server
parameter values with configure replication server.

• Route – parameters that affect routes from the current Replication Server
to other Replication Servers. See “Changing routes” on page 151 for
information about setting default and per-target values for route
parameters.

• Database connection – parameters that affect database connections
originating with the Replication Server. See “Setting and changing
parameters affecting physical connections” on page 172 for information
about setting default and per-target values for database connection
parameters. See also “Parallel DSI parameters” on page 152 in the
Replication Server Administration Guide Volume 2 for information about
parameters for database connection parameters for parallel DSI.

• Logical database connection – Replication Server parameters that apply to
logical database connections for warm standby applications. See
“Changing parameters affecting logical connections” on page 99 in the
Replication Server Administration Guide Volume 2 for information about
setting default and per-target values for logical connection parameters.

• Network-based security services – parameters that affect network security.
See “Managing network-based security” on page 210 for information
about setting security parameters.

• Performance – parameters that affect the performance of a Replication
Server. See “Configuration parameters that affect performance” on page
131 and “Parallel DSI parameters” on page 152 in the Replication Server
Administration Guide Volume 2.

Setting Replication Server configuration parameters

94 Replication Server

Changing Replication Server parameters
You can modify configuration parameters that affect the current Replication
Server by using the configure replication server command at the Replication
Server.

To change default configuration parameters using configure replication server,
log in to Replication Server and execute configure replication server at the isql
prompt.

Use the following syntax where config_param is a character string that
corresponds to the configuration parameter name and value is a character string
representing the setting you want for the parameter:

configure replication server
set config_param to 'value'

The config_param string must match an entire parameter name. You must
restart Replication Server for the new parameters to take effect.

Example 1 For example, to change the maximum number of messages allowed in the Open
Server message queue to 5, log in to the source Replication Server and:

1 Execute the configure replication server command:

configure replication server set num_msgs to '5'

2 Restart the Replication Server.

Refer to “Starting Replication Server” on page 86 for information about
starting Replication Server.

Example 2 This example uses configure Replication Server to change the ha_failover
parameter to enable Failover support for all non-RSSD connections from a
Replication Server to Adaptive Servers.

1 Execute configure replication server. Log in to the Replication Server for
which you want to enable Failover support and enter:

configure replication server
set ha_failover to 'on'

See “Configuring the replication system to support Sybase Failover” in
Chapter 7, “Replication System Recovery,” in the Replication Server
Administration Guide Volume 2.

2 Restart the Replication Server.

Refer to “Starting Replication Server” on page 86 for information about
starting Replication Server.

CHAPTER 4 Managing a Replication System

Administration Guide 95

Configuration changes take effect after you restart Replication Server.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about using configure replication
server.

Parameters affecting security are covered in Chapter 8, “Managing Replication
Server Security” Parameters affecting performance are discussed in Chapter 4,
“Performance Tuning” in the Replication Server Administration Guide Volume
2.

Configuring dynamic
parameters

Several Replication Server configuration parameters are changed to dynamic,
allowing you to change their values using the configure replication server
command. You no longer need to restart the Replication Server for the new
values to take effect.Table 4-3 lists the dynamic configuration parameters.

Table 4-3: Dynamic configuration parameters

Use the new admin config command to retrieve the values of these parameters.

The admin config syntax is:

admin config [,”connection” |,“logical_connection” |,“route”] [,server
[,database]] [,configuration_name]

See the Replication Server Reference Manual, for a detailed information in
using this new command.

Managing the RSSD
The data in each Replication Server RSSD is essential in keeping the
replication system running.

init_sqm_write_delay init_sqm_write_max_delay

memory_limit num_concurrent_subs

queue_dump_buffer_size sqm_recover_segs

sqm_warning_thr_ind sqm_warning_thr1

sqm_warning_thr2 sqt_max_cache_size

sqt_init_read_delay sqt_max_read_delay

sts_cachesize sts_full_cache_system_table_name

Managing the RSSD

96 Replication Server

The replication system administrator or Adaptive Server system administrator
manages the RSSD by monitoring the condition of the database and performing
regular dumps. In the event of disaster recovery, you need to rely on up-to-date
backups of the RSSD for full system recovery. Therefore, it is critical that you
perform periodic backups of the replication system.

It is also important to back up the RSSD after performing tasks that change its
state, such as adding routes, replication definitions, and subscriptions, or
altering function strings for databases to which you are connected.

The system tables are loaded into the RSSD during Replication Server
installation. You can query the system tables to find the status of the system,
but in general, you should not make changes to the tables directly. Refer to the
Replication Server Reference Manual for detailed descriptions of the system
tables.

Enabling Failover support for an RSSD connection
Sybase Failover allows you to configure two version 12.0 or later Adaptive
Servers as companions. If the primary companion fails, that server’s devices,
databases, and connections can be taken over by the secondary companion.

Note For more detailed information about how Sybase Failover works in
Adaptive Server, refer to Using Sybase Failover in a High Availability System,
which is part of the Adaptive Server Enterprise documentation set.

For instructions on how to enable Failover support for non-RSSD Replication
Server connections to Adaptive Server, see “Configuring the replication
system to support Sybase Failover” in Chapter 7, “Replication System
Recovery” in the Replication Server Administration Guide Volume 2.

To enable Failover support for an RSSD connection, use either of the following
methods:

• Use rs_init when you install a new Replication Server.

For instructions, refer to Chapter 2, “Configuring Replication Server and
Adding New Databases,” in the Replication Server Configuration Guide
for your platform.

• Edit the Replication Server configuration file after you have installed the
Replication Server.

CHAPTER 4 Managing a Replication System

Administration Guide 97

a Use a text editor to open the Replication Server configuration file.
The default file name is the Replication Server name with a “.cfg”
extension.

The configuration file contains one line per entry.

b Find the line “RSSD_ha_failover=no” and change it to:

RSSD_ha_failover=yes

c To disable Failover support for an RSSD connection, change the
“RSSD_ha_failover=yes” to:

RSSD_ha_failover=no

These changes take affect immediately; that is, you do not have to
restart Replication Server to enable Failover support.

Managing Embedded Replication Server
System Database

This section talks about Embedded Replication Server System Database
(ERSSD) enhancements and its new features.

Overview
Replication Server can run on either an Adaptive Server Enterprise Replication
Server System Database (RSSD) or on an Embedded RSSD (ERSSD).
ERSSDs are designed for users who do not want to use Adaptive Server
Enterprise to manage the Replication Server RSSD. Replication Server is easy
to install and manage with ERSSD. ERSSD is automatically installed,
configured, and started in the background if you specify that you want to use
it. Backup procedures are automatic and preconfigured.

Limitations You cannot migrate from ERSSD to RSSD.

Managing Embedded Replication Server System Database

98 Replication Server

To use ERSSD, you must select it when you install Replication Server. For
more details, see the Replication Server Installation Guide for you platform.

Note Sybase provides ERSSD as an option in Replication Server,
implemented in Adapted Server Anywhere. Sybase continues to support the
traditional RSSD, implemented in Adaptive Server Enterprise. All the RSSD
features discussed in this section pertain to ERSSD only; they do not affect the
behavior of the traditional RSSD in Adaptive Server Enterprise.

Before you start
ERSSD runs on three files:

• A database root file

• A transaction log file

• A transaction log mirror file

These are operating system files. When you start rs_init, provide the directories
for these files, and make sure that the name of your ERSSD is in the interfaces
file.

Note For better performance and better protection against disk failure, put
each one of these files on a different physical device.

Configuring ERSSD
ERSSD has a preconfigured backup time, backup interval, and backup
directory. Unless you want to change these defaults, you need not configure
ERSSD.

To check the current default values, enter:
sysadmin erssd

You can find the following information in the Replication Server configuration
file:

• ERSSD database file path

• ERSSD transaction log file path

CHAPTER 4 Managing a Replication System

Administration Guide 99

• ERSSD transaction log mirror file path

• Backup directory path

Configuration parameters and command
You can configure the ERSSD backup time and directory by using the
following Replication Server configuration parameters in Table 4-4, with this
command:

configure replication server
set

{erssd_backup_start_time |
erssd_backup_start_date |
erssd_backup_dir |
erssd_backup_interval | erssd_ra}

to 'value'

Do not update these values directly in the rs_config table.

Table 4-4: ERSSD configuration parameters

Repserver configuration
parameter Value Default

erssd_backup_start_time Time the backup starts.

Specified as: “hh:mm AM” or “hh:mm PM”, using a 12-
hour clock, or “hh:mm” using a 24-hour clock.

 01:00 AM

erssd_backup_start_date Date the backup begins.

Specified as “MM/DD/YYYY”

Current date

erssd_backup_interval Interval between backups of database and log.

Specified as “nn hours” or “nn minutes” or “nn seconds”.

24 hours

erssd_backup_dir Location of stored backup files.

Should be a full directory path. Configuring this path
causes an immediate, unscheduled backup.

Same directory as the
transaction log mirror;
initial value specified
in rs_init.

erssd_ra Its value should be a server name. It is only used when
when a user creates a route from the current site

erssd_name_ra;
where erssd_name is
the ERSSD name in
the user’s replication
system

Managing Embedded Replication Server System Database

100 Replication Server

ERSSD routing
You can create a route from a Replication Server with ERSSD, as long as both
the source and the destination servers are version 15.0 or later.

To create a route from Replication Server with ERSSD, use the create route
command. Verify that the Replication Agent name is in the Replication Server
interfaces file; an ERSSD Replication Agent is started as an open server during
create route, and if its name does not appear in the interfaces file the command
fails.

The default ERSSD Replication Agent name is erssd_name_ra. To replace the
default name with that of your Replication Agent server, enter:

configure replication server
set erssd_ra to 'value'

Note Sybase provides ERSSD in Adaptive Server Anywhere (ASA) as an
option, and continues to support the traditional RSSD in the Adaptive Server
Enterprise.

Moving ERSSD files
Use the command sysadmin erssd to move the ERSSD database file,
transaction log, or transaction log mirror. Do not edit the configuration file
itself. Moving the database file, transaction log, and transaction log mirror is
an expensive operation. Only use it when you are sure it is necessary. For more
information on sysadmin erssd, see the Replication Server Reference Manual.

ERSSD users
There are only two users in the ERSSD, the primary user, who also acts as
System Administrator, and the maintenance user. You can find their names and
passwords in the configuration file. You can do the following to change the
user password:

• Use the Replication Server alter user command to alter the primary user
password.

• Use the Replication Server alter connection command to alter the
maintenance user password.

CHAPTER 4 Managing a Replication System

Administration Guide 101

Both these commands alter the password at Replication Server as well as at
ERSSD, and update the Replication Server configuration file.

For more information on these commands see the Replication Server Reference
Manual.

To add a user at the ERSSD, use isql to access the ERSSD as the primary user
and execute the command grant connect to username identified by password.

To give a user permission to read the Replication Server system tables, execute
the command grant membership in group rs_systabgroup to username.

To grant sa privileges to a user, execute the command grant dba to username.

Backup
There are four files in the backup directory. This directory is specified when
you install Replication Server with ERSSD.

Table 4-5: Backup directory files

An automatic full backup, including both the database file and the transactional
log file, is performed at the default or the configured time.

The transaction log is mirrored, providing extra protection for critical data, and
enables complete recovery of the transaction log file.

To perform an unscheduled backup, use this Replication Server command:

sysadmin erssd, backup

Recovery instructions
ERSSD automatically manages recovery from operating system crashes,
database server crashes, and crashes caused by shutting down improperly. The
instructions in these procedures are designed for recovering a database
damaged by media failure.

File name File definition

erssd_name.db Backup database file

erssd_name.log Backup transaction log

erssd_name.db.pre Previous backup database file

erssd_name.log.pre Previous backup transaction log

Managing Embedded Replication Server System Database

102 Replication Server

Before you start recovery

Before using the recovery commands, set the following environment variables.

On UNIX platforms:

• Set your environment variable PATH to include
$SYBASE/$SYBASE_REP/ASA9/bin:

setenv PATH $SYBASE/$SYBASE_REP/ASA9/bin:$PATH

• Set your environment variable LD_LIBRARY_PATH (SHLIB_PATH on
HP, LIB_PATH on AIX) to include $SYBASE/$SYBASE_REP/ASA9/lib:

setenv LD_LIBRARY_PATH
$SYBASE/$SYBASE_REP/ASA9/lib:$LD_LIBRARY_PATH

On Windows:

• Set your environment variable PATH to include
%SYBASE%\%SYBASE_REP%\ASA9\win32:

set PATH=%SYBASE%\%SYBASE_REP%\ASA9\win32;%PATH%

Recovery procedures

Use these procedures to ensure clean recovery after media failure.

❖ Recovering after media failure of the database file

1 Make an extra backup copy of the current transaction log. If the database
file is gone, the only record of changes since the last backup is in the
transaction log.

2 Create a recovery directory to hold the files you use during the recovery
process.

3 Copy the database file from the last full backup to the recovery directory.
You can find the database file in the backup directory. It is named
erssd_name.db.

4 Copy the backup transaction log into the recovery directory. The backup
transaction log, named erssd_name.log, is in the backup directory.

5 Apply the transactions from the backup transaction log to the recovery
database:

dbsrv9 erssd_name.db -a erssd_name.log

6 Copy the online transaction log into the recovery directory. The online
transaction log, named erssd_name.log, is in the log directory.

CHAPTER 4 Managing a Replication System

Administration Guide 103

7 Apply the transactions from the online transaction log to the recovery
database:

dbsrv9 erssd_name.db -a erssd_name.log

8 Make a post-recovery backup by making an extra copy of the database file.

9 Move the database file to the production directory and restart the database.
Use the command dbspawn from the Replication Server error log.

10 Perform validity checks on the recovery database:

dbvalid -c
"uid=primary_user_name;
pwd=primary_user_password;eng=erssd_name
LINKS=tcpip
(DOBROAD=NONE;HOST=localhost;PORT=port)"

11 Restart Replication Server.

❖ Recovering from media failure on the database transaction log

1 Identify the corrupted file. You can do this by running the Log Translation
utility on both the transaction log and its mirror to see which one generates
an error message. In this example, the Log Translation utility, dbtran,
translates a transaction log named erssd_name.log, saving the translated
output in db_name.sql.

dbtran erssd_name.log

The Log Translation utility translates the intact file with no errors, but
reports an error when translating the corrupt file.

2 Copy the correct file over the corrupted file, so that the two files are
identical.

3 Restart the database, using command from the Replication Server error
log.

4 Restart Replication Server.

ERSSD command and options

For detailed information on the sysadmin erssd command, see the Replication
Server Reference Manual.

Quiescing Replication Server

104 Replication Server

Quiescing Replication Server
To quiesce a replication system means to put the system in a state in which no
Replication Servers have messages to send or receive. You may need to quiesce
all Replication Servers in the system to recover databases, alter routes, and
troubleshoot the system.

A Replication Server is quiescent when the following conditions are true:

• Subscription materialization queues do not exist.

• Replication Server has read all messages in all queues.

• Transaction caches for inbound queues contain no complete transactions.

• Messages in RSI queues have been sent and acknowledged.

• Messages in DSI queues have been applied and acknowledged.

Quiescing a replication system
You can use Sybase Central or the procedure discussed in this section to
quiesce a system consisting of several Replication Servers.

To quiesce a replication system:

1 Execute the suspend log transfer from all command at each Replication
Server. This prevents RepAgent from connecting to the Replication
Servers.

2 Execute admin quiesce_force_rsi at each Replication Server.

This command forces Replication Server to deliver all queued messages to
other Replication Servers, then reports whether the system is successfully
quiesced.

Quiescing occurs most efficiently if you follow the flow of the data. For
example, if data flows from TOKYO_RS to MANILA_RS to
SYDNEY_RS, quiesce the Replication Servers in that order.

3 Check that the Replication Server is quiescent using admin quiesce_check.
If necessary, repeat steps 2 and 3 until all Replication Servers are
quiescent.

4 After all Replication Servers are quiescent, execute admin
quiesce_force_rsi once more at each Replication Server. Check that each
Replication Server is quiescent using admin quiesce_check. If necessary,
repeat this step until all Replication Servers are quiescent.

CHAPTER 4 Managing a Replication System

Administration Guide 105

This step is necessary because, although a Replication Server may be
quiescent, it may have recently sent messages to another Replication
Server. These messages may initiate more communication between these
two Replication Servers or between several Replication Servers in the
replication system. Repeating steps 2 and 3 ensures that you have quiesced
the entire replication system.

Removing a Replication Server
How you remove a Replication Server from a replication system depends on
whether or not the Replication Server is active (running). Although this section
contains procedures for both situations, it is easiest to remove a Replication
Server that is active.

The procedures in this section also require that you drop routes and
subscriptions. See Chapter 11, “Managing Subscriptions” and Chapter 6,
“Managing Routes” for details.

Removing an active Replication Server
This section tells you how to remove a running Replication Server from
service:

1 Query the RSSD to determine what replication definitions are defined at
the primary Replication Server (the server you are removing from
service). You can use the rs_helprep stored procedure to do this. Refer to
Chapter 8, “Replication Server System Tables,” in the Replication Server
Reference Manual for information on the RSSD system tables.

2 Drop subscriptions and replication definitions.

This can be done using the following command:

a For each replication definition defined at the primary Replication
Server, execute the drop subscription command for each subscription
on all Replication Servers that manage subscribing data.

To retain data at the replicate, execute the drop subscription command
without purge.

To delete data at the replicate, execute the drop subscription command
with purge.

Removing a Replication Server

106 Replication Server

See “Using the drop subscription command” on page 380 for more
information about dropping subscriptions.

b Drop all replication definitions for primary data managed by the
Replication Server (determined in step 1).

Wait for the replication definitions to disappear from the RSSDs of
Replication Servers that the Replication Server has a route to.

c At the Replication Server you are removing, drop all subscriptions to
replication definitions on other Replication Servers.

To retain data at the replicate, execute the drop subscription command
without purge.

To purge data at the replicate, execute the drop subscription command
with purge.

3 If the Replication Server is the primary Replication Server for a function-
string class or error class, execute the move primary command at another
Replication Server to change the primary Replication Server for each
class.

During a move primary operation, routes must exist from the old primary
site to the new primary site, and from the new primary site to the old
primary site. The Replication Server assuming the role of the primary site
also must have routes to all of the same Replication Servers as the old
primary site.

4 Drop database connections.

a Stop all RepAgent connected to the Replication Server, using the
sp_stop_rep_agent system procedure at Adaptive Server.

b Remove connections to all databases managed by this Replication
Server, using the drop connection command.

Note If you want to continue to maintain the replicate data in databases
previously managed by a Replication Server that has been removed from
service, you must create connections to those databases from some other
Replication Server and create new subscriptions.

5 Perform the following routing tasks:

a If the Replication Server is an intermediate site in a route, use the alter
route command so it is no longer an intermediate site.

b Drop all routes from the Replication Server.

CHAPTER 4 Managing a Replication System

Administration Guide 107

To do this, execute the drop route command for each route from the
Replication Server to another Replication Server.

c Drop all routes to the Replication Server.

To do this, execute the drop route command on each Replication
Server that has a route to the Replication Server you are removing.

See Chapter 6, “Managing Routes” for more information about
altering and dropping routes.

6 After all subscriptions and routes to and from the Replication Server are
dropped, remove the Replication Server from the list maintained by the ID
Server. To do this, execute the sysadmin droprs command on the ID Server:

sysadmin droprs, replication_server

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for more information on the sysadmin droprs
command.

7 Remove all databases managed by the Replication Server from the
database list maintained by the ID Server. Include the RSSD. To remove
databases, run the sysadmin dropdb command on the ID Server, for each
database:

sysadmin dropdb, data_server, database

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for more information on the sysadmin dropdb
command.

Removing an inactive Replication Server
An inactive Replication Server is one that is not running. To take an inactive
Replication Server out of service, follow these steps:

1 Drop all routes to the Replication Server.

To do this, execute the drop route command with the with nowait option on
each Replication Server that has a route to the Replication Server. For
example:

drop route to OLD_RS with nowait

This command also deletes information about subscriptions created at
OLD_RS for data managed by this Replication Server.

Removing a Replication Server

108 Replication Server

2 If the Replication Server you are removing is primary for any function-
string classes or error classes other than the system defaults,
rs_default_function_class and rs_sqlserver_error_class, create a
replacement for each class at a new primary. To do this:

• Choose a Replication Server that has routes to all other Replication
Servers that use the class.

• Create a new class at that Replication Server containing the same
function strings or error actions as the original class. See Chapter 2,
“Customizing Database Operations” and Chapter 6, “Handling
Errors and Exceptions” in the Replication Server Administration
Guide Volume 2 for details.

• Alter each database connection that is using the original class to use
the new class instead. See Chapter 7, “Managing Database
Connections” for details.

3 On each Replication Server that has a route from the Replication Server,
purge the Replication Server route.

To purge a route, execute the sysadmin purge_route_at_replicate command
on each Replication Server to which the Replication Server had a route.
For example:

sysadmin purge_route_at_replicate, OLD_RS

This command also removes:

• Subscription information for data originating at the Replication
Server you are removing from service.

• Function-string and error classes defined at the Replication Server
you are removing from service. If the Replication Server is the
primary site for rs_default_function_class, rs_sqlserver_function_class,
or rs_sqlserver_error_class, these classes are not removed but are reset
to have no primary Replication Server.

4 Remove the Replication Server from the list maintained by the ID Server.
To do this, execute the sysadmin droprs command on the ID Server:

sysadmin droprs, replication_server

See the Replication Server Reference Manual for more information on the
sysadmin droprs command.

CHAPTER 4 Managing a Replication System

Administration Guide 109

5 Remove all databases managed by the Replication Server from the
database list maintained by the ID Server. Include the RSSD. To remove
databases, run the sysadmin dropdb command on the ID Server, for each
database:

sysadmin dropdb, data_server, database

See the Replication Server Reference Manual for more information on the
sysadmin dropdb command.

This completes the removal of an inactive Replication Server from a
replication system.

Keep in mind these three additional points:

• If you want to continue to replicate any data in the databases previously
managed by the Replication Server, you must reassign those databases to
some other Replication Server.

• Since the subscriptions to the Replication Server data did not go through
normal subscription dematerialization, replicate data has not been deleted
from replicate Replication Servers.

• You may need to create additional routes to maintain the replication
system—for example, if the Replication Server is an intermediate on an
indirect route.

Removing a Replication Server

110 Replication Server

Administration Guide 111

C H A P T E R 5 Setting Up and Managing
RepAgent

This chapter describes how to set up, configure, and manage RepAgent,
the Replication Agent for Adaptive Server.

RepAgent is an Adaptive Server thread; it scans the database transaction
log and sends transaction information to the Replication Server for
distribution to subscribing databases.

See Chapter 2, “Replication Server Technical Overview” and Chapter 4,
“Performance Tuning” in the Replication Server Administration Guide
Volume 2 for detailed information about how RepAgent processes
transaction data.

Topic Page
Setting up RepAgent 112

Configuring RepAgent 114

Starting RepAgent 118

Stopping RepAgent 119

Disabling RepAgent 119

Checking log files for information and error messages 120

Configuring RepAgent for network security 120

Handling extended limits 121

Support for longer identifiers 122

Adaptive Server shared-disk cluster support 123

Reviewing status and configuration information 124

Managing log transfer activity 126

Using counters to monitor RepAgent performance 128

Setting up RepAgent

112 Replication Server

Setting up RepAgent
After Replication Server and Adaptive Server are installed on your system, you
must enable a RepAgent for each database the Replication Server manages—
if the database:

• Contains primary data, or

• Contains stored procedures marked for replication

In addition, if Replication Server is the source site for any route, you must
enable RepAgent for the Replication Server RSSD.

There are three possible scenarios for setting up RepAgent. In some scenarios
you use rs_init, in other scenarios you must use command line options.

• If you install a new Replication Server or add a new database, use rs_init
to set up RepAgent. This process enables RepAgent, set default
parameters, and start RepAgent. See the Replication Server Configuration
Guide for your platform for information about rs_init.

• To change an existing replicate database to a primary database, you must
use command line options.

❖ Configuring RepAgent using command line options:

These are the basic steps for configuring RepAgent from the command line.

1 Define the local Adaptive Server using sp_addserver.

2 Enable the RepAgent feature on Adaptive Server using sp_configure.

3 Enable the RepAgent feature for each database using sp_config_rep_agent.

4 Enable log transfer on Replication Server using alter connection.

5 Start the RepAgent on Adaptive Server using sp_start_rep_agent.

Defining the local Adaptive Server
If you are starting Adaptive Server for the first time, you must execute the
Adaptive Server system procedure sp_addserver to add an entry for the local
server to Adaptive Server sysservers table. Refer to the Adaptive Server
Enterprise Reference Manual for information about using sp_addserver.

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 113

Enabling RepAgent on Adaptive Server
Enable the RepAgent feature on the Adaptive Server using sp_configure. You
need to perform this task only once at each Adaptive Server.

Log in to Adaptive Server and enter this command at the isql prompt:

sp_configure 'enable rep agent threads', 1

sp_configure 'enable rep agent threads' is a dynamic option. It takes effect
immediately. However, you may want to restart Adaptive Server after enabling
RepAgent so that Adaptive Server allocates a fixed number of dedicated static
process structures for the thread. Otherwise, RepAgent borrows process
structures from the pool dedicated to user connections.

Enabling RepAgent for the database
For each primary database, you must:

• Enable the RepAgent for the database using sp_config_rep_agent

• Turn on log transfer for the connection using alter connection

Enabling RepAgent

Execute sp_config_rep_agent to enable the RepAgent for the database and set
default values for RepAgent configuration parameters. You can reset the
default values at a later time.

Log in to Adaptive Server. At the isql prompt, enter:

use dbname

go

sp_config_rep_agent dbname, enable, 'repserver_name',
'repserver_username', 'repserver_password'

Configuring RepAgent

114 Replication Server

dbname is the name of the database for which you are enabling RepAgent,
repserver_name is the Replication Server to which RepAgent connects, and
repserver_username and repserver_password are the name and password
RepAgent uses to log in to Replication Server.

Note Make sure that repserver_username is a valid Replication Server user
and that it has Replication Server connect source permission. Try out the user
name and password at the Replication Server before you use
sp_config_rep_agent.

Refer to “Configuring RepAgent” on page 114 for information about setting
RepAgent parameters with sp_config_rep_agent.

Turning on log transfer

Note You must create a database connection between Replication Server and
the data server using rs_init or create connection before you can turn on log
transfer. See the Replication Server Configuration Guide for you platform for
information about creating connections using rs_init; refer to Chapter 7,
“Managing Database Connections” for information about using create
connection.

 Turn on log transfer for the database connection to the primary database using
alter connection. For example, at the Replication Server, enter:

alter connection to TOKYO_DS.pubs2
set log transfer on

Configuring RepAgent
Enabling RepAgent (using rs_init or sp_config_rep_agent) sets default
configuration parameters. You can change the default parameters using
sp_config_rep_agent. You must restart RepAgent for the new parameters to
take effect.

Table 5-1 describes the configuration parameters that affect RepAgent. These
parameters are stored in the sysattributes table of the database for which
RepAgent is enabled.

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 115

If your system supports network-based security, refer to “Managing network-
based security” on page 210 for a list and description of network security
configuration parameters for RepAgent.

Table 5-1: Configuration parameters affecting RepAgent

Configuration parameter Description

batch ltl When set to true, sends LTL commands to Replication Server in batches.
Otherwise, sends LTL commands to Replication Server one at a time.
Default: true

connect database The name of the database for which RepAgent is configured, or the name of
the temporary database RepAgent uses when connecting to Replication Server
in recovery mode.

connect dataserver The name of the RepAgent data server or the name of the temporary data server
RepAgent uses when connecting to Replication Server in recovery mode.

data limits filter mode Specifies how RepAgent handles log records containing column counts greater
than 250, column lengths greater than 255 bytes, and parameter lengths greater
that 255 bytes before attempting to send them to Replication Server. Values
are:

• off – RepAgent allows all records to pass through. In Replication 12.1 and
earlier, this setting can cause undesirable effects.

• stop – RepAgent shuts down if it encounters log records containing data that
exceeds limits of Replication Server 12.1 and earlier.

• skip – RepAgent skips log records containing data that exceeds limits of
Replication Server 12.1 and earlier and posts message to error log.

• truncate – RepAgent truncates data exceeding 255 bytes per column and
250 columns per table.

Default: off (Replication Server 12.5 and later); stop (Replication Server 12.1
and earlier)

ha failover Specifies whether, when Sybase Failover has been installed, RepAgent
automatically starts after server failover.

Default: true

net password encryption In Adaptive Server 15.0.2, when this parameter is set to true, RepAgent sets
both the CS_SEC_ENCRYPTION and the
CS_SEC_EXTENDED_ENCRYPTION connection properties. Otherwise,
none of these properties are set.

Default: true

Note If unified login or mutual authentication security properties are set, net
password encryption parameter will be ignored, since these security properties
are using credentials for authentication.

Configuring RepAgent

116 Replication Server

priority Sets relative priority values for individual RepAgents. Recommended values
are 4, 5, and 6, where 6 indicates low priority, 5 indicates medium priority, and
4 indicates high priority.

Default: 5

rs name The name of the Replication Server to which RepAgent connects and transfers
transactions from the transaction log. Use rs name when you have changed the
name of the Replication Server.

rs password The password RepAgent uses to log in to Replication Server. Use rs password
when you want to change the RepAgent password.

rs username The user name RepAgent uses to log in to Replication Server. Use
rs_username when you want to change the RepAgent username.

retry timeout The number of seconds RepAgent remains inactive before attempting to
reconnect to Replication Server after a recoverable error or when Replication
Server is down.

Default: 60 seconds

scan batch size The maximum number of log records to send to Replication Server in each
batch. When this number of records have been sent, RepAgent asks
Replication Server for a new secondary truncation point.

Default: 1000 records

scan timeout The amount of time RepAgent remains inactive after sending a batch to the
Replication Server and before querying the Replication Server for the new
secondary truncation point. If there are more records in the log, RepAgent
resumes scanning. If there are no more records and the Replication Server has
still not acknowledged receipt by sending a secondary truncation point,
RepAgent again timeouts for the length of time this parameter is set to.
Default: 15 seconds

schema cache growth factor Controls the duration of time table or stored procedure schema can reside in the
RepAgent schema cache before they expire. Larger values require more
memory. Range is 1 to 10.

Default: 1

send buffer_size Controls the size, in kilobytes, of the send buffer RepAgent uses to
communicate with Replication Server. Values are 2K, 4K, 8K, and 16K.

Default: 2K

Note Send-buffer size is not related to database page size.

send maint xacts to replicate When set to true, RepAgent sends records generated by the maintenance user
to the Replication Server for distribution to subscribing sites. Otherwise,
RepAgent does not send records from the maintenance user to the Replication
Server.

Default: false

Configuration parameter Description

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 117

To configure RepAgent, log in to Adaptive Server and execute
sp_config_rep_agent at the isql prompt. For complete syntax and usage
information, see the Replication Server Reference Manual.

Execute sp_config_rep_agent once for each parameter you want to configure.
For example, to change the maximum number of log records sent to
Replication Server in a batch to 2000, perform these steps:

1 Log in to Adaptive Server and enter:

use dbname

go

sp_config_rep_agent dbname, ‘scan batch size’,
’2000’

send structured oqids Specifies whether RepAgent sends origin queue IDs (OQIDs) as structured
tokens or as binary strings. When set to true, RepAgent sends OQIDS as
structured tokens, which saves space in the LTL and improves throughput.

Default: false

send warm standby xacts Normally schema and system transactions are not sent to a warm standby
database. When set to true, RepAgent sends schema, system, and maintenance-
user transactions. Otherwise, RepAgent does not send transactions to the
standby database.

Default: false

short ltl keywords Specifies whether RepAgent sends an abbreviated form of LTL to Replication
Server. When set to true, RepAgent uses the shortened LTL form that requires
less space and reduces the amount of data sent to Replication Server.

Default: true

skip ltl errors When set to true, RepAgent ignores LTL errors returned by the Replication
Server. This option is normally turned on during recovery.

Default: false

skip unsupported features Instructs RepAgent to skip log records for features unsupported by the
Replication Server. This option is normally used if Replication Server is a
earlier version than Adaptive Server.

Default: false

startup delay Controls when a specific RepAgent is started during Adaptive Server start-up.
This delays the RepAgent startup by a specified duration to allow Replication
Server to run before RepAgent attempts to connect to Replication Server. By
default, the RepAgent starts without any delay during automatic start-up.
Setting a value in seconds results in a delay in RepAgent start-up by the
specified number of seconds.

Default: 0 (zero) seconds.

Configuration parameter Description

Starting RepAgent

118 Replication Server

2 Restart RepAgent:

sp_start_rep_agent dbname

The new parameter takes effect after you restart RepAgent.

Refer to “Starting RepAgent” on page 118 for more information about
sp_start_rep_agent.

Starting RepAgent
Normally, you need to start a RepAgent thread only if:

• You have reconfigured the RepAgent parameters.

• You have explicitly shut down the RepAgent.

RepAgent starts automatically when Adaptive Server restarts if the RepAgent
has been started at least once with sp_start_rep_agent and not stopped with
sp_stop_rep_agent.

To start RepAgent, log in to Adaptive Server and enter sp_start_rep_agent at
the isql prompt. For example:

sp_start_rep_agent pubs2

In this example, pubs2 is the name of the database for which the RepAgent has
been enabled.

Note RepAgent can be restarted only if its associated database is fully
recovered and online and log transfer is on for the connection to the primary
database.

Refer to Chapter 5, “Adaptive Server Commands and System Procedures,” in
the Replication Server Reference Manual for detailed information about each
option of sp_start_rep_agent.

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 119

Stopping RepAgent
To shut down RepAgent, log in to Adaptive Server and execute
sp_stop_rep_agent. When RepAgent restarts, it scans records starting with the
oldest transaction, but it only sends records following the last one processed.
As a result, Replication Server does not receive duplicate records.

For example, to stop RepAgent, enter:

sp_stop_rep_agent pubs2

If you shut down RepAgent in this way, Adaptive Server shuts down RepAgent
gracefully at the end of the current batch of transactions.

You can also shut down RepAgent immediately using the nowait option. For
example:

sp_stop_rep_agent pubs2, nowait

If you shut down RepAgent with the nowait option, Adaptive Server kills the
RepAgent without waiting for currently executing operations to finish.

Once RepAgent has been shut down with sp_stop_rep_agent, it does not
automatically start up when the database comes online during data server
startup. You must execute sp_start_rep_agent, which starts up RepAgent and
resumes automatic start-up.

Disabling RepAgent

Note You should disable RepAgent only when you change the replicate
database to a primary database, or downgrade Replication Server to an earlier
version.

Before disabling RepAgent using sp_config_rep_agent, you must first shut it
down using sp_stop_rep_agent.

Normally, when you disable RepAgent, the process also disables the secondary
truncation point. For example:

sp_config_rep_agent pubs2, 'disable'

Once the secondary truncation point is disabled, the log can get truncated past
the secondary truncation point.

Checking log files for information and error messages

120 Replication Server

To disable RepAgent but keep the secondary truncation point, use the preserve
secondary truncpt option.

sp_config_rep_agent pubs2, 'disable', 'preserve
secondary truncpt'

Disable RepAgent in this way to disable RepAgent momentarily.

If you are changing the primary to a replicate database, you must also turn log
transfer off. After disabling RepAgent, turn log transfer off using alter
connection.

For example, log in to Replication Server and enter:

alter connection to TOKYO_DS.pubs2
set log transfer off

Checking log files for information and error messages
Error and information messages for RepAgent are recorded in the Adaptive
Server errorlog file. Refer to the Adaptive Server Enterprise System
Administration Guide for more information about the Adaptive Server error
log.

For example, starting RepAgent generates this message in the Adaptive Server
errorlog:

00:00000:00022:2003/09/18 12:16:39.15 server Started
RepAgent on database, ‘pubs2’ (dbid = 4).

Stopping RepAgent generates this message:

00:00000:00022:2003/09/18 12:17:17.07 server Shutting
down RepAgent for database, ‘pubs2’ (dbid=4).

Configuring RepAgent for network security
You can secure the pathway between RepAgent and Replication Server using
network-based security features. Using sp_config_rep_agent, you can change
settings for:

• The active security mechanism

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 121

• Unified login

• Mutual authentication

• Message confidentiality

• Message integrity

• Message replay detection

• Message origin check

• Message out of sequence check

Refer to “Managing network-based security” on page 210 for a complete
description of network security and instructions for setting parameters for
RepAgent.

Handling extended limits
Replication Server version 12.5 and later supports these extended limits for
replication definitions:

• More columns, to a maximum of 1024

• Wide columns and parameters, to a maximum of 32768 bytes

• Wide data rows to the width of the data page on the data server

• Wide messages larger than 16K

If the Replication Server site version is 12.5 or later, Replication Server sets the
LTL version automatically to 400. If RepAgent is running on Adaptive Server
12.5 or later, RepAgent sends data with extended limits only if Replication
Server specifies an LTL version of 400 or higher at connect source time.

If the Replication Server site version is 12.1 or earlier, the LTL version is
earlier than 400. If RepAgent is running on Adaptive Server 12.5 or later,
Sybase recommends that you do not send extended-limits data to Replication
Server 12.1 and earlier. You can specify how RepAgent handles extended-
limits data by using the data limits filter mode parameter with config_rep_agent.
See “Configuring RepAgent” on page 114.

Support for longer identifiers

122 Replication Server

Support for longer identifiers
Replication Server version 15.0 and later increases the maximum length of
these replication object identifiers to 255 bytes:

• Table name and column name

• Stored procedure name and parameter name

• Functions and parameters – for function replication definitions and
internal use only

• Function string name

• Replication definitions – including table replication definitions, function
replication definitions, and database replication definitions

• Article name

• Publication name

If the Replication Server site version is 15.0, Replication Server sets the LTL
version automatically to 700. If RepAgent is running on Adaptive Server 15.0
or later, RepAgent sends data with extended size only if Replication Server
specifies an LTL version of 700 or higher at connect source time.

If the Replication Server site version is 12.6 or earlier, the LTL version is
earlier than 700. If RepAgent is running on Adaptive Server 15.0 or later,
Sybase recommends that you do not send data with longer identifiers to
Replication Server 12.6 and earlier.

You can specify how RepAgent handles data with longer identifier by using the
data limit filter mode parameter with config_rep_agent. See “Configuring
RepAgent” on page 114.

Note The create function, alter function, and drop function commands do not
support long identifiers. The name of the function and the parameters of these
commands cannot exceed 30 bytes.

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 123

Adaptive Server shared-disk cluster support
Replication Server and RepAgent thread both support the Adaptive Server
shared-disk cluster environment. In a Sybase shared-disk cluster, a database
can be either a replication source or a replication destination. You can perform
all of the tasks, such as configuring RepAgent or marking tables for replication,
from any instance in the cluster. Replication status is coherent across the entire
cluster.

When adding new connections from or to an Adaptive Server cluster
environment, the servername in the connection syntax must be the clustername
and not the instancename. Use select @@servername to retrieve the
clustername.

By default, the RepAgent starts on the cluster coordinator; However, you can
configure it to start on any instance in the cluster. For example, to configure the
RepAgent on the primary database pdb to always start on the “ase2” instance,
enter:

sp_config_rep_agent pdb, "cluster instance name" "ase2"

For a new configuration to take effect, restart the RepAgent using
sp_start_rep_agent. To return to the default behavior with the RepAgent
starting on the cluster coordinator, enter:

sp_config_rep_agent pdb, "cluster instance name",
"coordinator"

When an instance starts, it checks if there are RepAgents configured to start on
its node. If there are, and if the database is marked to start automatically, the
RepAgent starts.

When the cluster coordinator starts, it also starts all RepAgents that are not
configured to start on a specific instance. If the coordinator node fails, or is
stopped with a graceful shutdown, a RepAgent starts on the new coordinator
node.

If the RepAgent is configured to start on an instance other than the coordinator
node, and this instance fails, the RepAgent starts on the coordinator.

Note The Cluster Edition does not support Adaptive Server Enterprise
Replicator, which requires the dbcc log transfer interface.

See the Replication Server Reference Manual for information about the cluster
instance name configuration parameter.

Reviewing status and configuration information

124 Replication Server

Reviewing status and configuration information
You can monitor RepAgent in the Adaptive Server plug-in to Sybase Central,
or you can use the commands and system procedures described in this section.

Viewing RepAgent information
You can monitor the RepAgent by using sp_help_rep_agent at Adaptive Server.
sp_help_rep_agent displays information about:

• Recovery – status and other information when you are restoring a
database.

• Configuration parameters – the current settings for RepAgent’s
configuration parameters.

• Process – information about the RepAgent process, including state, sleep
status, number of unsuccessful connection retries (if any), and the number
of the last error message.

• Scanned transactions– information about the current batch of log
transactions: start, end, and current markers; the number of records in the
batch; and the oldest transaction.

• Security – the current settings of the network-based security mechanism.

• All – all of the above information.

Log in to Adaptive Server and execute sp_help_rep_agent at the isql prompt:

sp_help_rep_agent [dbname[, 'recovery' | 'config' |
'process' | 'scan' | 'security' | 'all']]

dbname is the name of the database for which the RepAgent is enabled.

Refer to Chapter 5, “Adaptive Server Commands and System Procedures,” in
the Replication Server Reference Manual for detailed syntax and usage
information about sp_help_rep_agent.

You can view current status information for one or all options, for example:

• To display information about the RepAgent process, log in to Adaptive
Server and enter:

sp_help_rep_agent pubs2, 'process'

• To display information about the RepAgent log scanning, enter:

sp_help_rep_agent pubs2, 'scan'

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 125

See the Replication Server Reference Manual for examples of
sp_help_rep_agent output.

Viewing configuration parameter values
To view a list of default, current, and runtime configuration parameter values
for a particular RepAgent, log in to Adaptive Server and execute
sp_config_rep_agent without options. For example:

sp_config_rep_agent pubs2

If you do not specify a database name, sp_config_rep_agent displays
configuration values for all RepAgent-enabled databases.

To view values for a specific parameter, include the parameter name. For
example:

sp_config_rep_agent pubs2, 'scan batch size'

See the Replication Server Reference Manual for output examples.

Refer to Chapter 5, “Adaptive Server Commands and System Procedures,” in
the Replication Server Reference Manual for more information about
sp_config_rep_agent.

Viewing RepAgent thread information
To view the RepAgent thread status on Adaptive Server, execute sp_who. In the
display output, Adaptive Server shows the RepAgent information in rows with
“REP AGENT” in the “cmd” column.

For example, sp_who might display this row for RepAgent:

fid spid status loginame origname hostname blk_spid dbname cmd block_xloid

...
0 23 background NULL NULL 0 pubs2 REP AGENT 0
...

See the Adaptive Server Enterprise Reference Manual for detailed syntax and
usage information for sp_who.

Managing log transfer activity

126 Replication Server

To view RepAgent thread user status on Replication Server, execute
admin who. Replication Server displays RepAgent thread user information in
rows with “REP AGENT” in the “name” column.

For more information about admin who and output examples, refer to Chapter
3, “Replication Server Commands,” in the Replication Server Reference
Manual.

Managing log transfer activity
If you are performing recovery, troubleshooting, or diagnostic tasks, you may
need to suspend and resume log transfer. This section describes how to use
these log transfer commands:

• resume log transfer and suspend log transfer

• alter connection ... set log transfer on/off

Note RepAgent cannot connect to Replication Server unless log transfer has
first been set on using alter connection.

See Chapter 7, “Replication System Recovery” of the Replication Server
Administration Guide Volume 2 for information about starting the RepAgent
thread in recovery mode so that it can replay database and transaction dumps.

Using the log transfer commands
This section describes how to suspend and resume log transfer using the
suspend log transfer and resume log transfer commands.

Suspending log transfer

To disconnect one or all RepAgents and prevent RepAgents from connecting
to Replication Server, execute the suspend log transfer RCL command. Log
transfer to Replication Server remains suspended until you resume it using the
resume log transfer command.

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 127

The suspend log transfer command records information in the RSSD, so if you
shut down Replication Server and restart it, log transfer to that Replication
Server remains suspended.

Note Suspending log transfer is the first step in quiescing the replication
system. See “Quiescing Replication Server” on page 104.

To suspend log transfer, log in to Replication Server and execute suspend log
transfer at the isql prompt by entering:

suspend log transfer from {data_server.database | all}

where:

• data_server – the data server with the database for which log transfer is to
be suspended.

• database – the database for which log transfer is to be suspended.

• all – instructs Replication Server to suspend log transfer from all RepAgent
and disallow future connections for all RepAgent.

Examples of using
suspend log transfer

These examples demonstrate the use of the suspend log transfer command.

1 The following command suspends log transfer for the database named
pubs2, managed by the TOKYO_DS data server:

suspend log transfer from TOKYO_DS.pubs2

2 The following command suspends log transfer to the current Replication
Server from all RepAgent:

suspend log transfer from all

In both examples, after the command is executed, affected RepAgent are not
shut down and may continue to send some messages to Replication Server. To
shut down a RepAgent immediately, log in to Adaptive Server and enter
sp_stop_rep_agent, with the name of the database for which RepAgent is
enabled, and the nowait option.

Resuming log transfer

To reconnect RepAgent to a Replication Server, log in to the Replication Server
and enter the resume log transfer command at the isql prompt:

resume log transfer from {data_server.database | all}

• data_server – the data server with the database for which log transfer is to
be resumed.

Using counters to monitor RepAgent performance

128 Replication Server

• database – the database for which log transfer is to be resumed and for
which the RepAgent connection is to be allowed.

• all – allows all RepAgents to connect to this Replication Server.

Examples of using
resume log transfer

These examples demonstrate the use of the resume log transfer command.

1 The following command resumes log transfer for the database named
pubs2, managed by the TOKYO_DS data server:

resume log transfer from TOKYO_DS.pubs2

2 The following command resumes log transfer to this Replication Server
from all RepAgent:

resume log transfer from all

Using alter connection and the set log transfer option
Shut down log transfer using alter connection with the set log transfer option. To
shut down log transfer, turn the set log transfer option off. For example:

alter connection to TOKYO_DS.pubs2
 set log transfer off

When log transfer is off, Replication Server removes the DIST thread, and
RepAgent can no longer log in to Replication Server.

When Replication Server no longer recognizes the primary database, you must
reestablish this connection using rs_init or create connection before you can use
alter connection to set log transfer on.

To set log transfer on, turn the set log transfer option on. For example:

alter connection to TOKYO_DS.pubs2
set log transfer on

Using counters to monitor RepAgent performance
Adaptive Server provides several counters for monitoring RepAgent
performance. You can monitor RepAgent performance data using sp_sysmon.
Invoking sp_sysmon clears all accumulated data from the set of counters to be
used during the sample interval. At the end of the sample interval, the
procedure reads the values in the counters, prints a report, and stops executing.

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 129

You can direct sp_sysmon to print information for RepAgent counters only or
for all Adaptive Server counters. sp_sysmon displays RepAgent counter
information for each database.

See the Adaptive Server Enterprise Performance and Tuning Guide for
complete usage and syntax information for sp_sysmon.

See Chapter 5, “Using Counters to Monitor Performance,” in the Replication
Server Administration Guide Volume 2 for information about using counters to
monitor Replication Server activity.

Using counters to monitor RepAgent performance

130 Replication Server

Invoking sp_sysmon
There are two ways to invoke sp_sysmon:

• Using a fixed time interval to provide a sample for a specified number of
minutes

• Using the begin_sample and end_sample parameters to start and stop
sampling

Fixed time intervals

To run sp_sysmon for 10 minutes and print information for all counters, use
this command:

sp_sysmon “00:10:00”

To print only the RepAgent section of the report, enter:

sp_sysmon “00:10:00”, repagent

Using begin_sample and end_sample

When you use begin_sample and end_sample, you can invoke sp_sysmon to
start and end the sample, issue queries, and print results at any point in time.
For example, to start and end the sample for the RepAgent group of counters,
enter:

sp_sysmon begin_sample
go
execute proc1
go
sp_sysmon end_sample,repagent

RepAgent counter activity
This section provides sample output from sp_sysmon, and a description of
what that output means.

Sample output
Replication Agent

Replication Agent: pubs2
Replication Server: NY_RS

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 131

per sec per xact count % of total
 ------------ ------------ ---------- --------
Log Scan Summary
 Log Records Scanned n/a n/a 103 n/a
 Log Records Processed n/a n/a 44 n/a

Log Scan Activity
 Updates n/a n/a 5 n/a
 Inserts n/a n/a 5 n/a
 Deletes n/a n/a 5 n/a
 Store Procedures n/a n/a 0 n/a
 DDL Log Records n/a n/a 0 n/a
 Writetext Log Records n/a n/a 0 n/a
 Text/Image Log Records n/a n/a 10 n/a
 CLRs n/a n/a 0 n/a

Checkpoints Processed n/a n/a 0 n/a

Transaction Activity
 Opened n/a n/a 7 n/a
 Commited n/a n/a 7 n/a
 Aborted n/a n/a 0 n/a

Delayed Commit n/a n/a 0 n/a
 Prepared n/a n/a 0 n/a
 Maintenance User n/a n/a 0 n/a

Log Extension Wait
 Count n/a n/a 3 n/a
 Amount of time (ms) n/a n/a 7822 n/a
 Longest Wait (ms) n/a n/a 5110 n/a
 Average Time (ms) n/a n/a 2607.3 n/a

Schema Cache Lookups
 Forward Schema
 Count n/a n/a 0 n/a
 Total Wait (ms) n/a n/a 0 n/a
 Longest Wait (ms) n/a n/a 0 n/a
 Average Time (ms) n/a n/a 0.0 n/a

 Backward Schema
 Count n/a n/a 0 n/a
 Total Wait (ms) n/a n/a 0 n/a
 Longest Wait (ms) n/a n/a 0 n/a
 Average Time (ms) n/a n/a 0.0 n/a

Truncation Point Movement
 Moved n/a n/a 0 n/a

Using counters to monitor RepAgent performance

132 Replication Server

 Gotten from RS n/a n/a 0 n/a

Connections to Replication Server
 Success n/a n/a 0 n/a
 Failed n/a n/a 0 n/a

Network Packet Information
 Packets Sent n/a n/a 6 n/a
 Full Packets Sent n/a n/a 2 n/a
 Largest Packet n/a n/a 2048 n/a
 Amount of Bytes Sent n/a n/a 7695 n/a
 Average Packet n/a n/a 1282.5 n/a

I/O Wait from RS
 Count n/a n/a 6 n/a
 Amount of Time (ms) n/a n/a 766 n/a
 Longest Wait (ms) n/a n/a 206 n/a
 Average Wait (ms) n/a n/a 127.7 n/a

Log scan summary

RepAgent scans all records in the transaction log, but not all scanned records
need to be processed and sent to Replication Server. For example, RepAgent
does not send records generated by data manipulation language (DML) on
tables not marked for replication.

This section reports:

• The number of log records RepAgent has scanned

• The number of log records RepAgent has processed and sent to
Replication Server

Log scan activity

This section provides information about the different kinds of log records
processed by RepAgent and sent to the Replication Server. It reports the
number of:

• Rows affected by update statements

• Rows affected by insert statements

• Rows affected by delete statements

• Stored procedure executions

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 133

• Log records containing DDL to be replicated

• Log records processed generated by a WriteText command

• DML log records processed for a table with text, unitext, or image data

• Compensation log records (CLRs), which are generated when a
transaction is partially or fully rolled back

• Checkpoint log records indicate that there was an active transaction at the
time this log record was written.

Transaction activity

This section summarizes transaction activity. It reports the number of:

• Transactions opened in the primary database

• Transactions committed

• Transactions aborted

• Transactions found in prepare state

• Transactions opened by the maintenance user

Log extension wait

During normal processing, RepAgent reaches the end of the transaction log. It
then waits until further activity resumes in the primary database. This section
reports:

• The number of times RepAgent waited for extensions to the transaction
log

• The total amount of time, in milliseconds (ms), that RepAgent waited for
log extensions

• The longest amount of time, in ms, that RepAgent waited for log
extensions

• The average amount of time, in ms, that RepAgent waited for log
extensions

Using counters to monitor RepAgent performance

134 Replication Server

Schema cache lookups

When the structure of an object marked for replication is modified—by alter
table, for example—Adaptive Server must log special records in the transaction
log that later on will help RepAgent identify the correct schema for the object.

This section describes RepAgent activity scanning forward and backward in
the transaction log looking for object schema changes.

Forward schema

This section reports:

• The number of times RepAgent performed forward scans

• The total amount of time, in ms, that RepAgent spent performing forward
scans

• The longest amount of time, in ms, that RepAgent spent performing a
forward scan

• The average amount of time, in ms, that RepAgent spent performing a
forward scan

Backward schema

RepAgent performs a backward scan when DDL is performed inside a
transaction. This section reports:

• The number of times RepAgent spent performing backward scans

• The total amount of time, in ms, that RepAgent performed backward scans

• The longest amount of time, in ms, that RepAgent spent performing a
backward scan

• The average amount of time, in ms, that RepAgent spent performing a
backward scan

Truncation point movement

This section reports:

• The number of times RepAgent moved the secondary truncation point

• The number of times RepAgent asked Replication Server for a new
truncation point

CHAPTER 5 Setting Up and Managing RepAgent

Administration Guide 135

Connections to Replication Server

This section reports:

• The number of successful connections to Replication Server

• The number of unsuccessful connections to Replication Server

Network packet information

This section reports:

• The number of packets sent to Replication Server

• The number of full packets sent to Replication Server

• The largest packet sent to Replication Server

• The number of bytes sent to Replication Server

• The average packet size

I/O wait from Replication Server

After RepAgent generates LTL, RepAgent sends it to Replication Server. To do
this, it uses Open Client capabilities. This section reports:

• The number of times RepAgent has sent a batch to Replication Server

• The total amount of time, in ms, that RepAgent has spent processing
results from Replication Server

• The longest elapsed time, in ms, that RepAgent has spent processing
results from Replication Server

• The average elapsed time, in ms, that RepAgent has spent processing
results from Replication Server

Using counters to monitor RepAgent performance

136 Replication Server

Administration Guide 137

C H A P T E R 6 Managing Routes

This chapter describes creating and managing routes between Replication
Servers.

Overview
A route is a one-way message stream from a source Replication Server to
a destination Replication Server. From each source Replication Server,
you create one route for each destination Replication Server, no matter
how many databases are managed by the source or destination Replication
Servers.

Routes carry:

• Data modification commands and applied functions or applied stored
procedures from primary databases managed at the source
Replication Server to replicate databases managed at the destination
Replication Server

• System table modification commands from a source Replication
Server RSSD to a destination Replication Server RSSD

Topic Page
Overview 137

Before you begin 138

Routing schemes 140

Creating routes 144

Suspending and resuming routes 150

Changing routes 151

Dropping routes 158

Upgrading routes 160

Monitoring routes 161

Before you begin

138 Replication Server

• Request functions or request stored procedures from replicate databases to
primary databases (in this case, the source is the replicate Replication
Server and the destination is the primary Replication Server).

When you create a route, the source Replication Server:

• Creates an RSI outbound queue to hold messages for the destination site

• Starts an RSI thread that logs in to the destination Replication Server and
transfers transactions from the RSI outbound queue to the destination
Replication Server

Before you begin
Before you create or modify routes, be sure you have carefully determined
where routes are needed in your system. As part of the design process, you
must know where each source Replication Server and its destination
Replication Servers reside.

Identify which routes are direct and which are indirect. Indirect routes carry
messages to destination Replication Servers through one or more intermediate
Replication Servers. Using direct versus indirect routes can have a noticeable
effect on system performance.

Refer to the Replication Server Design Guide for details on routing and
performance issues. Also see “Routing schemes” on page 140 for a general
discussion of direct and indirect routes.

Once you have determined your routing scheme, you can set up the required
routes based on these rules:

• Replication Servers that manage databases containing primary data
require direct or indirect routes to the Replication Servers that manage
databases with subscriptions for the data.

• Replication Servers that manage replicate databases where request
functions originate require direct or indirect routes to the Replication
Server managing the primary database. If no replicated functions originate
in the replicate database, a route from a replicate to a primary Replication
Server is not required.

• Each route in an indirect route must be a direct route.

See “Indirect routes” on page 141 for examples of indirect routes.

CHAPTER 6 Managing Routes

Administration Guide 139

• You customize function strings for system functions with class scope at the
primary Replication Server for the function-string class. In this instance,
you must create routes from the primary Replication Server to the
Replication Server managing the databases that use the function strings.

See “System functions with function-string-class scope” on page 16 in the
Replication Server Administration Guide Volume 2 for more information.

• You customize error classes at the primary Replication Server. In this
instance, you must create routes from the primary Replication Server to
the Replication Server managing the databases that use the error
mappings.

• A Replication Server that you plan to assign as the new primary site for a
function-string class or error class, using the move primary command, has
the following requirements:

• It must have routes to and from the Replication Server that is the
current primary site for the class, and

• It must have routes to all the same Replication Servers as the
Replication Server that is the current primary site for the class

See “Changing the primary Replication Server for an error class” on page
211 in the Replication Server Administration Guide Volume 2 for more
information. See also “Primary site for a function-string class” on page 29
in the Replication Server Administration Guide Volume 2.

Routing preparations
Before creating and modifying routes, you need to:

• Make sure the source Replication Server is running.

• If you are creating a direct route, define the destination Replication Server
in the interfaces file at the site of the source Replication Server.

You should also have an interfaces file entry for the RSSD of the
destination Replication Server.

• Make sure that the RepAgent thread for the source Replication Server
RSSD is running.

• Make sure that the destination Replication Server and any intermediate
Replication Servers in the route are running.

Routing schemes

140 Replication Server

Routing schemes
Replication Server supports direct and indirect routes. Each type of route is
described in the following sections.

Figure 6-1 and Figure 6-2 each show a seven-site enterprise with a single
primary site and six replicate sites. Each replicate site has a route originating at
the primary site.

In Figure 6-1, all six routes from the primary site are direct. Thus, the primary
Replication Server has six stable queues and six RSI threads connected through
the network to the six replicate sites.

In Figure 6-2, only two routes from the primary site are direct; four are indirect.
The two intermediate sites each have two direct routes. Table 6-1 lists the
routes in Figure 6-2.

Direct routes
A route with no intermediate sites is called a direct route. A system with direct
routes results in network connections between source and destination
Replication Servers.

For example, in Figure 6-1, a seven-site enterprise is shown in a star
configuration, with one primary site and six replicate sites. If the replicate site
TKO_RS is to submit request functions to the primary site NY_RS, your
system would also require a direct route from TKO_RS to NY_RS, in addition
to the direct route from NY_RS to TKO_RS.

CHAPTER 6 Managing Routes

Administration Guide 141

Figure 6-1: Sites connected with direct route configuration

Indirect routes
A route with intermediate sites is called an indirect route.

For example, in Figure 6-2, NY_RS to SAC_RS is an indirect route, based on
the direct routes NY_RS to SF_RS and SF_RS to SAC_RS. In an indirect
route, the source Replication Server sends messages for the destination
Replication Server to an intermediate Replication Server, which makes use of
a route (direct or indirect) to the destination Replication Server.

To create an indirect route, you create direct routes between each successive
Replication Server along the intended indirect route. Once all the direct routes
are in place, then you create the indirect route itself. See “Creating routes” on
page 144 for details.

For example, to create the indirect route NY_RS to SAC_RS, first create the
direct routes NY_RS to SF_RS and SF_RS to SAC_RS. Then create the
indirect route based on the existing direct routes.

Routing schemes

142 Replication Server

Figure 6-2: Sites connected with indirect routes in a hierarchical
configuration

By setting up indirect routes, you reduce the amount of processing at the
primary site and distribute the load among intermediate Replication Servers.

Table 6-1: Direct and indirect routes between sites in Figure 6-2

Direct routes Indirect routes

NY_RS to SF_RS NY_RS to SAC_RS

NY_RS to LA_RS NY_RS to SJ_RS

SF_RS to SAC_RS NY_RS to SD_RS

SF_RS to SJ_RS NY_RS to SB_RS

LA_RS to SD_RS

LA_RS to SB_RS

CHAPTER 6 Managing Routes

Administration Guide 143

When you use indirect routes, the primary Replication Server can route
portions of subscriptions that are common to destination sites through the same
intermediate site. When subscriptions overlap, the primary Replication Server
is required to send only one message per row modification to the intermediate
Replication Server that is common to the destination sites.

For example, in Figure 6-3, the intermediate Replication Server in LON_RS
receives row modification changes for customer accounts whenever changes
occur at the bank headquarters in New York. The New York modifications are
also required at branch bank replicate sites in Zurich and Bonn. Because
LON_RS is set up to distribute changes to ZUR_RS and BON_RS, the NY_RS
primary Replication Server sends only one copy of each change to LON_RS.
The number of direct routes is also reduced through the use of the two indirect
routes, NY_RS to ZUR_RS and NY_RS to BON_RS.

Figure 6-3: Sites with overlapping subscriptions

Although indirect routes are helpful for distributing computing resources
among sites on the network, overall propagation of data is slowed somewhat
because messages are queued by more than one Replication Server. It is better
to use direct routes when there are few replicate sites. When using indirect
routes, minimize the number of intermediate sites to obtain the best
propagation times.

Creating routes

144 Replication Server

Unsupported routing schemes
An intermediate Replication Server can accept transactions from one or more
Replication Servers. Replication Server, however, does not support routing
schemes in which routes diverge from the same source Replication Server, then
converge at the same intermediate or destination Replication Server.

For example, in Figure 6-4, only one route from NY_RS to LA_RS can be
supported. If the route from NY_RS to LA_RS is supported, then the route
between CHI_RS to LA_RS is not supported.

Figure 6-4: Example of supported and unsupported routes

Creating routes
You create routes at the source Replication Server. As soon as you create a
direct route between a source and destination Replication Server, the source
Replication Server:

• Creates an RSI outbound stable queue to hold messages for the destination
site, and

CHAPTER 6 Managing Routes

Administration Guide 145

• Starts an RSI thread that logs in to the destination or next Replication
Server in the route.

Note You can create a route from a version 15.0 Replication Server to an older
Replication Server (version 11.03 or later).

When you create either direct or indirect routes, the destination Replication
Server creates and materializes subscriptions at the destination site for the
replicated RSSD system tables. This process lets the destination Replication
Server receive available replication definitions and function classes. Refer to
Chapter 2, “Replication Server Technical Overview” for details.

You cannot create an indirect route (1 to 3) unless you have already created two
direct routes (1 to 2 and 2 to 3). You also must set up the routes in the correct
order, as shown in Figure 6-5. For Replication Server to be able to begin
transferring system information to the destination Replication Server, you must
create direct routes before you create an indirect route.

When you create an indirect route, Replication Server does not create an RSI
queue. The indirect route uses the RSI outbound queues of the direct route
segments that compose the indirect route.

Figure 6-5: Order for creating direct and indirect routes

Using the create route command
You can create routes in Sybase Central or with the create route command.

The syntax for the create route command is:

Creating routes

146 Replication Server

create route to dest_replication_server{
set next site [to] thru_replication_server|
[set username [to] user]
[set password [to] passwd]
[set route_param to 'value']
[set security_param to 'value']}

When creating routes:

• Supply the login name, password, and other parameters for direct routes
only.

• Before you create a direct route, create its login name and password in the
destination Replication Server. Optionally, you can have the rs_init utility
create this user.

• If you are enabling network-based security and unified login, user
name and password are optional. The default user name is the
principal user name, which is specified by the -S flag when you log in
to Replication Server or start Replication Server. Refer to
“Establishing the principal user” on page 216 for more information
about network-based security and the principal user.

• If you create a route with a user and passwd that do not exist at the
destination Replication Server, add or change the user and password
at that destination. See also “Changing an indirect route to a direct
route” on page 153.

• If you are establishing a direct route from the current Replication
Server to the destination Replication Server, do not use the next site
clause.

• Enter one create route command at a time, to ensure you have made no
mistakes. Wait for a route to become valid before creating the next one.

If you do make a mistake, drop the route and re-create it only as a last
resort. Include the with nowait option with the drop route command. Since
the route has not been created, its current state requires that you use the
with nowait option to drop it. See “Dropping routes” on page 158.

When you create a route, you can accept the default values for configuration
parameters that manage memory size, the size of the amount of data that can
be sent over the route at one time, time-outs, and synchronization intervals.
You can also set your own values when you create or alter the route.

CHAPTER 6 Managing Routes

Administration Guide 147

Table 6-2 displays the route configuration parameters. If network-based
security is enabled at your site, you can also configure security parameters for
routes. Refer to “Managing network-based security” on page 210. See
“Configuration parameters that affect performance” on page 131 in the
Replication Server Administration Guide Volume 2 for a list and discussion of
route parameters that affect performance.

Table 6-2: Configuration parameters affecting routes

Examples of creating direct and indirect routes

You need to create the direct routes from the primary Replication Server to the
intermediate Replication Server and from the intermediate Replication Server
to the destination Replication Server before you can create an indirect route.

route_param value

disk_affinity Specifies an allocation hint for assigning the next partition. Enter the logical name of the
partition to which the next segment should be allocated when the current partition is full.
Values are “partition_name” and “off.”

Default: off

rsi_batch_size The number of bytes sent to another Replication Server before a truncation point is
requested.

Default: 256K

Minimum: 1K

Maximum: 128MB

rsi_fadeout_time The number of seconds of idle time before Replication Server closes a connection with
a destination Replication Server.

Default: -1 (Replication Server does not close the connection)

rsi_packet_size Packet size, in bytes, for communications with other Replication Servers. The range is
1024 to 16384.

Default: 2048 bytes

rsi_sync_interval The number of seconds between RSI synchronization inquiry messages. The Replication
Server uses these messages to synchronize the RSI outbound queue with destination
Replication Servers. The value must be greater than 0.

Default: 60 seconds

rsi_xact_with_large_msg Specifies route behavior if a large message is encountered. This parameter is applicable
only to direct routes where the site version at the replicate site is 12.1 or earlier. Values
are “skip” and “shutdown.”

Default: shutdown

save_interval The number of minutes that the Replication Server saves messages after they have been
successfully passed to the destination Replication Server.

Default: 0 minutes

Creating routes

148 Replication Server

The following examples are based upon Figure 6-2.

1 To create the direct route NY_RS to SF_RS in Figure 6-2, enter this
command in the primary Replication Server, NY_RS:

create route to SF_RS
set username SF_rsi_user
set password SF_rsi_ps

2 To create the direct routes SF_RS to SAC_RS and SF_RS to SJ_RS in
Figure 6-2, enter these commands in the intermediate Replication Server,
SF_RS:

create route to SAC_RS
set username SAC_rsi_user
set password SAC_rsi_ps
create route to SJ_RS
set username SJ_rsi_user
set password SJ_rsi_ps

3 After these direct routes are created, you can create indirect routes through
them. The following example creates the indirect routes from the primary
site NY_RS to sites SAC_RS and SJ_RS, through the intermediate site,
SF_RS. Enter these commands in the primary Replication Server, NY_RS:

create route to SAC_RS
set next site SF_RS
create route to SJ_RS
set next site SF_RS

An example of creating a route and configuring parameters

This example is based on Figure 6-2. To set the rsi_packet_size to 4096 bytes
for the route to SF_RS, enter:

create route to SF_RS
set username SF_rsi_user
set password SF_rsi_ps
set rsi_packet_size to '4096'

Configuring a Replication Server to manage primary tables
If you want to add a route from a Replication Server that was previously
configured as a replicate-only Replication Server, you must first set up the
RepAgent for the Replication Server RSSD. Any database that functions as a
primary database also requires a RepAgent.

CHAPTER 6 Managing Routes

Administration Guide 149

To set up RepAgent for the RSSD, follow these steps:

At the Replication
Server

1 Create a RepAgent user so that RepAgent can log in to Replication Server.
Use the create user command where ra_user_name is the name of the
RepAgent user and ra_password is the RepAgent’s password:

create user ra_user_name
set password {ra_password | null}

Grant this user connect source permission, using the grant command:

grant connect source to ra_user_name

If the Replication Server already manages a primary database, you can use
the “RepAgent user” that already exists for the new primary database.

2 Execute alter connection, using the log transfer on option:

alter connection to data_server.database
set log transfer to 'on'

At the Adaptive Server 1 If the name of the Adaptive Server has not yet been defined, you must
define it using the following command where lname is the RSSD’s name:

sp_addserver lname, local

2 If RepAgent threads have not been enabled for the Adaptive Server, you
must enable them:

sp_configure 'enable rep agent threads'

3 Configure RepAgent for the RSSD with the sp_config_rep_agent system
procedure:

sp_config_rep_agent dbname, 'enable', 'rs_name',
'rs_user_name', 'rs_password'

Refer to “Configuring RepAgent” on page 114 for detailed instruction on
configuring RepAgent.

Note The “rs_user_name” and “rs_password” configured at the Adaptive
Server must be the same as the “ra_user_name” and “ra_password”
created at the Replication Server in step 1.

4 Start RepAgent:

sp_start_rep_agent dbname

Suspending and resuming routes

150 Replication Server

Suspending and resuming routes
When you alter a direct route, change its topology, or perform some other
maintenance to a remote site, you must suspend the route so that messages are
no longer sent to the destination Replication Server. After maintenance is
completed for the route, you can then reactivate the route to resume activity.

You can suspend and resume routes in Sybase Central or with the RCL
commands suspend route and resume route.

The suspend route and resume route RCL commands are described in this
section.

Using the suspend route command
The suspend route command suspends a route to another Replication Server.
While a route is suspended, no messages are sent to the destination Replication
Server, and the messages for the Replication Server are held in a stable queue.
The syntax for the suspend route command is:

suspend route to dest_replication_server

For example, to suspend the route to the CHI_RS Replication Server, enter:

suspend route to CHI_RS

Using the resume route command
The resume route command resumes a suspended route. Resuming a route
allows the source Replication Server to begin sending queued messages to the
destination Replication Server. You can also use this command to resume a
route that was suspended automatically as the result of an error. The syntax for
the resume route command is:

resume route to dest_replication_server

For example, to resume the route to the CHI_RS Replication Server, enter:

resume route to CHI_RS

CHAPTER 6 Managing Routes

Administration Guide 151

Changing routes
You can change a direct route’s topology, user name, password, and certain
configuration parameters from Sybase Central or with the alter route command.
You cannot change an indirect route’s parameters with alter route.

The syntax for alter route is:

alter route to dest_replication_server{
set next site [to] thru_replication_server |
set username [to] 'user' set password [to] 'passwd' |
set password [to] 'passwd' |
set route_param [to] 'value' |
set security_param [to] 'value' |
set security_services [to] 'default'}

Refer to “Managing network-based security” on page 210 for information
about configuring security parameters for routes.

This section provides procedures and examples for using alter route to change
a route’s topology, user name, and route configuration parameters. There is
also a routing modification example.

Follow these steps when altering a route:

1 Suspend the route.

2 Execute alter route.

3 Resume the route. You must resume the route for the changes to take
effect.

Changing route topology
You can modify a route’s topology by:

• Changing a direct route to an indirect route

• Changing the next intermediate site for an indirect route

• Changing an indirect route to a direct route

Changing a direct route to an indirect route

To change an existing direct route to an indirect route, perform these steps:

1 At the source Replication Server, from which the direct route originates,
enter:

Changing routes

152 Replication Server

suspend route to dest_replication_server

2 At each Replication Server that manages a database with a RepAgent,
enter:

suspend log transfer from all

and follow the instructions in “Quiescing a replication system” on page
104. This procedure quiesces the replication system so that messages will
be redirected to your new routing configuration without error.

3 Create any additional routes that the new indirect route will use. See
“Creating routes” on page 144 for details.

• If the current Replication Server does not already have a direct route
to the Replication Server that you will specify as the intermediate site
for the new indirect route, create the route.

• If the Replication Server that you will specify as the intermediate site
for the new indirect route does not already have a direct or indirect
route to the destination site, create the route.

4 For the direct route you are changing to an indirect route, enter the
following command at the source Replication Server where
dest_replication_server is the destination Replication Server for the route
you are altering, and thru_replication_server is the intermediate
Replication Server for the route:

alter route to dest_replication_server
set next site [to] thru_replication_server

5 Resume log transfer connections by entering the following command at
each Replication Server where you previously suspended log transfer:

resume log transfer from all

6 At the source Replication Server, resume the suspended route by entering
the following command:

resume route to dest_replication_server

Changing the next intermediate site for an indirect route

To change the next intermediate site for an existing indirect route, perform the
following steps.

1 Enter the following command at the source Replication Server, from
which the direct route originates:

suspend route to dest_replication_server

CHAPTER 6 Managing Routes

Administration Guide 153

2 At each Replication Server that manages a database with a RepAgent,
enter:

suspend log transfer from all

and follow the instructions in “Quiescing a replication system” on page
104. This procedure quiesces the replication system so that messages will
be redirected to your new routing configuration without error.

3 Create any additional routes that the indirect route will use. See “Creating
routes” on page 144 for details.

• If the current Replication Server does not already have a direct route
to the Replication Server that you will specify as the new intermediate
site for the indirect route, create the route.

• If the Replication Server that you will specify as the new intermediate
site for the indirect route does not already have a direct or indirect
route to the destination site, create the route.

4 For the indirect route for which you are specifying a new intermediate
Replication Server, enter the following command at the source Replication
Server where dest_replication_server is the destination Replication Server
for the route you are altering, and thru_replication_server is the new
intermediate Replication Server for the route:

alter route to dest_replication_server
set next site thru_replication_server

5 Resume log transfer connections by entering the following command at
each Replication Server where you previously suspended log transfer:

resume log transfer from all

6 Resume the suspended route by entering the following command at the
source Replication Server:

resume route to dest_replication_server

Changing an indirect route to a direct route

To change an existing indirect route to a direct route, perform the following
steps.

1 Enter the following command at the source Replication Server, from
which the indirect route originates:

suspend route to dest_replication_server

Changing routes

154 Replication Server

2 At each Replication Server that manages a database with a RepAgent,
enter:

suspend log transfer from all

and follow the instructions in “Quiescing a replication system” on page
104. This procedure quiesces the replication system so that messages will
be redirected to your new routing configuration without error.

3 For the indirect route you are changing to a direct route, enter the
following command at the source Replication Server where
dest_replication_server is the destination Replication Server for the route
you are altering, and user and passwd are the RSI user login name and
password to use for the direct route:

alter route to dest_replication_server
set username user set password passwd

4 Resume log transfer connections by entering the following command at
each Replication Server where you previously suspended log transfer:

resume log transfer from all

5 Resume the suspended route by entering the following command at the
source Replication Server:

resume route to dest_replication_server

Changing the password for the RSI user for a direct route
To change the password for the RSI user for an existing direct route, perform
the following steps.

1 Suspend each direct route from the source Replication Server by entering:

suspend route to dest_replication_server

2 At the source Replication Server, enter the following command where
dest_replication_server is the destination Replication Server for the route
you are altering, and passwd is the password to use for the RSI user login
name:

alter route to dest_replication_server
set password passwd

3 Resume each suspended route from the source by entering:

resume route to dest_replication_server

CHAPTER 6 Managing Routes

Administration Guide 155

Changing parameters affecting direct routes
After a route is created, you can change its configuration parameters with
Sybase Central or the alter route command. Refer to Table 6-2 on page 147 for
a list and descriptions of configuration parameters that affect routes.

To change default configuration parameters for all routes originating at the
source Replication Server, use the configure replication server command. Refer
to “Changing configuration parameters for all routes” on page 155 for more
information.

Here is an example of using alter route to change the rsi_sync_interval parameter
to 120 seconds. To execute the command, log in to the source Replication
Server and perform these steps:

1 Suspend the route. Enter:

suspend route to dest_replication_server

2 Execute the alter route command. Enter:

alter route to dest_replication_server
set rsi_sync_interval to '120'

3 Resume the suspended route by entering:

resume route to dest_replication_server

Configuration changes take effect after you resume the route.

Changing configuration parameters for all routes

To set default configuration parameters for all routes originating at the source
Replication Server, use the configure replication server command. Table 6-2 on
page 147 has a list and descriptions of configuration parameters that you can
set.

Configuration parameters set for individual routes with alter route override
default parameters set with configure replication server. Thus, you can set
default parameters with configure replication server and then customize settings
for individual routes with alter route.

The syntax for changing route parameters with configure replication server is:

configure replication server
 set route_param to 'value'

Changing routes

156 Replication Server

Here is an example of using configure replication server to change the
rsi_save_interval parameter to 2 minutes for all routes originating at the
Replication Server. To execute the command, log in to the source Replication
Server and perform the following steps:

1 Suspend all routes from the source Replication Server. For each route,
enter:

suspend route to dest_replication_server

2 Execute the configure replication server command:

configure replication server
 set rsi_save_interval to '2'

3 Resume suspended routes from the source Replication Server. For each
route, enter:

resume route to dest_replication_server

Configuration changes take effect after you resume the routes.

Routing modification example
Figure 6-6 revises the routes illustrated in Figure 6-2 on page 142. LA_RS
becomes an intermediate site between NY_RS and SF_RS, while direct and
indirect routes to SB_RS are dropped.

CHAPTER 6 Managing Routes

Administration Guide 157

Figure 6-6: Indirect routes altered

Here’s how you would revise the routing scheme shown in
 Figure 6-2 to resemble the scheme in Figure 6-6.

1 At each Replication Server that manages a database with a RepAgent,
enter:

suspend log transfer from all

and follow the instructions in “Quiescing a replication system” on page
104. This procedure quiesces the replication system so that messages will
be redirected to your new routing configuration without error.

2 LA_RS needs a direct route to SF_RS; create one by entering the
following command at Replication Server LA_RS:

create route to SF_RS
set username SF_rsi_user
set password SF_rsi_ps

3 LA_RS requires indirect routes to SAC_RS and SJ_RS, through SF_RS.

Creating these routes instructs LA_RS to send messages to SF_RS that are
destined for SAC_RS and SJ_RS. SF_RS already has direct routes to
SAC_RS and SJ_RS. Enter the commands in Replication Server LA_RS:

New York

Los Angeles

San Diego

San Jose

NY_RS

LA_RS

San Francisco
SF_RS

Sacramento
SAC_RS SJ_RS

SD_RS

Dropping routes

158 Replication Server

create route to SAC_RS
set next site SF_RS
create route to SJ_RS
set next site SF_RS

4 The primary Replication Server, NY_RS, was previously configured with
indirect routes through SF_RS to SAC_RS and SJ_RS. Alter those routes
so that Replication Server LA_RS is the next Replication Server. Enter
these commands in Replication Server NY_RS:

alter route to SAC_RS
set next site LA_RS
alter route to SJ_RS
set next site LA_RS

5 The direct route from the primary Replication Server, NY_RS, to SF_RS
needs to be changed to an indirect route, with LA_RS as the intermediate
Replication Server. Enter these commands in Replication Server NY_RS:

alter route to SF_RS
set next site LA_RS

6 At each Replication Server where you previously suspended log transfer,
resume log transfer connections to each Replication Server by entering:

resume log transfer from all

Refer to Chapter 4, “Managing a Replication System” for more
information on resuming log transfer.

7 Remove the indirect route from NY_RS to SB_RS. Enter this command in
NY_RS:

drop route to SB_RS

8 Remove the direct route from LA_RS to SB_RS. Enter this command in
LA_RS:

drop route to SB_RS

The indirect route from NY_RS to SD_RS, through LA_RS, is intact.

Dropping routes
You can drop routes from Sybase Central or from the command line with the
drop route command.

CHAPTER 6 Managing Routes

Administration Guide 159

Dropping a route closes the route from the Replication Server where you
execute the command to a specified remote Replication Server. It performs the
following actions on participating Replication Servers:

• Drops system table subscriptions.

• If the route is direct, the outbound stable queue is dropped and the RSI
thread is stopped.

• Deletes information regarding the route.

You cannot drop the route if:

• It is a direct route used by any indirect routes to additional destination
Replication Servers.

• The source Replication Server has replication definitions that are
subscribed to by the destination Replication Server.

• The source Replication Server is designated as the primary site of a
function-string class or error class. The primary site of a derived function-
string class is the same as its parent class.

You can monitor the status of the route while it is being dropped:

• In Sybase Central, view status information in the right pane of the Sybase
Central main window.

• From the command line, execute the rs_helproute stored procedure.

Using the drop route command
The syntax for the drop route command is:

drop route to dest_replication_server [with nowait]

The with nowait option instructs Replication Server to close the route even if it
is unable to communicate with the destination Replication Server.

 Warning! Use the with nowait clause only if you do not intend to ever use the
destination Replication Server, or if you must drop the route from the source
Replication Server while the destination Replication Server is unavailable, or
if you are attempting to add or change login names and passwords for direct
routes. Avoid using the with nowait clause whenever possible.

Upgrading routes

160 Replication Server

After you use drop route with the with nowait clause, use the sysadmin
purge_route_at_replicate command to remove all references to a primary
Replication Server from the Replication Server at the replicate site.

Using the sysadmin purge_route_at_replicate command
The sysadmin purge_route_at_replicate command removes all subscriptions
and route information originating from a specified primary Replication Server
after a route is dropped from that server. Before you execute this command,
drop the route from the replicate Replication Server to the primary Replication
Server, if it exists. The Replication Server performs a validation check before
it processes the command.

Execute sysadmin purge_route_at_replicate at the replicate Replication Server,
using the following syntax where replication_server is the primary Replication
Server:

sysadmin purge_route_at_replicate, replication_server

Upgrading routes
The route version is the earliest site version of the source and destination
Replication Server. After you upgrade the source and destination Replication
Servers on either end of a route to version 11.5 or later and also set their site
versions to a higher Replication Server version, you need to upgrade the route.
Upgrading the route allows the Replication Servers to exchange information
about newer software features.

Upgrading a route rematerializes data in system tables, making information
associated with new features available to a newly upgraded Replication Server.
After upgrading, new types of information that were not previously allowed
can be exchanged.

To display the current version number of routes that originate or terminate at a
Replication Server, use the admin show_route_versions command.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage information of admin
show_route_versions command.

There are two possible scenarios for route upgrade:

CHAPTER 6 Managing Routes

Administration Guide 161

• If new features have not been used at the source Replication Server, use
sysadmin fast_route_upgrade to upgrade routes.

• In all other cases, use the commands route_upgrade,
route_upgrade_recovery, and route_upgrade_status to upgrade routes.

You cannot downgrade a route after you have upgraded it.

See “Mixed-version replication systems” on page 18 for more information
about site versions and system versions.

See the installation and configuration guides for your platform for more
information about upgrading routes and setting the site version for a
Replication Server.

Monitoring routes
Routes may display different statuses at different times. When you create a
route, the destination Replication Server subscribes to the source Replication
Server system tables. Depending on the volume of your data, it may take
several minutes for subscriptions to materialize. Dropping a route also may
take some time.

• You can use the admin who command to display thread status information.

• For comprehensive status information, including the current state of routes
you are creating, use rs_helproute, described in “Using the rs_helproute
stored procedure” on page 162.

Displaying RSI thread status using admin who
To view status information about RSI threads, use the admin who command:

• admin who displays all threads in the system, including RSI threads.

• admin who, rsi displays the status of the RSI thread, which Replication
Server starts to submit information to other Replication Servers.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for detailed thread status information and admin who
command.

Monitoring routes

162 Replication Server

Using the rs_helproute stored procedure
Execute the Adaptive Server stored procedure rs_helproute in the RSSD at the
source or destination Replication Server for the route. The syntax for the
rs_helproute stored procedure is:

rs_helproute [replication_server]

If you specify the name of a Replication Server, rs_helproute returns
information only for routes for which the named Replication Server is a source
or destination. Otherwise, it returns information for all routes for which the
current Replication Server is a source or destination.

rs_helproute returns two types of information:

• Route status, which reflects the state of the route at the site where
rs_helproute is executed. A route is valid when rs_helproute at both source
and destination returns “Active.”

Other route status values are:

• Being created

• Being dropped

• Being dropped with nowait

• List of system table subscriptions, which tells you the system table
subscriptions that are being created. If a route is being dropped, it tells you
which subscriptions are being dropped.

If no system table subscriptions are listed, the route has been created and
is in working order.

Refer to the Replication Server Troubleshooting Guide for information about
correcting route creation problems.

Administration Guide 163

C H A P T E R 7 Managing Database Connections

This chapter describes connecting databases to a replication system and
managing those database connections.

Preparing databases for replication
Before you can add databases to a replication system, you need to prepare
them so that Replication Server can distribute the primary data and
maintain the replicated data stored in them.

• If your databases are managed by Sybase Adaptive Servers:

Use Sybase Central or rs_init to prepare Adaptive Server databases for
use with Replication Server.

See the Replication Server Installation Guide and Replication Server
Configuration Guide for more information on rs_init.

• If your databases are managed by non-Sybase data servers:

Refer to the Replication Server Design Guide for required
preparations. In addition, to find out how to prepare your database for
the heterogeneous datatype support (HDS) feature, see the
Replication Server Configuration Guide for your platform. HDS
enables the translation of primary database column values of one
datatype to another datatype acceptable to the replicate database.

See “Translating datatypes using HDS” on page 317 for more
information about HDS.

Topic Page
Preparing databases for replication 163

Managing maintenance user login names 165

Creating database connections 167

Altering database connections 170

Dropping database connections 187

Monitoring database connections 188

Preparing databases for replication

164 Replication Server

When you are connecting a new database to an existing system, always conduct
a careful review and analysis of how the database will fit into your system.
Determine which other processes are required for the database, and designate
required names and login names for these processes.

If you anticipate that an existing “replicate-only” database may in the future be
the source of replicated function delivery or contain primary data, you can set
up the database so that it can manage primary tables. You can then avoid
upgrading the replicate-only database in the future.

Steps in preparing databases for replication

Note To prepare non-Sybase databases for replication, use instructions in your
Sybase Replication Agent documentation, the Replication Server
Configuration Guide for your platform, and the Replication Server Design
Guide to perform these steps.

To prepare Adaptive Server databases for replication, use Sybase Central or
rs_init to perform these steps:

• Create the rs_lastcommit system table.

• Load the rs_update_lastcommit and rs_get_lastcommit stored procedures
(for both primary and replicate databases) and the rs_marker stored
procedure (for primary databases only).

• Create the rs_threads system table.

• Load the rs_initialize_threads and rs_update_threads stored procedures for
the database.

• Create the maintenance user login name and verifies that the maintenance
user can log in to the database. For details, see “Managing maintenance
user login names” on page 165.

• Create a connection from Replication Server to the database, allowing
Replication Server to manage the database.

• If the database has primary data, Sybase Central or rs_init:

• Enables RepAgent at the Adaptive Server.

• Enables and configures RepAgent at the database.

CHAPTER 7 Managing Database Connections

Administration Guide 165

• Sets the secondary truncation point to “valid” in the Adaptive Server
database, preventing Adaptive Server from truncating database log
records before RepAgent has read them.

• Creates the RepAgent user name and password in the Replication
Server, if necessary.

• Starts RepAgent.

Refer to the Replication Server installation and configuration guides for your
platform for details on each step.

Upgrading an existing Adaptive Server database
You may need to upgrade a database to work with the latest version of
Replication Server so that you can use newer features. Use rs_init to upgrade a
database.

Upgrading a database ensures that the database maintenance user has the
Replication role and the necessary permissions (update, insert, and delete) in
the database. The Replication role gives the maintenance user authorization to
execute any necessary replication-related Adaptive Server commands.

You can check the authorizations that have been granted to a database by using
the sp_displaylogin system procedure in the database.

To grant the Replication role to the maintenance user, execute the following
system procedure in the database:

sp_role "grant", replication_role, maintenance_user

If you need to grant permissions on the tables in the database, execute the
following command in the database for each table:

grant all on table_name to maintenance_user

Managing maintenance user login names
To update replicated data, Replication Server logs in to the data server as the
maintenance user. The Database Owner or the System Administrator must
grant to the maintenance user the permissions required to insert, delete, and
update rows in replicated tables and to execute replicated stored procedures.

Managing maintenance user login names

166 Replication Server

Initially, Sybase Central or rs_init creates the login name for the maintenance
user and adds the user to the replicate database. For details, refer to the
Replication Server installation and configuration guides for your platform.

The maintenance user login name and password are provided to Replication
Server with the create connection command for the database. Sybase Central or
the rs_init program executes this command automatically. If you change the
password for the login name in the data server, use Sybase Central or the alter
connection command to change the password for the Replication Server
connection.

Finding the current maintenance user
To determine the login name that is currently assigned as maintenance user for
a database, you can:

Enter the rs_helpuser Adaptive Server stored procedure at the RSSD, where
user is the login name about which you want information:

rs_helpuser [user]

Granting permissions in the database
Either Sybase Central or rs_init grants the maintenance user permission to
access the rs_lastcommit system table and the stored procedures that use it.

Neither Sybase Central nor rs_init grants permissions to the maintenance user
for user tables and stored procedures. You must grant permissions on replicated
tables and stored procedures before you can either replicate transactions for
replicated tables or replicate executions of the replicated stored procedures.

For each table that is replicated in the database, and for each stored procedure
that is executed due to replication, execute the following grant command:

grant all on table_name to maint_user

Note Among the permissions granted to the maintenance user is
replication_role. If you revoke this permission, you will not be able to replicate
truncate table unless the maintenance user has been granted sa_role, owns the
table, or is aliased as the Database Owner.

CHAPTER 7 Managing Database Connections

Administration Guide 167

Granting permissions for a primary database

If a replicate database holds primary data, then it is also a primary database. In
a primary database, special permissions are necessary on two replication
objects: subscriptions and request functions.

When subscriptions are created, the rs_marker stored procedure is executed at
the primary database. Any database user who can create subscriptions must
have permission to execute rs_marker.

A primary database may also receive transactions via request function delivery
from clients at replicate sites. These transactions are executed at the primary
site as if by the user executing the request function. Any user login name with
permission to execute request functions must also have permission to execute
rs_update_lastcommit, which executes in every DSI transaction.

The permission requirements are the same for request functions and request
stored procedures. Refer to Chapter 10, “Managing Replicated Functions” for
more information on using request functions.

The following grant commands allow any user in the database to execute
rs_marker and rs_update_lastcommit:

grant execute on rs_marker to public
grant execute on rs_update_lastcommit to public

These stored procedures should only be executed by Replication Server on
behalf of users. Sybase Central or rs_init grants these permissions to “public.”
You may want to restrict permissions to the database users who are allowed to
create subscriptions, execute request functions, or request stored procedures.

Creating database connections
A connection defines a database to the Replication Server. A Replication
Server is designated to manage the database and, if it is a replicate database, to
distribute transactions to the database. The database connection provides
Replication Server with:

• The name of the data server and database the connection is for

• The error class used to process errors returned from the data server

• The function-string class to use with the database

• The maintenance user login name and password

Creating database connections

168 Replication Server

• Information about whether there is a RepAgent thread for the database
connection

• Options for creating active and standby databases for warm standby
applications

• Configuration parameters that affect connections

You can create a database connection in these ways:

• To create a standard connection to an Adaptive Server database, use
Sybase Central or rs_init.

• To create a connection to a non-Sybase database, use the create connection
command.

Information for adding a database connection
The Replication Server installation and configuration guides for your platform
describe how you use rs_init to add databases.

When you add a database, you specify:

• Replication Server name

• Replication Server System Administrator user name and password

• Adaptive Server name

• Adaptive Server System Administrator user name and password

• Database name

• Whether the database requires a RepAgent

• Maintenance user name and password

• Database Owner user name and password

• Whether the physical connection is for an existing logical connection

Adding databases for logical connections

If you are adding a physical connection for an existing logical connection
(which you create with Sybase Central or the create logical connection
command), you also specify the following information:

• Active or standby connection

CHAPTER 7 Managing Database Connections

Administration Guide 169

• Logical data server name

• Logical database name

In addition, if you are adding a standby connection, you specify the following
information in Sybase Central or rs_init:

• Active data server name

• Active database name

• Active database System Administrator user name and password

• Whether to initialize standby database using dump and load method

• Whether to use dump marker to start replication

Refer to Chapter 3, “Managing Warm Standby Applications” in the
Replication Server Administration Guide Volume 2 for more information about
warm standby operations.

Adding a database that requires a RepAgent thread

If you are adding an Adaptive Server primary database that requires a
RepAgent, you specify the Replication Server user name and password.

Using the create connection command
To add a database for a non-Sybase data server, use the create connection
command.

To add a database for a Sybase data server, you normally use Sybase Central or
rs_init, both of which prepare the database for replication. If you use create
connection, you must prepare the database for replication yourself. Refer to
“Steps in preparing databases for replication” on page 164.

Enter create connection at the Replication Server that is to manage the database.
The syntax is:

create connection to data_server.database
set error class [to] error_class
set function string class [to] function_class
set username [to] user
[set password [to] passwd]
[set database_param [to] 'value']
[set security_param [to] {‘required’ | ‘not_required’}]
[with {log transfer on, dsi_suspended}]
[as active for logical_ds.logical_db |

Altering database connections

170 Replication Server

as standby for logical_ds.logical_db
[use dump marker]

You must use the with dsi_suspended clause, which starts the connection with
the DSI suspended, when you create a connection to a database that will not be
a replicate database.

The as active, as standby, and use dump marker clauses are used only when you
create physical connections for a logical connection for a warm standby
database. Only Adaptive Server databases may be used in warm standby
applications.

If your system supports network-based security, use the set security_param
command according to instructions in “Managing network-based security” on
page 210.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about the create connection command.

Altering database connections
To change the attributes of a database connection, use Sybase Central or
perform the following steps at the Replication Server where the connection was
created:

1 Use suspend connection to suspend activity on the connection. See
“Suspending database connections” on page 171 for details.

CHAPTER 7 Managing Database Connections

Administration Guide 171

2 Execute the alter connection command. See “Setting and changing
parameters affecting physical connections” on page 172 for detailed
instructions.

Note Using the set log transfer off clause for the alter connection command
drops the RepAgent connection from a primary site. Before using this
clause, be sure there are no replication definitions defined for data in the
database.

3 Use resume connection to resume activity on the connection. See
“Resuming database connections” on page 183 for more information.

Note When you alter a connection in Sybase Central, you need to suspend and
resume the connection before the new value will take effect.

Suspending database connections
If you have sa permission, you can temporarily suspend access to a data server.
You must suspend a database connection before you alter it or when you
remove a data server from service for maintenance.

While data server access is suspended, the Replication Server queues
transactions for the data server so they can be applied when the connection is
resumed.

You can temporarily suspend access to a data server using Sybase Central or
you can use the following command:

suspend connection to data_server.database
[with nowait]

By default, suspend connection completes the current transaction before
suspending. Use the with nowait clause to suspend the connection in mid-
transaction. This may be appropriate if a large transaction is responsible for a
failure in a replicate database.

Altering database connections

172 Replication Server

Setting and changing parameters affecting
physical connections

You set configuration parameters for a connection when you create it. Later,
you can update those parameters with Sybase Central or the alter connection
command.

You can change the configuration of either a single database connection or of
all database connections that originate from a single Replication Server. If you
are adding many database connections to a Replication Server, you may want
to change configuration parameters affecting all connections in order to fine-
tune server performance.

To change configuration parameters for all connections originating at the
current Replication Server, use the configure replication server command. Refer
to “Changing parameters affecting all connections” on page 181 for more
information.

Configuration parameters that are set for individual connections with alter
connection override parameters that are set with configure replication server.
Thus, you can set default parameters with configure replication server and then
customize settings for specific connections with alter connection.

Changing parameters affecting a single connection

After a connection is created, you can change its configuration parameters with
the alter connection command. Refer to Table 7-1 on page 174 for a list and
description of configuration parameters that affect connections.

Using alter connection alter connection lets you change the attributes of a database connection. Use this
command, for example, if you have added an Adaptive Server database
connection using Sybase Central or rs_init, and then decide that you want the
database connection to use a derived function-string class instead of a system-
provided class. The syntax for alter connection is:

alter connection to data_server.database {
set function string class [to] function_class |
set error class [to] error_class |
set password [to] passwd |
set log transfer [to] {on | off} |
set database_param [to] 'value'} |
set security_param to {‘required’ | ‘not_required’} |
set security_services [to] “default’

}

You indicate the data server and database that is connected to the Replication
Server and specify one or more of the attributes to change. These include:

CHAPTER 7 Managing Database Connections

Administration Guide 173

function_class – the function-string class to use with the database connection.

error_class – the error class to use for handling database errors.

passwd – the new password to use with the login name for the database
connection.

log transfer on – allows transactions to be sent, using this connection, to the
Replication Server.

log transfer off – stops transactions from being sent, using this connection, from
a primary database to the Replication Server.

database_param – updates a configuration parameter that affects connections.
See Table 7-1 for a list of parameters you can change.

security_param – updates a network security configuration parameter that
affects connections. See “Managing network-based security” on page 210 for
a list and description of parameters you can change.

set security_services [to] ‘default’ – resets all network-based security features for
the connection to “not required.” See “Managing network-based security” on
page 210 for a description of network security for Replication Server.

An example of using alter connection

To change the function-string class for the pubs2 database in the SYDNEY_DS
data server to sqlserver_derived_class, enter the following commands in the
SYDNEY_RS Replication Server:

suspend connection to SYDNEY_DS.pubs2
alter connection to SYDNEY_DS.pubs2

set function string to class
sqlserver_derived_class

resume connection to SYDNEY_DS.pubs2

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about the keywords and options of the
alter connection command.

Configuration parameters affecting individual connections

Table 7-1 displays the configuration parameters that affect database
connections. (These configuration parameters affect physical database
connections only. For parameters that affect logical database connections, see
“Changing parameters affecting logical connections” on page 99 in the
Replication Server Administration Guide Volume 2.)

Altering database connections

174 Replication Server

If your system supports network-based security, see “Managing network-
based security” on page 210 for information about security parameters that
affect connections.

See “Using parallel DSI threads” on page 151 in the Replication Server
Administration Guide Volume 2 for information about parameters for setting up
and tuning parallel DSI connections.

See “Connection parameters that affect performance” on page 137 in the
Replication Server Administration Guide Volume 2 for a list of configuration
parameters that affect performance.

Table 7-1: Configuration parameters affecting database connections

Parameter (database_param) Value (value)

batch The default, “on,” allows command batches to a replicate database.

Default: on

batch_begin Indicates whether a begin transaction can be sent in the same batch as other
commands (such as insert and delete).

Default: on

command_retry The number of times to retry a failed transaction. The value must be greater
than or equal to 0.

Default: 3

db_packet_size The maximum size of a network packet. During database communication,
the network packet value must be within the range accepted by the
database. You may change this value if you have Adaptive Server that has
been reconfigured.

Maximum: 16384 bytes

Default: 512-byte network packet for all Adaptive Server databases

disk_affinity Specifies an allocation hint for assigning the next partition. Enter the
logical name of the partition to which the next segment should be allocated
when the current partition is full. Values are “partition_name” and “off.”

Default: off

dsi_alt_writetext Controls how large object updates are sent to the replicate database. Values
are:

• dcany – generates a writetext command that includes primary key
columns. This setting prevents full table scans when populating non-
ASE replicate databases using DirectConnect Anywhere™ as an
interface.

• off (default) – generates an Adaptive Server writetext command that
includes a text pointer.

CHAPTER 7 Managing Database Connections

Administration Guide 175

dsi_charset_convert The specification for handling character set conversion. This parameter
applies to all data and identifiers to be applied at the DSI in question. The
values are:

• “on” (default) – convert from the primary Replication Server character
set to the replicate Replication Server character set; if character sets are
incompatible, shut down the DSI with an error.

• “allow” – convert where character sets are compatible; apply any
unconverted updates to the database, as well.

• “off” – do not attempt conversion. This option is useful if you have
different but compatible character sets and do not want any conversion
to take place. During subscription materialization, a setting of “off”
behaves as if it were “allow.”

dsi_check_lock_wait The number of milliseconds before the DSI executor thread executes the
rs_thread_check_lock function string, which queries the replicate
database about lock status.

Default: 3000 milliseconds (3 seconds)

dsi_cmd_batch_size The maximum number of bytes that Replication Server places into a
command batch.

Default: 8192 bytes

dsi_cmd_separator The character that separates commands in a command batch.
For example, if you have specified a different separator character and want
to change it back to the default character, enter:

alter connection to data_server.database
set dsi_cmd_separator to '<Return>'

Press the Return key, and no other characters, between the two single-quote
characters.

Default: newline (\n)

Note Pressing the Return key is effective only in an interactive update; it
is not applicable to executing a script, such as a DDL generated script. You
must update this parameter in an interactive mode. You cannot reset it from
within a script.

dsi_commit_check_locks_intrvl The number of milliseconds (ms) the DSI executor thread waits between
executions of the rs_dsi_check_thread_lock function string. Used with
parallel DSI. See “Using parallel DSI threads” on page 151 in the
Replication Server Administration Guide Volume 2.

Default: 1000 ms (1 second)

Minimum: 0

Maximum: 86,400,000 ms (24 hours)

Parameter (database_param) Value (value)

Altering database connections

176 Replication Server

dsi_commit_check_locks_max The maximum number of times a DSI executor thread checks whether it is
blocking other transactions in the replication database before rolling back
its transaction and retrying it. Used with parallel DSI. See “Using parallel
DSI threads” on page 151 in the Replication Server Administration Guide
Volume 2.

Default: 400

Minimum: 1

Maximum: 1,000,000

dsi_commit_control Specifies whether commit control processing is handled internally by
Replication Server using internal tables (on) or externally using the
rs_threads system table (off). Used with parallel DSI. See “Using parallel
DSI threads” on page 151 in the Replication Server Administration Guide
Volume 2.

Default: on

dsi_exec_request_sproc Turns on or off request stored procedures at the DSI of the primary
Replication Server.

Default: on

dsi_fadeout_time The number of seconds of idle time before a DSI connection is closed. A
value of -1 specifies that the connection should not fade out.

Default: 600 seconds

dsi_ignore_underscore_name When the transaction partitioning rule is set to name, specifies whether or
not Replication Server ignores transaction names that begin with an
underscore. Values are “on” and “off.”

Default: on

dsi_isolation_level Specifies the isolation level for transactions. ANSI standard and Adaptive
Server supported values are:

• 0 – ensures that data written by one transaction represents the actual
data.

• 1 – prevents dirty reads and ensures that data written by one transaction
represents the actual data.

• 2 – prevents nonrepeatable reads, prevents dirty reads, and ensures that
data written by one transaction represents the actual data.

• 3 – prevents phantom rows, prevents nonrepeatable reads, prevents
dirty reads, and ensures that data written by one transaction represents
the actual data.

Through the use of custom function strings, Replication Server can support
any isolation level the replicate data servers may use. Support is not limited
to ANSI standard only.

The default value is the current transaction isolation level for the target data
server.

Parameter (database_param) Value (value)

CHAPTER 7 Managing Database Connections

Administration Guide 177

dsi_keep_triggers Specifies whether triggers should fire for replicated transactions in the
database.
“off” – causes Replication Server to set triggers off in the Adaptive Server
database, so that triggers do not fire when transactions are executed on the
connection. Use this setting for standby databases.
on” – specifies all databases except standby databases.

Default: on (except standby databases)

dsi_large_xact_size The number of commands allowed in a transaction before the transaction
is considered to be large.

Minimum: 4
Default: 100

dsi_max_cmds_to_log The number of commands to write into the exceptions log for a transaction.

Default: –1 (all commands)

dsi_max_xacts_in_group Specifies the maximum number of transactions in a group. Larger numbers
may improve data latency at the replicate database. Range of values: 1 –
100.

Default: 20

dsi_max_text_to_log The number of bytes to write into the exceptions log for each rs_writetext
function in a failed transaction. Change this parameter to prevent
transactions with large text, unitext, or image columns from filling the
RSSD or its log.

Default: –1 (all text, unitext, or image columns)

dsi_num_large_xact_threads The number of parallel DSI threads to be reserved for use with large
transactions. The maximum value is one less than the value of
dsi_num_threads.

Default: 0

dsi_num_threads The number of parallel DSI threads to be used. The maximum value is 255.

Default: 1

dsi_partitioning_rule Specifies the partitioning rules (one or more) the DSI uses to partition
transactions among available parallel DSI threads. Values are origin,
origin_sessid, time, user, name, and none.

See also “Partitioning rules: reducing contention and increasing
parallelism” on page 162 in the Replication Server Administration Guide
Volume 2 for detailed information.

Default: none

Parameter (database_param) Value (value)

Altering database connections

178 Replication Server

dsi_replication Specifies whether or not transactions applied by the DSI are marked in the
transaction log as being replicated.
When dsi_replication is set to “off,” the DSI executes set replication off in
the Adaptive Server database, preventing Adaptive Server from adding
replication information to log records for transactions that the DSI
executes. Since these transactions are executed by the maintenance user
and, therefore, usually not replicated further (except if there is a standby
database), setting this parameter to “off” avoids writing unnecessary
information into the transaction log.
dsi_replication must be set to “on” for the active database in a warm
standby application for a replicate database, and for applications that use
the replicated consolidated replicate application model.

Default: on (“off” for standby database in a warm standby application)

dsi_serialization_method Specifies the method used to maintain serial consistency between parallel
DSI threads when applying transactions to a replicate data server.

• no_wait – specifies that a transaction can start as soon as it is ready—
without regard to the state of other transactions.

• wait_for_commit – specifies that a transaction cannot start until the
transaction scheduled to commit immediately preceding it is ready to
commit.

• wait_for_commit – maintains transaction serialization by instructing the
DSI to wait until a transaction is ready to commit before initiating the
next transaction (off) or wait until a transaction has committed before
initiating the next transaction (on).

• none – same as wait_for_start. Retained for backward compatibility.

• single_transaction_per_origin – same as wait_for_start with
dsi_partitioning_rule set to origin. Retained for backward compatibility.

Default: wait_for_commit

dsi_sqt_max_cache_size Maximum SQT (Stable Queue Transaction) interface cache memory for
the database connection, in bytes.
The default, 0, means the current setting of the sqt_max_cache_size
parameter is used as the maximum cache size for the connection.

Default: 0

Parameter (database_param) Value (value)

CHAPTER 7 Managing Database Connections

Administration Guide 179

dsi_text_convert_multiplier Changes the length of text or unitext datatype columns at the replicate site.
Use dsi_text_convert_multiplier when text or unitext datatype columns must
expand or contract due to character set conversion. Replication Server
multiplies the length of primary text or unitext data by the value of
dsi_text_convert_multiplier to determine the length of text or unitext data at
the replicate site. The value type is float.

• If the character set conversion involves expanding text or unitext
datatype columns, set dsi_text_convert_multiplier equal to or greater
than 1.0.

• If the character set conversion involves contracting text or unitext
datatype columns, set dsi_text_convert_multiplier equal to or less than
1.0.

Default: 1

dsi_xact_group_size The maximum number of bytes, including stable queue overhead, to place
into one grouped transaction. A grouped transaction is a set of transactions
that the DSI applies as a single transaction. A value of –1 means no
grouping.

Sybase recommends that you set dsi_xact_group_size to the maximum
value and use dsi_max_xacts_in_group to control the number of
transactions in a group.

Maximum: 2,147,483,647
Default: 65,536 bytes

dump_load Set to “on” at replicate sites only to enable coordinated dump. See
“Loading from coordinated dumps” on page 239 in the Replication Server
Administration Guide Volume 2 for details.

Default: off

exec_cmds_per_timeslice Specifies the number of LTL commands an LTI or RepAgent Executor
thread can process before it must yield the CPU to other threads. The range
is 1 to 2, 147, 483, 648.

Default: 5

dynamic_sql Turns dynamic SQL feature on or off. Other dynamic SQL related
configuration parameters will only take effect if this parameter is set to
“on”.

Default: off

dynamic_sql_cache_size Gives the Replication Server a hint on how many database objects may use
the dynamic SQL statement for a connection.
Minimum: 1
Maximum: 65536

Default: 100

Parameter (database_param) Value (value)

Altering database connections

180 Replication Server

dynamic_sql_cache_management Manages the dynamic SQL cache for a DSI/E thread.
Values:
mru - keep the most recently used statements and deallocate the to allocate
new dynamic statements when dynamic_sql_cache_size is reached.
fixed (default)- Replication Server stops allocating the new dynamic
statements once dynamic_sql_cache_size is reached.

exec_sqm_write_request_limit Specifies the amount of memory available to the LTI or RepAgent
Executor thread for messages waiting to be written to the inbound queue.

Default: 1MB

Minimum: 16K

Maximum: 2GB

md_sqm_write_request_limit Specifies the amount of memory available to the Distributor for messages
waiting to be written to the outbound queue.

Note In Replication Server 12.1, md_sqm_write_request_limit replaces
md_source_memory_pool. md_source_memory_pool is retained for
compatibility with older Replication Servers.

Default: 1MB

Minimum: 16K

Maximum: 2GB

rep_as_standby When rep_as_standby is on, table subscriptions replicate tables marked by
sp_reptostandby.

For rep_as_standby on to succeed, the RepAgent parameters send maint
xacts to replicate must be false and send warm standby xacts must be true.

Default: off

save_interval The number of minutes that the Replication Server saves messages after
they have been successfully passed to the destination data server.

Default: 0 minutes

sub_sqm_write_request_limit Specifies the memory available to the subscription materialization
or dematerialization thread for messages waiting to be written to
the outbound queue.

Default: 1MB

Minimum: 16K

Maximum: 2GB

Parameter (database_param) Value (value)

CHAPTER 7 Managing Database Connections

Administration Guide 181

Changing parameters affecting all connections

To set default configuration parameters for all connections originating at the
source Replication Server, use the configure replication server command. Refer
to Table 7-1 for a list of configuration parameters that affect connections that
you can set with configure replication server.

The syntax for configure replication server is:

configure replication server
 set database_param to 'value'

Example 1 Here is an example of using configure replication server to change the
dsi_fadeout_time parameter so that the DSI connection does not close. Log in
to the source Replication Server and enter:

1 Suspend all connections from the source Replication Server. For each
connection, enter:

suspend connection to data_server.database

2 Execute configure replication server. Enter:

configure replication server
set dsi_fadeout_time to '-1'

3 Resume suspended connections from the source Replication Server. For
each connection, enter:

resume connection to data_server.database

Configuration changes take effect after you resume the connections.

Example 2 Here is an example of using configure Replication Server to change the
ha_failover parameter to enable Failover support for all non-RSSD connections
from a Replication Server to Adaptive Servers.

use_batch_markers If use_batch_markers is set to on, the function strings rs_batch_start and
rs_batch_end will be executed.

Note This parameter must be set to on only for replicate data servers that
require additional SQL translation to be sent at the beginning and end of a
batch of commands that are not contained in the rs_begin and rs_commit
function strings.

Default: off

Parameter (database_param) Value (value)

Altering database connections

182 Replication Server

1 Execute configure replication server. Log in to the Replication Server for
which you want to enable Failover support and enter:

configure replication server
set ha_failover to 'on'

See “Configuring the replication system to support Sybase Failover” in
Chapter 7, “Replication System Recovery,”of the Replication Server
Administration Guide Volume 2

Configuration changes take effect after you resume the connections.

Changing Replication Server connection parameters to improve performance

Sybase sets default values for configuration parameters for average
installations and usage. Depending on your system configuration and how
Replication Server is used at your site, you may find that careful altering of
certain default values may improve performance. See “Configuration
parameters that affect performance” on page 131 in the Replication Server
Administration Guide Volume 2 for a general discussion of performance and
configuration parameters. See also “Using parallel DSI threads” on page 151
in the Replication Server Administration Guide Volume 2.

If you are adding many new connections, you may want to change the
memory_limit or num_threads Replication Server parameters to improve
performance.

Increasing the
memory_limit

To increase the amount of memory specified for Replication Server, increase
the value specified for the memory_limit parameter by using configure replication
server at Replication Server.

For example, execute configure replication server in the following manner to
increase memory_limit to 25MB:

configure replication server
set memory_limit to '25'

Increasing the
num_threads

You may need to increase the number of Open Server threads that the
Replication Server can use. To do this, increase the value specified for the
num_threads parameter, using configure replication server at the Replication
Server.

For example, execute configure replication server in the following manner to
increase num_threads to 70:

configure replication server
set num_threads to '70'

CHAPTER 7 Managing Database Connections

Administration Guide 183

See configure replication server in Chapter 3 “Replication Server Commands”
in the Replication Server Reference Manual for more information about the
memory_limit and num_threads parameters.

Resuming database connections
Once you have changed the attributes of a database connection, you can resume
activity on the connection either in Sybase Central or by using the resume
connection command.

To resume a database connection from the command line, enter:

resume connection to data_server.database
[skip [n] transaction | execute transaction]

When the connection is resumed, Replication Server retrieves rows from the
rs_lastcommit system table so that it can find the correct place in the transaction
stream to begin submitting transactions.

The optional skip [n] transaction clause instructs Replication Server skip a
specified number of transactions in the connection queue before resuming the
connection. The first n transactions are written to the exceptions log.

The skip [n] transaction clause is necessary if the first n transactions cause
Replication Server to suspend the connection and the cause of the failure
cannot be corrected. For example, the transaction may have produced a data
server error that is assigned the retry_stop or stop_replication error action. Or,
perhaps it was necessary to use suspend connection and the with nowait clause
to manually interrupt the transaction.

 Warning! If you execute resume connection with the skip transaction clause,
you must correct any inconsistency that results from the lost transaction. Only
use the skip transaction clause when the condition causing the transaction to fail
cannot be corrected.

The optional execute transaction clause instructs Replication Server to execute
the first transaction in the connection’s queue. Use this clause only when a
system transaction has failed to execute. See “Duplicate detection for system
transactions” on page 220 in the Replication Server Administration Guide
Volume 2 for information about error handling for system transactions.

Altering database connections

184 Replication Server

Changing replicate databases to primary databases
Each primary database must have a Replication Agent that scans the database
log and transfers data to the Replication Server for distribution to replicate
databases. If you want to change an Adaptive Server database that is designated
as replicate-only to be a source of replicated functions or to contain primary
data, you must enable the RepAgent thread for the database by following these
steps:

At the Replication
Server

1 Create a RepAgent user so that RepAgent can log in to Replication Server.

Use the following create user command, where ra_user_name is the name
of the RepAgent user and ra_password is the RepAgent’s password:

create user ra_user_name
set password {ra_password | null}

Grant this user connect source permission, using the grant command:

grant connect source to ra_user_name

If the Replication Server already manages a primary database, you can use
the “RepAgent user” that already exists for the new primary database.

2 Execute the alter connection command using the log transfer on option:

alter connection to data_server.database
set log transfer to 'on'

At the Adaptive Server 1 If the name of the local Adaptive Server has not yet been defined, you must
define it with the following command, where lname is Adaptive Server’s
name:

sp_addserver lname, local

2 If RepAgent threads have not been enabled for the Adaptive Server, you
must enable them:

sp_configure 'enable rep agent threads'

3 Configure RepAgent for the database with the sp_config_rep_agent system
procedure:

sp_config_rep_agent dbname, 'enable', 'rs_name',
'rs_user_name', 'rs_password'

CHAPTER 7 Managing Database Connections

Administration Guide 185

Refer to Chapter 5, “Setting Up and Managing RepAgent,” for detailed
instruction on configuring RepAgent.

Note The “rs_user_name” and “rs_password” configured at the Adaptive
Server must be the same as the “ra_user_name” and “ra_password”
created at the Replication Server in step 1.

4 Create the rs_marker stored procedure and set its replicate status to “true”,
using the sp_setreplicate system procedure.

You can find the rs_marker stored procedure in the file
rs_install_primary.sql or rsinssys.sql in the scripts directory of the Sybase
release directory.

See “Creating the rs_marker stored procedure” on page 185 for details.

5 Start RepAgent:

sp_start_rep_agent dbname

Creating the rs_marker stored procedure

Replication Server executes the rs_marker system function in a primary
database during subscription materialization. The function works by executing
a replicated stored procedure that is also named rs_marker. The procedure
checks to make sure it is marked replicated and issues a warning if it is not.
Because the rs_marker stored procedure is replicated, Adaptive Server records
its executions in the transaction log for the database, where they can be read by
RepAgent.

Sybase Central and rs_init create rs_marker when you designate a database as
having primary data. It is not required in databases that have no primary data.
The exact text of the stored procedure can always be found in
rs_install_primary.sql or rsinssys.sql in the scripts directory of the Sybase
release directory.

Here is a sample text:

create procedure rs_marker
@rs_api varchar(255)

as
declare @rep_constant smallint
select @rep_constant = -32768
if not exists (select sysstat from sysobjects

where name = 'rs_marker'
and type = 'P'

Altering database connections

186 Replication Server

and sysstat & @rep_constant != 0)
begin
print "Have your DBO execute
''sp_setreplicate'' on the procedure
''rs_marker''"

 return(1)
 end

The rs_marker stored procedure does not modify data in the database. Its
purpose is to execute so that it can be recorded in the transaction log.

If rs_marker is not marked as replicated, you can mark it with sp_setreplicate:

sp_setreplicate rs_marker, 'true'

Changing primary databases to replicate databases
If you want to change a primary database to a replicate database, use the
following procedure:

At the current
replicate Replication
Server

• Drop all subscriptions and publication subscriptions to the replication
definitions in this database.

At the current primary
Replication Server

• Drop all replication definitions defined for this database.

At the Adaptive Server 1 Shut down RepAgent:

sp_stop_rep_agent dbname

2 Disable RepAgent:

sp_config_rep_agent dbname, disable

At the Replication
Server

• Log in to the Replication Server that manages the database and execute
alter connection using the log transfer off option:

alter connection to data_server.database
set log transfer off

At the Adaptive Server 1 Set the status of rs_marker to “false:”

sp_setreplicate rs_marker, 'false'

2 Set the replicate status of all replicated objects to “false”:

a Execute sp_setreptable without arguments to generate a list of all
replicated tables and stored procedures in the database.

CHAPTER 7 Managing Database Connections

Administration Guide 187

b One by one, set the replicate status of each table and stored procedure
to “false,” using sp_setreptable and sp_setrepproc.

Dropping database connections
To remove a database from the replication system, use Sybase Central or
execute drop connection. Before you execute the command, drop any
subscriptions for replication definitions for data in the database. If you are
dropping a connection to a primary database, first drop all replication
definitions for tables in the database.

Note drop connection removes database connection information from the
Replication Server system tables. It does not remove replicate data from any
database in the system. To remove replicate data, use drop subscription using
the with purge option.

To drop a connection, specify the data server with the database whose
connection is to be dropped. The syntax is:

drop connection to data_server.database

For example, to drop the connection to the pubs2 database in the SYDNEY_DS
data server, enter:

drop connection to SYDNEY_DS.pubs2

Note If you are using RepAgent for log transfer, you should also stop (if
necessary) and then disable RepAgent at the primary database. See “Disabling
RepAgent” on page 119 for information about disabling RepAgent.

For information about dropping logical connections, see “Dropping logical
database connections” on page 103 in the Replication Server Administration
Guide Volume 2.

Dropping a database from the ID Server
Replication system databases, data servers, and Replication Servers are listed
in the rs_idnames system table in the RSSD for the ID Server. Occasionally,
you may need to remove the entry for a database from this system table.

Monitoring database connections

188 Replication Server

For example, the drop connection command fails and you want to reuse the
connection name. You must force the ID Server to delete from the rs_idnames
system table the row that corresponds to the database. (Physical database
connections have a “P” in the ltype column in this system table.)

Log in to the ID Server and execute the sysadmin dropdb command to delete
the entry for the specified database. The syntax for sysadmin dropdb is:

sysadmin dropdb, data_server, database

You must have sa permission to execute any sysadmin command.

Monitoring database connections
This section describes how you can monitor your database connections. Refer
to the Replication Server Troubleshooting Guide if you need to monitor
connections for troubleshooting purposes.

Viewing current database connections
To check the status of current database connections:

• Use Sybase Central, or

• Use the admin show_connections command to display information about
all database connections from the Replication Server. This command also
displays information about all routes from the Replication Server. Refer to
Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for information about admin show_connections
command.

Listing databases managed by a Replication Server
The rs_databases system table contains entries for all of the databases
managed by the Replication Server, including databases managed by other
Replication Servers that have a route to the Replication Server.

To list the databases that a Replication Server manages:

• Use Sybase Central, or

CHAPTER 7 Managing Database Connections

Administration Guide 189

• Use the rs_helpdb stored procedure at the Replication Server RSSD.

The syntax for rs_helpdb is:

rs_helpdb [data_server, database]

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for detailed usage and syntax
information of rs_helpdb command.

Displaying DSI thread status
To view DSI thread status, use Sybase Central or the admin who commands to
display thread status information.

• admin who displays all threads in the system, including DSI threads.

• admin who, dsi displays the status of the DSI thread, which Replication
Server starts to submit transactions to the data server.

Refer to Chapter 4, “Managing a Replication System” for more information
about admin who commands. Also refer to the Replication Server Reference
Manual, which provides complete thread status listings.

Monitoring database connections

190 Replication Server

Administration Guide 191

C H A P T E R 8 Managing Replication Server
Security

This chapter describes the RCL commands for managing Replication
Server security, including creating and modifying login names,
passwords, and permissions; it also describes the dependencies involved
in making modifications.

This chapter also describes how to set up and manage third-party,
network-based security systems to authenticate users and ensure secure
data transmissions.

Overview
Careful management of login names, passwords, and permissions is
essential to the security of the replication system. Replication Server login
names and specific permissions are required for:

• Each component of the replication system, such as the data server and
the Replication Server

• Each user who is setting up replicated data or monitoring and
managing the Replication Server

Topic Page
Overview 191

Managing Replication Server system security 192

Managing Replication Server user security 199

Managing network-based security 210

Managing SSL security 237

Managing Replication Server system security

192 Replication Server

You can set up encrypted passwords throughout the replication system and
change passwords that are encrypted. Refer to the Replication Server
installation and configuration guides for your platform for details on password
encryption. Also see “Enabling and disabling password encryption in
sysattributes” on page 201 for a brief overview of encryption capabilities.

In addition, Replication Server supports third-party security services that
ensure secure message transmission over the network and enable user
authentication for seamless login to Replication Servers in the replication
system. See “Managing network-based security” on page 210.

Managing Replication Server system security
This section provides details on replication system login names and passwords.

Often, one process must log in to another, remote process. In such cases, the
login name and password assigned to the process logging in must also exist at
the remote process. If a password used to log in to the remote process is
changed at the current process only, login attempts fail. This section also
describes these dependencies.

You must establish login names and passwords for the various components of
the Replication Server system, including RSSDs, RepAgent, the ID Server, and
Replication Servers themselves.

As a general rule, if you are specifying or modifying system login names, keep
the names unique. If you use the same login name for different roles, then any
time you change the password, many of the dependencies described in this
section are affected.

Table 8-1 lists all login names required in a replication system.

Table 8-1: Overview of replication system login names

Source server Destination server/database Login name description

Primary Replication Server Primary Adaptive Server/RSSD RSSD primary user

Replicate Replication Server Replicate Adaptive Server/RSSD RSSD maintenance user

Replicate Replication Server Replicate Adaptive Server/replicate
database

database maintenance user

RepAgent for RSSD Replication Server RepAgent user for RSSD

RepAgent for primary database Replication Server RepAgent user for primary database

Replication Servers ID Server (Replication Server) ID Server user

Replication Servers Other Replication Servers Replication Server user (RSI user)

CHAPTER 8 Managing Replication Server Security

Administration Guide 193

RSSD login names and passwords
When you install Replication Server, the rs_init program creates the primary
and maintenance Adaptive Server login names to maintain the RSSD.

Replication Server uses the primary user login name to modify the system
tables in the RSSD for the primary Replication Server. Modifications may
include route, replication definition, and function-string information changes
to be replicated to RSSDs for other Replication Servers. You set up the primary
user when you create the primary RSSD using rs_init.

Replication Server uses the maintenance user login name to apply
modifications to replicate RSSDs. RepAgent filters out RSSD modifications
made by the maintenance user to avoid replicating them to other RSSDs. You
set up the maintenance user when you create the replicate RSSD using rs_init.

If the login name or password is changed for either the primary or maintenance
user, edit the Replication Server configuration file to match these changes, and
restart the Replication Server.

Changing RSSD
primary user login
name and password

Observe these guidelines when you change the RSSD primary user login name
and password. Refer to Chapter 3, “Replication Server Commands,” in the
Replication Server Reference Manual for command syntax details.

• Never change the RSSD primary user login name and/or password while
routes are being created.

While a route is being created, the destination Replication Server uses the
primary user login name and password to create and materialize
subscriptions at the destination site for replicated RSSD system tables.

• Be sure to also apply the same RSSD primary user login name and/or
password changes to the Replication Server.

• To change an encrypted or clear text password, use alter user with the
set password clause.

• To change both a login name and password (encrypted or clear text),
use drop user to drop the old login name and create user to create the
new login name and password. Then grant the user primary subscribe
permission.

See “Managing Replication Server permissions” on page 202 for
more information.

• Update the Replication Server configuration file with the new login
name and/or password. Use rs_init if the password is encrypted.

• For the updates to take effect, restart the Replication Server.

Managing Replication Server system security

194 Replication Server

Replication Server login name and password
for the RepAgent

RepAgent retrieves information about changes to the replicated system tables
in the RSSD or to the primary database from the database transaction logs and
submits them to the Replication Server for distribution.

Replication Server needs a login name for RepAgent. The rs_init program uses
the create user command to add this Replication Server user.

Observe these guidelines when you change the Replication Server login name
and/or password for the RepAgent. The login name and password you create at
the Replication Server must be the same as that used to configure the RepAgent
at Adaptive Server.

Refer to Chapter 3, “Replication Server Commands,” and Chapter 5, “Adaptive
Server Commands and System Procedures,” in the Replication Server
Reference Manual for syntax details.

At Replication Server • To change the password, use the alter user command with the set password
clause.

• To change both the login name and password, use the drop user command
to drop the old user login name and the create user command to create the
new login and password. Then grant the user connect source permission.

At Adaptive Server • To change the login name and password, use the sp_config_rep_agent
system procedure with the dbname, rs_servername, rs_username, and
rs_password options.

This updates the login name and password in the database sysattributes
table. The password is always encrypted.

• For the updates to take effect, restart RepAgent.

ID Server login name and password
The ID Server registers Replication Servers and databases in a replication
domain. Replication Servers use the ID_user configuration parameter in the
Replication Server configuration file to connect to the ID Server. For each
Replication Server, the ID Server login name and password must match the ID
Server entry.

The ID Server must be the first Replication Server installed. The ID Server
login name and password are established using rs_init.

CHAPTER 8 Managing Replication Server Security

Administration Guide 195

If you change the login name and/or password for the ID Server, be sure to
modify ID_user in the Replication Server configuration file of each
Replication Server that is defined to the ID Server, as well as the Replication
Server configuration file for the ID Server itself. You can make password
changes using rs_init.

You also must change the ID Server login name and/or password in the
Replication Server. See “Managing Replication Server login names and
passwords” on page 200 for more information on changing login names and/or
passwords.

Replication Server login name and password for Replication
Servers

To send operations, Replication Servers log in to other Replication Servers.
The login name is created using rs_init. The login name is used when a direct
route is created, from one Replication Server to another.

To change the password for a login name used for a direct route, execute the
alter route command. See Chapter 6, “Managing Routes” for details.

Maintenance user Adaptive Server login name and password
Replication Servers log in to Adaptive Server for the RSSD database or a user
database using the maintenance user login name. When applying primary
changes (insert, delete, or update operations) to replicate databases,
Replication Server uses the maintenance user login name and password.

Note Among the permissions granted to the maintenance user is
replication_role. If you revoke maintenance user’s replication_role, Replication
Server will not replicate truncate table unless the maintenance user has been
granted sa_role, owns the table, or is aliased as the Database Owner.

To change the password for the maintenance user, use the alter connection
command.

Managing Replication Server system security

196 Replication Server

Sending encrypted passwords for Replication Server client
connections

Replication Server supports the -X option in isql that sends encrypted
passwords through the network when making a client connection.

To ensure that all Replication Server client connections—except the first
connection to the RSSD—send encrypted passwords, set the Replication
Server configuration parameter send_enc_password to “on.” For example,
enter:

configure replication server
 set send_enc_password to 'on'

To ensure that all Replication Server client connections, including the first
connection to the RSSD, send encrypted passwords, set the configuration
parameter RS_send_enc_pw to “on” in the rs_name.cfg file using a text editor.

If RS_send_enc_pw is “on,” all Replication Server connections to the RSSD
send encrypted passwords—even if send_enc_password is “off.”

Existing Encrypted Password Migration
Newly created passwords uses the Federal Information Processing Standards
(FIPS)-certified encryption algorithm.

Use the information in the following table to migrate existing encrypted
passwords in the Replication Server configuration file, rs_users and
rs_maintusers tables.

CHAPTER 8 Managing Replication Server Security

Administration Guide 197

Table 8-2: Commands to encrypt passwords in new algorithm

Extended password encryption support
Replication Server uses Sybase Common Security Infrastructure (CSI) to
provide server or client authentication, cryptography for encryption and
decryption of passwords that are stored in the RSSD tables, and key-pair
generation to support extended password encryption.

Extended password encryption uses asymmetric key encryption, which allows
Open Client applications with connection property
CS_SEC_EXTENDED_ENCRYPTION enabled to connect to the Replication
Server. It also allows Replication Server to enable
CS_SEC_EXTENDED_ENCRYPTION when connecting to other servers.

Task Command/Step

Encrypt existing user
passwords to the new
algorithm

alter user user set password
password

where:

• user is the login name of the existing user

• password is the existing password you want to
encrypt using the new algorithm.

Encrypt existing database
maintenance user
passwords to the new
algorithm

alter connection to
data_server.database set password
to password

where, password is the existing password you want to
encrypt using the new algorithm.

Encrypt existing route user
passwords to the new
algorithm

alter route to
dest_replication_server set
password to passwd

where:

• dest_replication_server is the name of the
destination Replication Server

• passwd is the existing password you want to
encrypt using the new algorithm.

Encrypt existing user
passwords in the
configuration file to the
new algorithm

• Use rs_init to encrypt the passwords using the new
algorithm.

Managing Replication Server system security

198 Replication Server

Asymmetric key encryption uses a public key to encrypt the password and a
private key to decrypt the password. The private key is not shared across the
network, and is therefore secure.

Note To use the extended password encryption feature, you must have a server
that supports extended password encryption, such as ASE 15.0.2 ESD #2 or
later.

Sybase Central dependencies
The Replication Manager logs into the Replication Server and the RSSD using
the login names and passwords that you specified when you added the server
to the RM.

If you are using the RM, be sure to update the login information. This
information can be found in the Replication Server properties dialog.

Replication Server object creation dependencies
Login name and password dependencies also apply when you create
Replication Server objects, specifically subscriptions and replicated functions
(applied and request functions) that are executed at primary or replicate
Replication Servers. This section addresses these dependency issues.

Subscriptions

When you create a subscription, the login name that you used to log in to the
replicate Replication Server must exist on both the primary Replication Server
and the primary Adaptive Server. The login name must have the same
password on all three servers.

When you drop a subscription, the replicate Replication Server logs in to the
primary Replication Server using the login name and password you used to log
in to the replicate Replication Server. Do not change the password of this login
name on the primary Replication Server before the drop subscription process is
complete.

The RSSD’s “primary” user login name that is automatically created on the
Replication Server is used as the “subscribing user” when routes are created.
The rules for a user creating a subscription apply to the RSSD primary user.

CHAPTER 8 Managing Replication Server Security

Administration Guide 199

Suggestions • Do not create subscriptions as the sa user.

• The select command, issued at the primary Replication Server when
creating the subscription, does not include a table owner name unless an
owner name is specified in the replication definition. If no owner name is
specified, make sure that either the user owns the table or the table is
owned by the “dbo” user.

• Do not change passwords while subscriptions are materializing or
dematerializing.

Replicated functions and stored procedures

When a primary Replication Server receives a request function or a request
stored procedure from a replicate Replication Server, it logs in to the primary
data server with the login name and password of the user who initiated the
request function or request stored procedure at the replicate site.

Therefore, to execute a request function or request stored procedure at a
replicate data server, the user must have the same login name and password at
the primary data server, and must have execute permission for the stored
procedure at the primary data server.

When a replicate Replication Server receives an applied function or applied
stored procedure from a primary site, the replicate Replication Server uses the
maintenance user login name and password to execute the stored procedure in
the replicate database.

Managing Replication Server user security
Replication Server has its own set of login names, which are separate from data
server login names. Users do not need Replication Server login accounts to
access data replicated by Replication Server. Replicated data is available to
users if they have permissions to access specific databases. The Database
Administrator is responsible for creating databases and authorizing access to
them.

Replication Server login names are required so that administrative users of the
system can execute Replication Server commands. See “Examining users,
passwords, and permissions” on page 208 for information on viewing current
Replication Server login names. Password encryption for users can be enabled
or disabled.

Managing Replication Server user security

200 Replication Server

Managing Replication Server login names and passwords
The replication system administrator, or any other user who has sa permission,
manages login names. Table 8-3 summarizes the RCL commands for
managing login names.

Table 8-3: Commands for managing login names

Creating a Replication Server login name

The create user command adds new user login names to Replication Server. All
users have permission to execute all admin commands. See “Permission
summary” on page 205 for individual commands.

You must specify a password for the user when the login name is created. If the
user has no password, you must set the password to “null,” which specifies an
empty string.

The create user command requires sa permission. The syntax for create user is:

create user user
set password {passwd | null}

A user’s password can be up to 30 characters long and include letters, digits,
and symbols. Case is significant. If the password contains spaces, enclose the
password in single quotation marks.

Users can change their own passwords using the alter user command, which is
described in the section “Changing a Replication Server password” on page
200.

The following example creates a login name for the user “thomk” with the
password “vacUUm”:

create user thomk
 set password vacUUm

Changing a Replication Server password

The replication system administrator can change any user’s password. Also, a
user can change his or her own password. The alter user command is used in
each case.

Command Task

create user Create a new login name.

alter user Change the password for a login name.

drop user Drop a user login name.

CHAPTER 8 Managing Replication Server Security

Administration Guide 201

The syntax for alter user is:

alter user user
set password {new_passwd | null}
 [verify password old_passwd]

The same rules that you use for specifying the password using create user also
apply to alter user.

The verify password clause, which prevents users from altering each other’s
passwords, is required for users without sa permission.

The following command changes the password for user “louise” from “null” to
“polyESter”:

alter user louise
 set password polyESter
 verify password null

Dropping a Replication Server login name

The drop user command removes an existing login name from the Replication
Server. This command requires sa permission. The syntax for drop user is:

drop user user

For example, the following command removes the “thomk” login name:

drop user thomk

Enabling and disabling password encryption in sysattributes
The password the RepAgent thread uses to log in to Replication Server is
always encrypted before it is stored in the sysattributes file of the database.
However, you can choose whether or not to encrypt other replication system
passwords.

The rs_init program allows you to enable password encryption when you install
or upgrade the replication system. This allows you to encrypt passwords
throughout sensitive areas of the replication system. Once the system is
installed or upgraded, you can use rs_init at any time to enable encryption.

If you enable password encryption for a Replication Server, new passwords,
passwords contained in the Replication Server configuration file, and
passwords stored in the RSSD are all encrypted.

For details on enabling password encryption using the rs_init program, refer to
the Replication Server installation and configuration guides for your platform.

Managing Replication Server user security

202 Replication Server

Disabling encryption on new and existing passwords

Use this procedure to disable password encryption:

1 Disable encryption on new passwords that are entered for Replication
Server, using configure replication server. At Replication Server, enter:

configure replication server
 set password_encryption to '0'

2 Change existing passwords in the RSSD to clear text.

To do this, change each user’s password using the alter user command, the
alter connection command for maintenance users, and the alter route
command for routes.

3 In the Replication Server configuration file, manually reenter, in clear text,
passwords that are currently encrypted.

4 Restart the Replication Server to pick up the new password_encryption
configuration parameters.

Changing encrypted passwords in the configuration files

To change an encrypted password (to another encrypted password) in a
Replication Server configuration file, use the rs_init program. You cannot
change encrypted passwords directly in the Replication Server configuration
files.

For details on dependencies involved in changing passwords for specific login
names, see “Managing Replication Server system security” on page 192.

Managing Replication Server permissions
Replication system administrators manage Replication Server permissions
with the grant and revoke commands. Permissions determine which RCL
commands users are permitted to execute.

Any user with a Replication Server login name can execute all admin
commands and the check subscription command. Other commands can be
executed only by users who have been granted the required permissions.

Replication Server users can be granted any of four permissions.

CHAPTER 8 Managing Replication Server Security

Administration Guide 203

Table 8-4: Replication Server permissions

Requirements for creating subscriptions

A subscription creator must have accounts on both the primary and replicate
Replication Servers, and the accounts must have the same login name and
password. The subscription creator enters a command or a series of commands
at the replicate Replication Server, which passes the request to the primary
Replication Server.

When the optional clauses use dump marker and subscribe to truncate table are
used, the login name and password for the replicate Replication Server should
be the same for the primary Replication Server, as well as for both the primary
and replicate databases.

At the replicate Replication Server (the destination of the subscription data),
the subscription creator must have, at minimum, create object permission in
order to materialize the subscription.

At the primary Replication Server (the source of the subscription data), the
subscription creator must have, at minimum, primary subscribe permission in
order to enter at the replicate site all commands involved in creating
subscriptions:

• create subscription (for atomic and nonatomic materialization)

Permission Description

sa Users with sa permission are Replication System Administrators. They can execute any
Replication Server command and may grant and revoke other permissions, including sa, to and
from other users.

create object Users with create object permission can create objects such as replication definitions,
subscriptions, and function strings. Users with create object permission automatically have
primary subscribe permission.

primary subscribe Users with primary subscribe permission can execute the commands needed to create
subscriptions for primary data stored in databases managed by the Replication Server.
Users with primary subscribe permission at the primary site and create object permission at the
replicate site can create a subscription for data at the primary site, but cannot create replication
definitions or function strings at the primary site.

connect source The connect source permission is required for:

• Login names that RepAgents use to log in to Replication Server, allowing RepAgent to
execute the subset of RCL commands known as Log Transfer Language (LTL). Refer to the
Replication Server Design Guide.

• Login names that a source Replication Server uses to connect to a destination Replication
Server for the purpose of sending replicated data or replicated functions. You provide this
login name using the create route command.

Managing Replication Server user security

204 Replication Server

• define subscription (for bulk materialization)

• activate subscription (for bulk materialization)

• validate subscription (for bulk materialization)

• drop subscription

The primary subscribe permission, a subset of create object permission, is
provided at the primary Replication Server. It lets users at replicate sites create
subscriptions to data stored at primary sites. From replicate sites, these users
cannot create any other objects at primary sites, only subscriptions.

Note Users with create object and sa permissions can also create subscriptions
from replicate Replication Servers. The minimal permission required at the
primary Replication Server for a user at a replicate site to create subscriptions
is primary subscribe.

A user creating a subscription must have the following Adaptive Server
permissions:

• select permission on the table in the primary database

• insert, update, and delete permission on the replicate table

• execute permission on the rs_marker stored procedure in the primary
database

If you are a replication system administrator, restrict primary subscribe and
create object permissions at primary sites to users who require them in order to
create subscriptions.

It is possible for a user who has primary subscribe or create object permission
to begin creating a subscription without having select permission on the table.
If this occurs, Replication Server responds in the following manner:

• If the subscription is created with atomic materialization, the select with
holdlock operation fails at the primary database during materialization. The
subscription retry daemon (dSUB) retries the select with holdlock until the
subscription is dropped or until the select permission is granted to the user
for the table at the primary database.

• If the subscription is created with nonatomic materialization, the select
operation fails at the primary database during materialization. The
subscription retry daemon (dSUB) retries the select until the subscription
is dropped or the select permission is granted.

CHAPTER 8 Managing Replication Server Security

Administration Guide 205

• If the subscription is created with bulk materialization, there is no select
transaction, so no error messages are logged, and the subscription
succeeds.

Permission summary

Table 8-5 lists the minimum permission required to execute each RCL
command. Users with create object permission automatically have primary
subscribe permission. Users with sa permission can execute any command.

Table 8-5: Minimum permissions to execute RCL commands

To execute Minimum permission required

abort switch sa

activate subscription create object at replicate, primary subscribe at primary

create partition sa

admin commands Can be executed by any user

allow connections sa

alter connection sa

alter database replication definition create object

alter function create object

alter function replication definition create object

alter applied function replication
definition

create object

alter request function replication
definition

create object

alter function string create object

alter function string class sa

alter logical connection sa

alter partition sa

alter queue sa

alter replication definition create object

alter route sa

alter user sa – Users can change their own passwords by including
the verify clause

assign action sa

check publication Can be executed by any user

check subscription Can be executed by any user

configure connection sa

configure logical connection sa

configure replication server sa

Managing Replication Server user security

206 Replication Server

configure route sa

create article create object

create connection sa

create database replication definition create object

create error class sa

create function create object

create function replication definition create object

create applied function replication
definition

create object

create request function replication
definition

create object

create function string create object

create function string class sa

create logical connection sa

create partition sa

create publication create object

create replication definition create object

create route sa

create subscription create object at replicate, primary subscribe at primary

create user sa

define subscription create object at replicate, primary subscribe at primary

drop article create object

drop connection sa

drop database replication definition create object

drop error class sa

drop function create object

drop function replication definition create object

drop function string create object

drop function string class sa

drop logical connection sa

drop partition sa

drop publication create object

drop replication definition create object

drop route sa

drop subscription create object at replicate, primary subscribe at primary

drop user sa

grant sa

To execute Minimum permission required

CHAPTER 8 Managing Replication Server Security

Administration Guide 207

Granting permissions

The ability to grant and revoke permissions is reserved for the replication
system administrator. Any user who has been granted sa permission can play
the role of replication system administrator, and can transfer the grant and
revoke ability to other users by granting them sa permission.

The syntax for the grant command is:

grant
 {sa | create object | primary subscribe |
 connect source}
 to user

The user is the login name of the user to receive the permission. You can grant
only one permission at a time.

ignore loss sa

move primary sa

rebuild queues sa

resume connection sa

resume distributor sa

resume log transfer sa

resume queue sa

resume route sa

revoke sa

set proxy sa

set autocorrection create object

set log recovery sa

shutdown sa

suspend connection sa

suspend distributor sa

suspend log transfer sa

suspend route sa

switch active sa

sysadmin commands sa

validate subscription create object at replicate, primary subscribe at primary

wait for create standby sa

wait for switch sa

To execute Minimum permission required

Managing Replication Server user security

208 Replication Server

Permissions are assigned to Replication Server users—not to database users. A
Replication Server user who has create object permission can create
Replication Server objects that are associated with any database managed by
the Replication Server.

In the following example, the replication system administrator grants create
object permission to the “thomk” login name:

grant create object to thomk

Revoking permissions

To remove permissions previously granted to a user, use Sybase Central or the
revoke command.

The syntax for the revoke command is:

revoke {sa | create object | primary subscribe |
 connect source}
 from user

Note You cannot revoke the sa permission from, or drop, the sa login name.
This ensures that Replication Server is never without a replication system
administrator.

The four permissions are managed independently. They can be granted and
revoked in any order and the result is the same.

The following revoke command prevents user “louise,” who does not have sa
permission, from creating replication definitions:

revoke create object from louise

Examining users, passwords, and permissions
You can display the login names, passwords, and permissions for Replication
Server users and threads by using the rs_helpuser stored procedure or by
querying the rs_maintusers and rs_users system tables in the RSSD.

You can also use Sybase Central to view information on Replication Server
login names.

CHAPTER 8 Managing Replication Server Security

Administration Guide 209

Using the rs_helpuser stored procedure

Use the rs_helpuser stored procedure to display information about user login
names known to a Replication Server. The syntax for rs_helpuser is:

rs_helpuser [user]

With no parameters, rs_helpuser displays information about all user login
names known to the current Replication Server. Permissions are displayed for
each primary or maintenance user login name.

If you supply a login name parameter, rs_helpuser displays information about
that login name only.

Querying the rs_maintusers system table

The rs_maintusers system table in the RSSD contains the login name and
password information for maintenance users.

rs_maintusers includes a column to identify if the password is encrypted or
clear text, and a column to hold the encrypted password.

For example, the following query, executed in the RSSD, lists all available
information, including login names, for maintenance users:

select * from rs_maintusers

Querying the rs_users system table

The rs_users system table in the RSSD contains the login name and password
information for Replication Server users.

rs_users also includes a column to identify if the password is encrypted or clear
text, and a column to hold the encrypted password.

The rs_users system table also includes a permissions column, which stores the
permissions for each login name. The permissions column is a bit-mask of the
permissions granted to users.

Table 8-6 lists the mask values for each of the four permissions.

Table 8-6: Permission bitmask values in the rs_users system table

Permission Mask value

sa 0x0001

connect source 0x0002

create object 0x0004

primary subscribe 0x0008

Managing network-based security

210 Replication Server

For example, the following query, executed in the RSSD, lists users who have
sa permission:

select username, uid from rs_users
 where permissions & 0x0001 != 0

Managing network-based security
In a client/server environment, it is important to provide secure data pathways
so data transmission remains confidential. Replication Server supports third-
party, network-based security mechanisms that focus on:

• Authentication and unified login

• Secure message transmission

With network-based security, users are authenticated—the process of verifying
that users are who they say they are—by the security system at login. They
receive a credential that can be presented to remote servers in lieu of a
password. As a result, users have seamless access to the components of the
replication system through a single login.

Replication Server version 12 and later supports MIT Kerberos version 5 or
later, CyberSafe Kerberos version 5 Security Server, and Transarc DCE
version 1.1 Security Server. Depending on which of these security mechanisms
you choose, you can select one or more of these features to secure data
transmission:

• Unified login – enables the user to log in to components of the replication
system with a single credential issued by the security mechanism.

• Confidentiality – enables the sending and receiving of encrypted data.

• Integrity – ensures that data has not been tampered with.

• Replay detection – verifies that data has not been intercepted.

• Origin check – verifies the source of each data packet.

• Out-of-sequence detection – checks that data packets are received in the
order sent.

CHAPTER 8 Managing Replication Server Security

Administration Guide 211

The security mechanism allows Replication Server to establish secure
connections with other Replication Servers, with Adaptive Server, and with
other data servers that support the Kerberos or DCE security mechanism and
certain Replication Server requirements. You choose the method or methods to
secure data transmission between them.

How security services work
Clients use the security mechanism to ensure a secure pathway to a remote
server. Replication Server logs in to remote servers (acting as a client) and also
accepts incoming logins (acting as a server). How security services work
depends on whether Replication Server (or Adaptive Server or other data
server) is acting as client or server.

Replication Server, when acting as the client, uses the security mechanism to
ensure a secure pathway to a remote Replication Server or Adaptive Server.
Once the secure pathway is established, the security mechanism can provide
message protection. When Replication Server acts as a server, it accepts or
rejects logins based on its default security settings.

Login authentication

If a client requests authentication services:

1 The client validates the login with the security mechanism and receives a
credential, which contains relevant security information.

2 The client sends the credential to the server and informs the server it wants
to establish a secure connection.

3 The server authenticates the client’s credential with the security
mechanism. If the credential is not valid, the secure connection is rejected.

4 The server checks message protection properties, if the properties are
compatible, the connection is established.

Message protection

If the current Replication Server (the client) requests data protection services:

1 The client uses the security mechanism to prepare the data packet it will
send to the server.

Managing network-based security

212 Replication Server

For example, if the client requests message confidentiality, the security
mechanism encrypts the commands that will be sent to the remote server.
If the client requests out-of-sequence checking, the security mechanism
time-stamps each data packet.

2 The client sends the data to the destination server.

3 When the server receives the data, it uses the security mechanism to
perform the appropriate decryption or validation.

4 The server returns the results to the client, using the security mechanism
to perform the security action requested. For example, the server returns
results in encrypted form or time-stamps each data packet returned to the
client.

Requirements and restrictions
To enable network-based security you need:

• A network-based security mechanism installed on all machines for which
network security is to be enabled. The security mechanism must be
supported by Replication Server.

Note Make sure that you use either the MIT Kerberos, CyberSafe
Kerberos or Transarc DCE security mechanism. Sybase network-based
security will not run on other Kerberos or DCE security mechanisms.

• Replication Server version 11.5 or later for all client and destination
Replication Servers.

• Adaptive Server version 12 or later and/or compatible heterogeneous data
servers for all client and destination data servers.

Compatible heterogeneous data servers must support the security
mechanism installed on Replication Server and the set proxy concept. See
the Replication Server Reference Manual for a description of this
Adaptive Server command.

These restrictions apply:

• Both ends of a secured pathway (client and server) must support the same
security mechanism, and the security parameters must have the same
feature settings. See “Maintaining network security” on page 232 for
more information about security settings.

CHAPTER 8 Managing Replication Server Security

Administration Guide 213

• User names must be unique throughout the replication system.

If your replication system supports multiple security systems, and you
cannot guarantee unique user names, you may need to turn off request
stored procedures to avoid a potential security breach. See “Potential
security issue” on page 236 for details.

Setting up network-based security
To set up network security, perform these steps:

• Modify configuration parameters and environment variables, as necessary.

• Identify the Replication Server principal user.

• Activate the security mechanism.

• Configure security services for connections, routes, and other Replication
Server pathways.

Each of these tasks is described in the following sections.

Modifying configuration parameters and
environment variables

Configuration files are created during installation at default locations in the
Sybase directory structure. The configuration files you may need to configure
for network security are:

• libtcl.cfg

• objectid.dat

• The interfaces file

If you are using Kerberos security services, you may also need to modify the
CSFC5KTNAME environment variable.

Managing network-based security

214 Replication Server

Configuring libtcl.cfg

Drivers are libraries that provide an interface to an external service provider.
The libtcl.cfg file provides a template into which you enter all the configuration
information about the security drivers installed on a machine. It is located in
the $SYBASE/SYBASE_REP/config directory (UNIX), or the %SYBASE%\ini
directory (Windows 2000 or 2003).

This section provides the information you need to configure the security driver.
Refer to the Open Client and Open Server Configuration Guide for more
information about Sybase drivers.

The syntax for a security driver entry is:

provider=driver init-string

where

• provider is the local name for the security mechanism, for example, “dce.”
The mapping of the local name to a global object identifier is defined in
objectid.dat.

• The default local name for the DCE security mechanism is “dce.”

• The default local name for the Kerberos security mechanism is
“csfkrb5.”

If you use a local mechanism name other than the default, you must change
the local name in the objectid.dat file.

• driver is the name of the security driver, for example, libsdce.so.

• init-string is the initialization string for the driver.

• For the DCE driver, use the following syntax for init-string, where
cell_name is the name of your DCE cell:

secbase=/.:/cell_name

• For the Kerberos driver, use the following syntax for init-string,
where domaine_name is the name of your Kerberos domaine:

secbase=@domaine_name

Use a text editor to customize libtcl.cfg for your site. Make sure that lines you
do not want are preceded with the “;” character. Change one parameter at a time
and reboot Replication Server to effect the changes you make.

• An example of an entry for a DCE driver is:

[SECURITY]
dce=libsdce.so secbase=/.:/cell_name

CHAPTER 8 Managing Replication Server Security

Administration Guide 215

• An example of an entry for a Kerberos driver is:

[SECURITY]
csfkr5=libsybkrb.so
secbase=@ASElibgss=/krb5/lib/libgss.so

Configuring objectid.dat
The objectid.dat file maps global object identifiers (OIDs) to local names. It is
located in the $SYBASE/config directory (UNIX), or the %SYBASE%/ini
directory (Windows 2000, 2003).You need to edit this file only if you have
changed the local name of a security service in the libtcl.cfg file.

• A sample entry in the objectid.dat file for DCE is:

[secmech]
1.3.6.1.4.1.897.4.6.1 = dce, dcesecmech

• A sample entry in the objectid.dat file for Kerberos is:

[secmech]
1.3.6.1.4.1.897.4.6.6 = csfkrb5, kerberos

Configuring the interfaces file
The interfaces file contains network and security information for servers. It is
located in $SYBASE/SYBASE_REP/interfaces (UNIX), or
%SYBASE%\ini\sql.ini (Windows 2000 or 2003). If you use network security,
you must include a secmech line that gives the global identifiers of supported
security services. Supported security mechanisms are listed by their OIDs.
Multiple security mechanisms are separated by commas.

The following is a sample entry for the interfaces file for either DCE or
Kerberos where server_principal_user_name is the name of the Replication
Server principal user:

#
server_principal_user_name

query tcp ether plum 1050
master tcp ether plum 1050
secmech 1.3.6.1.4.1.897.4.6.1

See “Identifying the principal user” on page 217 for more information.

Managing network-based security

216 Replication Server

Setting environment variables (Kerberos)
When Replication Server serves as a client, set the KRB5CCANME to indicate
the location of the credential cache. The credential is a combination of a ticket-
granting ticket and the ticket’s session key. Replication Server uses this
credential to identify itself when login to remote server.

If you are using the Kerberos network security, you may need to reset the
shared-library path and CSFC5KTNAME environment variables.

• Make sure that the shared-library file is in a directory specified in the
shared library path so that the client can find the shared-library file at
runtime. Shared-library files are:

• libgss.so on Sun Solaris

• libgss.sl on HP-UX

• If the server key table file is in a location other than the Kerberos system
default, set the CSFC5KTNAME environment variable to the fully
qualified pathname of the key table file.

• Make sure that the LD-LIBRARY_PATH environment variable includes
the path to the CyberSafe lib directory as well as the lib directories for
Adaptive Server, Open Client/Server, and Replication Server.

• Similarly, make sure that the PATH environment variable includes the path
to the CyberSafe bin directory as well as the bin directories for Adaptive
Server, Open Client/Server, and Replication Server.

Establishing the principal user
When network security is not enabled, Replication Server logs in to remote
servers as one of several possible users, depending on the task to be performed.
When network-based security is enabled with unified login, Replication Server
must log in to remote servers as the principal user. The principal user credential
is the only credential Replication Server has to log in to other processes when
network security is active.

CHAPTER 8 Managing Replication Server Security

Administration Guide 217

When Replication Server logs in to another Replication Server or a data server,
the principal user name contained in the credential is mapped to the server
name space and a secure connection is established.

Note Make sure that principal user names are unique. Replication Server
cannot log in to another server of the same name.

Replication Server executes the set proxy command in the remote server (as the
principal user) and switches to the appropriate user for the current task.

Identifying the principal user

It is the responsibility of the replication system administrator to establish a
principal user for each Replication Server. Sybase recommends that you use
the name of the Replication Server as the principal user name. When you log
in to or start Replication Server, you can specify the principal user name with
the -S flag.

If you do not specify a principal user name using the -S flag, Replication Server
uses the Replication Server name.

Identifying the principal user to the security mechanism

The security administrator for the security mechanism must define the
Replication Server principal name to the security mechanism.

For DCE:

• Use the DCE dcecp tool’s user create command to create the principal
user.

When you are defining a server to DCE, use options that specify that the
new principal user can act as a server.

• Use the keytab create command of the dcecp utility to create a DCE key
table file, which contains a principal user’s password in encrypted form.

Note DCE is not supported on UNIX

For CyberSafe Kerberos:

• Use the Kerberos csfadml tool to create the principal user.

• Use csfadml to extract the key table file.

Managing network-based security

218 Replication Server

For MIT Kerberos:

• Use administrative command addprinc to create principal user.

• Use administrative command ktadd to extract key table file.

Refer to documentation from the security mechanism provider for detailed
information about identifying servers and users to the security mechanism.

Identifying principal users to Replication Server
The principal user for other processes—including RepAgents, data servers,
and other Replication Servers—using system security and unified login to
connect to Replication Server must be identified in the rs_users table for the
current Replication Server. You can use the create user command to add
principal user names to rs_users.

Identifying the Replication Server principal user to the replication system

You must add the Replication Server principal user name to destination
processes—Replication Servers and data servers—including the ID Server and
the RSSD to which Replication Server is connecting using unified login.

Refer to the Adaptive Server Enterprise System Administration Guide for
information about adding login names to Adaptive Server.

Activating network-based security
Before configuring security services, you must turn on network-based security
for the Replication Server using the configure replication server command.

To activate network security, follow these steps:

1 Log in to Replication Server and enter:

configure replication server
 set use_security_services to 'on'

2 Shut down Replication Server.

3 Restart Replication Server by executing the repserver command or the
Replication Server run file.

• If you are using the DCE security mechanism, make sure you include
the -K flag to specify the key table file location.

CHAPTER 8 Managing Replication Server Security

Administration Guide 219

• If you are using the Kerberos security mechanism, the key table
location must be specified by the CSFC5KTNAME environment
variable (UNIX) or the key table registry key entry (Windows 2000 or
2003).

Refer to the Replication Server Reference Manual for syntax and other
information about the repserver command.

To turn off security services, see “Disabling network-based security” on page
233.

Starting server and clients
For the network security environment to work properly, both servers and
clients should be started only after they have a valid credential.

For Kerberos systems:

• On UNIX systems, servers and clients should be started after a kinit

• On Windows NT systems, server and clients can be started automatically
using the single sign-on feature or manually using the Kerberos credentials
manager.

Refer to your Kerberos documentation for more information.

Transarc DCE systems behave in similar manner, refer to your Transarc
documentation for information about setting up the proper environment.

Configuring security services for Replication Server
Replication Server provides parameters for configuring network-based
security. Configuration parameters enable:

• Unified login

• Mutual authentication

• Choice of supported security mechanism

• Message confidentiality through encryption

Managing network-based security

220 Replication Server

• Other secure message transmission features: message integrity, origin
check, replay detection, and out-of-sequence detection

Note Depending on the security mechanism you choose, one or more of these
security features may not be available at your site.

You set default parameters in the rs_init program during system configuration.
Refer to the Replication Server Configuration Guide for your platform for
information about rs_init. This section describes how you set these parameters
at the command line.

Identifying Replication Server pathways

Replication Server coordinates data replication activities for local data servers
and exchanges data with Replication Servers and data servers at other sites.
Each of these pathways can be configured for network-based security.

• When Replication Server is acting as a client, you can configure security
for:

• All pathways established when Replication Server logs in to another
server. These are default global settings.

• The connection to the RSSD.

• Individual connections.

• Individual routes.

• Replication Server to ID Server pathway.

• Pathways used to create a route, create a subscription, or drop a
subscription.

• When Replication Server is acting as a server, you can configure security
for:

• All incoming logins. These are default global settings.

• User connection to Replication Server (set when logging on).

CHAPTER 8 Managing Replication Server Security

Administration Guide 221

Table 8-7: Network pathways

Pathway How to secure it
Special parameters and
exceptions

All pathways initiated by the current
Replication Server (acting as a
client)

Set global security parameters using
configure replication server. This is
the default setting for all outgoing
logins unless overridden for
individual pathways.

Use use_security_services to turn off
all network security with a single
command. See “Disabling network-
based security” on page 233.

Connection to the RSSD Use a text editor to configure the
rs_config file.

Security parameters have an
“RSSD_” prefix. For example:
RSSD_unified_login.

Individual connections Set security parameters for a
connection to a remote database
with:

• create connection, or

• alter connection

See the Replication Server Reference
Manual for more information about
these commands.

Use dsi_exec_request_sproc to
suspend request stored procedures.
See “Configuring security for
database connections” on page 226.

Individual routes defined using the
create route command

Set security parameters using:

• create route, or

• alter route

See the Replication Server Reference
Manual for more information about
these commands.

Replication Server to ID Server Set security parameters with
configure replication server.

See the Replication Server Reference
Manual for more information about
this command.

Security parameters have an “id-”
prefix. For example:
id_msg_confidentiality.

Replication Server to primary
Replication Server and primary
database to:

• create a route

• create or drop a subscription

Replication Server duplicates the
security settings used when the user
creating the route or creating or
dropping the subscription logs in to
Replication Server.

See “Borrowing security settings to
secure other pathways” on page 232
for more information.

Managing network-based security

222 Replication Server

Configuration parameters

Table 8-8 describes the configuration parameters generally available for all
pathways. Exceptions and special cases are listed in Table 8-7 and described in
detail in each pathway section.

Table 8-8: Security parameters affecting Replication Server

All incoming logins (Replication
Server acting as server)

Set parameters for incoming logins
with configure replication server.
Default parameters for outgoing and
incoming parameters are set at the
same time and are identical.

Pathway established when user logs
in to Replication Server.

Set security parameters with the isql
utilities.

Security parameters set for this
pathway must be compatible with
those set at the Replication Server
for all incoming logins.

Security for this pathway cannot be
configured using the rs_init utility.

Pathway How to secure it
Special parameters and
exceptions

configuration_parameter Description

msg_confidentiality Indicates whether Replication Server sends and receives encrypted data. If set to
“required,” outgoing and incoming data must be encrypted. If set to
“not_required,” Replication Server accepts incoming data that is encrypted or not
encrypted. Values are “required” or “not_required.”

Default: not_required

msg_integrity Indicates whether data is checked for tampering. Values are “required” or
“not_required.”

Default: not_required

msg_origin_check Indicates whether the source of data must be verified.Values are “required” or
“not_required.”

Default: not_required

msg_replay_detection Indicates whether data should be checked to make sure it has not been intercepted
and re-sent.Values are “required” or “not_required.”

Default: not_required

msg_sequence_check Indicates whether data packages should be checked to ensure that they have been
received in the order sent. Values are “required” or “not_required.”

Default: not_required

mutual_auth Requires remote server to provide proof of identify before a connection can be
established. Values are “required” or “not_required.”

Default: not_required

CHAPTER 8 Managing Replication Server Security

Administration Guide 223

Planning for compatible settings

Replication Server accepts incoming logins and initiates logins to other
servers. Security parameters for all incoming logins (when Replication Server
is acting as a server) are set with the configure replication server command.
Security parameters for outgoing logins (when Replication Server is acting as
a client) are set as described in Table 8-7.

When you set up network-based security, you must plan for the interaction
between security settings at each end of the secured pathway. Security settings
at both ends of each pathway must be compatible.

Note It is the replication system administrator’s responsibility to choose and
set security features for each server. Replication Server does not query the
security features of remote servers before attempting to establish a pathway.
An attempted login fails if security features at both ends of the pathway are not
compatible.

Use configure replication server with the use_security_services parameter to
activate or deactivate all security services. Table 8-9 describes compatible
security settings for client/server interaction. If the security services
parameters are not compatible, for example, if a parameter is set to
“not_required” at the client and “required” at the server, the server does not
allow the client to log in.

security_mechanism Specifies the name of the network-based security mechanism.

Default: First security mechanism listed in libtcl.cfg.

unified_login Indicates how Replication Server seeks outgoing connections and accepts
incoming connections. The values are:

• “required” – always seeks to log in to remote server with a credential; only
accepts incoming logins with a credential.

• “not_required” – always seeks to log in to remote server with a password;
accepts incoming logins with a credential or a password.

Note unified_login must be “required” before other security parameters can take
effect.

Default: not_required

configuration_parameter Description

Managing network-based security

224 Replication Server

Table 8-9: Compatible client/server settings

Configuring default values

Use configure replication server to establish default security settings for all
outgoing logins (when Replication Server acts as a client) and incoming logins
(when Replication Server acts as a server).

You can override default security settings for these outgoing pathways:

• Individual connections – see “Configuring security for database
connections” on page 226.

• Individual routes – see “Configuring security for routes” on page 227.

• The pathway from Replication Server to ID Server – see “Configuring
security to the ID Server” on page 229.

Note You cannot override any default security settings that control security for
incoming logins.

When Replication Server seeks to open a pathway to another server, it checks
to see if security parameters have been set specifically for that pathway. If not,
Replication Server uses the default security settings determined using configure
replication server.

To set global security parameters, log in to Replication Server and execute
configure replication server at the isql prompt. Here is the syntax:

configure replication server {
 set security_mechanism to 'mechanism_name' |
 set security_parameter to { 'required' |
 'not_required' }}

Client Server

use_security_services “off”: no security
services

Compatible settings:

• use_security_services “off”, or

• use_security_services “on” and security feature “not required”

use_security_services “on” and security
feature “not required”

Compatible settings:

• use_security_services “on” and security feature “not required,” or

• use_security_services “off”

use_security_services “on” and security
feature “required”

Compatible settings:

• use_security_services “on” and security feature “required”

CHAPTER 8 Managing Replication Server Security

Administration Guide 225

You can set all of the configuration parameters listed in Table 8-8 on page 222.
They are stored in the rs_config table in the RSSD. You must have sa
permission to execute them.

Examples

This section provides examples of using configure replication server.

Requiring unified login To require all servers and users that connect to Replication Server to be
authenticated by the security mechanism, set unified_login to “required.” Log in
to Replication Server and execute this command at the isql prompt:

configure replication server
 set unified_login to 'required'

If unified_login is “not_required”, Replication Server allows servers and users
to connect with either a credential or a password.

Note unified_login must be “required” for other security services to take effect.

Requiring data
encryption

To require all data sent or received by Replication Server to be encrypted, log
in to the Replication Server and execute this command at the isql prompt:

configure replication server
 set msg_encryption to 'required'

Configuring security for the connection to the RSSD

At startup, Replication Server contacts the RSSD for configuration
information. You can secure this pathway using network-based security.

When you set up Replication Server, rs_init creates the RSSD connection and
places default security information in the Replication Server configuration file,
Rep_Server_name.cfg. By default, rs_init sets all network security parameters
to “not required.” If you want to secure the pathway, you must use a text editor
to change desired default values to “required.”

Configuration values for the RSSD are preceded by an “RSSD_” prefix. For
example:

• RSSD_mutual_auth

• RSSD_msg_origin_check

See Table 8-8 for a list and description of the available parameters.

Managing network-based security

226 Replication Server

Configuring security for database connections

To configure security for individual connections, use create connection or alter
connection. Security parameters configured with these commands affect
security for the outgoing connection to the data server. They override
parameters set with configure replication server.

Creating a secure connection

You can set security parameters when you create a connection with create
connection. Normally, you use this command to add connections to non-Sybase
databases.

Here is the syntax for including security features with the create connection
command. See create connection in the Replication Server Reference Manual
for detailed information about using create connection.

create connection to data_server.database...
 set username [to] user
 [set password [to] passwd]
[set security_mechanism [to] 'mechanism_name' |

 set dsi_exec_request_sproc [to] { 'on' | 'off' } |
 set security_mechanism [to] 'mechanism_name' |
 set security_parameter [to] { 'required' |
 'not_required' }]

Table 8-8 on page 222 describes the security parameters you can set with
create connection. In addition, you can set the dsi_exec_request_sproc
parameter described in Table 8-10 on page 226.

Connections parameters are stored in the rs_config table in the RSSD, and you
must have sa permission to execute them.

Table 8-10: Special security parameters for connections

Security parameters set at both ends of a connection must be compatible. See
“Planning for compatible settings” on page 223 for details.

Modifying security for a connection

To change the security settings for a database connection, use alter connection.

security_parameter Description

dsi_exec_request_sproc Indicates whether request stored procedures at the primary Replication Server are “off”
or “on.” Use in multiple security-system environments. Refer to “Using more than one
security mechanism” on page 236 for more information.

Default: off

CHAPTER 8 Managing Replication Server Security

Administration Guide 227

Here is the syntax for altering security:

alter connection to data_server.database {
...
set password to passwd |
set security_mechanism to 'mechanism_name' |
set dsi_exec_request_sproc to { 'on' | 'off' } |
set security_parameter to { 'required' |

'not_required' }}

Refer to Table 8-8 on page 222 and Table 8-10 on page 226 for a list and
description of parameters you can alter.

To change the security parameters of a database connection, perform these
steps at the Replication Server:

• Execute suspend connection to suspend activity on the connection.

• Execute alter connection to change security parameters. Set one parameter
at a time.

• Execute resume connection to resume activity on the connection.

Examples

This section provides some examples of using alter connection.

To require Replication Server to connect to the target database
(TOKYO_DS.pubs2) with a credential, execute:

alter connection to TOKYO_DS.pubs2
 set unified_login to 'required'

Note unified_login must be “required” for other security services to take effect.

To turn “off” request stored procedures at the TOKYO data server in a multiple
security-system environment, execute:

alter connection to TOKYO_DS.pubs2
 set dsi_exec_request_sproc to 'off'

Configuring security for routes

You can configure security for individual routes using create route or alter
route. Security parameters configured with these commands affect security for
the outgoing login to the destination Replication Server. They override default
parameters set with configure replication server.

Managing network-based security

228 Replication Server

Creating a secure route

You can set security parameters when you create a route. Here is the syntax for
including security features using the create route command.

create route to dest_replication_server {
...
[set username to 'user']
[set password to 'passwd']
[set security_mechanism to 'mechanism_name' |
set security_parameter to { 'required' |
 'not_required' }]

Table 8-8 on page 222 describes the security parameters you can set with
create route. They are stored in the rs_config table in the RSSD. You must have
sa permission to execute them.

Security parameters set at both ends of a route must be compatible. See
“Planning for compatible settings” on page 223 for details.

Modifying security for a route

To change the security settings for a route, use the alter route command.

Log in to Replication Server and execute alter route at the isql prompt. Here is
the syntax for altering security:

alter route to dest_replication_server {
...
set password to 'passwd' |
set security_mechanism to 'mechanism_name' |
set security_parameter to { 'required' |

'not_required' }}

Table 8-8 on page 222 describes the security parameters you can change with
alter route.

To change the security parameters of a route, you must first suspend the route.
Perform these steps at the Replication Server:

1 Execute suspend route to suspend activity on the route.

2 Execute alter route to change a security parameter. Change one parameter
at a time.

3 Execute resume route to resume activity on the route.

Examples

This section provides some examples of using alter route.

CHAPTER 8 Managing Replication Server Security

Administration Guide 229

• To require Replication Server to connect to the target Replication Server
(TOKYO_RS) with a password, execute these commands:

alter route to TOKYO_RS
 set username 'TOKYO_rsi_user'
alter route to TOKYO_RS
 set password 'TOKYO_rsi_pw'
alter route to TOKYO_RS
 set unified_login to 'not_required'

Note If unified_login is “not_required,” you must specify an RSI user and
password.

• To specify that all messages exchanged with the target Replication Server
(TOKYO_RS) are checked for tampering, execute:

alter route to TOKYO_RS
 set msg_integrity to 'required'

Configuring security to the ID Server

To configure network-based security for the network connection from
Replication Server to ID Server, use configure replication server. The syntax is:

configure replication server
 set id_security_param to { 'required' |

'not_required' }

Refer to the Replication Server Reference Manual for complete syntax and
usage information about configure replication server. Table 8-8 on page 222
describes the security parameters you can set for the pathway to the ID Server.
They are stored in the rs_config table in the RSSD. You must have sa
permission to configure them. To distinguish settings for this pathway, all ID
Server parameters begin with the “id_” prefix. For example:

• id_msg_confidentiality

• id_security_mechanism

ID Server security parameters configured with configure replication server are
dynamic. They take effect immediately and do not require that you restart
Replication Server.

Examples

• To require that the source of all messages be verified, log in to the source
Replication Server and enter:

Managing network-based security

230 Replication Server

configure replication server
 set id_msg_origin_check 'required'

• To require that Replication Server logs in to ID Server with a credential,
enter:

configure replication server
 set id_unified_login to 'required'

Logging in to Replication Server

Connect to Replication Server using a client application such as isql or a
custom application program you create with Open Client Client-Library. The
isql utility includes command line options that enable network-based security
services for the connection to Replication Server.

Table 8-11 describes the command line options that you can use with isql to
enable network-based security on the connection.

Table 8-11: isql command line options for security

Option name Meaning

-K keytab_file Use only with DCE security. It specifies a DCE keytab file that contains the security key
for the user logging into the server. Keytab files can be created with the DCE dcecp
utility—see your DCE documentation for more information. Replication Server must
have read permission on this file.

Note For Kerberos users: Specify the location of the key table file using the key table
registry key entry (Windows 2000 or 2003).

-S server_name Specifies the server’s network name. If unified login is enabled, this option also specifies
the principal user.

-V security_options Specifies unified login. With this option, the user must log in to the network’s security
system before running the isql utility. If a user specifies the -U option, the user must
supply the network user name known to the security mechanism; any password supplied
with the -P option is ignored.

-V can be followed by a string of options that enable additional security services. Here is
a list of options and the services they enable.

• c – data confidentiality

• i – data integrity

• m – mutual authentication

• o – data origin stamping service

• r – data replay detection

• q – out-of-sequence detection

-X Specifies that connections are made with encrypted passwords.

CHAPTER 8 Managing Replication Server Security

Administration Guide 231

Examples of connecting to Replication Server

You can connect to Replication Server by logging in to the security mechanism
and then logging in to Replication Server, or you can log directly in to
Replication Server.

You must include the -S flag to identify the principal user. Some sample logins
follow.

Connecting to
Replication Server
from the security
mechanism

To log in first to the DCE security mechanism and then to Replication Server,
you can follow these steps:

1 Log in to the DCE security mechanism and receive a credential:

• For DCE, enter

dce_login user_name password

• For Kerberos, enter

kinit user_name password

2 Log in to Replication Server with isql:

• For DCE, enter

isql -Srs_server_name -Vsecurity_option

• For Kerberos, enter

isql -Srs_server_name -Vsecurity_option

Note When using DCE, if you want to log in as another user, you must include
the -U and -K options.

Connecting to
Replication Server
from outside security

To connect to Replication Server from outside the security mechanism, you can
enter:

• For DCE, enter

isql -Srs_server_name -Uuser_name
 -Kkeytab_file

-Z security_mechanism Specifies the name of a security mechanism to use on the connection to Replication
Server.

Supported security mechanism names are listed in the libtcl.cfg file. If no security
mechanism is supplied, the default is used, which is the first security mechanism listed
under SECURITY in libtcl.cfg.

Option name Meaning

Managing network-based security

232 Replication Server

• For Kerberos, enter

isql -Srs-server_name -Yuser_name

Borrowing security settings to secure other pathways

The security services you use when logging in to Replication Server from the
command line not only secure the pathway between the client and the server,
they may also be duplicated later on in the session when Replication Server
opens other pathways.

Replication Server logs in to the primary Replication Server and the primary
database over informal pathways when executing these commands:

• create subscription

• drop subscription

• create route

To secure these pathways, Replication Server borrows the security settings
entered by the user executing create subscription, drop subscription, or create
route when that user logged in to Replication Server.

Maintaining network security
This section describes the tasks you perform to manage and maintain network
security.

Using set proxy to switch logins

When unified_login is enabled, Replication Server always logs in to remote
processes as the principal user. Nonetheless, Replication Server commands
must be executed on the target data server by the correct user for a particular
operation. For example, Replication Server must use the maintenance user
login name when applying changes to replicate databases. Replication Server
uses the Adaptive Server set proxy command to switch automatically from the
login user to the required user.

You can customize the set proxy command with the rs_setproxy function string.
rs_setproxy changes the login name in a data server. rs_setproxy has function-
string-class scope.

Refer to the Replication Server Reference Manual for more information about
rs_setproxy.

CHAPTER 8 Managing Replication Server Security

Administration Guide 233

Disabling network-based security

You can disable all security services with the configure replication server
command and the use_security_services to 'off' parameter.

When you disable network security, Replication Server does not accept
incoming logins with security credentials and does not attempt to log in to other
processes with a security credential. No security services are active.

Here is the procedure for disabling security:

1 Log in to the Replication Server, and at the isql prompt enter this
command:

configure replication server
set use_security_services to 'off'

2 Restart Replication Server by executing the repserver command or the
Replication Server run file. Refer to “Replication Server executable
program” on page 86 for information about the repserver command.

To enable network-based security at the Replication Server, refer to “Setting
up network-based security” on page 213.

Changing the security mechanism

To change to another security mechanism, log in to Replication Server and
execute this command at the isql prompt:

configure replication server
 set security_mechanism to 'mechanism_name'

The security mechanism you change to must be installed and listed in the
SECURITY section of the libtcl.cfg file.

Resetting per-target values to default values

You can change all of your per-target security values for connections or routes
using the set security_services to ‘default’ option.

For connections

Use alter connection to change per-target security settings to global values set
with configure replication server.

Follow this procedure:

Managing network-based security

234 Replication Server

1 Log in to the Replication Server and execute the suspend connection
command at the isql command. Here is the syntax:

suspend connection to dataserver.database

2 Change security settings with the alter connection command. Here is the
syntax:

alter connection to dataserver.database
set security_security services to ‘default’

3 Resume the route or connection with the resume connection command for
the changes to take effect. Here is the syntax:

resume connection to dataserver.database

Changes take effect after you resume the connection. This procedure does not
affect the configuration of use_security_services.

For routes

Use the set security_services to 'default' parameter with alter route to change per-
target security settings to global values set with configure replication server.

Follow this procedure:

• Suspend the route. Enter:

suspend route to dest_replication_server

• Alter the route. Enter:

alter route to dest_replication_server
 set security_services to 'default'

• Resume the route. Enter:

resume route to dest_replication_server

Changes take effect after you resume the route. This procedure does not affect
the configuration of use_security_services.

Viewing information about security services

You can display information about the Replication Server network-based
security using the admin security_property and admin security_setting
commands.

CHAPTER 8 Managing Replication Server Security

Administration Guide 235

What security mechanisms and services are available?

To find out which security mechanisms and services are supported at the
Replication Server, execute the admin security_property command at the isql
prompt:

admin security_property[, security_mechanism]

Replication Server displays the name of supported security mechanisms, the
security services available for that mechanism, and whether or not those
services are supported at your site.

What are the current security settings?

To determine the status of supported security services, use the admin
security_setting command. You can view status information for security
parameters that have been set for routes and/or the ID Server. You can use the
following syntax, where rs_idserver is the name of the ID Server and
rep_server is the name of the destination Replication Server:

admin security_setting[, rs_idserver |, rep_server]

 Mapping a security system login to a Replication Server login

Your network-based security mechanism may use login names that are not
valid on Replication Server. For example, login names on Replication Server
must not exceed 30 characters or include certain special characters such as *,
(, and %. Login names on Replication Server must be valid identifiers, which
are described in “Identifiers” in Chapter 2 of the Replication Server Reference
Manual.

If the security login name is not a valid identifier, Replication Server
automatically maps invalid characters to valid characters and truncates login
names at 30 characters. Table 8-12 describes how Replication Server translates
invalid characters.

Table 8-12: Replication Server converts invalid characters

Invalid characters Convert to

\ % & , : = > ‘ ' ~ an underscore: _

! ^ () . < ? { } a dollar sign: $

“ - ; * + / [] | a pound sign: #

Managing network-based security

236 Replication Server

Using more than one security mechanism

If your replication system supports multiple security mechanisms, you may
need to install more than one security mechanism on your Replication Server
to ensure that both ends of each pathway can support the same mechanism. In
this scenario, you can:

1 Configure the Replication Server, for all routes, connections, and other
pathways, using configure replication server. Make sure that the default
security mechanism name is the first one listed under SECURITY in the
libtcl.cfg file.

2 Configure security for the individual pathways that use a different security
mechanism. Make sure that the security mechanism is listed in libtcl.cfg.
Table 8-7 lists pathways and the methods for securing them.

To find out the security mechanisms and supported security parameters of the
Replication Server, use the admin security_property command. To find out the
security mechanisms and current settings of a particular pathway, use the admin
security_settings command. Refer to “Viewing information about security
services” on page 234 for more information.

Potential security issue

If different security mechanisms are used at the primary and replicate databases
and Adaptive Server user names cannot be guaranteed unique at these sites, a
potential security breach exists for request stored procedures.

If this scenario exists on your system, you can make sure that security is
maintained by turning “off” the dsi_exec_proc parameter for the connection
with the primary database. Executing alter connection and turning
dsi_exec_proc “off” disables the Replication Server request-stored-procedures
feature.

Here is the syntax:

alter connection to data_server.database
 set dsi_exec_request_sproc 'off'

CHAPTER 8 Managing Replication Server Security

Administration Guide 237

Managing SSL security
The Replication Server secure sockets layer (SSL) Advanced Security option
provides session-based security. SSL is the standard for securing the
transmission of sensitive information, such as credit card numbers and stock
trades, over the Internet.

SSL overview
SSL, also called Transport Layer Security (TLS), provides a lightweight, easy-
to-administer security mechanism with several encryption algorithms. It is
intended for use over those database connections and routes where increased
security is required.

SSL uses certificates issued by certificate authorities (CAs) to establish and
verify identities. A certificate is like an electronic passport; it contains all the
information necessary to identify an entity, including the public key of the
certified entity and the signature of the issuing CA.

This document provides instructions for setting up SSL on Replication Server.
See documentation from your third-party SSL security mechanism for
instructions for using that software. See also the Internet Engineering Task
Force (IETF) Web site for additional information.

An SSL installation requires these items:

• Certificate authority – a valid entity that verifies and signs certificates.
Each CA has its own verification policies for issuing digital signatures.

• Certificate – an electronic document that identifies a server, a user, an
organization, or other entity. A certificate contains the public key of the
certified entity and a signature of the issuing CA.

• Filter – a special network driver that filters information delivered to and
from a port.

• Identity file – concatenates a certificate and the certificate’s private key.

• Trusted roots file – contains a list of certificates. Open Client/Server
accepts only those CAs listed in the trusted roots file.

• CipherSuites – a set of cryptographic algorithms for authenticating a client
and server, transmitting certificates, encrypting data, and establishing
security session keys.

Managing SSL security

238 Replication Server

The SSL protocol runs above TCP/IP and below application protocols such as
HTTP or TDS. Before the SSL connection is established, the server and client
exchange a series of I/O round trips to negotiate and agree upon a secure
encrypted session. This process is called the SSL handshake.

The SSL handshake

The standard SSL handshake consists of these steps:

1 The client sends a connection request, which includes the SSL options the
client supports, to the server.

2 The server returns its certificate and a list of supported encryption
algorithms called CipherSuites, key-exchange algorithms, and digital
signatures.

3 Both client and server agree on a CipherSuite, and a secure, encrypted
session is established.

SSL on Replication Server
Replication Server does not directly invoke SSL APIs. Replication Server SSL
support is based on functionality provided by Sybase Open Client/Server.
Sybase uses the SSS Plus™ library API from Certicom to support SSL in Open
Client/Server applications. See the Open Server Server-Library/C Reference
Manual for a complete description of Open Client/Server support for SSL.

Replication Server Advanced Security option supports server authentication
and data encryption; it does not support client authentication. For incoming
connections, Replication Server supports both SSL and non-SSL ports. For
outgoing connections, Replication Server supports both SSL and non-SSL
ports on the target server. Clients must log in to the server using a user name
and password. Replication Server verifies the user name and password. Once
this connection is made, a secure encrypted session can be established.

Use of SSL-secured links can impact Replication Server performance. Sybase
recommends SSL only for those connections or routes that transmit sensitive
data.

Requirements

• RS 15.0 or later supports TLS version 1.0 or 2.0; it does not support SSL
version 3.0.

CHAPTER 8 Managing Replication Server Security

Administration Guide 239

• SSL requires Replication Server version 12.5 and later. Earlier versions of
Replication Server do not support SSL.

• The Replication Server Administrator must generate and secure the server
certificates and trusted root CA certificates as files outside Replication
Server.

Setting up SSL security
Before setting up SSL services on Replication Server review the SSL Plus user
documentation and documentation for any third-party SSL security software
you are using.

To set up SSL services on Replication Server, follow these steps:

1 Edit $SYBASE/$SYBASE_OCS/config/libtcl.cfg to include SSL driver
location.

2 Edit $SYBASE/config/trusted.txt to include trusted CA certificates.

3 Obtain a certificate from a trusted CA for each Replication Server
accepting SSL connections.

4 Create the identity file that concatenates a certificate and its private key.

5 Use rs_init to enable SSL on Replication Server and to add an encrypted
SSL password to the Replication Server configuration file.

Note You can also enable and disable SSL on Replication Server using
configure replication server and the use_ssl option.

6 Create an SSL entry in the Replication Server interfaces file or directory
service.

7 Restart Replication Server.

See the Replication Server Configuration Guide for detailed instructions for
each of these steps.

Enabling SSL security
You can enable or disable the SSL security feature using rs_init; you can also
enable or disable SSL using configure replication server with the use_ssl option.

Managing SSL security

240 Replication Server

To enable configure replication server, enter:

configure replication server
set use_ssl to 'on'

Set use_ssl to “off” to disable SSL. By default, SSL is not enabled on
Replication Server. When use_ssl is “off,” Replication Server does not accept
SSL connections.

use_ssl is a static option. You must restart Replication Server after you change
its value.

Administration Guide 241

C H A P T E R 9 Managing Replicated Tables

This chapter describes setting up and managing replicated tables.

You can copy data from one database to another in different ways
depending on which method best suits the needs at your site:

• Using a single database replication definition that lets you choose
whether or not to replicate individual tables, transactions, functions,
system stored procedures, and data definition language (DDL).

See Chapter 12, “Managing Replicated Objects Using Multisite
Availability,” for more information about database replication
definitions and multisite availability (MSA).

• Using function replication definitions, where each one identifies a
specific system stored procedure for replication.

See Chapter 10, “Managing Replicated Functions,” for information
about setting up and managing function replication definitions.

Topic Page
Introduction 242

Planning a replication system 243

Summarizing the process 245

Creating replication definitions 250

Marking tables for replication 270

Replicating Java columns 273

Replicating text, unitext, image, and rawobject columns 277

Replicating new large-object (LOB) datatypes 287

Replicating computed columns 288

Replicating encrypted columns 289

Working with special datatypes 291

Modifying replication definitions 293

Modifying replicated data 305

Using publications 308

Translating datatypes using HDS 317

Introduction

242 Replication Server

• Using table replication definitions, where each one identifies a specific
table for replication and, optionally, specifies a subset of columns to be
replicated.

This chapter discusses the preparations, the procedures, and the specific
commands used to manage replicate tables, table replication definitions,
and publications.

Introduction
Replication Server allows you to copy and update data from a table in one
database—the primary—to a table in another database—the replicate.

Note The primary database is also referred to as the “source.” The replicate
database is also referred to as the “destination.”

To establish a table as the source, you create a replication definition that
specifies the location of the data you want to copy and describes the structure
of the table in which the data resides.

Before you copy data from the source table, you must also create a duplicate of
the table in the destination data server. Then, in the Replication Server that
manages the destination table, you create a subscription to the replication
definition. A subscription resembles a SQL select statement.

If you do not want to duplicate all of a table’s data, Replication Server lets you
specify a subset of columns to copy in the replication definition or use a where
clause in the subscription to specify a subset of rows to receive.

You can include replication definitions for related tables and stored procedures
in a publication and then create subscriptions against all of them as a group.
When you use publications you can organize your subscriptions and monitor
status information for all subscriptions in the group with a single command.

You can change the datatype of replicated values using the heterogeneous
datatype support (HDS) feature. HDS allows you to translate the datatype of a
replicated column value to a datatype acceptable to the replicate data server.
You can use HDS in Sybase environments, in non-Sybase environments, and
in mixed Sybase and non-Sybase data server environments.

CHAPTER 9 Managing Replicated Tables

Administration Guide 243

See Chapter 11, “Managing Subscriptions” for information on creating
subscriptions for individual replication definitions and for publications. See
“Subscription example” on page 382 for an example of the entire transaction
replication process.

Planning a replication system
This section summarizes the information you need to consider when planning
your replication system. See the Replication Server Design Guide for more
information.

Design considerations
When you set up a replication system, consider the following:

• Security, including user login names and passwords, permissions required
for executing commands, and third-party security systems. See Chapter 8,
“Managing Replication Server Security”.

• Concurrency control; specifically, protecting your replication system from
conflicts that may result from data being modified by one client when it is
also being used by another. See “Transaction Management” in Chapter 1
of the Replication Server Design Guide.

• CPU, memory, disk, and network resources. See Appendix A, “Capacity
Planning,” in the Replication Server Design Guide.

• Consider your replicated data model and routing scheme. See Chapter 1,
“Introduction” and Chapter 6, “Managing Routes”.

• Requirements for using heterogeneous data servers as data sources or data
destinations. Refer to “Heterogeneous Data Server Support” in Chapter 1,
“Introduction,” in the Replication Server Design Guide.

• Compatibility between Adaptive Servers and Replication Servers of
different versions. See “Restrictions on data replication” on page 244.

For information about Sybase compatibility issues, see the release bulletin for
your platform.

Planning a replication system

244 Replication Server

Restrictions on data replication
When you design your replication system, you should also consider the
following restrictions.

• Adaptive Server and Replication Server system tables cannot be copied
during normal replication. However, the execution of supported
commands and system procedures on certain system tables can be copied
in warm standby applications. Refer to “What information is replicated?”
on page 61 in the Replication Server Administration Guide Volume 2 for
more information. In addition, some data is automatically copied between
RSSDs in the replication system.

• Tables that you want to copy must have unique primary keys.

• Client applications should not update unique index or primary key
columns in a way that a key could duplicate the key of another row.
Because of the way Replication Server copies transactions, this type of
update could result in duplicate rows or errors at replicate databases.

For example, if pk_col is the primary key column for table1, the following
command could cause errors or incorrect data at the replicate database:

update table1
set pk_col = pk_col + 1

If there is a primary key or unique index constraint on the replicate table,
the updates fail and the DSI thread for the replicate database is suspended.

• If a trigger is associated with a replicate table, do not put a commit
statement inside the trigger. Triggers that contain commit statements at
replicate sites may cause a duplicate key and make Replication Server
recovery fail.

• Replication Servers of different versions can work together in the same
replication system, but certain features may be restricted. See “Mixed-
version replication systems” on page 18 for more information.

• Virtual computed columns cannot be replicated since Replication Agent
cannot forward virtual columns to Replication Server, and Replication
Server cannot insert or update virtual columns.

Preparing a replication system
Before you replicate data, complete the following preparatory tasks:

• Set up the replication system:

CHAPTER 9 Managing Replicated Tables

Administration Guide 245

• Install Replication Servers. See the Replication Server installation
and configuration guides for your platform.

• Create the databases that will be the primary and replicate. See the
Adaptive Server Enterprise Reference Manual or the documentation
for your non-Sybase database software.

• Establish connections from Replication Servers to the primary and
replicate databases.

See the Replication Server Configuration Guide for your platform and
Creating database connections in Chapter 7, “Managing Database
Connections.”

• Establish all necessary routes between Replication Servers. See
Chapter 6, “Managing Routes.”

• Configure and start up database RepAgent for source databases. See
Chapter 4, “Managing a Replication System.”

• Verify that all replication system components are working. See Chapter 1,
“Verifying and Monitoring Replication Server” in the Replication Server
Administration Guide Volume 2.

Refer to the Replication Server installation and configuration guides for
your platform for more information. Also see Chapter 4, “Managing a
Replication System” for more information about starting and stopping
Replication Servers.

Summarizing the process
This section describes how to replicate data between tables. For more
information, see “Specifying data for replication” on page 32, and the
following tables:

• Table 9-1 on page 249

• Table 10-1 on page 333

• Table 11-3 on page 370

For information about how to group replication definitions in publications and
create publication subscriptions against them, see “Using publications” on
page 308 and “Using publication subscriptions” on page 395.

Summarizing the process

246 Replication Server

Replication procedure
The following procedure summarizes the steps required to replicate data using
table replication definitions and subscriptions, and where to turn for detailed
instructions. For an example of the entire process, see “Subscription example”
on page 382.

1 Be sure you understand the issues described in “Planning a replication
system” on page 243. Verify that you prepared the replication system as
described under “Preparing a replication system” on page 244.

2 Create the table as the Database Owner in the primary database, if it does
not already exist, or, if there is a different table owner, specify the table
owner name when you create the replication definition.

• In Adaptive Server, use create table to create the table, or use sp_help
to verify that the table exists.

• If you are replicating data from a source other than Adaptive Server,
create the table according to the instructions for your database
software. Other data server steps in this procedure may vary for
heterogeneous replication.

3 In the primary Replication Server, create one or more replication
definitions for the table from which you want to copy data. Each
replication definition can be subscribed to by a different site that uses a
different table view.

When you create replication definitions, anticipate the requirements for
the subscribing table, as described in step 8. The replication definition may
contain all or a subset of the columns in the source table. It may specify
the same or different table names, owner names, column names, or
datatypes for the source and destination tables. It may change the datatype
of the replicated value.

See “Using the create replication definition command” on page 251 for
details. See also “Creating multiple replication definitions per table” on
page 265.

4 If you are using publications, execute the following steps at the primary
Replication Server.

• Create one or more publications for the tables you want to replicate
using create publication.

CHAPTER 9 Managing Replicated Tables

Administration Guide 247

• Create one or more articles, replication definition extensions, for
each replication definition you want to include in the publication
using create article. You can include a where clause to specify a subset
of rows to send to the destination database.

• Validate the publications, using validate publication, so that you can
create subscriptions against them.

See “Using publications” on page 308 for more information about
creating publications.

5 Mark the source table for replication.

In the primary Adaptive Server, use sp_setreptable to enable table
replication. This step allows the RepAgent thread to forward transactions
for the table to the primary Replication Server.

Note For non-Adaptive Server primaries, see your Replication Agent
documentation for instructions on marking tables and columns.

See “Marking tables for replication” on page 270 for details.

6 If the source table contains text, unitext, image, or rawobject columns, you
may need to use sp_setrepcol in the primary Adaptive Server to adjust the
replication status for these columns.

Note For non-Adaptive Server primaries, see your Replication Agent
documentation for instructions.

See “Replicating text, unitext, image, and rawobject columns” on page
277 for details.

7 Prepare a login name for the user creating the subscription. Login names
that create subscriptions at destination Replication Servers must also exist
at the source Replication Server.

See Chapter 8, “Managing Replication Server Security”

8 In the replicate database, create a table that matches the schema published
by the replication definition. Create the destination table as the Database
Owner or as the same table owner specified in the replication definition.

In Adaptive Server, use create table to create the table, or use sp_help to
verify that the table exists.

Summarizing the process

248 Replication Server

The destination table may have the same or different name and/or the same
or different owner name as the source table. It may contain all or a subset
of the columns in the source table, with the same or different column
names or datatypes. The replication definition must specify any such
differences between the source and destination tables.

Note The destination table may include a column that is not in the
replication definition if the column accepts null values, has a defined
default value, or you use a custom function string to apply a value to that
column.

9 Grant the replicate database maintenance user login name select, insert,
delete, and update permissions on the destination table. The maintenance
user executes commands for replicated transactions.

See Chapter 8, “Managing Replication Server Security”.

10 If necessary, customize your database operations using functions, function
strings, and function-string classes. Replication Server function strings
execute data server operations.

See Chapter 2, “Customizing Database Operations” in the Replication
Server Administration Guide Volume 2 for details.

11 Create a subscription in the replicate Replication Server. If you are using
publications, proceed to step 12.

Log in to a replicate Replication Server and create one or more
subscriptions to the table replication definition for the data you want to
copy. You can subscribe to all the rows in the replication definition’s
columns, or use a where clause to copy only certain rows.

A replicate database can subscribe to multiple replication definitions of a
primary (source) table, but a replicate table can subscribe to only one
replication definition of a source table.

When you create a subscription, the destination table is filled in with the
initial table data in a process called materialization. In most cases,
Replication Server copies data into the destination table automatically.
You can also manually materialize the data.

See Chapter 11, “Managing Subscriptions” for more information about
creating and materializing subscriptions.

12 If you are using publications, create a publication subscription against the
publications created in step 4. Execute create subscription at the replicate
Replication Server.

CHAPTER 9 Managing Replicated Tables

Administration Guide 249

When you create a publication subscription, Replication Server creates
subscriptions against each article in the publication. Article subscriptions
do not contain where clauses.

See “Using publication subscriptions” on page 395 for more information
about publication subscriptions.

13 Check the subscription status.

Verify that the subscription data has fully materialized in the replicate
database and that transactions are replicating successfully.

See Chapter 11, “Managing Subscriptions” for details.

Commands for managing table replication definitions
Table 9-1 lists the Replication Server commands for working with table
replication definitions.

Table 9-1: Commands for managing table replication definitions

Command Task

create replication definition Creates a replication definition for a primary table, which describes the columns you
want to copy, the location of the table, and other information. See “Creating
replication definitions” on page 250.

alter replication definition Modifies an existing replication definition in a variety of ways, including:

• Adding columns

• Add or drop primary keys

• Add or drop searchable columns from the replication definition

• Specifying different replicate table, table owner, column name, or datatype

• Changing minimal column replication

• Add or alter column-level datatype translations

• Change text, unitext, image, or rawobject column replication status

• Change how the replication definition is used in replicating to a standby database

See “Altering replication definitions” on page 298.

drop replication definition Removes a replication definition from the replication system. You must drop all
subscriptions for a replication definition before you can drop the replication
definition. See “Dropping replication definitions” on page 304.

Creating replication definitions

250 Replication Server

Creating replication definitions
A replication definition describes the source table to Replication Server,
specifying the columns you want to copy. It may also describe attributes of the
destination table. Destination tables that match the specified characteristics can
subscribe to the replication definition. You can create multiple replication
definitions for the same primary table, each customized for a particular use.
See “Creating multiple replication definitions per table” on page 265.

To create a replication definition, use create replication definition at the
Replication Server managing the source table. See “Using the create
replication definition command” on page 251.

Information about each replication definition is sent to each qualifying
Replication Server with a route from the primary Replication Server.
Replication Server version 11.5 (and later) receives information about all
replication definitions. Replication Server version 11.0.x (and earlier) receives
information about no more than one replication definition per primary table.
See “Replication definition restrictions in mixed-version systems” on page
268 for details.

Replication definitions are stored in the rs_objects and rs_columns system
tables in the RSSD. The primary version of a replication definition resides at
the primary Replication Server.

Replication definition settings
Each replication definition must include the following information:

• The name of the replication definition.

• The names of the source and destination tables.

Replication Server assumes that the replication definition name is the
name of both the source and destination tables, unless you specify
differently.

• The name of the data server and database where the source table is located.

• The column names and datatypes that you want to copy. You can copy all
or a subset of the source table’s columns. The replicate column names and
datatypes are the same as the primary column names and datatypes, unless
you specify differently.

• The primary key—one or more columns that uniquely identify each row
in the source table.

CHAPTER 9 Managing Replicated Tables

Administration Guide 251

Optionally, a replication definition may also include:

• The names of the owners of the source and destination tables. The default
table owner is the Database Owner (dbo).

• The names of searchable columns—columns that can be specified in the
where clause of a subscription to indicate the rows from the primary table
to copy into the destination table.

• For a warm standby application, whether to use the replication definition
to copy data into a standby database and whether to copy all of the table’s
columns or just the columns in the definition’s column list.

• Whether to copy only the minimal number of columns required for update
and delete operations. This option may enhance overall system
performance.

• Replication options for text, unitext, image, and rawobject columns.

• Column-level datatype translations

Using the create replication definition command
Use create replication definition to describe characteristics to Replication Server
of a table you want to replicate.

Execute create replication definition at the Replication Server that manages the
source table’s database. A replication definition must include the name of the
source data server and database.

The following example creates a basic replication definition named publishers
for source and destination tables with the same name. The primary database is
pubs2 managed by the TOKYO_DS data server. All of the table’s columns are
included and the pub_id column is specified as the primary key.

create replication definition publishers
with primary at TOKYO_DS.pubs2
(pub_id char(4), pub_name varchar(40),
city varchar(20), state char(2))
primary key (pub_id)

Each part of the command is discussed in the following subsections. See create
replication definition in Chapter 3, “Replication Server Commands” in the
Replication Server Reference Manual for complete command syntax and usage
guidelines.

Creating replication definitions

252 Replication Server

Specifying the replication definition name and table names

A replication definition has a global name space—that is, at every Replication
Server with routes from the primary Replication Server, the name refers to the
same replication definition.

Replication Server cannot always enforce the unique-name requirement when
you enter create replication definition. You must ensure that there is no existing
replication definition (table or function) with the same name when you create
a new replication definition.

By default, the replication definition name is the name of both the source and
destination tables.

In some instances, you may need to use different names for your source and
destination tables, or different names for your tables and replication
definitions. Include one of the optional clauses with all tables named, with
primary table named, or with replicate table named to specify table names where
they differ from the replication definition name.

When source and destination tables share the same name

When the source table and all destination tables share the same name but you
want to give the replication definition a different name, use with all tables
named to specify the table names.

For example, to create a replication definition named publishers_rep for source
and destination tables named publishers, enter this command:

create replication definition publishers_rep
with primary at TOKYO_DS.pubs2
with all tables named publishers
...

When source and destination tables have different names

When the source table and any destination tables have different names, use with
primary table named to specify the name of the source table, or use with replicate
table named to specify the destination table name. You can use one of these
clauses or both of them together.

If you don’t specify different table names, the replication definition name is
assumed by Replication Server to be the name of both the source and
destination tables.

For example, to create a replication definition named publishers_rep for a
source table named publishers1 and destination tables named publishers2, enter:

CHAPTER 9 Managing Replicated Tables

Administration Guide 253

create replication definition publishers_rep
with primary at TOKYO_DS.pubs2
with primary table named publishers1
with replicate table named publishers2
...

For a replication definition and a source table named publishers, and
destination tables named publishers2, enter:

create replication definition publishers
with primary at TOKYO_DS.pubs2
with replicate table named publishers2
...

In this example, the publishers replication definition also becomes the source
table’s name.

Specifying the name of the source or destination table owner

You can specify the table owner’s name as an optional qualifier along with the
name of the source or destination table. Data server operations may fail if the
table owner does not correspond to what is specified in the replication
definition.

For example, to create a replication definition for the publishers source table
and the publishers2 destination table owned by the user “ravi,” enter:

create replication definition publishers
with primary at TOKYO_DS.pubs2
with replicate table named ravi.publishers2
...

Specifying column names and datatypes

When you create a replication definition, you list the names and datatypes of
the columns from the table that you want to copy.

A column’s name and datatype will be the same in the replicate table as in the
primary table unless you specify a different replicate (published) column name
or datatype.

Enclose the names of all of the columns and their datatypes in parentheses. For
multiple columns, separate each column and its datatype from the next column
with a comma.

For example, the following command creates a replication definition named
publishers_rep1 for source and destination tables named publishers. It includes
all the columns and their datatypes.

Creating replication definitions

254 Replication Server

create replication definition publishers_rep1
with primary at TOKYO_DS.pubs2
with all tables named publishers
(pub_id char(4),
pub_name varchar(40),
city varchar(20),
state char(2))
primary key (pub_id)

The following command creates a replication definition named publishers_rep2
that omits the city column. Destination sites that do not require this column can
subscribe to this replication definition.

create replication definition publishers_rep2
with primary at TOKYO_DS.pubs2
with all tables named publishers
(pub_id char(4),
pub_name varchar(40),
state char(2))
primary key (pub_id)

Performance is best if columns are listed in the same order in the replication
definition as in the tables themselves.

You can use only datatypes supported by Replication Server. If a primary table
has columns with user-defined datatypes, you must use a compatible supported
datatype in the replication definition. You can also employ user-defined
datatypes supplied with Replication Server after you install them.

Refer to “Datatypes” in Chapter 2, “Topics,” in the Replication Server
Reference Manual for complete details on the datatypes supported by
Replication Server.

When source and destination columns have different names

When you want only one replication definition for a source table, and the
source column names differ from their destination counterparts, use the
column_name as replicate_column_name clause in the replication definition.

For example, for a source table named publishers1 and a destination table
named publishers2, where the source column pub1_name corresponds to the
destination column pub2_name, enter this:

create replication definition publishers_rep
with primary at TOKYO_DS.pubs2
with primary table named publishers1
with replicate table named publishers2
(pub_id char(4),

CHAPTER 9 Managing Replicated Tables

Administration Guide 255

pub1_name as pub2_name varchar(40),
city varchar(20),
state char(2))
primary key (pub_id)

Datatypes in multiple primary table replication definitions

When you create multiple replication definitions for the same source table, the
declared column datatype (the column datatype in the primary table) must be
the same, except when the column’s datatype is rawobject or rawobject in row,
which correspond respectively to the image and varbinary datatypes.
Specifically you can:

• Declare a column’s datatype as rawobject in one replication definition, but
declare the same column’s datatype as image in another replication
definition for the same table

• Declare a column’s datatype as rawobject in row in one replication
definition, but declare the same column’s datatype as varbinary in another
replication definition for the same table

The replicate (published) column datatype can be different between replication
definitions for the same table, with no restrictions.

When a column is listed in an existing replication definition for a primary table,
specifying the column datatype is optional in subsequent replication
definitions for the same primary table—the datatype is inherited from the
previous replication definition and retained for the subsequent definition, even
if the first definition (where you specified the datatype) is dropped.

To change a column datatype, use the alter replication definition command. Refer
to “Altering column datatypes” on page 302.

Additional columns in the replicate table

The replicate table may include a column that is not in the replication definition
if the column has a defined default value or you use a custom function string to
apply a value to that column.

Columns can be specified to accept null values in create table. When source
rows are copied to the destination table, extra columns are filled with null
values or may be updated separately by the local data server.

Creating replication definitions

256 Replication Server

Including text, unitext, image, and Java columns

• To copy text, unitext, image, or the Java datatypes rawobject and rawobject
in row column data to any destination site, include those columns in the
replication definition. Replicating text, unitext, image, or Java columns
involves additional special procedures and considerations.

See “Replicating text, unitext, image, and rawobject columns” on page 277
and “Java datatypes in Replication Server” on page 274 for more information.

Using Special Datatypes

To distribute updates to particular sites, use the rs_address special datatype.
See “Using the rs_address datatype” on page 291 and “Bitmap subscriptions”
on page 388 for more information.

You can use the identity special datatype if the table you are copying contains
an identity column. See “Replicating identity columns” on page 291 for more
information.

You can also use the timestamp special datatype if the table you are copying
contains a timestamp column. See “Replicating timestamp columns” on page
292 for more information.

Using user-defined datatypes

To change the datatype of the replicated value at the primary database to a
datatype acceptable to the replicate database, use user-defined datatypes. See
“Translating datatypes using HDS” on page 317 for more information.

Specifying the primary key

The primary key is the column or combination of columns that uniquely
identifies each row. Although many data servers, including Adaptive Server,
allow tables that contain duplicate rows, Replication Server requires that the
source and destination tables have unique values for the primary key columns
in each row.

You must include the primary key clause in create replication definition to
identify the primary key columns in the source table. Primary key columns
must also be included in the column list.

When Replication Server applies the default rs_update or rs_delete function
string at a destination site, it specifies values for the primary key in the where
clause of the update or delete statement.

CHAPTER 9 Managing Replicated Tables

Administration Guide 257

Enclose the names of the primary key columns in parentheses. For example:

create replication definition publishers
with primary at TOKYO_DS.pubs2
(pub_id char(4), pub_name varchar(40),
city varchar(20), state char(2))
primary key (pub_id)

For multiple primary key columns, separate each column from the next with a
comma.

Note You cannot include columns of datatypes , text, unitext, image, rawobject,
rawobject in row or rs_address as part of the primary key.

Specifying searchable columns

Use searchable columns in create replication definition to specify which columns
to use in the where clause of create subscription or define subscription (or create
article for publications) to restrict the rows copied to a subscribing site. If you
do not include a searchable columns clause in a replication definition, you
cannot use a where clause in a subscription or article that references that
replication definition.

Enclose the names of the searchable columns in parentheses. For multiple
searchable columns, separate each column from the next with a comma.

In the following example, three columns, pub_id, pub_name, and state, are
specified as searchable columns. You can include any of these columns in a
subscription’s where clause.

create replication definition publishers
with primary at TOKYO_DS.pubs2
(pub_id char(4), pub_name varchar(40),
city varchar(20), state char(2))
primary key (pub_id)
searchable columns (pub_id, pub_name, state)

See “Using the where clause” on page 371 for additional information on using
where in subscriptions.

Restrictions on searchable columns

Searchable columns have these restrictions:

• You cannot specify text, unitext, image, or Java rawobject or rawobject in
row columns as searchable columns.

Creating replication definitions

258 Replication Server

• Columns included in the searchable columns clause cannot have null
values.

• To perform bitmap comparison using the where clause in the subscription,
you must include any columns that use the rs_address datatype in the
replication definition’s searchable columns clause. See “Using the
rs_address datatype” on page 291 for more information.

• The more searchable columns in the searchable columns list of a
replication definition, the slower Replication Server processes
subscriptions; that is, the fewer searchable columns, the more efficiently
Replication Server evaluates rows against subscriptions for the table.

Replicating the minimal set of columns

Normally, Replication Server sends all the columns in each row when applying
updates and deletes, as well as inserts, in each replicate database. Replication
Server normally sends maximum columns to the standby database—if
replication definitions are not used for the table or the replication definitions
are not used for the standby connection.

Note You must send all columns when replicating to SQL Remote databases.
Do not send minimal columns or replication will fail.

To enhance replication system performance, specify replicate minimal columns
in create replication definition. This clause lets you send only those columns that
are required for delete and update operations to replicate databases.

When you set replicate minimal columns:

• For a delete operation, the source Replication Server sends only the
primary key columns to destination Replication Servers or the standby
database.

• For an update operation, the source Replication Server sends only the
columns modified by the update operation and the primary key columns,
to destination Replication Servers or the standby database.

Note replicate minimal columns does not apply to insert operations, for which
all columns are copied.

CHAPTER 9 Managing Replicated Tables

Administration Guide 259

A destination Replication Server uses the primary key columns in constructing
the data server commands that it applies to the replicate or the standby
database.

The following replication definition includes replicate minimal columns:

create replication definition publishers
with primary at TOKYO_DS.pubs2
(pub_id char(4), pub_name varchar(40),
city varchar(20), state char(2))
primary key (pub_id)
replicate minimal columns

Changing minimal columns setting

Use alter replication definition to change an existing replication definition to
replicate only the minimal set of columns or to replicate all columns.

Minimal columns and rs_update and rs_delete function strings

If you specify replicate minimal columns and need to create non-default
rs_update and rs_delete function strings, use the rs_default_fs function string
variable to represent the default function string behavior. See “Using the
default system variable” on page 49 in the Replication Server Administration
Guide Volume 2 for details.

Minimal columns and autocorrection

If you specify replicate minimal columns, you cannot also specify
autocorrection, which corrects discrepancies that may occur during
materialization by converting each update or insert operation into a delete
followed by an insert.

If you set autocorrection on before you specify minimal columns (for example,
using alter replication definition), autocorrection is not performed. Replication
Server logs informational messages for any update operations.

You must set autocorrection on when you create a subscription using
nonatomic materialization. If minimal column replication is set for the
replication definition and you create a new subscription that uses nonatomic
materialization or the bulk materialization method that simulates nonatomic
materialization, autocorrection cannot resolve inconsistencies.

See Chapter 11, “Managing Subscriptions” for details on materialization
methods. See “Using autocorrection” on page 356 for more information on this
command.

Creating replication definitions

260 Replication Server

Using replication definitions with warm standby applications

You do not need to use replication definitions with warm standby applications.
However, you can use them to control the flow of information to the standby
database—even though no subscriptions are needed. You can create replication
definitions just for replication to the standby database or use existing
replication definitions for this purpose.

Use send standby in create replication definition as follows:

• Use send standby in any form to replicate transaction data into the standby
database using this replication definition. Replication Server uses the
replication definition’s primary key and minimal columns setting.

See “Specifying the primary key” on page 256 and “Replicating the
minimal set of columns” on page 258 for more information.

• Use send standby or send standby all columns to send all columns in the
table to a standby database.

• Use send standby replication definition columns to send only the columns
specified in the replication definition to a standby database.

If you omit send standby, another replication definition may be used in
replicating data for this table to the standby database, or no replication
definition may be used.

The replication definition in the following example replicates transactions to a
standby database. The primary key and minimal set of columns settings will be
used in standby replication. Only the columns specified in the replication
definition will be replicated into the standby database—the city column is
omitted from this replication definition.

create replication definition publishers_ws
with primary at LDS.pubs2
with all tables named 'publishers'
(pub_id char(4),
pub_name varchar(40),
state char(2))
primary key (pub_id)
send standby replication definition columns
replicate minimal columns

If a replication definition already exists for the same primary table and is
marked for use by the standby, creating a new replication definition using send
standby (or altering another replication definition) unmarks the previous
replication definition as being used by the standby.

CHAPTER 9 Managing Replicated Tables

Administration Guide 261

See “Using replication definitions and subscriptions” on page 111 in the
Replication Server Administration Guide Volume 2 for more information about
using replication definitions with warm standby applications.

Specifying text, unitext, and image column replication

To create a replication definition for a table that contains text, unitext, or image
columns datatypes:

• Include each text, unitext, or image column that you want to replicate in the
column list, and

• Include each column in the optional clauses replicate_if_changed or
always_replicate.

In each clause, enclose the names of the text and image columns in
parentheses. For multiple columns, separate each column from the next
with a comma.

• Ensure that each text, unitext, or image column has a corresponding status
in Adaptive Server.

See “Replicating text, unitext, image, and rawobject columns” on page 277 for
more information on replicating text, unitext, and image columns.

See“Replicating text, unitext, image, and rawobject data” on page 70 in the
Replication Server Administration Guide Volume 2 for information about
replicating text, unitext, and image columns in warm standby applications.

Creating replication definitions

262 Replication Server

Specifying computed column replication

To create a replication definition for a computed columns use the base column
datatype in the replication definition for materialized columns. Do not include
virtual columns in the replication definition.

Specifying rawobject and rawobject in row column replication

You can include Java columns in a replication definition. Replication Server
replicates Java columns as either rawobject or rawobject in row datatypes. To
create a replication definition for a table that contains Java datatypes:

• Include each rawobject or rawobject in row column that you want to
replicate in the column list, and

• Include each rawobject column in the optional clauses replicate_if_changed
or always_replicate.

In each clause, enclose the names of the rawobject columns in parentheses.
For multiple columns, separate each column from the next with a comma.

Note rawobject in row columns do not have replication status.

• Ensure that each rawobject column has a corresponding status in Adaptive
Server.

See “Replicating text, unitext, image, and rawobject columns” on page 277 for
more information about replicating Java columns.

Specifying column-level datatype translations

You can specify column-level datatype translations in the replication
definition. Sybase provides a set of datatype definitions that you install using
instructions from the Replication Server Configuration Guide for your
platform.

• The declared_datatype defines the datatype of the value delivered to the
Replication Server from the Replication Agent. It must be the Replication
Server base datatype or a datatype definition for the datatype in the
primary database.

• The published_datatype defines the datatype of the value after a column-
level translation. It must be the Replication Server base datatype or a
datatype definition for the datatype in the replicate database.

CHAPTER 9 Managing Replicated Tables

Administration Guide 263

See “Translating datatypes using HDS” on page 317 for detailed information
about datatype translations.

Creating replication definitions using extended limits
Replication Server version 12.5 and later can replicate wider columns, wider
parameters, and larger numbers of columns than earlier versions. It can also
handle wider data rows and wider messages.

Replication Server supports the extended limits capabilities of Adaptive Server
version 12.5 and later. See the Adaptive Server documentation for more
information. For information about using Replication Server extended limits
with non-Sybase data servers, see the documentation for your Sybase
Replication Agent and the Replication Server Heterogeneous Guide.

Before you use extended limits

To use extended limits, make sure that both the primary and replicate
Replication Server are upgraded to site version 12.5 or later, which
automatically sets the LTL version to 400. In addition, make sure that all routes
using extended limits are set to 12.5 or later. If you are using Adaptive Server,
make sure that both the primary and replicate databases are set to version 12.5
or later. Both the primary and replicate databases must be configured for the
same page size.

See “Replication definition restrictions in mixed-version systems” on page
268 for information about using extended limits with Replication Server
version 12.1 and earlier. See also the Replication Server white paper “Using
Adaptive Server Enterprise version 12.5 with Replication Server version 12.1
and earlier: Schema-length and compatibility issues.”

Using extended limits

You can create replication definitions using extended limits for both replicate
and standby databases. Extended limits are defined as:

• Wide columns – data rows containing more than 255 to a maximum of
32768 bytes.

• More columns – replication definitions containing more than 250 up to a
maximum of 1024 columns in a replication definition.

Creating replication definitions

264 Replication Server

• Wide data – data rows up to the size of the data page on the data server.
Adaptive Server version 12.5 and later supports page sizes of 2K, 4K, 8K,
and 16K.

• Wide messages – messages larger than 16K.

Wide columns

Replication Server can replicate wide columns containing char, varchar, binary,
univarchar, unichar, unitext or Java inrow data to a maximum of 32768 bytes.
Maximum column width on each system may vary; it is a function of the total
number of columns and the page size of the data server.

You can use wide columns as primary keys and searchable columns and in
replication definition where clauses.

Note The maximum number of bytes in the where clause of a subscription or
article is 255 bytes. You cannot use wide columns in the where clause of
subscriptions or articles.

More columns

You can include as many as 1024 columns in a replication definition. As long
as the total number of columns does not exceed 1024, Replication Server does
not limit the number of primary key or searchable columns.

Replication Server uses primary key columns to build where clauses of SQL
statements for the data server. Consider data server limitations when
determining the actual number of columns available for primary keys in
replication definitions.

Similarly, although Replication Server imposes no limits on the n umber of
searchable columns in a replication definition, the number of columns in the
where clause of a subscription or article may also be constrained by data server
limitations.

Wide data

Data rows can equal the size of the data page on the data server. Adaptive
Server version 12.5 and later supports page sizes of 2K, 4K, 8K, and 16K.

CHAPTER 9 Managing Replicated Tables

Administration Guide 265

Wide messages

Replication Server copies data rows as messages in stable queues manage by
the SQM. These messages contain before and after images of replicated data
rows as well as other information. They require significantly more space than
the data rows on which they are based. With extended limits, messages can
span blocks and are no longer limited to 16K.

Creating multiple replication definitions per table
You can create multiple replication definitions for the same primary table and
customize each one so that it can be subscribed to by a replicate table whose
characteristics are different from those of the primary table or from other
replicate tables.

For example, you can create two separate replication definitions for the same
primary table, one that replicates columns A and B, and another that replicates
columns C and D. Each subscribing site receives only the columns that it needs
(see Figure 9-1).

Creating replication definitions

266 Replication Server

Figure 9-1: Using multiple replication definitions from one primary table

In addition to describing the primary table, each replication definition can
specify a smaller number of columns, different column names, different
published datatypes, or a different table name for a replicate table. Replicate
tables that match the specified characteristics can subscribe to the replication
definition.

Different replication definitions created for the same primary table must use
the same declared column datatype (unless the datatype is rawobject or
rawobject in row) and the same null and not null status for text, unitext, and image
columns. To change a column’s datatype or null status, use alter replication
definition. Refer to “Altering column datatypes” on page 302 for instructions.

You can change replication status using alter replication definition. For example,
you can change the replication status of text, unitext, and image columns from
replicate_if_changed to always_replicate. The replication status for the column
will also change for other replication definitions for the same primary table.

See “Creating multiple replication definitions per table” on page 265 for more
information.

CHAPTER 9 Managing Replicated Tables

Administration Guide 267

Restrictions

When you have multiple replication definitions for the same primary table, the
following restrictions apply:

• A replicate database can subscribe to multiple replication definitions.
However, a replicate table can subscribe to only one replication definition
of a particular primary table.

• A pre-version 12.0 Replication Server may not subscribe to replication
definitions that either declare columns with User-Defined Datatypes or
employ column-level translations.

• Different replication definitions created for the same primary table must
use the same column datatype (unless the datatype is rawobject or
rawobject in row) and, for text, unitext, image, and rawobject columns, the
same null or not null status and the same replication status.

See “Specifying column names and datatypes” on page 253.

• You cannot create multiple replication definitions for a single primary
stored procedure.

• Multiple replication definitions for one primary table are only supported
in Replication Server version 11.5 and later; however, one replication
definition can be marked and propagated to a Replication Server of a
previous version, if compatible; that is, has the same primary and replicate
table names, same primary and replicate column names, and does not
include table owner name.

See “Replication definition restrictions in mixed-version systems” on
page 268 for additional information.

Replication definitions and function strings
Function strings map Replication Server functions to data server commands for
execution in a database.

For each replication definition, the primary Replication Server creates default
function strings for the system functions with replication definition scope
(rs_insert, rs_update, rs_delete, rs_select, and so on). These function strings are
distributed with the replication definition to other qualifying Replication
Servers with routes from the primary Replication Server.

Some circumstances may require you to create the function strings for system
functions (that is, Replication Server does not create them for you).

Creating replication definitions

268 Replication Server

See Chapter 2, “Customizing Database Operations” in the Replication Server
Administration Guide Volume 2 for details on function strings and function-
string classes. See Chapter 2, “Replication Server Technical Overview” for
more information about how Replication Servers share information.

Replication definition restrictions in mixed-version systems
Replication Server version 12.5 and later can handle messages larger than 16K
only if the site version is also 12.5 or later. If the site version is 12.1 or earlier,
messages larger than 16K may cause the stable queue to shut down. Similarly,
if a replicate or intermediate site of a route is not set to a site version of 12.5
and later, messages larger than 16K may cause the route to shut down.

• If a large messages shuts down a stable queue, you can restart the queue
using resume queue. To restart the queue and, optionally, to instruct
Replication Server to skip the first large message encountered, enter there
following commands, where q_number is the number of the queue, and
q_type is either “0” for outbound queues or “1” for inbound queues:

resume queue, q_number, q_type[, skip transaction
with large message]

• To set default behavior for a stable queue encountering a large message,
use alter queue. Enter:

alter queue, q_number, q_type,
set sqm_xact_with_large_msg to {skip | shutdown }

• If a large message has shut down a route, you can restart the route using
resume route. You can enter the following commands, where
dest_rep_server is the Replication Server to which the message is sent:

resume route to dest_rep_server
[skip transaction with large message]

This command applies only to direct routes.

• To set default behavior for a route encountering a large message, use alter
route. Enter:

alter route to dest_rep_server
set sqm_xact_with_large_msg to
{ skip | shutdown }

• If you create or alter a replication definition that includes an identifier
longer than 30 characters, only Replication Server 15.0 or later can
subscribe to that replication definition.

CHAPTER 9 Managing Replicated Tables

Administration Guide 269

• If you create or alter a replication definition that includes a rawobject or
rawobject in row column, only Replication Server version 12.0 or later can
subscribe to that replication definition.

• You can introduce column-level and class-level datatype translations only
between Replication Servers of version 12.0 or later.

• If your replication system uses different versions of Replication Server
(for example, version 11.0.x and version 11.5 or later), Replication Server
version 11.0.x is subject to the following limitations:

• You cannot subscribe to a replication definition that specifies any of
the following information:

• Different source and destination table names

• Different source and destination column names

• Source or destination table owner names

Such a replication definition is incompatible with and unavailable to
Replication Servers earlier than version 11.5.

• You can receive information about and subscribe to only one
replication definition per table; however, when a Replication Server
version 11.5 or later primary table has multiple replication definitions,
the first replication definition created for the table can be marked and
propagated to a Replication Server of a previous version, if it is
compatible; that is, has the same primary and replicate table names,
same primary and replicate column names, and does not include table
owner name.

If you drop that replication definition, the next oldest 11.0.x-
compatible replication definition created for that table is available for
Replication Server version 11.0.x.

If subscriptions exist from Replication Server version 11.0.x, you
must not alter an 11.0.x-compatible replication definition so that it is
no longer compatible with 11.0.x. If you do so, that replication
definition is no longer available to 11.0.x Replication Servers and the
next oldest 11.0.x-compatible replication definition (if any) is
available to the 11.0.x Replication Servers.

• You cannot create multiple replication definitions per table or
customize them for destination tables.

Marking tables for replication

270 Replication Server

• Unicode datatypes require Replication Server version 12.5 or later. If
you are using Unicode datatypes in a mixed-version environment, see
the Replication Server Design Guide.

See also “Mixed-version replication systems” on page 18 for more
information.

Marking tables for replication
After you create a replication definition for a table, use sp_setreptable to mark
the table for replication. After a table is marked for replication, RepAgent
begins forwarding the table’s log records to the Replication Server.

If you have marked a table for replication, you do not need to mark it again for
another replication definition.

See “Subscription example” on page 382 for an example of setting up
replication for one table.

Note Refer to your Replication Agent documentation for instructions on
marking tables for replication in non-Sybase data servers.

Using the sp_setreptable system procedure
To designate a primary Adaptive Server table for replication, use
sp_setreptable. To use sp_setreptable, you must be the Database Owner or the
System Administrator for the data server.

Refer to Chapter 5, “Adaptive Server Commands and System Procedures” in
the Replication Server Reference Manual for more information about
sp_setreptable command.

Enabling replication

To mark a table for replication, log in to the Adaptive Server managing the
database for that table and enter:

sp_setreptable table_name, 'true'

CHAPTER 9 Managing Replicated Tables

Administration Guide 271

Marking the table in this way specifies that the table name must be unique.

Note Do not mark a table for replication unless you also create a replication
definition for the table in the Replication Server managing that database. The
RepAgent will begin forwarding to the Replication Server data for transactions
for the affected table. If a replication definition does not exist, Replication
Server may report message 32032 and its error log file may fill up. In addition,
Replication Server performance may be significantly reduced. Warm standby
applications, which do not require replication definitions, are not subject to this
problem.

Checking replication status

To check replication status for the table, enter:

sp_setreptable table_name

To check replication status for all tables in the database, enter:

sp_setreptable

Enabling replication with owner_on status

Note Refer to your Replication Agent documentation to see if your non-
Sybase data server allows user tables with the same name but different owners.

User tables may have the same name but different owners. Adaptive Server
allows you to mark a table for replication and specify that table owner
information should be considered when identifying the table.

To mark the table for replication with the “owner on” status, log in to Adaptive
Server and enter:

sp_setreptable table_name, 'true', owner_on

At the Replication Server, the replication definition for the table must identify
the table owner. For example, if you set owner status for a table to “owner on”
with sp_setreptable, you must include an owner name when you create the
replication definition or Replication Server will be unable to find the correct
table at the replicate database.

Marking tables for replication

272 Replication Server

The owner of the source table and the owner of the destination table can be
different.

Note If you specify “owner off” status for a table, Replication Server does not
send table owner information to the replicate site. However, if you are
replicating to a standby database, Replication Server sends “dbo” as the table
owner.

Modifying the owner
status of a table

You can change the owner status of a table previously marked for replication
by using the sp_setrepdefmode system procedure.

To change the status of a table already marked for replication to “owner on,”
log in to Adaptive Server and enter:

sp_setrepdefmode table_name, owner_on

To change the status of a table already marked for replication to “owner off,”
log in to Adaptive Server and enter:

sp_setrepdefmode table_name, owner_off

You must reflect a change in owner status by including owner information in
the replication definition. Use create replication definition at the Replication
Server to create a new replication definition that includes the table owner.

Checking the owner
status of a table

To check the owner status of a table, enter:

sp_setreptable table_name

Disabling replication

To turn off replication for the table, enter:

sp_setreptable table_name, 'false'

Note Refer to your Replication Agent documentation for instructions on
disabling replication in non-Sybase data servers.

CHAPTER 9 Managing Replicated Tables

Administration Guide 273

Replicating Java columns
You can replicate Java columns stored in your primary database to your
standby and replicate databases. Replication Server passes Java objects
through the replication system in serialized format without altering the Java
objects in any way.

Refer to Java in Adaptive Server Enterprise for complete information about
Java classes in the Adaptive Server database.

Restrictions
Although you prepare replication definitions and subscriptions for Java
columns in the usual manner, certain restrictions apply:

• Both the primary and replicate databases must be Sybase Adaptive Server
version 12.0 or later.

• Replication Server does not replicate stored procedures that have Java
objects as parameters. However, the effect of such a stored procedure can
be duplicated through normal table replication.

• You cannot use Java columns as part of the primary key.

• You cannot evaluate Java columns in subscription expressions because
Java columns are not searchable.

Upgrade considerations
After you have upgraded the current Replication Server and set its site version
to the current release, the Replication Manager route upgrade feature copies the
replication definitions with Java columns from upstream Replication Servers
to the current Replication Server.

Although Replication Server does not propagate replication definitions with
Java columns to pre-12.0 version Replication Servers, you can replicate Java
columns to older Replication Servers by manipulating function strings. See
“Using function strings to replicate Java columns to older Replication
Servers” on page 275 for more information.

Replicating Java columns

274 Replication Server

Java datatypes in Replication Server
Java columns pass through the replication system as one of two Replication
Server datatypes:

• As rawobject, in which the information is stored in the database in a
separate location in the same way that image data is stored. The base
datatype of rawobject is image. This is the default datatype for Java
columns in Replication Server. Replication Server handles rawobject data
in the same way it handles image data.

Refer to “Replicating text, unitext, image, and rawobject columns” on
page 277 for information about replication for rawobject columns.

• As rawobject in row, in which the information is stored in the database on
consecutive data pages allocated to the table in the same way that, for
example, char data is stored. The base datatype of rawobject in row is
varbinary(255). Replication Server handles rawobject in row data in the
same way it handles varbinary(255) data.

rawobject and rawobject in row are compatible only with their base datatypes.
They are not compatible with each other; that is, you cannot replicate rawobject
to rawobject in row or vice versa.

The Replication Server reconciliation utility rs_subcmp treats Java datatypes as
their base datatypes. Refer to the Replication Server Reference Manual for
more information about rs_subcmp.

Creating replication definitions for Java columns
You can create replication definitions for Java columns using create replication
definition and the rawobject and rawobject in row datatypes.

When creating a replication definition:

• rawobject values have replication status. You can choose whether they are
always replicated or replicated only if changed. They also have null status.

See “Replicating text, unitext, image, and rawobject columns” on page
277 for information about replication for rawobject columns.

• rawobject in row values do not have replication or null status.

rawobject and rawobject in row values:

• Cannot be part of the primary key.

CHAPTER 9 Managing Replicated Tables

Administration Guide 275

• Cannot be evaluated in subscription expressions. Java columns are not
searchable, and thus they cannot be used in a subscription or article where
clause.

This example creates a sample replication definition p1 for a table t that
contains Java columns.

create replication definition p1
with primary at ds.db
with all tables name t

(c1 int,
c2 rawobject null,
c3 rawobject not null,
c4 rawobject in row)

primary key (c1)
replicate_if_changed (c2)
always_replicate (c3)

Columns c2 and c3 are rawobject columns; they have replication and null status.
Column c4 is a rawobject in row column; it does not have replication or null
status. Columns c2, c3, and c4 are neither part of the primary key nor are they
searchable.

Function strings for Java columns
Replication Server uses the rs_raw_object_serialization function string to pass
Java columns to the replicate database in serialized format, which allows
Replication Server to update Java columns directly. rs_raw_object_serialization
is contained in rs_sqlserver_function_class and rs_default_function_class.

When a replication definition references the rawobject datatype, Replication
Server creates rs_get_textptr, rs_textptr_init, rs_datarow_for_writetext, and
rs_writetext function strings for each rawobject column just as it does for image
data.

Using function strings to replicate Java columns to older Replication Servers

Replication Server version 12.0 does not propagate replication definitions with
Java datatypes to pre-12.0 Replication Servers. However you can replicate
Java columns through older Replication Servers if you use the corresponding
base datatype (image and varbinary(255)) and manipulate the rs_usedb and
rs_insert function strings.

The following example illustrates the method.

Replicating Java columns

276 Replication Server

1 Create tables containing Java columns in the primary and replicate
databases:

create table tInfo
(c1 integer,
c2 Name rawobject in row,
c3 Address rawobject null,
c4 AccountInfo rawobject not null)

Name, Address, and AccountInfo are Java classes; c2, c3, and c4 are Java
columns.

2 Create a replication definition for table tInfo.

If at least one of the Replication Server is pre-12.0, you must create a
replication definition using the base datatypes for rawobject in row
(varbinary(255)) and rawobject (image):

create replication definition tInfo1
with primary at DS-1.dbase
with all tables name TInfo
(c1 integer,
c2 varbinary(255),
c3 image null,
c4 image not null,
primary key (c1)
...

If the primary and replicate databases are managed by Replication Servers
version 12.0 or later, a replication definition could be:

create replication definition tInfo
with primary at DS-1.dbase
with all tables named tInfo

(c1 integer,
c2 rawobject in row,
c3 rawobject null,
c4 rawobject not null)
primary key (c1)
...

3 Alter the rs_usedb and rs_insert function strings for both the primary and
replicate database connections. Refer to “Altering function strings” on
page 41 in the Replication Server Administration Guide Volume 2 for
general information about customizing function strings.

• For rs_usedb:

alter function string rs_usedb
for function_string_class_name

CHAPTER 9 Managing Replicated Tables

Administration Guide 277

output language
‘use ?rs_destination_db!sys_raw? set
raw_object_serialization on’

This change tells Adaptive Server to return Java column data as
serialized binary values at subscription materialization. It also allows
Replication Server to insert and update Java columns with serialized
binary values.

• For rs_insert:

alter function string tInfo1.rs_insert
for function_string_class_name
output language
‘insert tInfo(c1, c2, c4)
values (?c1!new?, ?c2!new?, 0xaced000574000130)’

This change alters rs_insert for tInfo1 to insert the special binary value
0xaced000574000130 in column c4. If you do not alter rs_insert, the
default value may cause Adaptive Server to return a serialization
error.

So, you can create two replication definitions for the same table where the
columns between the two replication definitions have different primary
(declared) datatypes. If the primary Replication Server is version 12.0 or later,
you can create both replication definitions tInfo and tInfo1 for table tInfo. In this
case, replicate Replication Servers version 12.0 and later can subscribe to tInfo
and Replication Servers version pre-12.0 can subscribe to tInfo1.

Note You cannot use this method to replicate Java columns to standby
databases. The standby connection uses the function-string class
rs_default_function_class, which cannot be altered.

Replicating text, unitext, image, and rawobject
columns

Replication Server lets you replicate columns that use the Adaptive Server
datatypes text, unitext, image and rawobject.

• When you replicate text, unitext, image, and rawobject columns you must
specify a compatible replication status for each text, unitext, image, and
rawobject column in both the replication definition and in Adaptive Server.

Replicating text, unitext, image, and rawobject columns

278 Replication Server

• You cannot include text, unitext, image, or rawobject columns as part of the
primary key or as searchable columns.

• A unique set of columns must be identified so that text, unitext, image, or
rawobject columns replication will only affect one row at the target
database. This column or set of columns must be included in the primary
key if a replication definition is used.

• To replicate text, unitext, image, and rawobject columns, follow these steps:

• Use create replication definition to create a replication definition for a
table that contains text, unitext, image, or rawobject columns.

Refer to Chapter 3, “Replication Server Commands” in the
Replication Server Reference Manual for more information about
create replication definition command.

• Use sp_setreptable to mark the table for replication.

See sp_setreptable in Chapter 5, “Adaptive Server Commands and
System Procedures” in the Replication Server Reference Manual for
complete syntax and usage guidelines.

• sp_setreptable sets the replication status of text, unitext, image, or rawobject
columns to always_replicate.

• If you do not want to replicate some of the text, unitext, image, or rawobject
columns, use sp_setrepcol to change the replications status of those
columns.

See “Changing column status for text, unitext, image, or rawobject
columns” on page 281 for instructions.

• Use create subscription to make subscriptions for the replication definition
and begin replicating the text, unitext, image, or rawobject data.

See “Using the create subscription command” on page 374.

Note When you execute an update at the primary database, you can update a
text, unitext, image, or rawobject column and a non-text, non-image, or non-
rawobject column--a char column, for example--with a single command. When
those updates are copied to the replicate database, however, Replicate Server
executes two commands, one for text, unitext, image, and rawobject updates and
one for other datatype updates. If you choose to have DSI ignore certain
replication errors, only a portion of the row may be replicated, which creates
an inconsistent replicate table.

CHAPTER 9 Managing Replicated Tables

Administration Guide 279

Replicating large objects to non-ASE servers using DirectConnect
Anywhere

Replication Server replicates large objects such as text and image to non-ASE
servers by passing a writetext command to DirectConnect Anywhere™, where
it is converted to an update statement. The writetext command include large-
object pointers that an update statement uses to search and propagate the
replicate database. Most data servers have their own unique implementation of
updating large objects. Therefore, large-object replication to these servers can
become slow and inefficient, often requiring a full table scan of the replicate
database for a single update.

Replication Server provides an option to include primary keys with writetext
commands sent to DirectConnect Anywhere. With the primary keys,
DirectConnect Anywhere can create update statements that can efficiently
search and replicate the replicate database.

Replication Server introduces the Data Server Interface (DSI) configuration
parameter dsi_alt_writetext. You can use the dsi_alt_writetext to instruct the
Replication Server to include a text pointer or a set of primary keys with the
writetext command.

Note You need a version of ECDA 15.0 ESD #2 to use this feature.

See the Replication Server Reference Manual for more information.

Creating a text, unitext, image, or rawobject
replication definition

• When you create a table replication definition for text, unitext, image, or
rawobject columns, use these guidelines:

• Include each text, unitext, image, or rawobject column that you want to
replicate in the column list.

• Specify the datatype for each text, unitext, image, or rawobject column.

• Specify whether a null is allowed for the column in destination tables. This
setting must be consistent with the way the source and destination tables
are defined.

• Include each column in the optional clauses replicate_if_changed or
always_replicate.

Replicating text, unitext, image, and rawobject columns

280 Replication Server

Specifying a null value for text, unitext, image, and rawobject columns

To specify whether or not a null value is allowed in the replicate table for each
text, unitext, image, or rawobject column, specify null or not null after the
datatype for the column in the replication definition.

This setting must be consistent with the way the primary and replicate tables
are defined. For text, unitext, image, and rawobject columns, the default is not
null, meaning that the replicate table does not accept null values.

If you are using multiple replication definitions, the null value setting should
be the same for all replication definitions on a primary table.

Do not specify null or not null for columns using datatypes other than text,
unitext, image, or rawobject. Columns with null values cannot be searchable.

The following example replication definition for the table au_pix includes a
column pic of datatype image, for which null values are allowed in replicate
tables. The pic column is included in the replicate_if_changed clause.

create replication definition au_pix
with primary at TOKYO_DS.pubs2
(au_id char(11),
pic image null)
primary key (au_id)
replicate_if_changed (pic)

Marking tables with text, unitext, image, or rawobject columns
Use sp_setreptable to set the initial replication status for text, unitext, image,
and rawobject columns in Adaptive Server when you mark the table for
replication. sp_setreptable sets the replication status of text, unitext, image, or
rawobject columns to always_replicate.

Note If you do not want to replicate text, unitext, image, and rawobject columns,
use sp_setreplicate to mark the table for replication, which sets the replication
status of text, unitext, image, and rawobject columns to do_not_replicate.

If you use sp_setreptable to mark a table for replication and the table includes
text, unitext, image, or rawobject columns, an internal operation needs to be
completed for every text, unitext, image, or rawobject column in every data row
of the table. This internal modification is performed in a single transaction, and
for large tables, this operation may be time-consuming and involve a
significant amount of data.

CHAPTER 9 Managing Replicated Tables

Administration Guide 281

Before you use sp_setreptable on a large table that has text, unitext, image, or
rawobject columns, be sure that you have enough log space for this operation.
You may also want to choose a time that will be least disruptive for client
applications or replication system administration.

You can speed up the process of marking a table with text, unitext, image or
rawobjects, if you use the option use_index. When using this option, Adaptive
Server creates an internal nonclustered index for each text, unitext, image or
rawobject, in the table. For example:

sp_setreptable aux_pix, true, null, use_index

See Chapter 5, “Adaptive Server Commands and System Procedures” in the
Replication Server Reference Manual for more information about
sp_setreptable command.

Note Refer to your Replication Agent documentation for instructions on
marking tables for replication in non-Sybase data servers.

Changing column status for text, unitext, image, or rawobject
columns

When you mark a table with text, unitext, image, or rawobject columns for
replication, sp_setreptable sets the replication status of text, unitext, image, or
rawobject columns to always_replicate.

The replication status is the same for all replication definitions of a primary
table. If you change the replication status for one replication definition with
alter replication definition, you change the replication status for all replication
definitions on the same primary table.

If you do not want to replicate some of the text, unitext, image, or rawobject
columns in a marked table (or you marked the table using sp_setreplicate,
which sets the replication status of text, unitext, image, and rawobject columns
to do_not_replicate), use sp_setrepcol to adjust the replication status. You can
set the replication status for one or all columns to always_replicate,
do_not_replicate, or replicate_if_changed. Table 9-2 describes each status.

Table 9-2: text, unitext, image, or rawobject column replication status

Status clause Description

always_replicate Adaptive Server logs replication information for the text, unitext, image, or
rawobject column whenever any column in the row changes.

Replicating text, unitext, image, and rawobject columns

282 Replication Server

To use sp_setrepcol, you must be the Database Owner or System Administrator
for the data server.

Note If you have marked the database for replication to a standby database
using sp_reptostandby and marked database tables for replication to a replicate
database using sp_setreptable, Replication Server copies text, image, and
rawobject columns to standby and replicate databases as always_replicate. If
you want to copy text, unitext, image, and rawobject columns as
replicate_if_changed, use sp_setrepcol to adjust the replication status. See
“Replicating text, unitext, image, and rawobject data” on page 70 of the
Replication Server Administration Guide Volume 2, for more information
about replicating text, unitext, image, and rawobject columns in a warm standby
application.

See sp_setrepcol in Chapter 5, “Adaptive Server Commands and System
Procedures” in the Replication Server Reference Manual for complete syntax
and usage guidelines.

Enabling column replication

To mark a column with an image or rawobject datatype for replication, enter:

sp_setrepcol table, column, status

For example, to mark the pic column of datatype image for replication in the
table au_pix, enter one of the following:

sp_setrepcol au_pix, pic, always_replicate
sp_setrepcol au_pix, pic, replicate_if_changed
sp_setreplcol au_pix, pic, replicate_if_changed,
use_index

Disabling column replication

To turn off replication for the an image or rawobject column, enter:

sp_setrepcol table, column, do_not_replicate

replicate_if_changed Adaptive Server logs replication information for the text, unitext, image, or
rawobject column only when the column data changes.

do_not_replicate Adaptive Server does not log replication information for the text, unitext, image, or
rawobject column.

Status clause Description

CHAPTER 9 Managing Replicated Tables

Administration Guide 283

For example, to disable replication of the pic column of datatype image for
replication in the table au_pix, enter:

sp_setrepcol au_pix, pic, do_not_replicate

Enabling or disabling replication for all columns

To mark all text, unitext, image, and rawobject columns in the table with the
same replication status, enter “null” instead of a column name. For example, to
mark all text, unitext, image, and rawobject columns with the
replicate_if_changed status:

sp_setrepcol table, null, replicate_if_changed

Execute sp_setrepcol with the table name and a text, unitext, image, or rawobject
column name to display the replication status of the specified column. For
example:

sp_setrepcol table, column

Execute sp_setrepcol with a table name to display the replication status of all
of the text, unitext, image, and rawobject columns in the table. For example:

sp_setrepcol table

Altering replication status for text, unitext, image, and rawobject
columns

When you replicate text, unitext, image, and rawobject columns you must
specify a compatible replication status for each column in both the replication
definition and in Adaptive Server.

If you change the replication status of text, unitext, image, and rawobject
columns in one table replication definition, the replication status automatically
changes in all other replication definitions for the same table that includes
those text, unitext, image, and rawobject columns.

Changing from replicate_if_changed to always_replicate

To change the replication status of a text, unitext, image, or rawobject column
from replicate_if_changed to always_replicate:

1 Let all transactions with a replicate_if_changed status finish processing.

Replicating text, unitext, image, and rawobject columns

284 Replication Server

2 Use sp_setrepcol to change the status of the column in Adaptive Server to
always_replicate.

3 Use alter replication definition to change the status of the column to
always_replicate.

Changing from always_replicate to replicate_if_changed

To change the replication status of a text, unitext, image, or rawobject column
from always_replicate to replicate_if_changed:

1 Use alter replication definition to change the status of the column to
replicate_if_changed.

2 Use sp_setrepcol to change the status of the column in Adaptive Server to
replicate_if_changed.

Resolving inconsistencies in replication status
The replication status for text, unitext, image, and rawobject columns in the
Adaptive Server database is carried in the data modification commands that the
RepAgent sends to the Replication Server. If the status is different at the
Adaptive Server than in the replication definition, problems may result:

• Scenario 1: If a text, unitext, image, or rawobject column has a status of
replicate_if_changed at the Adaptive Server database and always_replicate
in the replication definition, Replication Server detects the inconsistency
when the modification is being replicated, and RepAgent may shut down.

• Scenario 2: If a text, unitext, image, or rawobject column has a status of
do_not_replicate at the Adaptive Server database and the replication
definition includes that column for replication, processing continues and
the Replication Server sends the modifications to the replicate database
without the text, unitext, image, or rawobject data. The Replication Server
also issues a warning message.

The following procedures enable you to resolve inconsistencies in the
replication status of text, unitext, image, and rawobject columns for the two
conflict scenarios described above and to resume replication operations.

Scenario 1

• Adaptive Server text, unitext, image, and rawobject status:
replicate_if_changed

CHAPTER 9 Managing Replicated Tables

Administration Guide 285

• Replication text, unitext, image, and rawobject definition status:
always_replicate

When RepAgent shuts down because a text, unitext, image, or rawobject column
has a status of replicate_if_changed at the Adaptive Server database and
always_replicate in the replication definition, take the following steps to resolve
inconsistencies:

Setting replicate_if_changed

To replicate text, unitext, image, or rawobject columns only when their values
change:

1 Execute the alter replication definition command and change the status of
the text, unitext, image, or rawobject columns to replicate_if_changed. Wait
for the modified replication definition to arrive at the replicate sites.

2 Restart RepAgent.

Setting always_replicate

To always replicate text, unitext, image, or rawobject columns:

1 Stop updates at the primary table.

2 Execute the alter replication definition command, and change the status of
the text, unitext, image, or rawobject columns to replicate_if_changed. Wait
for the modified replication definition to arrive at the replicate sites.

3 Restart RepAgent to let transactions with a replicate_if_changed status
finish processing.

4 Execute the sp_setrepcol system procedure at the Adaptive Server and
change the status to always_replicate.

5 Execute alter replication definition and change the status of the text, unitext,
image, or rawobject columns to always_replicate. Wait for the modified
replication definition to be replicated to the replicate sites.

6 Resume updates to the primary table.

Scenario 2

• Adaptive Server text, unitext, image, and rawobject status: do_not_replicate

• Replication definition text, unitext, image, and rawobject status:
always_replicate or replicate_if_changed

Replicating text, unitext, image, and rawobject columns

286 Replication Server

When the Replication Server reports that the status of a text, unitext, image, or
rawobject column is do_not_replicate at the Adaptive Server database and the
replication definition includes that column for replication and specifies either
always_replicate or replicate_if_changed, take the following steps to resolve
inconsistencies.

Setting do_not_replicate

If you do not want to replicate text, unitext, image, or rawobject columns:

1 Stop updates to the primary table.

2 Drop subscriptions to the replication definition.

3 Drop the replication definition.

4 Re-create the replication definition without the text, unitext, image, or
rawobject columns, and re-create subscriptions.

5 Resume updates to the primary table.

Setting always_replicate or replicate_if_changed

If you do want to replicate text, unitext, image, or rawobject columns:

1 Execute sp_setrepcol at the Adaptive Server database and change the
status of the text, unitext, image, or rawobject column to always_replicate or
replicate_if_changed. It should match the status in the replication
definition.

2 Wait for subsequent transactions that modify the text, unitext, image, or
rawobject column to be processed by the Replication Server.

3 Consider correcting any inconsistencies with the rs_subcmp program. See
“Verifying subscription consistency” on page 391 for more information.

Subscription issues for replicate_if_changed status
If you create subscriptions for replication definitions with text, unitext, image,
or rawobject columns that have the status replicate_if_changed, see “Bulk
materialization” on page 357 and “Materializing text, unitext, image, and
rawobject data” on page 386.

CHAPTER 9 Managing Replicated Tables

Administration Guide 287

Function strings for replicating text, unitext, and image data
If you replicate columns with text, unitext, or image datatypes to a non-
Adaptive Server database, you must create rsdatarow_for_writetext,
rs_get_textptr, rs_textptr_init, and rs_writetext function strings for each text,
unitext, or image column. The function string name must be the text, unitext, or
image column name for the replication definition.

Note You cannot replicate rawobject or rawobject in row columns to non-Sybase
databases unless you replicate these columns as their base datatype. The base
datatype of rawobject is image; the base datatype of rawobject in row is
varbinary.

Refer to Chapter 4, “Replication Server System Functions” in the Replication
Server Reference Manual for complete syntax and usage guidelines.

Replicating new large-object (LOB) datatypes
Replication Server supports the replication of Microsoft SQL Server 2005
datatypes varchar(max), nvarchar(max), and varbinary(max). These datatypes
can each store up to 2,147,483,647 bytes of data.

Replication Server introduces LOB datatypes as user-defined datatypes
(UDDs) in the table-level replication environment. Replication Server also
supports database-level replication for new LOB datatypes. The new LOB
datatypes are directly mapped to text, unitext, and image datatypes.

The base type of UDDs is:

Limitations The new LOB datatypes have these limitations:

• You cannot define as a primary key a LOB column in the replication
definition.

• You cannot define as searchable a LOB column in the replication
definition.

New LOB datatype Base type

varchar(max) text

nvarchar(max) unitext

varbinary(max) image

Replicating computed columns

288 Replication Server

• You cannot replicate stored procedures that include one of the new LOB
datatypes as a parameter.

• You cannot use text pointers to manipulate the data of the new LOB
datatypes.

In a mixed-version environment, the primary and replicate Replication Server
must have a site version of 15.1 and an LTL version of 710.

For more information about the new LOB datatypes, see the Replication Server
Reference Manual.

Partial update of LOB
datatypes

Partial-update transaction directly writes a character string at a user-defined
position of a table column without issuing a delete and replace command, as
would happen in a full update.

Use the new rs_updatetext LTL command to implement partial update:

{distribute|_ds} command_tags {applied|_ap} 'table'.rs_updatetext
{partialupd|_pu} [{first|_fi}] [last] [{changed|_ch}] [with log]
[{withouttp|_wo}] [{offset|_os}=offset {deletelen|_dln}=deletelength]
[{textlen|_tl}=length] text_image_column

Partial update does not support multiple character set conversion. Its support is
restricted to Microsoft SQL Server 2005.

For more information about partial update, see the Replication Server Design
Guide.

Replicating computed columns
Computed columns allow you to create an expression and place the result of
the expression in a table column. A computed column is:

• Materialized ––– when its value is computed for each insert or update. A
materialized computed column is stored in the same way as regular
columns.

• Virtual ––– when its value is computed only when referenced in a query.
A virtual computed column is stored in the table or index page.

A computed column expression can be:

• Deterministic ––– when its value is the same each time it is evaluated.

• Nondeterministic ––– when its value may be different each time it is
evaluated (for example, a date stamp).

CHAPTER 9 Managing Replicated Tables

Administration Guide 289

See the Adaptive Server Enterprise System Administration Guide for more
information about creating and managing computed columns.

Replication Server replicates materialized computed columns in DML
statements in the same way it replicates other columns; it does not replicate
virtual computed columns.

The replication of computed columns is supported by function strings. With
Replication Server version 15.0 and later, the class-level function string
rs_set_dml_on_computed is applied at the replicate database DSI when a
connection is established. It issues set dml_on_computed “on” after the use
database statement. If the replicate Adaptive Server is 12.5.x or earlier, the
command is ignored.

When you are creating or altering replication definitions for tables containing:

• Deterministic columns – you can choose whether or not to include those
columns in the replication definition. Because deterministic columns
always realize the same value, you can create the replication definition
without them and allow each replicated insert and update to compute
values at the replicate database.

• Nondeterministic columns – you must include nondeterministic
computed columns in the replication definition to ensure that the primary
and replicate databases remain synchronized.

Replicating encrypted columns
As of version 15.0, Replication Server supports replication of encrypted
columns in Adaptive Server. Replication Server replicates the encrypted
columns from the primary Adaptive Server database, in binary format as
ciphertext values, rather than clear text values.

The encryption keys for the primary and the replicate databases must be
identical. Use replication to create the encryption key at the replicate database,
or use a dump and load command to ensure that the encryption keys are
identical.

Replication Server in a warm standby and in an MSA environment replicates
the create, alter, and drop commands of the encryption keys. It also replicates
alter table to encrypt or decrypt a column. To replicate the create, alter, and drop
encryption key DDL commands, the system_encr_passwd must be identical for
both the primary and the replicate databases.

Replicating encrypted columns

290 Replication Server

If the encryption keys are stored in a separate database, ensure that it is
synchronized at the same time as the database containing the encrypted
columns using those encryption keys.

If data has diverged between the primary and the replicate databases because
of earlier encryption keys or because of differences between the initialization
vector and the padding, manually sync the data to avoid failures of update and
delete statements.

Restrictions Replicating encrypted columns has these restrictions:

• Text and image columns cannot be encrypted.

• Encrypted columns cannot be used in a where clause because Replication
Server receives the value in ciphertext and cannot compare that value to a
clear text value. The encrypted columns cannot be searchable columns.

• If an encrypted column is used in a primary key, the encryption key must
be defined with INIT_VECTOR NULL and PAD NULL.

The purpose of an initialization vector and padding is to randomize the
ciphertext so that two like values encrypted by the same key result in two
differing ciphertext strings. If the ciphertext for encrypted data at the
primary and the replicate sites differ, then any attempt by the Replication
Server to match the before-image from the primary site with the data at the
replicate site fails.

If no initialization vector is used, the ciphertext at the source and the target
databases exactly match. The matching is required because Replication
Server issues a where clause on the update/delete statements using the
ciphertext of the encrypted columns.

• If a table replication definition is not used to replicate the data in a warm
standby or MSA environment for a table, all the encrypted columns in that
table must be encrypted with keys defined as INIT_VECTOR NULL and
PAD NULL.

Note rs_subcmp supports replication of encrypted columns in Adaptive
Server.

CHAPTER 9 Managing Replicated Tables

Administration Guide 291

Working with special datatypes
This section describes how to use the special datatype rs_address, identity, and
timestamp columns in replication definitions.

Using the rs_address datatype
The rs_address special datatype makes a unique subscription resolution
technique possible: bitmaps of the rs_address datatype (based on the
underlying int datatype) are compared with a bitmask in a subscription’s where
clause to determine whether a row should be replicated.

To use this subscription resolution method:

1 Create tables that use columns of the int datatype.

2 Create a replication definition that includes these columns in the column
list, but declare the datatype as rs_address instead of int.

You must include any columns that use the rs_address datatype in the
searchable columns clause of the replication definition in order to perform
bitmap comparison using the where clause.

See “Bitmap subscriptions” on page 388 for more information on using
rs_address columns for bitmap subscription resolution.

Replicating identity columns
identity columns store sequential numbers (such as invoice numbers, employee
numbers, or record numbers) that are generated automatically. The value of the
identity column uniquely identifies each row in a table.

identity columns use the numeric underlying datatype with scale 0, between 1
and 1038 -1, inclusive.

identity columns are never updated by the update command. update applied to
primary data from a replicate site (using a request function) can never update
the identity column with identity data.

Working with special datatypes

292 Replication Server

Specifying an identity column in a replication definition

To create a replication definition for a table that contains an identity column,
specify “identity” as the declared datatype for the column or use a column-
level translation to specify “identity” as the published datatype for the column.

A replication definition, or multiple replication definitions for the same table,
may not publish more than one column that has the datatype identity.

Note that if one replication definition publishes a column as “identity,” another
replication definition may publish the column as numeric and avoid having the
extra commands sent with an insert for subscribers to the second replication
definition.

How Replication Server replicates identity columns

Replication Server applies the following command to the replicate table before
insert:

set identity_insert table_name on

Replication Server applies the following command to the replicate table after
insert:

set identity_insert table_name off

For any table containing an identity column, the maintenance user must be the
owner of the table (or must be the “dbo” user or aliased to the “dbo” login
name) at the replicate database in order to use the Transact-SQL identity_insert
option.

Replicating timestamp columns
Replication Server adds timestamp as a Replication Server datatype. timestamp
is defined as varbinary(8) with a status bit indicator that differentiates it from
varbinary. This allows the replication of timestamp columns to replicate,
standby, and MSA databases.

You can also define timestamp as a primary key in a replication definition, and
a searchable column in a replication definition and a function replication
definition.

The send_timestamp_to_standby configuration parameter is also added to
support timestamp replication. When send_timestamp_to_standby is enabled
and there are no replication definitions, timestamp columns are sent to the
replicate database.

CHAPTER 9 Managing Replicated Tables

Administration Guide 293

For any table containing timestamp column, the maintenance user must be the
owner of the table or must be the “dbo” user of aliased to the “dbo” login name
at the replicate database.

Specifying a timestamp column in a replication definition

To create a replication definition for a table that contains a timestamp column,
specify “timestamp” as the declared datatype for the column or use a column-
level translation to specify “timestamp” as the published datatype for the
column.

A replication definition, or multiple replication definitions for the same table,
may not publish more than one column that has the datatype timestamp.

Note The replicate Adaptive Server must be version 15.0.2 or later to support
timestamp in replication definition.

 See the Replication Server Reference Manual for more information about the
new timestamp datatype.

Modifying replication definitions
This section provides information on viewing, altering, and dropping
replication definitions. It also describes how Replication Server supports table
changes resulting from the alter table command when the table:

• Has subscriptions from a replicate site, or

• Is replicated to the standby database using a replication definition with a
send standby replication definition columns clause.

Note Adaptive Server Enterprise version 12.0 allows users to alter existing
tables— add non-nullable columns, drop columns, and modify column
datatypes.

See “alter table support for warm standby” on page 111 in the Replication
Server Administration Guide Volume 2 for more information about alter table
changes that affect warm standby tables with no subscriptions.

Modifying replication definitions

294 Replication Server

For descriptions of procedures that require altering or dropping replication
data, see “Modifying replicated data” on page 305.

Maintaining table schema
Replication Server stores information about table schema in a table’s
replication definition. During alter table operations, new or modified data rows
may reach Replication Server while old data rows are still being processed
farther down the data stream. When replication definitions exist for a table, the
discrepancies between the columns in the table and the columns in the
replication definition may cause Replication Server threads (executor,
distributor, or DSI) to shutdown.

Note See the section on alter table in the Adaptive Server Enterprise Reference
Manual (version 12.0 or later) for syntax and details on how alter table works
in Adaptive Server.

Figure 9-2: Replicate Table Schema Inconsistency

CHAPTER 9 Managing Replicated Tables

Administration Guide 295

As Figure 9-2 illustrates, because the replication definition cannot describe the
old data rows and the new data rows (Figure 9-2, A & B) at the same time,
discrepancies between a replication definition and its corresponding table may
cause Replication Server to behave incorrectly; that is, not able to read or write
data rows to inbound and outbound queues.

For example:

If Replication Server receives the following from RepAgent:

old_datarow1
old_datarow2
...
alter table command
new_datarow1
new_datarow2
...

both the old and new data rows need to be replicated with the correct number
of columns and the correct column datatype.

If alter table drops columns, old data rows still have these columns replicated
while the new data rows do not.

If alter table adds new columns, the new columns need to be included only in
the new data rows. Figure 9-2 illustrates that when you add new columns to the
Publishers table using alter table (“B”), because the new rows are not in the
table’s replication definition, the new rows will not be replicated, causing you
to lose data.

If alter table alters a column datatype, both the old and new data rows need to
be replicated in their own column types. When you modify primary table
column datatypes, there is also a period of time when the replication definition
column datatype does not match the table column datatype. This mismatch
may cause problems in Replication Server when column datatypes are used.

Modifying replication definitions

296 Replication Server

Migration procedure

The only way to guarantee consistency between tables and replication
definitions and ensure that replication works correctly, is to use the steps in the
following procedure when you want to add or modify columns in a primary
table within a replication system.

Note This procedure is required only when a table has subscriptions, or when
send standby replication definition columns is used to replicate to a standby
database.

❖ Altering a primary table that is part of a replication system and avoid
data inconsistency or Replication Server thread shutdown:

1 Stop all primary database activity.

2 Send an intentional fake “update” command. When this transaction’s
results appear at the replicate site, you know that all operations have been
completed by the Replication Server.

3 Use the Transact-SQL dump transaction command to make a copy of the
primary database’s transaction log (syslog) and remove the inactive
portion.

See the Adaptive Server Enterprise Reference Manual for instructions.

4 Quiesce the replication system. Make sure that the last update (step 2) has
reached the replicate.

See the “Quiescing a replication system” on page 104 for instructions.

5 Use alter table to change the primary table schema.

See the alter table command in the Adaptive Server Enterprise Reference
Manual (version 12.0 or later) for instructions.

6 Use alter replication definition to change the corresponding replication
definitions. Verify that the replication definition changes reach all
destination RSSDs.

Note If the alter table changes involve columns that are used in a
subscription or article where clause, drop the subscription (without purge)
or article before you alter the replication definition. If you use alter table to
drop columns that are not used in a where clause, replication definition
changes are not necessary.

See “Altering replication definitions” on page 298 for details.

CHAPTER 9 Managing Replicated Tables

Administration Guide 297

7 If you dropped subscriptions in step 6, recreate them using create
subscription without materialization or define subscription.

See create subscription and define subscription in Chapter 3 of the
Replication Server Reference Manual (version 11.5 or later) for
instructions.

8 Change the replicated table schema if necessary.

9 Resume activity in the primary database.

alter table support for replicate databases

Prior to version 12.0, when Replication Server received a data row, the
columns that were defined in the replication definition but missing in the data
row were sent as null. This could cause the Data Server Interface (DSI) to
shutdown when the columns were dropped from the replicate or standby table.

Beginning with version 12.0, to support alter table [add | drop | modify] column,
Replication Server sends only the values that are received from the data server.
Columns that are defined in the replication definition but missing in the data
row are ignored instead of receiving a null value. The exception is when you
use custom function-strings. If a missing column value is expected in a custom
function-string, then Replication Server will continue to send null for the
column.

If you use a column in a subscription or article where clause, you must drop the
subscription or article before you can change or drop that column. If you do not
use a column in a subscription or article where clause, then you do not need to
drop the subscription.

 Warning! You always need to follow the manual procedure specified in
“Migration procedure” on page 296 for alter table [add | drop | modify] columns
when subscriptions are involved, or when you use send standby replication
definition columns to replicate to a standby database. Failure to do so may cause
data loss or Replication Server thread problems.

Note See “alter table support for warm standby” on page 111 in the
Replication Server Administration Guide Volume 2 for information on how
Replication Server support Adaptive Server version 12.0 enhancements to alter
table.

Modifying replication definitions

298 Replication Server

Recovery procedures

This section discusses the recovery procedures to use if data loss or problems
occur as a result of alter table changes.

Recovering from
executor thread
problems

Executor thread problems require no extra recovery. Data may be discarded
when there is a normalization error in an executor thread.

When datatype conversion has completed, and if the table has been altered such
that the executor thread cannot normalize the data, the data row may be
discarded. Use the “Migration procedure” on page 296 to avoid data loss.

Recovering from
inbound queue
problems

If data in the inbound queue is incompatible with the column datatype in a
replication definition, the distributor thread may shut down. The resume
distributor command has been extended to allow you to skip one transaction:

resume distributor ds.db
skip transaction

Recovering from
outbound queue
problems

When there is bad data in the outbound queue, use resume connection skip [n]
transaction to skip the bad data. In the case of replicate (not standby) Data
Server Interface (DSI) threads, you may be able to alter the replication
definition and resume the DSI to recover the data.

Viewing existing replication definitions
To display information about existing replication definitions, use the Adaptive
Server procedures rs_helpuser and rs_helpreptable. See rs_helprep and
rs_helpuser in Chapter 6, “Adaptive Server Stored Procedures” in the
Replication Server Reference Manual for complete information about this
command.

Altering replication definitions
You may need to alter a replication definition after a column has been added to
a primary table or if a destination database requires a column that was not
specified in the original replication definition.

CHAPTER 9 Managing Replicated Tables

Administration Guide 299

In most instances, you alter replication definitions in conjunction with
changing database schema in the source or destination table. Be sure to
coordinate schema changes between the source and destination sites. See
“Modifying replicated data” on page 305.

 Warning! When you alter a replication definition, it may take a while for the
changes to reflect in the replicate RSSD. If you manipulate the data too soon
before or after running alter replication definition command, Replication Server
may use the wrong replication definition to process the data.

This section describes how to use alter replication definition to modify a
replication definition. You can alter the replication definition in one of the
following ways:

• Provide a different replicate table name

• Add columns to the columns list

• Provide different replicate column names

• Change the specifications for replicating text, unitext, image, or rawobject
columns

• Add columns to the primary keys column list

• Remove columns from the primary keys column list

• Add columns to the searchable columns list

• Drop columns from the searchable columns list

• Change declared or published column datatypes

• Change the specification for replicating minimal columns

• Change how the replication definition is used in replicating to a standby
database

Note Function strings with replication definition scope are not automatically
altered when you add columns to a table or to a replication definition. In certain
cases, you must alter the function strings manually. See “Managing function
strings” on page 32 in the Replication Server Administration Guide Volume 2.

Use alter replication definition at the primary Replication Server where you
created the replication definition. See “Creating replication definitions” on
page 250 for more information about what you can include in a replication
definition.

Modifying replication definitions

300 Replication Server

• To rename primary or replicate tables, drop and re-create the replication
definition. See “Renaming replicated tables” on page 305 for more
information about how to accomplish this task.

• To drop or rename primary columns or change column datatypes, drop and
re-create all the replication definitions that have the primary columns. See
“Deleting columns in a source or destination table” on page 306 for more
information about how to accomplish this task.

Refer to Chapter 3, “Replication Server Commands” in the Replication Server
Reference Manual for more information about alter replication definition
command.

Examples follow for different scenarios of altering replication definitions using
alter replication definition.

Normally, you should quiesce the system and shut down the RepAgent before
altering a replication definition.

Providing a different replicate table name

To replicate data from a source table into a destination table with a different
name, alter the replication definition. For example:

alter replication definition publishers
with replicate table named publishers2

Changing the specified columns

Following are examples of how to add or change a column for the primary and
destination tables.

Adding a column

To add a char column named zip (for zip code information) to the source and
destination copies of the publishers table:

1 Use the Transact-SQL alter table command to add the column to the tables
in Adaptive Server. See the Adaptive Server Enterprise Reference Manual
for more information.

2 Use alter replication definition to add the same column to the publishers_rep:

alter replication definition publishers_rep
add zip char(10)

CHAPTER 9 Managing Replicated Tables

Administration Guide 301

3 If the column you added to the destination table has a different name than
the source column, enter a command like this:

alter replication definition publishers_rep
add zip as rep_zip char(10)

See “Adding columns in source and destination tables” on page 306 and alter
replication definition in Chapter 3, “Replication Server Commands” Replication
Server Reference Manual for more information.

Dropping a searchable column

You can drop searchable columns from a replication definition only if they are
not used in subscription or article where clause.

1 Use drop subscription to remove any subscriptions in which you want the
where clause to exclude the searchable columns you are dropping. See
“Using the drop subscription command” on page 380.

2 Use alter replication definition to drop the searchable column. For example:

alter replication definition publishers_rep
drop searchable columns zip

(This example removes the zip searchable column from the publishers_rep
replication definition.)

See alter replication definition in Chapter 3, “Replication Server
Commands” in the Replication Server Reference Manual for more
information.

3 Use create subscription to re-create subscriptions to the altered replication
definition. See “Using the create subscription command” on page 374.

Adding or dropping primary keys

Replication Server depends on primary keys to find the correct rows at the
replicate or standby table. To add a the column zip as a primary key to the
replication definition, enter:

alter replication definition publishers_rep
add primary key zip

To drop a primary key, enter:

alter replication definition publishers_rep
drop primary key zip

Modifying replication definitions

302 Replication Server

To replace all primary key columns, first alter the corresponding replication
definition to add the new primary keys, then drop the old primary key columns
in the table.

 Warning! If all primary key columns are missing from the primary table, the
DSI will shut down.

Altering column datatypes

• You cannot change the declared column datatype (the datatype in the
primary table) if it is used in a subscription or article where clause.

• You cannot change the rs_address datatype.

• You can change the column datatype to text, unitext, image, rawobject, or
rawobject in row only if it is not a primary key or searchable column.

• To change the published (replicate) datatype, you must include the
declared (primary) datatype of a column (whether it is being changed or
not) and the [map to] clause.

• Altering a column’s datatype and nullability affects the same column
across all replication definitions for a table.

However, changes between a rawobject or rawobject in row and its base
datatype, affects only the current replication definition. See “Translating
datatypes using HDS” on page 317 for more information about HDS.

• Use column nullability changes for text, unitext, image, and rawobject
columns only.

Providing a different replicate column name

To replicate data for the source column zip into a destination column named
rep_zip2, enter:

alter replication definition publishers_rep
alter columns with zip as rep_zip

Enter such a command when:

• You alter the existing destination table to add column rep_zip.

• You drop and re-create the destination table to contain the column rep_zip
in place of the original column zip.

CHAPTER 9 Managing Replicated Tables

Administration Guide 303

Changing text, unitext, image, and rawobject replication status

To change the replication status of text, unitext, image, and rawobject columns
in a replication definition, use alter replication definition.

See “Altering replication status for text, unitext, image, and rawobject
columns” on page 283 for more information.

Adding a searchable column

A searchable column lets you create subscriptions based on values in the
column.

To add and take advantage of a searchable column:

1 Use drop subscription to remove any subscriptions in which you want the
where clause to include the added searchable column. See “Using the drop
subscription command” on page 380.

2 Use alter replication definition to add the searchable column. For example:

alter replication definition publishers_rep
add searchable columns zip

(This example makes the zip column searchable.)

See alter replication definition in Chapter 3, “Replication Server
Commands” in the Replication Server Reference Manual for more
information.

3 Use create subscription to re-create subscriptions to the altered replication
definition. See “Using the create subscription command” on page 374.

See “Changing searchable columns” on page 307 for more information.

Changing minimal column replication

To specify that Replication Server use the minimal number of columns (as
opposed to all columns in each row) when it copies update and delete
operations, enter a command like this:

alter replication definition publishers_rep
replicate minimal columns

Modifying replication definitions

304 Replication Server

Altering a replication definition for warm standby replication

To change whether a replication definition will be used to replicate data into a
standby database in a warm standby application, use alter replication definition.
See alter replication definition in Chapter 3, “Replication Server Commands” of
the Replication Server Reference Manual.

You can specify which replication definition to use to replicate data into a
standby database in a warm standby application. You can also specify whether
to replicate all the columns in the table or only the replication definition’s
columns.

See “Using replication definitions with warm standby applications” on page
260 for more information.

Dropping replication definitions
Before you drop a replication definition, first drop all subscriptions and articles
that reference that replication definition. See Chapter 11, “Managing
Subscriptions” for details on dropping subscriptions. See “Dropping articles”
on page 316 for details on dropping articles.

To access a list of existing subscriptions for a specified replication definition,
use rs_helpsub. See rs_helpsub in Chapter 6, “Adaptive Server Stored
Procedures” in the Replication Server Reference Manual for more information.

To access a list of existing subscriptions for all replication definitions, use
rs_helprep. See rs_helprep in Chapter 6, “Adaptive Server Stored Procedures”
in the Replication Server Reference Manual for more information.

Enter drop replication definition at the primary Replication Server. For example,
to drop the publishers_rep replication definition, enter a command like this:

drop replication definition publishers_rep

Refer to Chapter 3, “Replication Server Commands” in the Replication Server
Reference Manual for more information about drop replication definition
command.

CHAPTER 9 Managing Replicated Tables

Administration Guide 305

Modifying replicated data
This section describes how to modify replicated data and perform related
operations to maintain replication. Chapter 11, “Managing Subscriptions” for
subscription-specific commands.

Before you modify replicated data, carefully review the issues raised in
“Planning a replication system” on page 243. When attempting to modify
replicated data, refer to this section for any dependencies that may exist, and
for the sequence of tasks required to perform the procedure.

Adding a new table
To add a new source table, or add a new destination copy for an existing source
table, follow the procedure outlined in “Replication procedure” on page 246.

Renaming replicated tables
To rename a replicated table:

1 In Adaptive Server, use sp_setreplicate to disable replication for the table.
See sp_setreplicate in Chapter 5, “Adaptive Server Commands and System
Procedures” in the Replication Server Reference Manual.

2 Use drop subscription to drop subscriptions to all of the table’s replication
definitions. See “Using the drop subscription command” on page 380.

3 Use drop replication definition to drop all of the table’s replication
definitions. See “Dropping replication definitions” on page 304.

4 Rename the destination table.

Follow the steps in the “Replication procedure” on page 246. Be sure to
specify the table names correctly, as described under “Specifying the
replication definition name and table names” on page 252.

Dropping a replicated table
To drop a replicated table, follow these steps:

1 Use the Transact-SQL drop table command to drop the table at the primary
database.

Modifying replicated data

306 Replication Server

See the Adaptive Server Enterprise Transact-SQL User’s Guide for drop
table syntax.

2 Use drop subscription to drop the subscriptions to the table. See “Using the
drop subscription command” on page 380.

3 Use check subscription to confirm that the subscriptions are dropped. See
“Using the check subscription command” on page 379.

4 Use drop replication definition to drop the replication definition to the table
at the primary Replication Server. See “Dropping replication definitions”
on page 304.

5 Use rs_helprep to confirm that the replication definition is dropped at all
Replication Servers in the replication system. See “Viewing existing
replication definitions” on page 298.

Adding columns in source and destination tables
To add columns to source and destination tables in a warm standby only setup,
follow the instructions in “alter table support for warm standby” on page 111
in the Replication Server Administration Guide Volume 2.

To add columns to source and destination tables that are replicated through
subscriptions, use the “Migration procedure” on page 296.

Deleting columns in a source or destination table
To delete columns in source and destination tables in a warm standby only
setup, follow the instructions in “alter table support for warm standby” on page
111 in the Replication Server Administration Guide Volume 2.

To delete columns in source and destination tables that are replicated through
subscriptions, use the “Migration procedure” on page 296.

Note If you drop columns from a table, it is unnecessary to drop those columns
from replication definitions unless they are used in a subscription or article
where clause. However, the columns need to be dropped from the searchable
columns list and the primary key list.

If you drop table columns that are used in a subscription or article where clause,
you need to drop the subscription or article, then recreate it.

CHAPTER 9 Managing Replicated Tables

Administration Guide 307

Changing searchable columns
To add searchable columns to a replication definition, see “Adding a
searchable column” on page 303.

Dropping a searchable column

You can drop searchable columns from a replication definition only if they are
not used in subscription or article where clause.

1 Use drop subscription to remove any subscriptions in which you want the
where clause to exclude the searchable columns you are dropping. See
“Using the drop subscription command” on page 380.

2 Use alter replication definition to drop the searchable column. For example:

alter replication definition publishers_rep
drop searchable columns zip

(This example removes the zip searchable column from the publishers_rep
replication definition.)

See “alter replication definition“ in Chapter 3, “Replication Server
Commands” in the Replication Server Reference Manual for more
information.

3 Use create subscription to re-create subscriptions to the altered replication
definition. See “Using the create subscription command” on page 374.

Changing column datatypes in a source or destination table
To change column datatypes in a primary and replicate table in a warm standby
only setup, follow the instructions in “alter table support for warm standby” on
page 111 in the Replication Server Administration Guide Volume 2.

To change column datatypes in source and destination tables that are replicated
through subscriptions, use the “Migration procedure” on page 296.

Using publications

308 Replication Server

Using publications
A publication lets you collect replication definitions for the same or related
tables and/or stored procedures and then subscribe to them as a group. You
collect replication definitions in a publication at the source Replication Server
and subscribe to them with a publication subscription at the destination
Replication Server.

With publications, you monitor the status of one publication subscription for a
set of tables and procedures.

The following steps summarize the procedure for replicating data using
publications.

1 Create or select the replication definitions to include in the publication.

2 Create the publication.

3 Create articles that reference the replication definitions you have chosen.

4 Validate the publication.

5 Create a subscription for the publication.

Note A replicate database can subscribe to different replication definitions of
the same primary table directly or through publications—as long as each
replication definition references a different table in the replicate database.

To use publications, the primary Replication Server must be version 11.5 or
later. To use publication subscriptions, the replicate Replication Server and the
route from the primary Replication Server and the replicate Replication Server
must be version 11.5 or later.

When you use publications, you create and manage the following objects:

• Articles – replication definition extensions for tables or stored procedures
that let you put table or function replication definitions in a publication.
Articles may or may not contain where clauses, which specify a subset of
rows that the replicate database receives.

• Publications – groups of articles from the same primary database.

• Publication subscriptions – subscriptions to a publication. When you
create a publication subscription, Replication Server creates a subscription
for each of the publication’s articles. Publication subscriptions do not
contain where clauses.

CHAPTER 9 Managing Replicated Tables

Administration Guide 309

In general, you manage publications and publication subscriptions in the same
way as you do replication definitions and subscriptions. However, when you
create a publication, you can specify the subset of rows that the replicate table
receives by including a where clause in the article—not in the subscription.

You can create and manage publications using the command line. The
following sections provide detailed instructions for creating publications at the
command line.

Refer to Chapter 10, “Managing Replicated Functions” for more information
about publications for stored procedures. Refer to Chapter 11, “Managing
Subscriptions” for information about creating and managing publication
subscriptions.

Using publications to replicate data at the command line
This section describes how to create a publication at the command line and
prepare it for subscription. It also contains information on modifying dropping
a publication and its associated articles and replication definitions.

Commands for creating and managing publications

Table 9-3 lists the RCL commands for working with publications. All of these
commands, except check publication, are executed at the source Replication
Server, where they require create object permission. Anyone can execute check
publication at the source Replication Server—or at the destination Replication
Server if the user has the same login and password at both servers.

Table 11-5 on page 396 lists the RCL commands for working with publication
subscriptions.

Table 9-3: Commands for managing publications

Command Task

create publication Creates a publication for a group of tables or stored procedures that is to be replicated to one
or more subscribing databases.

create article Creates an article for a publication, allowing you to add one or more where clauses to specify
a subset of rows to send to the destination database.

The publication and the replication definition on which the article is based must exist before
you create an article.

validate publication Checks that the publication contains at least one article and marks the publication as VALID
and ready for subscription.

check publication Displays the status of the publication and the number of articles it contains.

Using publications

310 Replication Server

Creating publications and articles at the command line

The following procedure describes the RCL procedure for preparing a
publication for subscription and creating a subscription against it.

At the source
Replication Server

1 Create or select replication definitions for the tables or stored procedures
from which you want to copy data.

The replication definition specifies the source and destination tables or
stored procedure and the columns or parameters that are sent to the
subscribing database. Refer to “Creating replication definitions” on page
250 for details.

2 Use create publication to create the publication that groups the replication
definitions.

Publication information is stored in the rs_publications system table in the
source Replication Server RSSD. It includes the name of the publication,
data server, and database. The publication name must be unique for the
source Replication Server and database.

The following example creates a publication named pubs2_pub. The
primary database is pubs2 managed by the TOKYO_DS data server.

create publication pubs2_pub
with primary at TOKYO_DS.pubs2

Publication information is not copied to the destination Replication Server
until you create a subscription against the publication at the destination
Replication Server.

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for complete syntax and usage guidelines.

3 Use create article to create articles for the publication.

drop publication Removes the publication from the rs_publications system table.

You can drop the replication definitions associated with the publication if they are not included
in other publications or subscriptions.

drop article Removes the article from the publication and from the rs_articles system table.

You can drop the replication definition associated with the article if it is not included in other
articles or subscriptions.

rs_helppubs Displays information about publications and articles.

Command Task

CHAPTER 9 Managing Replicated Tables

Administration Guide 311

Each article specifies the publication to which it belongs and the table or
function replication definition with which it identifies. A publication can
contain articles based on the same or different replication definitions. The
replication definition and publication must exist when you create the
article.

An article includes the names of the publication, the replication definition,
and the source data server and database. Article information is stored in
the rs_articles and rs_whereclauses system tables. Each article name must
be unique within the publication.

The following example creates an article named titles_art based on the
replication definition titles_rep for the publication pubs2_pub.

create article titles_art
for pubs2_pub with primary at TOKYO_DS.pubs2
with replication definition titles_rep

An article can include where clauses that specify the rows or parameters to
be sent to subscribing databases. Refer to “Specifying a where clause with
the create article command” on page 312 for more information.

Creating an article invalidates the publication, which makes it ineligible
for subscription. After you create an article, you must change the status of
the publication to VALID, using validate publication, before you can create
subscriptions against it.

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for complete syntax and usage guidelines.

4 Use validate publication to change the status of the publication to VALID.

When you validate a publication, Replication Server checks that the
publication contains at least one article and marks the publication ready
for subscription.

Whenever you add or drop an article from a publication, Replication
Server invalidates the publication. To mark the publication VALID—and
ready for subscription—you must execute validate publication.

After you validate a publication, you can create a publication subscription
against it.

The following example validates the pubs2_pub publication. The source
database is pubs2 managed by the TOKYO_DS data server.

validate publication pubs2_pub
with primary at TOKYO_DS.pubs2

Using publications

312 Replication Server

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for complete syntax and usage guidelines.

At the destination
Replication Server

Use create subscription to create the publication subscription.

When you create a publication subscription, Replication Server creates a
subscription for each article in the publication.

See “Using publication subscriptions” on page 395 for information about
creating and managing publication subscriptions.

Specifying a where clause with the create article command

You can include one or more where clauses in an article. A where clause sets
criteria for the column or parameter values that are to be replicated. If you omit
the where clause, Replication Server copies all rows for columns specified in
the table replication definition or all parameters specified in the function
replication definition.

The where clause syntax for articles is:

[where (column_name | @param_name)
{< | > >= | <= | = | &} value

[and {column_name | @param_name}
{< | > >= | <= | = | &} value]...]

[or where (column_name | @param_name)
{< | > >= | <= | = | &} value

[and {column_name | @param_name}
{< | > >= | <= | = | &} value]...]

...

Each column name in a where clause must be listed in the searchable columns
list of the table replication definition. The value for each column must have the
same datatype as the column to which it is compared.

Note Each where clause in an article is joined by the or operator. However, the
!=, !<, !>, and or operators are not supported inside a where clause. The &
operator is supported only on rs_address columns. For details on using the
rs_address datatype, see “Using the rs_address datatype” on page 291 and
“Bitmap subscriptions” on page 388.

The following example creates an article named titles_art for the publication
named pubs2_pub, using a where clause that limits replication to rows where
the value in the type column is ‘popular_comp.’

create article titles_art

CHAPTER 9 Managing Replicated Tables

Administration Guide 313

for pubs2_pub with primary at TOKYO_DS.pubs2
with replication definition titles_rep
where type = 'popular_comp'

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Viewing publication information

You can view information about publications and articles with the check
publication command and the rs_helppub stored procedure.

Display publication status and number of articles

To display the number of articles in a publication and its current status, use
check publication.

Any user can execute check publication at either the primary or replicate
Replication Server. If you execute check publication at the replicate Replication
Server, you must have the same login and password at the primary and replicate
servers.

The following example displays the status and number of articles in the
pubs2_pub publication.

check publication pubs2_pub
with primary at TOKYO_DS.pubs2

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines and sample
output.

Display publication and article information

To display information about a publication and its articles, use the rs_helppub
stored procedure at either the primary or replicate Replication Server RSSD.

Note Although you can execute rs_helppub at the primary or replicate site,
rs_helppub only displays publication information stored at the site at which it
is executed. For example, if you execute rs_helppub at the primary site,
rs_helppub displays information about all publications created at that site. If,
however, you execute rs_helppub at the replicate site, rs_helppub only displays
information about publications for which subscriptions have been created at
that site.

Using publications

314 Replication Server

Here are some examples of using rs_helppub:

• To list all publications at a site, enter:

rs_helppub

The display output includes publication name, status, the primary
Replication Server and database names, the number of articles, and the
date of the latest change to the publication.

• To display detailed information about a particular publication, enter:

rs_helppub publication_name, primary_dataserver,
primary_db

The display output includes the above information and the names of
associated articles, replication definitions, and primary and replicate
tables. If subscriptions have been created for the publication, the display
includes names of the subscriptions, replicate databases, owners, and the
date of the latest change to the subscription.

• To display information about a particular article, enter:

rs_helppub publication_name, primary_dataserver,
primary_db, article_name

The output display includes the name of the publication to which the
article belongs, associated replication definitions, status information, and
where clauses and subscriptions, if any.

Refer to the Replication Server Reference Manual for complete syntax and
usage guidelines and sample output.

Altering publication information

Normally, if you want to alter an article or publication, you must drop the
article or publication and re-create it.

If you want to make the where clauses in an article more selective, you can:

• Drop the article and re-create it with altered where clauses, or

• Create another article (for the same replication definition), tailoring the
where clauses to the new row or parameter selection.

Refer to “Dropping publications” on page 315 and “Dropping articles” on
page 316.

CHAPTER 9 Managing Replicated Tables

Administration Guide 315

Adding articles to a publication

To add articles to an existing publication, follow these steps:

At the source
Replication Server

1 Create or select the replication definitions on which the articles are to be
based.

2 Use create article to create new articles.

3 Use validate publication to validate the publication so that subscriptions can
be created for the new articles.

At the destination
Replication Server

To create subscriptions for the new articles, enter create subscription or define
subscription and include the for new articles clause. Refer to “Using publication
subscriptions” on page 395 for more information.

Dropping publications

Use drop publication to remove a publication and all of its articles from the
system tables.

Before you drop a publication, you must, at the replicate Replication Server,
drop all subscriptions created against it. See “Dropping subscriptions for
publications and articles” on page 401.

Execute drop publication at the Replication Server that manages the source
database. You must have create object permission.

The following example drops the pubs2_pub publication and the articles it
contains.

drop publication pubs2_pub
with primary at TOKYO_DS.pubs2

Publication information is dropped immediately from the primary Replication
Server; it is not dropped from the replicate Replication Server until:

• You attempt to create a subscription against the dropped publication, or

• You enter check publication at the replicate Replication Server.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Using publications

316 Replication Server

Dropping associated replication definitions

To drop replication definitions associated with the publication, include the
drop_repdef clause when you execute drop publication. Replication Server
drops all replication definitions associated with the publication that are not
referenced by other publications or subscriptions.

For example, to drop all replication definitions associated with pubs2_pub,
enter:

drop publication pubs2_pub
with primary at TOKYO_DS.pubs2
drop_repdef

Dropping articles

Use drop article to remove an article from a publication.

Before you drop an article, you must drop subscriptions created against it at the
replicate Replication Server. See “Dropping subscriptions for publications and
articles” on page 401.

Execute drop article at the Replication Server that manages the source database.
You must have create object permission.

The following example drops the titles_art article for the pubs2_pub
publication.

drop article titles_art
for pubs2_pub with primary at TOKYO_DS.pubs2

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Dropping the associated replication definition

To drop a replication definition associated with an article, include the
drop_repdef clause when you execute drop article. Replication Server drops the
replication definition if it is not referenced in other publications or
subscriptions.

For example, to drop the pubs2_pub article and the replication definition it
references, enter:

drop article titles_art
for pubs2_pub with primary at TOKYO_DS.pubs2
drop_repdef

CHAPTER 9 Managing Replicated Tables

Administration Guide 317

Translating datatypes using HDS
In a heterogeneous replication system, when information is replicated from one
data server to another, values stored at the primary data server must often be
altered so that they can be copied successfully to a different datatype at the
replicate data server.

User-created function strings can produce these datatype translations, but
require significant user input and are limited by the capabilities of the replicate
data server.

To make datatype translations more readily available for different data servers,
Replication Server provides heterogeneous datatype support (HDS), an easy-
to-apply methodology for translating datatypes at the Replication Server. HDS
supports selected datatype translations between these data servers:

• Adaptive Server Enterprise

• DB2

• Oracle

• Microsoft SQL Server

• UDB

When you use HDS, you can choose which columns and datatypes in the
primary database are to be translated, and which replicate data servers will
receive the translations.

Sources of information:

• See the Heterogeneous Replication Guide.

• See the Replication Server Configuration Guide for your platform for
instructions for installing and setting up the objects that enables HDS.

• See the Replication Server Reference Manual for descriptions of the
function strings.

Overview
You can use HDS capabilities when replicating between:

• Adaptive Server databases – one Adaptive Server datatype to another
Adaptive Server datatype

• Like non-Sybase databases – for example, DB2 TIMESTAMP to DB2 DATE

Translating datatypes using HDS

318 Replication Server

• Heterogeneous non-Sybase databases – Oracle to DB2, for example

• Adaptive Server and non-Sybase databases – Adaptive Server to Oracle,
for example

If you are replicating information between Adaptive Servers, datatype
translations are normally unnecessary. However, you can use HDS to perform
datatype translations when datatypes differ in the primary and replicate
databases.

HDS handles incompatibilities between the datatypes of the primary data
server and the replicate data server. In general, these incompatibilities are of
three types:

• Incompatible ranges – for example, the range of acceptable dates for
Sybase datetime is January 1, 1753 through December 31, 9999. DB2,
however, allows dates from January 1, 0001 through December 31, 9999.

• Incompatible formatting – for example, the primary data server date
format is “CCYY-MM-DD,” but the replicate data server requires a date
format of “MM/DD/CCYY.”

• Incompatible delimiters – for example, Sybase delimits binary data with
an “0x” prefix, whereas Oracle surrounds binary data with single
quotation marks.

The Replication Agent for each data server delivers replicate values to
Replication Server in a datatype format that Replication Server understands,
which includes the literal value, delimiter information, and other datatype
attributes. Replication Server handles the value as its base datatype—one of the
native Replication Server datatypes described in the Replication Server
Reference Manual.

You can implement datatype translations in two ways:

• Class-level translations – translate all instances of a datatype for a
particular connection.

• Column-level translations – translate all instances of a column described
by a table replication definition.

Getting started
1 Review the datatype translations available for your primary and replicate

data servers. Determine the translations you want and the methods for
delivering them:

CHAPTER 9 Managing Replicated Tables

Administration Guide 319

• Class-level translations

For lists of supported class-level datatype translations, see the
Heterogeneous Replication Guide.

• Column-level translations

See Table 9-4, Table 9-5, and Table 9-5 for lists of supported
datatypes and data servers.

• A combination of class-level and column-level translations

2 Set up the environment and run the scripts that enable HDS for your
system. Refer to the Replication Server Configuration Guide for your
platform for instructions.

3 Set up class-level and column-level translations using the procedures
described in the following sections.

For information about creating subscriptions for replication definitions, refer
to Chapter 11, “Managing Subscriptions”. For information about using
function replication definitions for class-level translations, see Chapter 10,
“Managing Replicated Functions”.

Creating class-level translations
Class-level translations ensure that each time a value of a certain datatype is
replicated from the primary to a particular data server, the datatype of that
value is changed. Sybase provides the function strings and function-string
classes necessary to produce these translations.

To set up class-level translations, follow these steps:

1 Set up and configure the replicate database gateway server.

Refer to the Replication Server Configuration Guide for your platform for
instructions.

2 Set up the database objects and run the scripts that install the function
strings and function-string classes for your primary to replicate data server
connections.

Refer to the Replication Server Configuration Guide for your platform for
instructions.

3 Create or alter the connections to specify the function-string class.

Translating datatypes using HDS

320 Replication Server

• If you are creating a new connection, Sybase provides a sample script
that you can use to create the connection and specify the appropriate
function-string class. You will need to modify the script for your
installation.

Refer to the Replication Server Configuration Guide for your
platform for instructions.

• If you are adding class-level translations to an existing connection,
use the alter connection command as described in “Adding class-level
translations to an existing connection” on page 321.

Sybase provides function-string classes for several Sybase and non-Sybase
data servers:

• Adaptive Server Enterprise – rs_sqlserver_function_class

• DB2 – rs_db2_function_class

• Microsoft SQL Server – rs_msss_function_class

• Oracle – rs_oracle_function_class

• UDB – rs_udb_function_class

Each of these function classes contains function strings. For example, for the
DB2 database, HDS provides these translations:

• DB2 to Adaptive Server and Adaptive Server to DB2

• DB2 to Microsoft SQL Server and Microsoft SQL Server to DB2

• DB2 to Oracle and Oracle to DB2

With the exception of rs_db2_function_class, each function class inherits from
rs_default_function_class.

In general, you cannot add to, delete, or change any of these function-string
classes or the functions they contain. You can modify
rs_sqlserver_function_class for compatibility with earlier releases of
Replication Server, but you cannot modify or alter any of its datatype
translations. Although you can create classes that inherit from these classes, the
classes you create cannot inherit any class-level translations from the parent
class.

You are installing translations in the RSSD when you run the class-level
installation scripts. If you do not run the scripts, no default class-level
translations take place. Running the scripts replaces default Adaptive Server
translations that would otherwise be inherited from rs_default_function_class
with translations designed for a particular data server.

CHAPTER 9 Managing Replicated Tables

Administration Guide 321

You activate class-level translations for a connection by specifying the
function-string class when you create or alter the connection. When the
function-string class is activated, all subsequent data replicated via that
connection is translated according to the translations defined for that function-
string class.

If a class-level translation is not specified for a published datatype (the
datatype of the replicate data server), Replication Server simply translates the
value from the Replication Agent to its base datatype format in the usual
manner. For example:

• If no translation is specified for the Sybase datetime datatype, no
translation is performed; the base datatype of datetime is datetime.

• If no translation is specified for rs_db2_timestamp, any rs_db2_timestamp
value routed through the connection is translated to char(26), its base
datatype.

Replication Server performs class-level translations after column-level
translations and after subscription resolution, but before values are mapped to
function strings. You can display a list of active function-string classes using
admin show_function_classes. See “Using class-level and column-level
translations together” on page 326.

Adding class-level translations to an existing connection

If you want to add class-level translations to an existing connection, use the
alter connection command. Follow these steps:

1 Run the appropriate install scripts. Refer to the Replication Server
Configuration Guide for your platform.

2 Use the alter connection command to set the function class for the
connection.

For example, to enable the translations for rs_db2_function_class, enter
this command from the replicate Replication Server:

alter connection to db2_gateway1.db2_subsystem1
set error class to ansi_error
set function string class to rs_db2_function_class
...

Translating datatypes using HDS

322 Replication Server

3 Suspend and then resume the connection to activate the translations.

Note If you already have a DB2 database configured as a replicate database
with an earlier version of Replication Server, continue to use the earlier version
with Replication Server 12.0 and later and its HDS feature. The 12.0 and later
function strings may not be compatible with earlier function string versions.

System-defined variables

Class-level translations change the datatype of system-defined variables as
well as column values.

For example, if a class-level translation changes datetime to rs_db2_timestamp,
the rs_origin_begin_time system-defined variable, which is datetime, is
translated to rs_db2_timestamp for that connection.

Creating column-level translations
Column-level translations affect each replicated instance of a particular
column (datatype) and table. They are defined using the create replication
definition or alter replication definition command.

To set up column-level translations, you simply create or alter the replication
definition, identifying the column to be translated and its initial and final
datatypes using the map to option.

• If you are creating a new replication definition, use create replication
definition.

For lists of supported datatype translations, see the Heterogeneous
Replication Guide.

• If you are adding or altering a column in an existing table, use alter
replication definition.

Sybase provides a set of datatype definitions and datatype classes that you can
use to modify the datatype of the replicated columns. Each datatype class
contains datatype definitions for a particular data server:

• Adaptive Server – rs_sqlserver_dt_class

• DB2 – rs_db2_dt_class

• Microsoft SQL Server – rs_msss_dt_class

CHAPTER 9 Managing Replicated Tables

Administration Guide 323

• Oracle – rs_oracle_dt_class

• UDB – rs_udb_dt_class

Datatype classes are not replicated and cannot be modified. Column-level
translations are implemented after subscription resolution and before class-
level translations. See “Using class-level and column-level translations
together” on page 326 for more information.

You can activate a column-level translation for a particular column when you
create or alter a table replication definition. The syntax for create replication
definition with column and datatype variables specified for HDS is:

create replication definition replication_definition
with primary at data_server.database
...
(column_name [as replicate_column_name]
declared_datatype [null | not null]
[map to published_datatype])
...

where:

• The declared datatype depends on the datatype of the value delivered to
the Replication Server from the Replication Agent:

• If the Replication Agent delivers a native Replication Server datatype,
such as datetime, to the Replication Server, the declared datatype is
the native datatype.

• Otherwise, the declared datatype must be the datatype definition for
the original datatype at the primary database.

For example, the Replication Agent delivers a value in the DB2
TIMESTAMP datatype, as a character string with delimiters, to
Replication Server. In this case, the declared datatype is the datatype
definition rs_db2_timestamp. See Table 9-4, Table 9-5, and Table 9-5
for a list of datatype definitions and their datatype equivalents.

• The published datatype is the datatype of the column after the column-
level translation (and before a class-level translation, if any). The
published datatype is normally either a Replication Server native datatype
or a datatype definition for the datatype in the replicate database. If the
published datatype is omitted from the replication definition, it defaults to
the declared datatype.

Translating datatypes using HDS

324 Replication Server

Both declared and published datatypes have a base datatype. For example, the
datatype rs_db2_timestamp has a base datatype of char(26); the native datatype
char(26) also has a base datatype of char(26). A datatype definition describes a
non-Sybase datatype in terms of a Replication Server native datatype. The base
datatype fixes the maximum and minimum length to be associated with the
datatype definition and provides defaults for other datatype attributes. The base
datatype defines the delimitation of values for the datatype definition when a
value of that type is delivered to Replication Server either in Log Transfer
Language (LTL) or in a command executed by a Replication Server
administrator such as create subscription.

Note Native datatypes include all datatypes supported by Replication Server.
However, you cannot use text, unitext, image, rawobject, and rawobject in row
datatypes for defining a datatype definition; neither can you use these datatypes
as the source or target of a translation.

For example, to create a table replication definition
ase_employee_repdef_for_db2 that translates values in the birthdate column
from datetime (birthdate’s primary table datatype) to DB2 DATE datatype for
the replicate database, log in to the primary Replication Server and enter:

create replication definition
ase_employee_repdef_for_db2

with primary at ase_server.ase_database
with all tables named ‘employee’
(empid int,
first_name char(20),
last_name char(20),
...
birthdate datetime map to rs_db2_date,
salary money,
...

In this example, birthdate is the column name, datetime is the declared datatype,
and rs_db2_date is the published datatype. Because the declared datatype is a
native datatype, the native and base datatype are the same. That is, the base
datatype of datetime is datetime. The published datatype rs_db2_date is a
datatype definition for DB2, and its base datatype is char(10).

How datatype definitions work

Datatype definitions allow you to translate from one datatype to another
without losing valuable information.

CHAPTER 9 Managing Replicated Tables

Administration Guide 325

When used as the declared datatype, a datatype definition provides the
mechanism for capturing both the literal value and its datatype attributes—
such as delimiters, range information, precision, scale, length, and maximum
and minimum values—and translating them into a native datatype format that
Replication Server can process.

When used as a published datatype, a datatype definition takes the value in
Replication Server native datatype format, including its attribute information,
and translates that information into a datatype format acceptable to another
database, retaining as much information as the published datatype can
accommodate.

When data definitions are used for both the declared and published datatypes,
both translations take place.

The following tables list the available datatype definitions for each supported
non-Sybase datatype.

Note Microsoft SQL Server does not directly support the new unsigned integer
types in 15.0 and requires to use a map to clause in their replication definitions.

Table 9-4 lists the supported DB2 datatypes and their datatype definition
equivalents.

Table 9-4: Datatype definitions for DB2 datatypes

Table 9-5 lists supported Oracle datatypes and their datatype definition
equivalent.

DB2 datatype Datatype definition

CHAR FOR BIT DATA rs_db2_char_for_bit

DATE rs_db2_date

TIME rs_db2_time

TIMESTAMP rs_db2_timestamp

VARCHAR FOR BIT DATA rs_db2_varchar_for_bit

TINYINT rs_db2_tinyint

DECIMAL rs_db2_decimal

NUMERIC rs_db2_numeric

Translating datatypes using HDS

326 Replication Server

Table 9-5: Datatype definitions for Oracle datatypes

Column-level translations and multiple replication definitions

In general, a column declared in multiple replication definitions must use the
same declared datatype in each replication definition—although published
datatypes can differ.

rawobject and rawobject in row (Java) columns declared in multiple replication
definitions, however, can use either the rawobject (or rawobject in row) datatype
or its base datatype for the declared datatype. For example, you can use
rawobject and image or rawobject in row and varbinary in multiple replication
definitions for the same Java column. See Java in Adaptive Server Enterprise
for detailed information about Java columns in Adaptive Server.

Using class-level and column-level translations together
If you activate class- and column-level datatype translations for the same
column, both are applied. Column-level translations are performed after
subscription resolution and before class-level translations, just prior to delivery
to the replicate database.

This order of execution ensures that column-level translations supersede class-
level translations. That is, translations for a particular connection (class-level
translations) do not affect translations defined for a particular table and column
(column-level translations).

Oracle datatype Datatype definition

RAW rs_oracle_binary

DATE rs_oracle_date

DATE (with time) rs_oracle_datetime

NUMBER (INTEGER) rs_oracle_int

NUMBER (FLOAT) rs_oracle_float

NUMBER (DECIMAL) rs_oracle_decimal

CHAPTER 9 Managing Replicated Tables

Administration Guide 327

Verifying translations
You can verify how translations alter values before you set up column- or class-
level translations. Use the admin translate command to view the results of a
particular translation. admin translate accepts a value and a source and target
datatype and returns the target value. It is most useful with the diagnostic
version of Replication Server, which, if the translation fails, allows you to trace
the reason for the failure.

The syntax is:

admin translate, value, source_datatype, target_datatype

where:

• value is the literal representation of the value being translated—including
delimiters as required by the base datatype of the source datatype.

• source_datatype is the datatype definition or datatype for the value you
want to translate.

• target_datatype is the datatype definition or datatype for the value after
translation.

If the base datatype of either the source or target datatype requires a length
specification, such as char(26), enclose the datatype name in quotes.

For example, to verify the translation of a date from db2_date to datetime, log
in to Replication Server and enter:

admin translate, ’04/29/1989’, db2_date, datetime

In this example, value is the character string “04/29/1989,” and you must
enclose it in single quotes. Refer to the Replication Server Reference Manual
for a complete description of admin translate and further examples.

Translating datatypes using HDS

328 Replication Server

Administration Guide 329

C H A P T E R 1 0 Managing Replicated Functions

This chapter describes how to replicate the execution of a stored
procedure from the source database to the destination database using
replicated functions.

When you use function replication, Replication Server replicates the
execution of a stored procedure to the destination database. That is, when
a stored procedure is executed at the source database, the replication
server invokes the execution of another stored procedure at the destination
database. The two stored procedures need not have the same name nor
perform the same tasks.

Refer to the Replication Server Design Guide for information about
replication system design issues that concern replicated stored procedures.

This chapter covers the distribution of stored procedures via function
replication definitions. The distribution of stored procedures associated
with table replication definitions is described in Appendix A,
“Asynchronous Procedures,” in the Replication Server Administration
Guide Volume 2. The request function distribution with version earlier
than 15.1 without subscription is described in Appendix C, “Pre-15.1
Request Function Replication” in the Replication Server Administration
Guide Volume 2.

You identify the stored procedure at the source and the information that is
to be passed to the destination by creating a function replication definition,
which specifies:

Topic Page
Prerequisites and restrictions 330

Using replicated functions 334

Implementing an applied function 337

Implementing a request function 340

Marking stored procedures for replication 344

Subscribing to replicated functions 345

Modifying or dropping replicated functions 345

Using publications for stored procedures 349

Prerequisites and restrictions

330 Replication Server

• The names of the stored procedures at the source and destination databases
(if they are different)

• The datatypes and parameters that are to be passed to the destination stored
procedure

To satisfy the requirements of distributed applications, Replication Server
provides two ways to implement replicate functions. Use:

• An applied function to deliver a transaction to a replicate database by the
maintenance user. See “Applied functions” on page 335 for more
information.

• A request function to deliver a transaction to a replicate database by the
same user who invokes the stored procedure at the primary database. See
“Request functions” on page 336 for more information.

The maint_user runs the transaction at the replicate database if the function is
replicated through applied function replication definition. The origin_user runs the
transaction if the function is replicated through request function replication
definition at the replicate database.

Prerequisites and restrictions
Before you implement applied or request functions in your replication system,
be sure that you have met the prerequisites discussed below, and that you
understand the restrictions on the use of replicated stored procedures.

Replicated function prerequisites
• Understand how you will use applied or request functions to meet your

application needs. Refer to the Replication Server Design Guide for more
information.

• Set up a RepAgent at the primary Replication Server. See Chapter 4,
“Managing a Replication System”and the Replication Server
Configuration Guide for details.

• Set up routes from the primary Replication Server to the replicate
Replication Server. See Chapter 6, “Managing Routes” to learn how to set
up routes.

CHAPTER 10 Managing Replicated Functions

Administration Guide 331

• Replicated functions can be used with applications that involve
fragmented primary data. To do this, create a function replication
definition and a stored procedure for each primary fragment. Refer to the
Replication Server Design Guide for more information about working
with fragmented primary data.

In general, the information in this chapter assumes Replication Server
basic primary copy model, where a single source database distributes data
to one or more destination databases. Refer to “Replication Server basic
primary copy model” on page 6 for a detailed description of this model.

Replicated function restrictions
• The names of all replication definitions, including function replication

definitions, must be unique in the replication system.

• When you create an applied function replication definition for a primary
function in your replication system, make sure that the function does not
have an existing function replication definition that satisfies both these
conditions:

• The function replication definition is created using the create function
replication definition command.

• The function replication definition is used for the request function
replication without subscription in Replication Server 15.0.1 and
earlier version.

Otherwise, the existing request function replication will be disabled. See
Appendix C, “Pre-15.1 Request Function Replication” for more
information in the Replication Server Administration Guide Volume 2.

• Replication Server does not support nested transactions—those containing
begin or commit statements—within replicated stored procedures.

If stored procedures with nested stored procedures are marked for
replication:

• The RepAgent forwards only the outer stored procedure call to the
Replication Server.

• The RepAgent shuts down.

• An error message appears in the Adaptive Server error log.

Prerequisites and restrictions

332 Replication Server

When the maint_user or the replicate database replicates a stored
procedure, using sp_setrepproc or sp_setreplicate, Adaptive Server always
executes the stored procedure within a transaction. Even if you have not
explicitly executed the replicated stored procedure within a transaction at
the primary database, Adaptive Server places an implicit begin transaction
at the start of the procedure when it is applied by the maint_user in the
replicate database.

For more information, see dsi_max_xacts_in_group, in “Connection
parameters that affect performance” in the Replication Server
Administration Guide Volume 2. If the replicated stored procedure
contains such commands as begin transaction, commit transaction, or
rollback transaction, errors may result when you execute the procedure. For
example, a rollback transaction command might roll back to the start of the
transaction group, rather than to the nested begin transaction command that
was the intended rollback point.

• Replicated functions, like Adaptive Server stored procedures, cannot
contain parameters with text and image datatypes. Refer to the Adaptive
Server Enterprise Reference Manual.

• Adaptive Server logs a replicated stored procedure invocation in the
database in which the enclosing transaction was started:

• If the user does not begin a transaction explicitly, Adaptive Server
begins one in the user’s current database before the stored procedure
is invoked.

• If the user begins the transaction in one database and then executes a
replicated stored procedure in another database, the execution is still
logged in the database where the transaction began.

• If a single transaction invokes one or more request functions and executes
applied functions or contains data modification language, or a mixed-
mode transaction, Replication Server processes the request functions after
all the other operations have completed, together in a separate transaction.

• When you use replicated functions and heterogeneous datatype
translations:

• You cannot alter the datatype of a parameter value using create
applied/request function replication definition or alter applied/request
function replication definition. However, you can use datatype
definitions to declare parameters for applied function replication
definitions, which are then subject to class-level translations.

CHAPTER 10 Managing Replicated Functions

Administration Guide 333

• Replication Server does not perform translations on parameter values
for request functions. However, during function-string mapping, the
delimiters defined for the parameter values of their declared datatype
are used to generate the SQL.

 Warning! Do not put a commit statement inside a replicated function as
this may cause a duplicate key and make Replication Server recovery fail.

Commands for managing function replication definitions
Table 10-1 lists the Replication Server commands used to work with function
replication definitions.

Table 10-1: Commands for managing function replication definitions

Command Task

drop function
replication
definition

Removes a function replication definition from the replication system. You must drop all
subscriptions for a function replication definition before you can drop the replication definition.
See “Modifying or dropping replicated functions” on page 345.

create applied
replication
definition

Creates an applied function replication definition that describes the stored procedure and its
parameters, for both the primary and replicate databases. It also describes the location of the
primary data. The maint_user applies the applied function at the replicate site.
See “Implementing an applied function” on page 337.

create request
replication
definition

Creates a request function replication definition that describes the stored procedure and its
parameters, for both the primary and replicate databases. It also describes the location of the
primary data. The same user running the stored procedure at the primary site applies the request
function at the replicate site.

alter applied
replication
definition

Modifies an applied function replication definition, which is created with create applied
function replication defintion command. For example, it:

• Specifies a different name for the primary stored procedure invoked at the source database.

• Specifies a different name for the stored procedure invoked at the destination database.

• Adds parameters or searchable parameters.

• Changes how the replication definition is used in replicating to a standby database.

See “Modifying or dropping replicated functions” on page 345

If parameters are added, the change applies to all applied function replication definition created
for this primary function.

Using replicated functions

334 Replication Server

Also, see Table 9-1 on page 249 and Table 11-3 on page 370.

Using replicated functions
A replicated stored procedure is an Adaptive Server stored procedure that
you have marked for replication using either sp_setrepproc or sp_setreplicate.

A function replication definition describes the primary and the replicated
stored procedure, its parameters, and its location. You can use these three
commands to create a function replication definition:

• create applied function replication definition

• create request function replication definition

• create function replication definition (deprecated)

alter request
replication
definition

Modifies a request function replication definition, which is created with create request function
replication definition command. For example, it:

• Specifies a different name for the primary stored procedure invoked at the source database.

• Specifies a different name for the stored procedure invoked at the destination database.

• Adds parameters or searchable parameters.

• Changes how the replication definition is used in replicating to a standby database.

See “Modifying or dropping replicated functions” on page 345

If parameters are added, the change applies to all request function replication definitions created
for this primary function.

create function
replication
definition

Creates a function replication definition that describes the stored procedure, and its parameters,
for replication. It also describes the location of the primary data. This command is deprecated
and is replaced by create applied function replication definition and create request function
replication definition commands
See “Implementing an applied function” on page 337 and “Implementing a request function”
on page 340.

alter function
replication
definition

Modifies a function replication definition. For example, it:

• Specifies a different name for the stored procedure invoked at the destination database

• Adds parameters or searchable parameters

• Changes how the replication definition is used in replicating to a standby database

This command can only be used to modify the function replication definition created with
create function replication definition command. See “Modifying or dropping replicated
functions” on page 345.

Command Task

CHAPTER 10 Managing Replicated Functions

Administration Guide 335

When you create a function replication definition, Replication Server creates a
function, which contains the information in the function replication definition.

When a replicated stored procedure that has its own function replication
definition is invoked, its function is transferred from the source to a destination
Replication Server. In most cases, the replicated stored procedure is invoked at
the primary database and delivered to the replicate database. The only
exception is the request function replication with a version earlier than 15.1
without subscription and with such replication definition, where the stored
procedure is invoked at the replicate database and delivered to the primary
database. In all cases, the primary Replication Server is always the Replication
Server where the replication definition is created. This Replication Server
controls the primary database. See Appendix C, “Pre-15.1 Request Function
Replication” in the Replication Server Administration Guide Volume 2.

The function passes parameters to the corresponding stored procedure that is,
in turn, invoked in the destination database. A function string translates the
function to a syntax that a subscribing database can interpret. When used
correctly, function replication can dramatically improve performance because
it can encapsulate multiple operations in a single function. Replicated stored
procedures do not have to modify any data in order to be replicated.

Applied functions
Use an applied function to distribute operations performed in a primary
database to replicate databases. Applied functions allow you to realize
important performance benefits. For example, if a client application must
update a large number of row changes, you can create an applied function that
changes many rows, rather than replicating the rows individually.

To use an applied function, you first create a stored procedure in the primary
database and a corresponding stored procedure in the replicate database. Use
sp_setrepproc command to mark the stored procedure to be replicated. At the
primary Replication Server, you create an applied function replication
definition for the stored procedure. Replicate Replication Servers can
subscribe to the function replication definition. When the stored procedure in
the primary database is invoked, the replicate Replication Server in turn
executes the stored procedure in the subscribing replicate database.

Replication Server does not know in advance what data is needed by the stored
procedure at the replicate databases until the execution of the stored procedure
is subscribed, thus you must use bulk materialization or the no-materialization
method when you subscribe to a function replication definition.

Using replicated functions

336 Replication Server

Replication Server executes the stored procedure in the replicate database as
the maintenance user, which is consistent with normal data replication.

See “Implementing an applied function” on page 337 for step-by-step
instructions.

Request functions
Use a request function to deliver a replicated stored procedure from a primary
database to the replicate database through the original user, the same user who
invokes the stored procedure at the primary database. This type of function
replication is usually used to enable the remote site to make changes to the
central data with the authorized user. For example, a client application at a
remote location needs to make changes to the central data. The client
application first executes a stored procedure at the remote site—a procedure
that may or may not make changes at the remote database. When the stored
procedure executes, the replicate Replication Server passes a request function
to the central site, where a corresponding stored procedure is invoked that
updates the central data. In this example, the remote database is the primary
database, while the central database is the replicate database of this request
function.

With the primary copy model, a single central database contains all the latest
updates. A client application at a remote site can update the central data using
request functions. As updates occur at the central table, Replication Server
captures the updates and sends them to replicate data servers through applied
functions. Execution of stored procedures are stored in the Replication Server
stable queues until they can be delivered to the appropriate databases.

To use a request function, create a stored procedure in the remote database and
a corresponding stored procedure in the central database. Then, create a request
function replication definition at the Replication Server that controls the
remote database. The Replication Server that controls the central database can
subscribe to this request function replication definition.When the stored
procedure in the remote database is invoked, it invokes the stored procedure in
the central database.

The Replication Server that manages the central database executes the stored
procedure in the central database as the user who executed the stored procedure
in the remote database. This guarantees that only authorized users can change
central data.

CHAPTER 10 Managing Replicated Functions

Administration Guide 337

In an application, Replication Server may replicate some or all of the data that
is changed in the central database. The changes are distributed to the remote
databases managed by Replication Servers that have subscriptions to table
replication definitions or as separate applied functions. Either way, the effect
of a transaction arrives at the central and then remote databases.

When you use request functions, all updates are made at the central database.
This preserves Replication Server primary copy data model and protects the
replication system from network failure and excess traffic.

See “Implementing a request function” on page 340 for step-by-step
instructions.

Implementing an applied function
The applied and request function are very similar. The difference is that the
maintenance user executes the applied function at the replicate site, while the
same user who executes the stored procedure at the primary database executes
the request function at the replicate site.

To implement an applied function:

1 Review the requirements described in “Prerequisites and restrictions” on
page 330.

2 Set up replicate databases containing replicate tables that the stored
procedure will modify.

3 In the primary database, create the stored procedure. The stored procedure
may or may not modify primary data. For example, this stored procedure
uses the @pub_name parameter to update the pub_name column of the
publishers table:

create proc update_pubs
@pub_id char(4), @pub_name varchar(40),
as
update publishers
set pub_name = @pub_name
where pub_id = @pub_id

4 In the primary database, mark the stored procedure for replicated function
delivery, using the sp_setrepproc system procedure. For example:

sp_setrepproc update_pubs, 'function'

Implementing an applied function

338 Replication Server

See “Marking stored procedures for replication” on page 344 for details.

5 In the replicate database, create a stored procedure with the same
parameters and datatypes as the stored procedure in the primary database.
Typically, the two stored procedures perform the same operations. For
example:

create proc update_pubs
pub_id char(4), @pub_name varchar(40),
as
update publishers
set pub_name = @pub_name
where pub_id = @pub_id

Note The stored procedure created in the replicate database does not have
to have the same name, but must have the same parameter name and
datatype.

 Warning! A stored procedure invoked in a replicate database in applied
function delivery is invoked inside a user-defined transaction. See the
Adaptive Server Enterprise Transact-SQL User’s Guide for information
about operations that are not allowed inside user-defined transactions (for
example, the dump transaction and dump database commands).

Do not mark this stored procedure as replicated. In applied function
delivery, only the stored procedure in the primary database is marked as
replicated.

However, if the replicate database modifies a standby database, mark the
stored procedure in the active and standby replicate databases as replicated
if you want to use stored procedure replication to the standby.

6 In the replicate database, grant execute permission on the stored procedure
to the maintenance user. For example:

grant execute on update_pubs to maint_user

7 In the primary Replication Server, create an applied function replication
definition for the stored procedure. For example:

create applied function replication definition
update_pubs_rep
with primary at TOKYO_DS.pubs2
with all functions named update_pubs
(@pub_id char(4), @pub_name varchar(40),
@state char (2))

CHAPTER 10 Managing Replicated Functions

Administration Guide 339

searchable parameters (@pub_name, @state)

The function replication definition must use the same parameter names
and datatypes as the stored procedure in the primary database. You have
the option to include only the parameters you want to replicate. If the
function replication definition has 0 parameters, you must still include the
parentheses for this clause.

If you specify searchable parameters, you can subscribe to function
invocations based on the value of the function’s parameters. In the
preceding example, @pub_name and @state are searchable parameters.
Thus, for example, they can subscribe only to “CA” updates.

If you want to replicate the Adaptive Server timestamp datatype, declare
the datatype binary(8) in the function replication definition.

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for more information about create applied
function replication definition command.

See “Modifying or dropping replicated functions” on page 345 for
information about changing function replication definitions.

8 When you create a function replication definition, Replication Server
automatically creates a corresponding function in the default function-
string class. See “User-defined functions” on page 14 in the Replication
Server Administration Guide Volume 2 for more information.

If you are not using a default function-string class or a class inherited from
the default or if you want to customize the function’s invocation, you need
to create a function string for the user-defined function. See “Creating or
modifying a function string for a replicated function” on page 348 for
more information.

9 In the replicate Replication Server, create a subscription to the function
replication definition, using create subscription and the no-materialization
method or define subscription and the other bulk materialization
commands.

Note You must use the no-materialization method or bulk
materialization—instead of atomic or nonatomic materialization—
because Replication Server cannot determine in advance what data is
needed for the stored procedure at the replicate site.

For example:

create subscription pubs_sub

Implementing a request function

340 Replication Server

for update_pubs_rep
with replicate at SYDNEY_DS.pubs2
where @state = 'CA'
without materialization

If you specified searchable parameters in the function replication
definition, you can subscribe to function invocations based on the value of
the function’s parameters. In this example, the subscription only receives
rows if the value of the @state parameter is equal to CA.

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for more information about create subscription
command. See also “Using create subscription for no materialization” on
page 376.

10 Verify that all Replication Server and database objects in steps 1 through
9 exist at the appropriate locations. You should now be able to execute the
applied function.

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for information about stored
procedures, such as rs_helpfunc, that you can use to query the RSSD for
information about the replication system.

Implementing a request function
The applied and request function are very similar. The difference is that the
maintenance user executes the applied function at the replicate site and the
same user who executes the stored procedure at the primary database executes
the request function at the replicate site.

To implement a request function:

1 Review the requirements described in “Prerequisites and restrictions” on
page 330.

2 In the replicate Adaptive Server, create a login name and password for the
user who will execute the stored procedure at the replicate Adaptive
Server.

See Chapter 8, “Managing Replication Server Security” for details.

3 In the replicate database, create a replicate stored procedure that updates
the real data. For example:

CHAPTER 10 Managing Replicated Functions

Administration Guide 341

create proc update_pubs
@pub_id char(4), @pub_name varchar(40)
as
update publishers
set pub_name = @pub_name
where pub_id = @pub_id

 Warning! A stored procedure invoked in request function delivery is
invoked inside a user-defined transaction. See the Adaptive Server
Enterprise Transact-SQL User’s Guide for information about operations
that are not allowed inside user-defined transactions (for example, the
dump transaction and dump database commands).

Do not mark this stored procedure as replicated; however, if this database
is also part of a warm standby application, then mark the stored procedure
in the active database as replicated if you want to replicate stored
procedures to the standby database.

4 In the replicate database, grant execute permission on the stored procedure
to the same user for whom you created a login name and password in step
2. When the request function is replicated in the replicate database, this
user executes it. For example:

grant execute on update_pubs to pubs_user

5 In the primary database, create a request primary stored procedure with the
different name, but the same parameters and datatypes as the stored
procedure in the replicate database. The new stored procedure should
either do nothing or should display a message to indicate a pending update.
Typically, the purpose of this stored procedure is to send a request to other
databases, instead of performing any data changes on its own database.
For example:

create proc update_pubs_request
@pub_id char(4), @pub_name varchar(40)
as

Implementing a request function

342 Replication Server

print "Transaction accepted."

Note Use a different name for the stored procedure you create in the
replicate and primary databases. In the typical applications, the function
will replicate back to the primary database later as an applied function.
When you create the request function replication definition in step 8, you
must specify the name of the stored procedure in the primary and replicate
databases.

6 In the primary database, mark the stored procedure for replicated function
delivery using the sp_setrepproc system procedure. For example:

sp_setrepproc update_pubs_request, 'function'

See “Marking stored procedures for replication” on page 344 for details.

7 In the primary database, grant execute permission on the stored procedure
to the primary Replication Server user who will invoke it. For example:

grant execute on update_pubs_request to pubs_user

8 In the primary Replication Server, which manages the request primary
stored procedure, create a request function replication definition for this
stored procedure. For example:

create request function replication definition
update_pubs_request_rep

with primary at TOKYO_DS.pubs2
with primary function named update_pubs_request
with replicate function named update_pubs
(@pub_id char(4), @pub_name varchar(40)),
@state char (2))
searchable parameters (@state)

The request function replication definition must use the same parameter
names and datatypes as the stored procedure in the replicate database. You
have the option to include only the parameters you want to replicate.

See Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about create request function
replication definition command.

9 When you create a function replication definition, Replication Server
automatically creates a corresponding user-defined function.

CHAPTER 10 Managing Replicated Functions

Administration Guide 343

If you are not using a default function string or wish to customize the
function’s invocation, you need to create a function string for the user-
defined function. See “Creating or modifying a function string for a
replicated function” on page 348 for more information.

10 In the replicate Replication Server, create a subscription to the request
function replication definition, using create subscription and the no
materialization method or define subscription and the other bulk
materialization commands. For example:

create subscription pubs_sub
for update_pubs_request_rep
with replicate at SYDNEY_DS.pubs2
where @state = ‘CA’
without materialization

If you specified searchable parameters in the function replication
definition, you can subscribe to function invocations based on the value of
the function’s parameters. In this example, the subscription only receives
rows if the value of the @state parameter is equal to “CA”.

See Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about create subscription
command. See also “Using create subscription for no materialization” on
page 376.

Note You must use the no-materialization method or bulk materialization,
instead of atomic or nonatomic materialization because the Replication
Server cannot determine in advance what data is needed for the stored
procedure at the replicate site.

11 Verify that all Replication Server and database objects in steps 1 through
10 exist at the appropriate locations. You should now be able to execute
the request function at the primary database.

Refer to Chapter 6, “Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for information about stored
procedures, such as rs_helpfunc, that you can use to query the RSSD for
information about the replication system.

Marking stored procedures for replication

344 Replication Server

Marking stored procedures for replication
The system procedure sp_setrepproc is used to mark stored procedures for
replication. The syntax is:

sp_setrepproc [proc_name [, {'false' | 'table' | {'function' [, {‘log_current’ |
‘log_sproc’}] } }]]

where:

proc_name – the name of a stored procedure in the current database.

'function' – enables replication for a stored procedure associated with a function
replication definition.

'table' – enables replication for a stored procedure associated with a table
replication definition. For information on replicating stored procedures
associated with table replication definitions, see Appendix A, “Asynchronous
Procedures,” in the Replication Server Administration Guide Volume 2.

'false' – disables replication for the stored procedure.

‘log_current’ – logs the execution of the stored procedure you are replicating in
the current database, not in the database where the stored procedure resides.

‘log_sproc’ – logs the execution of the stored procedure you are replicating in
the database where the stored procedure resides, not in the current database.
‘log_sproc’ is the default parameter.

Use sp_setrepproc according to these guidelines:

• To list all replicated objects in the database, enter sp_setrepproc with no
parameters.

• To determine the replication status of the stored procedure, enter
sp_setrepproc with the stored procedure name only.

• Enter sp_setrepproc with the stored procedure name and 'function', 'table',
or 'false' to enable each type of replication or to disable replication for the
stored procedure. You must be the System Administrator or the Database
Owner to use sp_setrepproc to change the replication status of a stored
procedure.

• To log the execution of a replicated stored procedure in the database you
choose, enter sp_setrepproc with ‘log_current’, to log execution in the
current database, or ‘log_sproc’, to log execution in the database where the
stored procedure resides.

For either applied or request function replication, specify 'function' to indicate
the type of replication definition associated with the stored procedure.

CHAPTER 10 Managing Replicated Functions

Administration Guide 345

For more information on sp_setrepproc, see the Replication Server Reference
Manual.

Subscribing to replicated functions
You must create subscriptions to function replication definitions for either
applied or request functions using create subscription and the no-
materialization method or define subscription and the other commands for bulk
materialization: activate subscription, validate subscription, and check
subscription.

The only exception is the function replication definitions with versions earlier
than 15.1 used for request functions without subscription. See Appendix C,
“Pre-15.1 Request Function Replication” for information.

If you specified searchable parameters in the function replication definition,
you can subscribe to a function based on the value of its parameters.

You drop subscriptions to function replication definitions using drop
subscription. They are dropped without purging the replicate data associated
with the function. You do not need to specify the without purge option.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual, and related commands, for the full syntax for bulk
materialization commands. Also see “Bulk materialization” on page 357.

Modifying or dropping replicated functions
This section explains how to modify or drop replicated functions.

Before modifying a function replication definition
1 Change the stored procedure at the primary or replicate data server and

provide defaults for new parameters, if necessary.

2 As a precaution, quiesce the system. Altering functions while updates are
in process can have unpredictable results.

Modifying or dropping replicated functions

346 Replication Server

See Chapter 4, “Managing a Replication System” for information on how
to quiesce the system.

Altering a function replication definition
1 Quiesce the replication system using the Sybase Central Replication

Manager plug-in or the procedure described in the Replication Server
Troubleshooting Guide.

Quiesce first the primary updates and ensure that all primary updates have
been processed by the replication system. If you are unable to do that, then
the old updates in the primary log will not have values for new parameters,
and the replication system will use nulls. Take this into account when
altering function strings in step 4.

2 Alter the stored procedure at the primary and the replicate sites.

3 Alter the function replication definition. Wait for the modified function
replication definition to arrive at the replicate sites.

4 Alter any function strings pertaining to the function replication definition,
if necessary. Wait for the modified function strings to arrive at the replicate
sites.

5 Modify subscriptions on the function replication definition at replicate
sites, if necessary. To modify a subscription, drop and re-create it using
drop subscription and create subscription (with no materialization option).

Altering a request or applied replication definition does not affect current
subscriptions. If new parameters are added to the function replication
definition, they are replicated with any new updates for all existing
subscriptions.

6 Resume updates to the data at the primary database.

Modifying a function replication definition
To add new parameters, add new searchable parameters, or change the name of
the destination stored procedure, use alter applied function replication definition
and alter request function replication definition commands to alter the function
replication definition. The syntax for this command is:

alter applied function replication definition function_applied_rep_def
{with replicate function named ‘proc_name‘ |

CHAPTER 10 Managing Replicated Functions

Administration Guide 347

add @param_name datatype[, @param_name datatype]... |
add searchable parameters @param_name[, @param_name]... |
send standby {all | replication definition} parameters}

alter request function replication definition function_request_rep_def
{with replicate function named ‘proc_name‘ |
add @param_name datatype[, @param_name datatype]... |
add searchable parameters @param_name[, @param_name]... |
send standby {all | replication definition} parameters}

These two commands are used to change the function replication definitions
created by create applied function replication definition and create request
function replication definition command respectively. See Chapter 3,
“Replication Server Commands,” in the Replication Server Reference Manual
for more information about alter applied function replication definition and alter
request function replication definition commands.

See Appendix C “Pre-15.1 Request Function Replication” in the Replication
Server Administration Guide Volume 2 for information on modifying pre-15.1
function replication definition.

See “Creating or modifying a function string for a replicated function” on
page 348 for information about function strings for function replication
definitions.

To add new searchable parameters to the where clause of a define subscription
command, drop and re-create the subscription for the function replication
definition. For more information about subscribing to function replication
definitions, see “Implementing an applied function” on page 337 and
“Implementing a request function” on page 340.

Dropping a function replication definition
To change or remove parameters, or to rename a function replication definition,
use the drop function replication definition command to drop it. Then re-create it.
The syntax for this command is:

drop function replication definition function_rep_def

When you drop a function replication definition, the associated user-defined
function and function string are also dropped. Subscriptions to a function
replication definition must be dropped first. You can re-create the subscriptions
after you re-create the function replication definition.

Modifying or dropping replicated functions

348 Replication Server

Creating or modifying a function string for
a replicated function

When you create or alter a function replication definition, Replication Server
automatically creates or alters the corresponding user-defined function. You
must, however, create a function string for the user-defined function if you are
not using a class that inherits function strings from rs_default_function_class,
either directly or indirectly.

See “User-defined functions” on page 14 in the Replication Server
Administration Guide Volume 2 for more information.

Create a function string for a user-defined function in the function-string class
assigned to the destination database for the replicated function. Use create
function string at the primary Replication Server to create a function string for
a user-defined function.

See “Function strings and function-string classes” on page 33 in the
Replication Server Administration Guide Volume 2 for more information.

When you drop a function replication definition, Replication Server always
drops the user-defined function and function strings.

You can customize function strings in function-string classes that allow it. In a
typical application, the replicated user-defined function passes stored
procedure parameter values to the destination Replication Server, and the
function string executes the stored procedure with these values in the
destination database.

To change the default function string to perform some other action, such as
inserting data into an audit log, use the alter function string command at the
primary Replication Server for the replicated function. The function-string
class assigned to the destination database for the replicated function must allow
you to customize function strings.

See Chapter 2, “Customizing Database Operations” in the Replication Server
Administration Guide Volume 2 for information on creating and altering
function strings. Also refer to Chapter 3, “Replication Server Commands,” in
the Replication Server Reference Manual, for more information about create
function string command.

CHAPTER 10 Managing Replicated Functions

Administration Guide 349

Using publications for stored procedures
You can use publications to select stored procedures and/or tables, along with
their replication definitions, and subscribe to all of them as a group.
Publications let you organize your replication definitions and subscriptions and
then monitor their status with a single command.

Refer to “Using publications” on page 308 for procedures for creating and
managing publications. Refer to “Using publication subscriptions” on page
395 for procedures for creating and managing publication subscriptions.

Using publications for stored procedures

350 Replication Server

Administration Guide 351

C H A P T E R 1 1 Managing Subscriptions

This chapter describes setting up and managing subscriptions for
replicated data.

Overview
Subscriptions resemble SQL select statements. They identify the
replication definition or publication to which you are subscribing, the
source and destination databases and data servers, and the
materialization method by which the initial information is to be copied.
You can use a where clause to specify a subset of rows or parameters that
the destination database receives from the source database. This chapter
describes how to materialize subscription data and manage subscriptions.

Topic Page
Overview 351

Subscription materialization methods 353

Dematerialization processing 365

Monitoring materialization and dematerialization 366

Before you create subscriptions 368

Using subscription commands 370

Subscription example 382

Materializing text, unitext, image, and rawobject data 386

Subscriptions for columns with heterogeneous datatypes 387

Bitmap subscriptions 388

Obtaining subscription information 390

Using publication subscriptions 395

Overview

352 Replication Server

Materialization is the process of copying data specified by a subscription from
a primary database to a replicate database, thereby initializing the replicate
table. Replicate data can be transferred over a network, or, for subscriptions
involving large amounts of data, loaded initially from media. Initialization
from media is called bulk materialization. You use one of four materialization
methods, depending on how you want materialization to affect the replication
system. See “Subscription materialization methods” on page 353 for more
information.

Subscriptions for database replication definitions instruct Replication Server to
replicate database objects from the primary to the replicate database. You can
choose to replicate or not replicate individual tables, transactions, functions,
system stored procedures, and data definition language (DDL). This method
requires only a single database replication definition for each primary database
and a single subscription for each subscribing database. See Chapter 12,
“Managing Replicated Objects Using Multisite Availability,” for detailed
information about database replication definitions and database subscriptions.

Subscriptions for table replication definitions instruct Replication Server to
replicate data from primary tables into specified replicate tables. After you
have created a replication definition for a primary table, replicate sites must
subscribe to the replication definition at the primary database to receive
updates.

Subscriptions for function replication definitions require you to use the no-
materialization or the bulk materialization methods. See “No materialization”
on page 357 and “Bulk materialization” on page 357. See also Chapter 10,
“Managing Replicated Functions” for information about replicated functions.

You can subscribe to a group of replication definition articles by subscribing to
a publication. Publication subscriptions cannot contain where clauses. To
subscribe to a subset of rows in an article, you must include a where clause
when you create the article. See “Using publication subscriptions” on page
395 for information about subscribing to publications.

You create subscriptions at the Replication Server managing the database
where the replicate data is to be maintained. Your previously created
replication definition provides the location of the primary data and defines the
structure of the primary table and optionally, of the replicate table, where they
differ.

CHAPTER 11 Managing Subscriptions

Administration Guide 353

Subscription materialization methods
Materializing a subscription copies the requested data from the primary
database to the replicate database, thereby initializing the replicate table.
Subscriptions are added to the rs_subscriptions system table for both the
primary and the replicate Replication Server. The materialization method you
select determines how you create subscriptions.

Because a subscription can replicate a large set of rows, materialization can
burden the network or impede applications that use the primary or replicate
data. Replication Server offers four methods for creating subscriptions, so you
can regulate the effects of materialization on the replication system.

Table 11-1 summarizes the materialization methods you can use to create
subscriptions, including commands required for the process.

Table 11-1: Subscription materialization methods

Method Description

Atomic materialization
(default)

This method, invoked using the default form of the create subscription command, copies
subscription data through the network in a single atomic operation. Replication Server
executes the rs_select_with_lock function to retrieve the primary data.
This method provides complete consistency throughout the materialization process, but
may temporarily obstruct transactions using the primary or replicate data. Do not use this
method for large subscriptions if a long-running transaction is unacceptable in the primary
database.

For details, see “Atomic materialization” on page 354.

Nonatomic
materialization

This method, invoked using the create subscription command with the without holdlock
clause, is similar to the atomic method, except that consistency constraints during
materialization are relaxed to allow clients at the primary database to process transactions
during materialization. Replication Server executes the rs_select function to retrieve the
primary data. Subscription data is copied in a series of transactions.
Because users are allowed to update primary data, this method may result in transactional
inconsistency and incomplete data during materialization. When materialization is
complete, all inconsistencies are fully corrected. Autocorrection for the replicate table
must be enabled to resolve inconsistencies.

For details, see “Nonatomic materialization” on page 355.

No materialization This method, invoked using the create subscription command with the without
materialization clause, allows you to create a subscription when the subscription data
already exists at the replicate database.
You can use this method to create subscriptions to table replication definitions, function
replication definitions, and database replication definitions.

For details, see “No materialization” on page 357.

Subscription materialization methods

354 Replication Server

Atomic materialization
Atomic materialization is the default materialization method. It is the easiest
method to execute and maintains complete data consistency throughout the
materialization process.

During atomic materialization, Replication Server logs in to the primary data
server as the user creating the subscription and with the password defined at the
replicate Replication Server. Therefore, the user must be defined at both the
replicate Replication Server and primary database with the same password.
The user also needs the same login name and password as the primary
Replication Server.

Logged in to the primary data server, the Replication Server selects the
subscription rows using a select with holdlock operation specified by the
rs_select_with_lock function. The holdlock performs a repeatable read,
preventing other transactions at the primary site from updating the data until
the select transaction has completed. The rows are transferred to a
materialization queue at the replicate site, where they are applied to the
replicate database. You must provide the stable queue with adequate partition
space to handle the operation.

Atomic materialization is best for smaller subscriptions where the select with
holdlock operation does not last long enough to disturb client applications using
the primary database. If the subscription selects a large number of rows, you
may choose to use nonatomic or bulk materialization, so that clients at the
primary database are not affected.

When data already exists at the replicate database, you can use the no-
materialization method.

Atomic materialization allows changes to the primary table but effectively
delays data server changes until the activation phase of materialization has
completed.

Bulk materialization This method is appropriate when there is too much data to copy through the network. This
is a “manual” materialization method that allows you to load the subscription data from
media such as magnetic tape.

Use this method for subscriptions to database replication definitions and to function
replication definitions when data must be initialized at the replicate database.

The commands used for bulk materialization are define subscription, activate subscription,
and validate subscription. For more details, see “Bulk materialization” on page 357.

Method Description

CHAPTER 11 Managing Subscriptions

Administration Guide 355

Incremental atomic materialization

You can avoid long-running transactions at the replicate database by using the
incrementally option. The incremental option sends materialization data to the
replicate database in a series of transactions, rather than in one large
transaction. Otherwise, incremental and non-incremental atomic
materialization are identical. Subscription data is available but incomplete until
materialization has completed and the subscription is validated.

Rows are removed from the stable queue after they have been successfully
inserted, so less partition space is required. You can truncate the database
transaction log during materialization, if necessary.

Users at the replicate site will see partial subscription data during
materialization, which may invalidate some queries. However, they will have
access to inserted rows sooner, which may be beneficial.

The publishers_rep replication definition presented in Chapter 9, “Managing
Replicated Tables” is used in the following example to create a subscription.
The create subscription command in the example has no where clause, so the
subscription causes Replication Server to replicate all the rows in the
replication definition. The incrementally keyword ensures that the replicate
database transaction log does not become full. Clients at the replicate site can
be suspended or warned that the publishers table is materializing and will
contain incomplete data until the process has completed.

create subscription publishers_sub
for publishers_rep
with replicate at SYDNEY_DS.pubs2
incrementally

Nonatomic materialization
Nonatomic materialization, using the without holdlock option of the create
subscription command, is the same as atomic materialization, except for the
following:

• The data is selected from the primary database without a holdlock. Clients
at the primary site can update the data while the select operation is in
process.

• Transactions are always applied incrementally at the replicate database.

Subscription materialization methods

356 Replication Server

Note If the replicate minimal columns feature is set for the replication
definition, you cannot create new subscriptions using nonatomic
materialization.

In nonatomic materialization, Replication Server inserts rows into the replicate
database incrementally in 10-row transactions. Clients at the replicate site that
are using the table will see partial subscription data during materialization.
This may invalidate some queries. Since the subscription is activated before the
data is copied to the replicate database, primary table changes may be applied
twice to the replicate table in some circumstances. You must enable
autocorrection when you use nonatomic materialization. Autocorrection
ensures that a second application of data does not result in an error. See “Using
autocorrection” on page 356 for details.

Using autocorrection

To enable autocorrection, issue the set autocorrection command with the on
option for each replication definition to which you plan to subscribe using
nonatomic materialization. When using autocorrection, if Replication Server
updates or inserts a row in a primary table, it converts the update or insert into
a delete followed by an insert, so that the update or insert operation cannot fail
because of an existing row.

During nonatomic subscription materialization, Replication Server selects data
without a holdlock. After adding the data to the replicate database, Replication
Server applies replicated commands. If you enable autocorrection, Replication
Server corrects certain temporary inconsistencies that may be caused by
selecting the data using the without holdlock option.

However, if you execute replicated stored procedures that change subscription
data during materialization, autocorrection does not always correct the
replicate database. During function calls, autocorrection does not protect
against inconsistencies.

After a subscription that uses nonatomic materialization has materialized, you
can disable autocorrection for better performance. If you disable
autocorrection, you can also specify minimal column replication. See
“Replicating the minimal set of columns” on page 258 for more information.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about set autocorrection command.

CHAPTER 11 Managing Subscriptions

Administration Guide 357

No materialization
You can use create subscription with the without materialization clause to
activate a subscription when materialization has already occurred. To use this
method:

• The subscription data must already exist at the replicate database

• The primary and replicate tables must be synchronized

• Activity must be stopped on the primary table so that there are no further
updates in the Replication Server stable queues

When creating a subscription with the without materialization clause,
Replication Server logs in to the primary Replication Server as the user
creating the subscription. The user who executes create subscription must have
the same login and password at the primary and replicate Replication Servers.

You can also use create subscription with the without materialization clause to
subscribe to function replication definitions.

Bulk materialization
With bulk materialization, you manually transfer subscription data between
databases. Use bulk materialization when a subscription is too large to copy
through the network. Bulk materialization has very little effect on primary
database clients or on the network.

You can use bulk materialization to create subscriptions for function
replication definitions. See Chapter 10, “Managing Replicated Functions” for
more information about replicated functions.

Bulk materialization uses these commands, which are executed at different
points in the materialization process: define subscription, activate subscription,
validate subscription. Use the check subscription command to check the status of
the subscription.

When you use bulk materialization, you must coordinate:

• The dump to media of the subscription data at the primary site.

• The load from media into the table at the replicate site.

Subscription materialization methods

358 Replication Server

• The application of updates made at the primary site after you make the
media dump.

Note Bulk materialization may require special handling if the primary and
replicate databases differ in, for example, table or column names.

Three bulk-materialization methods are available to ensure data consistency
between the primary and replicate sites. The method you use depends mainly
on whether applications using the primary data can tolerate interruptions.

You can use any of these methods for subscriptions to either table or function
replication definitions. With subscriptions to function replication definitions, it
may not be obvious which replicate tables will be affected by stored replicated
procedures executing in the replicate database.

Before you initiate bulk materialization, you must consider these issues in
relation to the existing data in the replicate database.

Table 11-2 summarizes the three bulk materialization methods.

Table 11-2: Summary of bulk materialization methods

Method Summary of process

Stop updates to the
primary table and
take a snapshot of
the data

Stop all applications from updating the primary data and then retrieve the subscription data
from the primary database with a select statement or database dump.
Define the subscription and activate it with an option that leaves the DSI suspended for the
replicate database. Clients can resume updates to the primary data.
After you load the subscription data into the replicate database, you can resume the DSI and
validate the subscription. For details on this procedure, see “Stop updates at the primary
database and take a snapshot” on page 359.

Simulate atomic
materialization

Allow client applications to continue executing transactions against the primary data while
the subscription data is retrieved. After defining the subscription, you lock the primary data,
retrieve the subscription data, and activate the subscription. The activate subscription
command leaves the DSI for the replicate database suspended.
After you load the subscription data into the replicate database, you can resume the DSI and
validate the subscription. For details on this procedure, see “Simulate atomic materialization”
on page 361.

Simulate
 nonatomic
materialization

This method is the same as simulating atomic materialization, except that you activate the
subscription first, and then retrieve the data from the primary database without locking the
data. Because of this, the data at the replicate database may be inconsistent with the data at
the primary database until the subscription is validated and you are required to enable
autocorrection for the replicate data. For details on this procedure, see “Simulate nonatomic
materialization” on page 363.

CHAPTER 11 Managing Subscriptions

Administration Guide 359

Stop updates at the primary database and take a snapshot

To stop updates at the primary and take a snapshot, you can use either of two
bulk materialization methods:

• Using the Adaptive Server mount command

• Using the Adaptive Server dump and load, select, or bcp command

Use these methods to retrieve data from the primary database if you are able to
suspend updates to the primary data. To maintain consistency, all updates to the
primary database are suspended for the duration of the materialization.

❖ Retrieving data from the primary database using the Adaptive Server
mount command

This procedure uses mount to retrieve data from the primary database. You can
use this method only if you are using Adaptive Server version 12.5.1 or later,
and your primary and replicate databases are identical.

1 Verify that the entire replication system is working. See Chapter 1,
“Verifying and Monitoring Replication Server” in the Replication Server
Administration Guide Volume 2 for details.

2 Suspend updates to the data in the primary database by stopping client
applications that generate transactions against the primary data directly or
indirectly through Replication Servers.

3 Quiesce the replication system components involved with replicating data
from the primary Replication Server to the replicate Replication Server.

Use admin quiesce_for_rsi at the primary and replicate Replication Servers
and any intermediate Replication Servers.

4 Execute the Adaptive Server command quiesce database tag_name hold
db_name list [for external dump] to manifest_file [with override]] to generate
the manifest file. See the Adaptive Server Enterprise Reference Manual
for more information.

5 Take a snapshot of the subscription data from the primary database by
creating a data dump of both the database and log devices. You can create
a data dump using utilities such as tar or zip, or the UNIX dd command.

6 Use mount database to begin loading the snapshot data into the replicate
database.

7 Resolve the mismatch of user information between the master database
and the loaded user database.

Subscription materialization methods

360 Replication Server

8 Use rs_init to add the replicate database to the replication system if it is not
already there.

9 Execute define subscription at the replicate Replication Server.

10 Use check subscription at the primary and at the replicate Replication
Servers to verify that the subscription has been defined. When the
subscription status is DEFINED at both servers, continue to step 11.

11 Execute activate subscription at the replicate Replication Server.

12 Use check subscription at the primary and at the replicate Replication
Server to verify that the subscription has been activated. When the
subscription status is ACTIVE at both servers, continue to step 13.

13 Execute quiesce release to resume updates to the primary data.

14 Execute validate subscription at the replicate Replication Server.

15 Use check subscription at the primary and at the replicate Replication
Server to verify that the subscription is VALID at both servers.

When you have completed this procedure, the subscription is created, the
replicate data is consistent with the primary data, and replication is active.

❖ Retrieving data from the primary database using the Adaptive Server
dump and load, select or bcp commands

This procedure retrieves data from the primary database using the Adaptive
Server dump and load, select, or bcp commands and utilities.

1 Verify that the entire replication system is working. Refer to Chapter 1,
“Verifying and Monitoring Replication Server” in the Replication Server
Administration Guide Volume 2 for details.

2 Suspend updates to the data in the primary database by stopping client
applications that generate transactions against the primary data.

3 Quiesce the replication system components involved with replicating data
from the primary Replication Server to the replicate Replication Server.

Use admin quiesce_force_rsi at the primary and replicate Replication
Servers and at any intermediate Replication Servers.

4 Execute suspend log transfer for the primary database.

5 Take a snapshot of the subscription data from the primary database using
a select statement or a database dump.

6 Execute define subscription at the replicate Replication Server.

CHAPTER 11 Managing Subscriptions

Administration Guide 361

7 Use check subscription at the primary and at the replicate Replication
Servers to verify that the subscription has been defined. When the
subscription status is DEFINED at both servers, continue to step 9.

8 Execute the activate subscription command, using the with suspension
clause, at the replicate Replication Server.

9 Use check subscription at the primary and at the replicate Replication
Server to verify that the subscription has been activated.When the
subscription becomes active at the replicate Replication Server, the DSI
connection to the replicate Replication Server is suspended.

When the subscription status is ACTIVE at both servers, continue to step
11.

10 Execute resume log transfer from the primary database at the primary
Replication Server.

11 Begin loading the snapshot data into the replicate database.

Note While you wait for the data to finish loading in the replicate
database, you can continue with the next step.

12 Execute validate subscription at the replicate Replication Server to validate
the subscription.

13 Use check subscription at the primary and at the replicate Replication
Server to verify that the subscription status is VALID for both servers.

14 When the snapshot data has finished loading in the replicate database,
execute resume connection to resume the connection to the replicate
database.

When you have completed this procedure, the subscription is created, the
replicate data is consistent with the primary data, and replication is active.

Simulate atomic materialization

Use this bulk materialization method when you cannot suspend updates to the
primary database.

This method ensures replicated data consistency by retrieving the subscription
data, activating the subscription, and suspending the DSI connection to the
replicate database all in one transaction at the primary data server.

Use select with holdlock and the rs_marker stored procedure, as in this example:

Subscription materialization methods

362 Replication Server

begin transaction
select from table with holdlock
where search_conditions
execute rs_marker
'activate subscription subid
with suspension'
commit transaction

subid is an integer that identifies the subscription. The subid for a subscription
and can be found in the subid field of the rs_subscriptions system table in the
RSSD. After the subscription is defined, you can find its subid by executing the
following query in the RSSD of the primary or replicate Replication Server:

select subid from rs_subscriptions
where subname = 'subscription'
and dbid in (select dbid from rs_databases
where dbname = 'replicate_database'
and dsname = 'replicate_data_server')

Here are the steps to follow to simulate atomic materialization:

1 Verify that the entire replication system is working. Refer to Chapter 1,
“Verifying and Monitoring Replication Server” in the Replication Server
Administration Guide Volume 2 for details.

2 Execute the define subscription command at the replicate Replication
Server.

3 Wait for the subscription to be defined at both the primary and replicate
Replication Servers. Execute the check subscription command at both the
primary and replicate Replication Servers to verify that the subscription
status is DEFINED.

4 Execute a single transaction as provided in the previous sample transaction
that includes select with holdlock and the rs_marker stored procedure. This
action activates the subscription.

5 Wait for the subscription to become active at both the primary and
replicate Replication Servers. Execute the check subscription command at
the replicate Replication Server to verify that the subscription status is
ACTIVE. When the subscription status is ACTIVE at the replicate
Replication Server, the DSI connection to the replicate database will be
suspended.

6 Begin loading the subscription data into the replicate database.

7 Resume the DSI connection to the replicate database using the resume
connection command.

CHAPTER 11 Managing Subscriptions

Administration Guide 363

8 Execute the validate subscription command at the replicate Replication
Server.

9 Wait for the subscription to become valid at both the primary and replicate
Replication Server. Execute the check subscription command at the
replicate Replication Server to verify that the subscription status is
VALID.

Now the subscription is created and replication is active.

Simulate nonatomic materialization

Use this bulk materialization method when you cannot suspend updates to the
primary database or if you cannot lock the primary data during the select or
dump operation that retrieves the subscription data.

This method allows a period of flux at the replicate site during which the
replicate data may be inconsistent with the primary data. By the time the
subscription becomes VALID, however, the data should be consistent. You
must set autocorrection on during materialization so that inconsistencies
resulting from continuing updates in the primary database can be resolved
without errors.

 Warning! Do not use this method if the replicate minimal columns feature is set
for the replication definition or if you execute applied functions or applied
stored procedures from the primary database to modify data in the replicate
database. In both cases, autocorrection cannot resolve the inconsistencies.

1 Verify that the entire replication system is working. Refer to Chapter 1,
“Verifying and Monitoring Replication Server” in the Replication Server
Administration Guide Volume 2 for details.

2 Execute the define subscription command at the replicate Replication
Server.

3 Wait for the subscription to be defined at both the primary and replicate
Replication Servers. Execute the check subscription command at both the
primary and replicate Replication Servers to verify that the subscription
status is DEFINED.

4 Execute the activate subscription command, using the with suspension
clause, at the replicate Replication Server.

Subscription materialization methods

364 Replication Server

5 Wait for the subscription to become active at both the primary and
replicate Replication Servers. Execute the check subscription command at
the replicate Replication Server to verify that the subscription status is
ACTIVE. When the subscription status is ACTIVE at the replicate
Replication Server, the database connection for the replicate database has
been suspended.

6 As soon as the subscription becomes active at the primary Replication
Server, retrieve the data from the primary database using a select or a
database dump.

7 Find the ID number (subid) for the subscription by querying the
rs_subscriptions system table. See “Subscription example” on page 382
for more information.

8 Execute the rs_marker stored procedure in the primary database:

rs_marker 'validate subscription subid'

 Warning! Be sure that you execute the rs_marker stored procedure with
the correct subid number for the subscription. The subid column in the
rs_subscriptions system table contains the unique ID number for each
subscription. Entering any other number or character string may cause
serious problems.

For more information on rs_marker see Replication Server Reference
Manual.

9 Load the subscription data into the replicate database.

10 Enable autocorrection for the replication definition at the replicate
database. See “Using autocorrection” on page 356 for more information.

11 Use the resume connection command to resume the database connection
for the replicate database.

12 Wait for the subscription to become valid at both the primary and replicate
Replication Servers. Execute the check subscription command at the
replicate Replication Server to verify that the subscription status is
VALID. Once the subscription status is VALID, the replicate data is
consistent with the primary data.

13 Disable autocorrection for the replicate database. See “Using
autocorrection” on page 356 for more information.

Now the subscription is created and replication is active.

CHAPTER 11 Managing Subscriptions

Administration Guide 365

Dematerialization processing
Dematerialization removes subscriptions and, optionally, data from the
replicate database. Dematerialization also removes subscription information
from the RSSDs at the primary and replicate sites.

Dropping a subscription causes Replication Server to stop sending changes
from a primary database to a replicate database. You can use the drop
subscription command to drop subscriptions for either table or function
replication definitions.

drop subscription removes the subscription from the RSSDs of the primary and
replicate Replication Servers.

When you drop a subscription to a table replication definition, you can specify
that Replication Server delete the subscription’s rows from the replicate
database. Or, you can delete the rows manually.

When you drop a subscription to a function replication definition, the replicate
data associated with the function is not deleted from the replicate database.

There are two methods of dematerialization:

• with purge dematerialization, which selectively deletes rows not used by
other subscriptions

• without purge dematerialization, which allows you to manually delete rows
in replicate tables

In either case, the primary Replication Server stops sending data for the
dropped subscription, if the data is not included in other subscriptions at the
same replicate site.

Note For heterogeneous datatypes: Subscriptions that specify columns subject
to class- or column-level translations in the where clause cannot be
dematerialized automatically. You must use the bulk or no-materialization
method.

Dematerializing and purging rows
Use the with purge clause when you want to delete rows replicated by the
subscriptions you are dropping. Use the incrementally option to delete rows in
10-row increments. The maintenance user for the replicate database must have
select permission on the table to use this option.

Monitoring materialization and dematerialization

366 Replication Server

Dematerializing a subscription and purging rows from the replicate table uses
function strings for the rs_select or rs_select_with_lock system functions. You
may be required to create a function string for these system functions.

• If the connection for the replicate database uses a function-string class
with default-generated function strings or a function-string class inherited
from such a class, Replication Server generates a corresponding default
function string for the rs_select_with_lock or rs_select functions.

• If the connection uses any other function-string class, you must create the
function string, with an input template that matches the subscription’s
where clause. Use the create function string command.

See “Function-string classes” on page 21 in the Replication Server
Administration Guide Volume 2 for details.

If you are using a function-string class in which you can customize function
strings, you can replace an existing default or custom function string with one
that performs a select operation that your application requires, using the alter
function string command.

For more information on creating or altering rs_select and rs_select_with_lock
function strings, see “Managing function strings” on page 32 in the
Replication Server Administration Guide Volume 2.

Dematerialization without purging rows
Dropping a subscription using the without purge option leaves the rows
replicated by the subscription in the replicate table. Subscriptions to function
replication definitions are dropped automatically using the without purge
option. You do not need to specify this option. You must, however, specify this
option if you want to keep the rows in the replicate table. If you want to
manually delete rows, you must use the with suspension option as well.

Monitoring materialization and dematerialization
Subscriptions pass through phases before they are fully set up or removed from
the replication system. The phases for setting up a subscription are:

• Definition – create subscription or define subscription add the subscription
to the RSSD for the primary and replicate Replication Servers.

CHAPTER 11 Managing Subscriptions

Administration Guide 367

• Activation – takes place after subscription resolution. The primary
Replication Server adds the subscription to the Subscription Resolution
Engine (SRE). The SRE compares log records to the current subscriptions
to determine where changes to replicated tables must be distributed.

• Materialization – for atomic and nonatomic subscriptions, the primary
Replication Server retrieves subscription data from the primary database
and copies it to the replicate Replication Server to be applied to the
replicate database.

• Validation – both the primary and replicate Replication Server completely
materialize the subscription and verify it is consistent with the primary
data.

The phases for removing subscription data, using the drop subscription
command, are:

• Dematerialization – stops sending updates for the subscription to the
replicate database and, if the with purge clause is specified, deletes the
subscription data from the replicate database (if the data is not included in
other subscriptions). If the without purge clause is specified, then
Replication Server does not delete the data from the replicate database.

• Removal – deletes the subscription from the RSSD for both the primary
and replicate Replication Servers.

Materialization or dematerialization can fail during any of these stages. This is
why you need to monitor the progress of a subscription using the check
subscription command. See “Using the check subscription command” on page
379 for more information. In addition to the check subscription command, you
can use the admin who command to check the status of the Replication Server
threads processing the subscription. For atomic and nonatomic materialization,
Replication Server builds a materialization queue that contains rows to be
added to the replicate table. The admin who, sqm command can monitor queue
activity, and the admin who, dsi command can show you whether the DSI thread
is running.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for information about executing admin who and interpreting
its results.

Refer to the Replication Server Troubleshooting Guide for comprehensive
troubleshooting information that details the status of a subscription and
suggested actions.

Before you create subscriptions

368 Replication Server

Before you create subscriptions
Before creating subscriptions, verify that the replication system is ready.
Review each of the steps in this section that follow to ensure that you meet all
requirements.

1 Verify that all components in the replication system are working. See
“Verifying a replication system” on page 2 in the Replication Server
Administration Guide Volume 2 for details.

2 Make sure the following database objects and permissions exist:

• One or more replication definitions exist for the primary table.

• The primary table is marked as replicated with sp_setreptable or
sp_reptostandby for warm standby applications.

• A table corresponding to the replication definition exists in the
replicate database. Its columns must match those specified for the
replicate database in the replication definition. Its datatypes must
match the corresponding primary columns.

This table must also be visible to the user creating the subscription
and the user maintaining it. If an owner name is included in the
replication definition, the table must be visible to all database users.
If an owner name is not included in the replication definition, the
easiest way to make the table accessible is to have the Database
Owner create it.

• The replicate database maintenance user must have:

select, insert, update, and delete permissions on the replicate table,
and execute permission for functions used in replication.

If the subscription for the table includes the subscribe to truncate table
clause, the maintenance user must have replication_role, sa_role, or
alias the Database Owner.

3 Make sure that you meet recommended guidelines for the character sets
and sort orders used throughout your replication system. These play an
important role in processing subscriptions, and they must be consistent
everywhere for subscriptions to be valid. Refer to the Replication Server
Design Guide for guidelines.

4 Choose one of the subscription materialization methods described in
“Subscription materialization methods” on page 353, and verify the
following requirements for your chosen method:

CHAPTER 11 Managing Subscriptions

Administration Guide 369

• For nonatomic materialization, you must enable autocorrection for
the replicate table. See “Using autocorrection” on page 356 for more
information. Also refer to Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for set
autocorrection command details.

If the replicate minimal columns feature is set for the replication
definition, you cannot create new subscriptions using nonatomic
materialization.

• For atomic and nonatomic materialization:

A default function-string class or a function-string class inherited
from a default function-string class generates default function strings
for the rs_select_with_lock or rs_select functions. If you use other
function-string classes, you must create function strings for the
rs_select_with_lock or rs_select functions, with an input template that
matches the subscription’s where clause.

To modify rs_select or rs_select_with_lock , use a function from the
function string class associated with the primary database connection,
not the functions in the replicate database connection.

See “Function-string classes” on page 21 and “Using input
templates” on page 35 in the Replication Server Administration
Guide Volume 2 for details.

5 When you create subscriptions, use the login name of a regular user. Do
not create subscriptions as the maintenance user.

Make sure the user creating the subscription has the following login names
and permissions:

• Same login name and password at the replicate Replication Server,
the primary Replication Server, and the primary data server. If you are
using bulk materialization or the no-materialization method, you are
not required to have a login name for the primary data server.

• select permission on the primary table. This does not apply if you are
using bulk materialization or no materialization.

• execute permission on the rs_marker stored procedure in the primary
database or no materialization.

• create object or sa permission in the replicate Replication Server.

• primary subscribe, create object, or sa permission in the primary
Replication Server.

Using subscription commands

370 Replication Server

Using subscription commands
You can use RCL commands or Sybase Central to:

• Create subscriptions for atomic and nonatomic materialization and for the
no-materialization method.

• Define, activate, and validate subscriptions for bulk materialization.

• Check the status of subscriptions during the materialization process.

• Drop subscriptions to initiate the dematerialization process.

• Enable replication of the truncate table command when you create or
define a subscription.

You can use a where clause to control which table rows or function invocations
to replicate. The where clause can specify only the searchable columns or
searchable parameters specified in the table or function replication definition.
If you do not provide a where clause, all the rows of the replication definition’s
columns, or all the function invocations, are replicated. See “Using the where
clause” on page 371 for more information.

If you are using Adaptive Server Enterprise version 11.5 or later, you can
include the subscribe to truncate table keywords to reproduce execution of the
truncate table command at the destination database. See “Enabling replication
of truncate table” on page 373 for more information.

Table 11-3 lists the Replication Server commands for working with
subscriptions. Also see Table 9-1 on page 249 and Table 10-1 on page 333.

Table 11-3: Commands for managing subscriptions

Command Task

create
subscription

Creates a subscription that transfers the initial version of the replicated data using either:

• Atomic materialization, which copies the initial version of the data for a subscription as a
single transaction, or

• Nonatomic materialization, which copies the data in a series of transactions. Users at the
replicate site can see some of the data before it all arrives. Replication Server does not create
a materialization queue for the entire set of subscription data.

Use create subscription with the without materialization clause to activate a subscription for
which the initial version of the replicated data already exists at the replicate database.
You can also use create subscription to create subscriptions for table replication definitions.
Use create subscription, with the without materialization clause, for function replication
definitions.

CHAPTER 11 Managing Subscriptions

Administration Guide 371

Using the where clause
You can include one where clause in a subscription. The where clause syntax is
a subset of the Transact-SQL where clause. It is supported by the create
subscription and define subscription commands for subscriptions to replication
definitions. The supported syntax is the same for both commands and allows
you to create very selective subscriptions. It is designed for efficient processing
by the Subscription Resolution Engine in Replication Server.

Note You cannot evaluate a Java column in a subscription expression. Thus,
you cannot include a column of type rawobject or rawobject in row in a
subscription where clause.

For subscriptions to table replication definitions, the where clause syntax is:

where column_name{< | > | <= | >= | = | &} value
[and column_name{< | > | <= | >= | = | &}
 value]...

For subscriptions to function replication definitions, the where clause syntax is:

define
subscription

 The first step in bulk materialization defines a subscription.
You can use define subscription and the other bulk materialization commands to create
subscriptions for either table or function replication definitions.
You must transfer data manually, as necessary.
Data replication begins after materialization is complete and a subscription is activated and
validated. Use check subscription to verify subscription status. See “Using the check
subscription command” on page 379 for details. See Chapter 10, “Managing Replicated
Functions.”

activate
subscription

Second step in bulk materialization. Activates a subscription at both primary and replicate
Replication Servers. This causes the primary Replication Server to start sending changes to the
subscription’s data to the replicate Replication Server. See “Using the activate subscription
command” on page 378 for details.

validate
subscription

Third step in bulk materialization. Changes the subscription status at both the primary and
replicate sites to VALID. See “Using the validate subscription command” on page 379 for
details.

check
subscription

Verifies the status of a subscription at both the primary and replicate sites. Use this command
with all types of subscription materialization. See “Using the check subscription command” on
page 379 for details.

drop subscription Removes a subscription from the replication system. For subscriptions to table replication
definitions, optionally removes subscription rows from the replicate table in a process known
as dematerialization. See “Using the drop subscription command” on page 380 for details.

Command Task

Using subscription commands

372 Replication Server

where @param_name
{< | > | <= | >= | = | &} value

[and @param_name
{< | > | <= | >= | = | &} value]...

Refer to “Datatypes” in Chapter 2, “Topics,” in the Replication Server
Reference Manual for entry formats for values for different datatypes.

Note The !=, !<, !>, and or operators are not supported. You can create multiple
subscriptions instead of using the or operator. The & operator is supported only
on rs_address columns. For details on using the rs_address datatype, see
“Using the rs_address datatype” on page 291 and “Bitmap subscriptions” on
page 388.

Each column name in a where clause must be listed in the searchable columns
list of the table or function replication definition. The value for each column
must have the same datatype as the column to which it is compared.

For example, for table replication definition publishers_rep, you would enter:

create subscription publishers_sub1
for publishers_rep
with replicate at SYDNEY_DS.pubs2
where state = 'CA'

to specify that you want to subscribe to data where state = CA.

Note The maximum size of a where clause in a create subscription statement is
255 characters.

To subscribe to data in publishers, where state = CA or state = MA, you would
need to create two subscriptions. In addition to the preceding command, you
would enter:

create subscription publishers_sub2
for publishers_rep
with replicate at SYDNEY_DS.pubs2
where state = 'MA'

Note When you use a where clause with a subscription for heterogeneous
datatype columns subject to class- or column-level translations, you must make
sure that you use the correct datatype in the comparison. See “Subscriptions for
columns with heterogeneous datatypes” on page 387.

CHAPTER 11 Managing Subscriptions

Administration Guide 373

Enabling replication of truncate table
If you are using Adaptive Server Enterprise version 11.5 or later, you can
enable replication of the truncate table command to particular destination
database tables when you create or define a subscription.

The truncate table command can truncate one or more partitions. Replication
Server will recreate the same command executed at the primary database. This
requires the replicate site to have the same partition names, otherwise, DSI
shuts down.

You have an option to skip the truncate table command and apply appropriate
action at the replicate site, or use rs_truncate function string to customize the
action in the replicate site. Replication Agent sends this command once the
LTL version is set to 700.

To create or define a subscription that enables replication of truncate table, log
in to Replication Server and enter:

create subscription subscription
for table_rep_def
with replicate at data_server.database
 ...
subscribe to truncate table

When truncate table executes at the destination database, Adaptive Server
deallocates whole data pages. It does not delete rows one at a time.

Note Replication Server executes truncate table at the replicate database as the
maintenance user. Among the permissions granted to maintenance user is
replication_role. If you revoke maintenance user’s replication_role, you cannot
replicate truncate table unless the maintenance user has been granted sa_role,
the maintenance user owns the table, or the maintenance user is aliased as the
Database Owner.

Warm standby applications can copy the execution of truncate table to standby
databases without a subscription. See “Replicating truncate table to standby
databases” on page 101 in the Replication Server Administration Guide
Volume 2 for information about using this feature.

See define subscription and create subscription in Chapter 3, “Replication
Server Commands” in the Replication Server Reference Manual for complete
command syntax and usage guidelines.

Using subscription commands

374 Replication Server

Changing the Status
of “subscribe to
truncate table”

All subscriptions for a replicate table in a particular database must either
support or not support replication of truncate table. You cannot create a
subscription that enables replication of truncate table if all existing
subscriptions for that table do not support replication of truncate table.

Use the sysadmin apply_truncate_table command to change the status of
“subscribe to truncate table” for all subscriptions on a replicate table.

For example, to turn on replication of truncate table for all subscriptions to a
replicate table, log in to the replicate Replication Server and execute this
command at the isql prompt:

sysadmin apply_truncate_table, data_server,
 database, {table_owner|’’|””}, table_name'on'

where data_server is the name of the replicate data server, database is the
name of the replicate database managed by the data server, table_owner is the
owner of the replicate table, and table_name is the name of the replicate table.

If you specified a replicate table owner in the replication definition, you must
also specify a table owner with the sysadmin apply_truncate_tablecommand. If
you did not specify a replicate table owner in the replication definition, enter ''
(two single-quote characters) or ““ (two double-quote characters) for the table
owner name.

Refer to Chapter 3, “Replication Server Commands” in the Replication Server
Reference Manual for more information about sysadmin apply_truncate_table
command.

Using the create subscription command
You use the create subscription command to replicate data by subscribing to a
replication definition. There are three methods for creating a subscription:

• Atomic

• Nonatomic

• No materialization

You can use a where clause to replicate only certain rows from the primary
table, based on values for the searchable columns specified in the table
replication definition. If you do not provide a where clause, all rows are
replicated. See “Using the where clause” on page 371 for more information.

CHAPTER 11 Managing Subscriptions

Administration Guide 375

If you are using Adaptive Server Enterprise version 11.5 or later, you can
include the subscribe to truncate table keywords to reproduce execution of the
truncate table command at the destination database. See “Enabling replication
of truncate table” on page 373 for more information.

Note create subscription automatically truncates text, unitext, and image data
larger than 32K.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for details on using the create subscription command. See
Chapter 9, “Managing Replicated Tables” for more information on creating
table replication definitions.

Using create subscription for atomic materialization

To create a subscription with atomic materialization, execute the create
subscription command at the Replication Server managing the database where
the data is to be replicated. The syntax for the create subscription command,
with atomic materialization, is:

create subscription subscription
for table_rep_def
with replicate at data_server.database
[where search_conditions]

 [incrementally]
 [subscribe to truncate table]

where subscription is the name of the subscription to activate, table_rep_def is
the name of the table replication definition you are subscribing to, and
data_server.database identifies the replicate database.

The subscription name must be unique for the replication definition and
replicate database.

Subscribing to function replication definitions requires you to use define
subscription (the bulk materialization method) or create subscription with the
without materialization clause (the no materialization method).

If you use the optional keyword incrementally, Replication Server initializes the
subscription by sending 10-row batches of inserts.

Using subscription commands

376 Replication Server

If you do not use the keyword incrementally, Replication Server inserts all of
the subscription rows at the replicate database in a single transaction. All of the
rows are held in a stable queue at the replicate Replication Server at one time,
and there must be enough partition space to accommodate them. Also, the
transaction log for the replicate database must have enough space to log the
transaction.

Using create subscription for nonatomic materialization

Use the create subscription command with the without holdlock clause to create
a subscription with nonatomic materialization. The syntax is:

create subscription subscription
for table_rep_def
with replicate at data_server.database
[where search_conditions]
without holdlock
[subscribe to truncate table]

where subscription is the name of the subscription to activate, table_rep_def is
the name of the table replication definition you are subscribing to, and
data_server.database identifies the replicate database.

Nonatomic materialization is always incremental.

Clients at the replicate site should be suspended or warned that the data in the
replicate table is incomplete and possibly inconsistent until all the subscription
data has materialized.

See “Monitoring materialization and dematerialization” on page 366 for
information about monitoring the materialization process.

Using create subscription for no materialization

To create a subscription that does not initialize the subscription data, execute
create subscription with the without materialization clause at the Replication
Server managing the replicate database. The syntax for create subscription for
no materialization is:

create subscription subscription
for {table_rep_def | function_rep_def | publication pub |

database replication definition db_repdef
with primary at server_name.db }

with replicate at server_name.db
[where search_conditions]
without materialization
[subscribe to truncate table]

CHAPTER 11 Managing Subscriptions

Administration Guide 377

where subscription is the name of the subscription to create, table_rep_def is
the name of the table replication definition the subscription is for,
function_rep_def is the name of the function replication definition the
subscription is for, pub is the name of the publication the subscription is for,
db_repdef is the name of the database replication definition the subscription is
for, and server_name.db identifies the primary or replicate database.

The without materialization clause activates the subscription without first
initializing the subscription data. Use create subscription with the without
materialization clause when there is no activity at the primary database and the
data already exists in the replicate database.

Using the define subscription command
To create a subscription with bulk materialization, execute the define
subscription command at the Replication Server that is managing the database
where the data is to be replicated. define subscription sets the subscription status
to DEFINED.

The syntax for define subscription is:

define subscription subscription
for {table_rep_def | function_rep_def

publication pub_name | database replication definition db_repdef
with primary at data_server.db

with replicate at data_server.db
[where search_conditions]
[subscribe to truncate table]

where subscription is the name of the subscription to define, table_rep_def is
the name of the table replication definition the subscription is for,
function_rep_def is the name of the function replication definition the
subscription is for, pub_name is the publication the subscription is for,
db_repdef is the database replication definition the subscription is for, and
data_server.db identifies the primary or replicate database.

The subscription name must be unique for the replication definition and
replicate database.

Refer to Chapter 9, “Managing Replicated Tables” for more information on
creating table replication definitions. Refer to Chapter 10, “Managing
Replicated Functions” for more information on creating function replication
definitions. Also refer to Chapter 3, “Replication Server Commands,” in the
Replication Server Reference Manual for details on using define subscription
command.

Using subscription commands

378 Replication Server

Using the activate subscription command
Use the activate subscription command during bulk materialization to start the
distribution of updates from the primary to the replicate database for a
subscription. activate subscription sets the subscription status to ACTIVE.

Execute active subscription at the Replication Server where you created the
subscription using the define subscription command. The syntax for activate
subscription is:

activate subscription subscription
for { table_rep_def | function_rep_def | publication pub_name |
database replication definition db_repdef
with primary at data_server.db }

with replicate at data_server.db
[with suspension [at active replicate only]]

where subscription is the name of the subscription to activate, table_rep_def is
the name of the table replication definition the subscription is for,
function_rep_def is the name of the function replication definition the
subscription is for, pub_name is the publication the subscription is for,
db_repdef is the database replication definition the subscription is for, and
data_server.db identifies the primary or replicate database.

Use the with suspension clause to suspend the DSI after the subscription status
changes to ACTIVE. This prevents the replicate Replication Server from
sending updates for the replicated table before the subscription data is loaded.
After loading the data at the replicate site, execute resume connection to apply
the updates.

If you do not use with suspension, you should prohibit updates to the primary
table until the subscription is materialized.

If the database is part of a warm standby application, the with suspension clause
suspends the DSI for the active and standby databases. This let you load the
data into both databases before allowing updates to the active database. If you
load the data into the active database with logging, use the with suspension at
active replicate only clause so that the standby DSI remains active. In this case,
subscription data is replicated from the active database. The DSI for the active
database in a warm standby application is suspended. The clause does not
suspend the DSI for the standby database.

Refer to “Using the validate subscription command” on page 379 for more
information about the with suspension and with suspension at active replicate
only clauses. Refer to Chapter 3, “Replication Server Commands,” in the
Replication Server Reference Manual for detailed usage information for
activate subscription.

CHAPTER 11 Managing Subscriptions

Administration Guide 379

Using the validate subscription command
Use the validate subscription command to complete the bulk materialization
process and set the subscription status to VALID.

Execute validate subscription at the Replication Server where you created the
subscription. The syntax is:

validate subscription subscription
for { table_ref_def | function_rep_def | publication pub_name |

database replication definition db_repdef
with primary at data_server.db }

with replicate at data_server.db

where subscription is the name of the subscription to validate, table_rep_def is
the name of the table replication definition the subscription is for,
function_rep_def is the name of the function replication definition the
subscription is for, pub_name is the publication the subscription is for,
db_repdef is the database replication definition the subscription is for, and
data_server.db identifies the primary or replicate database.

Using the check subscription command
The check subscription command reports the status of a subscription at the
Replication Server where you enter the command. The subscription status at
the primary and replicate Replication Servers often differs while the
subscription is being created, so you should enter check subscription at both
sites. If the primary and replicate databases are managed by a single
Replication Server, check subscription displays the status of the subscription for
both the primary and replicate databases.

The syntax for the check subscription command is:

check subscription subscription
for { table_rep_def | function_rep_def | publication pub_name |

database replication definition db_repdef
with primary at data_server.db }

with replicate at data_server.db

where subscription is the name of the subscription to check, table_rep_def is
the name of the table replication definition the subscription is for,
function_rep_def is the name of the function replication definition the
subscription is for, pub_name is the publication the subscription is for,
db_repdef is the database replication definition the subscription is for, and
data_server.db identifies the primary or replicate database.

Using subscription commands

380 Replication Server

The message returned by the command contains subscription status
information. If the subscription had an error, the message directs you to the log
where you should look for specific error messages.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for a list of the messages check subscription can return.

Using the drop subscription command
Dropping a subscription causes Replication Server to stop sending changes
from a primary database to a replicate database. You can use the drop
subscription command to drop subscriptions for either table or function
replication definitions.

Execute the drop subscription command at the replicate Replication Server. It
requires create object permission at the replicate Replication Server and create
object or primary subscribe permission at the primary Replication Server.

Here is the syntax:

drop subscription subscription
for {table_rep_def | function_rep_def | article article_name in pub_name |

publication pub_name | database replication definition db_repdef
with primary at data_server.db }

with replicate at data_server.database
[without purge
[with suspension [at active replicate only]] |
[incrementally] with purge]

If you choose the without purge dematerialization method, Replication Server
does not delete subscription data from the replicate database.

If you choose the with purge dematerialization method, Replication Server logs
in to the replicate database and selects data from it. If this data does not belong
to any other subscriptions, the subscription data is deleted from the replicate
database.

When you drop subscriptions to table replication definitions, you can purge
subscription rows regardless of the materialization method you used when you
created the subscription. Rows are removed only if they do not match another
subscription.

You can use the check subscription command to view the progress of the drop
subscription command. When the subscription status no longer exists at the
primary and replicate Replication Servers, the command is complete.

CHAPTER 11 Managing Subscriptions

Administration Guide 381

Subscriptions to function replication definitions are always dropped without
purging the replicate data associated with the function. You do not need to
specify the without purge option.

When you are dropping subscriptions to table replication definitions, you have
two basic methods to choose from. Because each method carries important
implications, Replication Server requires that you explicitly choose one of
these two methods:

• with purge – Replication Server removes, or dematerializes, the
subscription’s rows from the replicate database, if they do not belong in
other remaining subscriptions. The Replication Server logs in as the
maintenance user to perform the select operation. Use the incrementally
option to specify that dematerialization occurs in 10-row increments of
deletes per transaction.

• without purge – the subscription’s rows remain at the replicate database.
The with suspension option leaves the connection to the replicate database
suspended when drop subscription has completed, so that you can manually
remove the rows.

For warm standby applications, the option with suspension at active replicate
only suspends the active replicate database but not the standby replicate
database.

 Warning! When removing rows manually, do not remove rows for remaining
overlapping subscriptions that require those rows.

Example of dropping
subscription with
purge

To drop a subscription with purge, use a command like this:

drop subscription publishers_sub
for publishers_rep
with replicate at SYDNEY_DS.pubs2
with purge

Examples of dropping
subscription without
purge

To drop a subscription without purge, use a command like this:

drop subscription publishers_sub
for publishers_rep

with replicate at SYDNEY_DS.pubs2
without purge

To drop a subscription without purge and also suspend the DSI for the replicate
database so that you can manually delete the rows for the subscription, use a
command like this:

drop subscription publishers_sub

Subscription example

382 Replication Server

for publishers_rep
with replicate at SYDNEY_DS.pubs2
without purge
with suspension

If you have a warm standby application for the replicate database, you may
want to suspend the connection for the active database only, and leave the
standby DSI up. This way, Replication Server will replicate your row deletion
transactions from the active replicate database to the standby database. In this
case, use a command like this:

drop subscription publishers_sub
for publishers_rep
with replicate at SYDNEY_DS.pubs2
without purge
with suspension at active replicate only

Subscription example
This section contains an example that shows you how to replicate a table from
a primary database to a replicate database by creating an atomic subscription
to the table replication definition. You can do this in Sybase Central or with
RCL commands. The example shows you the steps and RCL commands
needed to replicate transactions for a table named publishers between two
Adaptive Servers.

Following is a description of the replication system and procedures for setting
up replication for the table.

Description of replication system
Primary site • The Replication Server for the primary site is named TOKYO_RS.

• The primary version of the publishers table is in the pubs2 database of the
Adaptive Server named TOKYO_DS. You have added a connection from
TOKYO_RS to the pubs2 database using Sybase Central or rs_init and set
up a RepAgent for the database.

• The system database for TOKYO_RS is named TOKYO_RSSD and is
managed by the TOKYO_DS Adaptive Server.

• A route exists from TOKYO_RS to SYDNEY_RS.

CHAPTER 11 Managing Subscriptions

Administration Guide 383

Replicate site • The Replication Server for the replicate site is named SYDNEY_RS.

• The replicate copy of the publishers table will be in the pubs2 database of
the Adaptive Server named SYDNEY_DS. You have added a connection
from SYDNEY_RS to the pubs2 database using Sybase Central or rs_init.

• The system database for SYDNEY_RS is named SYDNEY_RSSD and is
managed by the SYDNEY_DS Adaptive Server.

Procedures for replicating tables
Preparing to replicate
tables

To check replication system components, use Sybase Central or isql to log in to
the servers identified for the primary and replicate sites.

Preparing the primary
table

In the TOKYO_DS Adaptive Server, log in to the pubs2 database and ensure
that the publishers table exists:

isql -Usa -P -STOKYO_DS
use pubs2
go
sp_help publishers
go

Preparing login names
for user creating the
subscription

You will create the subscription using the “pubs2_user” login name. This user
must exist in both Replication Servers.

In the TOKYO_DS Adaptive Server, create this login name:

isql -Usa -P -STOKYO_DS
sp_addlogin pubs2_user, pubs2_pw, pubs2
go

In the TOKYO_DS Adaptive Server, add the “pubs2_user” login name to the
pubs2 database, and grant the user select permission on the publishers table:

use pubs2
go
sp_adduser pubs2_user
go
grant select on publishers to pubs2_user
go

In the TOKYO_RS Replication Server, create the “pubs2_user” login name
and grant primary subscribe permission to this login name:

isql -Usa -P -STOKYO_RS
create user pubs2_user
set password pubs2_pw

Subscription example

384 Replication Server

go
grant primary subscribe to pubs2_user
go

In the SYDNEY_RS Replication Server, create the “pubs2_user” login name
and grant create object permission to this login name:

isql -Usa -P -SSYDNEY_RS
create user pubs2_user
set password pubs2_pw
go
grant create object to pubs2_user
go

Creating the
replication definition

In the TOKYO_RS Replication Server, create the replication definition
publishers_rep for the publishers table:

isql -Ujohn -P -STOKYO_RS
create replication definition publishers_rep
with primary at TOKYO_DS.pubs2
with all tables named 'publishers'
(pub_id char(4), pub_name varchar(40),
city varchar(20), state char(2))
primary key (pub_id)
searchable columns (pub_id, pub_name)
replicate minimal columns
go

In this example, the user “john” creates the replication definition. This user
requires create object permission in TOKYO_RS.

Marking the primary
table for replication

In the TOKYO_DS Adaptive Server, mark the publishers table for replication.
To mark the table for replication with the sp_setreptable system procedure, you
must be the Database Owner or System Administrator for the data server. Enter
the following command:

sp_setreptable publishers, 'true'
go

Verifying that the table
exists in the replicate
database

In the SYDNEY_DS Adaptive Server, log in to the pubs2 database, and verify
that the publishers table exists:

isql -Usa -P -SSYDNEY_DS
use pubs2
go
sp_help publishers
go

CHAPTER 11 Managing Subscriptions

Administration Guide 385

When you add the replicate pubs2 database using Sybase Central or rs_init, the
maintenance user is created and given replication_role. The maintenance user
must have replication_role, sa_role, or alias the Database Owner to replicate
truncate table.

In SYDNEY_DS, make sure the maintenance user has select, insert, delete, and
update permissions on the publishers table:

grant all on publishers to SYDNEY_DS_maint
go

Creating the
subscription

Log in to the SYDNEY_RS Replication Server using the “pubs2_user” login
name and create the subscription publishers_sub for the replication definition
publishers_rep:

isql -Upubs2_user -Ppubs2_pw -SSYDNEY_RS
create subscription publishers_sub
for publishers_rep
with replicate at SYDNEY_DS.pubs2
subscribe to truncate table
go

This subscription uses atomic materialization, the default. No where clause is
included, so all rows will be replicated. Execution of the truncate table
command will be reproduced at the destination database.

Monitoring
subscription
materialization

While still logged into SYDNEY_RS, use the check subscription command to
monitor the status of the subscription:

check subscription publishers_sub
for publishers_rep
with replicate at SYDNEY_DS.pubs2
go

Verifying replication You can also check if replication is occurring as expected by verifying that a
row you insert is copied to the replicate table.

In the TOKYO_DS Adaptive Server, insert a row into the publishers table:

isql -Usa -P -STOKYO_DS
use pubs2
go
insert publishers
values ('9950', 'Who Donut', 'Butler', 'CA')
go

In the SYDNEY_DS Adaptive Server, verify that the row you inserted was
replicated into the replicate copy of the publishers table:

isql -Usa -P -SSYDNEY_DS

Materializing text, unitext, image, and rawobject data

386 Replication Server

use pubs2
go
select * from publishers
go

Materializing text, unitext, image, and rawobject data
In general, you can use any materialization method for subscriptions for tables
with columns that use the text, unitext, image, or rawobject datatypes. If you use
atomic or nonatomic materialization, the Replication Server managing the
replicate database selects all of the subscription data into a subscription
materialization queue.

If you want to materialize text, unitext, image, or rawobject data, you can use
automatic materialization only if the size of your data row is less than 32K.
Otherwise, you must use bulk materialization.

If you are materializing many large data rows, make sure that the Replication
Server has sufficient queue space for the data before you create the
subscription. For tables with a large volume of text, unitext, image, and
rawobject data, you may need to add temporary partitions to the Replication
Server to complete the materialization.

Nonatomic materialization
If you are using nonatomic subscription materialization and you have set the
replicate_if_changed replication status for any text, unitext, image, or rawobject
column, Replication Server displays a warning message in the error log file.
You are cautioned that data may be inconsistent if applications modify the
primary table during subscription materialization. Run the rs_subcmp program
to reconcile the data in the replicate and primary tables.

Row migration
Under certain conditions, text, unitext, image, and rawobject column data may
be missing in a replicate table as a result of row migration.

CHAPTER 11 Managing Subscriptions

Administration Guide 387

Row migration occurs in a subscription that has a where clause. Updating a
column specified in the where clause can cause a row to become valid for, or
migrate into, the subscription. When this happens, Replication Server executes
an insert in the replicate table. To insert a complete row, each insert would
require values for all columns, including text, unitext, image, and rawobject
columns that did not change in the primary table.

If your application allows rows to migrate into a subscription and you have set
any text, unitext, image, or rawobject columns to the replicate_if_changed
replication status, Replication Server displays a warning message in the error
log. The message states that a row has migrated into the subscription but that
its text, unitext, image, or rawobject data is missing.

If a text, unitext, image, or rawobject column with the replicate_if_changed status
was not changed in an update operation at the primary table, and the update
causes the row to migrate into a subscription, the inserted row at the replicate
table will be missing the text, unitext, image, or rawobject data. Run the
rs_subcmp program to reconcile the data in the replicate and primary tables.

Subscriptions for columns with heterogeneous
datatypes

You create subscriptions for table replication definitions in the normal manner
when class-level or column-level translations are defined and active. However,
certain restrictions apply to use of the where clause.

• Subscriptions that specify columns subject to class- and column-level
translations in the where clause cannot be dematerialized automatically.
You must use the bulk or no-materialization method.

• Take care creating or defining subscriptions that specify class- or column-
level translations in the where clause. Make sure that the value in the where
clause comparison is in the declared datatype format. HDS translations
take place after the subscription is presented.

For example, if searchable column starttime is declared as datetime but
published as rs_db2_time, then the comparison value in the where clause
must be described using datetime format.

create subscription db2_time_sub
for table_rep_def XXXXX

with primary at AAAAA

Bitmap subscriptions

388 Replication Server

with replicate at BBBBB
where starttime > ’19000101 23:14:02’

and not “where starttime > ’23:14:02,’” which is rs_db2_time
format.

For a detailed discussion of heterogeneous datatype translations, see Chapter
9, “Managing Replicated Tables”.

Bitmap subscriptions
Bitmap subscriptions allow you to create subscriptions that replicate rows
based on bitmap comparisons. When you create a replication definition for a
table, specify the datatype of your bitmap columns as rs_address. This special
datatype tells Replication Server to treat these int columns as bitmaps.

The create subscription and define subscription commands support a bitmap
comparison operator (&) in the where clause for rs_address columns or
parameters.

In the Adaptive Server table, you use an int column to hold a bitmap, since
Adaptive Server allows bitwise operators on integer values. An int column has
32 bits. You can have multiple rs_address columns in a replication definition
if your application requires more than 32 bits.

When you create a subscription, specify bitmap comparisons by comparing
each rs_address column to a bitmask using the & operator. Each subscription
can have one comparison per rs_address column.

Bitmap subscription
example

For example, consider an application that uses an rs_address column named
book_type to record the categories of books customers are interested in reading.
The book categories are mapped into the lower 8 bits of a bitmap column, as
shown in Table 11-4:

Table 11-4: Example bitmap comparison

Bit number Book category

0 Science fiction

1 Mystery

2 Business

3 Cooking

4 Popular computing

5 Computer science

CHAPTER 11 Managing Subscriptions

Administration Guide 389

If a bit is set, the customer has expressed interest in books of the corresponding
category. The bits are numbered from least significant to most significant. For
example, if the customer is interested in mystery, cooking, computer science,
and psychology books, the least significant 8 bits are 01101010 and the 32-bit
integer value is 106. The book_type column in the customer’s row contains the
value 106.

To create a subscription for customers who are interested in specified book
categories, form a bitmask of the desired categories and compare it, using the
& operator, to the book_type column in the where clause of the create
subscription or define subscription command. The & operator performs a bitwise
AND operation. If the result is non-zero, the row matches the subscription.

For rs_address columns only, the bitmap comparison operator & is supported
in the where clause, as follows:

where rs_address_column1 & bitmask
[and rs_address_column2 & bitmask]
[and other_search_conditions]

For example, to create a subscription for all customers who are interested in
mystery or business books, the lower 8 bits of the mask are 00000110.
Converted to a 32-bit integer value, the bitmask is 6. For atomic or nonatomic
materialization, you can create the subscription as follows:

create subscription mystery_or_business
for customers
with replicate at BRANCH_22.BOOK_DB
where book_type & 6

You can use a similar approach in the define subscription command, used for
bulk materialization. For subscriptions to function replication definitions,
which require the no-materialization method or bulk materialization, specify
parameter names instead of column names.

See “Using the where clause” on page 371 for more information.

6 Psychology

7 Reference

Bit number Book category

Obtaining subscription information

390 Replication Server

In addition to 32-bit integer values, you can also compare rs_address columns
to 32-bit hexadecimal numbers in the where clause. If you use hexadecimal
numbers, pad each number with zeros, as necessary, to create an 8-digit
hexadecimal value.

 Warning! Hexadecimal values are treated as binary strings by both Adaptive
Server and Replication Server. Binary strings are converted to integers by
copying bytes. The resulting bit pattern may represent different integer values
on different platforms. For example, 0x0000100 represents 65,536 on
platforms that consider byte 0 most significant, and represents 256 on
platforms that consider byte 0 least significant. Because of these byte-ordering
differences, bitmap subscriptions involving hexadecimal numbers might not
work if a replication system involves different platforms. Be very cautious
about comparing rs_address columns to hexadecimal numbers in the where
clause of a subscription.

Replication Server does not replicate a row if the only changed columns are
rs_address columns, unless the changed bits indicate that the row should be
inserted or deleted at the replicate database. Because of this filtering,
rs_address columns in replicate databases may not be identical to the
corresponding columns at the primary database. This is an optimization for
applications that use rs_address columns to specify the destination replicate
databases.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about creating bitmap subscriptions
using create subscription and create replication definition commands.

Refer to the Adaptive Server Enterprise Reference Manual and the Open Client
and Open Server Common Libraries Reference Manual for more information
about conversions between datatypes.

Obtaining subscription information
Once data is replicating, you may need to obtain information about the
subscriptions or verify that data is replicating consistently. Replication Server
provides stored procedures for obtaining information and a standalone utility
for verifying consistency.

CHAPTER 11 Managing Subscriptions

Administration Guide 391

Displaying subscription information
To display information about subscriptions at a Replication Server, you can use
the rs_helpsub and rs_helprepdb stored procedures in the Replication Server
RSSD.

Use rs_helpsub to display information about subscriptions at a Replication
Server. The syntax is:

rs_helpsub [subscription_name
[, replication_definition
[, data_server, database]]]

Use the rs_helprepdb stored procedure to display information about databases
with subscriptions for replication definitions in the current Replication Server.
The syntax is:

rs_helprepdb [, data_server, database]

For parameter descriptions, refer to Chapter 6, “Adaptive Server Stored
Procedures,” in the Replication Server Reference Manual.

Verifying subscription consistency
After you create a subscription, Replication Server propagates transactions
from the primary database to the replicate database. The replication system
keeps the replicate copy of the table consistent with the primary copy.

The replicate data may become inconsistent with the primary version. For
example, if you have not restricted update permissions on a replicate table to
the maintenance user for the database, a client may update the replicate data
directly, introducing inconsistencies.

Primary and replicate tables may be temporarily inconsistent because
Replication Server takes some time to transfer updates from the primary table
to the replicate table. However, as soon as the Replication Server applies the
updates at the replicate database, inconsistency due to latency no longer exists.

There are three kinds of inconsistency that may occur between primary and
replicate tables:

• Missing rows in the primary table are missing from the replicate table.

• Inconsistent rows in the primary table differ from the corresponding rows
in the replicate table.

• Orphaned rows in the replicate table do not exist in the primary table or do
not match subscriptions for the replicate table.

Obtaining subscription information

392 Replication Server

You need to differentiate between temporary inconsistencies caused by delay
and real inconsistencies caused by the incorrect use of the system or by system
failures. The rs_subcmp program described in the following section helps you
make this distinction. You can correct inconsistencies by dropping and
recreating subscriptions or by using rs_subcmp.

Using rs_subcmp to locate and correct inconsistencies

For Sybase databases, the standalone executable program rs_subcmp compares
a replicate table to the primary version of the table, finding—and correcting if
you so choose—missing, orphaned, and inconsistent rows. On UNIX systems,
the program is called rs_subcmp. On PC systems, the program is called
subcmp.

The rs_subcmp program is located in the bin subdirectory of the Sybase release
directory. Refer to the Replication Server installation and configuration guides
for your platform for more information.

The program works by logging in to the primary data server and the replicate
data server, and selecting and comparing rows from both tables.

Because some differences between primary and replicate data can be attributed
to latency, rs_subcmp first identifies inconsistencies, and then performs
iterations a specified number of times. rs_subcmp waits for any updates to be
replicated before removing the corrected rows from its list.

It is best to use rs_subcmp when latency is low to avoid the program having to
perform several iterations through the data.

You can instruct rs_subcmp to display inconsistent rows on the standard output,
correct them, or both display and correct them.

Creating a configuration file avoids the need for complex command lines,
which are prone to errors. Here is an rs_subcmp configuration file that
compares the sales table in the pubs2 database in the data servers TOKYO_DS
and SYDNEY_DS:

PDS=TOKYO_DS
RDS=SYDNEY_DS
PDB=pubs2
RDB=pubs2
RTABLE=sales
RSELECT=select * from sales \

order by stor_id, ord_num
RUSER=sa
KEY=stor_id
KEY=ord_num

CHAPTER 11 Managing Subscriptions

Administration Guide 393

RECONCILE=Y
RECONCILE_CHECK=Y
WAIT=15
NUM_TRIES=5
VISUAL=Y

The PTABLE, PSELECT, and PUSER parameters, which are used for the
primary database, are not shown in this example. Their values are the same as
those of corresponding parameters in the replicate databases, so they need not
be included in the configuration file.

The RSELECT line and the PSELECT line (if used) must be entered on one
line. To continue a line onto the next line (row), precede each newline character
with a backslash as, for example:

RSELECT=select * from sales \
order by stor_id, ord_num

Note Due to update filtering, columns of rs_address datatype may not be
identical between the primary and replicate databases. Do not select rs_address
columns using RSELECT or PSELECT parameters.

When you execute rs_subcmp, you can override values in the configuration file
with command line options. For example, rather than changing the name of the
TOKYO_DS data server to TOKYO_DS2 in the configuration file, you can
specify it on the command line, using the -S flag, as the following example
illustrates:

rs_subcmp -f sales_cmp -S TOKYO_DS2 > sales_badrows

In this example, the -f option specifies a configuration file name, sales_cmp. If
the VISUAL parameter is set to “Y” in the configuration file (equivalent to the
-V command line option), a list of the inconsistent rows is generated. In this
example, the output is redirected to a file.

Schema comparison Schema comparison is useful in comparing schema between two databases that
may have the same data but different schemas.

For example, if you want to compare all schemas between two databases using
the config.cfg file:

rs_subcmp -f config.cfg

Obtaining subscription information

394 Replication Server

A report file which details the comparison result between two tables or two
databases is created after every schema comparison. The report file is named
reportPROCID.txt. If inconsistencies exist, rs_subcmp creates a reconciliation
script named reconcilePROCID.sql. The report file and the reconciliation
script are saved in the same directory where you issued the rs_subcmp.

Note Before running rs_subcmp for schema comparison, make sure that ddlgen
is working on your environment.

See rs_subcmp in Chapter 7, “Executable Programs” of the Replication Server
Reference Manual for detailed information in using schema comparison.

Manual data
reconciliation

To verify the reconciliation of statements before execution, a reconciliation file
can be created using the rs_subcmp command. You can use the command line
option -g with rs_subcmp or you can set the configuration file parameter
RECONCILE_FILE to “Y” to indicate the creation of a reconciliation file.

rs_subcmp
performance
enhancement

Hash algorithm improves the performance of rs_subcmp and compresses the
data in primary and replicated tables. The compressed data is then fetched by
rs_subcmp.

Instead of taking the entire row of data during comparison between the primary
table and replicated table, rs_subcmp now transfers only the compressed data
of each data row from the primary or replicated tables, and then verifies or
reconciles inconsistencies between them.

For an improve rs_subcmp performance, use the command line parameters -h
or -H or their equivalent configuration file parameters FASTCMP or
HASH_OPTION.

Note To support hash algorithm, rs_subcmp requires ASE 15.0.2 or later and
cannot handle case-sensitive comparison. It also cannot handle text, unitext or
image datatypes and does not allow the user to specify the precision for the
float datatype (maximum precision is used). Also, Sybase suggests to set the
ASE parameter default data cache to 128M or higher to get a better comparison
performance.

The rs_subcmp program has a large number of options, which you can specify
on the command line or in a configuration file. Refer to Chapter 7, “Executable
Programs,” in the Replication Server Reference Manual for a list of these
configuration file parameters and command line options.

CHAPTER 11 Managing Subscriptions

Administration Guide 395

Using publication subscriptions
With publication subscriptions, you create subscriptions for a group of
replication definitions using a single command. You collect replication
definitions and their articles in a publication at the primary Replication Server.
At the replicate Replication Server, you create a publication subscription
against that publication.

When you create a publication subscription, Replication Server creates a
subscription for each article in the publication.

Publication subscriptions and article subscriptions follow the rules and
requirements for single subscriptions with one exception: They cannot contain
where clauses. To specify a subset of rows that the replicate Replication Server
receives, include where clauses in the article. Refer to “Specifying a where
clause with the create article command” on page 312 for more information.

To use publications, the primary Replication Server must be version 11.5 or
later. To use publication subscriptions, the replicate Replication Server and the
route from the primary Replication Server and the replicate Replication Server
must be version 11.5 or later.

The following restrictions apply:

• A valid publication must exist before you can create a publication
subscription against it.

• The name of a publication subscription must be unique to the publication,
to the destination data server, and to the destination database.

• You can include articles in one or more publications that reference
different replication definitions for the same primary table. However, you
cannot subscribe to more than one replication definition per primary table
for each replicate table.

Use the command line to create and manage publication subscriptions.

Refer to “Using publications to replicate data at the command line” on page
309 for a list of steps for creating publications and publication subscriptions.

Refer to “Using publications” on page 308 for an overview of creating
publications and publication subscriptions.

Using publication subscriptions

396 Replication Server

Commands for creating and managing
publication subscriptions

Table 11-5 lists the RCL commands for working with publication
subscriptions. All of these commands, except check subscription, require
primary subscribe or create object permission at the source Replication Server
and create object permission at the destination Replication Server. Anyone can
execute check subscription.

See Table 9-3 on page 309 for a list of RCL commands for working with
publications.

Table 11-5: Commands for managing publication subscriptions

Command Task

create subscription sub_name for
publication pub_name

Creates a subscription for a publication and a subscription for each article in the
publication. With create subscription, you can:

• Subscribe to table replication definitions using the atomic, nonatomic, or no-
materialization method.

• Subscribe to function replication definitions using the no-materialization
method.

See “Using the create subscription command” on page 398.

define subscription sub_name for
publication pub_name

Defines a subscription for a publication and a subscription for each article in the
publication. Use with activate subscription and validate subscription.

With define subscription, you can subscribe to articles with table replication
definitions or function replication definitions using the bulk materialization
method. See “Creating publication subscriptions with bulk materialization” on
page 399.

activate subscription sub_name
for publication pub_name

Activates a subscription for a publication and a subscription for each article in
the publication. Use with define subscription and validate subscription for bulk
materialization. See “Creating publication subscriptions with bulk
materialization” on page 399.

validate subscription sub_name
for publication pub_name

Validates a subscription for a publication and a subscription for each article in
the publication. Use with define subscription and activate subscription for bulk
materialization. See “Creating publication subscriptions with bulk
materialization” on page 399.

check subscription sub_name for
publication pub_name

Displays the status of the publication subscription and all of its article
subscriptions. See “Displaying status information” on page 403.

check subscription sub_name for
article article_name in pub_name

Displays the materialization status of an article subscription. See “Displaying
status information” on page 403.

rs_helppubsub Displays information about publication subscriptions.

drop subscription sub_name for
publication pub_name

Removes the publication subscription and all of its article subscription from the
rs_subscriptions system table at the primary and replicate sites. See “Dropping
subscriptions for publications and articles” on page 401.

CHAPTER 11 Managing Subscriptions

Administration Guide 397

Enabling replication of the truncate table command

When you create, refresh, or define a publication subscription, you can enable
replication of truncate table to the replicate table. If you do not, you must
execute truncate table yourself at the replicate database.

For example, to create the publication subscription pubs2_sub and enable
replication of truncate table, enter this command at the destination Replication
Server:

create subscription pubs2_sub
for publication pubs2_sub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2
subscribe to truncate table

All subscriptions to the same replicate table must use truncate table
consistently. If a replicate table has a subscription that does not enable
replication of truncate table and you add another subscription that does enable
replication of truncate table, the publication subscription fails.

You do not need to include subscribe to truncate table when you activate and
validate the publication subscription.

See “Enabling replication of truncate table” on page 373 for more information.

Creating publication subscriptions
Once a publication has been validated, you can create subscriptions against it.
When you create a publication subscription, Replication Server creates a
subscription for each article in the publication.

Publication subscriptions and article subscriptions specify the publication, the
primary and replicate databases, and the materialization method. They do not
contain where clauses. To specify a subset of rows to be replicated, include
where clauses in the article description. Refer to “Specifying a where clause
with the create article command” on page 312.

drop subscription sub_name for
article article_name in pub_name

Removes the article subscription from the publication subscription and from the
rs_subscriptions system table at the primary and replicate sites. See “Dropping
subscriptions for publications and articles” on page 401.

Command Task

Using publication subscriptions

398 Replication Server

Using the create subscription command

Use create subscription to create a publication subscription and an article
subscription for each article in the publication. You can use create subscription
to materialize source data at the destination database using the atomic,
nonatomic, or no-materialization method.

Execute create subscription at the Replication Server that manages the
destination database. Subscription information is stored in the rs_subscriptions
system tables at the primary and replicate sites.

The following example creates a subscription named pubs2_sub for the
publication pubs2_pub. It also creates a subscription named pubs2_sub for
each article in pubs2_pub. The source database is pubs2 managed by the
TOKYO_DS data server. The destination database is also named pubs2; it is
managed by the SYDNEY_DS data server.

create subscription pubs2_sub
for publication
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2

Note The maximum size of a where clause in a create subscription statement is
255 characters.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Specifying a materialization method

Specify materialization methods for publication subscriptions in the same way
you specify materialization methods for regular subscriptions. When you use
create subscription, you can specify atomic, nonatomic, or the no-
materialization method. The default method is atomic materialization, using
the select with holdlock operation.

Article subscriptions share the name of the parent subscription and generally,
its materialization method. However, function replication definitions require
the bulk or no-materialization method. If you use create subscription, and
articles in the publication reference function replication definitions,
Replication Server uses the no-materialization method for these article
subscriptions—regardless of the materialization method specified in the
publication subscription.

CHAPTER 11 Managing Subscriptions

Administration Guide 399

See “Subscription materialization methods” on page 353 for a description of
the different materialization methods.

Refreshing publication subscriptions

When you add articles to an existing publication, you must add article
subscriptions to the existing publication subscription to subscribe to the new
articles. Use for new articles to refresh the subscription. This clause instructs
Replication Server to check the subscription against the publication and then to
create subscriptions for any unsubscribed articles.

For example, to refresh the publication subscription pubs2_sub, enter this
command at the destination Replication Server:

create subscription sub for publication pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2
for new articles

Use check subscription to find out whether a subscription exists for each article
in a publication. See “Displaying status information” on page 403 for more
information about check subscription.

Creating publication subscriptions with bulk materialization

Bulk materialization allows you to load subscription data from media such as
magnetic tape. Use this method if the amount of data to be transferred is too
large to copy through the network. You can also use this method to create
subscriptions for function replication definitions.

When you create publication subscriptions with bulk materialization, you must
use define subscription, activate subscription, and validate subscription. You use
these bulk materialization commands to create publication subscriptions in the
same way you create single subscriptions. You cannot include where clauses in
publication subscriptions.

Refer to “Specifying a where clause with the create article command” on page
312 for information about adding where clauses to articles.

Using the define subscription command

Use define subscription to create a publication subscription and a subscription
for each article in the publication. define subscription always creates a
subscription using bulk materialization.

Using publication subscriptions

400 Replication Server

Execute define subscription at the Replication Server that manages the
destination database. Subscription information is stored in the rs_subscriptions
system tables at the source and destination sites.

All subscriptions in the publication subscription are created at the same time.

The following example creates a subscription named pubs2_sub for the
publication pubs2_pub.

define subscription pubs2_sub
for publication pubs2_pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2

When you define a publication subscription with bulk materialization, you can
enable replication of truncate table to the destination table. See “Enabling
replication of the truncate table command” on page 397 for more information.

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Using the activate subscription command

Use activate subscription to activate a publication subscription and its
subscription subset. Execute activate subscription at the Replication Server that
manages the destination database.

Before you execute activate subscription, you must execute define subscription,
and the publication subscription status must be DEFINED. Refer to
“Displaying status information” on page 403 for information about displaying
subscription status.

All subscriptions in the publication subscription are activated at the same time.

The following example activates every subscription in the publication
subscription pubs2_sub.

activate subscription sub for publication pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Using the validate subscription command

Use validate subscription to set the subscription status to VALID for the
publication subscription, and its subscription subset. Execute validate
subscription at the Replication Server that manages the replicate database.

CHAPTER 11 Managing Subscriptions

Administration Guide 401

Before you execute validate subscription, you must execute activate subscription
and the publication subscription status must be ACTIVE. Refer to “Displaying
status information” on page 403 for information about displaying subscription
status.

All subscriptions in the publication subscription are validated at the same time.

The following example validates every subscription in the publication
subscription pubs2_sub.

validate subscription sub for publication pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Refreshing publication subscriptions using bulk materialization

When you refresh a publication subscription using bulk materialization, use the
for new articles clause when you define the publication subscription. You do not
need to repeat the clause when you activate and validate the subscription.

The following example refreshes the publication subscription pubs2_sub.

define subscription pubs2_sub
for publication pubs2_pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2
for new articles

See “define subscription” in the Replication Server Reference Manual for
syntax and usage guidelines.

To check whether a subscription exists for each article in a publication, execute
check subscription at the primary or replicate Replication Server. See
“Displaying status information” on page 403 for more information about
check subscription.

Dropping subscriptions for publications and articles
Use drop subscription to drop a publication subscription and all of its article
subscriptions, or to drop a single article subscription.

Using publication subscriptions

402 Replication Server

drop subscription removes information about the publication subscription and
its article subscriptions from system tables at the source and destination
servers. It does not remove publication information from the destination server.
Thus, you can create another subscription against the publication, and
Replication Server only needs to reload primary site information if it has been
changed.

Include the without purge clause to retain existing rows replicated by the
subscription to the destination database. The subscriptions are dropped all at
once.

This example drops a subscription named pubs2_sub for the publication
pubs2_pub using without purge.

drop subscription pubs2_sub
for publication pubs2_pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2
without purge

Include the with purge clause to delete existing rows replicated by the
subscription to the destination database. The subscriptions are dropped one at
a time.

This example uses with purge:

drop subscription pubs2_sub
for publication pubs2_pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2
with purge

The following example deletes the article pubs2_art, without removing rows
replicated by the subscription.

drop subscription sub for article pubs2_art
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2
without purge

Refer to Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for complete syntax and usage guidelines.

Viewing publication subscription information
You can view information about publication and article subscriptions with the
check subscription command or the rs_helppubsub stored procedure.

CHAPTER 11 Managing Subscriptions

Administration Guide 403

Displaying status information

Use check subscription at the primary Replication Server or the replicate
Replication Server to check the status of a publication subscription and its
article subscriptions or to check the status of an article subscription.

check subscription returns a status (such as VALID, MATERIALIZING, or
ACTIVE) along with a descriptive message. See “check subscription” in
Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for syntax and usage guidelines and a list of status
messages.

• This example displays the subscription status of the publication
subscription pubs2_sub.

check subscription pubs2_sub
for publication pubs2_pub

with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2

If the publication subscription is valid, Replication Server also checks
whether the subscription is current. When you alter a publication after the
subscription is created, the publication subscription is out of sync with the
publication. To create subscriptions for new articles and make the
subscription current, refresh the subscription using create subscription or
define subscription.

• This example displays the subscription status of the article pubs2_art in
the subscription pubs2_sub.

check subscription sub for article pubs2_art
in pubs2_pub
with primary at TOKYO_DS.pubs2
with replicate at SYDNEY_DS.pubs2List

Publication and Article Subscription Information

To display information about a publication subscription and article
subscriptions, use the rs_helppubsub stored procedure at either the primary or
replicate Replication Server RSSD.

Here are some examples of using rs_helppubsub:

• To list all publication subscriptions at a site, enter:

rs_helppubsub

Using publication subscriptions

404 Replication Server

For each publication subscription known to the site, the display includes
the names of the subscription and its associated publication, the names of
the primary and replicate databases and data servers, status information,
and the date of the latest change to the publication subscription.

• To display information about a particular publication subscription, enter:

rs_helppubsub subscription_name

The output displays the information described in the above example for all
publication subscriptions named subscription_name.

• To display information about a particular publication subscription and its
article subscriptions, enter:

rs_helppub subscription_name, publication_name,
primary_dataserver, primary_db,
replicate_dataserver, replicate_db

The output displays the information described in the above examples for
all publication subscriptions named subscription_name. For each article
subscription, the output displays subscription and article name, status
information for the primary and replicate Replication Servers, replication
definition name, autocorrection status, and the date of the latest change to
the article subscription.

See the Replication Server Reference Manual for complete syntax and usage
guidelines and sample output.

Administration Guide 405

C H A P T E R 1 2 Managing Replicated Objects
Using Multisite Availability

This chapter describes how to set up and manage database replication
definitions and subscriptions using multisite availability (MSA).

This chapter describes how to replicate database objects using database
replication definitions and MSA.

• See Chapter 9, “Managing Replicated Tables,” for information about
replicating individual tables using table replication definitions.

• See Chapter 10, “Managing Replicated Functions,” for information
about replicating individual system stored procedures.

Topic Page
Overview 406

Setting up an MSA system 408

Marking data for replication 414

Managing database replication definitions 415

Viewing information about database replication definitions 418

Using database, table, and function replication definitions
concurrently

418

Managing database subscriptions 420

Viewing information about database subscriptions 423

Using database, table, and function subscriptions concurrently 423

Replicating the master database in an MSA environment 424

Replicating DDL and system procedures 426

Replicating user stored procedures 427

Customizing function strings 427

Overview

406 Replication Server

Overview
MSA can make the process of setting up a replication system both faster and
easier.

Some of the features that MSA provides are:

• A simple replication methodology that requires only one replication
definition for the primary database and only one subscription for each
subscribing database.

• A replication filtering strategy that lets you choose whether or not to
replicate individual tables, transactions, functions, system stored
procedures, and data definition language (DDL).

• Replication of DDL to any replicate database—including non–warm
standby databases.

• Replication to multiple replicate sites—for warm standby as well as non–
warm standby databases.

You can overlay MSA scenarios over your existing replication structure. The
procedures for implementing MSA are similar to those you use to replicate to
warm standby or replicate databases.

Database replication When you use table and function replication, you describe each piece of data
that is to be replicated using individual table and function replication
definitions and subscriptions. This methodology allows you to transform data
and provides fine-grained control over the information being entered in the
replicate database. However, it requires that you mark each table or function to
be replicated, create a replication definition for each replicated table or
function, and create subscriptions for each replication definition at each
replicate database.

MSA lets you identify specific database objects: tables, functions, transactions,
DDL, and system stored procedures in a single replication definition. You can
choose to replicate the entire database, or you can choose to replicate—or not
replicate—particular tables, functions, transactions, DDL, and system stored
procedures in that database. If you do not need to replicate partial tables, MSA
can provide replication while affording the advantages of simple setup and
maintenance.

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 407

When the replicate is
a warm standby
database

In the non-MSA warm standby scenario, changes to the primary database are
copied directly to the warm standby database without alteration. This
methodology allows replication of DDL. To change or qualify the data sent,
you must add table and function replication definitions. Each primary database
can have one, and only one, standby database. See Chapter 3, “Managing
Warm Standby Applications,” in the Replication Server Administration Guide
Volume 2 for a complete discussion of this warm standby application.

MSA provides all the features of the warm standby application described in
Chapter 3, “Managing Warm Standby Applications,” in the Replication Server
Administration Guide Volume 2. In addition, MSA:

• Enables replication to multiple standby databases

• Allows you to replicate or not replicate specific database objects

Bidirectional
replication support for
DDL in MSA

You can configure multisite availability (MSA) to set up a two-way replication
of DDL transactions between two Adaptive Server databases.

Replication Server 15.0 and later supports this bidirectional replication using a
Replication Server configuration parameter called dsi_replication_ddl. When
dsi_replication_ddl is set to on, DSI sends set replication off to the replicate
database, which instructs it to mark the succeeding DDL transactions available
in the system log not to be replicated. Therefore, these DDL transactions are
not replicated back to the original database, which enables DDL transactions
replication in bidirectional MSA replication environment.

To set up bidirectional replication:

1 Create a bidirectional MSA replication environment. See “Creating a
bidirectional replication environment” on page 70.

2 Grant “set session authorization” privilege to the maintenance user on the
destination database, as shown in the following example:

grant set session authorization to maint_user

3 Alter the connection of the destination database to set dsi_replication_ddl
configuration parameter to “on” to enable bidirectional DDL replication,
as shown in the following example:

alter connection to dataserver.database set dsi_replication on

4 Replicate DDL transactions.

MSA mixed-version
environment

In an MSA mixed-environment, the primary Replication Server filters the data
features with higher versions.

Setting up an MSA system

408 Replication Server

Incompatible commands are not sent to the standby Replication Server. The
configuration parameter dist_stop_unsupported_cmd suspends the DIST if
there are incompatible commands. You can configure this parameter using the
following syntax:

configure replication server
set ‘dist_stop_unsupported_cmd’ to [‘on’ | ‘off’]

alter connection srv.db
set ‘dist_stop_unsupported_cmd’ to [‘on’ | ‘off’]

alter logical connection lsrv.ldb
set ‘dist_stop_unsupported_cmd’ to [‘on’ | ‘off’]

By default, dist_stop_unsupported_cmd is off. When the parameter is on, the
DIST suspends itself if a command cannot be sent to some destinations.
Resume DIST by skipping the entire transaction, or reset the parameter to off.

Setting up an MSA system
You can set up MSA replication in many different ways. This section describes
how to set up three representative MSA replication architectures:

• Simple, full-database replication

• Replication of specified tables and functions

• Replication to multiple replicate databases

You can easily add syntax to these examples to replicate DDL or system stored
procedures. See “Replicating DDL and system procedures” on page 426.

Replicating the database
In this simple scenario, you use database replication definitions and
subscriptions to replicate the entire primary database to one or more replicate
databases.

The basic steps are:

1 Mark the primary database for replication using sp_reptostandby. For
example:

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 409

sp_reptostandby primary_db, ‘all’

Note sp_reptostandby does not mark user stored procedures for
replication. You must mark each user stored procedure individually using
sp_setrepproc.

2 Set the RepAgent parameter send warm standby xacts to true so that
RepAgent sends system transactions and DDL to both standby and
replicate databases. For example, at the primary data server, enter:

sp_config_rep_agent primary_db,
‘send warm standby xacts’, ‘true’

3 Create a database replication definition using create database replication
definition at the primary Replication Server. For example:

create database replication definition repdef_1
with primary at PDS.primary_db

See “create database replication definition” in the Replication Server
Reference Manual for complete syntax and usage information.

4 Create a database subscription for each subscribing database. In this
example, we are creating a database subscription using create subscription
and the no materialization method. The primary and replicate databases
have been synchronized prior to subscription. You can also use create
subscription if activities at the primary database can be suspended.

For example, at the replicate Replication Server, enter:

create subscription sub_1
for database replication definition repdef_1
with primary at PDS.primary_db
with replicate at RDS.rdb

without materialization
subscribe to truncate table

When creating a database subscription, you can use the no materialization
method (as shown in step 4) or the bulk materialization method to
synchronize databases. The procedure you use depends on which
materialization method you choose and whether primary table activities
can be suspended.

See “Materialization” on page 421 for syntax and usage information for
using the bulk materialization method.

Setting up an MSA system

410 Replication Server

Replicating tables and functions
You can use MSA capabilities to replicate particular tables or functions. The
basic steps are:

1 Mark tables, stored procedures, and database for replication and create the
database replication definition.

In this example, we are replicating table1 and table2 only. You can identify
particular tables in either of two ways:

• Mark the database for replication using sp_reptostandby. Create the
database replication definition and identify specific tables for
replication using create replication definition. You must also tell the
RepAgent to send replicate data to replicate as well as standby
databases.

Enter this information at the primary data server:

sp_reptostandby primary_db, ‘all’
sp_config_rep_agent primary_db,

‘send warm standby xacts’, ‘true’

Enter this information at the primary Replication Server:

create database replication definition rep_1B
with primary at PDS.pdb
replicate tables in (table1, table2)

• Alternatively, mark particular tables and stored procedures for
replication using sp_setreptable and sp_setrepproc. Then, create the
database replication definition. For example:

sp_setreptable table1, ‘true’

sp_setrptable table2, ‘true’

create database replication definition rep_1A
with primary at PDS.pdb

Note You can replicate DDL changes only if you mark its database
for replication using sp_reptostandby.

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 411

2 Create the database subscription. To subscribe without materialization, see
“Replicating the database” on page 408. To subscribe using bulk
materialization, see “Materialization” on page 421.

Note You can also use sp_reptostandby to mark the database and then create
table replication definitions and subscriptions—without creating a database
replication definition. This method eliminates the need to mark individual
tables, yet allows you to select and replicate partial tables. The database
connection parameter rep_as_standby must be on.

For considerations when dealing with encrypted columns, see “Replicating
encrypted columns”.

Using replicate databases as warm standby databases
You can use MSA to replicate DDL and other database objects to multiple
replicate or warm standby databases. You can create database replication
definitions and database subscriptions to logical connections. See Chapter 3,
“Managing Warm Standby Applications,” in the Replication Server
Administration Guide Volume 2 for detailed information about setting up
logical connections.

This section uses an example to describe the basic setup for a multiple warm
standby architecture. In this example, you replicate from one primary database
(dsA.db) to two replicate databases (dsB.db and dsC.db). There is a single
Replication Server controlling replication, and only standby replication takes
place to and from the primary database. Only dsA can replicate DDL and
system stored procedures. If users are switched to dsB.db or dsC.db, DDL and
system stored procedures are not replicated.

Note This example uses a different database replication definition for each
subscribing site. You could also create a single database replication definition
that handles the common set of replicated tables and functions, and then create
table and function subscriptions for the tables and functions that are not
common to both standby databases.

The basic steps are:

1 Suspend all database activities.

2 Mark dsA.db, dsB.db, and dsC.db for replication using sp_reptostandby.

Setting up an MSA system

412 Replication Server

3 At each data server, set send warm standby xacts to true for each
RepAgent. For example:

sp_config_rep_agent db,
‘send warm standby xacts’, ‘true’

4 At Replication Server, set dsi_replication off for each connection. For
example:

alter connection to dsB.db
set dsi_replication ‘off’

Note Sybase recommends that you set dsi_replication to off for warm
standby connections as it prevents replicated data in the transaction log
from being replicated again in the event of a switchover. dsi_replication
should be turned on (the default) for normal replication.

5 Create a database replication definition for each database, defining each as
the primary. For example:

create database replication definition rep_2
with primary at dsA.db
replicate DDL
replicate system procedures

create database replication definition rep_2
with primary at dsB.db

create database replication definition rep_2
with primary at dsC.db

6 As each database can be a primary or a standby database, create or define
subscriptions so that each database subscribes to every other database. You
can use different materialization methods for each subscription. For
example:

create subscription sub_2B
for database replication definition rep_2

with primary at dsB.db
with replicate at dsA.db
without materialization
subscribe to truncate table

create subscription sub_2C
for database replication definition rep_2

with primary at dsC.db
with replicate at dsA.db
without materialization
subscribe to truncate table

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 413

define subscription sub_2A
for database replication definition rep_2
with primary at dsA.db

with replicate at dsB.db
subscribe to truncate table
use dump marker

create subscription sub_2C
for database replication definition rep_2
with primary at dsC.db

with replicate at dsB.db
without materialization
subscribe to truncate table

define subscription sub_2A
for database replication definition rep_2
with primary at dsA.db

with replicate at dsC.db
subscribe to truncate table
use dump marker

create subscription sub_2B
for database replication definition rep_2
with primary at dsB.db

with replicate at dsC.db
without materialization
subscribe to truncate table

7 Dump dsA.db.

8 With the dsB.db DSI suspended, load database to dsB.db.

9 Resume connection to dsB.db.

10 With the dsC.db DSI suspended, load database to dsC.db.

11 Resume connection to dsC.db.

12 Resume database activities.

Switchover

In any standby situation, switchover involves disconnecting users from the
active database and reconnecting them to the new active database. In this case,
switchover must wait for the queues to empty so that no transactions are lost.

Refer to Chapter 3, “Managing Warm Standby Applications,” in the
Replication Server Administration Guide Volume 2 for more information about
logical connections and switchover.

Marking data for replication

414 Replication Server

Marking data for replication
You can mark databases, tables, and functions for replication using
sp_reptostandby, sp_setreptable, and sp_setrepproc.

When the database is marked by sp_reptostandby:

• The RepAgent configuration parameter send warm standby xacts must be
true.

• User-defined stored procedures are not replicated unless they are marked
individually using sp_setrepproc.

• RepAgent sends DDL, system procedures, and transactions to the
Replication Server. A database replication definition can filter them out at
the Replication Server.

• And you use table replication definitions and table subscriptions, you can
send table data to both replicate databases and warm standby databases by
setting the database connection parameter rep_as_standby on.

When the database is not marked by sp_reptostandby, DDL is not replicated for
the marked tables and functions.

Table 12-1 summarizes how data is replicated.

Table 12-1: Data replication

Data marked by
Table and function
subscriptions only

Database subscription
only

Table, function, and
database
subscriptions coexist

sp_setreptable and
sp_setrepproc

• Replicate marked data

• Do not replicate DDL

• Replicate marked data

• Do not replicate DDL

• Replicate marked data

• Do not replicate DDL

sp_reptostandby • Check rep_as_standby

• Do not replicate DDL

• Replicate all data

• Replicate DDL
(optional)

• Check rep_as_standby

• Replicate DDL
(optional)

sp_setreptable,
sp_setrepproc, and
sp_reptostandby

• Check rep_as_standby

• Do not replicate DDL

• Replicate all data

• Replicate DDL
(optional)

• Check rep_as_standby

• Replicate DDL
(optional)

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 415

Managing database replication definitions
A table, a function, a transaction, DDL, or a system stored procedure can be a
replicated object. A database replication definition specifies filters for
replicated objects—either including or excluding the same or entire replicated
object from replication. For example:

create database replication definition rep_1C
with primary at PDS.pdb

replicate tables in (table1, table2)
not replicate functions in (fc_a)
not replicate system procedures
replicate transactions
replicate DDL

In this example, we are replicating:

• table1 and table2

• All functions except fc_a

• All transactions

• Supported DDL commands

We are not replicating:

• Any database tables except table1 and table2

• Function fc_a

• Any system procedures

See “create database replication definition” in the Replication Server
Reference Manual for complete syntax and usage information.

Note Database replication definitions do not support the options
send-standby-all-columns, send-standby-all-parameters, and
send_standby_repdef_cols. Where a database replication definition exists,
Replication Server sends all columns or parameters.

Altering database replication definitions
You can change a database replication definition using alter database replication
definition. This command allows you to replace one filter at a time. For
example:

Managing database replication definitions

416 Replication Server

alter database replication definition rep_1C
with primary at PDS.pdb
not replicate tables in (table2)
with dsi_suspended

See the Replication Server Reference Manual for complete syntax and usage
information.

When you execute alter database replication definition, Replication Server
writes an rs_marker to the inbound queue. The command does not take effect
until the marker reaches the Distributor (DIST), which will by then have rebuilt
the Database Subscription Resolution Engine (DSRE) to incorporate the
changes.

Altering a database replication definition with associated subscriptions may
desynchronize replicate tables. To resynchronize, you can either:

• Quiesce Replication Server, drain the transaction log, and apply changes
manually, or

• Use the with_dsi_suspended option, which causes the replicate Replication
Server to suspend the replicate DSI when it reads the “alter database
replication definition” marker.

❖ Altering a database replication definition and resynchronizing replicate
tables

1 Execute alter database replication definition and include the with
dsi_suspended phrase.

2 Wait for the replicate DSI to suspend.

3 Use bulk materialization to resynchronize replicate tables.

4 Resume the connection.

Dropping database replication definitions
You can drop a database replication definition, but you must first have dropped
all associated database subscriptions. See “drop database replication
definition” in the Replication Server Reference Manual for syntax and usage
information.

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 417

Using database replication filters
The Subscription Resolution Engine (SRE) evaluates table and function
subscription rows. The Database Subscription Resolution Engine (DSRE)
evaluates database objects—except transactions. When a database replication
definition causes a transaction to be sent to the replicate Replication Server, the
DIST evaluates the transaction before other database objects are evaluated by
the DSRE and before transaction rows are evaluated by the SRE. Thus,
Replication Server filters out transactions even if they contain data that
satisfies a database subscription or a table or function subscription.

If a database subscription and a table or function subscription coexist for the
same table or function, the table or function subscription takes precedence. In
this instance, the DIST does not pass the replicated table or function to the
DSRE for evaluation; the DIST passes it to the SRE.

Figure 12-1: Evaluation of database replication filters

Viewing information about database replication definitions

418 Replication Server

Viewing information about database replication
definitions

You can use rs_helpdbrep to view information about a specific database
replication definition or all database replication definitions for a database or a
data server.

For example, to view information about the rep_1B database replication
definition, enter:

rs_helpdbrep rep_1B, PDS, pdb

For syntax and usage information about rs_helpdbrep, see the Replication
Server Reference Manual.

Using database, table, and function replication
definitions concurrently

You do not need to add table and function replication definitions when you use
a database replication definition. However, to transform the data, replicate
minimal columns, not replicate dynamic SQL, or use primary keys to improve
performance, you must do so.

Create and use table or function replication definitions that include the send
standby clause to:

• Change the name of a replicated table or function

• Change the name of a replicated column

• Publish different column datatypes

• Replicate fewer columns or parameters

• Replicate minimal columns

• Not replicate dynamic SQL

• Use customized function strings

Create and use table or function replication definitions where the send standby
clause is optional to:

• Declare different table column datatypes

• Improve performance using primary keys

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 419

• Set autocorrection for materialization or dematerialization

• Use table or function subscription to override database replication

• Exclude dynamic SQL in the standby database combined with
dynamic_sql setting

Note As long as a database replication definition and a database subscription
are in place, you can use table or function replication definitions without table
or function subscriptions. You need to use table or function subscriptions only
if you require the functionality they provide. See “Using database, table, and
function subscriptions concurrently” on page 423.

If a database replication definition and table replication definitions exist at the
primary, and a database subscription but no table subscriptions exist at the
replicate, replication behavior depends in part on the presence or absence of the
send standby replication definition columns/parameters clause in the table or
function replication definition.

• If the send standby clause is present, the database subscription honors the
table or function replication definition; the table replication definition’s
primary key columns and replicate minimal columns settings are used to
replicate into the replicate database. The database subscription always
treats send standby all columns as send standby replication definition
columns.

• If the table replication definition does not contain the send standby clause
and other replication definitions exist for a given table, the database
subscription replicates data using the internal table replication definition
(the union of all such replication definitions). All columns are replicated,
and data is converted to the declared columns or datatypes.

Altering database replication definitions
Adding or dropping database replication definitions does not affect table or
function subscriptions.

When you alter a database replication definition, you replace the database
replication filter. Replication Server places a marker in the inbound queue and
allows the DIST to process the command. The new filter is applied to
transactions committed after the marker.

• If a table subscriptions exists, no action is required.

Managing database subscriptions

420 Replication Server

• If no table subscription exists, you must include the dsi_suspended clause
in the alter database replication definition command, or manually
materialize or dematerialize the table.

Altering table and function replication definitions
If you create or delete a table or function replication definition—and a database
subscription exists—the change takes place immediately for new data. Data
already in the stable queues continues to reference preexisting conditions until
all referring data has been applied.

Similarly, if you drop a table or function replication definition, Replication
Server continues to reference that replication definition until all referring data
in the stable queues has been applied.

However, if you alter a table or function replication definition when a database
subscription exists, the change takes place immediately for new data and for
data already in the stable queues.

Alter a table or function replication definition using one of these methods:

• Suspend primary table and function activities before using alter replication
definition, or

• Create a new table or function replication definition and then drop the old
one.

Managing database subscriptions
When you create a database replication definition at the primary database, you
must also create a database subscription at each subscribing database. You can
use the no materialization method or the bulk materialization method. If you
create a database subscription, you cannot use a where clause to set the criteria
for subscribed data; all data is subscribed.

If you need to set criteria for particular tables or functions, you can add table
or function subscriptions. See “Using database, table, and function
subscriptions concurrently” on page 423 for more information.

When there is a database subscription, the DSI for that connection is always
treated as if for regular replication. That is, the dsi_replication parameter is off,
and the dsi_keep_triggers parameter is on.

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 421

When there is a database subscription—and table and function replication
definitions—but there are no table or function subscriptions:

• If the table and function replication definitions contain the send standby
clause, the database subscription honors the table or function replication
definition.

• If the table and function replication definitions do not contain the send
standby clause, all columns and parameters are replicated and the data is
converted to the declared column and parameter datatypes.

Materialization
Database subscription requires either the none method (no materialization) or
the bulk method of materialization.

Subscription without materialization

To create a database subscription when the primary and replicate databases
have been synchronized prior to subscription, or activities at the primary
database can be suspended, use create subscription with the without
materialization clause. See the example in “Replicating the database” on page
408.

When you use the no materialization method, you can materialize the replicate
databases using bcp, dump and load, mount and unmount, or other methods.
Because Replication Server does not coordinate the initial database
synchronization process, you will likely need to suspend database applications.
Use this method if you are materializing the replicate database with a cross
platform dump and load (XPDL).

Subscription with bulk materialization

You can use dump and load or manual coordination methods to synchronize
databases.

To create a database subscription using dump and load coordination, use define
subscription with the use dump marker clause. Both the primary and replicate
databases and Replication Servers, must have the same server user ID,
password, and role settings.

define subscription sub_2
for database replication definition repdef_1

Managing database subscriptions

422 Replication Server

with primary at PDS.primary_db
with replicate at RDS.rdb
subscribe to truncate table
use dump marker

After you define the subscription:

1 Dump PDS.pdb. The DSI connection to the replicate database is
suspended when the dump marker reaches the replicate Replication
Server. It is suspended so that no data will be replicated until you finished
step 2. Replication Server activates and validates the subscription
automatically when the dump marker is replicated.

 Warning! Do not activate subscription or it will override the wait for dump
marker at the Replication Server.

2 Load PDS.pdb to RDS.rdb.

3 Resume the DSI connection to the RDS.rdb.

Altering database subscriptions
You cannot alter a database subscription directly. To alter a database
subscription, delete the existing database subscription using drop subscription,
and then create a new one.

Dropping database subscriptions
You can delete a database subscription using drop subscription. You must
include the without purge option so that Replication Server will not remove
rows added by the subscription to the replicate. For example:

drop subscription sub_1a
for database replication definition rep_1

with primary at PDS.pdb
with replicate at RDS.rdb
without purge ...

Dropping a database subscription does not affect existing table or function
subscriptions. Similarly, dropping a table or function subscription does not
affect existing database subscriptions. However, in this case, the replicate
tables may need to be rematerialized.

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 423

See the Replication Server Reference Manual for complete syntax and usage
information.

Viewing information about database subscriptions
You can use rs_helpdbsub to view information about a specific database
subscription or all database replication definitions for a database or a data
server.

For example, to view information about the sub_2B database subscription,
enter:

rs_helpdbsub sub_2B, dsA, db

For syntax and usage information about rs_helpdbsub, see the Replication
Server Reference Manual.

Using database, table, and function subscriptions
concurrently

If a database subscription and table or function subscriptions coexist, the table
or function subscription overrides the database subscription. That is,
Replication Server replicates the table or function according to the table or
function subscription, not the database subscription.

Database subscriptions do not support the where clause or the for new articles
clause. When using a database subscription, you need to create a table
subscription only to:

• Use the where clause of a table subscription

• Replicate a table filtered out by the database replication definition

Note A database subscription supports the subscribe to truncate table
clause, but not for those tables with a table subscription.

• Implement autocorrection on a table

Replicating the master database in an MSA environment

424 Replication Server

Creating and dropping subscriptions
When database and table or function subscriptions are used concurrently, take
care when creating or dropping those subscriptions.

• If you create a database subscription that references a table with an
existing table subscription, make sure you do not overwrite the replicated
table when synchronizing databases:

a Back up the replicated table.

b Use dump and load to synchronize the replicate database.

c Copy the replicated table back into the replicate database.

• Drop a table or function subscription with suspension. After the replicate
DSI is suspended, you can dematerialize or resynchronize the replicate
table or function.

• When a database subscription exists that includes a table and you want to
add a table subscription, make sure you define the table subscription using
bulk materialization. Defining the table subscription does not stop
database replication for the table. Database replication for a table stops
when its table subscription is activated.

• When dropping a database subscription, you must manually purge all
replicated tables that do not have table subscriptions. Replication Server
does not dematerialize replicated tables.

Replicating the master database in an MSA
environment

You can replicate Adaptive Server logins from one master database to another.
Master database replication is limited to DDL, and the system commands used
to manage logins and roles. Master database replication does not replicate data
from system tables, or replicate data or procedures from any other user tables
in the master database.

Both the source Adaptive Server, and the target Adaptive Server must be the
same hardware architecture type (32-bit versions and 64-bit versions are
compatible) and the same operating system (different versions are also
compatible).

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 425

For a list of supported DDL and system procedures that apply to the master
database, see “Restrictions and requirements when using sp_reptostandby”
and “Supported DDL commands and system procedures” in the Replication
Server Administration Guide Volume 2.

Replication Server versions 12.0 and later support master database replication
with warm standby, and with MSA in Replication Server 12.6 and later. The
primary or active Adaptive Server must be version 15.0 ESD #2 and later.

See “Replicating the master database in a warm standby environment” in the
Replication Server Administration Guide Volume 2 for information about
master database replication in a warm standby environment.

❖ Setting up a master database replication in an MSA environment

1 User rs_init to set up the primary and replicate master databases.

2 Use bcp or manually synchronize syslogins and suids at each master
database. Do not use dump and load to materialize the replicate master
database.

3 Mark the primary master database:

sp_reptostandby master, ‘all’

4 Stop the RepAgent on the primary master database:

sp_stop_rep_agent master

5 Configure the replication primary master database to send warm standby
transactions:

sp_config_rep_agent master,‘send warm standby
xacts’,‘true’

6 Restart the RepAgent on the primary master database:

sp_start_rep_agent master

7 Create a database replication definition to replicate the system procedures:

create database replication definition master_dbrep
with primary at PDS.master
replicate system procedures

8 Create a database subscription for each subscribing master database; do
not materialize the data:

create subscription master_dbsub1
for database replication definition master_dbrep
with primary at PDS.master
with replicate at RDS.master

Replicating DDL and system procedures

426 Replication Server

without materialization

Replicating DDL and system procedures
MSA lets you replicate DDL to nonstandby databases. See Chapter 3,
“Managing Warm Standby Applications” in the Replication Server
Administration Guide Volume 2 for a list of DDL commands supported for
replication.

To replicate DDL and system procedures:

• Mark the primary database using sp_reptostandby.

• Set the RepAgent parameter send warm standby xacts to true—even if there
is no standby database.

• Create a database subscription.

• Make sure that both the primary and replicate data servers are the same
version of Adaptive Server.

In addition, these constraints apply:

• When replicating system procedures, and the primary and replicate
databases have different names – filter out the sp_config_rep_agent and
the sp_add_user system procedures in the database replication definition
as they use database names as parameters. For example:

create database replication definition myrepdef
with primary at PDS.pdb
not replicate system procedures in
(sp_config_rep_agent, sp_add_user)

• When replicating DDL – the primary and replicate databases must have the
same login names and passwords; the DSI uses the original server login
name and password to log in to the replicate database.

• When replicating DDL contained in user-defined transactions – make sure
that the Adaptive Server database option ddl in tran is set to true.
Otherwise, the DSI will shut down when replicating DDL.

Heterogeneous data
servers

In a heterogeneous environment, non-Sybase data servers can replicate DDL if
the Replication Agent can capture and send DDL commands in Transact-SQL
or ANSI SQL (preferred).

CHAPTER 12 Managing Replicated Objects Using Multisite Availability

Administration Guide 427

Replicating user stored procedures
To replicate user stored procedures, mark each procedure individually using
sp_setrepproc. Database replication definitions do not check for owner
information for user stored procedures.

Customizing function strings
You can customize only those function strings that are not in the
rs_default_function_class function-string class.

For functions with replication-definition scope:

• The DSI uses rs_default_function_class for functions that do not use a table
or function replication definition with the send standby clause.

• Otherwise, the DSI uses the function-string class associated with the
connection.

For functions with function-string class scope, the DSI always uses the
function-string class associated with the connection.

Customizing function strings

428 Replication Server

Administration Guide 429

A
activate subscription command 371, 396, 400

for publications 396
publication subscription example 400

Adaptive Server
described 28
login name for Replication Server access 195

Add Server wizard 68
adding

ID server domains 89
primary keys 301
Replication Servers to existing systems 88
searchable columns 303

Advanced Security option 237
alter applied function replication definition command

333
alter connection command 128, 166, 172, 226, 227,

236, 321
changing maintenance user password 195
disabling password encryption 202

alter database replication definition command 415
alter function replication definition command 249,

299, 334, 346
alter replication definition command 322
alter request function replication definition command

334
alter route command 92, 106

changing passwords 195
disabling password encryption 202

alter user command
changing passwords 201

application models
consolidated replicate 12
redistributed corporate rollup 14
replicated consolidated replicate 14

applied functions
described 335
prerequisites for implementing 330
setting up 337

article subscriptions, creating 397
articles

adding to publication 314
definition 308
displaying information about 313
dropping 316

asynchronous transaction replication 2
atomic materialization

create subscription command for 374
described 353, 354
text and image columns 386

autocorrection
bulk materialization 363
enabling for nonatomic materialization 356, 369

automatic backup, ERSSD 92

B
background processing 59
backup, ERSSD 101
bars

displaying 59
hiding 59

batch configuration parameter 174
batch ltl configuration parameter 115
batch_begin configuration parameter 174
bcp utility program 360
bidirectional replication environment 407

creating 70
bitmap subscriptions 388
bulk materialization

autocorrection 363
define subscription command 377
described 354, 357
for replicated functions 345
methods 358
publication subscriptions 399
refreshing publication subscriptions 401
simulating atomic materialization 361

Index

Index

430 Replication Server

simulating nonatomic materialization 363
stopping primary updates 359
taking a snapshot 359

buttons
toolbar 59

C
case, in RCL commands xx
certificate authority 237
certificates 237
certifications

component xvii
product xvii

changing
database connections 170
existing replication system 88, 90
ID Server login name and password 195
replication definitions 293
Replication Server login names for the RSSD RepAgent

194
routes 157
RSSD primary or maintenance user 193
searchable columns 307
user passwords 200

character sets, conversion 175
check publication command 309, 313
check subscription command 371, 379, 396

example 403
for articles 396
for publication subscriptions and articles 403
for publications 396

CipherSuites 237
class-level translations 319

existing connections 321
new connections 319
system-defined variables 322
with column-level translations 326

client application
described 31

Client/Server Interfaces (C/SI), client applications for 31
column-level translations 322

creating 323
multiple replication definitions 326

columns

changing in replicated tables 303, 307
deleting from primary or replicate table 306
IDENTITY 291
rs_address datatype 388
specifying for replication definition 253

command_retry command configuration parameter
174

commands
configure replication server 99
for encrypting passwords 197
sysadmin erssd 98, 100

Computed columns 288
deterministic expressions 288
materialized 288
nondeterministic expressions 288
rs_set_dml_on_computed function string 289
virtual 288

concurrency control, described 48
configuration file 87

Replication Server 87
rs_subcmp program 392

configuration parameters
dynamic 95
ERSSD 99
for Replication Server 91
send_standby 418
viewing 125

configuration star 140
configure replication server command 91, 92, 99, 218,

223, 229
Configure Replication wizard 67
configuring

environment with primary and multiple replicates
69

replication environment 67
standard warm standby environment 67

configuring a standard warm standby environment 68
connect database configuration parameter 115
connect dataserver configuration parameter 115
connect source permission 203
connecting to Replication Server, using network-based

security 230, 231, 232
connections

creating 71
defined 40
network-based security for 226

Index

Administration Guide 431

consistency
verifying for subscriptions 391

consolidated replicate application model 12
Contents tab 55
context menus 58
context-sensitive menus, shortcut to 58
controls

dialog box 58
create applied function replication definition command

333
create article command 309, 311
create connection command 166, 168
create database replication definition command 415
create function replication definition command 334,

338
create function string command 366
create object permission 203
create partition command 47
create publication 309, 310
create replication definition command 249, 251, 322,

323
create request function replication definition command

333
create route command 145
create subscription command

and nonatomic materialization 376
 370, 396, 398

and atomic materialization 375
example for publications 398
for publications 312, 396

Create Subscription Without Materialization option
69

create user command 200
adding Replication Server login name for RSSD

RepAgent 194
creating

a replication environment object 65
connections 71
database connections 167
function replication definitions 338, 342
multiple ID Server domains 89
replicate tables 382
replication definitions 71, 242, 250
Replication Server login names 200
subscriptions 72, 198, 368

creating a bidirectional replication environment 70

current_rssd_version configuration parameter 91

D
data availability

fault tolerance 3
local access 3

Data Definition Language (DDL) 406
replicating 426

data limits filter mode configuration parameter 115
data server

and C/SI support 16
ID numbers 90
maintenance user login names 20
support for heterogeneous 16, 28
suspending access to 171

Database Administrator, role of 21
database connections

attributes 167
changing attributes of 170
creating 167
displaying 188
dropping 187
information for 168
managing 163, 183
monitoring 188
resuming 171
suspending 171

database logs
truncation 50

database replication definitions 415
database replication filters 417
database schema, replication definitions 299
Database Subscription Resolution Engine (DSRE)

417
database subscriptions

altering 422
dropping 422, 424
managing 420
materialization 421
with table and function subscriptions 423

databases
managed by Replication Server 188
preparing for replication 163

datatype classes

Index

432 Replication Server

rs_db2_dt_class 322
rs_msss_dt_class 322
rs_oracle_dt_class 323
rs_sqlserver_dt_class 322
rs_udb_dt_class 323

datatype definitions 324
for DB2 datatypes 325
for Microsoft SQL Server datatypes 325
for Oracle datatypes 326

datatypes
identity columns 291
rawobject and rawobject in row 269, 274
rs_address 291, 388
timestamp columns 292

db_packet_size configuration parameter 174
DB2 databases, function-string class 17
declared datatypes 323
define subscription command 371, 396, 399

and bulk materialization 377
creating publication subscriptions 399
for publications 396
publications subscription example 400
using with replicated functions 340

Defined Subscription for Bulk Materialization option 69
deleting an object 63
Details list 57
direct routes 140
directory services 38
disconnecting

from a replication environment 66, 67
disk_affinity configuration parameter 147, 174
displaying

bars 59
database connections 188
databases with subscriptions 391
DSI thread status 189
icons 59
replication definitions 298
RSI thread status 161
subscription information 391
users of replication system 208
users’ permissions 209

displays
updating 60

distributed data models
corporate rollup 9

custom design 9
distributed primary fragments 9
redistributed corporate rollup 9

distributed database system and Replication Server 4
distributed primary fragments, consolidated replicate

application model 14
distributor thread (DIST) 180
drop article command 310, 316
drop connection command 106, 187
drop database replication definition command 416
drop function replication definition 347
drop function replication definition command 333
drop publication command 310, 315, 316
drop replication definition command 249, 304
drop route command 107
drop subscription command 105, 371, 396, 401

example 402
example of 402
for articles 397
for publications 396
function replication definitions 381
table replication definitions 381

drop user, dropping login names 201
drop_repdef clause 316
dropping

database connections 187
databases from the ID Server 187
function replication definitions 347
primary keys 301
replication definitions 304
Replication Server login names 201
Replication Servers from existing system 105, 109
routes 159
searchable columns from the searchable columns list

301, 307
subscriptions 198

DSI threads
described 46
displaying 189
scheduler 46

dsi_alt_writetext configuration parameter 174
dsi_charset_convert configuration parameter 175
dsi_check_lock_wait configuration parameter 175
dsi_cmd_batch_size configuration parameter 175
dsi_cmd_separator configuration parameter 175

Index

Administration Guide 433

dsi_commit_check_locks_intrvl configuration
parameter 175

dsi_commit_check_locks_max configuration
parameter 176

dsi_commit_control configuration parameter 176
dsi_exec_request_sproc configuration parameter 176
dsi_fadeout_time configuration parameter 176
dsi_ignore_underscore configuration parameter 176
dsi_isolation_level configuration parameter 176
dsi_keep_triggers configuration parameter 177
dsi_large_xact_size configuration parameter 177
dsi_max_cmds_to_log configuration parameter 177
dsi_max_text_to_log configuration parameter 177
dsi_num_large_xact_threads configuration parameter

177
dsi_num_threads configuration parameter 177
dsi_partitioning_rule configuration parameter 177
dsi_replication configuration parameter 178
dsi_serialization_method configuration parameter

178
dsi_sqt_max_cache_size configuration parameter

178
dsi_text_convert_multiplier configuration parameters

179
dsi_text_max_xacts_in_group configuration parameter

177
dsi_xact_group_size configuration parameter 179
dump and load coordination 70
dump command 360
dump_load configuration parameter 179
dynamic_sql configuration parameter 179
dynamic_sql_cache_management configuration

parameter 180
dynamic_sql_cache_size configuration parameter

179

E
enabling RepAgent 113
encrypted passwords

sending 196
encryption

disabling for Replication Server 202
enabling for Replication Server 201

environment

three-tier 75
two-tier 64

error classes
Open Server gateway 17

errsd_backup_dir 99
errsd_backup_interval 99
errsd_backup_start_time 99
errsd_ra 99
ERSSD

automatic backup 92
created by rs_init program 88
media failure, recovery from 103
recovery instructions 101
recovery procedures 102
routing 100
use isql to execute 84

ERSSD (Embedded Replication Server System
Database) 97

ERSSD (Embedded Replication Server System
Database), configuring 98

ERSSD backup directory path 98
ERSSD configuration parameters 99
ERSSD database file path 98
ERSSD transaction log file path 98
ERSSD transaction log mirror file path 98
ERSSD, backup directory files 101
ERSSD, configuration parameters in rs_init table 91
ERSSD, files, moving 100
ERSSD, users 100
erssd_backup_start_date 99
Event Log pane 59
event triggers

adding 76
examples

assigning domain ID numbers 90
atomic materialization 355
replication definition 251
routing 148
rs_subcmp configuration file 392

exceptions log
transactions written to 49

exec_cmds_per_timeslice configuration parameter
179

exec_sqm_write_request_limit configuration parameter
180

executing

Index

434 Replication Server

RCL commands 82
scripts with isql 85

extended limits 121, 263, 268
more columns 264
wide columns 264
wide data 264
wide messages 265

F
fault tolerance, achieving 3
features

background processing 59
Details list 57
Event Log pane 59
script editors 60

files
interfaces 38
moving, ERSSD 100
Replication Server configuration 87
Replication Server run file 86

folder icons 57
for new articles clause 399
formatting, RCL commands xix
function replication definition

modifying 346
function replication definitions

altering 346
commands for managing 333
dropping 347
subscribing to 345

Function strings
rs_set_dml_on_computed 289

function strings
changing replication definitions 299
customizing 427
defined 42
for Java columns 275
variables 42

function-string classes 320
defined 43
for Adaptive Server databases 17
for DB2 databases 17
open architecture 17
rs_msss_function_class 320

rs_oracle_function_class 320
rs_sqlserver_function_class 320
rs_udb_function_class 320

G
grant command 165, 202, 207

H
ha failover configuration parameter, RepAgent 115
ha_failover configuration parameter 94, 97
HDS. See heterogeneous datatype support
help

topic 55
help contents 55
heterogeneous data servers 426
heterogeneous datatype support 317–327

class-level translations 319
column-level translations 322
data servers 317
function-string classes for 320
overview 317
procedure for 318

hiding
bars 59
icons 59

I
icons

Adaptive Server xxi
client application xxi
displaying 59
folder 57
hiding 59
object 57
Replication Agent xxi
Replication Manager xxi
Replication Server xxi

ID numbers
data servers 90
Replication Server 90

Index

Administration Guide 435

ID Server 88
adding server domains 89
dropping a database from 187
guidelines 89
ID numbers 90
login name 27
login name and password 194
network-based security for 229
requirements 27
specifying domain ID numbers 89

id_msg_confidentiality parameter 229
id_security_mechanism parameter 229
id_server configuration parameter 91
identifiers

format xx
function parameters xx
length xx

IDENTITY columns 291
image datatype

changing replication for 283
overview of replication 277

inbound queue
defined 44

inconsistencies
correcting 392
locating 392
occurring in tables 391
resulting from skip transaction clause 183

indirect routes 141
interfaces file 38

defined 38
requirements 38

isql interactive SQL utility 84, 196
executing RCL commands 82
executing scripts 85
to execute ERSSD 84

J
Java datatypes 274

K
keyboard shortcuts 58

keytab file 218, 230

L
large identifiers 122
large messages 268
LDAP server 39

Open Client/Server 40
libtcl.cfg file 213
list

Details 57
LOB datatypes

limitations 287
partial update 288

log
event 59

log transfer
resuming 128
suspending 126, 128

Log Transfer Language (LTL) 29
log truncation, Adaptive Server 50
logical connections 68
login names

for subscriptions 369
applied functions 199
applied stored procedures 199
creating for maintenance user 165
creating for Replication Server 200
data server 20
dependencies 192, 199
displaying maintenance user 166
dropping Replication Server 201
ID Server 27, 194
list of commands for managing 200
Replication Server 20
Replication Server for RSSD RepAgent use 194
for Replication Server use 195
request functions 199
request stored procedures 199
RSSD maintenance user 193
RSSD primary user 193
for subscriptions 198

Index

436 Replication Server

M
maintenance user 68, 69

changing passwords 195
described 195
displaying list of 166
granting database access 166
login names 20, 166
required permissions 165
RSSD 193

managing
replicated tables 241
stable queues 45

mapping security-system login 235
marking data for replication 414
master database

replication 424
materialization 69

database subscriptions 421
MSA 421

materialization method 68
materialization methods

for function replication definitions 398
for publication subscriptions 398

md_sqm_write_request_limit configuration parameter
180

media failure, ERSSD, recovery 103
memory_max configuration parameter 182
menus

context 58
menus and toolbars 58
minimal columns

specifying for replication 251, 258
minimum_rssd_version configuration parameter 92
mixed version

multisite availability 407
mixed versions

replication system 18
mnemonics 58
monitoring

database connections 188
routes 161

monitoring of status 60
more columns 264
mount command 359
move primary command 106

routing requirements 139

moving ERSSD files 100
msg_confidentiality parameter 222
msg_integrity configuration parameter 222
msg_origin_check configuration parameter 222
msg_replay_detection configuration parameter 222
msg_sequence_check configuration parameter 222
multiple replication definitions

column-level translations 326
multisite availability (MSA) 33, 352, 405

advantages of 406
bidirectional replication environment 407
bulk materialization 409
concurrent replication definitions 418
data replication 414
database replication definitions 415
dropping database replication definitions 416
features of 406
function strings 427
heterogeneous data servers 426
marking data 414
master database replication 424
mixed version 407
replicating tables and functions separately 410
replicating the database 408
resynchronizing tables 416
set up 408
warm standby 411

mutual_auth 222
MySybase xvii

N
name space, replication definition 252
naming replicated tables 305
net password encryption configuration parameter,

RepAgent 115
network-based security 210–236

activiating 218
altering 233
configuring services 219
credential 210
disabling 233
environment variables for 216
global settings 224
how it works 211

Index

Administration Guide 437

logging in 230
mapping login 235
message protection 211
parameters 222
pathways 220, 221
planning for 223
potential security breech 236
requirements 212
requirements and restrictions 211
restrictions 212
setting up 213
using multiple security mechanisms 236
viewing information about 234

new features
background processing 59
Details list 57
dynamic configuration 95
Event Log pane 59
manual data reconciliation 393
rs_subcmp performance enhancement 393
schema comparison 393
script editors 60

no materialization method
described 353
describing 357
requirements for using 357

nonatomic materialization
autocorrection 369
described 353, 355
text and image columns 386

num_threads configuration parameter 182

O
object icons 57
object properties 62
object property sheets 63
object tree 56

moving through 57
objectid.dat file 213, 215
objects

creating 65
creating in Sybase Central 62
deleting 63
selecting 57

online help 54
Open Client Client-Library 82
Open Server gateway

creating for Replication Server 16
oserver configuration parameter 92
outbound queue, defined 45

P
parameters

RepAgent configuration 88, 115
parameters, stored procedure

adding to replicated functions 346
partial update

LOB datatypes 288
partitions

guidelines for choosing 47
password encryption

extended support 197
for maintenance user passwords 197
for route user passwords 197
for user passwords 197
for user passwords in configuration file 197
replication system 20

password_encryption configuration parameter 202
passwords

alter user command 201
applied functions 199
applied stored procedures 199
changing 200
changing for maintenance user 195
changing for Replication Server in RSSD RepAgent

194
changing for RSSD primary user 193
dependencies 195, 199
enabling encryption 201
encrypted 202
ID Server 194, 195
for RepAgent use 194
for Replication Server use 195
request functions 199
request stored procedures 199
requirements for Replication Server 200
subscriptions 198

performance

Index

438 Replication Server

replicating local data 3
routing 143

permissions
creating subscriptions 368
displaying for users 209
dropping subscriptions 380
for adding Replication Server and Adaptive Server

Enterprise 65
granting 207
granting database access for maintenance user 166
maintenance user 165
managing for Replication Server 202, 210
revoking 208
sa, sa_role, sso_role 65
subscription requirements 369
summary of commands for 205
system for 20

personalized views
creating xvii

preparing
three-tier 75

prev_min_rssd_version configuration parameter 92
prev_rssd_version configuration parameter 92
primary data 49

failure to update 49
primary data server

subscription requirements 369
primary databases

required permissions 167
subscription requirements 369

primary key
adding or dropping 301
defined 32, 250
requirement for unique 244

primary key clause 256
primary key columns

restrictions on updating 244
primary subscribe permission 203
primary tables

subscription requirements 368
primary user

RSSD 193
principal user 218
priority configuration parameter 116
processing

background 59

properties
object 62

property sheets 62, 63
publication subscriptions 394, 403

activating 400
bulk materialization method 399
creating 397
defining 399
definition 308
dropping 401
monitoring 402
refreshing 399, 401
restrictions 395
specifying materialization methods 398
status information 403
validating 400

publications 316
adding articles 315
altering 314
creating at the command line 310
definition 308
displaying information about 313
dropping 315
dropping replication defintions 315
for stored procedures 348
from Sybase Central 309
procedure for creating 308
RCL commands for 309
viewing information about 313

published datatype 323

Q
queue data

accessing 72
viewing 72

quiescing
procedure for Replication Server 104
replication system 104

R
RCL commands

activate subscription command 371

Index

Administration Guide 439

alter applied function replication definition
command 333

alter connection command 166, 172
alter function replication definition command

334
alter function string command 348
alter replication definition command 249, 299
alter request function replication definition

command 334
check subscription command 371, 379
create applied function replication definition

command 333
create connection command 168
create function replication definition command

334, 338, 342
create replication definition command 249, 251
create request function replication definition

command 333
create route command 145
create subscription command 370, 375, 376
define subscription command 371, 377
drop connection command 187
drop function replication definition command

333, 347
drop replication definition command 249
drop route command 159
drop subscription command 371, 380
drop user command 201
executing command 82
grant command 207
resume connection command 183
resume route command 150
revoke command 208
set autocorrection command 369
shutdown command 87
suspend connection command 171
suspend log transfer command 126
suspend route 150
sysadmin dropdb command 188
sysadmin purge_route_at_replicate command

160
table of permissions 205, 207
validate subscription command 371

RCL, formatting commands xix
recovery instructions, ERSSD 101
recovery procedures, ERSSD 102

recovery, from media failure, ERSSD 103
redistributed corporate rollup application model 14
Rep Agent user 68
rep_as_standby configuration parameter 180
RepAgent 111

configuration parameters 114, 115
described 29
disabling 119
enabling for databases 113
enabling on Adaptive Server 112
error messages 119
extended limits 121
network security for 120
parameters 88
for RSSD 194
secondary truncation point 50
setting up 112
starting 118
starting up 118
status information 124
stopping 118, 119
suspending 126
thread status 125
thread user status 126
truncation point 50

RepAgent Executor 179
RepAgent user 69
replicate databases

upgrading to primary databases 184
replicate Replication Server

subscription requirements 369
replicate tables

requirements for subscriptions 368
replicated consolidated replicate application model 14
replicated function

creating 348
modifying 348

replicated functions
adding parameters 346
adding searchable parameters 346
described 35, 334
dropping 345
modifying 345
subscribing to 339

replicated stored procedures
enabling for replication 344

Index

440 Replication Server

login and password dependencies 199
replicated function delivery 335

replicated tables
changing 305
changing searchable columns 307
commands for modification 249
dropping 305
enabling for replication 270
failed updates 49
procedures for changing 305
renaming primary and replicate copies 305
requirements 32
subscribing to 352

replicating
encrypted columns 289
large objects to non-ASE servers 279
LOB datatypes 287
master database in an MSA 424
partitioned tables 373
timestamp columns 292

Replicating computed columns 288
replication

ASE shared-disk cluster 123
Replication Agent

described 28
open architecture 16
requirements 30

replication definitions
for distributed primary fragments 12
changing 293
commands for managing 249
creating 250
datatypes 253
defined 33
described 250
dropping 304
dropping from articles 316
dropping from publications 315
examples 251
extended limits 263
functions 335
name space 252
for distributed primary fragments 9
primary key 256
requirements for creating subscriptions 368
rs_address datatype 388

searchable columns 257
text and image columns 261
text or image columns 278
using 250, 304

replication environment
configuring 67
configuring with primary and multiple replicates

69
disconnecting from 66, 67
setting up 64

replication environment object
creating 65

Replication Server
adding to an existing system 88
advantages of 3
configuration file 87, 225
configuring rs_config system table 90
connections 38
described 26
distributed data models 9
dropping from existing system 105, 109
executable program 86
general description 1
and heterogeneous data servers 16
ID numbers 90
introduction 1
list of databases managed by 188
login name for Adaptive Server use 195
login name for RSSD use 195
managing 79, 104
managing login names 199
managing objects 70
objects 70
permissions 202, 208
primary copy model 6
quiescing 104
role in a distributed database system 4
run file for 86
security 210
shutting down 87
starting 86
subscription requirements 369
system data flow 7
technical overview 25
transaction handling 43

Replication Server programs

Index

Administration Guide 441

repserver 86
rs_init 88
rs_subcmp 392

Replication Server System Database (RSSD)
described 29
login names 193
maintaining 90
managing 95
RepAgent for 194
requirements 30
rs_helpdb stored procedure 189
rs_maintusers 209
rs_users 209
system tables 29
users 193

replication system
components 25
creating multiple domains 89
domains 89
open architecture 16
quiescing 104
roles and responsibilities 21, 22
security 191
setting up 79

Replication System Administrator
role of xiii, 21

repserver command 86
request functions

defined 35
described 336
login names and passwords 199
permissions needed at primary 167
prerequisites for implementing 330
setting up 340

request stored procedures
login names and passwords 199
primary copy model 6

restrictions
on replicated data 244

resume connection command 183, 227, 364
resume log transfer command 126
resume route command 150
resuming

log transfer 127
RepAgent 127
routes 150

resynchronizing replicate tables 416
retry timeout configuration parameter 116
revoke command 202, 208
RMS

adding servers 76
connecting to 75
monitoring replication environment 75
three-tier management solution 64
viewing objects 76

RMS (Replication Monitoring Services) 32
roll-up

consolidated replicate application model 12
consolidated replicate as primary application model

14
route version

between Replication Servers 160
routes

changing 151, 156
creating 144
creating login names 146
defined 40
determining 138
direct 140
dropping 158
indirect 141
managing 137, 158
monitoring creation of 161
network-based security for 227
purging 108
requirements 138
resuming 150
subscriptions 143
suspending 150
unsupported 144
upgrading 160

routing
ERSSD 100
examples 148
overlapping subscriptions 143
schemes 140

row migration
text and image columns 387

rs name configuration parameter 116
rs password configuration parameter 116
rs username configuration parameter 116
rs_address datatype 291

Index

442 Replication Server

rs_config system table 93
rs_databases system table 188
rs_helpdb stored procedure 105, 189
rs_helppub stored procedure 310, 313, 403
rs_helprepdb stored procedure 391
rs_helproute stored procedure 162
rs_helpuser stored procedure 209
rs_idnames system table

dropping database from 188
rs_init

creates ERSSD 88
rs_init program 91
rs_lastcommit system table 183

permissions 166
rs_maintusers system table 209
rs_marker stored procedure 167
rs_set_dml_on_computed function string 289
rs_setproxy function string 232
rs_subcmp program 392
rs_subscriptions system table 400
rs_update_lastcommit stored procedure 167
rs_users system table 209
RSI threads

described 46
displaying 161

rsi_batch_size configuration parameter 147
rsi_fadeout_time configuration parameter 147
rsi_packet_size configuration parameter 147
rsi_sync_interval configuration parameter 147
rsi_xact_with_large_msg configuration parameter 147
RSSD 65

network-based security for 225
rssd_error_class configuration parameter 92
run file, Replication Server 86

S
sa permission xiii, 65, 203, 205
sa_role permission 65
save_interval configuration parameter

for database connection 180
for route 147

scan batch size configuration parameter 116
scan timeout configuration parameter 116

schema cache growth factor configuration parameter
116

script editors 60
scripts

executing in isql 85
replication definition examples 382

searchable columns
adding searchable columns 303
dropping from the searchable columns list 301,

307
searchable columns clause 251
searchable parameters

adding to replicated functions 346
secondary truncation point

and disabling RepAgent 119
described 50, 51

secure sockets layer 237
security

network-based 210
RepAgent 120
Replication Server 191, 210
replication system 20

security mechanisms
CyberSafe Kerberos 212
DCE 214
Transarc DCE 212

security services, configuring 219
security, network-based 199–236
security_mechanism 223
select command 360
select with holdlock clause 398
send buffer_size configuration parameter 116
send maint xacts to replicate configuration parameter

116
send structured opids configuration parameter 117
send warm standby xacts configuration parameter 117
send_emc_pw configuration parameter 92
send_enc_password configuration parameter 196
send_standby configuration parameter 418
set autocorrection command 369
set proxy command 217, 232
setting up network-based security 213
short ltl keywords configuration parameter 117
shortcut menus 58
shutdown RCL command 87
shutting down

Index

Administration Guide 443

Replication Server 87
skip ltl errors configuration parameter 117
skip transaction clause 183
skip unsupported features configuration parameter

117
sp_role system procedure 165
sp_setreplicate system procedure

marking rs_marker for replication 186
sp_setrepproc system procedure 337

marking stored procedures for replication 344
using for applied function 337
using for request function 342

sp_stop_rep_agent command 106, 119
SSL 237

certificate authority 237
enabling on Replication Server 239
on Replication Server 238
requirements for 238
setting up 239
trusted roots file 237

SSL handshake 238
SSL security 237
sso_role permission 65
stable queues

atomic materialization 355
described 44
disk files 48
management 45
requirements 47
for routes 144

star configuration
described 140

starting
Replication Server 86
Sybase Central 53

startup delay configuration parameter 117
status

monitoring 60
status bar 59
stopping Sybase Central 54
stored procedures

marking for replication using sp_setrepproc 344
publications 349
rs_helpdb 189
rs_helprep 298
rs_helprepdb 391

rs_helproute 161
rs_helpsub 391
rs_helpuser 209
rs_update_lastcommit 167

style conventions xviii
sub_sqm_write_request_limit configuration parameter

180
subscribe to truncate table clause 397
subscribing

to function replication definitions 345
to replicated tables 352

subscriptions
primary fragments 12

subscription dematerialization
methods 380
phases 367
processing 365
with purge 365

subscription materialization 180
defined 33
methods 368
phases 366
text and image columns 385

subscription materialization queue
defined 45

subscription migration
rs_address columns 390

subscription resolution engine (SRE) 417
subscriptions

adding to a publication subscriptions 399
bitmap 388
commands for managing 370
defined 352
displaying 391
dropping 198, 380, 424
login names and password dependencies 198
overlapping 143
permissions for creating 203
preparations for creating 368
primary fragments 9
removing rows manually 381
requirements 368
user permission requirements 204
verifying consistency 391

support
bidirectional replication 407

Index

444 Replication Server

extended password encryption 197
for ASE shared-disk cluster 123
longer identifiers 122

suspend connection command 171, 227
suspend log transfer command 126
suspend route command 150
suspending

database connections 171
routes 150

Sybase Central 83
creating an object in 62
online help 54
shortcut menus 58
stopping 54
toolbar 59

sysadmin dropdb command 107, 109, 188
sysadmin droprs command 107
sysadmin erssd, command 98, 100
sysadmin purge_route_at_replicate command 160
system procedures

replicating 426
sp_reptostandby 408
sp_setreplicate 278
sp_setrepproc 344
sp_setreptable 270

system tables
described 29
rs_config 91
rs_databases 188
rs_idnames 187
rs_lastcommit 183

T
tables

creating for replication 242
marking for replication 280
materialization options 69
procedure for replicating 246
subscription requirements 369

tabs
help contents 55

text datatype
changing replication for 283
overview of replication 277

threads
DSI scheduler 46
RSI 46

three-tier environment
preparing 75

three-tier management solution 64
RMS 64

timestamp datatypes 292
toolbar 59

buttons 59
hiding 59

toolbar button help 55
tooltips 55
topic help 55
transactions

handling suspended 171
handling with Replication Server 43
modifying data in multiple data servers 49
skip transaction clause 183

triggers
event 76

truncate table command
enabling replication of 399
Transact-SQL 397

truncation of Adaptive Server database logs 50
trusted roots file 237
two-tier environment

preparing 64
two-tier management solution 64

U
unified_login 223
upgrading routes 160
use_batch_markers configuration parameter 181
use_index 281
user

maintenance 68
RepAgent 68

user stored procedures
replicating 427

users
maintenance 69
RepAgent 69

users, displaying replication system 208

Index

Administration Guide 445

users, ERSSD 100

V
validate publication command 309, 311, 313
validate subscription command 371, 396, 400
variables

function strings 42
verify password clause 201
verifying translations 327
version number for route 160
versions, replication system 18
viewing object properties 62
visual monitoring of status 60

W
warm standby applications

MSA advantages 407
switchover with MSA 413
using MSA 411

warm standby environment
configuring 67

where clause
altering 314
for create subscription command 371
operators 312
syntax 312
used in articles 312

wide columns 264
wide data 264
wide messages 265
with nowait clause 171
with primary table named clause 252
with purge clause 402
with replicate table named clause 252
without holdlock clause 376
without purge clause 402
wizards

Add Server 68
Configure Replication 67

writetext 279

Index

446 Replication Server

	Administration Guide: Volume 1
	About This Book
	CHAPTER 1 Introduction
	About Replication Server
	Asynchronous transaction replication
	Advantages of replicating local data
	Improved performance
	Greater data availability

	Replication Server and distributed database systems
	Replication Server basic primary copy model
	Replication system processing
	Setting up a primary copy model system

	Other distributed data models
	Distributed primary fragments
	Corporate rollup
	Redistributed corporate rollup

	Replication Server and heterogeneous data servers

	Warm standby applications
	Mixed-version replication systems
	Restrictions in mixed-version systems
	Mixed versions of Adaptive Server

	Replication system security
	Replication Server security features
	Network-based security features

	Replication Server roles and responsibilities
	Replication system administrator
	Database administrator
	Replication Server tasks and responsibilities

	CHAPTER 2 Replication Server Technical Overview
	Replication system components
	Replication Server
	ID Server

	Adaptive Server or other data server
	Replication Agent
	Replication Server System Database (RSSD)

	Client applications
	Sybase Central
	Replication Manager (RM) plug-in to Sybase Central
	Replication Monitoring Services (RMS)

	Specifying data for replication
	Replication definitions and subscriptions for tables
	Replication definitions for database objects
	Replication definitions for stored procedures
	Benefits of replicated functions over normal replication
	Using replicated functions

	Publications
	Overview of replicating tables
	Commands for managing replicated data

	Establishing Replication Server connections
	Interfaces file
	LDAP server
	Making Replication Server connections

	Specifying database operations
	Function strings
	Function-string classes

	Transaction handling with Replication Server
	Stable queues
	Queue management
	Partitions for stable queues
	Using disk files for stable queues

	Distributed concurrency control
	Transactions that modify data in multiple databases
	Failed replicate table updates

	Transaction processing by the Replication Agent
	Coordinating Adaptive Server log truncation

	CHAPTER 3 Managing Replication Server with Sybase Central
	Using Replication Manager from Sybase Central
	Starting and stopping Sybase Central
	Starting Sybase Central
	Stopping Sybase Central

	Getting started
	Using online help
	Topic help
	Tooltips

	Using the Replication Manager GUI
	Selecting folder and object icons
	Using the Details list
	Moving through the Sybase Central object tree
	Customizing the display
	Using keyboard shortcuts
	Using menus and toolbars
	Viewing events in the log pane
	Using script editors
	Monitoring of status
	Using Hide options for connection status
	Performing common tasks
	Naming data servers in RM

	Setting up a replication environment
	Preparing for a two-tier solution
	Creating an environment
	Connecting to and disconnecting from a replication environment
	Setting up a replication environment using Replication Manager
	Managing Replication Server objects
	Connections
	Replication definitions
	Subscriptions
	Queues

	Monitoring a replication environment using RMS
	Preparing for a three-tier solution
	Connecting to RMS
	Adding and dropping servers through RMS
	Viewing managed objects
	Adding event triggers

	CHAPTER 4 Managing a Replication System
	Setting up a replication system
	Creating connections and routes
	Setting permissions and security
	Verifying the replication system
	Creating replication definitions
	Creating subscriptions

	Performing Replication Server tasks
	Using rs_init
	Managing Replication Server with Sybase Central
	Using isql
	Using isql interactively
	Using isql to execute scripts

	Starting Replication Server
	Replication Server executable program
	Replication Server configuration file

	Shutting down Replication Server
	Adding a Replication Server
	Adding a replication system domain
	Guidelines for adding replication system domains

	Setting Replication Server configuration parameters
	About configuration parameters
	Different types of configuration parameters

	Changing Replication Server parameters

	Managing the RSSD
	Enabling Failover support for an RSSD connection

	Managing Embedded Replication Server System Database
	Overview
	Before you start
	Configuring ERSSD
	Configuration parameters and command
	ERSSD routing
	Moving ERSSD files
	ERSSD users
	Backup
	Recovery instructions
	Before you start recovery
	Recovery procedures
	ERSSD command and options

	Quiescing Replication Server
	Quiescing a replication system

	Removing a Replication Server
	Removing an active Replication Server
	Removing an inactive Replication Server

	CHAPTER 5 Setting Up and Managing RepAgent
	Setting up RepAgent
	Defining the local Adaptive Server
	Enabling RepAgent on Adaptive Server
	Enabling RepAgent for the database
	Enabling RepAgent
	Turning on log transfer

	Configuring RepAgent
	Starting RepAgent
	Stopping RepAgent
	Disabling RepAgent
	Checking log files for information and error messages
	Configuring RepAgent for network security
	Handling extended limits
	Support for longer identifiers
	Adaptive Server shared-disk cluster support
	Reviewing status and configuration information
	Viewing RepAgent information
	Viewing configuration parameter values
	Viewing RepAgent thread information

	Managing log transfer activity
	Using the log transfer commands
	Suspending log transfer
	Resuming log transfer

	Using alter connection and the set log transfer option

	Using counters to monitor RepAgent performance
	Invoking sp_sysmon
	Fixed time intervals
	Using begin_sample and end_sample

	RepAgent counter activity
	Sample output
	Log scan summary
	Log scan activity
	Transaction activity
	Log extension wait
	Schema cache lookups
	Truncation point movement
	Connections to Replication Server
	Network packet information
	I/O wait from Replication Server

	CHAPTER 6 Managing Routes
	Overview
	Before you begin
	Routing preparations

	Routing schemes
	Direct routes
	Indirect routes
	Unsupported routing schemes

	Creating routes
	Using the create route command
	Examples of creating direct and indirect routes
	An example of creating a route and configuring parameters

	Configuring a Replication Server to manage primary tables

	Suspending and resuming routes
	Using the suspend route command
	Using the resume route command

	Changing routes
	Changing route topology
	Changing a direct route to an indirect route
	Changing the next intermediate site for an indirect route
	Changing an indirect route to a direct route

	Changing the password for the RSI user for a direct route
	Changing parameters affecting direct routes
	Changing configuration parameters for all routes

	Routing modification example

	Dropping routes
	Using the drop route command
	Using the sysadmin purge_route_at_replicate command

	Upgrading routes
	Monitoring routes
	Displaying RSI thread status using admin who
	Using the rs_helproute stored procedure

	CHAPTER 7 Managing Database Connections
	Preparing databases for replication
	Steps in preparing databases for replication
	Upgrading an existing Adaptive Server database

	Managing maintenance user login names
	Finding the current maintenance user
	Granting permissions in the database
	Granting permissions for a primary database

	Creating database connections
	Information for adding a database connection
	Adding databases for logical connections
	Adding a database that requires a RepAgent thread

	Using the create connection command

	Altering database connections
	Suspending database connections
	Setting and changing parameters affecting physical connections
	Changing parameters affecting a single connection
	Changing parameters affecting all connections
	Changing Replication Server connection parameters to improve performance

	Resuming database connections
	Changing replicate databases to primary databases
	Creating the rs_marker stored procedure

	Changing primary databases to replicate databases

	Dropping database connections
	Dropping a database from the ID Server

	Monitoring database connections
	Viewing current database connections
	Listing databases managed by a Replication Server
	Displaying DSI thread status

	CHAPTER 8 Managing Replication Server Security
	Overview
	Managing Replication Server system security
	RSSD login names and passwords
	Replication Server login name and password for the RepAgent
	ID Server login name and password
	Replication Server login name and password for Replication Servers
	Maintenance user Adaptive Server login name and password
	Sending encrypted passwords for Replication Server client connections
	Existing Encrypted Password Migration
	Extended password encryption support
	Sybase Central dependencies
	Replication Server object creation dependencies
	Subscriptions
	Replicated functions and stored procedures

	Managing Replication Server user security
	Managing Replication Server login names and passwords
	Creating a Replication Server login name
	Changing a Replication Server password
	Dropping a Replication Server login name

	Enabling and disabling password encryption in sysattributes
	Disabling encryption on new and existing passwords
	Changing encrypted passwords in the configuration files

	Managing Replication Server permissions
	Requirements for creating subscriptions
	Permission summary
	Granting permissions
	Revoking permissions

	Examining users, passwords, and permissions
	Using the rs_helpuser stored procedure
	Querying the rs_maintusers system table
	Querying the rs_users system table

	Managing network-based security
	How security services work
	Login authentication
	Message protection

	Requirements and restrictions
	Setting up network-based security
	Modifying configuration parameters and environment variables
	Configuring libtcl.cfg

	Configuring objectid.dat
	Configuring the interfaces file
	Setting environment variables (Kerberos)
	Establishing the principal user
	Identifying the principal user
	Identifying the principal user to the security mechanism

	Identifying principal users to Replication Server
	Identifying the Replication Server principal user to the replication system

	Activating network-based security
	Starting server and clients
	Configuring security services for Replication Server
	Identifying Replication Server pathways
	Configuration parameters
	Planning for compatible settings
	Configuring default values
	Configuring security for the connection to the RSSD
	Configuring security for database connections
	Configuring security for routes
	Configuring security to the ID Server
	Logging in to Replication Server
	Borrowing security settings to secure other pathways

	Maintaining network security
	Using set proxy to switch logins
	Disabling network-based security
	Changing the security mechanism
	Resetting per-target values to default values
	Viewing information about security services
	Mapping a security system login to a Replication Server login
	Using more than one security mechanism

	Managing SSL security
	SSL overview
	The SSL handshake

	SSL on Replication Server
	Requirements

	Setting up SSL security
	Enabling SSL security

	CHAPTER 9 Managing Replicated Tables
	Introduction
	Planning a replication system
	Design considerations
	Restrictions on data replication
	Preparing a replication system

	Summarizing the process
	Replication procedure
	Commands for managing table replication definitions

	Creating replication definitions
	Replication definition settings
	Using the create replication definition command
	Specifying the replication definition name and table names
	Specifying column names and datatypes
	Specifying the primary key
	Specifying searchable columns
	Replicating the minimal set of columns
	Using replication definitions with warm standby applications
	Specifying text, unitext, and image column replication
	Specifying computed column replication
	Specifying rawobject and rawobject in row column replication
	Specifying column-level datatype translations

	Creating replication definitions using extended limits
	Before you use extended limits
	Using extended limits

	Creating multiple replication definitions per table
	Restrictions

	Replication definitions and function strings
	Replication definition restrictions in mixed-version systems

	Marking tables for replication
	Using the sp_setreptable system procedure
	Enabling replication
	Checking replication status
	Enabling replication with owner_on status
	Disabling replication

	Replicating Java columns
	Restrictions
	Upgrade considerations
	Java datatypes in Replication Server
	Creating replication definitions for Java columns
	Function strings for Java columns
	Using function strings to replicate Java columns to older Replication Servers

	Replicating text, unitext, image, and rawobject columns
	Replicating large objects to non-ASE servers using DirectConnect Anywhere
	Creating a text, unitext, image, or rawobject replication definition
	Specifying a null value for text, unitext, image, and rawobject columns

	Marking tables with text, unitext, image, or rawobject columns
	Changing column status for text, unitext, image, or rawobject columns
	Enabling column replication
	Disabling column replication
	Enabling or disabling replication for all columns

	Altering replication status for text, unitext, image, and rawobject columns
	Changing from replicate_if_changed to always_replicate
	Changing from always_replicate to replicate_if_changed

	Resolving inconsistencies in replication status
	Scenario 1
	Scenario 2

	Subscription issues for replicate_if_changed status
	Function strings for replicating text, unitext, and image data

	Replicating new large-object (LOB) datatypes
	Replicating computed columns
	Replicating encrypted columns
	Working with special datatypes
	Using the rs_address datatype
	Replicating identity columns
	Specifying an identity column in a replication definition
	How Replication Server replicates identity columns

	Replicating timestamp columns
	Specifying a timestamp column in a replication definition

	Modifying replication definitions
	Maintaining table schema
	Migration procedure
	alter table support for replicate databases
	Recovery procedures

	Viewing existing replication definitions
	Altering replication definitions
	Providing a different replicate table name
	Changing the specified columns
	Changing text, unitext, image, and rawobject replication status
	Adding a searchable column
	Changing minimal column replication
	Altering a replication definition for warm standby replication

	Dropping replication definitions

	Modifying replicated data
	Adding a new table
	Renaming replicated tables
	Dropping a replicated table
	Adding columns in source and destination tables
	Deleting columns in a source or destination table
	Changing searchable columns
	Dropping a searchable column

	Changing column datatypes in a source or destination table

	Using publications
	Using publications to replicate data at the command line
	Commands for creating and managing publications
	Creating publications and articles at the command line
	Viewing publication information
	Altering publication information
	Adding articles to a publication
	Dropping publications
	Dropping articles

	Translating datatypes using HDS
	Overview
	Getting started
	Creating class-level translations
	Adding class-level translations to an existing connection
	System-defined variables

	Creating column-level translations
	How datatype definitions work
	Column-level translations and multiple replication definitions

	Using class-level and column-level translations together
	Verifying translations

	CHAPTER 10 Managing Replicated Functions
	Prerequisites and restrictions
	Replicated function prerequisites
	Replicated function restrictions
	Commands for managing function replication definitions

	Using replicated functions
	Applied functions
	Request functions

	Implementing an applied function
	Implementing a request function
	Marking stored procedures for replication
	Subscribing to replicated functions
	Modifying or dropping replicated functions
	Before modifying a function replication definition
	Altering a function replication definition
	Modifying a function replication definition
	Dropping a function replication definition
	Creating or modifying a function string for a replicated function

	Using publications for stored procedures

	CHAPTER 11 Managing Subscriptions
	Overview
	Subscription materialization methods
	Atomic materialization
	Incremental atomic materialization

	Nonatomic materialization
	Using autocorrection

	No materialization
	Bulk materialization
	Stop updates at the primary database and take a snapshot
	Simulate atomic materialization
	Simulate nonatomic materialization

	Dematerialization processing
	Dematerializing and purging rows
	Dematerialization without purging rows

	Monitoring materialization and dematerialization
	Before you create subscriptions
	Using subscription commands
	Using the where clause
	Enabling replication of truncate table
	Using the create subscription command
	Using create subscription for atomic materialization
	Using create subscription for nonatomic materialization
	Using create subscription for no materialization

	Using the define subscription command
	Using the activate subscription command
	Using the validate subscription command
	Using the check subscription command
	Using the drop subscription command

	Subscription example
	Description of replication system
	Procedures for replicating tables

	Materializing text, unitext, image, and rawobject data
	Nonatomic materialization
	Row migration

	Subscriptions for columns with heterogeneous datatypes
	Bitmap subscriptions
	Obtaining subscription information
	Displaying subscription information
	Verifying subscription consistency
	Using rs_subcmp to locate and correct inconsistencies

	Using publication subscriptions
	Commands for creating and managing publication subscriptions
	Enabling replication of the truncate table command

	Creating publication subscriptions
	Using the create subscription command
	Creating publication subscriptions with bulk materialization

	Dropping subscriptions for publications and articles
	Viewing publication subscription information
	Displaying status information

	CHAPTER 12 Managing Replicated Objects Using Multisite Availability
	Overview
	Setting up an MSA system
	Replicating the database
	Replicating tables and functions
	Using replicate databases as warm standby databases
	Switchover

	Marking data for replication
	Managing database replication definitions
	Altering database replication definitions
	Dropping database replication definitions
	Using database replication filters

	Viewing information about database replication definitions
	Using database, table, and function replication definitions concurrently
	Altering database replication definitions
	Altering table and function replication definitions

	Managing database subscriptions
	Materialization
	Subscription without materialization
	Subscription with bulk materialization

	Altering database subscriptions
	Dropping database subscriptions

	Viewing information about database subscriptions
	Using database, table, and function subscriptions concurrently
	Creating and dropping subscriptions

	Replicating the master database in an MSA environment
	Replicating DDL and system procedures
	Replicating user stored procedures
	Customizing function strings

	Index

