SYBASE

Web Services Toolkit User’s Guide

EAServer
6.0

DOCUMENT ID: DC31727-01-0600-01
LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, Datawindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Devel opers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Ell Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (Iogo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASIS, OASIS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business I nterchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optimat+, Partnershipsthat Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, Physical Architect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage |11 Engineering, Startup.Com, STEP, SupportNow, SW.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financia Server, Sybase Gateways, Sybase |Q, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future |s Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, Total Fix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite. NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, Visua Writer, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK'S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and X TNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

User’s Guide

... vii
Overview of Web Services in EASEIVer......ccccccovviiiieeiniiecee e, 1
Web services background and standards............ccccceeeeeiiiiiiiiennnenn, 1
SOAP L. 2

WWSDL .1 ittt e 2
JAX-RPC 1.0 .ttt 3

SAAJT 1.1 et e 4

JAXP 1.1 it 4

UDDI 2.0ttt sttt bbb 4
EAServer Web Services architeCture.............cccccovcveeeiiencncien e, 5
Installing WeDb SErvViCeS.........uuvviiiiiiiiiiiiiee et 6
Defining, deploying, and exposing Web services using WST ... 6

SEIVICE SLYIES .ot 7
Retrieving the Web service’s WSDLccccvveeeeeeiiiciiiieneeeennn 7

Using Sybase Web Services Toolkit—an Eclipse plug-in 9
Starting and stopping ECHPSE.........ccvvveieeiiiiiiiiee e 10
WeED SErVICES PIUG-IN ...veeeiiiiiiiiiie e 10
CONNECHNG T0 SEIVETSuviiiiiiiie ittt ettt e e e e e enaee 11
OrganiZatiONvvveiiiee ettt ane 11
Menu layout and NavIigationccceeviiiiiiieiine e 12
Accessibility features........c.vevviiiiiii 13
Components and DatatyPesccuveeeeeeiiaieieeiniiiiee e 15
Supported COMPONENTE LYPES ...ceeviiiiiiriiiiiee et srireee e 15
Supported datatyPeSvvvieiieeiiiiiiiei e 16
Client-side generation of holder ClasSescoccvvvvviieeiiinins 23

Web Services Administrationc.ccccceeeeeiiiiiiennee e 25
L0 [o3 1o o R ORI 25
Web services server administrationccccoccvvveeieeeniiiiiieenneennn 26

Contents

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

Web services collection administrationc.cccvevvveveeiiienennne, 28
Web service adminiStrationcccoovveveiiiieeenniee e 29
Creating Web services from files.........cccccceeiiiiiiii e, 29

Web service management...........uevvveeeiiciiiiirieeeeeesiieeeeee e 33

TYPE MAPPINGS ..ettrriieeeeeeiiiet e e e et set e e e e e e s e setbrreeaeesssssraareeaaeesannne 37
Exposing and deploying components as Web services................. 37
Exposing Components as Web Services.........ccccccovvvvvvvenneenn. 38
Deploying Components as Web Services........ccccccovvvuvvvveeeeenn. 39
Generating WSDLc.cuviiiiies ittt 40
UDDI adminiStrationceivveieeiiieie e 42
Other COMPONENES......cvviiiiiie ittt 44
Management Console—Web Services.......cccccccviiiiiiiiiiiiineennen. 45
Plug-in, domain, display, and server administration....................... 45
Web service collection administrationccccocveveviieeiniien e, 47
Web service adminiStrationccccoovvveveiiiere e 49
Web service operation management..........ccccoovvvevviveeneensnnninns 50

Web service parameter managementcccoeevvecviveereeeeiinnns 51

UDDI adminiStrationceiiieeieiiiieiae e 52
TYPE MAPPINGS ..ettririeeeeeeiiiettee e s eettire e e e e e e s ssrrare e e e e e s sssraaneeaaeesannne 54
Managing SECUItY realmMSuvveiiieeeiiiiiieee et 54
Non-Web service COMPONENEScceeeiiiiiiiiiiiee e e e 55
Management console—Registry Servicescooccvvvveeeeeenaannnn. 57
T geTe [0Tox i o] o AP PPRR 57
Using the management CONSOIE...........ccccuvveiiiieiiiiiiiiiiie e 58
Navigating the console and managing resources 58

UDDI adminiStrationeeiiveeeeinieiesiiieee e 59
UDDI registry profile administration..............cccccvveviieeniiniinnnnn. 60
Searching and publishing to UDDI registriescccccceveeviinvinnnnn. 61
Inquiries and SEArChEScccvvviiiiiiie e 61
PUDBLISNING ...ttt 63
Developing Web Service Clientsccccovvveveeeee e, 73
T geTe [UTox i o] o AN 73
Stub-based model client............ccooiiiiiiii e 74
Dynamic Proxy CHENtocoiiiciiiiiiie e 74
Dynamic invocation interface client...........cccccceeeeiiicciiice e, 75
Document Style CENt.........ccoiiiiiiiiie e 75
J2EE Web Service SUPPOIT ...ttt 77
OVEBIVIBW ...ttt ettt nre e 77

Web Services Toolkit

Contents

CHAPTER 9

User’s Guide

J2EE Web SErviCes SUPPOITuvvvvieeeeiiiiiiiiieeeeeesiiireeeeaeeaannns 77
Deploying J2EE WED SEIVICESuuvveeeiiiiiiiiiiee e 78
Viewing WED SEIVICESuuviiiiiiiiiiiiiiiee et e et 79
Deploying Web services from the command line 81
Deploying with a partial WSDL..........ccccccveiiiiiiiiiiiieee i, 84
Setting the EJB Web service Web application suffix............... 89
Web service file locations and access pointS........cccccevvvvcvvvveeeneennn, 89
A PowerBuilder component deployed/exposed as a Web service
90

An EJB exposed/deployed as a Web service...........ccccvveeeenn. 91

A Web application deployed as a Web serviceccccee...... 92
Using wstool and Wstant.........cccccvviiiiiieiee e 93
T 0o [1 o3 1 o] o KOS SRR 93
Working With WSTOOL..........ecviiiiiiiiiiiiice e 93
Working With WSTaNToocviiiiiiee e 96
Setting Up Your eNVIFONMENTccoeviviriireee e eeiiieee e e 96
WSEANT SCIHPLS ...uvviiiiies ittt ee e e e 97
WSTANT SYNTAX . .eeiiiiiiiiiiiiiiieee e 97
WSLOOl COMMEANTSoeiiiiiiieiiiie et 97
UDDI administration COMmMAanNSccoeeerrireeeniiieeininiee e 98
INGUITY ¢ttt e e s e e e e e s st e e e e e e s s anbbeeees 98
PUBTISN ..o 99
UNPUDBIISN ... 100
Server management COMMANAScceeieriiiriireeeeeesiiirireeeeeaaans 102
1S PR 102
TEITESN o 105
[(51S] 7 | 106
SHULAOWN ... 106
Web service administration commandsc.ccceveercrierennnnenenns 107
ACHIVALE ...t 108
AlIOWMETNOOS ... 109
EACTIVALEeei it 110
EIELE (L) coieeeiiiiiiiie ettt 111
EIELE (2) e 111
EPIOY (L) 1ot 112
(0 =T o] (o) VK 022 1P SO PERRR 113
(0 =T o] (o) VK (<) 1P PO PERRR 115
EPIOY (4) oot 116
disalloWMELNOAS.........ccoieiiee e 118
EXPOSECOMPONENT ...cciiiiiiieieeeeeee e 119
(o = i 1= L RO ERRP 120
ISACTIVE ...ttt 121
ISAIIOWET ... e 121

Contents

Vi

TEITESI e 122
ST=] A o] 0] 01 P PP P P PP PP PP P PP PPPPPPPPPPPPPPPPPR 123
WSAI2JAVA ..o 124
LTz VAT Ao | PSRRI 128

133

Web Services Toolkit

About This Book

Audience

How to use this book

Related documents

User’s Guide

The audience for this document is anyone responsible for creating,
deploying, and managing Web services. Sybase assumes that these
professional s have training in Java and XML and component technology.

Create and manage Web services using the various tools, services, and
GUI s described in this book, collectively referred to as Web Services
Toolkit:

Chapter 1, “Overview of Web Servicesin EAServer” —description
of the Web Services Toolkit and the various protocols it supports.

Chapter 2, “Using Sybase Web Services Toolkit—an Eclipse plug-
in” —description of the Eclipse development and management
environment.

Chapter 3, “ Components and Datatypes’ — description of the
component types supported as Web services, datatypes, and type
mappings.

Chapter 4, “Web Services Administration” — the procedures to
develop and manage Web services from Eclipse.

Chapter 5, “Management Console—Web Services’ —the procedures
for managing Web services from the Sybase M anagement console.

Chapter 6, “Management console—Registry Services’ —the
procedures for managing UDDI registries from the Sybase
Management console.

Chapter 7, “Developing Web Service Clients’ — description of
various client application styles.

Chapter 8, “ J2EE Web Service Support” — the procedures for
managing J2EE Web services.

Chapter 9, “Using wstool and wstant” — description of how to use
wstool command line tools.

Core EAServer documentation The core EAServer documents are
availablein HTML and PDF format in your EA Server software
installation and on the SyBooks™ CD.

Vii

Viii

What's New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary
EA Server Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based
configuration scripts to:

» Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

e Perform administrative and deployment tasks
The EAServer CORBA Components Guide explains how to:

e Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

» Usetheindustry-standard CORBA and Java APl s supported by EA Server
The EAServer Enterprise JavaBeans User’s Guide describes how to:

e Configure and deploy EJB modules

e Develop EJB clients, and create and configure EJB providers

e Create and configure applications clients

* RuntheEJB tutorid

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (IMS) clients and components to send, publish, and
receive JM S messages.

The EAServer Migration Guide contains information about migrating
EA Server 5.x resources and entitiesto an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

e Understand the EA Server security architecture
e Configure role-based security for components and Web applications

e Configure SSL certificate-based security for client connections

Web Services Toolkit

About This Book

User’s Guide

e Implement custom security servicesfor authentication, authorization, and
role membership evaluation

e Implement secure HTTP and |1 OP client applications

« Deploy client applications that connect through Internet proxies and
firewals

The EAServer System Administration Guide explains how to:

e Start the preconfigured server and manageit with the Sybase Management
Console

e Create, configure, and start new application servers
« Define database types and data sources

e Createclusters of application servers to host |oad-balanced and highly
available components and Web applications

e Monitor servers and application components
e Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EA Server users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/pridbcftitle.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase softwarelicense deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EA Server 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Conventions

Formatting example

The formatting conventions used in this manual are;

To indicate

commands and methods

When used in descriptive text, this font indicates keywords such as:

Command names used in descriptive text
C++ and Java method or class names used in descriptive text
Java package names used in descriptive text

Property names in the raw format, as when using jagtool to configure applications
rather than the Web Management Console

variable, package, or
component

Italic font indicates:

Program variables, such as myCounter
Parts of input text that must be substituted, for example:

Server.log
File names

Names of components, EA Server packages, and other entities that are registered in
the EA Server naming service

File| Save

Menu names and menu itemsare displayedin plain text. The vertical bar showsyou how
to navigate menu selections. For example, File| Saveindicates select SavefromtheFile
menu.”

package 1

Other sources of
information

Monospace font indicates:

Information that you enter in the Web Management Console, acommand line, or as
program text

Example program fragments
Example output fragments

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manualsin an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Web Services Toolkit

About This Book

Sybasecertifications

on the Web

Sybase EBFs and
software
maintenance

User’s Guide

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manual s Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Technical documentation at the Sybase Web site is updated frequently.

[JFinding the latest information on product certifications

1

a A W N

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybaseprofile. MySybaseisafree servicethat alowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

[JFinding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Xi

Accessibility
features

Xii

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

EA Server has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product isalso providedin
Eclipse help formats, which you can navigate using a screen reader.

The Web Management Console supports working without a mouse. For more
information, see “Keyboard navigation” in Chapter 2, “Management Console
Overview,” in the EAServer System Administration Guide.

TheWeb Services Toolkit plug-in for Eclipse supportsaccessibility featuresfor
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Sart Eclipse.

2 Select Help | Help Contents.

3 Enter accessibility inthe Search dialog box.
4

Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT asinitials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessihility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

Web Services Toolkit

About This Book

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manualsor online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

If you need help

User’s Guide Xiii

Xiv Web Services Toolkit

CHAPTER 1

Overview of Web Services in
EAServer

Web Services Toolkit (WST) isaset of toolsthat allows you to create and
manage Web servicesin EAServer. The toolkit supports standard Web
services protocols; Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Uniform Description, Discovery, and
Integration (UDDI), and includes tools for WSDL document creation,
client generation, UDDI registration, and SOA P management.

Topic Page
Web services background and standards 1
EA Server Web Services architecture 5

Web services background and standards

User’s Guide

Using Web services and EAServer, you can take advantage of SOAP,
WSDL, and UDDI. These protocols enable you to use third-party
components called Web services, which are invoked from application
providers. A Web service contained in EA Server can beinvoked remotely
over HTTPand HTTPS protocols. The Web service object has methods or
end points that provide the business logic of the Web service being
invoked. Methods are called using SOAP, and the client calling these
methodsis said to consume the Web service. WSDL describesthe service
and can be used in client applications. You can also publish business and
service information to a UDDI registry site on the Web and make your
Web service available to other users. SOAP provides a platform and
language-neutral way to access these services.

With SOAR, WSDL, and UDDI, collaboration between business partners
is easier because interfaces between applications become standardized
across platforms.

Web services can be embedded in Sybase’'s Web container environment.
Web services supports these standards:

Web services background and standards

SOAP 1.1

WSDL 1.1

e SOAP1.1-see“SOAP 1.1" on page 2.

e WSDL 1.1 -see“WSDL 1.1” on page 2.

e JAX-RPC1.0-see”“JAX-RPC 1.0” on page 3.
e SAAJ1.1-see“SAAJ1.1" on pageA.

e JAXP1.1-see“JAXP1.1" on page 4.

« UDDI 2.0 —see“UDDI 2.0” on page 4.

As part of the Web services functionality, the Simple Object Access Protocol
(SOAP) servlet in EAServer provides you with away to make your EA Server
components accessible to your customers with minimal firewall constraints,
platform dependencies, or complex development implementations involving
Distributed Component Object Model (DCOM) or Common Object Request
Broker Architecture (CORBA).

SOAP allowsapplicationsto communicate using existing | nternet technol ogies
(suchasHTTP, URLs, SSL, and XML) and the HTTP or HTTPS port. While
SOAP does not mandate which transfer protocol to use, it is the combination
of SOAPand HTTPthat allowsyou to invoke remote procedures, even through
firewalls.

See the SOAP information pages at http://www.w3.0rg/TR/SOAP for more
information.

As communi cations protocol s and message formats are standardized, it
becomes increasingly important to describe these communications in some
structured way. The Web Services Description Language (WSDL) addresses
this need by defining an XML grammar for describing Web services as
collections of communication endpoints capable of exchanging messages.
WSDL service definitions provide documentation for distributed systems and
for automating the details involved in communication between applications.

When you define a Web service in EA Server, the WSDL file can be
automatically generated from the information you provide.

Web Services Toolkit

CHAPTER 1 Overview of Web Services in EAServer

JAX-RPC 1.0

User’s Guide

The WSDL document describes a component that you want to make available
asaWeb service, aswell asitslocation. You can also publish the location of a
WSDL document to a UDDI registry on the Web.

The Web services GUI allows you to select aUDDI public host site and login.
After you log in, you can add business and service data to the UDDI registry.
Once you have published information to the registry, each timeyou log in, the
information is retrieved and available for you to review, modify, or delete.

A business partner can invoke a Web service without knowing how to write
SOAP messages by using Web services generated client-sidefilesand artifacts
(the collection of files on the client-side that handles communication between
aclient and a Web service. They include the stub class, service definition
interface and additional classes), and the WSDL document that describes your
Web service.

See the WSDL information pages at http://www.w3.org/TR/WSDL for more
information.

Sun’s Java APl for XML-based Remote Procedure Call (JAX-RPC) isan API
for building Web services and clients that use remote procedure calls (RPCs)
and XML. It uses technol ogies defined by the World Wide Web Consortium

(W3C): HTTPR, SOAPR, and WSDL.

Using JAX-RPC, aremote procedure call is represented by an XML -based
protocol (SOAP), which defines the structure, rules, and conventions for
representing RPCs and responses. These SOA P messages are transmitted over
HTTP or HTTPS. The Java API hides the complexity from the application
devel oper, allowing you to focus on creating the Web services that implement
business logic, and the client programs that access them.

See the JAX-RPC Web site at http://java.sun.com/xml/jaxrpc for more
information.

Web services background and standards

SAAJ 1.1

JAXP 1.1

uDDI 2.0

The SOAP with Attachments API for Java 1.1 (SAAJ) protocol enables
applications to send and receive document-oriented XML messages using a
pure Java API. SAAJimplements SOAP 1.1 so that developers can focus on
building, sending, receiving, and decomposing messages for their applications
instead of programming low-level XML communications routines.

See the JAXM/SAAJ Web site at
http://wwws.sun.com/software/communitysource/jaaxm_saaj for more
information.

JavaAPI for XML Processing (JAXP) supports processing of XML documents
using DOM, SAX, and XSLT. JAXP enables applications to parse and
transform XML documents independent of a particular XML processing
implementation, giving developers the flexibility to swap between XML
processors without making application code changes.

See the JAXP Web site at http://java.sun.com/xml/jaxp for more information.

The UDDI specification creates a platform-independent, open framework for
describing services, discovering businesses, and integrating business services
using the Internet. UDDI is across-industry effort driven by major platform
and software providers, as well as by marketplace operators and e-business
leaders.

Using Web servicesin EAServer, you can publish aWSDL document that
describes your Web service and its location to a UDDI registry.

The UDDI protocol is the building block that businesses can use to transact
business with each another, using their preferred applications.

The UDDI specification takes advantage of World Wide Web Consortium
(W3C) and Internet Engineering Task Force (IETF) standards, such as
eXtensible Markup Language (XML), HTTP, and Domain Name System
(DNS) protocols. Additionally, cross-platform programming features are
addressed by adopting SOAP.

Web Services Toolkit

CHAPTER 1 Overview of Web Services in EAServer

Web services allows you to publish aWSDL document that describes your
Web service and its location to a UDDI registry Web site. A UDDI registry is
asort of yellow pages for businesses, the Web services they offer, and the
technical foundations or specifications (called tModels) upon which they are
written. You can specify an organization (business name) and description,
contact information, and Web service properties for your business. Once your
business or tModel is published, potential customers can find it easily from a
search. You can publish multiple Web services under the same business name,
or create a new business name for different Web services.

Because Web services connect directly to UDDI registry host sites on the Web,
you must first be aregistered user on the site where you want to publish. To
register, gotowww.UDDI.org/register.html. The UDDI.org Web site maintains
acurrent list of linksto UDDI registry host sites where you can register.

EAServer Web Services architecture

User’s Guide

Web services architecture includes the Eclipse interface as well as a\Web
Management Console interface. Each supports the same functionality.

Sybase Web Services Toolkit consists of these components:

e The basic SOAP engine, which implements SOAP 1.1, embedded in
EAServer.

* Thetoolsfor creating and managing Web services:

* Web-based console for administration, monitoring, and deployment
of Web services.

* Web-based console for UDDI administration, publish/unpublish, and
browsing UDDI registries.

e An Eclipse plug-in GUI that you can use to:

« Design, develop, and deploy Web services to the EA Server
environment.

« Control deployed Web services running in the EA Server
environment.

* Monitor incoming and outgoing messages for each Web service
using a SOAP inspector.

EAServer Web Services architecture

» Generate standalone Javatest clients and JSP clients to invoke
Web Services deployed to EA Server environment.

» Publish and query Web servicesto or from UDDI registries.

e Command linetoolsfor designing, developing, deploying, managing,
and securing Web services.

e A private UDDI server installed as a 2EE Web application. Access
control enablesthe UDDI user to control access to these basic UDDI data
structures. businessesEntity, businessService, bindingTemplate and
tModel.

These technol ogies and tools are collectively referred to as the Web Services
Toolkit (WST).

Installing Web services

Web Servicesisinstalled as part of a standard EA Server installation. If you
customize your installation, you will notice that Web services support consists
of:

* WST Runtime —the basic SOAP engine and Web services infrastructure.

» Administration Console—aWeb based application described in Chapter 5,
“Management Console—Web Services’ and Chapter 6, “Management
console—Registry Services.”

» Eclipsebased Development Tool —described in Chapter 2, “Using Sybase
Web Services Toolkit—an Eclipse plug-in” and Chapter 4, “Web Services
Administration.”

Defining, deploying, and exposing Web services using WST
WST provides a number of options for defining a Web service, including:

e Importing from aJAR or WAR file — See “Importing a Web service
collection” on page 28.

e Creating aWeb service from alocal or remote WSDL file or Javafile—
See “Creating Web services from files’ on page 29.

e Exposing aninstalled EAServer component asaWeb service— See* Other
components’ on page 44.

6 Web Services Toolkit

CHAPTER 1 Overview of Web Services in EAServer

Service styles
WST supports the following service styles:

« RPC —the body of the SOAP message is an RPC call containing the
method name and serialized versions of the parameters. RPC services use
the SOAP RPC conventions, and also encoding rules defined in section
five of the SOAP specification.

e Document —the body of the SOAP message is viewed as an XML
document, as opposed to an RPC call. Document services do not use any
encoding, but still provide XML -to-Java databindings.

e Wrapped — similar to document services, except that rather than binding
the entire SOAP body into one big structure, they “unwrap” the body into
individual parameters.

Retrieving the Web service’'s WSDL

To retrieve any WSDL file for a deployed Web service from a Web browser
enter the URL of the WSDL in theform
http://host:port/collectionName/services/servicewsdl. For example for the
canine shelter sample, enter:

http://hostname: 8000/ SoapSampl e/services/SoapDemo_FindDog2wsdl.

User’s Guide 7

EAServer Web Services architecture

8 Web Services Toolkit

CHAPTER 2

User’s Guide

Using Sybase Web Services
Toolkit—an Eclipse plug-in

Eclipseisafull-featured open source software development platform. A
Sybase Web Services plug-in to Eclipse provides developers and
administratorsthe ability to manage Web services contained in EAServer.
Throughout this book, Eclipse and the Sybase Web Services plug-in
together are referred to as the Web Services Toolkit development tool
(WST devel opment toal).

The WST development tool provides graphical administration facilities
for Web services, including support for devel opment, deployment, and
runtime monitoring of Web service-related messages.

You can develop Web services and create test clients for third-party Web
services. However, you can deploy Web services to the runtime engine
(EA Server, for example) and create test clientsfor Web services deployed
to EAServer only if you are connected to arunning server.

For complete information about Eclipse, see the Eclipse Web site at
http://www.eclipse.org.

Topic Page
Starting and stopping Eclipse 10
Web services plug-in 10
Connecting to servers 11
Organization 11
Menu layout and navigation 12

Starting and stopping Eclipse

Starting and stopping Eclipse

You do not need authentication information to start or use Eclipse, but you do
need authentication information to connect to a runtime engine in the Web
services view of Eclipse. Authentication to EAServer requires the same
information from Eclipse as you would supply in EAServer Manager (user
name and password).

Note Eclipseisnot installed as part of the standard EA Server installation. To
run Eclipse you must have a complete JDK installation (jdk1.4 or higher),
which isinstalled as part of the standard EAServer installation.

[IStarting Eclipse in UNIX

e From the command line in the Shared/eclipse_311/eclipse subdirectory,
enter the command:

./starteclipse.sh

[IStarting Eclipse in Windows

e From the command line in the Shared\eclipse 311\eclipse subdirectory,
enter the command:

starteclipse.bat

[IStopping Eclipse
e From Eclipse, select File | Exit

Web services plug-in

The Web services plug-in runs within Eclipse. It isinstalled when you select
the Web Services Toolkit option during the EA Server installation. You can use
the WST development tool to define and deploy Web services in projects and
applications so that clients can locate and run Web services.

[JAccessing Sybase Web Services

1 Sart Eclipseif it isnot aready running.
2 From Eclipse, select Window | Open Perspective | Other

10 Web Services Toolkit

CHAPTER 2 Using Sybase Web Services Toolkit—an Eclipse plug-in

3 Select Sybase Web Servicesfrom the Sel ect Perspective window and click
OK.

Connecting to servers

Organization

User’s Guide

You can manage Web services for any server to which you are connected. See
“Web services server administration” on page 26 for more information.

Sybase Web services contains the following basic units and folders:

e Server —an EAServer runtime process that includes the server name and
version, host name on which it is running, and port number to which the
WST development tool is connected.

* Web Services — contains the various Web service collections.

e Collection —agroup of Web services bundled into asingle unit for easy
development and management. A collection in a Web services runtime
engine is analogous to a Web application in a J2EE container.

e Service—definesthe component (EJB, CORBA, Java, PowerBuilder, and
so on) that isinstalled as a Web service. Some aspects of the Web service
that you can define include:

* Ports—the path, URL, or endpoint from which the Web serviceis
made available.

e Operations —the methods and parameters of the Web service that
execute business logic and access data sources.

* Type Mappings— the name and encoding style of the datatype
mapping used by the Web service, depending on the service type
(EJB, CORBA, PowerBuilder, and so on).

* Handlers—contain special routinesthat can be implemented should a
particular event occur. For example, to invoke customized
authentication logic, you can write a handler and install it in the
Handlers folder.

11

Menu layout and navigation

e Other Components — contains the packages (a collection of components
organized into cohesive, secure units) that are hosted on the EAServer to
which the WST development tool is connected. These components can be
deployed as Web services if they meet the criteria described in Chapter 3,
“Components and Datatypes.”

Error logging and Error logging, debugging, and troubleshooting tools consists of several views:
debugging Console, Tasks, SOAP Inspector, and Web Services Console. From the WST
development tool, select Window | Show View | and:

» Console—displaysthe output of the execution of programsand allowsyou
to enter input for the program. The consol e shows three different kinds of
text, each in adifferent color:

e Standard output
e Sandard error
e Sandard input

» Web Services Console — displays the messages, errors, and warnings
generated whenever you perform a Sybase Web services action. The Web
services console allows you to monitor the various log files which are
located in the logs subdirectory of your EAServer installation.

e Tasks—displays auto-generated errors, warnings, or information
associated with aresource. Double-click an item in the Task view to
display more detailed information.

e SOAP Inspector — displays incoming and outgoing messages for a given
Web service. Each Web service displaysin an Inbound Messages fol der
and an Outbound Messages folder that includes the protocol, name of the
host, port number where the Web service is made available, and the name
of the Web service. Double-click the Web service to view either outbound
or inbound traffic. The SOAP or HTTP responses, which depend on the
tab you select, appear in the right pane.

Menu layout and navigation

The WST devel opment tool provides panes and tabsthat provide views of Web
service-related properties and resources.

From the WST devel opment tool, select Window | Show View | and:

12 Web Services Toolkit

CHAPTER 2 Using Sybase Web Services Toolkit—an Eclipse plug-in

e Sybase Web Services—the Web services, properties, and resourcesfor the
server to which the WST devel opment tool is attached. Perform most Web
service administrative tasks from this pane as described in Chapter 4,
“Web Services Administration.”

« Package Explorer — the contents of the projects, plug-ins, JAR files, and
so on for Web service projectsand packages. View the contents of afile by
right-clicking afile and selecting Open (or Open Hierarchy). The selected
file displaysin the right pane.

Accessibility features

User’s Guide

WST supports accessihility features for those that cannot use a mouse, are
visually impaired or have other special needs. For information about these
features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box
4

Select Accessible user interfaces or Accessibility features for Eclipse

13

Menu layout and navigation

14 Web Services Toolkit

CHAPTER 3

Components and Datatypes

Using WST, you can create a Web service from an EA Server component
and use SOAP to expose it across your firewall. You can select any
components in EAServer for a Web service that have return values or
parameters of supported datatypes. The components you select for a Web
service must beinstalled in EAServer.

Web services use XML to transfer data between service endpoints. WST
includes standard mappings for some basic Java datatypesto XML and
viceversa

Topic Page
Supported component types 15
Supported datatypes 16

Supported component types

User’s Guide

WST supports the following component types as Web services:
o StatelessEJBs

o Stateless Java—CORBA

¢ Stateless C++—CORBA

o Stateless PowerBuilder

¢ Classfiles

Note Supported components must contain supported datatypes, including
user-defined datatypes to be avalid Web service.

15

Supported datatypes

Supported datatypes

This section describes the datatypes supported in WST. The datatype must
belong to a supported component type for it to be available as a Web service.
Supported datatypes include:

JAX-RPC defined datatypes— Refer to chapter four (WSDL/XML to Java
Mapping) and five (Javato XML/WSDL Mapping) of the Java API for
XML-based RPC JAX-RPC 1.0 specification. See the JAX-RPC download
site at http://java.sun.com/xml/downloads/jaxrpc.html

Javawith IDL datatypes — the component’s method declarations use the

datatype mappings that are specified by the CORBA document, IDL to
Java Language Mapping Specification (formal/99-07-53).

* CORBA C++ with IDL datatypes—the component’s method declarations
use the OMG standard for translating CORBA IDL to C++. For more
specifics, see C++ Language Mapping Specification (formal/99-07-41).
You can download this document from the OMG Web site at
http://iwww.omg.org. C++ datatype mappings are the same as the Java/l DL
component datatype mappings that are listed in Table 3-1.

Table 3-1 lists the datatypes supported in WST and EA Server and
corresponding PowerBuilder types. Exposing a component as a Web service
does not require you to regenerate its remote interface. EAServer uses JAX-

RPC mapping rulesto generate EJB remote interfaces.

Table 3-1: Supported datatypes

CORBA Parameter
IDL type mode CORBA/Java type EJB parameter type PowerBuilder types
boolean in, return boolean boolean Boolean by value
out, inout org.omg.CORBA .Boolea | javax.xml.rpc.holders.Bool | Boolean by reference
nHolder eanHolder
char in, return char char (see note 9) Char by value
out, inout org.omg.CORBA.CharH | N/A (seenote 1) Char by reference
older
octet in, return byte byte Char by value (seenote 2)
out, inout org.omg.CORBA.ByteH | javax.xml.rpc.holders.Byte | Char by reference (see
older Holder note 2)
short in, return short short Integer by value
out, inout org.omg.CORBA.ShortH | javax.xml.rpc.holders.Shor | Integer by reference
older tHolder
long in, return int int Long by value

16

Web Services Toolkit

CHAPTER 3 Components and Datatypes

CORBA Parameter
IDL type mode CORBA/Java type EJB parameter type PowerBuilder types
out, inout org.omg.CORBA.IntHol | javax.xml.rpc.holders.IntH | Long by reference
der older
long long in, return long long LongLong by value
out, inout org.omg.CORBA.LongH | javax.xml.rpc.holders.Lon | LongLong by reference
older gHolder
float in, return float float Real by value
out, inout org.omg.CORBA .FloatH | javax.xml.rpc.holders.Float | Real by reference
older Holder
double in, return double double Double by value
out, inout org.omg.CORBA.Doubl | javax.xml.rpc.holdersDoub | Double by reference
eHolder leHolder
string in, return string string String by value
out, inout org.omg.CORBA.String | javax.xml.rpc.holders.Strin | String by reference
Holder gHolder
BCD::Binary | in, return byte[] byte[] Blob by value
out, inout BCD.BinaryHolder javax.xml.rpc.holders.Byte | Blob by reference
ArrayHolder
BCD:: in, return BCD.Decimal java.math.BigDecimal Decimal by value
Decimal
out, inout BCD.DecimalHolder javax.xml.rpc.holders.Big | Decimal by reference
DecimalHolder
BCD:: in, return BCD.Money javamath.BigDecimal Decimal by value
Money
out, inout BCD.MoneyHolder javax.xml.rpc.holders.Big | Decimal by reference
DecimalHolder
MJD::Date in, return MJD.Date java.util.Caendar Date by value
out, inout MJD.DateHolder javax.xml.rpc.holders.Cale | Date by reference
ndarHolder
MJID::Time | in, return MJID.Time java.util.Calendar Time by value
out, inout MJD.TimeHolder javax.xml.rpc.holders.Cale | Time by reference
ndarHolder
MJD:: in, return MJD.Timestamp javauutil.Calendar DateTime by value
Timestamp
out, inout MJID.TimestampHolder | javax.xml.rpc.holders.Cale | DateTime by reference
ndarHolder
XDT:: in, return XDT.BooleanValue javalang.Boolean XDT_BooleanValue by
BooleanVau value
e

User’s Guide

17

Supported datatypes

CORBA Parameter
IDL type mode CORBA/Java type EJB parameter type PowerBuilder types
out, inout XDT.BooleanValueHold | javax.xml.rpc.holders.Bool | XDT_BooleanVaue by
er eanWrapperHolder reference
XDT::CharV | in, return XDT.CharValue javalang.Character (see XDT_CharVaue by
aue note 9) value
out, inout XDT.CharVaueHolder XDT.CharacterWrapperHo | XDT_CharVaue by
Ider (see note 1) reference
XDT::ByteV | in, return XDT.ByteVaue javalang.Byte XDT_ByteValue by
aue value
out, inout XDT.ByteVaueHolder javax.xml.rpc.holders.Byte | XDT_ByteVaue by
WrapperHol der reference
XDT::Short | in, return XDT.ShortValue javalang.Short XDT_ShortValue by
Vaue value
out, inout XDT.ShortValueHolder | javax.xml.rpc.holders.Shor | XDT_ShortValue by
tWrapperHolder reference
XDT:IntVal | in, return XDT.IntValue javalang.Int XDT_IntVaue by value
ue
out, inout XDT.IntValueHolder javax.xml.rpc.holders.Integ | XDT_IntValue by
erWrapperHolder reference
XDT::LongV | in, return XDT.LongValue javalang.Long XDT_LongVaue by
aue value
out, inout XDT.LongValueHolder | javax.xml.rpc.holders.Lon | XDT_LongVaue by
gWrapperHolder reference
XDT::FHoatV | in, return XDT.FloatVaue javalang.Float XDT_HoatValue by
aue value
out, inout XDT.FloatVaueHolder | javax.xml.rpc.holders.Float | XDT_FloatValue by
WrapperHol der reference
XDT::Doubl | in, return XDT.DoubleVaue javalang.Double XDT_DoubleValue by
eValue value
out, inout XDT.DoubleValueHolde | javax.xml.rpc.holders.Dou | XDT_DoubleValue by
r bleWrapperHolder reference
XDT::Decim | in, return XDT.DecimalVaue javalang.BigDecimal XDT_DecimalVaue by
aVaue value
out, inout XDT.DecimaVaueHold | javax.xml.rpc.holders.Big | XDT_DecimalVaue by
er DecimalHolder reference
XDT::Integer | in, return XDT.IntegerValue java.math.Biglnteger XDT_IntegerValue by
Vaue value
out, inout XDT.IntegerValueHolder | javax.xml.rpc.holders.Bigl | XDT_IntegerValue by
ntegerHolder reference

18

Web Services Toolkit

CHAPTER 3 Components and Datatypes

CORBA Parameter
IDL type mode CORBA/Java type EJB parameter type PowerBuilder types
XDT::DateV | in, return XDT.DateVaue java.util.Calendar XDT_DateValue by
alue value
out, inout XDT.DateValueHolder javax.xml.rpc.holders.Cale | XDT_DateValue by
ndarHolder reference
XDT::TimeV | in, return XDT.TimeValue java.util.Calendar XDT_TimeValue by
alue value
out, inout XDT.TimeVaueHolder | javax.xml.rpc.holders.Cale | XDT_TimeValue by
ndarHolder reference
XDT::DateTi | in, return XDT.DateTimeVaue java.util.Caendar XDT_DateTimeVaue by
meValue value
out, inout XDT.DateTimeVaueHol | javax.xml.rpc.holders.Cale | XDT_DateTimeVaue by
der ndarHolder reference
XDT::ByteA | in, return byte[] byte[] Blob by value
rray
out, inout XDT.ByteArrayHolder javax.xml.rpc.holders.Byte | Blob by reference
ArrayHolder
MyModule:: | raises MyModule.MyException | MyModule.ejb.MyExcepti | MyModule_MyExceptio
MyExceptio | (throws) on n or MyException
n (exception)
MyModule:: | in, return MyModule.MyComp MyM odule.ejb.MyComp MyModule_MyComp or
MyComp MyComp by value
(interface)
out, inout MyModule.MyCompHol | MyModule.glb.MyCompH | MyModule_MyComp or
der older MyComp by reference
MyModule:: | in, return MyModule.MyStruct MyModule.ejb.MyStruct MyModule_MyStruct or
MyStruct MyStruct by value
(struct)
out, inout MyModule.MyStructHol | MyModule.gfb.MyStructH | MyModule_MyStruct or
der older MyStruct by reference
MyModule:: | in, return MyModule.MyUnion MyM odule.ejb.MyUnion MyModule_MyUnion or
MyUnion MyUnion by value
(union)
out, inout MyModule.MyUnionHol | MyModule.ejb.MyUnionH | MyModule_MyUnion or
der older MyUnion by reference
MyModule:: | in MyModule.MyElement[] | MyModule.ejb.MyElement | MyModule_MyElement[
My Sequence 1] or MyElement[] by
(sequence< value
MyElement>
)

User’s Guide

19

Supported datatypes

CORBA Parameter
IDL type mode CORBA/Java type EJB parameter type PowerBuilder types
return MyModule.MyElement[] | MyModule.ejb.MyElement | MyModule_MySequenc
] e or MySequence
out, inout MyModule.MySequence | MyModule.ejb.MySequenc | MyModule_MyElement[
Holder eHolder] or MyElement[] by
reference
MyModule:: | in MyModuleMyElement | MyModule.efb.MyElement | MyModule_MyElement[
MyArray] or MyElement[] by
(MyElement[value
NJ)
(see note 3)
return MyModule.MyElement | MyModule.gfb.MyElement | MyModule_MyArray or
MyArray
out, inout MyModuleMyArrayHol | MyModule.gjb.MyArrayH | MyModule MyElement[
der older N] or MyElement[N] by
reference
TabularResul | in, return TabularResults.ResultSet | java.sgl.ResultSet ResultSet by value
ts::ResultSet
(see note 4)
out, inout TabularResults.ResultSet | N/A ResultSet by reference
Holder
TabularResul | in, return TabularResults.ResultSet | java.sgl.ResultSet[] ResultSet by value
ts::ResultSet M
(see note 4)
out, inout TabularResults.ResultSet | N/A ResultSet by reference

20

Holder

Web Services Toolkit

CHAPTER 3 Components and Datatypes

Note

1 The'char’ and‘java.lang.Charcter’ datatypes have no defined XML

Schema mapping for EJB Web services, and should not be used as a
parameter type or structure field typeif you plan to expose components as
Web services.

PowerBuilder version 10.5 introduced a Byte data type. To use the PB
Char datatype for backwards compatibility, run this command (once)
before deployment:

configure idl-octet-to-pb-char

To switch back to using the PB Byte data type, run this command (once)
before deployment:

configure idl-octet-to-pb-byte

IDL fixed sizearray typeshave no defined XML Schemamapping for EJB
Web services, and should not be used as parameter types or structure field
typesif you plan to expose components as Web services. Use IDL

sequences typesinstead (Javaarrays, PowerBuilder variable sized arrays).

The‘ResultSet’ datatype should not be used with the PB Server Plugin if
you plan to expose components as Web services, because
java.sgl.ResultSet is not portable in EJB Web service endpoint interfaces.
Use IDL sequences of structuresinstead (Java arrays, PowerBuilder
variable sized arrays). For EAServer, EJB return type java.sgl.ResultSet
mapsto acomplex schemaelement that contains the result set dataand the
schemafor the result set. The content of the XML is mapped according to
the SQL/XML ANSI standard.

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="jdbc.wst.sybase.com">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

<complexType
<sequences>
<element
<element
<element
<element

</sequence>

name="DataReturn">

name="XML" nillable="true" type="xsd:string" />
name="updateCount" type="xsd:int" />

name="DTD" nillable="true" type="xsd:string" />
name="schema" nillable="true" type="xsd:string" />

</complexType>

User’s Guide

21

Supported datatypes

</schema>

22

Using IDL parameter modes ‘inout’ and ‘out’ with
TabularResults::ResultSet(s) is not supported for exposing components as
Web services.

Using arrays (IDL sequences) of structuresinstead of result setssimplifies
coding of Web service client applications sinceit is portable across all
application servers. When you write PowerBuilder NV O methods, which
do not permit using arrays as method return types, define arow structure
to represent a result row, and a table structure containing an array of row
structures to represent aresult set.

DonotuseIDL ‘inout’ and ‘out’ parameter modes with the PowerBuilder
server plugin, because JAX-RPC holder classes are not portable in EJB
remote interfaces. For EAServer, use ‘inout’ and ‘out’ parameter modes
(with the exceptionslisted in note4). When PowerBuilder componentsare
deployed, any “by reference” parameters are mapped to IDL parameter
mode ‘inout’. Therefore PowerBuilder “by reference” parameters should
not be used with the PowerBuilder server plugin.

The PowerBuilder NV O deployment option “Allow NULL valuesin
method parameters’ is not supported if you intend to expose components
asweb services. It isaso not supported when using the PB Server Plugin
(see note 10).

The default mapping of CORBA IDL identifiers to Java/EJB identifiers
can be modified to use Javanaming conventions. Thisiscalled the“camel
case” deployment option. When using this option, IDL operation and
parameter namessuch as“abc_xyz” mapto“abcXyz”, and IDL interfaces,
sequence, structure, and union type names “abc_xyz” map to “AbcXyz".
This mapping is not applied to exception and structure field names.

To enable the “camel case” option, use this command:
configure camel-case-on

To disable the “camel case” option, use this command:

Web Services Toolkit

CHAPTER 3 Components and Datatypes

10

11

configure camel-case-off

If you intend to expose components as Web services, you should enable
the“ camel case” option, otherwise you might encounter problemswith the
JAX-RPC identifier mapping rules (See the JAX-RPC 1.1 specification,
chapter 20 “ Appendix: Mapping of XML Names”).

For CORBA C++ datatypes, see the CORBA IDL to C++ Language
Mapping document at
http://www.omg.org/technology/documents/formal/c++.htm

Only charactersin the | SO 8859-1 character set can be used in this case.
Use the String type to propagate other characters.

To obtain the PowerBuilder XDT_* datatypesfor useasPB structurefield
types or component parameter types, usethe“EA Server Proxy Wizard” or
“Application Server Proxy Wizard” in the PowerBuilder IDE to generate
proxiesfor the“XDT" package. Each of the XDT_* datatypescontainsa
valuefield and an isNull field. TheisNull field must be set to true to
indicate anull value.

Exposing PowerBuilder components as Web services where the
component passes an array of simple types by reference is not supported.

Exposing CORBA Components as Web services where the component
passes a sequence of simple types asinout parametersis not supported.

Instead you should pass IDL sequences of user-defined structure types
using IDL inout or out parameters. Also see note 7.

Client-side generation of holder classes

User’s Guide

When you expose a component that uses EA Server-specific holder typesas a
Web service, the convention for generating the client-side holders classesis
that they are always generated under a package.holders.type hierarchy. For
example, when you expose acomponent as aWeb service that uses holder type
BCD.MoneyHolder, the conversion on the client-side results in a JAX-RPC
specific holder contained under BCD.holders.MoneyHolder. You cannot use
EAServer specific types on the Web service client side.

23

Supported datatypes

24 Web Services Toolkit

CHAPTER 4

Introduction

User’s Guide

Web Services Administration

This chapter describes how to administer Web services from the WST

development tool.

Topic Page
Introduction 25
Web services server administration 26
Web services collection administration 28
Web service administration 29
Type mappings 37
Exposing and deploying components as Web services 38
Generating WSDL 40
UDDI administration 42
Other components 44

The WST development tool supports top-down (creating a Web service

from the WSDL) and bottom-up (creating a Web service from a

component) devel opment of Web services, deployment of Web servicesto

the runtime engine, and UDDI publication and unpublication.

You can manage certain aspects of the Web service container, create and
manage Web service projects, and troubleshoot Web services using logs

and the SOAP inspector.

Before you can manage Web services, you must install the Web service
plug-in. See Chapter 2, “Using Sybase Web Services Toolkit—an Eclipse

plug-in” for more information.

25

Web services server administration

Web services server administration

A Web services server is the container on EA Server that stores your Web
services. You can create any number of server profiles that allow you to
connect to a Web services container and manage the Web services that it
contains.

Note When managing Web services, the server must be running. You can
develop Web services and create test clients for third-party Web services
without connecting to the server.

[ICreating and modifying a Web services server profile
1 Right-click the Sybase Web Services Serversicon and select Create Server
profile.

2 The Create Server Profile dialog box appears. Provide the information
described in Table 4-1 and click Finish. If aprofile already exists, you can
select the profile, make modifications and click Finish.

26 Web Services Toolkit

CHAPTER 4 Web Services Administration

User’s Guide

Table 4-1: Create server profile properties

Property Description

Profile Name The name of the Web services server profileyou
are creating.

User Name The name of the user connecting to the Web

servicescontainer. jagadmin isthedefault. Use
either jagadmin or another member of the

Adminrole.

Password The password of the user connecting to the Web
services container. The default isblank.

Host Name The name of the host machine that contains the

Web services container to which you are
connecting. localhost isthe default.

Port Number The port number of the host used to connect to
the Web services container. sooo is the default.

Server Startup This path to the script if you providing

Script File connection information in a script.

(optional)

Script Arguments Any additional arguments you want to provide
to the script.

[ISetting the default Web services server

If you have multiple Web services servers, you can designate adefault to which
you connect when you start the WST development tool.

1 Right-click the server profile you are designating as the default.
2 Select Set Default.

[IConnecting to a Web services server

You must be connected to a Web services server to manage Web service
collections, Web services, and so on. If you cannot connect to the server, make
sureit isrunning.

* Right-click the server profile and then select Connect.

[IDisconnecting from a Web services server

« Right-click the server profile and then sel ect Disconnect. Only availableif
you are connected to the server.

[IStarting a Web services server

1 Right-click the server profile to which the Web services server you are
starting belongs.

27

Web services collection administration

2 Select Start.

[IStopping a Web services server

1 Right-click the server profile to which the Web services server you are
stopping belongs.

2 Select Stop.
[IRefreshing a Web services server
You must start a Web services server before refreshing.

1 Right-click the server profile to which the Web services server you are
refreshing belongs.

2 Select Refresh.

[IRestarting a Web services server

1 Right-click the server profile to which the Web services server you are
restarting belongs.

2 Select Restart.

[IRemoving a Web services server

1 Right-click the server profile to which the Web services server you are
removing belongs.

2 Select Remove.

Web services collection administration

A Web services collection isalogical group of Web services contained in a

folder. You can manage collections only for the Web services server to which

you are connected. When you deploy a Web service to a server, it isplaced in

aWeb service collection. The default Web service collection is “ws.”
—importing a Web service collection

You can import a Web service collection into the Web services devel opment
tool from aWAR or JAR file.

1 Right-click the Web servicesicon and then select Import.

2 Enter, or browse for the Web service collection you are importing.

28 Web Services Toolkit

CHAPTER 4 Web Services Administration

3 Click OK. The Web service collection is imported.

[IRefreshing a Web services collection

If you make changes to a Web service collection, for exampleif you deploy a
Web service to a Web service collection, refresh the collection so you can see
the most current changes.

1 Highlight the server to which the Web service collection belongs.
2 Right-click the Web service collection, then select Refresh.

[IDeleting a Web services collection
1 Highlight the server to which the Web service collection belongs.
2 Right-click the Web service collection and then select Delete.
Table 4-2 describes the Web services collection properties.

Table 4-2: Web service collection properties

Property Description
Name The name of the Web services collection.
Description A description of the Web services collection.

Web service administration

This section describes how to create Web services and add them to a Web
service collection, and manage existing Web services. See “ Exposing
Components as Web services’ on page 38 for information about deploying
existing components as Web services.

Creating Web services from files
This section describes how to:

* CreateaWeb service from aWSDL file — this top-down approach
(creating a Web service from the WSDL) alows you to create a Web
service from an existing WSDL file.

« Create aWeb service from a Javafile—this bottom-up approach (creating
aWeb service from acomponent) allows you to create a\Web servicefrom
aJavafile.

User’s Guide 29

Web service administration

30

The Web service can be contained in various projects. See “Web service
projects’ on page 32 for more information about projects.

[ICreating a Web service from a WSDL

1
2

From the Web Service container, select File | New | Other.

The New wizard displays. Select Sybase Web Servicesintheleft pane, and
Web Service in theright pane. Click Next. You can also create the Web
service within a project by selecting Web Service Project. If you do not
select aproject at thistime, you will be asked later to provide a project for
the Web service.

The Create Web Service wizard displays. Follow the instructionsto create
aWeb service from aWSDL file. Table 4-3 on page 32 describesthe
wizard properties.

Complete the wizard instructions and click Finish to create the Web
service. If you choose a Project for this Web service, you can view the
project by selecting Window | Show View | Package Explorer. The
Projects appear in the right pane. Expand the project and package to view
the Web service. Along with aWeb service, the wizard generates the other
required files, including a.wsdd file.

You can right-click the .wsdd file and then select Deploy to deploy it asa
Web service.

[ICreating a Web service from a Java file

1
2

From the Web Service container, select File | New | Other.

The New wizard displays. Select Sybase Web Servicesintheleft pane, and
Web Service in the right pane. Click Next. You can also create the Web
service within a project by selecting Web Service Project. If you do not
select aproject at thistime, you are asked later to provide aproject for the
Web service.

The Create Web Service wizard displays. Follow the instructionsto create
aWeb service from a Javafile. Table 4-3 describes the wizard properties.

Complete the wizard instructions and click Finish to create the Web
service. If you choose a Project for this Web service, you can view the
project by selecting Window | Show View | Package Explorer. The
Projects appear in theright pane. Expand the project, and packageto view
the Web service. Along with aWeb service, the wizard generates the other
required files, including a.wsdd file.

Web Services Toolkit

CHAPTER 4 Web Services Administration

User’s Guide

You can right-click the .wsdd file and then select Deploy to deploy it asa
Web service.

31

Web service administration

Table 4-3: Web service creation wizard options and properties

Window Property Description
SelecttheWeb Project Type Select the project in which you will create a
Service Project Web service.
The project wizard displays only if you choose
to create a Web service project.
Create the Project Name Provide a name for your project.
Project

Project Contents Use the Browse button to select the project
contents directory that contains your project, or
click the check box to use the default directory,
which isthe project name located in the
$Eclipse/workspace directory.

Select Create from You can create the The Web service from an
Approach WSDL or Create existing Javafile or .wsdl file. Click the
from JavaFile appropriate check box.
If Creating Locate From a Provide the location of the .wsdl file, by
From WSDL Local File, URL, entering thefilelocation, URL, or UDDI site. If
or UDDI thefileison thelocal file system use Browseto
locateit. If you are locating the file from a
UDDI site, follow the instructions for
publishing to a UDDI site as described in
Table 4-8 on page 42.

Package Name The name of the package in which the Web
serviceiscreated. If you do not enter a package
name, “default” is used.

If Creating CreateFromJava Enter the Javafile being used to create the Web
From JavaFile File service.

Options You can specify various preferences used for
you Web service deployment. These optionsare
described in Table 4-6 on page 38.

Method Select the methods/operations to be exposed in

Selection the Web service’s WSDL file.

Summary

A summary of your entries. Verify they are
accurate and click Finish, or Back to change
your selections.

Web service projects

The WST devel opment tool allowsyou to create and maintain various projects
that contain collections of Web services, class files, readmefiles, and so on,
that make up aWeb service project depending on your need. For example, you

can create:

32

Web Services Toolkit

CHAPTER 4 Web Services Administration

e Server projects — generate and contain the server-side files required to
deploy a Web service project to the server.

e Client projects — generate and contain the client-side files required to
deploy aWeb service project to the client.

* Projects— generate and contain both the server-side and client-side files
required to deploy a Web service project to the server and client.

Sybase recommends that when creating projects, you keep the client-side code
inaclient project and server-side code in aseparate server project. Thisallows
you to generate, compile, and maintain the client-side and server-sidefiles,
artifacts, and dependent classes independently.

Web service management

This section describes how to use the WST development tool to manage Web
services already contained in aserver. Each procedure described in this section
requiresthat you first:

1 Connect to the server that contains the Web service.

2 Expand the Web Servicesicon.

3 Expand the Web service collection to which the Web service belongs.
[1Viewing the WSDL

1 Right-click the Web service and then select View WSDL.

2 TheWSDL filefor thisWeb service displaysin theright pane. You cannot
edit thisfile.

[IRefreshing a Web service
Refresh a Web service if you make any changesto it.

« Right-click the Web service and then select Refresh.

[IDeleting a Web service
1 Right-click the Web service and then select Delete.

Creating and managing Web service clients

This section describes how to create and manage Web service clients from a
Web service. Each procedure requiresthat you first:

User’s Guide 33

Web service administration

34

w N

Connect to the server that contains the Web service.
Expand the Web Servicesicon.

Expand the Web service collection to which the Web service belongs.

Note The wizards described in this section generate atest client runtime JAR

file,

sybasewstrt.jar, which contains one file, manifest.mf, that lists the JAR

files required by the runtime client:

When compiling the client class, do not include sybasewstrt.jar. Set the
required JARs in the classpath individually.

The classpath should include at a minimum: sybasewstrt.jar,
sybasewst.jar, jaxrpc.jar, and the path to the client artifacts.

When running the client, use either the “-classpath” option, or “set
classpath” to specify the location of the required files identified by
sybasewstrt.jar.

After using the wizard to generate the various files required by the client, see
Chapter 7, “ Developing Web Service Clients’ for a description of how to
develop aclient.

[ICreating a Web service client

1
2
3

Right-click the Web service and then select Create Web Service Client.
The Create Web Service Client wizard displays.

Follow the wizard instructions described in Table 4-4. Click Finish when
done.

The wizard generates the test client, and necessary client artifactsin the
package you specify.

Table 4-4: Create Web service client wizard options and properties

Window Property Description

Select aProject Project Name Thewizard displaysalist of available projects. Highlight the project
to which the client you are generating belongs.

Java Package Package The name of the package wherethe client isgenerated. Enter aname
of apackage, or usethedrop down list to locate an existing package.

WSDL 2Java Generate Codefor Select this checkbox to generate code only for this WSDL

Options thisWSDL Only document. Uncheck (The default) to generate files for all WSDL

documents, the immediate one and all imported ones.

Web Services Toolkit

CHAPTER 4 Web Services Administration

Window Property Description

Timeout The time, in seconds, for this operation to complete successfully
beforetiming out. In case of timeout, check thelog filesfor possible
reasons.

Use Specia Allows support for “wrapped” document/literal. Wrapped isa

Treatment for document literal variation, that wraps parameters as children of the

“wrapped” root element.

Document/Literal yncheck this box to turn off the special treatment of “wrapped”
document/literal style operations.
If checked (the default), WSDL 2Java recognizes these conditions:
¢ Aninput message hasisasingle part
e Thepartisan element
¢ The element has the same name as the operation
¢ Theelement’s complex type has no attributes
Under these conditions, thetop level elementsareunwrapped”, and
each component of the element istreated as an argument to the
operation. Thistypeof WSDL isthe default for Microsoft NET Web
services, which wraps RPC style argumentsin thistop level schema
element.

Type Mapping The type mapping version. Valid options are 1.1 (the default) and

Version 1.2. Thisoption determines which version of SOAPthe Web service
uses, SOAP 1.1 or SOAP 1.2.

Generate Codefor Allows you to generate and compile the stubs, wsdd, and

All Elements Impl Template files.

Emit separate Helper classes are used by the primary classto help execute its

helper classes for business methods/operations.

meta data Helper classes are normally generated for user defined type beans.
You can think of them as wrappers for the user defined beans that
contain information (utility methods) which is used at runtime.
They allow you to write your own Java beans with custom behavior
and use them in the runtime SOAP stack.

User name The user name used to access the WSDL URI.

Password The password required by the user to access the WSDL URI.

Summary Contains information from the previous pages. Review and click

Finish to accept your selections, or Back to change.

User’s Guide

[ICreating a JSP client

This procedure generates JSP client pages from the Web service and stores
them on the server. Once created, you can test the JSP pages by Launching the

JSP client.

35

Web service administration

» Right-click the Web service and then select Create JSP client.

[lLaunching a JSP client

This procedure launches the JSP client you created in the proceeding
procedure, by starting a Web browser, and running the JSP.

» Right-click the Web service and then select Launch JSP Client.

[IDeleting a JSP client
If you created a JSP client for this Web service, this procedure deletes it.

» Right-click the Web service and then select Delete JSP Client.

Web service operation management

This section describes how to manage Web service operations (or methods).
These procedures require that you:

1 Expand the Web service collection.
2 Expand the Web service.
3 Expand the operations folder.

Overloaded methods If you deploy a Web service that contains overloaded methods, the WST
development tool displays only the first method of the overloaded method.

For example, if the Web service contains an overloaded method that contains
the methods echo(String, String) and echo (String), the GUI displays only echo
(String, String) twice, but the allowed/disallowed operation affects both
echo(String, String) and echo(String).

Do not use overloaded methods or propertiesin PowerBuilder componentsthat
you want to expose as Web services, or the Web service fails to be exposed.

components they want to use as web services.
[invoking an operation
This procedure invokes an operation of the Web service to which it belongs.
» Right-click the operation and then select Invoke.
Table 4-5 describes the Web service operation properties.

Table 4-5: Web service operation properties
Property type Property Description
Generd Name The name of the operation.

36 Web Services Toolkit

CHAPTER 4 Web Services Administration

Type mappings

Property type Property Description
Description A description of the Web service operation.
Syle The SOAP binding style:

» Document — indicates that the SOAP body contains an
XML document, or

* RPC (remote procedure call) — indicates that the SOAP
body contains an XML representation of a
method/operation call.

Return Type Specifies the return type of the operation.

Isreturnvalue Trueor false.
in response
message

SOAP Action The URI for the SOAPAction HTTP header for the HTTP
binding of SOAP. The SOAPAction HTTP request header
field can be used to indicate the intent of the SOAPHTTP
request. The URI identifies the intent.

Message Document, RPC, or wrapped.
Operation Style

Type mappings are described in Chapter 3, “Components and Datatypes.”

Exposing and deploying components as Web services

This section describes how to expose and deploy files and components as Web
services:

User’s Guide

Deploying refers to the process of selecting a Java file or component that
islocated in the WST development tool (In the Package Explorer or
Project view) and using one of the Deploy wizards to create the Web
service and install/deploy it to a server aswell asdisplay it in the Sybase
Web Services view.

Exposing refers to the process of selecting a supported component type
that already resides on the server (Sybase Web Services view) and using
one of the Expose wizards to make it available as a Web service.

37

Exposing and deploying components as Web services

There are several ways to deploy and expose components as Web services
depending on the options you choose, type of component, and location of
component or file. For example:

You can use the “Quickly Deploy as Web Service” or “Deploy as Web
Service” wizards. Both of these wizards are available from the package
explorer and fromindividual projects and are used to deploy aJavafileas
aWeb service. Quickly deploying a Web service automatically uses
default settings for most options.

You can use the “Expose as Web Service” or “Quickly Expose as Web
Service” wizards. Both of these wizards are available from the Other
components folder of the Sybase Web Services view, and allow you to
expose an existing EA Server component as a Web service.

From the package explorer you can aso select aWSDD file and choose
Deploy (which is different from the wizards above).

Exposing Components as Web services

This section describes how to expose a component as a Web service.

38

[1Using the Expose wizard to expose a Web service

1

From the Sybase Web Services view, highlight the component that you are
exposing.

Right-click the file and select Expose As Web Service.

The Expose as a Web Service wizard displays. Table 4-6 describes the
Expose as a Web Service properties. Complete the information and click
next to move to the next window and Finish when done.

Error messages are logged in the server’slog file and server’s servlet log
file. Check these files for any error conditions. For example, if you see a
non-unique context path error, verify that the exposed component does not
share the same Web collection name and Web service name as another
exposed component, and re-expose the Web service.

Table 4-6: Exposing and Deploying Web service wizard options and

properties
Property Description
Collection Name of the Web service collection to which this Web service is exposed.
Name

Make sure the Web collection name and Web service name combination are
unique when exposing the component as a Web service.

Web Services Toolkit

CHAPTER 4 Web Services Administration

Property Description

Context path Location of the Web service.

Endpoint A valid Uniform Resource Identifier (URI) for the location where the WSDL
address URI document is published. Thetarget namespace should not include thefile name;

WST appends the appropriate file name when the WSDL document is
generated. The target namespace can be a Uniform Resource Name (URN),
which isaglobally unique and persistent URI.

http://www.com.sybase.webservices isan example of avalid URI.
urn:simpleJavaClass.test isan example of avalid URN.

Binding Style The SOAP binding style:
« Document — indicates that the SOAP body contains an XML document.

« RPC (remote procedure call) —indicates that the SOAP body contains an
XML representation of a method/operation call.
« Wrapped — a document literal variation, that wraps parameters as children
of the root element.
Use Specify the use (LITERAL or ENCODED) of itemsin the generated WSDL
binding when exposing a Web service.

Using the quickly expose wizard
Use the quickly expose wizard to use commonly used defaults to expose a
component as a Web service.

[1Using the quickly expose wizard to expose a Web service

1 Highlight the package that contains the file (Java file, component, Web
service, and so on) that you are deploying and exposing.

2 Right click the file and select Quickly Expose As aWeb Service.

3 The Progress information window displays, indicating that the Web
service is being exposed to the server to which you are connected.

Deploying Components as Web services
This section describes how to deploy a component or file as a Web service.

[1Using the deploy wizard to deploy a Web service

1 Fromthe Package Explorer or Project that containsthefileto be deployed,
highlight the Javafile that you are deploying.

2 Right click the file and then select Deploy As Web Service.

User’s Guide 39

Generating WSDL

3 The Deploy asaWeb Service wizard displays. Table 4-6 describes the
Deploy as a Web Service properties. Complete the information and click
next to move to the next wizard and Finish when done.

Using the quickly deploy wizard

Use the quickly deploy wizard to use commonly used defaults to deploy a
component as a Web service.

[1Using the quickly deploy wizard to deploy a Web service
1 Highlight the component that you are deploying.

2 Right click thefile and then select Quickly Deploy AsaWeb Service.

3 TheProgressinformation screen displays indicating that the Web service
is being deployed to the server to which you are connected. The deployed
Web service also appears in the Sybase Web services view.

Generating WSDL

Web service definition language (WSDL) isthe XML file that stores the
metadata used to describe your Web service, defines service endpoints, and
publishes information about your Web service. WSDL helps automate the
generation of client proxies for Web services in alanguage-and platform-
independent way. Likethe IDL file for CORBA, aWSDL file provides the
framework for client and server communication.

[IGenerating the WSDL

1 Fromaproject or Package Explorer, highlight the package that contains
the Javafile for which you are generating WSDL .

2 Right click the file and select Generate WSDL.

3 The Generate WSDL wizard displays. Table 4-7 describes the Generate
WSDL properties. Complete theinformation and click next to moveto the
next window and Finish when done.

Table 4-7: Generating WSDL wizard options and properties

Window Property Description
Genera options Web Service The Web service for which you are generating WSDL .
Name

40 Web Services Toolkit

CHAPTER 4 Web Services Administration

Window Property Description

Location URL Thelocation where the Web serviceis available.

Target A valid Uniform Resource Identifier (URI) for the location where the WSDL

Namespace document is published. Thetarget namespace should not include thefile name;
WST appends the appropriate file name when the WSDL document is
generated. The target namespace can be a Uniform Resource Name (URN),
which isaglobally unique and persistent URI.
http://www.com.sybase.webservices isan example of avalid URI.
urn:simpleJavaClass.test isan example of avalid URN.

Port Type Name Describes a collection of operation elements that define the abstract interface
of the Web service. The port type name provides aunique name among all port
types defined within the WSDL document. For example:

<portType name="SimplePortType">

Binding Name Contains the details of how the elements of the Port type name are converted
to aconcrete representation of the Web service by combining dataformats and
protocols:

<binding name="TestBinding"

Service Port Indicates the Web service endpoint address. For example:

Name http://EAServer_ 1:8000/webservices/testPort Of
testPort

Implementation The name of the class file implementing the Web service.

Class

TypeMapping Thetype mapping version. Valid options are 1.1 (the default) and 1.2.

Version

Soap Action The URI for the SOAPAction HTTP header for the HTTP binding of SOAP.
The SOAPAction HTTP request header field can be used to indicate the intent
of the SOAP HTTP request. The URI identifies the intent.

Binding Style The SOAP binding style:

« Document — indicates that the SOAP body contains an XML document.

* RPC (remote procedure call) —indicates that the SOAP body contains an
XML representation of a method/operation call.

« Wrapped — a document literal variation, that wraps parameters as children
of the root element.

Soap uUse The SOAP body use:

e Literal —if using adocument binding style.

¢ Encoded —if using an RPC binding style.
Method Method nName Select the methods/operations of the Web servicefor whichthe WSDL isto be
Selection generated.
Location File Location The location and file name (ending with .wsdl) of the generated WSDL file.

User’s Guide

41

UDDI administration

Window

Property

Description

Summary

Summarizes your selections. Review and click Finish to generate the WSDL,
or click Back to change any of your selections.

UDDI administration

From the Sybase Web Services view of the WST development tool, you can
publish aWSDL document that describes your Web service and itslocation to
aUDDI registry and unpublish from a UDDI site. See “UDDI 2.0” on page 4
for more information.

42

[IPublishing to a UDDI registry
1 Expand the Web services folder.

2 Right-click the Web service and select Publish.

3 ThePublish to UDDI wizard displays. Table 4-8 describes the Publish to
UDDI properties. Complete theinformation and click Next to moveto the
next window and click Finish when you are done.

Table 4-8: Publishing to a UDDI wizard options and properties

Window Property Description
Selectregistry Registry Name The registry to which you are connecting. From the Registry Name
Profile drop-down list, select a predefined site to which youwant tolog in,
or select the Enter New Registry Name entry and enter a new name.
You must be aregistered user on the site where you log in. The
registry name you select determines the default values of the query
URL and the publish URL. You can modify these entries. For new
names, you must provide connection information.
Query URL The query URL isthe location from which you query the UDDI.
Publish URL For publishing purposes, you need both the query and publish URLSs.
User Name The user name used for accessing the UDDI site.
Password The password used with the user name used to accessthe UDDI site.
Save Profile Use this button to save a profile. It will be added to the Registry
Name drop-down list for easy access.
Delete Profile Use this button to del ete a profile that you no longer require.
Ping Usethisbuttonto test your profile connection. You should beableto
ping before moving on to the other windows.
Business Name The name of the organization name by which this UDDI entry is
Information known.

Web Services Toolkit

CHAPTER 4 Web Services Administration

Window Property Description
Description A description of the organization.
Use Existing Your business model. The tModel is an abstract description of a
tModel Key particular specification or behavior to which the Web service
adheres.
Service A description of the service the business provides.
Description
Get All Business You can use this button to query the UDDI registry for tModel and
Details From business information instead of entering this information manually.
Registry
Summary Displaysasummary of your selections. Click Finishto publishtothe
UDDI site, or click Back to change your selections.
[1Unpublishing from a UDDI
1 Expand the Web services folder.
2 Right-click the Web service and select Unpublish.
3 The Unpublish from UDDI wizard displays. Table 4-9 describes the
Unpublish to UDDI properties. Complete the information and click Next
to move to the next window and Finish when done.
Table 4-9: Unpublishing from a UDDI wizard options and properties
Window Property Description
Select Registry Name The registry to which you are connecting. From the Registry Name
Publishing drop-down list, select a predefined site to which you want to log in,
Profile or select the Enter New Registry Name entry and enter anew name.
You must be aregistered user on the site where you log in. The
registry name you select determines the default val ues of the Query
URL and the Publish URL. You can modify these entries. For new
names, you must provide connection information.
Query URL The query URL is the location from which you query the UDDI.
Publish URL For publishing and unpublishing purposes, you need both the query
and publish URLSs.
User Name The user name used for accessing the UDDI site.
Password The password used in connection with the user name used to access
the UDDI site.
Save Profile Use this button to save aprofile. It will be added to the Registry
Name drop-down list for easy access.
Delete Profile Use this button to delete a profile that you no longer require.
Ping Usethisbutton to test your profile connection. You should be ableto

User’s Guide

ping before moving on to the other windows.

43

Other components

Window Property Description
Select UUIDs Nameof UUID A list of universaly uniqueidentifier (UUID) that identifies the
UDDI entry for all of your UDDI entriesis displayed. Check only
those entries that you want to unpublish.
Check for Empty ~ Select to check for empty businesses. An empty business may not
Businesses have a UDDI associated with it.
Check for select to check for unused tModels. An unused tModel may not have
Unused tModels aUDDI associated with it.
Selected UUID Service Details The service details of your UDDI entry as identified by the UUID
Details identifier.
Summary Displays a summary of your selections. Click Finish to unpublish

from the UDDI site, or click Back to change your selections.

Other components

The Other Components folder shows components located on the server to
which you are connected that can be converted to the SOAP message format.
In other words the Other Components folder contains components capable of
being exposed as Web services.

44

There may be components on the server to which you are connected that, in
order to make available, you must modify the component. For example, a
component can be exposed as a Web service only if it is stateless.

See “Exposing Components as Web services’ on page 38 and “Using the
quickly expose wizard” on page 39 for information about deploying other
components as Web services.

Web Services Toolkit

CHAPTER 5 Management Console—Web
Services

The Sybase management console is a Web based management console
that provides plug-in support, for example Web Services Toolkit. This
chapter describes how to use the management console to manage Web
services. For information about using the management console to manage
the private UDDI server, and publish to UDDI registries, see Chapter 6,
“Management console—Registry Services.”

Topic Page
Plug-in, domain, display, and server administration 45
Web service collection administration 47
Web service administration 49
UDDI administration 52
Type mappings 54
Managing security realms 54
Non-Web service components 55

Plug-in, domain, display, and server administration

This section describes how to use the management consol e to manage the
Sybase Web services plug-in, domains, and serversto which Web service
collections belong. It also describes how to modify preferences which
determines how management console wizards, nodes, and the interface
are displayed.

[IDefining Web Services Toolkit plug-in parameters

You can establish default values for Web Services Toolkit, which allows
you to manage the connection information for server profiles.

1 Click the Plugins folder.
2 Highlight the Sybase Web Services Toolkit folder.

User’s Guide 45

Plug-in, domain, display, and server administration

46

3

Complete the General properties section to establish server profile

values. Table 5-1 on page 47 describes the properties.

[ICreating a domain

1
2

Right-click the Web Services Toolkit icon and select Create Domain.

The Create Domain wizard appears. Enter the information as
instructed by the wizard and click Next. When finished, click Finish.
The new domain appears.

[IDeleting a domain

Right-click the domain to delete and select Delete.

[ICreating a server profile

1

Right-click the domain in which the server profile you are creating
belongs and select Create Server Profile.

The Create Server Profile wizard appears. Enter the information as
instructed by the wizard and click Next. When finished, click Finish.
The new server profile appearsin the domain in which it was created.
Table 5-1 on page 47 describes the server profile properties.

[IConnecting to a server

You can connect only to those servers for which you have a server profile.

1 Expand the domain in which the server profile you are connecting

belongs.

Right-Click the server profile you want to connect to and choose
Connect from the menu.

If the connection fails, click the Connection Detailstab to review the
connection details. Table 5-1 on page 47 describes the connection
properties.

[IRestarting, stopping, deleting, or disconnecting from a server profile

Right-click the server and click the action you want to perform:
* Restart —restarts the server to which you are connected.
* Stop —stops the server to which you are connected.

» Delete—deletesthe server profile for the server to which you are
connected.

» Disconnect — disconnects from the server to which you are
connected.

Web Services Toolkit

CHAPTER 5 Management Console—Web Services

« Refresh Node-refreshesthe server and any changessincethelast
refresh or restart.

Table 5-1 describes plug-in, domain, and server properties.

Table 5-1: Plug-in, domain, and server profile properties

Property Description

Select Domain The domain for the plug-in.
(plug-in property

only)

Select Server The server for the plug-in.

(plug-in property

only)

MachineName The name of the host machine where the server resides.

Protocol The protocol used to connect to the server; “http” or
“https.”

HTTP Port The port number of the host used to connect to the server;
for example, 8ooo.

User ID The user name used to connect to the server.
adminesystem isthe default. Use admin or another
member of the Admin role to connect to the Web services
container for accessto all of management console’'s
functions.

Password The password of the user connecting to the server.

Auto Connecton Select this box to connect to this profile automatically
Console Login when you log in to the management console.

A node can be aplug-in, domain, Web service collection, Web service, and
so on. If node information changes, or you want to reset the view, right-
click the node you are refreshing and select Refresh.

Web service collection administration

You can create and maintain Web service collections on each server being
administered by the management console.

[1Viewing or modifying Web service collection properties

1 Expand the server that contains the Web service collection whose
properties you are viewing or changing.

User’s Guide 47

Web service collection administration

2 Highlight the Web service collection. The management console
displays General and Web Service tabs. Table 5-2 on page 48
describes the Web service collection properties.

3 Make any changes and click Accept when done or Reset to ignore
your changes.

[Iimporting a Web service collection

You can import a Web service collection from a WAR file into the Web
services server to which you are connected.

1 Expand the server to which you want to import the Web service
collection.

2 Right-click the Web Service Collection folder and select Import.

3 Follow the wizard instructions to import the Web service collection.
Use Browse to |locate the WAR file that contains the Web service
collection. “ws’ isthe default Web service collection, if not specified.

4 When you click Finish, the Web service collection isimported and
displays under the Web Service Collection folder.

[IDeleting a Web services collection
To delete aWeb collection and all of the Web servicesit contains:

1 Expand the server that contains the Web service collection you are
deleting.

2 Right-click the Web service collection and select Delete.
Table 5-2 describes the Web services collection properties.

Table 5-2: Web service collection properties

Property Description

Name The name of the Web services collection.

Description A description of the Web services collection.

Realm The realm (if any) to which the Web collection belongs. A realm defines the
scope of authentication and authorization, and is also referred to as a security
realm.

HTTP The authentication method (if any) used by your Web service collection.

Authentication Authentication method choices are the same as used by Web applications. See

Method Chapter 3, “Web Application Security” in the EAServer Security

Administration and Programming Guide for more information.

48 Web Services Toolkit

CHAPTER 5 Management Console—Web Services

Web service administration
This section describes the procedures used to manage individual Web

services.
[1Viewing or modifying Web service properties

1 Expand the Web service collection that contains the Web service you
want to view or modify.

2 Highlight the Web service.

3 Select the General tab to view the Web service properties. See
Table 5-3 on page 49 for a description of the Web service properties.

4 Select the WSDL tab to view the WSDL for this Web service.
[IDeleting a Web service

This procedure deletes a Web service from a Web service collection.

1 Expand the Web service collection you are deleting.

2 Right-click the Web service and select Delete.

Table 5-3 describes the Web service properties.

Table 5-3: Web service properties

Property type Property Description

General Name The name of the Web service.
Description A description of the Web service.
Implementation The type of component, class, or file that implements the
type Web service.
Implementation The name of the class file implementing the Web service.
class name
Style The SOAP binding style:

« Document — indicates that the SOAP body contains an
XML document.

« RPC (remote procedure call) — indicates that the SOAP
body contains an XML representation of amethod call.

Use The SOAP body use:
« Literal —if using adocument binding style.
» Encoded —if using an RPC binding style.

Service URL The path, URL, or endpoint from which the Web service
can be accessed.

User’s Guide 49

Web service administration

Web service operation management

This section includes the procedures used to manage the operations
(methods) of a Web service.

Overloaded methods

50

If you deploy a Web service that contains overloaded methods, the

management consol e displays only the first method of the overloaded
method.

For example, if the Web service contains an overloaded method that
contains the methods echo(String, String) and echo (String), the GUI
displays only echo (String, String) twice, but the allowed/disallowed
operation affects both echo(String, String) and echo(String).

[IViewing or modifying Web service operation properties

1

Select the Web service collection and Web service you want to view
or modify.

Highlight the Operations folder.

Select the General tab to view the Web service Operations properties.
See Table 5-4 on page 50 for a description of the Web service
properties.

[invoking an operation

1

Select the Web service collection and Web service that contains the
operation you want to invoke.

Highlight the Operations folder.
Right-click the operation and select Invoke.

If aroleisassigned to the operation, you may need to provide a user
name and password to invoke the operation:

If aroleisnot assigned to a Web service operation, you do not need
to provide a user name or password to invokeit. If aroleis assigned
to the Web service operation, you must provide avalid user name and
password for a user within the assigned role.

Table 5-4 describes the Web service operation properties.

Table 5-4: Web service operation properties

Property type

Property Description

Genera

Name The name of the operation.

Web Services Toolkit

CHAPTER 5 Management Console—Web Services

Property type Property Description

Use Indicates whether the message parts are encoded using
some encoding rules, or whether the parts define the
concrete schema of the message. If useis encoded, then the
Encoding Syle specifies the encoding style to be applied.

Encoding Style Specify the SOAP encoding style. Each encoding styleis
identified using alist of URIs. For example,
http://schemas.xmlsoap.org/soap/encoding/ identifies
SOAP encoding as defined by the SOAP specification.

Return Type Specifies the return type of the method.

Return Name Specifies the name of the return type.

IsReturn Value Trueor false.

In Response

SOAP Action The URI for the SOAPAction HTTP header for the HTTP
binding of SOAP. The SOAPAction HTTP request header
field can be used to indicate the intent of the SOAPHTTP
request. The URI identifies the intent.

Message Document, RPC, or wrapped.

Operation Style

IsAllowed True or false. Determines whether or not the method is

available to aclient as a Web service endpoint.

Web service parameter management

This section describes the procedures used to manage the parametersfor a
given method or operation of a\Web service.

User’s Guide

[1Viewing parameters

1

o o~ WN

Select the Web service collection and Web service you want to view.

Highlight the Operations folder.

Highlight the operation of interest.

Click the Parameters fol der.

Highlight the parameter of interest.

Select the General tab to view the parameter properties. See Table 5-
5 for adescription of the parameter properties.

51

UDDI administration

Table 5-5: Web service parameter properties

Property Description

Name Name of the parameter.

Type Thetype of parameter. The type cannot be edited.

Mode The mode of the parameter, “in”, “out”, or “inout”.

Order The order of the parameters. If thereis only one parameter,

the orderis“0".

UDDI administration

This section describes how to publish information about your Web service
and its location to a UDDI registry and unpublish from a UDDI site.

52

[IPublishing to a UDDI registry
1 Expand the Web Service Collection folder.

2 Expand the Web service collection to which the Web service you are
publishing belongs.

3 Right-click the Web service and then select Publish to UDDI.

4 ThePublishto UDDI wizard displays. Table 5-6 describesthe Publish
to UDDI properties. Completetheinformation and click Next to move
to the next window. Click Finish when done.

Table 5-6: Publishing to a UDDI wizard options and properties

Window Property Description
Publish to Registry Profile Theregistry to which you are connecting. From the Registry Profile
UDDI drop-down list, select a predefined site to which you want to log in
or select the Enter New Registry Profile entry and enter anew name.
You must be aregistered user on the site where you log in. The
registry profile you select determines the default values of the
registry name, query URL, and the publish URL. You can modify
these entries. For new profiles, you must provide connection
information.
Registry Name The name of the registry to which you are connecting.
Query URL The location from which you query the UDDI registry.
Publish URL For publishing purposes, you need both the query and publish URLSs.
User Name The user name for accessing the UDDI site.
Password The password used with the user name used to accessthe UDDI site.

Web Services Toolkit

CHAPTER 5 Management Console—Web Services

Window Property Description
Save Profile Save aprofile. It will be added to the Registry Name drop-down list
for easy access.
Delete Profile Delete a profile that you no longer require.
Ping Test your profile connection. You should be able to ping before
moving on to the other wizards.
Business Name The name of the organization name by which this UDDI entry is
Information known.
Description A description of the organization.
Use Existing Your business model. The tModel is an abstract description of a
tModel Key particular specification or behavior to which the Web service
adheres.
Get All Business Query the UDDI registry for tModel and business information
Details From instead of entering this information manually.
Registry
New Business Add a new business name and information for this Web service.
Summary Displaysasummary of your selections. Click Finishto publishtothe
UDDI site, or click Back to change your selections.
[1Unpublishing from a UDDI
1 Expand the Web Service Collections folder.
2 Expand the Web service collection that contains the Web service you
are unpublishing.
Right-click the Web service and then select Unpublish from UDDI.
4 The Unpublish from UDDI wizard displays. Table 5-7 describes the
properties. Complete the information and click Next to move to the
next window. Click Finish when done.
Table 5-7: Unpublishing from a UDDI wizard options and properties
Window Property Description
Unpublishfrom Registry Profile Theregistry to which you are connecting. From the Registry Profile
uDDI drop-down list, select a predefined site to which youwant to log in,
or select the Enter New Registry Profile entry and enter anew name.
You must be aregistered user on the site where you log in. The
registry profile you select determines the default values of the
registry name, query URL, and publish URL. You can modify these
entries. For new profiles, you must provide connection information.
Registry Name The name of the registry to which you are connecting.
Query URL The location from which you query the UDDI registry.

User’s Guide

53

Type mappings

Window Property Description
Publish URL For publishing and unpublishing purposes, you need both the query
and publish URLSs.
User Name The user name for accessing the UDDI site.
Password The password used in connection with the user name used to access
the UDDI site.
Save Profile Save aprofile. It is added to the Registry Name drop-down list for
€3Sy access.
Delete Profile Delete aprofile that you no longer require.
Ping Test your profile connection. You should be able to ping before
moving on to the other wizards.
Select Name of UUID Click the Get Published Services Named WebServiceName (where
Published WebServiceName is the name of the Web service you are
UUIDsto be unpublishing). Thisreturnsalist of universally unique identifier
Unpublished (UUID) that identifiesthe UDDI entry for this Web service. Select
only those entries that you want to unpublish.
Unpublish the Click this checkbox to unpublish businessinformation for this Web
Business service.
Unpublish the Unpublish tModel information for this Web service.
tModel
Summary Displays a summary of your selections. Click Finish to unpublish

from the UDDI site, or click Back to change your selections.

Type mappings

Each Web service contains a Type Mapping folder that contains the type
mappings used to transfer data between service endpoints.

For complete information, see Chapter 3, “Components and Datatypes.”

Managing security realms

EAServer contains a default security realm. The security realmisa
container used to storetherolesused to allow and limit accessto your Web
services. When you connect to EA Server from the Web M anagement
Console, you see the security realm.

54

Web Services Toolkit

CHAPTER 5 Management Console—Web Services

[IRefreshing a security realm

If you add aroleto asecurity realm or make any other changes outside the
current session of the Web Management Console, you must refresh the
realm to see those changes.

* Right-click the security realm and select Refresh.

Non-Web service components

The Non-Web Service Components folder contains components that are
hosted on the server to which the management console is connected and
capable of being exposed as Web services.

[IExposing a non-Web service component
1 Expand the Non-Web Service Component folder.

2 Expand the package that contains the component you want to expose
as aWeb service.

3 Right-click the component and select Expose as Web Service. Follow
the instructions to expose the component as a Web service. Table 4-6
on page 38 describes the properties. When you click Finish, the Web
service is exposed in the Web service collection you entered.

User’s Guide 55

Non-Web service components

56 Web Services Toolkit

CHAPTER 6

Introduction

User’s Guide

Management console—Registry

Services

This chapter describes how to use the Sybase Management Web
Management Consol e to administer information contained in the local

UDDI servers, and publish to a UDDI registry.

For information about using the management consol e to manage Web
services, see Chapter 5, “Management Console—Web Services.”

Topic Page
Introduction 57
Using the management console 58
UDDI administration 59
Searching and publishing to UDDI registries 61

This portion of the management console consists of two independent

parts:

e Anadministration console for the local UDDI servers — Sybase
provides local UDDI registries as part of Web services. Thelocal
UDDI registry isan internal registry that provides an index of Web
servicesin aparticular domain, behind the firewall and isolated from
the public network. Thisensuresthat accessto both the administrative
features and registry data are secured. Datain the registry is not
shared with any other registries. the UDDI server is deployed as a
Web application and works as any other Web application in

EAServer.

* A browser capable of searching and publishing to any UDDI registry.

57

Using the management console

Using the management console

This section describes how to navigate the Web services registry section of the
management console.

Navigating the console and managing resources

58

Navigate the management console by selecting the desired option or folder in
theleft pane. UDDI administration functions and property sheetsarelocated in
the UDDI Registries folder within Web Services Registries, and include:

* Predefined registries - EAServer contains these predefined registries:
» UDDI on Localhost —a UDDI registry.
» UDDI on TrySybase —aUDDI registry.

* WSDP registry server — a Java Web Services Developer Pack
(WSDP) registry server that implements version 2 of the (UDDI) to
provide aregistry for Web servicesin a private environment. You can
use it with the Java WSDP APIs as atest registry for Web services
application development. For more information see:

* The Java WSDP tutorial at
http://java.sun.com/webservices/docs/1.6/tutorial/doc/

* The Java WSDP API specification at
http://java.sun.com/webservices/docs/1.6/api/index.html

» UDDI server —part of EAServer, but not installed or deployed by default.
To deploy the server, use the command:

deploy.bat ..\extras\juddi\juddi.war

When you deploy juddi.war from the $DJC_HOME/extras directory, two
users are created: juddipublish@default and juddiadmin@default. These
users do not have passwords set initially. To use them for connecting and
managing the UDDI registry, you must first establish apassword using the
set-password command. For example, from the bin subdirectory of your
EAServer installation, enter:

set-password

You are prompted for a Username. Enter juddipublishedefault. YOU
are prompted for a password. Enter a password for this user. Enter the
password a second time. You can now connect to the UDDI registry using
juddipublish@default.

Web Services Toolkit

CHAPTER 6 Management console—Registry Services

Once deployed, restart EA Server to accessthe UDDI server. You canthen
use any local Database for maintaining the registry information for the
UDDI server.

The configuration settings for the UDDI server are located in
config\webapp-juddi.xml and deploy\webapps\j uddi\WEB-
INF\juddi.propertiesfiles located in the EAServer installation
subdirectory.

* Registry Administration — includes defining and managing registries. See
“UDDI registry profile administration” on page 60.

e Search—search UDDI registries. See“Inquiries and searches’ on page 61.

e Publish — publish business information to UDDI registries. See
“Publishing” on page 63.

Note For al property sheets, the contents cannot be edited if they are
properties of anode rooted in the Search hierarchy. If they are properties of a
node rooted in the Publish hierarchy, they can be edited, unless they are keys,
which can never be edited. Tablesthat can be edited include aDel ete check box
column and an Add button. Property sheet pages that can be edited display
Apply and Cancel buttons at the bottom of the page.

UDDI administration

User’s Guide

This section describes how to administer UDDI registriesincluding, the private
UDDI server from the management console.

Registry profile information (URLS, user I1Ds, passwords, and so on) and the
users allowed to access them are stored in a repository accessible by the
management console, along with the information necessary to publish a Web
service to aregistry.

Note You mustinstall JDK 1.4 to run the UDDI server. A typical EAServer
installation includes JDK 1.4 and installs the UDDI server.

59

UDDI administration

UDDI registry profile administration

You can create, modify, or delete UDDI registry profilesfor the private UDDI
server on the machine to which you are connected, where you can publish
business and service information.

[ICreating a UDDI registry profile

1

Right-click the Web Services Registry icon and select Create Registry
Profile.

Follow the wizard instructions to create the UDDI registry profile. See
Table 6-1 on page 61.

[IConnecting to a UDDI registry profile

1
2

Expand the Web Services Registry icon.

Right-click the registry profile to which you want to connect and sel ect
Connect. The management consol e attemptsto connect to theregistry with
the information provided when it was created. See Table 6-1 on page 61.
If the management console successfully connects to the registry, the
Search and Publish folders display. If you want the profile to connect to
the private UDDI registry server when you connect to the profile, click
“Automatically connect to registry Server” checkbox available from the
Connection Details window.

[IDeleting or modifying a UDDI registry profile
1 Expand the Web Services Registry icon.

2 Right-click the registry profile you want to delete and select Delete.

60

Web Services Toolkit

CHAPTER 6 Management console—Registry Services

Table 6-1: UDDI registry profile properties

Wizard

Property

Description

Create UDDI
registry profile

Registry profile
name

The name of the registry you are creating or
modifying.

Query URL The location from which you query the UDDI.

Publish URL To publish, you need both query and publish
URLs.

User name The user name used for accessing the UDDI
site. The default is admin@system

Password The password used in connection with the user

name used to access the UDDI site.

Auto connect to

Select this box to connect to this registry

the registry automatically when you log in to the
server. management console
Ping Registry Verifiesthat the information provided allows

connection to the registry.

Summary

Displays a summary of your selections. Click
Finish to create the UDDI site, or click Back to
change selections.

User’s Guide

Searching and publishing to UDDI registries

This section describes how to search, query, and publish to UDDI registries.
Before you can search or publish to aregistry, you must be connected toit. See
“Connecting to a UDDI registry profile” on page 60.

Inquiries and searches

From the management console, you can query the private UDDI registry as
well as external UDDI registriesto locate potentia clients or suppliers based
on business type, categories, services, and so on. Locate information about
specifications, protocols, and namespaces of services and classification
systems through the tModels that describe and identify them.

Searching UDDI registries

This section describes how to search aregistry by business, service, or tM odel

entry.

61

Searching and publishing to UDDI registries

62

[ISearching a registry

1
2

Select the Search folder for the registry to which you are connected.

Click the desired tab, and complete the search options for the type of
search you want to perform and click Search. Table 6-2 describes the

search properties.

When the search completes, click the Results folder to view the results.

Click any of the items returned from the search to view additional
information about a business, service, or tModel.

Table 6-2: Search properties

Search type Options Description
Business Business name Enter aname of a business for which you are searching.
Sort by name Select this check box and click Ascending or Descending,
depending on the order you want to display the businesses.
Sort by date Select this check box to sort businesses by the date they
were created or modified.
Case sensitive Considers case when performing a search.
Exact match Search only for those businesses that exactly match the
Business hame.
Advanced options Advanced search options allow you to search by:
Categories—can be used in searchesto locate information
in aregistry based on business, service, or tModel
category.
Identifiers— an industry-standard identifier isunique to a
business or tModel.
Add Category Add acategory to thisbusiness. See“ Categories’ on page
67 for more information about categories.
Add Identifier Add an identifier to this business. See “ldentifiers’ on
page 68 for more information about identifiers.
Service Service name Enter a name of a service for which you are searching.
Sort by name Select this check box and click Ascending or Descending
depending on the order you want to display the service.
Sort by date Select this check box to sort servicesby the datethey were
created or modified.
Case sensitive Consider case when performing a search.
Exact match Search only for those services that exactly match the
Business name.
Add Category Add acategory to thisbusiness. See“ Categories’ on page

67 for more information about categories.

Web Services Toolkit

CHAPTER 6 Management console—Registry Services

Search type Options

Description

tModel

tModel name

Enter aname of atModel for which you are searching.

Note When performing atModel search against either the
UDDI on TrySybase, or UDDI on Localhost, the searchis
always performed in a case sensitive manner regardl ess of
the case sensitive setting on the search page.

Sort by name

Select this check box and click Ascending or Descending,
depending on the order you want to display the tModel.

Sort by date

Select thischeck box to sort tModel s by the datethey were
created or modified.

Case sensitive

Consider case when performing a search.

Exact match

Search only for those services that exactly match the
tModel name.

Add Category

Add acategory to thisbusiness. See“Categories’ on page
67 for more information about categories.

Add Identifier

Add an identifier to this business. See “Identifiers’ on
page 68 for more information about identifiers.

Publishing

Businesses

User’s Guide

You can publish and manage information about your business, its organization,
Web services, or other services offered from the management console to a
UDDI registry. After the business or service is published, the information is
accessible to the clients of the registry.

A UDDI registry allows you to describe your businessand publish information
about the services of that business. You can list categories and identifiers to
which the business bel ongs, which provides additional ways for clientsto
search your business for particular services. You can supply contact
information so that your business can be located easily.

[JAdding a business

1 Expand the Publish folder.
2 Right-click the Published Businesses folder and select Add Business.

3 Follow the Add Business Entity wizard to add a business. See Table 6-3
on page 64 for a description of the business properties.

63

Searching and publishing to UDDI registries

[IDeleting a business
1 Expand the Publish folder.

2 Expand the Published Businesses folder.
3 Right-click the business you want to delete and select Delete.

Table 6-3: Business properties

Tab Property Description
Business Name The name of the published business.
Description A description of the business.
Key A unique key that is generated when the businessis
registered.
Related The key of any related or similar businesses.
businesses
Summary Displays a summary of your selections. Click Finish to

create the business, or click Back to change selections.

For each published business, you can add a:

e Service—see“Services’ on page 64

* Contact — see “ Contacts’ on page 69

e Discovery URLs— see“Discovery URLS’ on page 70
e Categories— see " Categories’ on page 67

e ldentifiers—see“Identifiers’ on page 68

Services

Web services reside in businesses. Web services can be organized into
categories using identifiers, and can include access information that provides
easy access to clients.

[1Adding a service
1 Expand the Publish folder.

2 Right-click the Published Services folder and select Add Service. Or, to
add a service to an existing business, expand the Published Businesses
folder and select the Published Services folder within it and select Add
Service.

3 Follow the Add Service Entity wizard to add a service. See Table 6-4 on
page 65 for a description of the service properties.

64 Web Services Toolkit

CHAPTER 6 Management console—Registry Services

tModels

User’s Guide

[IDeleting a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

3 Right-click the service you want to delete and select Delete.
Table 6-4 describes the service properties.

Table 6-4: Service properties

Tab Property Description
Genera Name The name of the service.
Description The description of the service.
Language The language hame and description.
Summary Displays a summary of your selections. Click
Finish to add a service, or click Back to change
selections.

For each published service, you can add:
e Bindings— see“Bindings’ on page 66
e Categories— see“Categories’ on page 67

e ldentifiers— see “ldentifiers’ on page 68

tModels reference atechnical specification or description of a Web service.
They provide descriptions of Web services that define service types. Each
tModel includes a unique identifier (key) and points to a specification that
describes the Web service. tModels provide a common point of reference that
allows you to locate compatible services.

[JAdding a tModel

1 Expand the Publish folder.
2 Right-click the Published tModels folder and select Add tModel.

3 Follow the Add tModel Entity wizard to add atModel. See Table 6-5 on
page 66 for a description of the tModel properties.

[IDeleting a tModel

1 Expand the Publish folder.
2 Expand the Published tModels folder.

65

Searching and publishing to UDDI registries

3 Right-click the tModel you want to delete and select Delete.
Table 6-5: tModel properties

Tab Property Description
Generd Name Name of the tModel.

Description Description of the tModel.

Language The language name and description.
Summary Displays a summary of your selections. Click

Finish to create the tModel, or click Back to
change selections.

For each published tModel, you can add a:
» Discovery URL—see “Discovery URLS’ on page 70
» Categories— see " Categories’ on page 67

* ldentifiers—see“Identifiers’ on page 68

Additional registry information for published businesses, tModels, and services

After you have published businesses, tModels, or servicesto aregistry, you can
add additional information to each.

Bindings
Bindings are the mechanisms that bind the abstract definition (overview
document, or description) of a Web service to the concrete representation
(access point) of that service.

[JAdding a binding to a service

Expand the Publish folder.

Expand the Published Services folder.

Expand the service to which you are adding a binding.
Right-click the Bindings folder and select Add ServiceBinding.

Follow the Add ServiceBinding Entity wizard to add a binding. See
Table 6-6 on page 67 for adescription of the binding properties.

a b~ W N P

[IDeleting a binding from a service
1 Expand the Publish folder.

2 Expand the Published Services folder.

66 Web Services Toolkit

CHAPTER 6 Management console—Registry Services

3 Expand the service to which the binding you are deleting bel ongs.
4 Expand the Bindings folder.
5 Right-click the binding you want to delete and select Delete.
Table 6-6 describes the binding properties.

Table 6-6: Binding properties

Tab Property Description
Generd Description A description of the binding.
Access point An address for accessing a Web service must be
avalid URL.
Language The language name and description.
Summary Displays a summary of your selections. Click

Finish to create the binding, or click Back to
change selections.

Categories
Each business classification system has codes for the various categories. A
categories scheme allowsyou to group registry entries by agiven category. For
example, large businesses that conduct a variety of business may be sorted by
severa classifications. A company might sell computer hardware and
software. Such a business might be listed with several classifications, such as
computer training, data processing services, and software publishers, and so
on. Each business classification aso has a corresponding key.

[JAdding a category to a service, tModel, or business

1 Expand the Publish folder.
2 Expand the Published Services, tModel, or businesses folder.

3 Expand the service, tModel, or business for which you are adding a
category.

4 Right-click the Categories folder and select Add Category.

Follow the Add Category Entity wizard to add a category. See Table 6-7
on page 68 for a description of the category properties.

[IDeleting a category from a service, tModel, or business
1 Expand the Publish folder.

2 Expand the Published Services, tModels, or Businesses folder.

User’s Guide 67

Searching and publishing to UDDI registries

4
5

Expand the service, tModél, or business to which the category you are
deleting belongs.

Expand the Categories folder.
Right-click the category you want to delete and select Delete.

Table 6-7 describes the category properties.

Table 6-7: Category properties

Tab Property Description
Generd Categorization Select the categorization schemeto use with the
Scheme Web service, tModel, or business.
Name The name of the category.
Value Each category has a corresponding value.
Key A unique key that is generated when the

Identifiers

category isregistered.

Similar to categories, identifiers provide identification information, which
allows businesses, services, and tModels to be associated with some
identification scheme, such as model identification, or an industry group
identification number.

[JAdding an identifier to a business, service, or tModel

1
2
3

Expand the Publish folder.

Expand the Published Businesses, Services, or tModels folder.
Expand the business, service, or tModel for which you are adding an
identifier.

Right-click the Identifiers folder and select Add Identifier.

Follow the Add Identifier Entity wizard to add an identifier. See Table 6-
8 on page 69 for a description of the identifiers properties.

[IDeleting an identifier from a business, service, or tModel

1
2
3

68

Expand the Publish folder.
Expand the Published Businesses, Services, or tModels fol der.

Expand the business, service, or tModel to which the identifier you are
deleting belongs.

Expand the Identifiers folder.

Web Services Toolkit

CHAPTER 6 Management console—Registry Services

5 Right-click theidentifier you want to delete and select Delete.
Table 6-8: Identifier properties

Tab Property Description
Generd Identification Select the identification scheme to use with the
scheme Web service.
Name The name of the identification.
Value Each identifier has a corresponding value.
Key A unique key that is generated when the
identifier is registered.
Summary Displays a summary of your selections. Click

Finish to create the identifier, or click Back to
change selections.

Contacts

A contact (name, phone number, address) for a given business or business
service.

[JAdding a contact to a business
1 Expand the Publish folder.
2 Right-click the Published Businesses folder.

3 Right-click the businessto which you are adding a contact and select Add
Contact.

4 Follow the Add Contact wizard to add acontact. See Table 6-9 on page 70
for a description of the contact properties.

[IDeleting a contact from a business
1 Expand the Publish folder.
2 Expand the Published Businesses folder.
3 Expand the business which contains the contact you are deleting.
4 Right-click the contact you want to delete and select Delete.

User’s Guide 69

Searching and publishing to U

DDl registries

Table 6-9: Contact properties

Tab Property Description
Generd Contact The name of the contact; this could be a
company or organization name.
Description A contact description.
Contact person A contact person.
Address The address of the contact.
Phone number The phone number of the contact.
Summary Displays a summary of your selections. Click

Discovery URLs

Finish to create the contact, or click Back to
change selections.

A discovery URL isused to retrieve discovery documents for a specific
instance of a business entity.

[J1Adding a discovery URL to a business or tModel

1
2
3

Expand the Publish folder.
Right-click the Published Businesses or Published tModel folder.

Right-click the business or tModel to which you are adding a discovery
URL and select Add Discovery URL.

Follow the Add Discovery URL wizard to add a Discovery URL. See
Table 6-10 on page 70 for a description of the Discovery URL properties.

[IDeleting a discovery URL from a business or tModel

1
2
3

4

Expand the Publish folder.
Expand the Published Businesses or Published tModel folder.

Expand the business or tModel which containsthe discovery URL you are
deleting.

Right-click the discovery URL you want to delete and select Delete.

Table 6-10: Discovery URL properties

Tab Property Description

Generd Discovery URL URL to the discovery document.
Description A description of the discovery document.
Usetype
Language The language hame and description.

70

Web Services Toolkit

CHAPTER 6 Management console—Registry Services

User’s Guide

Tab Property

Description

Summary

Displays a summary of your selections. Click
Finish to create the discovery URL, or click
Back to change selections.

71

Searching and publishing to UDDI registries

72 Web Services Toolkit

CHAPTER 7 Developing Web Service Clients

This chapter describes how to devel op Web service clients from the client
files created from the WST devel opment tool and wstool commands.

Topic Page
Introduction 73
Stub-based model client 74
Dynamic proxy client 74
Dynamic invocation interface client 75
Document style client 75

Introduction

When you use Web Services Toolkit to generate client files, you generate
avariety of files based on the options selected and the client model used.
Thischapter describes how to create Web serviceclient applications based
on various programming models, including:

e “Stub-based model client” on page 74
e “Dynamic proxy client” on page 74
« “Dynamic invocation interface client” on page 75

e “Document style client” on page 75

User’s Guide 73

Stub-based model client

Stub-based model client

The stub-based model generateslocal stub classesfor the proxy fromaWSDL
document. Thisisthe model used by the WST development tool to create a
Web service client. When you change the WSDL document, you must
regenerate the stubs. WST provides tools to generate and compile stubs. See
“Creating and managing Web service clients’ on page 33. Along with the
stubs, the tools generate additional classes, and a service definition interface
(SDI), which isthe interface that is derived from a WSDL's portType. Thisis
the interface you use to access the operations on the Web service. The
combination of these files are called client-side artifacts. Client-side artifacts
are a collection of files on the client-side that handle communication between
aclient and a Web service.

Generated client-side artifacts must include:
* A stubclass—for example, AddNumbersSub.java:

public class AddNumbersStub extends org.apache.axis.client.Stub
implements client.AddNumbers Port

* A service endpoint interface — for example, AddNumbers _Port.java:
public interface AddNumbers Port extends java.rmi.Remote

* A service definition interface — for example, AddNumbers Service.java:
public interface AddNumbers Service extends javax.xml.rpc.Service

» Animplementation of the service definition interface (thelocation classto
help you find the endpoint) — for example,
AddNumbers_Servicel ocator.java:

public class AddNumbers ServiceLocator extends
org.apache.axis.client.Service implements client.AddNumbers Service

Dynamic proxy client

74

The dynamic proxy client creates dynamic proxy stubs at runtime using JAX-
RPC client APIs. The client gets the service information from a given WSDL
document. It uses the service factory class to create the service based on the
WSDL document and obtains the proxy from the service.

The significant JAX-RPC client APIs used are:

e javax.xml.rpc.rpc.Service

Web Services Toolkit

CHAPTER 7 Developing Web Service Clients

e javax.xml.rpc.ServiceFactory

Dynamic invocation interface client

The Dynamic Invocation Interface (DI1) client doesnot requireaWSDL fileto
generate static stubs or pass the WSDL file to the service factory to create the
service; instead, the client must know a service's address, operations, and
parametersin advance. A DI client discovers serviceinformation dynamicaly
at runtime by a given set of service operations and parameters.

The significant JAX-RPC client APIs used are:
e javax.xml.rpc.Cal
e javax.xml.rpc.Service

e javax.xml.rpc.ServiceFactory

Document style client

The previous clients require different invocation modes to interact with RPC
style Web services. To interact with document style Web services, the XML
document must be defined in the client. The clients do not invoke the Web
service by sending a discrete set of parameters and receiving return values as
describedinaWSDL document; instead, they send the parameter to the service
as XML documents.

User’s Guide 75

Document style client

76 Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

Overview

Topic Page
J2EE Web services support 77
Deploying J2EE Web services 78
Web service file locations and access points 89

Web service support in EAServer 6.0 includes the ability to deploy J2EE
Web applications and EJBs as Web Services. J2EE Web Services support
isnew in EAServer 6.0, and described in this chapter.

J2EE Web services support

This section provides an overview of J2EE Web services support included
in EAServer 6.0, including:

Web Services Runtime Support — Web Services runtime includes a
Web Service container that supports servlet style Web services. EJBs
are bundled as Web services and deployed as servlets at deployment
time.

Web Service Client <service-ref> support — When a Web service
client (EJB or servlet) isdeployed the <service-ref > iSrequested,
the service-interface classisreturned to the client with which to work.

Application client and EJB client support — client reference support
for EJBsand application clientsissimilar to that of Web applications.
All three have a service-ref definition, and INDI lookupsin
common. The service-ref definitions are contained in the J2EE
-entitytype Xml file; web.xml for webapp, ejb-jar.xml for EJB JAR,
and application-client.xml for application clients.

77

Deploying J2EE Web services

e UDDI Server - an Apache UDDI server (jUDDI) isincluded along with
custom configuration code. An installer option is available for
deployment. The deployable WAR fileis
EAServer _home/extras/juddi/juddi.war.

Deploying the juddi.war file sets up the UDDI server and creates the
appropriate tables in the default data source.

For additional information, refer to the J2EE 1.4 specification, at the Sun
Developer Network at http://java.sun.com/j2ee/1.4/index.jsp.

Deploying J2EE Web services

78

You can deploy Web services that are contained in J2EE archive files by
deploying the archive file, including:

» EJB Jar files— can contain J2EE 1.4 EJB Web services.
* WAR Files— can contain J2EE 1.4 Web application (servlet based) Web

Services.
» EARfiles—can contain EJB Jar files or WAR files that contain J2EE 1.4
Web services.

A Web service within one of these archive filesis defined by a combination of
the webservices.xml file, WSDL file, and jaxrpcmapping file.

The webservices.xml file defines the location of the WSDL file and
jaxrpcmapping file, and which EJB/servlet is used to define the Web service.

Additional information about the webservices.xml filecan be obtained fromit's
XSD, as described by these Web sites:

* J2EE deployment descriptors at http://java.sun.com/xml/ns/j2ee and

* J2EE Web service xsd documentation at
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd

You can deploy Web service clients as part of an EJB, Web application, or
application client. These are defined by aservice-ref taginthe gb-jar.xml,
web.xml or application-client.xml file.

Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

Web Service clients can be deployed with full WSDL, partial WSDL, or no
WSDL as defined in the J2EE 1.4 Web Services specification. If you deploy
with partial or no WSDL, additional information must be given on deployment
for port name, binding and location address. See “Deploying with a partial
WSDL” on page 84.

[IDeploying J2EE Web services
1 Deploy your J2EE Web service from the command line.

2 Goto the bin subdirectory of your EAServer installation.

3 Usethe deploy command (EAServer_home/bin/deploy.bat Windows
deploy.sh Unix) to deploy the EJB Web service. See “ Deploying Web
services from the command line” on page 81

Viewing Web services
After deploying Web services to EAServer you can view the contents.

[1Viewing deployed Web application (servlet) Web service
1 FromtheWeb Management Console, expand the Web A pplicationsfolder.

2 Highlight the Web application you want to view.

3 Selecttheweb.xml tab. You canview Web serviceclient <service-refs
information that provides the Web service binding references for the Web
service. For example:

<service-ref>
<service-ref-namesservice/service</service-ref-name>
<service-
interface>com.sun.ts.tests.webservices.deploy.GenSvc.TestsGenSvce
</service-interfaces>
<wsdl-file>META-INF/wsdl/TestsGenSve.wsdl</wsdl-file>
<jaxrpc-mapping-file>TestsGenSve.xml</jaxrpc-mapping-files>
<port-component-ref>
<service-endpoint-interface>
com.sun.ts.tests.webservices.deploy.GenSvc.Tests
</service-endpoint- interface>
</port-component-ref>
</service-ref>

Some main features of the client reference are:

* <service-ref-names isusedinaJNDI lookup to retrieve an
instance of the <service-interface>.

User’s Guide 79

Deploying J2EE Web services

80

* <jaxrpc-mapping-files iSalso used during deployment to map
namespaces to Java packages.

* <service-endpoint-interfaces iStheactua interface you useto
call your business methods.

This exampleillustrates how you can use the myecho object to call
methods on the service endpoint interface String rc = myecho.echo(“Hello
remote world");:

EchoService myservice =

(EchoService) context.lookup (“java:comp/env/service/EchoService")

// This gives the client the service-interface. From which you can look
up the service-endpoint-interface as follows:

Echo myecho = myservice.getEcho(); or

Echo myecho =

4

(Echo)myservice.getPort (Echo.class) ;

Use the deploy command (EAServer _home/bin/deploy.bat) to deploy a
J2EE 1.4 WAR file containing a Web service or Web service client.

[IViewing EJB Web services

1
2
3

From the Web Management Console, expand the EJB Modules folder.
Highlight the EJB you want to view.

Select the gjb-jar.xml tab. View Web serviceclient <service-ref>
information. See “Viewing deployed Web application (servlet) Web
service” on page 79 for an example.

Use the deploy command (EAServer _home/bin/deploy.bat) to deploy the
EJB Web service.

[IViewing application client Web services

1

From the Web Management Console, expand the Application Client
folder.

Highlight the application client you want to view.

Select the application-client.xml tab. View Web service client
<service-ref> information. See“Viewing deployed Web application
(serviet) Web service” on page 79 for an example.

Use the deploy command (EAServer _home/bin/deploy.bat) to deploy the
Web service.

Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

Deploying Web services from the command line

This section describes the command-line options for deploying J2EE Web
services using the deploy command located in the bin subdirectory of your
EAServer installation. See Chapter 12, “Command Line Tools’ for more
information about this, and other command line tools.

User’s Guide

Command line:

deploy

[options]

entity
[-contextpath path]

The most simple form of the deploy command for the various archivefilesis:

e deploy foo.jar
e deploy foo.ear
e deploy foo.war
Where:

Option

Description

-Ws

There are three ws options that define how a Web

serviceis exposed:

e -WS—expose any Stateless Session Beanswith a
Remote Interface as a Web service.

¢ -ws:<glbName> — expose the Stateless Session
Bean glbName as a Web service.

« -ws<jarFilelnEar>:<glbName> — expose the
Stateless Session Bean gbName located in an
application EAR file jarFilelnEar as a Web
service.

-wsClientAddress

Use this syntax to overwrite the <soap:address
location> in the WSDL file referred to by <service-
ref-name> in the web.xml, gjb-jar.xml or application-
client.xml and the <port name> in the WSDL file:

-wsClientAddress:<serviceRefName>:
<portComponentName> <address>

-wsContextPath
<contextpath>

Use this syntax to specify the context path for an EJB
Web servicein an application EAR file:

-wsContextPath:<jarFilel nEar>:<contextpath>

Use this syntax to specify the context path for an EJB
Web Service:

-wsContextPath <contextpath>

81

Deploying J2EE Web services

Option

Description

wsEndpointAddress
URI

Specify the endpoint address URI for an EJB Web
service using this syntax:

-wsEndpointAddressURI <ejbName>:<endpoint-
address-uri>

Specify the endpoint address URI for an EJB Web
servicein an Application EAR file using this syntax:

wsEndpointAddressURI:<jarFilel nEar>:<ejbName>

<endpoint-address-uri>

-wsStyle

Specify the Web service style(DOCUMENT, RPC or
WRAPPED) of the generated WSDL binding used
when exposing an EJB as a Web service using this
syntax:

-wsStyle <style>
Specify the Web service style(DOCUMENT, RPC or
WRAPPED) of the generated WSDL binding used

when exposing an EJB as a Web service contained in
an application EAR file using this syntax:

-wsStyle:<jarFilelnEar>:<style>

-wsUse

Specify theuse (LITERAL or ENCODED) of itemsin
the generated WSDL binding when exposing an EJB
as a Web service using this syntax:

-wsUse <use>

Specify theuse (LITERAL or ENCODED) of itemsin
the generated WSDL binding when exposing an EJB
asaWeb servicein an application EAR file using this
syntax:

-wsUse:<jarFilelnEar>:<use>

-wsWebAppName

Override the default name for the Web application
generated from an EJB Web Service using this syntax:

-ws\WebA ppName <webappname>

Override default name for the Web application
generated from an EJB Web Servicein an application
EAR file using this syntax:

-wsWebA ppName:<jar Filel nEar>:<webappname>

-entity

82

Thefile that you are deploying. entity should be
located inthe current directory, or providethefull path
using the contextpath option.

Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

Option Description

-contextpath path | Specify the contextPath for Web application
deployment. The default isthe name of the WAR file.
If -package is specified, then the package is the
context path.

-help Enter deploy -help to display all command line options

Examples This example uses the deploy and undeploy commands located in EAServer’s
bin subdirectory to demonstrate using default context path and default end
point addresses for statel ess EJB Web Services by deploying a Web service
contained in the HIWSjar file, and the client that is contained in the
HiWSClient.war file.

1

Deploy the HiIWSjar file:

deploy.bat C:\WebSvcSample\setA\HiWS.jar (Windows)
deploy.sh WebSvcSample/setA/HiWS.jar (Unix)

2

Verify the EJB Web Service URL location from your browser:
http://localhost:8000/hiws/HiWS?WSDL
The WSDL of HiWS EJB Web service displays

Deploy the HiIWSClient.war file by entering this command from
EAServer’s bin subdirectory:

deploy.bat C:\WebSvcSample\setA\HiWSClient.war (Windows)
deploy.sh WebSvcSample/setA/HiWSClient.war (Unix)

4

User’s Guide

Test the servlet by entering this URL in your browser:
http://localhost:8000/HiWSClient/HiServlet
Enter a name (e.g., John) and click Enter

Result: Hi John!

Undeploy the EJB and Web applications by entering these commands
from EA Server’s bin subdirectory

undeploy ejbjar-hiws

undeploy webapp-hiwsclient

83

Deploying J2EE Web services

Deploying with a

84

This exampl e uses the deploy command to specify the context path and end
point address for a stateless EJB Web service by matching the context path and
end point address to the SOAP address specified in the HIWSClient.war’s
hiwSwsdl file. This typically happens when one organization provides the
Web service and another organi zation uses/consumes the Web service. The set
of published URIs (e.g., webservice/sayHi) serves as a contract between Web
service provider and Web service consumer.

1 Deploy the HIWSjar file:

deploy.bat -wsContextPath webservice -wsEndpointAddressURI
HiWS:sayHi C:\WebSchample\setB\HiWS.jar(and@NQ

deploy.sh -wsContextPath webservice -wsEndpointAddressURI
HiWS:sayHi WebSchample/setB/HiWS.jar(LHﬂX)

2 Verify the EJB Web service URL location by entering thisinyour browser:
http://localhost:8000/\b webservice/sayHi\b0 ?WSDL
The WSDL of HiWS EJB Web service displayes

3 Deploy the HIWClient.war file:
deploy.bat C:\WebSvcSample\setB\HiWSClient.war (Windows)
deploy.sh WebSvcSample\setB\HiWSClient.war (Unix)

4 Test the servlet by entering this URL in your browser:
http://localhost:8000/HiWSClient /HiServlet
Enter aname (e.g., John) and click Enter
Result: Hi John!

5 Undeploy the EJB and Web applications:
undeploy ejbjar-hiws

undeploy webapp-hiwsclient

partial WSDL

In accordance with the J2EE 1.4 specification, you can occasionally deploy
without acomplete WSDL file. If done, you must complete some of the service
definition. Asthe following examplesillustrate.

Changing the location (SOAP address) for the client:

Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

<webServiceRef configName="3${this.config.name}" package="${this.package.name}"
serviceRefName="service/HiWS" merge="false">
. .other props
<service name="HiWS">
<port name="HiWSSEIPort"
location="http://mymachine:8000/it/worked"/>
</service>

</webServiceRef>
Completing a partial or incomplete WSDL file:

If your WSDL file does not define a service name, you need to specify service
name, port name, binding, and location. For example:

<webServiceRef configName="${this.config.name}" package="${this.package.name}"
serviceRefName="service/HiWS" merge="false">
other props
<property name=wsdlLocation" value="c:/myspot/mywsdl.wsdl"/>
<service name="HiWS">
<port name="HiWSSEIPort" binding="tns:HiWSSEIBinding"

location="http://mymachine:8000/it/worked" />

</services>

</webServiceRef>

Thisexampleis for a Web application that contains a Web service client with
some WSDL completion values:

<?xml version="1.0"?>

<project name="webapp-hiwsclient" default="configure"s
<property name="this.config.name" value="webapp-hiwsclient"/>
<import file="ant-config-tasks.xml"/>
<import file="default-config-targets.xml"/>
<property name="this.package.name" value="hiwsclient"/>
<import file="${this.config.name}-user.xml" optional="true"/>
<property name="djc.verbose" value="false"/>
<property name="web.accessControl" value="default"/>
<property name="web.allowedPorts" value="all"/>
<property name="web.rolePrefix" value="hiwsclient"/>
<property name="web.contextPath" value="HiWSClient"/>
<property name="web.virtualHost" value=""/>
<property name="web.logExceptions" value="true"/>
<property name="web.enableProfiling" value="true"/>
<property name="web.enableTracing" value="true"/>
<property name="web.threadMonitor" value="default"/>
<property name="web.JjavacTarget" value="1.4"/>

User’s Guide 85

Deploying J2EE Web services

<property name="web.deployDir"
value="${djc.home}/deploy/webapps/hiwsclient"/>
<property name="web.classDir" value="${web.deployDir}/WEB-INF/classes"/>
<property name="web.compileJspDir" value="${web.deployDir}/WEB-
INF/compiled jsps"/>
<path id="web.classpath.path.id">
<pathelement path="${web.classDir}"/>
<!-- WEB-INF/lib may not be present in the war, ANT will complain if 1lib is
included in the dir= attribute-->
<fileset dir="${djc.home}/deploy/webapps/hiwsclient /WEB-INF"
includes="1ib/*.jar lib/*.zip" casesensitive="no"/>
<fileset dir="${djc.home}/lib/default/ext" includes="*.jar *.zip"
casesensitive="no"/>
<fileset dir="${djc.home}/lib/ext" includes="*.jar *.zip"
casesensitive="no"/>
</path>
<pathconvert pathsep="${path.separator}" property="web.classPath"
refid="web.classpath.path.id"/>
<property name="jca.connectionFactory" value="default"/>
<property name="sqgl.dataSource" value="default"/>
<target name="configure-default"s>
<echo level="info" message="configure: webapp-hiwsclient"/>
<setProperties component="web.components.hiwsclient.HiServlet"
merge="false">
<threadMonitor name="${web.threadMonitor}"/>
<transaction type="BeanManaged"/>
</setProperties>
<setProperties component="web.components.hiwsclient.JspServlet"
merge="false">
<threadMonitor name="${web.threadMonitor}"/>
<transaction type="BeanManaged"/>
</setPropertiess>
<setProperties package="web.components.hiwsclient" merge="false">
<property name="contextPath" value="${web.contextPath}"/>
<property name="virtualHost" value="${web.virtualHost}"/>
<accessControl type="${web.accessControl}"/>
<logExceptions enable="${web.logExceptions}"/>
<profilePublicMethods enable="${web.enableProfiling}"/>
<tracePublicMethods enable="${web.enableTracing}"/>
<classLoader name="web.components.hiwsclient"/>
<permitAccess ports="${web.allowedPorts}"/>
<property name="rolePrefix" value="${web.rolePrefix}"/>
<!-- WebServiceRef: java:comp/env/service/HiWS-->
<bind name="java:comp/env/service/HiWS"
webService="web.components.hiwsclient.service.HiWS"/>
</setProperties>

86 Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

<webServiceRef configName="${this.config.name}"
package="${this.package.name}" serviceRefName="service/HiWS" merge="false">
<property name="archiveFile" value="HiWSClient.war"/>
<property name="deploymentDescriptorFile"
value="M: \targetl.4\deploy\webapps\hiwsclient \WEB-INF\web.xml"/>
<property name="deploymentDescriptorType" value="webapp"/>
<property name="wsdlLocation" value="~/deploy/webapps/hiwsclient/WEB-
INF/wsdl/HiWS.wsdl" />
<property name="localWsdlLocation"
value="~/deploy/webapps/hiwsclient /WEB-INF/wsdl/HiWS.wsdl"/>
<service name="HiWS">
<port name="HiWSSEIPort" binding="tns:HiWSSEIBinding"
location="http://mymachinename:8000/it/worked"/>
</services
<property name="servicelnterface" value="org.me.hi.HiWS"/>
<property name="jaxrpcMappingFile"
value="~/deploy/webapps/hiwsclient /WEB-INF/HiWS-mapping.xml"/>
<property name="serviceName" value="HiWS"/>
</webServiceRef>
<setProperties classLoader="web.components.hiwsclient" merge="false">
<property name="classPath" value="~/deploy/webapps/hiwsclient/WEB-
INF/classes;~/deploy/webapps/hiwsclient /WEB-INF/lib/**"/>
<property name="resolveFirstBySystem"
value="org.apache.commons.logging.**, javax.xml.parsers.**, org.w3c.dom.**,
org.xml.sax.**"/>
<property name="parentFirst" value="false"/>
<property name="parentClassLoader" value="lib.default-ext"/>
</setProperties>
</target>
<target name="recompile-default">
<echo level="info" message="recompile: webapp-hiwsclient"/>
<rewriteWsdlAddress webService="web.components.hiwsclient.service.HiWS"/>
<djc package="web.components.hiwsclient"/>
<javac target="${web.javacTarget}" source="${web.javacTarget}"
srcdir="%${djc.home}/genfiles/java/src" destdir="${web.classDir}"
classpath="${web.classPath}"
includes="web/components/hiwsclient/**"/>
</targets>
<target name="refresh-default"s>
<echo level="info" message="refresh: webapp-hiwsclient"/>
<refresh module="webapp-hiwsclient"/>
</target>
<target name="deploy-default">
<echo level="info" message="deploy: webapp-hiwsclient"/>
</targets>
<target name="undeploy-default"s>

User’s Guide 87

Deploying J2EE Web services

<echo level="info" message="undeploy: webapp-hiwsclient"/>

<delete
file="${djc.home}/Repository/Instance/com/sybase/djc/util/DjcClassLoader/web.
components.hiwsclient.properties"/>

<delete
file="${djc.home}/Repository/Instance/com/sybase/djc/ws/client/WebService/web
.components.hiwsclient.service.HiWS.properties"/>

<unload module="webapp-hiwsclient"/>

</target>

</project>

Itisalsopossibleto point at adifferent WSDL file, perhaps one with corrected
addresses or ports. The property for thisis:

<property name="wsdlLocation" value="<wsdllocation>"/>
For example:

<property name="wsdlLocation" value="~/deploy/appclients/ggl5497.usv8202/META-
INF/wsdl/TestsServicePartial .wsdl"/>

Note ~deploy refersto the servers deploy directory.

Stub properties
Itis possible to set up stub properties at deployment time, the format is:

Stub Properties: (use the portComponent tag which
specifies either serviceEndpointInterface or wsdlPort
or both and then the stubProperty tag with name/value
pairs for the stub properties)

<webServiceRef configName="${this.config.name}"
package="${this.package.name}"

ejbName="com sun ts tests common vehicle ejb EJBVehicl
e" serviceRefName="service/handlersec">

<portComponent
serviceEndpointInterface="com.sun.ts.tests.webservices
.handler.HandlerSec.TestAuth"
wsdlPort="TestAuthPort">

<stubProperty
name="javax.xml.rpc.security.auth.password"
value="javajoe"/>

<stubProperty

88 Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

name="javax.xml.rpc.security.auth.username"
value="javajoe"/>
</portComponent >

</webServiceRef>

The two are both usabl e depending on whether you associ ate the stub property
with the service endpoint interface or WSDL port.

Setting the EJB Web service Web application suffix

You can change the default EJB Web service Web application package suffix
in %DJC_HOME%/config by modifying this section of the deploy-tool-
options.xm file:

<!-- General Deployment Properties -->
<setProperties component="com.sybase.djc.deploy.DeployTool" merge="true">
<property name="disableValidation" value="false"/>
<property name="jacc" value="false"/>
<property name="keepModuleOnFailure" value="false"/>
<property name="overwrite" value="true"/>
<property name="wspackagesuffix" value=""/>

</setPropertiess>

Change the value for the property wspackagesuffix to change the EJB Web
service generated Web application name. For example, if the valueis
“_myservice”, and you deploy an EJB inan EJB JAR file called MyEjb.jar, the
resulting Web application is called MyEjb_myservice.

Web service file locations and access points

User’s Guide

This section describes where the configuration and WSDL files are stored for
your generated J2EE 1.4 Web services, and where the access points are for
those Web services.

There are three types of components which generate J2EE 1.4 artifacts:

89

Web service file locations and access points

e PowerBuilder components — generate EJBs, which generate Web
applications which are then deployed as a Web application with Web
services. The Web serviceis called which references the Web application,
which referencesthe EJB, which references the PowerBuilder component.
See“ A PowerBuilder component deployed/exposed asa\Web service” on

page 90.

e EJBs- generate Web applications which are then deployed as a Web
application with Web services. The Web serviceis called which references
the Web application which references the EJB. See“An EJB
exposed/deployed as a Web service” on page 91.

* Web Applications — deployed directly as Web services. The Web service
is called which references the Web application. See “ A Web application
deployed as a Web service” on page 92.

Note ThewspPackagesuffix property in the deploy-tools-options.xml file
controls Web application suffix naming. By default itis““, that isthereisno
suffix. changing this property to something else results in the
wsPackageSuf fix being appended to the name of the wswebapp, for example:

<property name="wsPackageSuffix" value="_ webService"/>

resultsin a Web application name of myejbjar webService.

A PowerBuilder component deployed/exposed as a Web service

When you expose your PowerBuilder component as a Web service from your
IDE (Integrated Development Environment), an EJB is created from the
PowerBuilder component. The deployed EJB ultimately has a J2EE Web
services description file associated with it.

The EJB uses the information contained in the Web services description file to
generate:

* A Web application which contains a serviet —located in the
deploy\webapps\WS_name subdirectory of your EAServer installation,
where WS _name is the name of the Web application. It contains all the
relevant Web service files including configuration files and the original
and modified WSDL files. The modified WSDL file contains the actua
address of your Web service. For example:

<wsdlsoap:address location="http://mymachine:8000/pbsoap ws/n pbsoap"/>

90 Web Services Toolkit

CHAPTER 8 J2EE Web Service Support

where pbsoap_ws is the name of the Web service and n_phsoap isthe
name of the PowerBuilder component you exposed as a Web service.

Associated files for the EJB — located in the deploy\ejbjars\EJB_name
subdirectory of your EA Server installation, where EJB_nameisthe name
of the EJB.

[JAn example of exposing a PowerBuilder component as a Web service

1 You have acomponent (NVO) named n_pbsoap with a package name of

pbsoap in your PowerBuilder IDE.

2 You expose the component from your |DE using these comments:

javaPackage="com. sybase.mypackage" ;webServices="n pbsoap";

3 A Web application is deployed to the deploy\webapps\pbsoap_ws

subdirectory of your EAServer installation.

4 Accessthe Web service WSDL at

http://mymachine:8000/pbsocap ws/n_pbsoap?wsdl

An EJB exposed/deployed as a Web service

Exposing an EJB isvery similar to exposing a PowerBuilder component,
except that:

User’s Guide

A Web application generated from an EJB has the name myejbjar, where
myejbjar was the name of your EJB Jar file.

The myejbjar file is deployed to the depl oy\webapps\myejb subdirectory
of your EAServer installation.

The WSDL can be accessed at
http://mymachine:8000/myejbjar/myejbname?wsdl

When generating Web services from EJBs, these configuration files are
generated:

e ws-gbjarname-gjbname.xml is generated for the EJB
* webapp-gjbjarname.xml is generated for the Web application.

For example, if you deploy an EJB with an EJB Jar name of myejbjar,
these files are created in the config subdirectory of your EA Server
installation:

e gbjar-myjarname.xml

91

Web service file locations and access points

e gbjar-myjarname-user.xml
e webapp-gbjarname.xml

* ws-gbjar-gbjarname.xml

A Web application deployed as a Web service

92

When you deploy a Web application that contains a Web service, the
configuration and WSDL files are deployed to the webapps\mywebapp
subdirectory of your EA Server installation, where mywebapp is the name of
the Web application. The WSDL is available at
http://mymachine:8000/mywebapp/myservlietname?wsdl

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

This chapter containsinstructions on how to use wstool, either by itself, or

with wstant.
Topic Page
Introduction 93
Working with wstool 93
Working with wstant 96
wstool commands 97

Introduction

wstool isa command line interface that allows you to administer, monitor,
and deploy Web services contained in the EA Server Web service
container.

You can use wstool from the command line, from scripts or makefiles, or
with Jakarta Ant (wstant).

Working with wstool

Before using wstool, make sure that the DJC_HOME environment
variable is set to the EAServer installation directory. Use the following
script to run wstool:

e« UNIX $DJC_HOME/bin/wstool
+ Windows %DJC_HOME%\bin\wstool.bat

wstool syntax
The syntax for wstool is:

wstool [connection-arguments] [command]

User’s Guide 93

Introduction

Where:

e connection-arguments specify optional parameters required to connect to
the server, including:

Flag To specify

-hOr -host Server host name; default isthe value of the
server on which EAServer resides

-n Or -port Web services host port number; default is
8080

-u Or -user User name; default is admin@system

-p O -password Password; default is the password you

established during installation of EA Server.
You can change this password using the set-
admin-password command.

-k O -protocol Communication protocol; default is*“ http”
-10r -logfile Log file name; default is“ System.out”

e command is awstool command.

For example, to connect to the server running on “paloma’ at HTTP port
“9005”, using account “admin@system” with password “ 1secret” enter:

wstool -h paloma -n 9005 -u admin@system -p 1secret

Note wstool command options are not case sensitive.

Return codes

wstool commands return the following codes:
0 —if the command runs successfully, and the result is true/success
1 —if the command runs successfully, and the result is false/failure

2 —if an exception is thrown during the running of the command

Help

You can display usage for any wstool command by using the help option. For
exampleto display all of the wstool commands, enter:

wstool help

You can also display individual command help. For example, to display
options and valid usage for the wstool delete command, enter:

94 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Verbose

Entity identifiers

Entity identifier

wstool help delete

All wstool commands include the verbose option, which displays stack trace
information, if any isgenerated, when you run the command. Thedefault value
isfalse. For example, to display stack trace information for the wstool delete
command, enter:

wstool delete -verbose true
Service:CollectionName/WebServiceName

Many wstool commands take one or more entity identifiers as arguments. An
entity identifier isastring of the form EntityType: EntityName that uniquely
identifies an entry in the repository; for example, a server, component,
collection, or keystore name.

Table 9-1 provides examples of entity identifiers for each entity type.

Table 9-1: Example entity identifiers
Specifies

component : SVU/SVULogin Component named SVULoginthat isinstalledinthe SVU

package. The package nameisincluded because
EAServer components always reside in packages.

collection:MyCollection The Web services collection named MyCaollection.
method:SVU/SVULogin/isLogin TheisLogin method of component SVULogin in package
Svu.

role:MyRole

The role named MyRole.

server:Jaguar

The server named Jaguar.

service:MyWcoll/MyWebService The Web service named MyWebService contained in the

MyWcoll Web collection.

methodParams : SVU/SVULogin/isLogin The method parameters for the isLogin method of

User’s Guide

component SVULogin in package SVU.

Not all wstool commands support every type of entity in the repository. Usethe
help option to see the supported entities for each command.

When a command specifies an invalid entity type, an error message displays.

95

Working with wstant

Working with wstant

wstant lets you run wstool commands from Ant build files. This allows you to
write build files that automate many development, deployment, and
management tasks.

JakartaAnt isaJava-based build tool devel oped by the Apache Jakarta project.
To obtain Ant software and documentation, see the Ant Web site at
http://jakarta.apache.org/ant/. Ant functions are similar to other build tools
(such as make, gnumake, or jam) but are platform-independent, extending Java
classes rather than OS-specific shell commands. Ant includes a number of
tasksthat are frequently used to perform builds, including compiling Javafiles
and creating JAR files. It al so includes common functions such as copy, delete,
chmod, and so on.

Ant build files (similar to amakefile) arewrittenin XML. Like makefiles, Ant
build files can include targets that perform a series of tasks. Instead of
extending shell commands, Ant’sbuild file callsout atarget tree where various
tasks are executed. Each task is run by an object that implements a particular
task interface.

Setting up your environment

96

Install Ant and read the accompanying documentation.

wstant scripts requires afull JDK installation. If you are running wstant from
an EAServer client install, make sure you have installed the full JDK. By
default, only the JRE files are installed.

Before running wstant, verify that:

e TheDJC HOME environment variable is set.
* A full IDK installation is present.

o Jakarta Antisinstaled on your system.

By default, wstant searches for Jakarta Ant in
%DJC_HOME%\jakarta-ant (Windows) or $DJC_HOME/jakarta-ant
(UNIX). If you ingtall Jakarta Ant in a different location, set the
ANT_HOME environment variable to reflect the change before you run
wstant scripts.

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

wstant scripts

wstant syntax

You can also set ANT_HOME in the user environment file,
%DJC_HOME%\bin\user_setenv.bat (Windows) or
$DJC_HOME/bin/user_setenv.sh (UNIX). wstant scripts check the user
environment file each timeiit runs.

The following scripts are provided for running Ant with wstool commands:
« Windows %DJC_HOME%\bin\wstant.bat
+ UNIX $DJC_HOME/bin/wstant

wstant scripts uses this syntax:
wstant [ant_options]

where ant_options are any options and commands supported by Ant; see the
Ant documentation for details on these options.

You may frequently use the -buildfile flag, which lets you specify abuild file
other than the default build.xml for the Ant XML build file.

wstool commands

Description

User’s Guide

This section contains information on wstool commands, and lists the
commands that wstool accepts.

Each command section contains a description of the command, itssyntax, alist
of options, and an example of its use at the command line. wstool commands
are divided into four sections:

e UDDI administration commands on page 98
* Server management commands on page 102

* Web service administration commands on page 107

97

UDDI administration commands

UDDI administration commands

Description UDDI commandsallow you to publish and unpublish Web serviceinformation
to and from a UDDI registry.

Command list Table 9-2 lists the UDDI administration commands described in this section.

Table 9-2: wstool UDDI administration commands
command name Description

inquiry Queries aUDDI registry for business, service, or tModel
information.

publish Publishes Web service information to a UDDI registry.

unpublish Unpublishes Web service information from a UDDI.
inquiry
Description Queriesa UDDI registry for business, service, or tModel information.
Syntax Command line:

inquiry

[-inquiryURL URL]
[-business business_name]
[-exact true | false]
[-service service_name]
[-tmodel tModel_name]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<target name="inquiry" > <wst_antTask command="inquiry"
[inquiryURL="URL"]

[business= “business_name”]

[exact="true | false”]

[service="service_name”]

[tmodel="tModel_name” />

Where:
Option | Description
inquiryURL ‘ Inquiry URL used to connect to the registry. Required.

98 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Option Description

business Provide the business name if querying a business.
Provide abusiness key if querying a service, which lists
only those servicesfor the particular business. If thekey is
not specified, al the services that match all business are
listed.

exact True or false. If true (the default), only entities with exact
matches are listed. If false, all entities that begin with the
business, service, or tModel name specified are listed.

service Specify the service name to query a service.
tmodel Specify the tModel name to query atModel.
Examples This command queries information about “myBusiness’ from the TrySybase
registry:

wstool inquiry -inquiryURL http://uddi.trysybase.com:8080/uddi/inquiry
-business myBusiness

Ant build example:

<wst_antTask command="inquiry"
inquiryURL="http://uddi.trysybase.com:8080/uddi/inquiry"
business="myBusiness"/>

publish

Description Publishes Web service information to a UDDI registry.
Syntax Command line:
publish

[-inquiryURL URL]
[-publishURL URL]

[-user user_name]
[-business business_name]
[-pass password]
[-serviceURL URL]
[-publishName name]
[-tmodel tModel_name]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<target name="publish" > <wst_antTask command="publish"
[inquiryURL="URL"]

User’s Guide 99

unpublish

[publishURL="URL"]
[user="user_name”]
[business= “business_name”]
[pass="password”]
[serviceURL="URL"]
[publishName="name”]
[tmodel="tModel_name” />

Where:
Option Description
inquiryURL Inquiry URL used to connect to the registry. Required.
publishURL Publish URL used to connect to the registry. Required.
user User name used to connect to the UDDI registry URL.
Required.
business Provide the business name if publishing a business or
specify the business key if publishing a service.
pass The password used to connect to the UDDI registry URL.
serviceURL The service URL of the service to be published.
publishName Specifiesaname with which thetModel can be published.
to publish aservice or atModel, you must specify the
publish.
tmodel Specifies the tModel key that associates the serviceto a
specific tModel.
Examples This command publishes information about “testservice” to the TrySybase
registry:

wstool publish -inquiryURL http://uddi.trysybase.com:8080/uddi/inquiry
-publishURL http://uddi.trysybase.com:8080/uddi/publish -user testuser
-business 6B9DD2D0-D81E-11D7-A0BA-000629DCOA13 -pass secret -serviceURL
http://webservicehost:8080/ws/services/testservice -publishName
testpublish -tmodel 216DD2D0-A21E

Ant build example:

<wst_antTask command="publish"
inquiryURL="http://uddi.trysybase.com:8080/uddi/inquiry"
publishURL="http://uddi.trysybase.com:8080/uddi/publish" user="me"
pass="secret" business="myTestBusinessOnly"/>

unpublish

Description Unpublishes Web service information from a UDDI registry.

100 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Syntax Command line:

unpublish

[-inquiryURL URL]
[-publishURL URL]

[-user user_name]
[-business business_name]
[-pass password]
[-serviceURL URL]
[-serviceKey key]

[-tmodel true]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="unpublish" > <wst_antTask command="unpublish"
[inquiryURL="URL"]

[publishURL="URL"]

[user="user_name”]

[business= “business_name”]

[pass="password”]

[serviceURL="URL"]

[serviceKey="key"]

[tmodel="tModel_name” />

Where:
Option Description
inquiryURL Inquiry URL used to connect to the registry. Required.
publishURL Publish URL used to connect to the registry. Required.
user User name used to connect to the UDDI registry URL.
Required.
business Provide the business name if unpublishing a business or
specify the business key if unpublishing a service.
pass The password used to connect to the UDDI registry URL.
serviceURL The service URL of the service being unpublished.
serviceKey You must specify a service key to unpublish atModel.
tmodel Specifies the tModel key that associates the serviceto a
specific tModel.
Examples This command unpublishes information regarding “testservice” from
TrySybase registry:

wstool unpublish -inquiryURL http://uddi.trysybase.com:8080/uddi/inquiry
-publishURL http://uddi.trysybase.com:8080/uddi/publish -user testuser
-business 6B9DD2D0-D81E-11D7-A0BA-000629DCO0A13 -pass secret -serviceURL
http://webservicehost:8080/ws/services/testservice -serviceKey 1234 -tmodel
216DD2D0-A21E

User’s Guide 101

Server management commands

Ant build example:

<wst_antTask command="unpublish"
inquiryURL="http://uddi.trysybase.com:8080/uddi/inquiry"
publishURL="http://uddi.trysybase.com:8080/uddi/publish" user="me"
pass="secret" business="myTestBusinessOnly"/>

Server management commands

Description

Command list

list

Description

Syntax

102

Server management commands allow you to start, stop, and manage the server,
aswell as manage listeners for EA Server.

Table 9-3 lists the server management commands.

Table 9-3: wstool server management commands
command name Description

list Listsentitiesin the repository.

refresh Refreshes a server or Web service collection.
restart Restarts the server to which you are connected.
shutdown Shuts down the server to which you are connected.

Returns alist of entitiesfrom the server’s repository, depending on the type of
entity entered.

Note Entity typeisnot an option, do not use a“-" when specifying an entity
type.

Command line:

list
[Collections]
[CompType]
[Components]
[Listeners]
[Methods]
[Packages]
[Params]

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

[Props]
[PropsValue]
[ReturnType]
[ServerProps]
[ServerVersion]
[ServiceName]
[Services]
[URL]

[wsDD]
[WSDL]
[typemappings]
[undefTypes]
Entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="list" > <wst_antTask command="list"

[option="option_depending_on_entity"] >

Where:

Type Description

Collections Returns alist of Web service collections.

CompType Returns the component type. Entity isin the form of
component: PackageName/ComponentName.

Components Returns alist of SOAPable components available on the
server.

Listeners Returns alist of listenersin the format of

“<protocol>:<host>:<port>". For example,
“http:local host:8080"

Methods Returnsalist of methodsfor the entity. Entity canbeinthe
form of either:

* service:CollectionName/ServiceName or
« component:PackageName/ComponentName

Include the -methodType option and specify the type of
methods returned:

allowed — list only the allowed methods.
disallowed — list only the disallowed methods.
a1l —list all methods (default).

Packages Returns alist of SOAPable packages available on the
server.
Params Returns alist of parametersfor agiven method. Entity is

in the format of:
method: CollectionName/ServiceName/MethodName

User’s Guide 103

list

104

Type

Description

Props

Returns alist of properties of a given entity, for example:
collection:CollectionName

Propsvalue

Returns the property value for the given property. Use the
-name argument and provide the name of the property for
which the value is returned. Entity can be one of:

» collection:CollectionName
e server:ServerName

ReturnType

Returns the return type of agiven method. Entity isin the
form of:

method: CollectionName/ServiceName/MethodName

ServerProps

Returns alist of server properties.

ServerVersion

Returns the server version.

ServiceName

Returns the Web service name of a given component.
Entity isin the form of:

component: PackageName/ComponentName

Services

Returnsthelist of Web servicesfor agiven collection. Use
the -serviceType argument with one of the following
options:

al —list all Web services

active — list only active Web services

Entity isin the form of:

collection:CollectionName

URL

Returnsthe service URL of agiven Web serviceis. Entity
isin the form of:

service: CollectionName/ServiceName

WSDD

Liststhe .wsdd of agiven Web service. Usethe -out
argument and supply afile nameto direct the .wsdd to a
file. The default fileis
collectionName_serviceName.wsdd. Entity isin the form
of:

service:CollectionName/ServiceName

WSDL

Liststhe .wsdl of agiven Web service. Usethe -out
argument and supply afile nameto direct the .wsdl to a
file. The default fileis
collectionName_serviceName.wsdl. Entity isin the form
of:

service:CollectionName/ServiceName

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Type Description

typemappings Returns alist of the type mappings for agiven Web
service. Entity isin the format of:

service:CollectionName/ServiceName

undefTypes Returns alist of the undefined types for a given soapable
component. Entity ison of:

» method:PackageName/ComponentName/MethodName

» classnhame
Entity Varies depending on the selected option.
Examples Example 1 Thiscommand lists al the listeners running on the server:

wstool list Listeners

Example 2 This command directs the WSDL for MyWebService to the
test.wsdl file:

wstool list wsdl -out test.wsdl service:MyCollection/MyWebService
Ant build example:

<wst_antTask command="list" type="wsdl" entity:
“service:MyCollection/MyWebService” />

refresh

Description Refreshes a server or Web service collection, depending on the entity. Also
refreshesthe child propertiesof the specified entity. For example, if you refresh
aserver, al the server properties that belong to the server are refreshed.

Syntax Command line:

refresh
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="refresh" > <wst_antTask command="refresh"

entity="entity” />
Where:

User’s Guide 105

restart

Option Description
entity Can be one of:
» server:ServerName — identifies the server you are
refreshing.
* collection:\ebServiceCollectionName — identifies the
Web service collection you are refreshing.

Examples This command refreshes the EA Server named “ Jaguar:”
wstool refresh server:Jaguar
Ant build example:

<wst_antTask command="refresh"
entity="server:Jaguar"/>

restart
Description Restarts the server to which you are connected.
Syntax Command line:
restart
Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="restart" > <wst_antTask command="restart"
Examples This command restarts the server to which you are connected:

wstool restart
Ant build example:

<wst_antTask command="restart" />

shutdown

Description Shuts down the server to which you are connected.

106 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Syntax Command line:

shutdown

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<target name="shutdown" > <wst_antTask command="shutdown"
Examples This command shuts down the server to which you are connected:
wstool shutdown
Ant build example:

<wst_antTask command="shutdown" />

Web service administration commands

Description Web service administration commands allow you to manage most aspects of
Web services.
Command list Table 9-4 lists the Web service administration commands.

User’s Guide 107

activate

activate

Description

Syntax

108

Table 9-4: wstool Web service commands

command name

Description

activate

Activates a Web service and makes it available to clients.

allowMethods

Makes available to clients the selected methods of a Web
service.

deactivate Deactivates a Web service and makes it unavailable.

delete (1) Deletes a Web service.

delete (2) Deletes a Web service collection.

deploy (1) Creates and deploys a Web service from the implementation
classfile.

deploy (2) Creates and deploys a Web service from aJAR file.

deploy (3) Creates and deploys aWeb service collection from aWAR file.

deploy (4) Command-line deployment options for J2EE Web services.

disallowMethods

Makes Web service methods unavailable to Web service
clients.

exposeComponent Exposes an EAServer component as a \Web service.

getTMjar Creates atype mapping JAR file.

isActive Returns amessagethat agiven Web serviceiseither “active” or
“inactive.”

isAllowed Checksif the method is available to a client as a Web service
endpoint.

refresh Refreshes a server or Web service collection.

set_props Sets the value of the property for a component, Web
application, or aWeb service.

wsdl2Java Generates client artifacts and a client template capabl e of
accessing server-side Web services.

java2wsdl Generates aWSDL file from the Javaimplementation file.

Activates aWeb servicein agiven Web service collection so that it isavailable

to clients.
Command line:

activate
entity

Ant build file:

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="activate" > <wst_antTask command="activate"

entity="entity” >

Where:
Option | Description
entity Service:CollectionName/ServiceName — identifies the
Web service you are activating.
Examples This command activates MyWebService which is contained in MyCollection:

wstool activate Service:MyCollection/MyWebService
Ant build example:

<wst_antTask command="activate"
entity="service:myCollection/myService"/>

allowMethods

Description Makes Web service methods available to clients.
Syntax Command line:
aIIquethods
entity
Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="allowmethods" > <wst_antTask
command="allowmethods"

entity="entity” >

Where:
Option Description
entity method: CollectionName/ServiceName/m1, m2, m3 —

identifies the Web service to which the methods being
made available belong, and a comma-separated list of
method names that are available to a client.

The entity must be in quotes.

User’s Guide 109

deactivate

Examples Thiscommand makes testmethod1 and testmethod2 availableto aWeb service
client that belongs to MyWebService:

wstool allowMethods “method:WebColl/MyWebService/testmethodl, testmethod2”
Ant build example:

<wst_ antTask command="allowMethods"
entity="method:myCollection/myService/myMethod"/>

deactivate
Description Deactivates a Web service so that it is unavailable to clients.
Syntax Command line:
deactivate
entity
Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deactivate" > <wst_antTask command="deactivate"
entity="entity” >
Where:
Option | Description
entity service:CollectionName/ServiceName — identifies the
Web service you are deactivating.
Examples This command deactivates MyWebService which is contained in
MyCollection:

wstool deactivate service:MyCollection/MyWebService
Ant build example:

<wst_antTask command="deactivate"
entity="service:myCollection/myService"/>

110 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

delete (1)
Description Deletes a Web service from a given Web service collection. The service
element in the server-config.wsdd fileis deleted and the files indicated by the
“files’ parameter of that service element are also deleted.
Syntax Command line:
delete
entity
Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="delete" > <wst_antTask command="delete"
entity="entity” >
Where:
Option | Description
entity Service: CollectionName/ServiceName — identifies the
Web service you are deleting.
Examples This command deletes MyWebService:

wstool delete Service:MyWebCollection/MyWebService
Ant build example:

<wst_antTask command="delete"
entity="service:myCollection/myService"/>

delete (2)

Description Deletes a Web service collection.
Syntax Command line:
del_ete
entity
Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="delete" > <wst_antTask command="delete

entity="entity” >

User’s Guide 111

deploy (1)

Where:
Option | Description
entity collection:CollectionName — identifies the Web service
collection you are deleting.
Examples This command del etes MyWebServiceColl ection:

wstool delete collection:MyWebServiceCollection
Ant build example:

<wst_antTask command="delete"
entity="collection:myCollection/>

deploy (1)

Description Creates and deploys a Web service using an implementation classfile. This
command creates a Web service in the Web service collection name provided
by you, or uses“ws’ as the default. This command creates the Web service
collection if it does not already exist.

Syntax Command line:

deploy

[-overwrite true | false]
[-collection collectionName]
[-include directory]
[-classpath path]

entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<target name="deploy" > <wst_antTask command="deploy"
[overwrite="true | false”]

[collection="collectionName”]

[include="directory”]

[classpath= “path”]

entity =“className” >

Where:
Option | Description
overwrite If set to true, overwrites an existing Web serviceif it has

the same service name. The default is false.

112 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Examples

Option Description

collection Specifies the collection name. ws is the default Web
collection.

include Specifies the directory that contains any dependent
classes. For example:
d:\foo
This option must be in quotes.

classpath Specifies additional JARS/classesto set in classpath.
Note JARs must be specified in quotes.

entity Thefile that you are deploying. entity should be located

in the current directory, or provide the full path. If
deploying from an implementation classfile, entity isin
the format of foo.bar.myclass or foo.bar.myclass.class.

This example deploysthe Web service from the com.sybase.mytest classfileto

MyServiceCollection:

wstool deploy -overwrite true -collection MyServiceCollection -include
“d:\classes;d:\moreclasses” com.sybase.mytest

deploy (2)
Description

Syntax

User’s Guide

Ant build example:

<wst_antTask command="deploy"
collection="CollectionName"
include="d:\moreclasses”
entity="com.sybase.myTest"/>

Note You cannot deploy aclassthat uses“DefaultNamespace” asthe package

name. For example:

wstool deploy -include “d:\mytest” DefaultNamespace.myTestiS

not valid.

Creates and deploys a Web service from a Sybase Web services JAR file.

Command line:

deploy

[-overwrite true | false]

113

deploy (2)

[-collection collectionName]
[-include directory]
[-classpath path]

entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<target name="deploy" > <wst_antTask command="deploy"
[overwrite="true | false”]

[collection="collectionName”]

[include="directory”]

[classpath= “path”]

entity ="file” >

Where:

Option Description

overwrite If set to true, overwrites an existing Web serviceif it has
the same service name. The default is false.

collection Specifies the collection name, if you are deploying aJAR
file. ws isthe default Web collection.

include Specifies the directory that contains any dependent
classes. For example:
d:\foo
This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.
Note JARSs must be specified in quotes.

entity Thefile that you are deploying. entity should be located
in the current directory, or provide the full path.

Examples This example deploysthe Web service contained in the MyWebService,jar file:

wstool deploy MyWebService.jar
Ant build example:

<wst_ antTask command="deploy"
entity="d:\wstool\test\deploy\service.jar"/>

114 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

deploy (3)

Description Creates and deploys a Web service collection from a Sybase Web services
WAR file.
Syntax Command line:
deploy

[-overwrite true | false]

[-include directory]
[-classpath path]

entity
Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<target name="deploy" > <wst_antTask command="deploy"
[overwrite="true | false”]

[include="directory”]
[classpath= “path”]

entity =“file” >

Where:

Option Description

overwrite If set to true, overwrites an existing Web service collection
if it has the same collection name. The default is false.

include Specifies the directory that contains any dependent
classes. For example:
d:\foo
This option must be in quotes.

classpath Specifies additional JARS/classesto set in classpath.
Note JARs must be specified in quotes.

entity Thefilethat you are deploying. entity should belocated in
the current directory, or provide the full path.

Examples This example deploys the Web service collection contained in the

MyWebServiceCollection.war file:

wstool deploy MyWebServiceCollection.war

Ant build example:

<wst_ antTask command="deploy"
entity="d:\wstool\test\deploy\collection.war"/>

User’s Guide

115

deploy (4)

deploy (4)
Description These are the command-line options for deploying J2EE Web services.

Syntax Command line:

deploy

[options]

entity
[-contextpath path]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"

[option]
entity =“file” >
Where:
Option Description
ws There are three ws options that define how a Web serviceis

exposed:

e -WS—expose any Stateless Session Beans with a Remote
Interface as a Web service.

¢ -ws:<gbName> — expose the Statel ess Session Bean
ejbName as a Web service.

* -ws<jarFilelnEar>:<glbName> — expose the Statel ess
Session Bean gjbName located in an application EAR file
jarFilelnEar as aWeb service.

wsClientAddress Use this syntax to specify the address (in the WSDL file) to
which aclient isreferring:

-wsClientAddress: <serviceRefName>:
<portComponentName> <address>

wsContextPath Use this syntax to specify the context path for an EJB Web
servicein an application EAR file:

-wsContextPath:<jarFil el nEar >:<contextpath>

Use this syntax to specify the context path for an EJB Web
Service:

-wsContextPath <contextpath>

116 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

User’s Guide

Option

Description

wsEndpointAddress
URI

Specify the endpoint address URI for an EJB Web service
using this syntax:

-wsEndpointAddressURI <ejbName>:<endpoint-address-
uri>

Specify the endpoint address URI for an EJB Web servicein
an Application EAR file using this syntax:

-wsEndpointAddressURI:<jarFilelnEar>:<gjbName>:
<endpoint-address-uri>

wsStyle

Specify the Web service style (DOCUMENT, RPC or
WRAPPED) of the generated WSDL binding used when
exposing an EJB as a Web service using this syntax:
-wsStyle <style>

Specify the Web service style (DOCUMENT, RPC or
WRAPPED) of the generated WSDL binding used when
exposing an EJB as a Web service contained in an application
EAR file using this syntax:

-wsStyle:<jarFilelnEar>:<style>

wsUse

Specify the use (LITERAL or ENCODED) of itemsin the
generated WSDL binding when exposing an EJB as a Web
service using this syntax:

-wsUse <use>

Specify the use (LITERAL or ENCODED) of itemsin the
generated WSDL binding when exposing an EJB as a Web
servicein an application EAR file using this syntax:

-wsUse<jarFilelnEar>:<use>

wsWebAppName

Override the default name for the Web application generated
from an EJB Web Service using this syntax:

-wsWebA ppName <webappname>

Override default namefor the Web application generated from
an EJB Web Service in an application EAR file using this
syntax:

-wsWebA ppName:<jarFilel nEar>:<webappname>

entity

Thefilethat you are deploying. entity should belocated in the
current directory, or providethefull path using the contextpath
option.

contextpath

Specify the contextPath for Web application deployment. The
default isthe name of the WAR file. If -packageis specified,
then the package is the context path.

117

disallowMethods

Examples This exampl e deploys the Web service collection contained in the
MyWebServiceCollection.war file:

wstool deploy MyWebServiceCollection.war
Ant build example:

<wst_antTask command="deploy"
entity="d:\wstool\test\deploy\collection.war"/>

disallowMethods

Description Makes the listed methods unavailable to a Web service client.
Syntax Command line:
disallowMethods
entity
Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="disallowMethods" > <wst_antTask
command="disallowMethods"

entity="entity” >

Where:
Option Description
entity method: CollectionName/ServiceName/m1, m2 —
identifies the Web service and a comma-separated list of
methods you are making unavailable.
Entity must be specified in quotes.
Examples This command makes MyMethod1 and MyM ethod2 unavailable to clients:

wstool disallowMethods “method:MyWebCollection/MyWebService/Mymethodl,
MyMethod2”

Ant build example:

<wst_antTask command="disallowMethods"
entity="method:myCollection/myService/myMethod"/>

118 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

exposeComponent
Description Exposes an EA Server component as a Web service.
Syntax Command line:

exposeComponent

[-collection webCollection]
[-service webService]

[-tm typeMapping]

[-tmJar jarFile]

entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="exposeComponent" > <wst_antTask
command="exposeComponent"
[collection="webCollection”]

[service="webService”]

[tm="typeMapping”]

[tmJar="jarFile"]

entity =“package/component” >

Where:

Option Description

collection Specifiesthe name of the Web service collection, towhich
the Web service belongs. ws is the defaullt.

service Specifies the Web service name to which the component
is exposed to. The default is
PackageName_ComponentName.

tm Specifies the type mapping file name for any undefined
custom datatypes.

tmJar Specifies the full path to the JAR file that contains any
custom datatype mappings required by the component.

entity The name of the EA Server package/component being
exposed.

Examples This command exposes myPkg/myComp as a Web service:

wstool exposeComponent -tm myTM.map -tmJar myTM.Jjar myPkg/myComp
Ant build example:

<wst_antTask command="exposeComponent"
entity="component :myPackage/myComponent"/>

User’s Guide 119

getTMjar

getTMjar

Description Creates a JAR file that contains type mappings identified by the class option
and associates it with an entity for which the type mapping is needed.

Syntax Command line:

getTMjar

[-class classname]
[-outJar jarFile]
[-overwrite true | false]
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant. AntTask"/>

<target name="getTMjar" > <wst_antTask command="getTMjar"
[class="classname”]

[outjar="jarFile"]

[overwrite="true | false”]

entity =“entity” >

Where:

Option Description

class The name of the class for which the type mapping JAR is
needed.

outJar Thename of the JAR to be used for the output of the class.
The default is className.jar

overwrite overwritesthe JAR, if it already exists. The default is not
to overwrite.

entity Service: CollectionName/ServiceName — identifies the
Web service that requires the type mappings contained in
the JAR.

Examples This command creates atestclass.jar file that contains the type mappings

contained in testclass and required by MyWebService:

wstool getTMjar -class testclass -outjar testclass.jar
Service:MyWebServiceCollection/MyWebService

Ant build example:

<wst_antTask command="getTMjar"
class="myPkg.mysampleClass"
entity="service:myCollection/myService"/>

120 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

ISActive
Description Returns a message that a given Web serviceis either “active’ or “inactive.”
Syntax Command line:
isActive
entity
Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isActive" > <wst_antTask command="isActive"
entity="entity” >
Where:
Option | Description
entity Service: CollectionName/ServiceName — identifies the
Web service which is either “active” or “inactive.”
Examples This command returns either “active” or “inactive” for MyWebService:

wstool isActive Service:MyWebServiceCollection/MyWebService
Ant build example:

<wst_antTask command="isactive"
entity="service:myCollection/myService"/>

isAllowed
Description Checksif the method is available to a client as a Web service endpoint.
To make methods available to clients, see allowMethods on page 109.
Syntax Command line:
isA!Iowed
entity
Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isAllowed" > <wst_antTask command="isAllowed"

entity="entity” >

Where:

User’s Guide 121

refresh

Option | Description
entity method: Coll ectionName/ServiceName/MethodName —
the name of the method being queried.

Examples This command checks to see if MyMethod is available to the client:
wstool isAllowed method:MyWebServiceCollection/MyWebService/MyMethod
Ant build example:

<wst_antTask command="isallowed"
entity="method:myCollection/myService/myMethod"/>

refresh
Description Refreshes a server or Web service collection.

Syntax Command line:

refresh
entity

Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<l-- Refresh a collection on the server -->
<target name="refresh" >
<wst_antTask command="refresh"
entity="entity"/>
Where:
Option Description

entity Can be one of:

» server:ServerName — identifies the server being
refreshed.

« collection:CollectionName—identifiesthe Web service
collection being refreshed.

Examples This exampl e refreshes MyWebServiceColl, including all the Web services it
contains.

wstool refresh collection:MyWebServiceColl

122 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Ant build example:

<wst_antTask command="refresh" entity="collection:myCollection"/>

set_props
Description Setsthe value of the property for a Web service collection either using aname
value pair or by specifying afile that contains the property name-value pair.
Syntax Command line:
set_props
[entity name value | file]
Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="set_props" > <wst_antTask command="set_props"
entity="entity” name="nameOfProperty” value="propertyValue">
Where:
Option Description
entity The entity that is being modified:
collection:CollectionName — identifies the Web service
collection for which the properties are set.
name The name of the property being modified.
value The new value of the property.
file The name of thefilethat contains the name value pairs of
properties being modified.
Examples This command sets the description of MyWebServiceCollection:

wstool set props collection:MyWebServiceCollection
com.sybase.jaguar.webApplication.description “My test description”

Ant build example:

<wst_antTask command="set props"
entity="collection:myCollection"

name="com. sybase.jaguar.webApplication.description”
value="My test description” />

User’s Guide 123

wsdl2Java

wsdl2Java

Description

Syntax

124

Generates Java code for client side artifacts from the WSDL, where WSDL
URI isthe URI (universal resource identifier) of the WSDL file.

wsdl2java generates a service implementation template file with a .java.new
extension. Remove the .new extension and enter your business logic into the
implementation file before deploying it as a Web service.

Note When you expose acomponent that uses EA Server-specific holder types
as aWeb service, the convention for generating the client-side holders classes
isthat they are always generated under a package.holders.type hierarchy. For
example, when you expose a component as a Web service that uses
BCD.MoneyHolder, the conversion on the client-side resultsin a JAX-RPC
specific holder contained under BCD.holders.MoneyHolder. You will not use
EA Server-specific types on the Web service client side.

Command line:

wsdl2java

[-classpath path]

[-compile true | false]

[-factory class_name]
[-fileNS2pkg file_name]

[-genAll true | false]
[-genHelper true | false]
[-genimplTemplate true | false]
[-genRefrencedOnly true | false]
[-genSkeleton true | false]
[-genStub true | false]
[-gentestCase true | false]
[-gentypes true | false]
[-genWSDD true | false]
[-handlerFile fileName]
[-nolmport true | false]
[-noWrapped true | false]
[-ns2pkg package=namespace]
[-outputDir path]

[-package packageName]
[-passwd password]

[-scope Request | Application | Session]
[-serverside true | false]
[-timeout seconds]

[-tm argument]
[-typeMappingVer 1.1 | 1.2]
[-user userName]

WSDLURI

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="wsdI2java" > <wst_antTask command="wsdI2java"
[classpath="path”]

[compile="true | false "]
[factory="class_name”]
[fileNS2pkg="file_name”]

[genAll="true | false "]

[genHelper="true | false”]
[genimplTemplate="true | false”]
[genRefrencedOnly="true | false”]
[genSkeleton="true | false”]
[genStub="true | false”]
[gentestCase="true | false”]
[gentypes="true | false”]
[genWSDD="true | false”]
[handlerFile="fileName”]

[nolmport="true | false "]
[noWrapped="true | false”]
[ns2pkg="package=namespace”]
[outputDir="path”]
[package="packageName”]
[passwd="password”]

[scope="Request | Application | Session”]
[serverside=“true | false”]
[timeout="seconds”]

[tm="argument”]

[typeMappingVer="1.1| 1.2"]
[user=“userName”]
WSDLURI="resourceldentifier” >

Where:
Option

Description

classpath

Specify the classpath in quotes.

compile

If true, compiles the generated source code.

factory

User’s Guide

Name of the class file that implements the GenerateFactory
class.

125

wsdl2Java

126

Option

Description

fileNS2pkg

The name of the file that contains the ns2pkg (namespace to

package) mappings. Use this option instead of the ns2pkg

options to declare multiple mappings. For example, the

Ns2pkg.properties file contains two mappings:
http\://Host:Port/Man.xsd=com.sybase.manf
http\:/Host:Port/Purch.xsd=com. sybase.Pur
chase

and can be used as follows:

wstool wsdl2java -fileNs2pkg Ns2pkg.properties
myTest.wsdl

genWSDD

If true, generates a Deploy.wsdd file.

genlmpl Template

If true, generates a template for the implementation code.

genStub

If true, generates the stub files.

genAll If true, generates and compiles the stubs, wsdd, and
ImplTemplate files. If set to true, this option overrides the
settings of genWsDD, genImplTemplate, and gensStub.
Note When user defined typesthat are not Java beans are
used, the generated test client is not compilable as wsdi2java
cannot construct the type in the test code.

gentestCase If true, generates atest case.

gentypes Set this option to false when you start with java2wsdl, or you
will overwrite existing types. Default is true.

genHelper If true, generates helper classes for metadata.

genSkeleton If true, generates the skeleton files.

handlerFile The handler classfile that contains any specia routines
(handlers) for this Web service.

nolmports If true, generates code for the current WSDL only.

noWrapped If true, turns off support for “wrapped” document/literal.
Wrappedisadocument literal variation, that wraps parameters
as children of the root element.

ns2pkg The namespace to package value pair, in the form
namespace=package. You can only declare one hamespace to
package pair using this option. Use the fileNS2pkg option to
declare multiple mappings.

outDir The output directory for the generated files.

package The package name to be used for namespace to package
mappings.

passwd The password required by the user to access the WSDL URI.

scope The scope of the deploy.wsdd: request, application, or session.

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

Option

Description

serverside

If true, generates the server-side bindings for the Web service.

timeout

In seconds, the amount of time allowed for this command to
complete before timing out.

tm

specify the type mapping file name, if any custom data types

are being used. For example, the type mapping file

myTMfile.map has the following contents:
tl.QName = nonbeansample:Book
tl.Serializer =
nonbeansample.BookSerializer
tl.Deserializer =
nonbeansample.BookDeserializer
tl.SerializerFactory =
nonbeansample.BookSerFactory
tl.DeserializerFactory =
nonbeansample.BookDeserFactory
tl.TypeName = nonbeansample.Book
tl.EncodingType =
http://schemas.xmlsoap.org/soap/encoding/
Specify the webservice if the type
mappings are on the server
tl.ServiceName = myCollection/myService

typeMappingVer

Type mapping version to use. The default is 1.1. Acceptable
valuesare1.1and 1.2.

user

The user name used to access the WSDL URI.

Examples Thisexample uses CodeGetTest.wsdl astheinput WSDL file and generatesthe
Java output file to the out directory:

wstool wsdl2java -genTestCase false -genHelper true -genImplTemplate true
-genRefrencedOnly false -genSkeleton true -genStub true -genWSDD true -tm
tmfile.map -classpath "d:\out;d:\wstool\test\tm\classes" -genall false -

outDir out CodeGenTest.wsdl

Ant build example:

<wst_antTask command="wsdl2java"

entity="d:\wstool\test\sample.wsdl" />

User’s Guide

127

java2Wsdl

java2Wsdl

Description Generates code for client side artifacts from the Java class file, where
locationURL and JavaClassName are the URL and name of the Java classfile
from which the WSDL is being generated.

Syntax Command line:

java2wsdl

[-binding binding_name]

[-classpath path]

[-exposeMethods m1, m2, m3]
[-extraClass class1, class2, class3]
[-importURL wsdl_interface]

[iImpINS implementation_namespace]
[impIWSDL implementation_wsdl_filename]
[-impIClass class_name]

[-inheritMethods true | false]
[-inputSchema file_or_url]

[-inputWSDL WSDL_file]

[-INtfNS interface_namespace]
[-outputWsdl file_name]

[-pkg2ns package_namespace]
[-portName port_name]

[-portTypeName class_name]
[-serviceName service_name]
[-soapAction Default | Operation | None]
[-stopClasses classl, class2, class3]
[-style Document | RPC | Wrapped]

[-tm argument]

[-typeMappingVer 1.1 | 1.2]

[-use Literal | Encoded]

[-wsdIMode All | Interface | Implemenation]
[-xcludeMethods m1, m2, m3]
-locationURL<service location URL> javaClassName

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="java2wsdI" > <wst_antTask command="java2wsdI"
[binding="binding_name”]

[classpath="path"]

[exposeMethods="m1, m2, m3 "]
[extraClass="class1, class2, class3”]
[importURL="wsdl_interface”]
[impINS="implementation_namespace”]
[implWSDL="implementation_wsd|_filename”]
[implClass="class_name]

[inheritMethods="true | false”]
[inputSchema="file_or_url"]
[inputWSDL="WSDL_file"]

128 Web Services Toolkit

CHAPTER 9 Using wstool and wstant

[intftNS="interface_namespace”]
[outputWsdl="file_name”]
[pkg2ns="package_namespace”]
[portName="port_name”]
[porTypetName="“class_name”]
[serviceName="service_name”]
[soapAction="Default | Operation | None”]
[stopClasses="class1, class2, class3 "]
[style="Document | RPC | Wrapped”]
[tm="argument”]

[typeMappingVer="1.1| 1.2"]

[use="Literal | Encoded”]

[wsdIiMode="All | Interface | Implemenation”]
[xcludeMethods="m1, m2, m3”]
locationURL<service location URL>="javaClassName” >

Where:

Option Description

binding The binding name. The default is servicePortName value
“SOAPBinding.”

classpath Specify the classpath in quotes.

exposeMethods A comma-separated list of methods to expose.

extraClasses A comma-separated list of classes to be added to the type
section.

importURL The location of the interface URL.

impINS The target namespace for the implementation WSDL .

intfNS The target namespace.

inputWwsDL input WSDL filename.

implWSDL The output implementation WSDL file name. Setting thisoption
causes the wsd1Mode option to be ignored.

implClass An optional classthat contains implementation of methodsin
class-of-portType. The debug information in the classisused to
obtain the method parameter names, which are used to set the
WSDL part names.

inputwWsdl The input WSDL file name.

outputWsdl The output WSDL file name.

pkg2NS The package to namespace value pair, in the form
package=namespace.

portName The service port name. The default is obtained from the
locationURL.

portTypeName The port type name. The default is class-of-portType.

serviceName The service name. The default is servicePortName value
“Service.”

User’s Guide 129

java2Wsdl

Examples

130

wstool java2wsdl

Option Description
inheritMethods True or fase. If true, expose alowed methods in inherited
classes.
xcludeMethods A comma-separated list of methods not to expose.
stopClasses A comma-separated list of class namesthat stopstheinheritance
search even if the inheritMethods option is specified.
tm specify the Type mapping file name, if any custom datatypesare
being exposed. For example, the type mapping file
myTMfile.map has the following contents:
t1l.QName = nonbeansample:Book
tl.Serializer =
nonbeansample.BookSerializer
tl.Deserializer =
nonbeansample.BookDeserializer
tl.SerializerFactory =
nonbeansample.BookSerFactory
tl.DeserializerFactory =
nonbeansample.BookDeserFactory
tl.TypeName = nonbeansample.Book
tl.EncodingType =
http://schemas.xmlsoap.org/soap/encoding/
Specify the webservice if the type
mappings are on the server tl.ServiceName
= myCollection/myService
typeMappingVer The type mapping version. Valid options are 1.1 (the default)
and 1.2.
soapAction The value of the operations soapAction field. Valid values are:
Default — causes the soapAction to be set according to
operations in the metadata.
Operation — forces soapAction to the name of the operation.
None — forces the soapAction to blank, which is the default.
style The style of thebindinginthe WSDL. Options are“ Document,”
“Wrapped,” or “RPC” (the defaullt).
use Definestheuse of theitemsinthebinding. Optionsare“Literal”
or “Encoded” (the default).
wsdlMode The output WSDL mode. Valid options are All (default),
Interface, or Implementation.
inputSchema A file or URL that pointsto the XML schema used during

WSDL generation.

This example uses nonBeanSample as input and generates the
CodeGenTest.wsdl output file:

-locationURL

Web Services Toolkit

CHAPTER 9 Using wstool and wstant

"http://localhost:8080/nonBean/services/nonBeanSample" -pkg2ns
"nonbeansample=nonbeansample" -tm tmfile.map -outputwsdl CodeGenTest.wsdl
-classpath d:\wstool\test\tm\classes nonbeansample.TestBookServiceIntf

Ant build example:

<wst_antTask command="java2wsdl"
locationURL="http://${wst.host}/${wst.port}/nonBean/se
rvices/nonBeanSample"
tm="d:\wstool\test\tm\tmfile.map"
classpath="d:\wstool\test\classes"
entity="nonbeansample.TestBookServiceIntf"/>

User’s Guide 131

java2Wsdl

132 Web Services Toolkit

Index

A

activate, wstool command 108
administration
other components 44
UDDI registry 42, 43, 52, 53
Web service 49
Web service collections 28
Web services 29, 47
Web servicesserver 26

allowMethods, wstool command 109

architecture
Web services 5
audience vii

B

binding information
UDDI registries 66

business information
UDDI registries 63

C

category information

UDDI registries 67
client

holder class generation 23
clients

developing 73
components
supported 15
connecting

Web servicesserver 27
connecting to a server

Web console 46
contact information

UDDI registries 69

User’s Guide

container

Web services 26
conventions X
CORBA

datatype 16
creating

new server 33, 54

new Web services server 26
creating a JSP client

Web serviceclients 35
creating and managing

Web serviceclients 33
creating domains

Web console 46
creating from a Javafile

Web service 29
creating from aWSDL file

Web service 29
creating server profiles

Web console 46
custom

type mappings 15

D

datatype
CORBA C++ with IDL datatypes
Javawith IDL datatypes 16

JAX-RPC 16

supported 16

XML XSD 16
datatypes

supported 15
default

Web services server 27
delete, wstool command 111
deleting

Web service 33

Web service collections 29

16

133

Index

deleting a JSP client
Web serviceclients 36
deleting a server
Web console 46
deleting aWeb service
from the Web console 49
deleting a Web service collection
from the Web console 48
deleting domains
Web console 46
deploy, wstool command 81, 112, 113, 115, 116
disallowMethods, wstool command 118
disconnecting from a server
Web console 46
discovery URL information
UDDI registries 70
document style
Web serviceclient 75
dynamic invocation interface
Web serviceclient 75
dynamic proxy
Web serviceclient 74

E

Eclipse

and the Web services plug-in - 10
collectionsand folders 11
error logging 12

handlers 11

menu layout and navigation 12
more information 9
operations 11

other components 12
overviewof 9

plug-in 9

ports 11

servers 11

SOAP inspector 12

starting 10

stopping 10

tasks 12

type mappings 11

Web services 11

Web servicesconsole 12

134

Web servicestoolkit development tool 9
environment variables
JAGUAR_HOST _NAME 94
error logging 12
exposeComponent, wstool command 119
€Xposing components
as Web services 38, 39
exposing components as Web services properties
collectionname 38
name 38
target namespace 38
expsosing components as Web services properties
location URL 38

G

general server properties, descriptionof 29, 37, 42, 43,
52, 53, 61
generating WSDL
from Web services and components 40
generating WSDL properties
binding name 41
binding style 41
collection name 40
filelocation 41
implementation class 41
location URL 40
method name 41
port typename 41
service port name 41
SOAPaction 41
SOAPuse 41
target namespace 40
type mapping version 41
Web servicename 40
getTMjar, wstool command 120

H
handlers 11
holder classes

client-side generation 23

Web Services Toolkit

identifier information

UDDI registries 68
IDL 16
importing

Web service collections 28
importing a Web service collection

fromthe Web console 48
inquiry, wstool command 98
invoking

Web service operations 36
invoking operations

fromthe Web console 50
isActive, wstool command 121
isAllowed, wstool command 121

J

jagtool

JakartaAntand 93
JAGUAR_HOST NAME 9%
Java

datatype 16
Java datatype

XML equivalent 16
java2wsdl, wstool command 128
JAXM

moreinformation 4
JAXP

description 4
JAX-RPC

datatype 16

description 3

holder classes 23

more information 3, 4

L

launching a JSP client
Web serviceclients 36
list, wstool command 102

User’s Guide

M

management

Web service 33
managing

Web service operations 36
managing registry services

from Web console 57
managing security realms

for Web services 54
managing Web service operations

from the Web console 50
managing Web services

from Web console 45
menu layout and navigation 12
more information

Eclipse 9

JAXM 4

JAX-RPC 3,4

SOAP11 2

wsDL 3

N
navigating

Web console 58
non-Web service components

managing from the Web console 55

O

operations 11

invoking 50
properties 50
viewing 50

Web console 50
other components 12
administration 44
overloaded methods 36, 50
overview

private UDDI server 57
Web console 57
Web serviceclients 73
Web services 1

Index

135

Index

P

parameters
managing 51
viewing 51
Web console 45
plug-in
Eclipse 9
preferences
Web console 45
private UDDI server
overview 57
projects
Web service 32
properties
Web service 49
Web servicecollection 48
Web servicecollections 29
Web service creationwizard 32

protocol

JAXP11 4

JAX-RPC1.0 3

SAAJ11 4

SOAP11 2

ubDI 20 4

WSDL 11 2
publish, wstool command 99, 110
publishing

ubDl 5

UDDI registries 63

Q

queries and searches
UDDI administration 61
quick exposing components
asWeb services 39, 40

R

refresh, wstool command 105, 122
refreshing
Web service 33
Web servicecollections 29
Web service security relm 55

136

Web servicesserver 28
registry profile

creating and connectingto 60
removing

Web services server 28
requirements

Web serviceclients 34
restart, wstool command 106
restarting

Web services server 28

S

SAAJ

description 4
search properties

UDDI registries 62
server

creatinganew 33,54
service information

UDDI registries 64
set_props, wstool command 123
shutdown, wstool command 106
SOAP

description 2

moreinformation 2
SOAP inspector 12
standards

Web services 1
starting

Web services server 27
starting a server

Web console 46
stopping

Eclipse 10

Web services server 28
stopping a server

Web console 46
stub-based model

Web serviceclient 74
supported

component types 15

datatypes 15, 16

Web Services Toolkit

T

tasks 12
tModel information

UDDI registries 65
type mappings 11

custom 15

viewing 54
typographical conventions x

U

uDDI
description 4
moreinformation 5
publishing 5
registering 5

UDDI administration
queriesand searches 61
registry administration 59
search properties 62
Web console 59

UDDI registries
binding information 66
businessinformation 63
category information 67
contact information 69
discovery URL information 70
identifier information 68
publishing 63
serviceinformation 64
tMode information 65

UDDI registry
publishing 42, 52
unpublishing 43,53

UDDI registry profile
creating and connectingto 60

UDDI registry profile properties
Web console 61

UDDI registry properties
business description 42, 53
businessname 42, 53
delete profile 42, 53
name 42,52,53
password 42, 52, 53
ping 42,53

User’s Guide

publishURL 42,52, 53
query url 42,52, 53
retrieving existing information 43, 53
saveprofile 42,53
service description 43, 53
useexistingtmodel 43, 53
user name 42,52, 53
UDDI.org
Website 5
unpublish, wstool command 100

Vv

viewing a Web service collection

from the Web console 47
viewing operations

from the Web console 50
viewing parameters

from the Web console 51
viewing type mappings

from the Web console 54
viewing Web service properties

from the Web console 49
viewing WSDL

Web service 33

W

Web console
connectingto aserver 46
creatingadomain 46
creating server profiles 46
defining parameters 45
deletingadomain 46
deleting aserver 46
deleting aWeb service 49
deleting aWeb service collection 48
disconnecting from aserver 46
importing aWeb service collection 48
invoking operations 50
managing registry servicesfrom 57
managing Web servicesfrom 45
navigating 58
non-Web service components 55

Index

137

Index

operation properties 50
overloaded methods 50
overview 57
preferences 45
private UDDI administration 59
registry profile properties 61
dstarting aserver 46
stopping aserver 46
viewing aWeb service collection 47
viewing operations 50
viewing parameters 51
viewing type mappings 54
viewing Web service properties 49
Web service administration 49
Web service operation management 50
Web service parameter management 51
Web services administration 47
Web console properties
plug-in 47
server 47
Web service
administration 29
creating from aJavafile 29
creating fromaWSDL file 29
deleting 33
management 33
managing security realms 54
other components 44
properties 49
publishing to aUDDI registry 42, 52
refreshing 33
unpublishing from aUDDI registry 43, 53
viewing WSDL 33
Web service client properties
document/literal 34
generate code for all lements 35
package 34
password 35
project name 34
separate helper classes 35
timeout 34
type mapping version 35
user name 35
WSDL 2Javaoptions 34
Web service clients
creatingaJSP client 35

138

creating and managing 33
deletingaJSP client 36
document style 75
dynamic invocation interface 75
dynamic proxy 74
launching aJSP client 36
overview 73
requirements 34
stub-based model 74
Web service collection
properties 48
Web service creation wizard
properties 32
Web service operation properties
description 36
name 36
return type
Web service operation properties
isreturn valuein response 36
SOAP action 36
Web service operations
invoking 36
managing 36
Web service projects
client 32
server 32
Web service properties
create fromfile 32
create from Javafile 32
locate from file, URL, or UDDI 32
method selection 32
options 32
package name 32
project contents 32
project name 32
project type 32
Web service security realm
refreshing 55
Web services
about 1
architecture 5
exposing componentsas 38, 39
generating WSDL 40
overloaded methods 36
overview 1
quick exposing componentsas 39, 40

Web Services Toolkit

standards 1
Web services collection
administration 28
deleting 29
importing 28
properties 29
refreshing 29
Web servicesconsole 12
Web services plug-in
and Eclipse 10
collectionsand folders 11
error logging 12
handlers 11
menu layout and navigation 12
operations 11
other components 12
ports 11
servers 11
SOAP inspector 12
tasks 12
type mappings 11
Web services 11
Web servicesconsole 12
Web services server
connecting 27
creatinganew 26
default 27
refreshing 28
removing 28
restarting 28
starting 27
stopping 28
Web services server properties
host name 27
isalocal server 27
password 27
port number 27
profilename 27
script arguments 27
script location 27
user name 27
WSDL
description 2
moreinformation 3
wsdl2Java, wstool command 124
WST development tool

User’s Guide

Eclipse 9

wstkeytool

Ant build files 96

entity identifiers 95
script location 93

setting up wstkeytoolant 96
syntax 93

wstkeytoolant scripts 97

wstool

Ant build files 96

commands. Seeindividual command names
entity identifiers 95

script location 93

setting up wstant 96

syntax 93

wstant scripts 97

XML datatype

Javaequivaent 16

XML XSD

datatypes 16

Index

139

Index

140 Web Services Toolkit

	Web Services Toolkit User’s Guide
	About This Book
	CHAPTER 1 Overview of Web Services in EAServer
	Web services background and standards
	SOAP 1.1
	WSDL 1.1
	JAX-RPC 1.0
	SAAJ 1.1
	JAXP 1.1
	UDDI 2.0

	EAServer Web Services architecture
	Installing Web services
	Defining, deploying, and exposing Web services using WST
	Service styles
	Retrieving the Web service’s WSDL

	CHAPTER 2 Using Sybase Web Services Toolkit-an Eclipse plug-in
	Starting and stopping Eclipse
	Web services plug-in
	Connecting to servers
	Organization
	Menu layout and navigation
	Accessibility features

	CHAPTER 3 Components and Datatypes
	Supported component types
	Supported datatypes
	Client-side generation of holder classes

	CHAPTER 4 Web Services Administration
	Introduction
	Web services server administration
	Web services collection administration
	Web service administration
	Creating Web services from files
	Web service projects

	Web service management
	Creating and managing Web service clients
	Web service operation management

	Type mappings
	Exposing and deploying components as Web services
	Exposing Components as Web services
	Using the quickly expose wizard

	Deploying Components as Web services
	Using the quickly deploy wizard

	Generating WSDL
	UDDI administration
	Other components

	CHAPTER 5 Management Console-Web Services
	Plug-in, domain, display, and server administration
	Web service collection administration
	Web service administration
	Web service operation management
	Web service parameter management

	UDDI administration
	Type mappings
	Managing security realms
	Non-Web service components

	CHAPTER 6 Management console-Registry Services
	Introduction
	Using the management console
	Navigating the console and managing resources

	UDDI administration
	UDDI registry profile administration

	Searching and publishing to UDDI registries
	Inquiries and searches
	Searching UDDI registries

	Publishing
	Businesses
	Services
	tModels
	Additional registry information for published businesses, tModels, and services

	CHAPTER 7 Developing Web Service Clients
	Introduction
	Stub-based model client
	Dynamic proxy client
	Dynamic invocation interface client
	Document style client

	CHAPTER 8 J2EE Web Service Support
	Overview
	J2EE Web services support

	Deploying J2EE Web services
	Viewing Web services
	Deploying Web services from the command line
	Deploying with a partial WSDL
	Stub properties

	Setting the EJB Web service Web application suffix

	Web service file locations and access points
	A PowerBuilder component deployed/exposed as a Web service
	An EJB exposed/deployed as a Web service
	A Web application deployed as a Web service

	CHAPTER 9 Using wstool and wstant
	Introduction
	Working with wstool
	wstool syntax
	Entity identifiers

	Working with wstant
	Setting up your environment
	wstant scripts
	wstant syntax

	wstool commands
	UDDI administration commands
	inquiry
	publish
	unpublish
	Server management commands
	list
	refresh
	restart
	shutdown
	Web service administration commands
	activate
	allowMethods
	deactivate
	delete (1)
	delete (2)
	deploy (1)
	deploy (2)
	deploy (3)
	deploy (4)
	disallowMethods
	exposeComponent
	getTMjar
	isActive
	isAllowed
	refresh
	set_props
	wsdl2Java
	java2Wsdl

	Index

