
Web Services Toolkit User’s Guide

EAServer
6.0



DOCUMENT ID: DC31727-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement, 
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other 
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server 
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage 
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, 
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise, 
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client 
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect, 
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench, 
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, 
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work 
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works 
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, 
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere 
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent 
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere, 
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business 
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, 
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation 
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access 
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server 
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC 
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC, 
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript, 
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare 
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational 
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server 
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere, 
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script, 
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL 
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server 
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase 
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP, 
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench, 
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The 
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server 
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, 
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL, 
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, 
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are 
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013 
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

User’s Guide iii

About This Book ..........................................................................................................................  vii

CHAPTER 1 Overview of Web Services in EAServer ........................................  1
Web services background and standards ........................................  1

SOAP 1.1 ..................................................................................  2
WSDL 1.1 ..................................................................................  2
JAX-RPC 1.0 .............................................................................  3
SAAJ 1.1 ...................................................................................  4
JAXP 1.1 ...................................................................................  4
UDDI 2.0....................................................................................  4

EAServer Web Services architecture ...............................................  5
Installing Web services..............................................................  6
Defining, deploying, and exposing Web services using WST ...  6
Service styles ............................................................................  7
Retrieving the Web service’s WSDL .........................................  7

CHAPTER 2 Using Sybase Web Services Toolkit—an Eclipse plug-in ...........  9
Starting and stopping Eclipse.........................................................  10
Web services plug-in ......................................................................  10
Connecting to servers ....................................................................  11
Organization...................................................................................  11
Menu layout and navigation ...........................................................  12

Accessibility features...............................................................  13

CHAPTER 3 Components and Datatypes.........................................................  15
Supported component types ..........................................................  15
Supported datatypes ......................................................................  16

Client-side generation of holder classes .................................  23

CHAPTER 4 Web Services Administration ......................................................  25
Introduction ....................................................................................  25
Web services server administration ...............................................  26



Contents

iv Web Services Toolkit

Web services collection administration ..........................................  28
Web service administration ............................................................  29

Creating Web services from files.............................................  29
Web service management.......................................................  33

Type mappings...............................................................................  37
Exposing and deploying components as Web services .................  37

Exposing Components as Web services.................................  38
Deploying Components as Web services................................  39

Generating WSDL ..........................................................................  40
UDDI administration .......................................................................  42
Other components..........................................................................  44

CHAPTER 5 Management Console—Web Services......................................... 45
Plug-in, domain, display, and server administration.......................  45
Web service collection administration ............................................  47
Web service administration ............................................................  49

Web service operation management.......................................  50
Web service parameter management .....................................  51

UDDI administration .......................................................................  52
Type mappings...............................................................................  54
Managing security realms ..............................................................  54
Non-Web service components .......................................................  55

CHAPTER 6 Management console—Registry Services .................................. 57
Introduction ....................................................................................  57
Using the management console.....................................................  58

Navigating the console and managing resources ...................  58
UDDI administration .......................................................................  59

UDDI registry profile administration.........................................  60
Searching and publishing to UDDI registries .................................  61

Inquiries and searches ............................................................  61
Publishing................................................................................  63

CHAPTER 7 Developing Web Service Clients .................................................. 73
Introduction ....................................................................................  73
Stub-based model client.................................................................  74
Dynamic proxy client ......................................................................  74
Dynamic invocation interface client ................................................  75
Document style client .....................................................................  75

CHAPTER 8 J2EE Web Service Support........................................................... 77
Overview ........................................................................................  77



Contents

User’s Guide v

J2EE Web services support ....................................................  77
Deploying J2EE Web services .......................................................  78

Viewing Web services .............................................................  79
Deploying Web services from the command line ....................  81
Deploying with a partial WSDL................................................  84
Setting the EJB Web service Web application suffix...............  89

Web service file locations and access points.................................  89
A PowerBuilder component deployed/exposed as a Web service 

90
An EJB exposed/deployed as a Web service..........................  91
A Web application deployed as a Web service .......................  92

CHAPTER 9 Using wstool and wstant ..............................................................  93
Introduction ....................................................................................  93

Working with wstool.................................................................  93
Working with wstant .......................................................................  96

Setting up your environment ...................................................  96
wstant scripts...........................................................................  97
wstant syntax...........................................................................  97

wstool commands ..........................................................................  97
UDDI administration commands ....................................................  98
inquiry.............................................................................................  98
publish............................................................................................  99
unpublish......................................................................................  100
Server management commands ..................................................  102
list.................................................................................................  102
refresh ..........................................................................................  105
restart ...........................................................................................  106
shutdown......................................................................................  106
Web service administration commands .......................................  107
activate.........................................................................................  108
allowMethods ...............................................................................  109
deactivate.....................................................................................  110
delete (1) ......................................................................................  111
delete (2) ......................................................................................  111
deploy (1) .....................................................................................  112
deploy (2) .....................................................................................  113
deploy (3) .....................................................................................  115
deploy (4) .....................................................................................  116
disallowMethods...........................................................................  118
exposeComponent .......................................................................  119
getTMjar .......................................................................................  120
isActive.........................................................................................  121
isAllowed ......................................................................................  121



Contents

vi Web Services Toolkit

refresh ..........................................................................................  122
set_props .....................................................................................  123
wsdl2Java ....................................................................................  124
java2Wsdl.....................................................................................  128

Index ...........................................................................................................................................  133



User’s Guide vii

About This Book

Audience The audience for this document is anyone responsible for creating, 
deploying, and managing Web services. Sybase assumes that these 
professionals have training in Java and XML and component technology.

How to use this book Create and manage Web services using the various tools, services, and 
GUIs described in this book, collectively referred to as Web Services 
Toolkit: 

• Chapter 1, “Overview of Web Services in EAServer” – description 
of the Web Services Toolkit and the various protocols it supports.

• Chapter 2, “Using Sybase Web Services Toolkit—an Eclipse plug-
in” – description of the Eclipse development and management 
environment.

• Chapter 3, “Components and Datatypes” – description of the 
component types supported as Web services, datatypes, and type 
mappings.

• Chapter 4, “Web Services Administration” – the procedures to 
develop and manage Web services from Eclipse.

• Chapter 5, “Management Console—Web Services” – the procedures 
for managing Web services from the Sybase Management console.

• Chapter 6, “Management console—Registry Services” – the 
procedures for managing UDDI registries from the Sybase 
Management console.

• Chapter 7, “Developing Web Service Clients” – description of 
various client application styles.

• Chapter 8, “J2EE Web Service Support” – the procedures for 
managing J2EE Web services.

• Chapter 9, “Using wstool and wstant” – description of how to use 
wstool command line tools.

Related documents Core EAServer documentation The core EAServer documents are 
available in HTML and PDF format in your EAServer software 
installation and on the SyBooks™ CD.



 

viii  Web Services Toolkit

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary 
EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based 
configuration scripts to:

• Define and configure entities, such as EJB modules, Web applications, 
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components 
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and 
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications. 

The EAServer Java Message Service User’s Guide describes how to create 
Java Message Service (JMS) clients and components to send, publish, and 
receive JMS messages.

The EAServer Migration Guide contains information about migrating 
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your 
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how 
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections



     About This Book

User’s Guide ix

• Implement custom security services for authentication, authorization, and 
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and 
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management 
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly 
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create, 
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Troubleshooting Guide describes procedures for 
troubleshooting problems that EAServer users may encounter. This document 
is available only online; see the EAServer Troubleshooting Guide at 
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for 
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and 
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available 
on the Sybase Product Manuals Web site at 
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes 
the Sybase Software Asset Management license manager for managing and 
tracking your Sybase software license deployments. The Sybase Software Asset 
Management User’s Guide is available on the Getting Started CD and in the 
EAServer 6.0 collection on the Sybase Product Manuals Web site at 
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.



 

x  Web Services Toolkit

Conventions The formatting conventions used in this manual are:

Other sources of 
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product 
Manuals Web site to learn more about your product: 

• The Getting Started CD contains release bulletins and installation guides 
in PDF format, and may also contain other documents or updated 
information not included on the SyBooks CD. It is included with your 
software. To read or print documents on the Getting Started CD, you need 
Adobe Acrobat Reader, which you can download at no charge from the 
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your 
software. The Eclipse-based SyBooks browser allows you to access the 
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can 
access through the PDF directory on the SyBooks CD. To read or print the 
PDF files, you need Adobe Acrobat Reader.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications 
rather than the Web Management Console

variable, package, or 
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in 
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how 
to navigate menu selections. For example, File | Save indicates “select Save from the File 
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Web Management Console, a command line, or as 
program text

• Example program fragments

• Example output fragments



     About This Book

User’s Guide xi

Refer to the SyBooks Installation Guide on the Getting Started CD, or the 
README.txt file on the SyBooks CD for instructions on installing and 
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks 
CD that you can access using a standard Web browser. In addition to 
product manuals, you will find links to EBFs/Maintenance, Technical 
Documents, Case Management, Solved Cases, newsgroups, and the 
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at 
http://sybooks.sybase.com/nav/base.do.

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and 
software 
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at 
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name 
and password.

3 Select a product.



 

xii  Web Services Toolkit

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is 
displayed.

Padlock icons indicate that you do not have download authorization for 
certain EBF/Maintenance releases because you are not registered as a 
Technical Support Contact. If you have not registered, but have valid 
information provided by your Sybase representative or through your 
support contract, click Edit Roles to add the “Technical Support Contact” 
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the 
product description to download the software.

Accessibility 
features

EAServer has been tested for compliance with U.S. government Section 508 
Accessibility requirements. The online help for this product is also provided in 
Eclipse help formats, which you can navigate using a screen reader.

The Web Management Console supports working without a mouse. For more 
information, see “Keyboard navigation” in Chapter 2, “Management Console 
Overview,” in the EAServer System Administration Guide.

The Web Services Toolkit plug-in for Eclipse supports accessibility features for 
those that cannot use a mouse, are visually impaired, or have other special 
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note  You may need to configure your accessibility tool for optimal use. Some 
screen readers pronounce text based on its case; for example, they pronounce 
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You 
might find it helpful to configure your tool to announce syntax conventions. 
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see 
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase 
Accessibility site includes links to information on Section 508 and W3C 
standards.



     About This Book

User’s Guide xiii

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.



 

xiv  Web Services Toolkit



User’s Guide 1

C H A P T E R  1 Overview of Web Services in 
EAServer

Web Services Toolkit (WST) is a set of tools that allows you to create and 
manage Web services in EAServer. The toolkit supports standard Web 
services protocols; Simple Object Access Protocol (SOAP), Web Services 
Description Language (WSDL), and Uniform Description, Discovery, and 
Integration (UDDI), and includes tools for WSDL document creation, 
client generation, UDDI registration, and SOAP management.

Web services background and standards
Using Web services and EAServer, you can take advantage of SOAP, 
WSDL, and UDDI. These protocols enable you to use third-party 
components called Web services, which are invoked from application 
providers. A Web service contained in EAServer can be invoked remotely 
over HTTP and HTTPS protocols. The Web service object has methods or 
end points that provide the business logic of the Web service being 
invoked. Methods are called using SOAP, and the client calling these 
methods is said to consume the Web service. WSDL describes the service 
and can be used in client applications. You can also publish business and 
service information to a UDDI registry site on the Web and make your 
Web service available to other users. SOAP provides a platform and 
language-neutral way to access these services. 

With SOAP, WSDL, and UDDI, collaboration between business partners 
is easier because interfaces between applications become standardized 
across platforms. 

Web services can be embedded in Sybase’s Web container environment. 
Web services supports these standards:

Topic Page
Web services background and standards 1

EAServer Web Services architecture 5



Web services background and standards 

2  Web Services Toolkit

• SOAP 1.1 – see “SOAP 1.1” on page 2.

• WSDL 1.1 – see “WSDL 1.1” on page 2.

• JAX-RPC 1.0 – see “JAX-RPC 1.0” on page 3.

• SAAJ 1.1 – see “SAAJ 1.1” on page 4.

• JAXP 1.1 – see “JAXP 1.1” on page 4.

• UDDI 2.0 – see “UDDI 2.0” on page 4. 

SOAP 1.1
As part of the Web services functionality, the Simple Object Access Protocol 
(SOAP) servlet in EAServer provides you with a way to make your EAServer 
components accessible to your customers with minimal firewall constraints, 
platform dependencies, or complex development implementations involving 
Distributed Component Object Model (DCOM) or Common Object Request 
Broker Architecture (CORBA). 

SOAP allows applications to communicate using existing Internet technologies 
(such as HTTP, URLs, SSL, and XML) and the HTTP or HTTPS port. While 
SOAP does not mandate which transfer protocol to use, it is the combination 
of SOAP and HTTP that allows you to invoke remote procedures, even through 
firewalls. 

See the SOAP information pages at http://www.w3.org/TR/SOAP for more 
information.

WSDL 1.1
As communications protocols and message formats are standardized, it 
becomes increasingly important to describe these communications in some 
structured way. The Web Services Description Language (WSDL) addresses 
this need by defining an XML grammar for describing Web services as 
collections of communication endpoints capable of exchanging messages. 
WSDL service definitions provide documentation for distributed systems and 
for automating the details involved in communication between applications. 

When you define a Web service in EAServer, the WSDL file can be 
automatically generated from the information you provide.



CHAPTER 1    Overview of Web Services in EAServer

User’s Guide 3

The WSDL document describes a component that you want to make available 
as a Web service, as well as its location. You can also publish the location of a 
WSDL document to a UDDI registry on the Web. 

The Web services GUI allows you to select a UDDI public host site and login. 
After you log in, you can add business and service data to the UDDI registry. 
Once you have published information to the registry, each time you log in, the 
information is retrieved and available for you to review, modify, or delete.

A business partner can invoke a Web service without knowing how to write 
SOAP messages by using Web services generated client-side files and artifacts 
(the collection of files on the client-side that handles communication between 
a client and a Web service. They include the stub class, service definition 
interface and additional classes), and the WSDL document that describes your 
Web service. 

See the WSDL information pages at http://www.w3.org/TR/WSDL for more 
information.

JAX-RPC 1.0
Sun’s Java API for XML-based Remote Procedure Call (JAX-RPC) is an API 
for building Web services and clients that use remote procedure calls (RPCs) 
and XML. It uses technologies defined by the World Wide Web Consortium 
(W3C): HTTP, SOAP, and WSDL.

Using JAX-RPC, a remote procedure call is represented by an XML-based 
protocol (SOAP), which defines the structure, rules, and conventions for 
representing RPCs and responses. These SOAP messages are transmitted over 
HTTP or HTTPS. The Java API hides the complexity from the application 
developer, allowing you to focus on creating the Web services that implement 
business logic, and the client programs that access them.

See the JAX-RPC Web site at http://java.sun.com/xml/jaxrpc for more 
information.



Web services background and standards 

4  Web Services Toolkit

SAAJ 1.1 
The SOAP with Attachments API for Java 1.1 (SAAJ) protocol enables 
applications to send and receive document-oriented XML messages using a 
pure Java API. SAAJ implements SOAP 1.1 so that developers can focus on 
building, sending, receiving, and decomposing messages for their applications 
instead of programming low-level XML communications routines.

See the JAXM/SAAJ Web site at 
http://wwws.sun.com/software/communitysource/jaaxm_saaj for more 
information.

JAXP 1.1
Java API for XML Processing (JAXP) supports processing of XML documents 
using DOM, SAX, and XSLT. JAXP enables applications to parse and 
transform XML documents independent of a particular XML processing 
implementation, giving developers the flexibility to swap between XML 
processors without making application code changes. 

See the JAXP Web site at http://java.sun.com/xml/jaxp for more information.

UDDI 2.0
The UDDI specification creates a platform-independent, open framework for 
describing services, discovering businesses, and integrating business services 
using the Internet. UDDI is a cross-industry effort driven by major platform 
and software providers, as well as by marketplace operators and e-business 
leaders.

Using Web services in EAServer, you can publish a WSDL document that 
describes your Web service and its location to a UDDI registry. 

The UDDI protocol is the building block that businesses can use to transact 
business with each another, using their preferred applications.

The UDDI specification takes advantage of World Wide Web Consortium 
(W3C) and Internet Engineering Task Force (IETF) standards, such as 
eXtensible Markup Language (XML), HTTP, and Domain Name System 
(DNS) protocols. Additionally, cross-platform programming features are 
addressed by adopting SOAP. 



CHAPTER 1    Overview of Web Services in EAServer

User’s Guide 5

Web services allows you to publish a WSDL document that describes your 
Web service and its location to a UDDI registry Web site. A UDDI registry is 
a sort of yellow pages for businesses, the Web services they offer, and the 
technical foundations or specifications (called tModels) upon which they are 
written. You can specify an organization (business name) and description, 
contact information, and Web service properties for your business. Once your 
business or tModel is published, potential customers can find it easily from a 
search. You can publish multiple Web services under the same business name, 
or create a new business name for different Web services. 

Because Web services connect directly to UDDI registry host sites on the Web, 
you must first be a registered user on the site where you want to publish. To 
register, go to www.UDDI.org/register.html. The UDDI.org Web site maintains 
a current list of links to UDDI registry host sites where you can register. 

EAServer Web Services architecture
Web services architecture includes the Eclipse interface as well as a Web 
Management Console interface. Each supports the same functionality.

Sybase Web Services Toolkit consists of these components:

• The basic SOAP engine, which implements SOAP 1.1, embedded in 
EAServer.

• The tools for creating and managing Web services:

• Web-based console for administration, monitoring, and deployment 
of Web services.

• Web-based console for UDDI administration, publish/unpublish, and 
browsing UDDI registries. 

• An Eclipse plug-in GUI that you can use to:

• Design, develop, and deploy Web services to the EAServer 
environment.

• Control deployed Web services running in the EAServer 
environment.

• Monitor incoming and outgoing messages for each Web service 
using a SOAP inspector.



EAServer Web Services architecture 

6  Web Services Toolkit

• Generate standalone Java test clients and JSP clients to invoke 
Web Services deployed to EAServer environment.

• Publish and query Web services to or from UDDI registries.

• Command line tools for designing, developing, deploying, managing, 
and securing Web services.

• A private UDDI server installed as a J2EE Web application. Access 
control enables the UDDI user to control access to these basic UDDI data 
structures: businessesEntity, businessService, bindingTemplate and 
tModel.

These technologies and tools are collectively referred to as the Web Services 
Toolkit (WST).

Installing Web services
Web Services is installed as part of a standard EAServer installation. If you 
customize your installation, you will notice that Web services support consists 
of:

• WST Runtime – the basic SOAP engine and Web services infrastructure.

• Administration Console – a Web based application described in Chapter 5, 
“Management Console—Web Services” and Chapter 6, “Management 
console—Registry Services.”

• Eclipse based Development Tool – described in Chapter 2, “Using Sybase 
Web Services Toolkit—an Eclipse plug-in” and Chapter 4, “Web Services 
Administration.”

Defining, deploying, and exposing Web services using WST
WST provides a number of options for defining a Web service, including:

• Importing from a JAR or WAR file – See “Importing a Web service 
collection” on page 28.

• Creating a Web service from a local or remote WSDL file or Java file – 
See “Creating Web services from files” on page 29.

• Exposing an installed EAServer component as a Web service – See “Other 
components” on page 44.



CHAPTER 1    Overview of Web Services in EAServer

User’s Guide 7

Service styles
WST supports the following service styles:

• RPC – the body of the SOAP message is an RPC call containing the 
method name and serialized versions of the parameters. RPC services use 
the SOAP RPC conventions, and also encoding rules defined in section 
five of the SOAP specification.

• Document –the body of the SOAP message is viewed as an XML 
document, as opposed to an RPC call. Document services do not use any 
encoding, but still provide XML-to-Java databindings.

• Wrapped – similar to document services, except that rather than binding 
the entire SOAP body into one big structure, they “unwrap” the body into 
individual parameters. 

Retrieving the Web service’s WSDL
To retrieve any WSDL file for a deployed Web service from a Web browser 
enter the URL of the WSDL in the form 
http://host:port/collectionName/services/service?wsdl. For example for the 
canine shelter sample, enter:

http://hostname:8000/SoapSample/services/SoapDemo_FindDog?wsdl.



EAServer Web Services architecture 

8  Web Services Toolkit



User’s Guide 9

C H A P T E R  2 Using Sybase Web Services 
Toolkit—an Eclipse plug-in

Eclipse is a full-featured open source software development platform. A 
Sybase Web Services plug-in to Eclipse provides developers and 
administrators the ability to manage Web services contained in EAServer. 
Throughout this book, Eclipse and the Sybase Web Services plug-in 
together are referred to as the Web Services Toolkit development tool 
(WST development tool).

The WST development tool provides graphical administration facilities 
for Web services, including support for development, deployment, and 
runtime monitoring of Web service-related messages. 

You can develop Web services and create test clients for third-party Web 
services. However, you can deploy Web services to the runtime engine 
(EAServer, for example) and create test clients for Web services deployed 
to EAServer only if you are connected to a running server.

For complete information about Eclipse, see the Eclipse Web site at 
http://www.eclipse.org.

Topic Page
Starting and stopping Eclipse 10

Web services plug-in 10

Connecting to servers 11

Organization 11

Menu layout and navigation 12



Starting and stopping Eclipse 

10  Web Services Toolkit

Starting and stopping Eclipse
You do not need authentication information to start or use Eclipse, but you do 
need authentication information to connect to a runtime engine in the Web 
services view of Eclipse. Authentication to EAServer requires the same 
information from Eclipse as you would supply in EAServer Manager (user 
name and password). 

Note  Eclipse is not installed as part of the standard EAServer installation. To 
run Eclipse you must have a complete JDK installation (jdk1.4 or higher), 
which is installed as part of the standard EAServer installation.

❖ Starting Eclipse in UNIX

• From the command line in the Shared/eclipse_311/eclipse subdirectory, 
enter the command:

./starteclipse.sh

❖ Starting Eclipse in Windows

• From the command line in the Shared\eclipse_311\eclipse subdirectory, 
enter the command:

starteclipse.bat

❖ Stopping Eclipse

• From Eclipse, select File | Exit 

Web services plug-in
The Web services plug-in runs within Eclipse. It is installed when you select 
the Web Services Toolkit option during the EAServer installation. You can use 
the WST development tool to define and deploy Web services in projects and 
applications so that clients can locate and run Web services.

❖ Accessing Sybase Web Services

1 Start Eclipse if it is not already running.

2 From Eclipse, select Window | Open Perspective | Other 



CHAPTER 2    Using Sybase Web Services Toolkit—an Eclipse plug-in

User’s Guide 11

3 Select Sybase Web Services from the Select Perspective window and click 
OK.

Connecting to servers
You can manage Web services for any server to which you are connected. See 
“Web services server administration” on page 26 for more information.

Organization
Sybase Web services contains the following basic units and folders:

• Server – an EAServer runtime process that includes the server name and 
version, host name on which it is running, and port number to which the 
WST development tool is connected. 

• Web Services – contains the various Web service collections. 

• Collection – a group of Web services bundled into a single unit for easy 
development and management. A collection in a Web services runtime 
engine is analogous to a Web application in a J2EE container.

• Service – defines the component (EJB, CORBA, Java, PowerBuilder, and 
so on) that is installed as a Web service. Some aspects of the Web service 
that you can define include:

• Ports – the path, URL, or endpoint from which the Web service is 
made available.

• Operations – the methods and parameters of the Web service that 
execute business logic and access data sources.

• Type Mappings – the name and encoding style of the datatype 
mapping used by the Web service, depending on the service type 
(EJB, CORBA, PowerBuilder, and so on). 

• Handlers – contain special routines that can be implemented should a 
particular event occur. For example, to invoke customized 
authentication logic, you can write a handler and install it in the 
Handlers folder.



Menu layout and navigation 

12  Web Services Toolkit

• Other Components – contains the packages (a collection of components 
organized into cohesive, secure units) that are hosted on the EAServer to 
which the WST development tool is connected. These components can be 
deployed as Web services if they meet the criteria described in Chapter 3, 
“Components and Datatypes.”

Error logging and 
debugging

Error logging, debugging, and troubleshooting tools consists of several views: 
Console, Tasks, SOAP Inspector, and Web Services Console. From the WST 
development tool, select Window | Show View | and:

• Console – displays the output of the execution of programs and allows you 
to enter input for the program. The console shows three different kinds of 
text, each in a different color:

• Standard output 

• Standard error

• Standard input 

• Web Services Console – displays the messages, errors, and warnings 
generated whenever you perform a Sybase Web services action. The Web 
services console allows you to monitor the various log files which are 
located in the logs subdirectory of your EAServer installation.

• Tasks – displays auto-generated errors, warnings, or information 
associated with a resource. Double-click an item in the Task view to 
display more detailed information.

• SOAP Inspector – displays incoming and outgoing messages for a given 
Web service. Each Web service displays in an Inbound Messages folder 
and an Outbound Messages folder that includes the protocol, name of the 
host, port number where the Web service is made available, and the name 
of the Web service. Double-click the Web service to view either outbound 
or inbound traffic. The SOAP or HTTP responses, which depend on the 
tab you select, appear in the right pane.

Menu layout and navigation
The WST development tool provides panes and tabs that provide views of Web 
service-related properties and resources.

From the WST development tool, select Window | Show View | and:



CHAPTER 2    Using Sybase Web Services Toolkit—an Eclipse plug-in

User’s Guide 13

• Sybase Web Services – the Web services, properties, and resources for the 
server to which the WST development tool is attached. Perform most Web 
service administrative tasks from this pane as described in Chapter 4, 
“Web Services Administration.”

• Package Explorer – the contents of the projects, plug-ins, JAR files, and 
so on for Web service projects and packages. View the contents of a file by 
right-clicking a file and selecting Open (or Open Hierarchy). The selected 
file displays in the right pane.

Accessibility features
WST supports accessibility features for those that cannot use a mouse, are 
visually impaired or have other special needs. For information about these 
features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box

4 Select Accessible user interfaces or Accessibility features for Eclipse



Menu layout and navigation 

14  Web Services Toolkit



User’s Guide 15

C H A P T E R  3 Components and Datatypes

Using WST, you can create a Web service from an EAServer component 
and use SOAP to expose it across your firewall. You can select any 
components in EAServer for a Web service that have return values or 
parameters of supported datatypes. The components you select for a Web 
service must be installed in EAServer.

Web services use XML to transfer data between service endpoints. WST 
includes standard mappings for some basic Java datatypes to XML and 
vice versa. 

Supported component types
WST supports the following component types as Web services:

• Stateless EJBs

• Stateless Java–CORBA

• Stateless C++–CORBA

• Stateless PowerBuilder 

• Class files

Note  Supported components must contain supported datatypes, including 
user-defined datatypes to be a valid Web service.

Topic Page
Supported component types 15

Supported datatypes 16



Supported datatypes 

16  Web Services Toolkit

Supported datatypes 
This section describes the datatypes supported in WST. The datatype must 
belong to a supported component type for it to be available as a Web service. 
Supported datatypes include:

• JAX-RPC defined data types – Refer to chapter four (WSDL/XML to Java 
Mapping) and five (Java to XML/WSDL Mapping) of the Java API for 
XML-based RPC JAX-RPC 1.0 specification. See the JAX-RPC download 
site at http://java.sun.com/xml/downloads/jaxrpc.html

• Java with IDL datatypes – the component’s method declarations use the 
datatype mappings that are specified by the CORBA document, IDL to 
Java Language Mapping Specification (formal/99-07-53). 

• CORBA C++ with IDL datatypes – the component’s method declarations 
use the OMG standard for translating CORBA IDL to C++. For more 
specifics, see C++ Language Mapping Specification (formal/99-07-41). 
You can download this document from the OMG Web site at 
http://www.omg.org. C++ datatype mappings are the same as the Java/IDL 
component datatype mappings that are listed in Table 3-1.

Table 3-1 lists the datatypes supported in WST and EAServer and 
corresponding PowerBuilder types. Exposing a component as a Web service 
does not require you to regenerate its remote interface. EAServer uses JAX-
RPC mapping rules to generate EJB remote interfaces.

Table 3-1: Supported datatypes

CORBA 
IDL type

Parameter 
mode CORBA/Java type EJB parameter type PowerBuilder types

boolean in, return boolean boolean Boolean by value

out, inout org.omg.CORBA.Boolea
nHolder

javax.xml.rpc.holders.Bool
eanHolder

Boolean by reference

char in, return char char (see note 9) Char by value

out, inout org.omg.CORBA.CharH
older

N/A (see note 1) Char by reference

octet in, return byte byte Char by value (see note 2)

out, inout org.omg.CORBA.ByteH
older

javax.xml.rpc.holders.Byte
Holder

Char by reference (see 
note 2)

short in, return short short Integer by value

out, inout org.omg.CORBA.ShortH
older

javax.xml.rpc.holders.Shor
tHolder

Integer by reference

long in, return int int Long by value



CHAPTER 3    Components and Datatypes

User’s Guide 17

out, inout org.omg.CORBA.IntHol
der

javax.xml.rpc.holders.IntH
older

Long by reference

long long in, return long long LongLong by value

out, inout org.omg.CORBA.LongH
older

javax.xml.rpc.holders.Lon
gHolder

LongLong by reference

float in, return float float Real by value

out, inout org.omg.CORBA.FloatH
older

javax.xml.rpc.holders.Float
Holder

Real by reference

double in, return double double Double by value

out, inout org.omg.CORBA.Doubl
eHolder

javax.xml.rpc.holdersDoub
leHolder

Double by reference

string in, return string string String by value

out, inout org.omg.CORBA.String
Holder

javax.xml.rpc.holders.Strin
gHolder

String by reference

BCD::Binary in, return byte[] byte[] Blob by value

out, inout BCD.BinaryHolder javax.xml.rpc.holders.Byte
ArrayHolder 

Blob by reference

BCD::
Decimal

in, return BCD.Decimal java.math.BigDecimal Decimal by value

out, inout BCD.DecimalHolder javax.xml.rpc.holders.Big
DecimalHolder

Decimal by reference

BCD::
Money

in, return BCD.Money java.math.BigDecimal Decimal by value

out, inout BCD.MoneyHolder javax.xml.rpc.holders.Big
DecimalHolder

Decimal by reference

MJD::Date in, return MJD.Date java.util.Calendar Date by value

out, inout MJD.DateHolder javax.xml.rpc.holders.Cale
ndarHolder

Date by reference

MJD::Time in, return MJD.Time java.util.Calendar Time by value

out, inout MJD.TimeHolder javax.xml.rpc.holders.Cale
ndarHolder

Time by reference

MJD::
Timestamp

in, return MJD.Timestamp java.util.Calendar DateTime by value

out, inout MJD.TimestampHolder javax.xml.rpc.holders.Cale
ndarHolder

DateTime by reference

XDT::
BooleanValu
e

in, return XDT.BooleanValue java.lang.Boolean XDT_BooleanValue by 
value

CORBA 
IDL type

Parameter 
mode CORBA/Java type EJB parameter type PowerBuilder types



Supported datatypes 

18  Web Services Toolkit

out, inout XDT.BooleanValueHold
er

javax.xml.rpc.holders.Bool
eanWrapperHolder

XDT_BooleanValue by 
reference

XDT::CharV
alue

in, return XDT.CharValue java.lang.Character (see 
note 9)

XDT_CharValue by 
value

out, inout XDT.CharValueHolder XDT.CharacterWrapperHo
lder (see note 1)

XDT_CharValue by 
reference

XDT::ByteV
alue

in, return XDT.ByteValue java.lang.Byte XDT_ByteValue by 
value

out, inout XDT.ByteValueHolder javax.xml.rpc.holders.Byte
WrapperHolder

XDT_ByteValue by 
reference

XDT::Short
Value

in, return XDT.ShortValue java.lang.Short XDT_ShortValue by 
value

out, inout XDT.ShortValueHolder javax.xml.rpc.holders.Shor
tWrapperHolder

XDT_ShortValue by 
reference

XDT::IntVal
ue

in, return XDT.IntValue java.lang.Int XDT_IntValue by value

out, inout XDT.IntValueHolder javax.xml.rpc.holders.Integ
erWrapperHolder

XDT_IntValue by 
reference

XDT::LongV
alue

in, return XDT.LongValue java.lang.Long XDT_LongValue by 
value

out, inout XDT.LongValueHolder javax.xml.rpc.holders.Lon
gWrapperHolder

XDT_LongValue by 
reference

XDT::FloatV
alue

in, return XDT.FloatValue java.lang.Float XDT_FloatValue by 
value

out, inout XDT.FloatValueHolder javax.xml.rpc.holders.Float
WrapperHolder

XDT_FloatValue by 
reference

XDT::Doubl
eValue

in, return XDT.DoubleValue java.lang.Double XDT_DoubleValue by 
value

out, inout XDT.DoubleValueHolde
r

javax.xml.rpc.holders.Dou
bleWrapperHolder

XDT_DoubleValue by 
reference

XDT::Decim
alValue

in, return XDT.DecimalValue java.lang.BigDecimal XDT_DecimalValue by 
value

out, inout XDT.DecimalValueHold
er

javax.xml.rpc.holders.Big
DecimalHolder

XDT_DecimalValue by 
reference

XDT::Integer
Value

in, return XDT.IntegerValue java.math.BigInteger XDT_IntegerValue by 
value

out, inout XDT.IntegerValueHolder javax.xml.rpc.holders.BigI
ntegerHolder

XDT_IntegerValue by 
reference

CORBA 
IDL type

Parameter 
mode CORBA/Java type EJB parameter type PowerBuilder types



CHAPTER 3    Components and Datatypes

User’s Guide 19

XDT::DateV
alue

in, return XDT.DateValue java.util.Calendar XDT_DateValue by 
value

out, inout XDT.DateValueHolder javax.xml.rpc.holders.Cale
ndarHolder

XDT_DateValue by 
reference

XDT::TimeV
alue

in, return XDT.TimeValue java.util.Calendar XDT_TimeValue by 
value

out, inout XDT.TimeValueHolder javax.xml.rpc.holders.Cale
ndarHolder

XDT_TimeValue by 
reference

XDT::DateTi
meValue

in, return XDT.DateTimeValue java.util.Calendar XDT_DateTimeValue by 
value

out, inout XDT.DateTimeValueHol
der

javax.xml.rpc.holders.Cale
ndarHolder

XDT_DateTimeValue by 
reference

XDT::ByteA
rray

in, return byte[] byte[] Blob by value

out, inout XDT.ByteArrayHolder javax.xml.rpc.holders.Byte
ArrayHolder

Blob by reference

MyModule::
MyExceptio
n (exception)

raises 
(throws)

MyModule.MyException MyModule.ejb.MyExcepti
on

MyModule_MyExceptio
n or MyException

MyModule::
MyComp 
(interface)

in, return MyModule.MyComp MyModule.ejb.MyComp MyModule_MyComp or 
MyComp by value

out, inout MyModule.MyCompHol
der

MyModule.ejb.MyCompH
older

MyModule_MyComp or 
MyComp by reference

MyModule::
MyStruct 
(struct)

in, return MyModule.MyStruct MyModule.ejb.MyStruct MyModule_MyStruct or 
MyStruct by value

out, inout MyModule.MyStructHol
der

MyModule.ejb.MyStructH
older

MyModule_MyStruct or 
MyStruct by reference

MyModule::
MyUnion 
(union)

in, return MyModule.MyUnion MyModule.ejb.MyUnion MyModule_MyUnion or 
MyUnion by value

out, inout MyModule.MyUnionHol
der

MyModule.ejb.MyUnionH
older

MyModule_MyUnion or 
MyUnion by reference

MyModule::
MySequence 
(sequence<
MyElement>
)

in MyModule.MyElement[] MyModule.ejb.MyElement
[]

MyModule_MyElement[
] or MyElement[] by 
value

CORBA 
IDL type

Parameter 
mode CORBA/Java type EJB parameter type PowerBuilder types



Supported datatypes 

20  Web Services Toolkit

return MyModule.MyElement[] MyModule.ejb.MyElement
[]

MyModule_MySequenc
e or MySequence

out, inout MyModule.MySequence
Holder

MyModule.ejb.MySequenc
eHolder

MyModule_MyElement[
] or MyElement[] by 
reference

MyModule::
MyArray 
(MyElement[
N])
(see note 3)

in MyModule.MyElement MyModule.ejb.MyElement MyModule_MyElement[
] or MyElement[] by 
value

return MyModule.MyElement MyModule.ejb.MyElement MyModule_MyArray or 
MyArray

out, inout MyModule.MyArrayHol
der

MyModule.ejb.MyArrayH
older

MyModule_MyElement[
N] or MyElement[N] by 
reference

TabularResul
ts::ResultSet
(see note 4)

in, return TabularResults.ResultSet java.sql.ResultSet ResultSet by value

out, inout TabularResults.ResultSet
Holder

N/A ResultSet by reference

TabularResul
ts::ResultSet
(see note 4)

in, return TabularResults.ResultSet
[]

java.sql.ResultSet[] ResultSet by value

out, inout TabularResults.ResultSet
Holder

N/A ResultSet by reference

CORBA 
IDL type

Parameter 
mode CORBA/Java type EJB parameter type PowerBuilder types



CHAPTER 3    Components and Datatypes

User’s Guide 21

Note  

1 The ‘char’ and ‘java.lang.Charcter’ data types have no defined XML 
Schema mapping for EJB Web services, and should not be used as a 
parameter type or structure field type if you plan to expose components as 
Web services.

2 PowerBuilder version 10.5 introduced a Byte data type. To use the PB 
Char data type for backwards compatibility, run this command (once) 
before deployment: 

configure idl-octet-to-pb-char

To switch back to using the PB Byte data type, run this command (once) 
before deployment:

    configure idl-octet-to-pb-byte

3 IDL fixed size array types have no defined XML Schema mapping for EJB 
Web services, and should not be used as parameter types or structure field 
types if you plan to expose components as Web services. Use IDL 
sequences types instead (Java arrays, PowerBuilder variable sized arrays).

4 The ‘ResultSet’ data type should not be used with the PB Server Plugin if 
you plan to expose components as Web services, because 
java.sql.ResultSet is not portable in EJB Web service endpoint interfaces. 
Use IDL sequences of structures instead (Java arrays, PowerBuilder 
variable sized arrays). For EAServer, EJB return type java.sql.ResultSet 
maps to a complex schema element that contains the result set data and the 
schema for the result set. The content of the XML is mapped according to 
the SQL/XML ANSI standard.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
  targetNamespace="jdbc.wst.sybase.com">
  <import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
  <complexType name="DataReturn">
    <sequence>
      <element name="XML" nillable="true" type="xsd:string" />
      <element name="updateCount" type="xsd:int" />
      <element name="DTD" nillable="true" type="xsd:string" />
      <element name="schema" nillable="true" type="xsd:string" />
    </sequence>
  </complexType>



Supported datatypes 

22  Web Services Toolkit

</schema>

Using IDL parameter modes ‘inout’ and ‘out’ with 
TabularResults::ResultSet(s) is not supported for exposing components as 
Web services.

Using arrays (IDL sequences) of structures instead of result sets simplifies 
coding of Web service client applications since it is portable across all 
application servers. When you write PowerBuilder NVO methods, which 
do not permit using arrays as method return types, define a row structure 
to represent a result row, and a table structure containing an array of row 
structures to represent a result set.

5 Do not use IDL ‘inout’ and ‘out’ parameter modes with the PowerBuilder 
server plugin, because JAX-RPC holder classes are not portable in EJB 
remote interfaces. For EAServer, use ‘inout’ and ‘out’ parameter modes 
(with the exceptions listed in note 4). When PowerBuilder components are 
deployed, any “by reference” parameters are mapped to IDL parameter 
mode ‘inout’. Therefore PowerBuilder “by reference” parameters should 
not be used with the PowerBuilder server plugin.

6 The PowerBuilder NVO deployment option “Allow NULL values in 
method parameters” is not supported if you intend to expose components 
as web services. It is also not supported when using the PB Server Plugin 
(see note 10).

7 The default mapping of CORBA IDL identifiers to Java/EJB identifiers 
can be modified to use Java naming conventions. This is called the “camel 
case” deployment option. When using this option, IDL operation and 
parameter names such as “abc_xyz” map to “abcXyz”, and IDL interfaces, 
sequence, structure, and union type names “abc_xyz” map to “AbcXyz”. 
This mapping is not applied to exception and structure field names.

To enable the “camel case” option, use this command:

 configure camel-case-on

To disable the “camel case” option, use this command:



CHAPTER 3    Components and Datatypes

User’s Guide 23

    configure camel-case-off

If you intend to expose components as Web services, you should enable 
the “camel case” option, otherwise you might encounter problems with the 
JAX-RPC identifier mapping rules (See the JAX-RPC 1.1 specification, 
chapter 20 “Appendix: Mapping of XML Names”).

8 For CORBA C++ data types, see the CORBA IDL to C++ Language 
Mapping document  at 
http://www.omg.org/technology/documents/formal/c++.htm

9 Only characters in the ISO 8859-1 character set can be used in this case. 
Use the String type to propagate other characters.

10 To obtain the PowerBuilder XDT_* data types for use as PB structure field 
types or component parameter types, use the “EAServer Proxy Wizard” or 
“Application Server Proxy Wizard” in the PowerBuilder IDE to generate 
proxies for the “XDT” package. Each of the XDT_* data types contains a 
value field and an isNull field. The isNull field must be set to true to 
indicate a null value.

11 Exposing PowerBuilder components as Web services where the 
component passes an array of simple types by reference is not supported.

Exposing CORBA Components as Web services where the component 
passes a sequence of simple types as inout parameters is not supported.

Instead you should pass IDL sequences of user-defined structure types 
using IDL inout or out parameters. Also see note 7.

Client-side generation of holder classes
When you expose a component that uses EAServer-specific holder types as a 
Web service, the convention for generating the client-side holders classes is 
that they are always generated under a package.holders.type hierarchy. For 
example, when you expose a component as a Web service that uses holder type 
BCD.MoneyHolder, the conversion on the client-side results in a JAX-RPC 
specific holder contained under BCD.holders.MoneyHolder. You cannot use 
EAServer specific types on the Web service client side.



Supported datatypes 

24  Web Services Toolkit



User’s Guide 25

C H A P T E R  4 Web Services Administration

This chapter describes how to administer Web services from the WST 
development tool.

Introduction
The WST development tool supports top-down (creating a Web service 
from the WSDL) and bottom-up (creating a Web service from a 
component) development of Web services, deployment of Web services to 
the runtime engine, and UDDI publication and unpublication.

You can manage certain aspects of the Web service container, create and 
manage Web service projects, and troubleshoot Web services using logs 
and the SOAP inspector.

Before you can manage Web services, you must install the Web service 
plug-in. See Chapter 2, “Using Sybase Web Services Toolkit—an Eclipse 
plug-in” for more information.

Topic Page
Introduction 25

Web services server administration 26

Web services collection administration 28

Web service administration 29

Type mappings 37

Exposing and deploying components as Web services 38

Generating WSDL 40

UDDI administration 42

Other components 44



Web services server administration 

26  Web Services Toolkit

Web services server administration
A Web services server is the container on EAServer that stores your Web 
services. You can create any number of server profiles that allow you to 
connect to a Web services container and manage the Web services that it 
contains.

Note  When managing Web services, the server must be running. You can 
develop Web services and create test clients for third-party Web services 
without connecting to the server.

❖ Creating and modifying a Web services server profile

1 Right-click the Sybase Web Services Servers icon and select Create Server 
profile.

2 The Create Server Profile dialog box appears. Provide the information 
described in Table 4-1 and click Finish. If a profile already exists, you can 
select the profile, make modifications and click Finish.



CHAPTER 4    Web Services Administration

User’s Guide 27

Table 4-1: Create server profile properties

❖ Setting the default Web services server

If you have multiple Web services servers, you can designate a default to which 
you connect when you start the WST development tool.

1 Right-click the server profile you are designating as the default.

2 Select Set Default. 

❖ Connecting to a Web services server

You must be connected to a Web services server to manage Web service 
collections, Web services, and so on. If you cannot connect to the server, make 
sure it is running.

• Right-click the server profile and then select Connect.

❖ Disconnecting from a Web services server

• Right-click the server profile and then select Disconnect. Only available if 
you are connected to the server.

❖ Starting a Web services server

1 Right-click the server profile to which the Web services server you are 
starting belongs.

Property Description

Profile Name The name of the Web services server profile you 
are creating.

User Name The name of the user connecting to the Web 
services container. jagadmin is the default. Use 
either jagadmin or another member of the 
Admin role. 

Password The password of the user connecting to the Web 
services container. The default is blank.

Host Name The name of the host machine that contains the 
Web services container to which you are 
connecting. localhost is the default. 

Port Number The port number of the host used to connect to 
the Web services container. 8000 is the default.

Server Startup 
Script File

(optional)

This path to the script if you providing 
connection information in a script.

Script Arguments Any additional arguments you want to provide 
to the script.



Web services collection administration 

28  Web Services Toolkit

2 Select Start. 

❖ Stopping a Web services server

1 Right-click the server profile to which the Web services server you are 
stopping belongs.

2 Select Stop. 

❖ Refreshing a Web services server

You must start a Web services server before refreshing.

1 Right-click the server profile to which the Web services server you are 
refreshing belongs.

2 Select Refresh. 

❖ Restarting a Web services server

1 Right-click the server profile to which the Web services server you are 
restarting belongs.

2 Select Restart. 

❖ Removing a Web services server

1 Right-click the server profile to which the Web services server you are 
removing belongs.

2 Select Remove. 

Web services collection administration
A Web services collection is a logical group of Web services contained in a 
folder. You can manage collections only for the Web services server to which 
you are connected. When you deploy a Web service to a server, it is placed in 
a Web service collection. The default Web service collection is “ws.”

❖ Importing a Web service collection

You can import a Web service collection into the Web services development 
tool from a WAR or JAR file.

1 Right-click the Web services icon and then select Import.

2 Enter, or browse for the Web service collection you are importing. 



CHAPTER 4    Web Services Administration

User’s Guide 29

3 Click OK. The Web service collection is imported. 

❖ Refreshing a Web services collection

If you make changes to a Web service collection, for example if you deploy a 
Web service to a Web service collection, refresh the collection so you can see 
the most current changes.

1 Highlight the server to which the Web service collection belongs.

2 Right-click the Web service collection, then select Refresh.

❖ Deleting a Web services collection

1 Highlight the server to which the Web service collection belongs.

2 Right-click the Web service collection and then select Delete.

Table 4-2 describes the Web services collection properties.

Table 4-2: Web service collection properties

Web service administration
This section describes how to create Web services and add them to a Web 
service collection, and manage existing Web services. See “Exposing 
Components as Web services” on page 38 for information about deploying 
existing components as Web services.

Creating Web services from files
This section describes how to:

• Create a Web service from a WSDL file – this top-down approach 
(creating a Web service from the WSDL) allows you to create a Web 
service from an existing WSDL file.

• Create a Web service from a Java file – this bottom-up approach (creating 
a Web service from a component) allows you to create a Web service from 
a Java file.

 Property Description

Name The name of the Web services collection.

Description A description of the Web services collection.



Web service administration 

30  Web Services Toolkit

The Web service can be contained in various projects. See “Web service 
projects” on page 32 for more information about projects.

❖ Creating a Web service from a WSDL 

1 From the Web Service container, select File | New | Other.

2 The New wizard displays. Select Sybase Web Services in the left pane, and 
Web Service in the right pane. Click Next. You can also create the Web 
service within a project by selecting Web Service Project. If you do not 
select a project at this time, you will be asked later to provide a project for 
the Web service.

3 The Create Web Service wizard displays. Follow the instructions to create 
a Web service from a WSDL file. Table 4-3 on page 32 describes the 
wizard properties. 

4 Complete the wizard instructions and click Finish to create the Web 
service. If you choose a Project for this Web service, you can view the 
project by selecting Window | Show View | Package Explorer. The 
Projects appear in the right pane. Expand the project and package to view 
the Web service. Along with a Web service, the wizard generates the other 
required files, including a .wsdd file. 

You can right-click the .wsdd file and then select Deploy to deploy it as a 
Web service.

❖ Creating a Web service from a Java file

1 From the Web Service container, select File | New | Other.

2 The New wizard displays. Select Sybase Web Services in the left pane, and 
Web Service in the right pane. Click Next. You can also create the Web 
service within a project by selecting Web Service Project. If you do not 
select a project at this time, you are asked later to provide a project for the 
Web service.

3 The Create Web Service wizard displays. Follow the instructions to create 
a Web service from a Java file. Table 4-3 describes the wizard properties. 

4 Complete the wizard instructions and click Finish to create the Web 
service. If you choose a Project for this Web service, you can view the 
project by selecting Window | Show View | Package Explorer. The 
Projects appear in the right pane. Expand the project, and package to view 
the Web service. Along with a Web service, the wizard generates the other 
required files, including a .wsdd file.



CHAPTER 4    Web Services Administration

User’s Guide 31

You can right-click the .wsdd file and then select Deploy to deploy it as a 
Web service.



Web service administration 

32  Web Services Toolkit

Table 4-3: Web service creation wizard options and properties

Web service projects

The WST development tool allows you to create and maintain various projects 
that contain collections of Web services, class files, readme files, and so on, 
that make up a Web service project depending on your need. For example, you 
can create:

Window Property Description

Select the Web 
Service Project

Project Type Select the project in which you will create a 
Web service. 

The project wizard displays only if you choose 
to create a Web service project.

Create the 
Project

Project Name Provide a name for your project.

 Project Contents Use the Browse button to select the project 
contents directory that contains your project, or 
click the check box to use the default directory, 
which is the project name located in the 
$Eclipse/workspace directory. 

 Select 
Approach

Create from 
WSDL or Create 
from Java File

You can create the The Web service from an 
existing Java file or .wsdl file. Click the 
appropriate check box.

If Creating 
From WSDL

Locate From a 
Local File, URL, 
or UDDI

Provide the location of the .wsdl file, by 
entering the file location, URL, or UDDI site. If 
the file is on the local file system use Browse to 
locate it. If you are locating the file from a 
UDDI site, follow the instructions for 
publishing to a UDDI site as described in 
Table 4-8 on page 42.

Package Name The name of the package in which the Web 
service is created. If you do not enter a package 
name, “default” is used.

If Creating 
From Java File

Create From Java 
File

Enter the Java file being used to create the Web 
service.

Options You can specify various preferences used for 
you Web service deployment. These options are 
described in Table 4-6 on page 38.

Method 
Selection

Select the methods/operations to be exposed in 
the Web service’s WSDL file.

Summary A summary of your entries. Verify they are 
accurate and click Finish, or Back to change 
your selections.



CHAPTER 4    Web Services Administration

User’s Guide 33

• Server projects – generate and contain the server-side files required to 
deploy a Web service project to the server.

• Client projects – generate and contain the client-side files required to 
deploy a Web service project to the client.

• Projects – generate and contain both the server-side and client-side files 
required to deploy a Web service project to the server and client.

Sybase recommends that when creating projects, you keep the client-side code 
in a client project and server-side code in a separate server project. This allows 
you to generate, compile, and maintain the client-side and server-side files, 
artifacts, and dependent classes independently.

Web service management
This section describes how to use the WST development tool to manage Web 
services already contained in a server. Each procedure described in this section 
requires that you first:

1 Connect to the server that contains the Web service.

2 Expand the Web Services icon.

3 Expand the Web service collection to which the Web service belongs.

❖ Viewing the WSDL

1 Right-click the Web service and then select View WSDL.

2 The WSDL file for this Web service displays in the right pane. You cannot 
edit this file. 

❖ Refreshing a Web service

Refresh a Web service if you make any changes to it.

• Right-click the Web service and then select Refresh.

❖ Deleting a Web service

1 Right-click the Web service and then select Delete.

Creating and managing Web service clients

This section describes how to create and manage Web service clients from a 
Web service. Each procedure requires that you first:



Web service administration 

34  Web Services Toolkit

1 Connect to the server that contains the Web service.

2 Expand the Web Services icon.

3 Expand the Web service collection to which the Web service belongs.

Note  The wizards described in this section generate a test client runtime JAR 
file, sybasewstrt.jar, which contains one file, manifest.mf, that lists the JAR 
files required by the runtime client:

• When compiling the client class, do not include sybasewstrt.jar. Set the 
required JARs in the classpath individually.

• The classpath should include at a minimum: sybasewstrt.jar, 
sybasewst.jar, jaxrpc.jar, and the path to the client artifacts. 

• When running the client, use either the “-classpath” option, or “set 
classpath” to specify the location of the required files identified by 
sybasewstrt.jar. 

After using the wizard to generate the various files required by the client, see 
Chapter 7, “Developing Web Service Clients” for a description of how to 
develop a client.

❖ Creating a Web service client

1 Right-click the Web service and then select Create Web Service Client.

2 The Create Web Service Client wizard displays.

3 Follow the wizard instructions described in Table 4-4. Click Finish when 
done. 

4 The wizard generates the test client, and necessary client artifacts in the 
package you specify.

Table 4-4: Create Web service client wizard options and properties

Window Property Description

Select a Project Project Name The wizard displays a list of available projects. Highlight the project 
to which the client you are generating belongs.

Java Package Package The name of the package where the client is generated. Enter a name 
of a package, or use the drop down list to locate an existing package. 

WSDL2Java 
Options

Generate Code for 
this WSDL Only

Select this checkbox to generate code only for this WSDL 
document. Uncheck (The default) to generate files for all WSDL 
documents, the immediate one and all imported ones. 



CHAPTER 4    Web Services Administration

User’s Guide 35

❖ Creating a JSP client

This procedure generates JSP client pages from the Web service and stores 
them on the server. Once created, you can test the JSP pages by Launching the 
JSP client.

Timeout The time, in seconds, for this operation to complete successfully 
before timing out. In case of timeout, check the log files for possible 
reasons.

Use Special 
Treatment for 
“wrapped” 
Document/Literal

Allows support for “wrapped” document/literal. Wrapped is a 
document literal variation, that wraps parameters as children of the 
root element.

Uncheck this box to turn off the special treatment of “wrapped” 
document/literal style operations. 

If checked (the default), WSDL2Java recognizes these conditions:

• An input message has is a single part 

• The part is an element 

• The element has the same name as the operation

• The element’s complex type has no attributes

Under these conditions, the top level elements are “unwrapped”, and 
each component of the element is treated as an argument to the 
operation. This type of WSDL is the default for Microsoft .NET Web 
services, which wraps RPC style arguments in this top level schema 
element. 

Type Mapping 
Version

The type mapping version. Valid options are 1.1 (the default) and 
1.2. This option determines which version of SOAP the Web service 
uses, SOAP 1.1 or SOAP 1.2.

Generate Code for 
All Elements

Allows you to generate and compile the stubs, wsdd, and 
ImplTemplate files.

Emit separate 
helper classes for 
meta data

Helper classes are used by the primary class to help execute its 
business methods/operations.

Helper classes are normally generated for user defined type beans. 
You can think of them as wrappers for the user defined beans that 
contain information (utility methods) which is used at runtime.

They allow you to write your own Java beans with custom behavior 
and use them in the runtime SOAP stack. 

User name The user name used to access the WSDL URI.

Password The password required by the user to access the WSDL URI.

Summary Contains information from the previous pages. Review and click 
Finish to accept your selections, or Back to change.

Window Property Description



Web service administration 

36  Web Services Toolkit

• Right-click the Web service and then select Create JSP client.

❖ Launching a JSP client

This procedure launches the JSP client you created in the proceeding 
procedure, by starting a Web browser, and running the JSP.

• Right-click the Web service and then select Launch JSP Client.

❖ Deleting a JSP client

If you created a JSP client for this Web service, this procedure deletes it. 

• Right-click the Web service and then select Delete JSP Client.

Web service operation management 

This section describes how to manage Web service operations (or methods). 
These procedures require that you:

1 Expand the Web service collection.

2 Expand the Web service.

3 Expand the operations folder.

Overloaded methods If you deploy a Web service that contains overloaded methods, the WST 
development tool displays only the first method of the overloaded method.

For example, if the Web service contains an overloaded method that contains 
the methods echo(String, String) and echo (String), the GUI displays only echo 
(String, String) twice, but the allowed/disallowed operation affects both 
echo(String, String) and echo(String).

Do not use overloaded methods or properties in PowerBuilder components that 
you want to expose as Web services, or the Web service fails to be exposed.

components they want to use as web services. 

❖ Invoking an operation

This procedure invokes an operation of the Web service to which it belongs.

• Right-click the operation and then select Invoke.

Table 4-5 describes the Web service operation properties.

Table 4-5: Web service operation properties

Property type  Property Description

General Name The name of the operation.



CHAPTER 4    Web Services Administration

User’s Guide 37

Type mappings
Type mappings are described in Chapter 3, “Components and Datatypes.”

Exposing and deploying components as Web services
This section describes how to expose and deploy files and components as Web 
services:

• Deploying refers to the process of selecting a Java file or component that 
is located in the WST development tool (In the Package Explorer or 
Project view) and using one of the Deploy wizards to create the Web 
service and install/deploy it to a server as well as display it in the Sybase 
Web Services view.

• Exposing refers to the process of selecting a supported component type 
that already resides on the server (Sybase Web Services view) and using 
one of the Expose wizards to make it available as a Web service.

Description A description of the Web service operation.

Style The SOAP binding style:

• Document – indicates that the SOAP body contains an 
XML document, or

• RPC (remote procedure call) – indicates that the SOAP 
body contains an XML representation of a 
method/operation call.

Return Type Specifies the return type of the operation. 

Is return value 
in response 
message

True or false.

SOAP Action The URI for the SOAPAction HTTP header for the HTTP 
binding of SOAP. The SOAPAction HTTP request header 
field can be used to indicate the intent of the SOAP HTTP 
request. The URI identifies the intent.

Message 
Operation Style

Document, RPC, or wrapped. 

Property type  Property Description



Exposing and deploying components as Web services 

38  Web Services Toolkit

There are several ways to deploy and expose components as Web services 
depending on the options you choose, type of component, and location of 
component or file. For example:

• You can use the “Quickly Deploy as Web Service” or “Deploy as Web 
Service” wizards. Both of these wizards are available from the package 
explorer and from individual projects and are used to deploy a Java file as 
a Web service. Quickly deploying a Web service automatically uses 
default settings for most options.

• You can use the “Expose as Web Service” or “Quickly Expose as Web 
Service” wizards. Both of these wizards are available from the Other 
components folder of the Sybase Web Services view, and allow you to 
expose an existing EAServer component as a Web service.

• From the package explorer you can also select a WSDD file and choose 
Deploy (which is different from the wizards above). 

Exposing Components as Web services
This section describes how to expose a component as a Web service.

❖ Using the Expose wizard to expose a Web service

1 From the Sybase Web Services view, highlight the component that you are 
exposing.

2 Right-click the file and select Expose As Web Service.

3 The Expose as a Web Service wizard displays. Table 4-6 describes the 
Expose as a Web Service properties. Complete the information and click 
next to move to the next window and Finish when done.

Error messages are logged in the server’s log file and server’s servlet log 
file. Check these files for any error conditions. For example, if you see a 
non-unique context path error, verify that the exposed component does not 
share the same Web collection name and Web service name as another 
exposed component, and re-expose the Web service. 

Table 4-6: Exposing and Deploying Web service wizard options and 
properties

Property Description

Collection 
Name

Name of the Web service collection to which this Web service is exposed.

Make sure the Web collection name and Web service name combination are 
unique when exposing the component as a Web service.



CHAPTER 4    Web Services Administration

User’s Guide 39

Using the quickly expose wizard

Use the quickly expose wizard to use commonly used defaults to expose a 
component as a Web service. 

❖ Using the quickly expose wizard to expose a Web service

1 Highlight the package that contains the file (Java file, component, Web 
service, and so on) that you are deploying and exposing.

2 Right click the file and select Quickly Expose As a Web Service.

3 The Progress information window displays, indicating that the Web 
service is being exposed to the server to which you are connected.

Deploying Components as Web services
This section describes how to deploy a component or file as a Web service.

❖ Using the deploy wizard to deploy a Web service

1 From the Package Explorer or Project that contains the file to be deployed, 
highlight the Java file that you are deploying.

2 Right click the file and then select Deploy As Web Service.

Context path Location of the Web service.

Endpoint 
address URI

A valid Uniform Resource Identifier (URI) for the location where the WSDL 
document is published. The target namespace should not include the file name; 
WST appends the appropriate file name when the WSDL document is 
generated. The target namespace can be a Uniform Resource Name (URN), 
which is a globally unique and persistent URI. 

http://www.com.sybase.webservices is an example of a valid URI. 

urn:simpleJavaClass.test is an example of a valid URN. 

Binding Style The SOAP binding style:

• Document – indicates that the SOAP body contains an XML document.

• RPC (remote procedure call) – indicates that the SOAP body contains an 
XML representation of a method/operation call.

• Wrapped – a document literal variation, that wraps parameters as children 
of the root element.

Use Specify the use (LITERAL or ENCODED) of items in the generated WSDL 
binding when exposing a Web service.

Property Description



Generating WSDL 

40  Web Services Toolkit

3 The Deploy as a Web Service wizard displays. Table 4-6 describes the 
Deploy as a Web Service properties. Complete the information and click 
next to move to the next wizard and Finish when done.

Using the quickly deploy wizard

Use the quickly deploy wizard to use commonly used defaults to deploy a 
component as a Web service. 

❖ Using the quickly deploy wizard to deploy a Web service

1 Highlight the component that you are deploying.

2 Right click the file and then select Quickly Deploy As a Web Service.

3 The Progress information screen displays indicating that the Web service 
is being deployed to the server to which you are connected. The deployed 
Web service also appears in the Sybase Web services view.

Generating WSDL
Web service definition language (WSDL) is the XML file that stores the 
metadata used to describe your Web service, defines service endpoints, and 
publishes information about your Web service. WSDL helps automate the 
generation of client proxies for Web services in a language-and platform-
independent way. Like the IDL file for CORBA, a WSDL file provides the 
framework for client and server communication. 

❖ Generating the WSDL

1 From a project or Package Explorer, highlight the package that contains 
the Java file for which you are generating WSDL.

2 Right click the file and select Generate WSDL.

3 The Generate WSDL wizard displays. Table 4-7 describes the Generate 
WSDL properties. Complete the information and click next to move to the 
next window and Finish when done.

Table 4-7: Generating WSDL wizard options and properties

Window Property Description

General options Web Service 
Name

The Web service for which you are generating WSDL.



CHAPTER 4    Web Services Administration

User’s Guide 41

Location URL The location where the Web service is available. 

Target 
Namespace

A valid Uniform Resource Identifier (URI) for the location where the WSDL 
document is published. The target namespace should not include the file name; 
WST appends the appropriate file name when the WSDL document is 
generated. The target namespace can be a Uniform Resource Name (URN), 
which is a globally unique and persistent URI. 

http://www.com.sybase.webservices is an example of a valid URI. 

urn:simpleJavaClass.test is an example of a valid URN. 

Port Type Name Describes a collection of operation elements that define the abstract interface 
of the Web service. The port type name provides a unique name among all port 
types defined within the WSDL document. For example:

<portType name="SimplePortType">

Binding Name Contains the details of how the elements of the Port type name are converted 
to a concrete representation of the Web service by combining data formats and 
protocols:

<binding name="TestBinding"

Service Port 
Name

Indicates the Web service endpoint address. For example:

http://EAServer_1:8000/webservices/testPort or 

testPort

Implementation 
Class

The name of the class file implementing the Web service.

Type Mapping 
Version

The type mapping version. Valid options are 1.1 (the default) and 1.2.

Soap Action The URI for the SOAPAction HTTP header for the HTTP binding of SOAP. 
The SOAPAction HTTP request header field can be used to indicate the intent 
of the SOAP HTTP request. The URI identifies the intent.

Binding Style The SOAP binding style:

• Document – indicates that the SOAP body contains an XML document.

• RPC (remote procedure call) – indicates that the SOAP body contains an 
XML representation of a method/operation call.

• Wrapped – a document literal variation, that wraps parameters as children 
of the root element.

Soap uUse The SOAP body use:

• Literal – if using a document binding style.

• Encoded – if using an RPC binding style.

Method 
Selection

Method nName Select the methods/operations of the Web service for which the WSDL is to be 
generated.

Location File Location The location and file name (ending with .wsdl) of the generated WSDL file.

Window Property Description



UDDI administration 

42  Web Services Toolkit

UDDI administration
From the Sybase Web Services view of the WST development tool, you can 
publish a WSDL document that describes your Web service and its location to 
a UDDI registry and unpublish from a UDDI site. See “UDDI 2.0” on page 4 
for more information.

❖ Publishing to a UDDI registry

1 Expand the Web services folder.

2 Right-click the Web service and select Publish.

3 The Publish to UDDI wizard displays. Table 4-8 describes the Publish to 
UDDI properties. Complete the information and click Next to move to the 
next window and click Finish when you are done.

Table 4-8: Publishing to a UDDI wizard options and properties

Summary Summarizes your selections. Review and click Finish to generate the WSDL, 
or click Back to change any of your selections.

Window Property Description

Window Property Description

Select registry 
Profile

Registry Name The registry to which you are connecting. From the Registry Name 
drop-down list, select a predefined site to which you want to log in, 
or select the Enter New Registry Name entry and enter a new name. 
You must be a registered user on the site where you log in. The 
registry name you select determines the default values of the query 
URL and the publish URL. You can modify these entries. For new 
names, you must provide connection information. 

Query URL The query URL is the location from which you query the UDDI.

 Publish URL For publishing purposes, you need both the query and publish URLs.

 User Name The user name used for accessing the UDDI site.

Password The password used with the user name used to access the UDDI site.

Save Profile Use this button to save a profile. It will be added to the Registry 
Name drop-down list for easy access.

Delete Profile Use this button to delete a profile that you no longer require.

Ping Use this button to test your profile connection. You should be able to 
ping before moving on to the other windows.

Business 
Information

Name The name of the organization name by which this UDDI entry is 
known.



CHAPTER 4    Web Services Administration

User’s Guide 43

❖ Unpublishing from a UDDI

1 Expand the Web services folder.

2 Right-click the Web service and select Unpublish.

3 The Unpublish from UDDI wizard displays. Table 4-9 describes the 
Unpublish to UDDI properties. Complete the information and click Next 
to move to the next window and Finish when done.

Table 4-9: Unpublishing from a UDDI wizard options and properties

Description A description of the organization.

Use Existing 
tModel Key

Your business model. The tModel is an abstract description of a 
particular specification or behavior to which the Web service 
adheres. 

Service 
Description

A description of the service the business provides.

Get All Business 
Details From 
Registry

You can use this button to query the UDDI registry for tModel and 
business information instead of entering this information manually.

Summary Displays a summary of your selections. Click Finish to publish to the 
UDDI site, or click Back to change your selections.

Window Property Description

Window Property Description

Select 
Publishing 
Profile

Registry Name The registry to which you are connecting. From the Registry Name 
drop-down list, select a predefined site to which you want to log in, 
or select the Enter New Registry Name entry and enter a new name. 
You must be a registered user on the site where you log in. The 
registry name you select determines the default values of the Query 
URL and the Publish URL. You can modify these entries. For new 
names, you must provide connection information.

Query URL The query URL is the location from which you query the UDDI.

 Publish URL For publishing and unpublishing purposes, you need both the query 
and publish URLs. 

 User Name The user name used for accessing the UDDI site. 

Password The password used in connection with the user name used to access 
the UDDI site.

Save Profile Use this button to save a profile. It will be added to the Registry 
Name drop-down list for easy access.

Delete Profile Use this button to delete a profile that you no longer require.

Ping Use this button to test your profile connection. You should be able to 
ping before moving on to the other windows.



Other components 

44  Web Services Toolkit

Other components
The Other Components folder shows components located on the server to 
which you are connected that can be converted to the SOAP message format. 
In other words the Other Components folder contains components capable of 
being exposed as Web services. 

There may be components on the server to which you are connected that, in 
order to make available, you must modify the component. For example, a 
component can be exposed as a Web service only if it is stateless.

See “Exposing Components as Web services” on page 38 and “Using the 
quickly expose wizard” on page 39 for information about deploying other 
components as Web services.

Select UUIDs Name of UUID A list of universally unique identifier (UUID) that identifies the 
UDDI entry for all of your UDDI entries is displayed. Check only 
those entries that you want to unpublish.

Check for Empty 
Businesses

Select to check for empty businesses. An empty business may not 
have a UDDI associated with it.

Check for 
Unused tModels

select to check for unused tModels. An unused tModel may not have 
a UDDI associated with it.

Selected UUID 
Details

Service Details The service details of your UDDI entry as identified by the UUID 
identifier.

Summary Displays a summary of your selections. Click Finish to unpublish 
from the UDDI site, or click Back to change your selections.

Window Property Description



User’s Guide 45

C H A P T E R  5 Management Console—Web 
Services

The Sybase management console is a Web based management console 
that provides plug-in support, for example Web Services Toolkit. This 
chapter describes how to use the management console to manage Web 
services. For information about using the management console to manage 
the private UDDI server, and publish to UDDI registries, see Chapter 6, 
“Management console—Registry Services.”

Plug-in, domain, display, and server administration
This section describes how to use the management console to manage the 
Sybase Web services plug-in, domains, and servers to which Web service 
collections belong. It also describes how to modify preferences which 
determines how management console wizards, nodes, and the interface 
are displayed.

❖ Defining Web Services Toolkit plug-in parameters

You can establish default values for Web Services Toolkit, which allows 
you to manage the connection information for server profiles.

1 Click the Plugins folder.

2 Highlight the Sybase Web Services Toolkit folder.

Topic Page
Plug-in, domain, display, and server administration 45

Web service collection administration 47

Web service administration 49

UDDI administration 52

Type mappings 54

Managing security realms 54

Non-Web service components 55



Plug-in, domain, display, and server administration 

46  Web Services Toolkit

3 Complete the General properties section to establish server profile 
values. Table 5-1 on page 47 describes the properties.

❖ Creating a domain

1 Right-click the Web Services Toolkit icon and select Create Domain.

2 The Create Domain wizard appears. Enter the information as 
instructed by the wizard and click Next. When finished, click Finish. 
The new domain appears.

❖ Deleting a domain

• Right-click the domain to delete and select Delete.

❖ Creating a server profile

1 Right-click the domain in which the server profile you are creating 
belongs and select Create Server Profile. 

2 The Create Server Profile wizard appears. Enter the information as 
instructed by the wizard and click Next. When finished, click Finish. 
The new server profile appears in the domain in which it was created. 
Table 5-1 on page 47 describes the server profile properties. 

❖ Connecting to a server

You can connect only to those servers for which you have a server profile.

1 Expand the domain in which the server profile you are connecting 
belongs.

2 Right-Click the server profile you want to connect to and choose 
Connect from the menu.

3 If the connection fails, click the Connection Details tab to review the 
connection details. Table 5-1 on page 47 describes the connection 
properties. 

❖ Restarting, stopping, deleting, or disconnecting from a server profile

• Right-click the server and click the action you want to perform:

• Restart – restarts the server to which you are connected.

• Stop – stops the server to which you are connected.

• Delete – deletes the server profile for the server to which you are 
connected.

• Disconnect – disconnects from the server to which you are 
connected.



CHAPTER 5    Management Console—Web Services

User’s Guide 47

• Refresh Node– refreshes the server and any changes since the last 
refresh or restart.

Table 5-1 describes plug-in, domain, and server properties.

Table 5-1: Plug-in, domain, and server profile properties

A node can be a plug-in, domain, Web service collection, Web service, and 
so on. If node information changes, or you want to reset the view, right-
click the node you are refreshing and select Refresh.

Web service collection administration
You can create and maintain Web service collections on each server being 
administered by the management console. 

❖ Viewing or modifying Web service collection properties

1 Expand the server that contains the Web service collection whose 
properties you are viewing or changing.

Property Description

Select Domain 
(plug-in property 
only)

The domain for the plug-in. 

Select Server 
(plug-in property 
only)

The server for the plug-in.

Machine Name The name of the host machine where the server resides. 

Protocol The protocol used to connect to the server; “http” or 
“https.”

HTTP Port The port number of the host used to connect to the server; 
for example, 8000.

User ID The user name used to connect to the server. 
admin@system is the default. Use admin or another 
member of the Admin role to connect to the Web services 
container for access to all of management console’s 
functions.

Password The password of the user connecting to the server.

Auto Connect on 
Console Login

Select this box to connect to this profile automatically 
when you log in to the management console.



Web service collection administration 

48  Web Services Toolkit

2 Highlight the Web service collection. The management console 
displays General and Web Service tabs. Table 5-2 on page 48 
describes the Web service collection properties.

3 Make any changes and click Accept when done or Reset to ignore 
your changes.

❖ Importing a Web service collection

You can import a Web service collection from a WAR file into the Web 
services server to which you are connected. 

1 Expand the server to which you want to import the Web service 
collection. 

2 Right-click the Web Service Collection folder and select Import. 

3 Follow the wizard instructions to import the Web service collection. 
Use Browse to locate the WAR file that contains the Web service 
collection. “ws” is the default Web service collection, if not specified.

4 When you click Finish, the Web service collection is imported and 
displays under the Web Service Collection folder.

❖ Deleting a Web services collection

To delete a Web collection and all of the Web services it contains:

1 Expand the server that contains the Web service collection you are 
deleting.

2 Right-click the Web service collection and select Delete.

Table 5-2 describes the Web services collection properties.

Table 5-2: Web service collection properties

 Property Description

Name The name of the Web services collection.

Description A description of the Web services collection.

Realm The realm (if any) to which the Web collection belongs. A realm defines the 
scope of authentication and authorization, and is also referred to as a security 
realm.

HTTP 
Authentication 
Method

The authentication method (if any) used by your Web service collection. 
Authentication method choices are the same as used by Web applications. See 
Chapter 3, “Web Application Security” in the EAServer Security 
Administration and Programming Guide for more information.



CHAPTER 5    Management Console—Web Services

User’s Guide 49

Web service administration
This section describes the procedures used to manage individual Web 
services.

❖ Viewing or modifying Web service properties

1 Expand the Web service collection that contains the Web service you 
want to view or modify.

2 Highlight the Web service.

3 Select the General tab to view the Web service properties. See 
Table 5-3 on page 49 for a description of the Web service properties.

4 Select the WSDL tab to view the WSDL for this Web service.

❖ Deleting a Web service 

This procedure deletes a Web service from a Web service collection.

1 Expand the Web service collection you are deleting.

2 Right-click the Web service and select Delete.

Table 5-3 describes the Web service properties.

Table 5-3: Web service properties

Property type  Property Description

General Name The name of the Web service.

Description A description of the Web service.

Implementation 
type

The type of component, class, or file that implements the 
Web service.

Implementation 
class name

The name of the class file implementing the Web service.

Style The SOAP binding style:

• Document – indicates that the SOAP body contains an 
XML document.

• RPC (remote procedure call) – indicates that the SOAP 
body contains an XML representation of a method call.

Use The SOAP body use:

• Literal – if using a document binding style.

• Encoded – if using an RPC binding style.

 Service URL The path, URL, or endpoint from which the Web service 
can be accessed.



Web service administration 

50  Web Services Toolkit

Web service operation management 
This section includes the procedures used to manage the operations 
(methods) of a Web service.

Overloaded methods If you deploy a Web service that contains overloaded methods, the 
management console displays only the first method of the overloaded 
method. 

For example, if the Web service contains an overloaded method that 
contains the methods echo(String, String) and echo (String), the GUI 
displays only echo (String, String) twice, but the allowed/disallowed 
operation affects both echo(String, String) and echo(String). 

❖ Viewing or modifying Web service operation properties

1 Select the Web service collection and Web service you want to view 
or modify.

2 Highlight the Operations folder.

3 Select the General tab to view the Web service Operations properties. 
See Table 5-4 on page 50 for a description of the Web service 
properties.

❖ Invoking an operation

1 Select the Web service collection and Web service that contains the 
operation you want to invoke.

2 Highlight the Operations folder.

3 Right-click the operation and select Invoke.

4 If a role is assigned to the operation, you may need to provide a user 
name and password to invoke the operation:

If a role is not assigned to a Web service operation, you do not need 
to provide a user name or password to invoke it. If a role is assigned 
to the Web service operation, you must provide a valid user name and 
password for a user within the assigned role.

Table 5-4 describes the Web service operation properties.

Table 5-4: Web service operation properties

Property type  Property Description

General Name The name of the operation.



CHAPTER 5    Management Console—Web Services

User’s Guide 51

Web service parameter management 
This section describes the procedures used to manage the parameters for a 
given method or operation of a Web service.

❖ Viewing parameters

1 Select the Web service collection and Web service you want to view.

2 Highlight the Operations folder.

3 Highlight the operation of interest.

4 Click the Parameters folder.

5 Highlight the parameter of interest.

6 Select the General tab to view the parameter properties. See Table 5-
5 for a description of the parameter properties.

Use Indicates whether the message parts are encoded using 
some encoding rules, or whether the parts define the 
concrete schema of the message. If use is encoded, then the 
Encoding Style specifies the encoding style to be applied.

Encoding Style Specify the SOAP encoding style. Each encoding style is 
identified using a list of URIs. For example, 
http://schemas.xmlsoap.org/soap/encoding/ identifies 
SOAP encoding as defined by the SOAP specification.

Return Type Specifies the return type of the method. 

Return Name Specifies the name of the return type.

Is Return Value 
In Response

True or false.

SOAP Action The URI for the SOAPAction HTTP header for the HTTP 
binding of SOAP. The SOAPAction HTTP request header 
field can be used to indicate the intent of the SOAP HTTP 
request. The URI identifies the intent.

Message 
Operation Style

Document, RPC, or wrapped. 

Is Allowed True or false. Determines whether or not the method is 
available to a client as a Web service endpoint.

Property type  Property Description



UDDI administration 

52  Web Services Toolkit

Table 5-5: Web service parameter properties

UDDI administration
This section describes how to publish information about your Web service 
and its location to a UDDI registry and unpublish from a UDDI site.

❖ Publishing to a UDDI registry

1 Expand the Web Service Collection folder.

2 Expand the Web service collection to which the Web service you are 
publishing belongs.

3 Right-click the Web service and then select Publish to UDDI.

4 The Publish to UDDI wizard displays. Table 5-6 describes the Publish 
to UDDI properties. Complete the information and click Next to move 
to the next window. Click Finish when done.

Table 5-6: Publishing to a UDDI wizard options and properties

 Property Description

Name Name of the parameter.

Type The type of parameter. The type cannot be edited.

Mode The mode of the parameter, “in”, “out”, or “inout”.

Order The order of the parameters. If there is only one parameter, 
the order is “0”.

Window Property Description

Publish to 
UDDI

Registry Profile The registry to which you are connecting. From the Registry Profile 
drop-down list, select a predefined site to which you want to log in 
or select the Enter New Registry Profile entry and enter a new name. 
You must be a registered user on the site where you log in. The 
registry profile you select determines the default values of the 
registry name, query URL, and the publish URL. You can modify 
these entries. For new profiles, you must provide connection 
information. 

Registry Name The name of the registry to which you are connecting. 

Query URL The location from which you query the UDDI registry.

 Publish URL For publishing purposes, you need both the query and publish URLs.

 User Name The user name for accessing the UDDI site.

Password The password used with the user name used to access the UDDI site.



CHAPTER 5    Management Console—Web Services

User’s Guide 53

❖ Unpublishing from a UDDI

1 Expand the Web Service Collections folder.

2 Expand the Web service collection that contains the Web service you 
are unpublishing.

3 Right-click the Web service and then select Unpublish from UDDI.

4 The Unpublish from UDDI wizard displays. Table 5-7 describes the 
properties. Complete the information and click Next to move to the 
next window. Click Finish when done.

Table 5-7: Unpublishing from a UDDI wizard options and properties

Save Profile Save a profile. It will be added to the Registry Name drop-down list 
for easy access.

Delete Profile Delete a profile that you no longer require.

Ping Test your profile connection. You should be able to ping before 
moving on to the other wizards.

Business 
Information

Name The name of the organization name by which this UDDI entry is 
known.

Description A description of the organization.

Use Existing 
tModel Key

Your business model. The tModel is an abstract description of a 
particular specification or behavior to which the Web service 
adheres. 

Get All Business 
Details From 
Registry

Query the UDDI registry for tModel and business information 
instead of entering this information manually.

New Business Add a new business name and information for this Web service.

Summary Displays a summary of your selections. Click Finish to publish to the 
UDDI site, or click Back to change your selections.

Window Property Description

Window Property Description

Unpublish from 
UDDI

Registry Profile The registry to which you are connecting. From the Registry Profile 
drop-down list, select a predefined site to which you want to log in, 
or select the Enter New Registry Profile entry and enter a new name. 
You must be a registered user on the site where you log in. The 
registry profile you select determines the default values of the 
registry name, query URL, and publish URL. You can modify these 
entries. For new profiles, you must provide connection information. 

Registry Name The name of the registry to which you are connecting. 

Query URL The location from which you query the UDDI registry.



Type mappings 

54  Web Services Toolkit

Type mappings
Each Web service contains a Type Mapping folder that contains the type 
mappings used to transfer data between service endpoints. 

For complete information, see Chapter 3, “Components and Datatypes.”

Managing security realms
EAServer contains a default security realm. The security realm is a 
container used to store the roles used to allow and limit access to your Web 
services. When you connect to EAServer from the Web Management 
Console, you see the security realm. 

 Publish URL For publishing and unpublishing purposes, you need both the query 
and publish URLs. 

 User Name The user name for accessing the UDDI site. 

Password The password used in connection with the user name used to access 
the UDDI site.

Save Profile Save a profile. It is added to the Registry Name drop-down list for 
easy access.

Delete Profile Delete a profile that you no longer require.

Ping Test your profile connection. You should be able to ping before 
moving on to the other wizards.

Select 
Published 
UUIDs to be 
Unpublished

Name of UUID Click the Get Published Services Named WebServiceName (where 
WebServiceName is the name of the Web service you are 
unpublishing). This returns a list of universally unique identifier 
(UUID) that identifies the UDDI entry for this Web service. Select 
only those entries that you want to unpublish.

Unpublish the 
Business

Click this checkbox to unpublish business information for this Web 
service.

Unpublish the 
tModel

Unpublish tModel information for this Web service.

Summary Displays a summary of your selections. Click Finish to unpublish 
from the UDDI site, or click Back to change your selections.

Window Property Description



CHAPTER 5    Management Console—Web Services

User’s Guide 55

❖ Refreshing a security realm

If you add a role to a security realm or make any other changes outside the 
current session of the Web Management Console, you must refresh the 
realm to see those changes.

• Right-click the security realm and select Refresh.

Non-Web service components
The Non-Web Service Components folder contains components that are 
hosted on the server to which the management console is connected and 
capable of being exposed as Web services.

❖ Exposing a non-Web service component

1 Expand the Non-Web Service Component folder.

2 Expand the package that contains the component you want to expose 
as a Web service.

3 Right-click the component and select Expose as Web Service. Follow 
the instructions to expose the component as a Web service. Table 4-6 
on page 38 describes the properties. When you click Finish, the Web 
service is exposed in the Web service collection you entered.



Non-Web service components 

56  Web Services Toolkit



User’s Guide 57

C H A P T E R  6 Management console—Registry 
Services

This chapter describes how to use the Sybase Management Web 
Management Console to administer information contained in the local 
UDDI servers, and publish to a UDDI registry. 

For information about using the management console to manage Web 
services, see Chapter 5, “Management Console—Web Services.”

Introduction
This portion of the management console consists of two independent 
parts:

• An administration console for the local UDDI servers – Sybase 
provides local UDDI registries as part of Web services. The local 
UDDI registry is an internal registry that provides an index of Web 
services in a particular domain, behind the firewall and isolated from 
the public network. This ensures that access to both the administrative 
features and registry data are secured. Data in the registry is not 
shared with any other registries. the UDDI server is deployed as a 
Web application and works as any other Web application in 
EAServer.

• A browser capable of searching and publishing to any UDDI registry. 

Topic Page
Introduction 57

Using the management console 58

UDDI administration 59

Searching and publishing to UDDI registries 61



Using the management console 

58  Web Services Toolkit

Using the management console
This section describes how to navigate the Web services registry section of the 
management console.

Navigating the console and managing resources
Navigate the management console by selecting the desired option or folder in 
the left pane. UDDI administration functions and property sheets are located in 
the UDDI Registries folder within Web Services Registries, and include:

• Predefined registries - EAServer contains these predefined registries:

• UDDI on Localhost – a UDDI registry.

• UDDI on TrySybase – a UDDI registry.

• WSDP registry server – a Java Web Services Developer Pack 
(WSDP) registry server that implements version 2 of the (UDDI) to 
provide a registry for Web services in a private environment. You can 
use it with the Java WSDP APIs as a test registry for Web services 
application development. For more information see:

• The Java WSDP tutorial at 
http://java.sun.com/webservices/docs/1.6/tutorial/doc/ 

• The Java WSDP API specification at 
http://java.sun.com/webservices/docs/1.6/api/index.html

• UDDI server – part of EAServer, but not installed or deployed by default. 
To deploy the server, use the command: 

deploy.bat ..\extras\juddi\juddi.war

When you deploy juddi.war from the $DJC_HOME/extras directory, two 
users are created: juddipublish@default and juddiadmin@default. These 
users do not have passwords set initially. To use them for connecting and 
managing the UDDI registry, you must first establish a password using the 
set-password command. For example, from the bin subdirectory of your 
EAServer installation, enter:

set-password

You are prompted for a Username. Enter juddipublish@default. You 
are prompted for a password. Enter a password for this user. Enter the 
password a second time. You can now connect to the UDDI registry using 
juddipublish@default.



CHAPTER 6    Management console—Registry Services

User’s Guide 59

Once deployed, restart EAServer to access the UDDI server. You can then 
use any local Database for maintaining the registry information for the 
UDDI server.

The configuration settings for the UDDI server are located in 
config\webapp-juddi.xml and deploy\webapps\juddi\WEB-
INF\juddi.properties files located in the EAServer installation 
subdirectory.

• Registry Administration – includes defining and managing registries. See 
“UDDI registry profile administration” on page 60.

• Search – search UDDI registries. See “Inquiries and searches” on page 61.

• Publish – publish business information to UDDI registries. See 
“Publishing” on page 63.

Note  For all property sheets, the contents cannot be edited if they are 
properties of a node rooted in the Search hierarchy. If they are properties of a 
node rooted in the Publish hierarchy, they can be edited, unless they are keys, 
which can never be edited. Tables that can be edited include a Delete check box 
column and an Add button. Property sheet pages that can be edited display 
Apply and Cancel buttons at the bottom of the page.

UDDI administration
This section describes how to administer UDDI registries including, the private 
UDDI server from the management console.

Registry profile information (URLs, user IDs, passwords, and so on) and the 
users allowed to access them are stored in a repository accessible by the 
management console, along with the information necessary to publish a Web 
service to a registry.

Note  You must install JDK 1.4 to run the UDDI server. A typical EAServer 
installation includes JDK 1.4 and installs the UDDI server. 



UDDI administration 

60  Web Services Toolkit

UDDI registry profile administration
You can create, modify, or delete UDDI registry profiles for the private UDDI 
server on the machine to which you are connected, where you can publish 
business and service information. 

❖ Creating a UDDI registry profile

1 Right-click the Web Services Registry icon and select Create Registry 
Profile.

2 Follow the wizard instructions to create the UDDI registry profile. See 
Table 6-1 on page 61.

❖ Connecting to a UDDI registry profile

1 Expand the Web Services Registry icon.

2 Right-click the registry profile to which you want to connect and select 
Connect. The management console attempts to connect to the registry with 
the information provided when it was created. See Table 6-1 on page 61. 
If the management console successfully connects to the registry, the 
Search and Publish folders display. If you want the profile to connect to 
the private UDDI registry server when you connect to the profile, click 
“Automatically connect to registry Server” checkbox available from the 
Connection Details window.

❖ Deleting or modifying a UDDI registry profile

1 Expand the Web Services Registry icon.

2 Right-click the registry profile you want to delete and select Delete.



CHAPTER 6    Management console—Registry Services

User’s Guide 61

Table 6-1: UDDI registry profile properties

Searching and publishing to UDDI registries
This section describes how to search, query, and publish to UDDI registries. 
Before you can search or publish to a registry, you must be connected to it. See 
“Connecting to a UDDI registry profile” on page 60.

Inquiries and searches
From the management console, you can query the private UDDI registry as 
well as external UDDI registries to locate potential clients or suppliers based 
on business type, categories, services, and so on. Locate information about 
specifications, protocols, and namespaces of services and classification 
systems through the tModels that describe and identify them.

Searching UDDI registries

This section describes how to search a registry by business, service, or tModel 
entry.

Wizard Property Description

Create UDDI 
registry profile

Registry profile 
name

The name of the registry you are creating or 
modifying. 

Query URL The location from which you query the UDDI.

 Publish URL To publish, you need both query and publish 
URLs.

 User name The user name used for accessing the UDDI 
site. The default is admin@system

Password The password used in connection with the user 
name used to access the UDDI site.

Auto connect to 
the registry 
server.

Select this box to connect to this registry 
automatically when you log in to the 
management console

Ping Registry Verifies that the information provided allows 
connection to the registry. 

Summary Displays a summary of your selections. Click 
Finish to create the UDDI site, or click Back to 
change selections.



Searching and publishing to UDDI registries 

62  Web Services Toolkit

❖ Searching a registry

1 Select the Search folder for the registry to which you are connected.

2 Click the desired tab, and complete the search options for the type of 
search you want to perform and click Search. Table 6-2 describes the 
search properties.

3 When the search completes, click the Results folder to view the results.

4 Click any of the items returned from the search to view additional 
information about a business, service, or tModel.

Table 6-2: Search properties

Search type Options Description

Business Business name Enter a name of a business for which you are searching. 

Sort by name Select this check box and click Ascending or Descending, 
depending on the order you want to display the businesses.

 Sort by date Select this check box to sort businesses by the date they 
were created or modified.

 Case sensitive Considers case when performing a search.

Exact match Search only for those businesses that exactly match the 
Business name.

Advanced options Advanced search options allow you to search by:

Categories – can be used in searches to locate information 
in a registry based on business, service, or tModel 
category.

Identifiers – an industry-standard identifier is unique to a 
business or tModel.

Add Category Add a category to this business. See “Categories” on page 
67 for more information about categories.

Add Identifier Add an identifier to this business. See “Identifiers” on 
page 68 for more information about identifiers.

Service Service name Enter a name of a service for which you are searching. 

Sort by name Select this check box and click Ascending or Descending 
depending on the order you want to display the service.

 Sort by date Select this check box to sort services by the date they were 
created or modified.

 Case sensitive Consider case when performing a search.

Exact match Search only for those services that exactly match the 
Business name.

Add Category Add a category to this business. See “Categories” on page 
67 for more information about categories.



CHAPTER 6    Management console—Registry Services

User’s Guide 63

Publishing
You can publish and manage information about your business, its organization, 
Web services, or other services offered from the management console to a 
UDDI registry. After the business or service is published, the information is 
accessible to the clients of the registry.

Businesses

A UDDI registry allows you to describe your business and publish information 
about the services of that business. You can list categories and identifiers to 
which the business belongs, which provides additional ways for clients to 
search your business for particular services. You can supply contact 
information so that your business can be located easily.

❖ Adding a business

1 Expand the Publish folder.

2 Right-click the Published Businesses folder and select Add Business.

3 Follow the Add Business Entity wizard to add a business. See Table 6-3 
on page 64 for a description of the business properties.

tModel tModel name Enter a name of a tModel for which you are searching. 

Note  When performing a tModel search against either the 
UDDI on TrySybase, or UDDI on Localhost, the search is 
always performed in a case sensitive manner regardless of 
the case sensitive setting on the search page.

Sort by name Select this check box and click Ascending or Descending, 
depending on the order you want to display the tModel.

 Sort by date Select this check box to sort tModels by the date they were 
created or modified.

 Case sensitive Consider case when performing a search.

Exact match Search only for those services that exactly match the 
tModel name.

Add Category Add a category to this business. See “Categories” on page 
67 for more information about categories.

Add Identifier Add an identifier to this business. See “Identifiers” on 
page 68 for more information about identifiers.

Search type Options Description



Searching and publishing to UDDI registries 

64  Web Services Toolkit

❖ Deleting a business

1 Expand the Publish folder.

2 Expand the Published Businesses folder.

3 Right-click the business you want to delete and select Delete.

Table 6-3: Business properties

For each published business, you can add a:

• Service – see “Services” on page 64

• Contact – see “Contacts” on page 69

• Discovery URLs – see “Discovery URLs” on page 70

• Categories – see “Categories” on page 67

• Identifiers – see “Identifiers” on page 68

Services

Web services reside in businesses. Web services can be organized into 
categories using identifiers, and can include access information that provides 
easy access to clients.

❖ Adding a service

1 Expand the Publish folder.

2 Right-click the Published Services folder and select Add Service. Or, to 
add a service to an existing business, expand the Published Businesses 
folder and select the Published Services folder within it and select Add 
Service.

3 Follow the Add Service Entity wizard to add a service. See Table 6-4 on 
page 65 for a description of the service properties.

Tab Property Description

Business Name The name of the published business.

Description A description of the business.

Key A unique key that is generated when the business is 
registered.

Related 
businesses

The key of any related or similar businesses.

Summary Displays a summary of your selections. Click Finish to 
create the business, or click Back to change selections.



CHAPTER 6    Management console—Registry Services

User’s Guide 65

❖ Deleting a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

3 Right-click the service you want to delete and select Delete.

Table 6-4 describes the service properties.

Table 6-4: Service properties

For each published service, you can add:

• Bindings – see “Bindings” on page 66

• Categories – see “Categories” on page 67

• Identifiers – see “Identifiers” on page 68

tModels

tModels reference a technical specification or description of a Web service. 
They provide descriptions of Web services that define service types. Each 
tModel includes a unique identifier (key) and points to a specification that 
describes the Web service. tModels provide a common point of reference that 
allows you to locate compatible services.

❖ Adding a tModel

1 Expand the Publish folder.

2 Right-click the Published tModels folder and select Add tModel.

3 Follow the Add tModel Entity wizard to add a tModel. See Table 6-5 on 
page 66 for a description of the tModel properties.

❖ Deleting a tModel

1 Expand the Publish folder.

2 Expand the Published tModels folder.

Tab Property Description

General Name The name of the service.

Description The description of the service.

Language The language name and description.

Summary Displays a summary of your selections. Click 
Finish to add a service, or click Back to change 
selections.



Searching and publishing to UDDI registries 

66  Web Services Toolkit

3 Right-click the tModel you want to delete and select Delete.

Table 6-5: tModel properties

For each published tModel, you can add a:

• Discovery URL– see “Discovery URLs” on page 70

• Categories – see “Categories” on page 67

• Identifiers – see “Identifiers” on page 68

Additional registry information for published businesses, tModels, and services

After you have published businesses, tModels, or services to a registry, you can 
add additional information to each. 

Bindings

Bindings are the mechanisms that bind the abstract definition (overview 
document, or description) of a Web service to the concrete representation 
(access point) of that service.

❖ Adding a binding to a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

3 Expand the service to which you are adding a binding.

4 Right-click the Bindings folder and select Add ServiceBinding.

5 Follow the Add ServiceBinding Entity wizard to add a binding. See 
Table 6-6 on page 67 for a description of the binding properties.

❖ Deleting a binding from a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

Tab Property Description

General Name Name of the tModel.

Description Description of the tModel.

Language The language name and description.

Summary Displays a summary of your selections. Click 
Finish to create the tModel, or click Back to 
change selections.



CHAPTER 6    Management console—Registry Services

User’s Guide 67

3 Expand the service to which the binding you are deleting belongs.

4 Expand the Bindings folder.

5 Right-click the binding you want to delete and select Delete.

Table 6-6 describes the binding properties.

Table 6-6: Binding properties

Categories

Each business classification system has codes for the various categories. A 
categories scheme allows you to group registry entries by a given category. For 
example, large businesses that conduct a variety of business may be sorted by 
several classifications. A company might sell computer hardware and 
software. Such a business might be listed with several classifications, such as 
computer training, data processing services, and software publishers, and so 
on. Each business classification also has a corresponding key.

❖ Adding a category to a service, tModel, or business

1 Expand the Publish folder.

2 Expand the Published Services, tModel, or businesses folder.

3 Expand the service, tModel, or business for which you are adding a 
category.

4 Right-click the Categories folder and select Add Category.

5 Follow the Add Category Entity wizard to add a category. See Table 6-7 
on page 68 for a description of the category properties.

❖ Deleting a category from a service, tModel, or business

1 Expand the Publish folder.

2 Expand the Published Services, tModels, or Businesses folder.

Tab Property Description

General Description A description of the binding.

Access point An address for accessing a Web service must be 
a valid URL.

Language The language name and description.

Summary Displays a summary of your selections. Click 
Finish to create the binding, or click Back to 
change selections.



Searching and publishing to UDDI registries 

68  Web Services Toolkit

3 Expand the service, tModel, or business to which the category you are 
deleting belongs.

4 Expand the Categories folder.

5 Right-click the category you want to delete and select Delete.

Table 6-7 describes the category properties.

Table 6-7: Category properties

Identifiers

Similar to categories, identifiers provide identification information, which 
allows businesses, services, and tModels to be associated with some 
identification scheme, such as model identification, or an industry group 
identification number.

❖ Adding an identifier to a business, service, or tModel

1 Expand the Publish folder.

2 Expand the Published Businesses, Services, or tModels folder.

3 Expand the business, service, or tModel for which you are adding an 
identifier.

4 Right-click the Identifiers folder and select Add Identifier.

5 Follow the Add Identifier Entity wizard to add an identifier. See Table 6-
8 on page 69 for a description of the identifiers properties.

❖ Deleting an identifier from a business, service, or tModel

1 Expand the Publish folder.

2 Expand the Published Businesses, Services, or tModels folder.

3 Expand the business, service, or tModel to which the identifier you are 
deleting belongs.

4 Expand the Identifiers folder.

Tab Property Description

General Categorization 
Scheme

Select the categorization scheme to use with the 
Web service, tModel, or business.

Name The name of the category.

 Value Each category has a corresponding value.

Key A unique key that is generated when the 
category is registered.



CHAPTER 6    Management console—Registry Services

User’s Guide 69

5 Right-click the identifier you want to delete and select Delete.

Table 6-8: Identifier properties

Contacts

A contact (name, phone number, address) for a given business or business 
service.

❖ Adding a contact to a business

1 Expand the Publish folder.

2 Right-click the Published Businesses folder.

3 Right-click the business to which you are adding a contact and select Add 
Contact.

4 Follow the Add Contact wizard to add a contact. See Table 6-9 on page 70 
for a description of the contact properties.

❖ Deleting a contact from a business

1 Expand the Publish folder.

2 Expand the Published Businesses folder.

3 Expand the business which contains the contact you are deleting.

4 Right-click the contact you want to delete and select Delete.

Tab Property Description

General Identification 
scheme

Select the identification scheme to use with the 
Web service.

Name The name of the identification.

 Value Each identifier has a corresponding value.

Key A unique key that is generated when the 
identifier is registered.

Summary Displays a summary of your selections. Click 
Finish to create the identifier, or click Back to 
change selections.



Searching and publishing to UDDI registries 

70  Web Services Toolkit

Table 6-9: Contact properties

Discovery URLs

A discovery URL is used to retrieve discovery documents for a specific 
instance of a business entity. 

❖ Adding a discovery URL to a business or tModel

1 Expand the Publish folder.

2 Right-click the Published Businesses or Published tModel folder.

3 Right-click the business or tModel to which you are adding a discovery 
URL and select Add Discovery URL.

4 Follow the Add Discovery URL wizard to add a Discovery URL. See 
Table 6-10 on page 70 for a description of the Discovery URL properties.

❖ Deleting a discovery URL from a business or tModel

1 Expand the Publish folder.

2 Expand the Published Businesses or Published tModel folder.

3 Expand the business or tModel which contains the discovery URL you are 
deleting.

4 Right-click the discovery URL you want to delete and select Delete.

Table 6-10: Discovery URL properties

Tab Property Description

General Contact The name of the contact; this could be a 
company or organization name.

Description A contact description.

 Contact person A contact person.

Address The address of the contact.

Phone number The phone number of the contact.

Summary Displays a summary of your selections. Click 
Finish to create the contact, or click Back to 
change selections.

Tab Property Description

General Discovery URL URL to the discovery document.

Description A description of the discovery document.

Use type

Language The language name and description.



CHAPTER 6    Management console—Registry Services

User’s Guide 71

Summary Displays a summary of your selections. Click 
Finish to create the discovery URL, or click 
Back to change selections.

Tab Property Description



Searching and publishing to UDDI registries 

72  Web Services Toolkit



User’s Guide 73

C H A P T E R  7 Developing Web Service Clients

This chapter describes how to develop Web service clients from the client 
files created from the WST development tool and wstool commands.

Introduction
When you use Web Services Toolkit to generate client files, you generate 
a variety of files based on the options selected and the client model used. 
This chapter describes how to create Web service client applications based 
on various programming models, including: 

• “Stub-based model client” on page 74

• “Dynamic proxy client” on page 74

• “Dynamic invocation interface client” on page 75

• “Document style client” on page 75

Topic Page
Introduction 73

Stub-based model client 74

Dynamic proxy client 74

Dynamic invocation interface client 75

Document style client 75



Stub-based model client 

74  Web Services Toolkit

Stub-based model client
The stub-based model generates local stub classes for the proxy from a WSDL 
document. This is the model used by the WST development tool to create a 
Web service client. When you change the WSDL document, you must 
regenerate the stubs. WST provides tools to generate and compile stubs. See 
“Creating and managing Web service clients” on page 33. Along with the 
stubs, the tools generate additional classes, and a service definition interface 
(SDI), which is the interface that is derived from a WSDL’s portType. This is 
the interface you use to access the operations on the Web service. The 
combination of these files are called client-side artifacts. Client-side artifacts 
are a collection of files on the client-side that handle communication between 
a client and a Web service. 

Generated client-side artifacts must include:

• A stub class – for example, AddNumbersStub.java:

public class AddNumbersStub extends org.apache.axis.client.Stub 
implements client.AddNumbers_Port 

• A service endpoint interface – for example, AddNumbers_Port.java:

public interface AddNumbers_Port extends java.rmi.Remote 

• A service definition interface – for example, AddNumbers_Service.java: 

public interface AddNumbers_Service extends javax.xml.rpc.Service

• An implementation of the service definition interface (the location class to 
help you find the endpoint) – for example, 
AddNumbers_ServiceLocator.java:

public class AddNumbers_ServiceLocator extends 
org.apache.axis.client.Service implements client.AddNumbers_Service 

Dynamic proxy client
The dynamic proxy client creates dynamic proxy stubs at runtime using JAX-
RPC client APIs. The client gets the service information from a given WSDL 
document. It uses the service factory class to create the service based on the 
WSDL document and obtains the proxy from the service.

The significant JAX-RPC client APIs used are:

• javax.xml.rpc.rpc.Service



CHAPTER 7    Developing Web Service Clients

User’s Guide 75

• javax.xml.rpc.ServiceFactory

Dynamic invocation interface client
The Dynamic Invocation Interface (DII) client does not require a WSDL file to 
generate static stubs or pass the WSDL file to the service factory to create the 
service; instead, the client must know a service’s address, operations, and 
parameters in advance. A DII client discovers service information dynamically 
at runtime by a given set of service operations and parameters.

The significant JAX-RPC client APIs used are:

• javax.xml.rpc.Call

• javax.xml.rpc.Service

• javax.xml.rpc.ServiceFactory

Document style client
The previous clients require different invocation modes to interact with RPC 
style Web services. To interact with document style Web services, the XML 
document must be defined in the client. The clients do not invoke the Web 
service by sending a discrete set of parameters and receiving return values as 
described in a WSDL document; instead, they send the parameter to the service 
as XML documents.



Document style client 

76  Web Services Toolkit



77

C H A P T E R  8 J2EE Web Service Support

Overview
Web service support in EAServer 6.0 includes the ability to deploy J2EE 
Web applications and EJBs as Web Services. J2EE Web Services support 
is new in EAServer 6.0, and described in this chapter.

J2EE Web services support 
This section provides an overview of J2EE Web services support included 
in EAServer 6.0, including:

• Web Services Runtime Support – Web Services runtime includes a 
Web Service container that supports servlet style Web services. EJBs 
are bundled as Web services and deployed as servlets at deployment 
time.

• Web Service Client <service-ref> support – When a Web service 
client (EJB or servlet) is deployed the <service-ref> is requested, 
the service-interface class is returned to the client with which to work.

• Application client and EJB client support – client reference support 
for EJBs and application clients is similar to that of Web applications. 
All three have a service-ref definition, and JNDI lookups in 
common. The service-ref definitions are contained in the J2EE 
-entitytype xml file; web.xml for webapp, ejb-jar.xml for EJB JAR, 
and application-client.xml for application clients.

Topic Page
J2EE Web services support 77

Deploying J2EE Web services 78

Web service file locations and access points 89



Deploying J2EE Web services 

78  Web Services Toolkit

• UDDI Server - an Apache UDDI server (jUDDI) is included along with 
custom configuration code. An installer option is available for 
deployment. The deployable WAR file is 
EAServer_home/extras/juddi/juddi.war.

Deploying the juddi.war file sets up the UDDI server and creates the 
appropriate tables in the default data source. 

For additional information, refer to the J2EE 1.4 specification, at the Sun 
Developer Network at http://java.sun.com/j2ee/1.4/index.jsp.

Deploying J2EE Web services
You can deploy Web services that are contained in J2EE archive files by 
deploying the archive file, including:

• EJB Jar files – can contain J2EE 1.4 EJB Web services. 

• WAR Files – can contain J2EE 1.4 Web application (servlet based) Web 
services. 

• EAR files – can contain EJB Jar files or WAR files that contain J2EE 1.4 
Web services. 

A Web service within one of these archive files is defined by a combination of 
the webservices.xml file, WSDL file, and jaxrpcmapping file. 

The webservices.xml file defines the location of the WSDL file and 
jaxrpcmapping file, and which EJB/servlet is used to define the Web service. 

Additional information about the webservices.xml file can be obtained from it’s 
XSD, as described by these Web sites:

• J2EE deployment descriptors at http://java.sun.com/xml/ns/j2ee and

• J2EE Web service xsd documentation at 
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd

You can deploy Web service clients as part of an EJB, Web application, or 
application client. These are defined by a service-ref tag in the ejb-jar.xml, 
web.xml or application-client.xml file. 



CHAPTER 8    J2EE Web Service Support

User’s Guide 79

Web Service clients can be deployed with full WSDL, partial WSDL, or no 
WSDL as defined in the J2EE 1.4 Web Services specification. If you deploy 
with partial or no WSDL, additional information must be given on deployment 
for port name, binding and location address. See “Deploying with a partial 
WSDL” on page 84.

❖ Deploying J2EE Web services

1 Deploy your J2EE Web service from the command line.

2 Go to the bin subdirectory of your EAServer installation. 

3 Use the deploy command (EAServer_home/bin/deploy.bat Windows 
deploy.sh Unix) to deploy the EJB Web service. See “Deploying Web 
services from the command line” on page 81

Viewing Web services
After deploying Web services to EAServer you can view the contents.

❖ Viewing deployed Web application (servlet) Web service

1 From the Web Management Console, expand the Web Applications folder.

2 Highlight the Web application you want to view.

3 Select the web.xml tab. You can view Web service client  <service-ref> 
information that provides the Web service binding references for the Web 
service. For example:

<service-ref>
   <service-ref-name>service/service</service-ref-name> 
   <service-
interface>com.sun.ts.tests.webservices.deploy.GenSvc.TestsGenSvc
   </service-interface> 
   <wsdl-file>META-INF/wsdl/TestsGenSvc.wsdl</wsdl-file> 
   <jaxrpc-mapping-file>TestsGenSvc.xml</jaxrpc-mapping-file> 
   <port-component-ref>
      <service-endpoint-interface>
      com.sun.ts.tests.webservices.deploy.GenSvc.Tests
      </service-endpoint- interface>
   </port-component-ref> 
</service-ref>

Some main features of the client reference are:

• <service-ref-name> is used in a JNDI lookup to retrieve an 
instance of the <service-interface>.



Deploying J2EE Web services 

80  Web Services Toolkit

• <jaxrpc-mapping-file> is also used during deployment to map 
namespaces to Java packages. 

• <service-endpoint-interface> is the actual interface you use to 
call your business methods.

This example illustrates how you can use the myecho object to call 
methods on the service endpoint interface String rc = myecho.echo(“Hello 
remote world”);: 

EchoService myservice = 
(EchoService)context.lookup(“java:comp/env/service/EchoService") 
// This gives the client the service-interface. From which you can look 
up the service-endpoint-interface as follows: 
Echo myecho = myservice.getEcho(); or 
Echo myecho = (Echo)myservice.getPort(Echo.class);

4 Use the deploy command (EAServer_home/bin/deploy.bat) to deploy a 
J2EE 1.4 WAR file containing a Web service or Web service client.

❖ Viewing EJB Web services

1 From the Web Management Console, expand the EJB Modules folder.

2 Highlight the EJB you want to view.

3 Select the ejb-jar.xml tab. View Web service client  <service-ref> 
information. See “Viewing deployed Web application (servlet) Web 
service” on page 79 for an example.

4 Use the deploy command (EAServer_home/bin/deploy.bat) to deploy the 
EJB Web service.

❖ Viewing application client Web services

1 From the Web Management Console, expand the Application Client 
folder.

2 Highlight the application client you want to view.

3 Select the application-client.xml tab. View Web service client  
<service-ref> information. See “Viewing deployed Web application 
(servlet) Web service” on page 79 for an example.

4 Use the deploy command (EAServer_home/bin/deploy.bat) to deploy the 
Web service.



CHAPTER 8    J2EE Web Service Support

User’s Guide 81

Deploying Web services from the command line
This section describes the command-line options for deploying J2EE Web 
services using the deploy command located in the bin subdirectory of your 
EAServer installation. See Chapter 12, “Command Line Tools” for more 
information about this, and other command line tools.

Command line:  

deploy 
[options] 
entity
[-contextpath path]

The most simple form of the deploy command for the various archive files is: 

• deploy foo.jar 

• deploy foo.ear 

• deploy foo.war 

Where:

Option Description

-ws There are three ws options that define how a Web 
service is exposed:

• -ws – expose any Stateless Session Beans with a 
Remote Interface as a Web service.

• -ws:<ejbName> – expose the Stateless Session 
Bean ejbName as a Web service.

• -ws:<jarFileInEar>:<ejbName> – expose the 
Stateless Session Bean ejbName located in an 
application EAR file jarFileInEar as a Web 
service.

-wsClientAddress Use this syntax to overwrite the <soap:address 
location> in the WSDL file referred to by <service-
ref-name> in the web.xml, ejb-jar.xml or application-
client.xml and the <port name> in the WSDL file:

-wsClientAddress:<serviceRefName>:
<portComponentName> <address>

-wsContextPath 
<contextpath>

Use this syntax to specify the context path for an EJB 
Web service in an application EAR file:

-wsContextPath:<jarFileInEar>:<contextpath>

Use this syntax to specify the context path for an EJB 
Web Service:

-wsContextPath <contextpath>



Deploying J2EE Web services 

82  Web Services Toolkit

-

wsEndpointAddress

URI

Specify the endpoint address URI for an EJB Web 
service using this syntax:

-wsEndpointAddressURI <ejbName>:<endpoint-
address-uri>

Specify the endpoint address URI for an EJB Web 
service in an Application EAR file using this syntax:

-
wsEndpointAddressURI:<jarFileInEar>:<ejbName>
:
<endpoint-address-uri>

-wsStyle Specify the Web service style ( DOCUMENT, RPC or 
WRAPPED) of the generated WSDL binding used 
when exposing an EJB as a Web service using this 
syntax:

-wsStyle <style>

Specify the Web service style ( DOCUMENT, RPC or 
WRAPPED) of the generated WSDL binding used 
when exposing an EJB as a Web service contained in 
an application EAR file using this syntax:

-wsStyle:<jarFileInEar>:<style>

-wsUse Specify the use (LITERAL or ENCODED) of items in 
the generated WSDL binding when exposing an EJB 
as a Web service using this syntax:

-wsUse <use>

Specify the use (LITERAL or ENCODED) of items in 
the generated WSDL binding when exposing an EJB 
as a Web service in an application EAR file using this 
syntax:

-wsUse:<jarFileInEar>:<use>

-wsWebAppName Override the default name for the Web application 
generated from an EJB Web Service using this syntax:

-wsWebAppName <webappname>

Override default name for the Web application 
generated from an EJB Web Service in an application 
EAR file using this syntax:

-wsWebAppName:<jarFileInEar>:<webappname>

-entity The file that you are deploying. entity should be 
located in the current directory, or provide the full path 
using the contextpath option.

Option Description



CHAPTER 8    J2EE Web Service Support

User’s Guide 83

Examples This example uses the deploy and undeploy commands located in EAServer’s 
bin subdirectory to demonstrate using default context path and default end 
point addresses for stateless EJB Web Services by deploying a Web service 
contained in the HiWS.jar file, and the client that is contained in the 
HiWSClient.war file.

1 Deploy the HiWS.jar file:

deploy.bat C:\WebSvcSample\setA\HiWS.jar (Windows)
deploy.sh WebSvcSample/setA/HiWS.jar (Unix)

2 Verify the EJB Web Service URL location from your browser:

http://localhost:8000/hiws/HiWS?WSDL

The WSDL of HiWS EJB Web service displays

3 Deploy the HiWSClient.war file by entering this command from 
EAServer’s bin subdirectory:

deploy.bat C:\WebSvcSample\setA\HiWSClient.war (Windows)
deploy.sh WebSvcSample/setA/HiWSClient.war (Unix)

4 Test the servlet by entering this URL in your browser: 

http://localhost:8000/HiWSClient/HiServlet

Enter a name (e.g., John) and click Enter

Result: Hi John!

5 Undeploy the EJB and Web applications by entering these commands 
from EAServer’s bin subdirectory

undeploy ejbjar-hiws

undeploy webapp-hiwsclient

-contextpath path Specify the contextPath for Web application 
deployment. The default is the name of the WAR file.  
If -package is specified, then the package is the 
context path.

-help Enter deploy -help to display all command line options

Option Description



Deploying J2EE Web services 

84  Web Services Toolkit

This example uses the deploy command to specify the context path and end 
point address for a stateless EJB Web service by matching the context path and 
end point address to the SOAP address specified in the HiWSClient.war’s 
hiWS.wsdl file. This typically happens when one organization provides the 
Web service and another organization uses/consumes the Web service. The set 
of published URIs (e.g., webservice/sayHi) serves as a contract between Web 
service provider and Web service consumer.

1 Deploy the HiWS.jar file:

deploy.bat -wsContextPath webservice -wsEndpointAddressURI 

HiWS:sayHi C:\WebSvcSample\setB\HiWS.jar (Windows)

deploy.sh -wsContextPath webservice -wsEndpointAddressURI 

HiWS:sayHi WebSvcSample/setB/HiWS.jar (Unix)

2 Verify the EJB Web service URL location by entering this in your browser:

http://localhost:8000/\b webservice/sayHi\b0 ?WSDL

The WSDL of HiWS EJB Web service displayes 

3 Deploy the HiWSClient.war file:

deploy.bat C:\WebSvcSample\setB\HiWSClient.war (Windows)

deploy.sh WebSvcSample\setB\HiWSClient.war (Unix)

4 Test the servlet by entering this URL in your browser:

http://localhost:8000/HiWSClient/HiServlet

Enter a name (e.g., John) and click Enter

Result: Hi John!

5 Undeploy the EJB and Web applications:

undeploy ejbjar-hiws

undeploy webapp-hiwsclient

Deploying with a partial WSDL
In accordance with the J2EE 1.4 specification, you can occasionally deploy 
without a complete WSDL file. If done, you must complete some of the service 
definition. As the following examples illustrate.

Changing the location (SOAP address) for the client:



CHAPTER 8    J2EE Web Service Support

User’s Guide 85

<webServiceRef configName="${this.config.name}" package="${this.package.name}" 
serviceRefName="service/HiWS" merge="false">
   ...other props
   <service name="HiWS">
   <port name="HiWSSEIPort"   
   location="http://mymachine:8000/it/worked"/>
   </service>
   ... 

</webServiceRef>

Completing a partial or incomplete WSDL file:

If your WSDL file does not define a service name, you need to specify service 
name, port name, binding, and location. For example:

<webServiceRef configName="${this.config.name}" package="${this.package.name}" 
serviceRefName="service/HiWS" merge="false">
      ... other props
    <property name=wsdlLocation" value="c:/myspot/mywsdl.wsdl"/>  
    <service name="HiWS">
        <port name="HiWSSEIPort" binding="tns:HiWSSEIBinding" 
location="http://mymachine:8000/it/worked"/>
    </service>
      ...

</webServiceRef>

This example is for a Web application that contains a Web service client with 
some WSDL completion values:

<?xml version="1.0"?>
<project name="webapp-hiwsclient" default="configure">
  <property name="this.config.name" value="webapp-hiwsclient"/>
  <import file="ant-config-tasks.xml"/>
  <import file="default-config-targets.xml"/>
  <property name="this.package.name" value="hiwsclient"/>
  <import file="${this.config.name}-user.xml" optional="true"/>
  <property name="djc.verbose" value="false"/>
  <property name="web.accessControl" value="default"/>
  <property name="web.allowedPorts" value="all"/>
  <property name="web.rolePrefix" value="hiwsclient"/>
  <property name="web.contextPath" value="HiWSClient"/>
  <property name="web.virtualHost" value=""/>
  <property name="web.logExceptions" value="true"/>
  <property name="web.enableProfiling" value="true"/>
  <property name="web.enableTracing" value="true"/>
  <property name="web.threadMonitor" value="default"/>
  <property name="web.javacTarget" value="1.4"/>



Deploying J2EE Web services 

86  Web Services Toolkit

  <property name="web.deployDir" 
value="${djc.home}/deploy/webapps/hiwsclient"/>
  <property name="web.classDir" value="${web.deployDir}/WEB-INF/classes"/>
  <property name="web.compileJspDir" value="${web.deployDir}/WEB-
INF/compiled_jsps"/>
  <path id="web.classpath.path.id">
    <pathelement path="${web.classDir}"/>
    <!-- WEB-INF/lib may not be present in the war, ANT will complain if lib is 
included in the dir= attribute-->
    <fileset dir="${djc.home}/deploy/webapps/hiwsclient/WEB-INF" 
includes="lib/*.jar lib/*.zip" casesensitive="no"/>
    <fileset dir="${djc.home}/lib/default/ext" includes="*.jar *.zip" 
casesensitive="no"/>
    <fileset dir="${djc.home}/lib/ext" includes="*.jar *.zip" 
casesensitive="no"/>
  </path>
  <pathconvert pathsep="${path.separator}" property="web.classPath" 
refid="web.classpath.path.id"/>
  <property name="jca.connectionFactory" value="default"/>
  <property name="sql.dataSource" value="default"/>
  <target name="configure-default">
    <echo level="info" message="configure: webapp-hiwsclient"/>
    <setProperties component="web.components.hiwsclient.HiServlet" 
merge="false">
      <threadMonitor name="${web.threadMonitor}"/>
      <transaction type="BeanManaged"/>
    </setProperties>
    <setProperties component="web.components.hiwsclient.JspServlet" 
merge="false">
      <threadMonitor name="${web.threadMonitor}"/>
      <transaction type="BeanManaged"/>
    </setProperties>
    <setProperties package="web.components.hiwsclient" merge="false">
      <property name="contextPath" value="${web.contextPath}"/>
      <property name="virtualHost" value="${web.virtualHost}"/>
      <accessControl type="${web.accessControl}"/>
      <logExceptions enable="${web.logExceptions}"/>
      <profilePublicMethods enable="${web.enableProfiling}"/>
      <tracePublicMethods enable="${web.enableTracing}"/>
      <classLoader name="web.components.hiwsclient"/>
      <permitAccess ports="${web.allowedPorts}"/>
      <property name="rolePrefix" value="${web.rolePrefix}"/>
      <!-- WebServiceRef: java:comp/env/service/HiWS-->
      <bind name="java:comp/env/service/HiWS" 
webService="web.components.hiwsclient.service.HiWS"/>
    </setProperties>



CHAPTER 8    J2EE Web Service Support

User’s Guide 87

    <webServiceRef configName="${this.config.name}" 
package="${this.package.name}" serviceRefName="service/HiWS" merge="false">
      <property name="archiveFile" value="HiWSClient.war"/>
      <property name="deploymentDescriptorFile" 
value="M:\target1.4\deploy\webapps\hiwsclient\WEB-INF\web.xml"/>
      <property name="deploymentDescriptorType" value="webapp"/>
      <property name="wsdlLocation" value="~/deploy/webapps/hiwsclient/WEB-
INF/wsdl/HiWS.wsdl"/>
      <property name="localWsdlLocation" 
value="~/deploy/webapps/hiwsclient/WEB-INF/wsdl/HiWS.wsdl"/>
      <service name="HiWS">
        <port name="HiWSSEIPort" binding="tns:HiWSSEIBinding" 
location="http://mymachinename:8000/it/worked"/>
      </service>
      <property name="serviceInterface" value="org.me.hi.HiWS"/>
      <property name="jaxrpcMappingFile" 
value="~/deploy/webapps/hiwsclient/WEB-INF/HiWS-mapping.xml"/>
      <property name="serviceName" value="HiWS"/>
    </webServiceRef>
    <setProperties classLoader="web.components.hiwsclient" merge="false">
      <property name="classPath" value="~/deploy/webapps/hiwsclient/WEB-
INF/classes;~/deploy/webapps/hiwsclient/WEB-INF/lib/**"/>
      <property name="resolveFirstBySystem" 
value="org.apache.commons.logging.**,javax.xml.parsers.**, org.w3c.dom.**, 
org.xml.sax.**"/>
      <property name="parentFirst" value="false"/>
      <property name="parentClassLoader" value="lib.default-ext"/>
    </setProperties>
  </target>
  <target name="recompile-default">
    <echo level="info" message="recompile: webapp-hiwsclient"/>
    <rewriteWsdlAddress webService="web.components.hiwsclient.service.HiWS"/>
    <djc package="web.components.hiwsclient"/>
    <javac target="${web.javacTarget}" source="${web.javacTarget}" 
srcdir="${djc.home}/genfiles/java/src" destdir="${web.classDir}" 
      classpath="${web.classPath}" 
      includes="web/components/hiwsclient/**"/>
  </target>
  <target name="refresh-default">
    <echo level="info" message="refresh: webapp-hiwsclient"/>
    <refresh module="webapp-hiwsclient"/>
  </target>
  <target name="deploy-default">
    <echo level="info" message="deploy: webapp-hiwsclient"/>
  </target>
  <target name="undeploy-default">



Deploying J2EE Web services 

88  Web Services Toolkit

    <echo level="info" message="undeploy: webapp-hiwsclient"/>
    <delete 
file="${djc.home}/Repository/Instance/com/sybase/djc/util/DjcClassLoader/web.
components.hiwsclient.properties"/>
    <delete 
file="${djc.home}/Repository/Instance/com/sybase/djc/ws/client/WebService/web
.components.hiwsclient.service.HiWS.properties"/>
    <unload module="webapp-hiwsclient"/>
  </target>
</project>

It is also possible to point at a different WSDL file, perhaps one with corrected 
addresses or ports. The property for this is:

<property name="wsdlLocation" value="<wsdllocation>"/>

For example:

<property name="wsdlLocation" value="~/deploy/appclients/ggl5497.usv8202/META-
INF/wsdl/TestsServicePartial.wsdl"/>

Note   ~deploy refers to the servers deploy directory.

Stub properties

It is possible to set up stub properties at deployment time, the format is:

Stub Properties:  (use the portComponent tag which 
specifies either serviceEndpointInterface or wsdlPort 
or both and then the stubProperty tag with name/value 
pairs for the stub properties)

<webServiceRef configName="${this.config.name}" 
package="${this.package.name}"
               
ejbName="com_sun_ts_tests_common_vehicle_ejb_EJBVehicl
e" serviceRefName="service/handlersec">      
      ...
      <portComponent 
serviceEndpointInterface="com.sun.ts.tests.webservices
.handler.HandlerSec.TestAuth" 
                     wsdlPort="TestAuthPort">
        <stubProperty 
name="javax.xml.rpc.security.auth.password" 
value="javajoe"/>
        <stubProperty 



CHAPTER 8    J2EE Web Service Support

User’s Guide 89

name="javax.xml.rpc.security.auth.username" 
value="javajoe"/>
      </portComponent>
      ...
</webServiceRef>

The two are both usable depending on whether you associate the stub property 
with the service endpoint interface or WSDL port.

Setting the EJB Web service Web application suffix
You can change the default EJB Web service Web application package suffix 
in %DJC_HOME%/config by modifying this section of the deploy-tool-
options.xml file:

<!-- General Deployment Properties -->
<setProperties component="com.sybase.djc.deploy.DeployTool" merge="true">
   <property name="disableValidation" value="false"/>
   <property name="jacc" value="false"/>
   <property name="keepModuleOnFailure" value="false"/>
   <property name="overwrite" value="true"/>
   <property name="wspackagesuffix" value=""/>
</setProperties>

Change the value for the property wspackagesuffix to change the EJB Web 
service generated Web application name. For example, if the value is 
“_myservice”, and you deploy an EJB in an EJB JAR file called MyEjb.jar, the 
resulting Web application is called MyEjb_myservice.

Web service file locations and access points
This section describes where the configuration and WSDL files are stored for 
your generated J2EE 1.4 Web services, and where the access points are for 
those Web services. 

There are three types of components which generate J2EE 1.4 artifacts:



Web service file locations and access points 

90  Web Services Toolkit

• PowerBuilder components – generate EJBs, which generate Web 
applications which are then deployed as a Web application with Web 
services. The Web service is called which references the Web application, 
which references the EJB, which references the PowerBuilder component. 
See “A PowerBuilder component deployed/exposed as a Web service” on 
page 90.

• EJBs – generate Web applications which are then deployed as a Web 
application with Web services. The Web service is called which references 
the Web application which references the EJB. See “An EJB 
exposed/deployed as a Web service” on page 91.

• Web Applications – deployed directly as Web services. The Web service 
is called which references the Web application. See “A Web application 
deployed as a Web service” on page 92.

Note  The wsPackageSuffix property in the deploy-tools-options.xml file 
controls Web application suffix naming. By default it is ““, that is there is no 
suffix. changing this property to something else results in the 
wsPackageSuffix being appended to the name of the wsWebApp, for example:

<property name="wsPackageSuffix" value="_webService"/> 

 results in a Web application name of myejbjar_webService. 

A PowerBuilder component deployed/exposed as a Web service
When you expose your PowerBuilder component as a Web service from your 
IDE (Integrated Development Environment), an EJB is created from the 
PowerBuilder component. The deployed EJB ultimately has a J2EE Web 
services description file associated with it. 

The EJB uses the information contained in the Web services description file to 
generate: 

• A Web application which contains a servlet – located in the 
deploy\webapps\WS_name subdirectory of your EAServer installation, 
where WS_name is the name of the Web application. It contains all the 
relevant Web service files including configuration files and the original 
and modified WSDL files. The modified WSDL file contains the actual 
address of your Web service. For example:

<wsdlsoap:address location="http://mymachine:8000/pbsoap_ws/n_pbsoap"/>



CHAPTER 8    J2EE Web Service Support

User’s Guide 91

where pbsoap_ws is the name of the Web service and n_pbsoap is the 
name of the PowerBuilder component you exposed as a Web service. 

• Associated files for the EJB – located in the deploy\ejbjars\EJB_name 
subdirectory of your EAServer installation, where EJB_name is the name 
of the EJB.

❖ An example of exposing a PowerBuilder component as a Web service 

1 You have a component (NVO) named n_pbsoap with a package name of 
pbsoap in your PowerBuilder IDE. 

2 You expose the component from your IDE using these comments: 

javaPackage="com.sybase.mypackage";webServices="n_pbsoap"; 

3 A Web application is deployed to the deploy\webapps\pbsoap_ws 
subdirectory of your EAServer installation. 

4 Access the Web service WSDL at 
http://mymachine:8000/pbsoap_ws/n_pbsoap?wsdl

An EJB exposed/deployed as a Web service
Exposing an EJB is very similar to exposing a PowerBuilder component, 
except that:

• A Web application generated from an EJB has the name myejbjar, where 
myejbjar was the name of your EJB Jar file. 

• The myejbjar file is deployed to the deploy\webapps\myejb subdirectory 
of your EAServer installation.

• The WSDL can be accessed at 
http://mymachine:8000/myejbjar/myejbname?wsdl 

• When generating Web services from EJBs, these configuration files are 
generated:

• ws-ejbjarname-ejbname.xml is generated for the EJB 

• webapp-ejbjarname.xml is generated for the Web application.

For example, if you deploy an EJB with an EJB Jar name of myejbjar, 
these files are created in the config subdirectory of your EAServer 
installation:

• ejbjar-myjarname.xml 



Web service file locations and access points 

92  Web Services Toolkit

• ejbjar-myjarname-user.xml 

• webapp-ejbjarname.xml 

• ws-ejbjar-ejbjarname.xml 

A Web application deployed as a Web service
When you deploy a Web application that contains a Web service, the 
configuration and WSDL files are deployed to the webapps\mywebapp 
subdirectory of your EAServer installation, where mywebapp is the name of 
the Web application. The WSDL is available at 
http://mymachine:8000/mywebapp/myservletname?wsdl 



User’s Guide 93

C H A P T E R  9 Using wstool and wstant

This chapter contains instructions on how to use wstool, either by itself, or 
with wstant.

Introduction
wstool is a command line interface that allows you to administer, monitor, 
and deploy Web services contained in the EAServer Web service 
container. 

You can use wstool from the command line, from scripts or makefiles, or 
with Jakarta Ant (wstant).

Working with wstool
Before using wstool, make sure that the DJC_HOME environment 
variable is set to the EAServer installation directory. Use the following 
script to run wstool:

• UNIX $DJC_HOME/bin/wstool

• Windows %DJC_HOME%\bin\wstool.bat

wstool syntax

The syntax for wstool  is:

wstool [connection-arguments] [command]

Topic Page
Introduction 93

Working with wstool 93

Working with wstant 96

wstool commands 97



Introduction 

94  Web Services Toolkit

Where:

• connection-arguments specify optional parameters required to connect to 
the server, including:

• command is a wstool command.

For example, to connect to the server running on “paloma” at HTTP port 
“9005”, using account “admin@system” with password “1secret” enter:

wstool -h paloma -n 9005 -u admin@system -p 1secret

Note  wstool command options are not case sensitive.

Return codes

wstool commands return the following codes:

0 – if the command runs successfully, and the result is true/success

1 – if the command runs successfully, and the result is false/failure

2 – if an exception is thrown during the running of the command

Help

You can display usage for any wstool command by using the help option. For 
example to display all of the wstool commands, enter:

wstool help

You can also display individual command help. For example, to display 
options and valid usage for the wstool delete command, enter:

Flag To specify

-h or -host Server host name; default is the value of the 
server on which EAServer resides

-n or -port Web services host port number; default is 
8080

-u or -user User name; default is admin@system

-p or -password Password; default is the password you 
established during installation of EAServer. 
You can change this password using the set-
admin-password command.

-k or -protocol Communication protocol; default is “http”

-l or -logfile Log file name; default is “System.out”



CHAPTER 9    Using wstool and wstant

User’s Guide 95

wstool help delete

Verbose

All wstool commands include the verbose option, which displays stack trace 
information, if any is generated, when you run the command. The default value 
is false. For example, to display stack trace information for the wstool delete 
command, enter:

wstool delete -verbose true 
Service:CollectionName/WebServiceName

Entity identifiers

Many wstool commands take one or more entity identifiers as arguments. An 
entity identifier is a string of the form EntityType:EntityName that uniquely 
identifies an entry in the repository; for example, a server, component, 
collection, or keystore name.

Table 9-1 provides examples of entity identifiers for each entity type.

Table 9-1: Example entity identifiers

Not all wstool commands support every type of entity in the repository. Use the 
help option to see the supported entities for each command.

When a command specifies an invalid entity type, an error message displays.

Entity identifier Specifies

component:SVU/SVULogin Component named SVULogin that is installed in the SVU 
package. The package name is included because 
EAServer components always reside in packages.

collection:MyCollection The Web services collection named MyCollection.

method:SVU/SVULogin/isLogin The isLogin method of component SVULogin in package 
SVU.

role:MyRole The role named MyRole.

server:Jaguar The server named Jaguar.

service:MyWcoll/MyWebService The Web service named MyWebService contained in the 
MyWcoll Web collection.

methodParams:SVU/SVULogin/isLogin The method parameters for the isLogin method of 
component SVULogin in package SVU.



Working with wstant 

96  Web Services Toolkit

Working with wstant 
wstant  lets you run wstool commands from Ant build files. This allows you to 
write build files that automate many development, deployment, and 
management tasks.

Jakarta Ant is a Java-based build tool developed by the Apache Jakarta project. 
To obtain Ant software and documentation, see the Ant Web site  at 
http://jakarta.apache.org/ant/. Ant functions are similar to other build tools 
(such as make, gnumake, or jam) but are platform-independent, extending Java 
classes rather than OS-specific shell commands. Ant includes a number of 
tasks that are frequently used to perform builds, including compiling Java files 
and creating JAR files. It also includes common functions such as copy, delete, 
chmod, and so on.

Ant build files (similar to a makefile) are written in XML. Like makefiles, Ant 
build files can include targets that perform a series of tasks. Instead of 
extending shell commands, Ant’s build file calls out a target tree where various 
tasks are executed. Each task is run by an object that implements a particular 
task interface.

Setting up your environment
Install Ant and read the accompanying documentation.

wstant scripts requires a full JDK installation. If you are running wstant from 
an EAServer client install, make sure you have installed the full JDK. By 
default, only the JRE files are installed.

Before running wstant, verify that:

• The DJC_HOME environment variable is set.

• A full JDK installation is present.

• Jakarta Ant is installed on your system.

By default, wstant searches for Jakarta Ant in 
%DJC_HOME%\jakarta-ant (Windows) or $DJC_HOME/jakarta-ant 
(UNIX). If you install Jakarta Ant in a different location, set the 
ANT_HOME environment variable to reflect the change before you run 
wstant scripts.



CHAPTER 9    Using wstool and wstant

User’s Guide 97

You can also set ANT_HOME in the user environment file, 
%DJC_HOME%\bin\user_setenv.bat (Windows) or 
$DJC_HOME/bin/user_setenv.sh (UNIX). wstant scripts check the user 
environment file each time it runs.

wstant scripts
The following scripts are provided for running Ant with wstool  commands:

• Windows %DJC_HOME%\bin\wstant.bat

• UNIX $DJC_HOME/bin/wstant 

wstant syntax
wstant scripts uses this syntax:

wstant [ant_options]

where ant_options are any options and commands supported by Ant; see the 
Ant documentation for details on these options.

You may frequently use the -buildfile flag, which lets you specify a build file 
other than the default build.xml for the Ant XML build file.

wstool commands
Description This section contains information on wstool commands, and lists the 

commands that wstool accepts. 

Each command section contains a description of the command, its syntax, a list 
of options, and an example of its use at the command line. wstool commands 
are divided into four sections:

• UDDI administration commands on page 98

• Server management commands on page 102

• Web service administration commands on page 107



UDDI administration commands 

98  Web Services Toolkit

UDDI administration commands
Description UDDI commands allow you to publish and unpublish Web service information 

to and from a UDDI registry.

Command list Table 9-2 lists the UDDI administration commands described in this section.

Table 9-2: wstool UDDI administration commands

inquiry
Description Queries a UDDI registry for business, service, or tModel information.

Syntax Command line:  

inquiry 
[-inquiryURL URL] 
[-business business_name] 
[-exact true | false] 
[-service service_name] 
[-tmodel tModel_name] 

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="inquiry" > <wst_antTask command="inquiry"
[inquiryURL=“URL”] 
[business= “business_name”] 
[exact=“true | false”]
[service=“service_name”] 
[tmodel=“tModel_name” />

Where:

command name Description

inquiry Queries a UDDI registry for business, service, or tModel 
information.

publish Publishes Web service information to a UDDI registry.

unpublish Unpublishes Web service information from a UDDI.

Option Description

inquiryURL Inquiry URL used to connect to the registry. Required.



CHAPTER 9    Using wstool and wstant

User’s Guide 99

Examples This command queries information about “myBusiness” from the TrySybase 
registry:

wstool inquiry -inquiryURL http://uddi.trysybase.com:8080/uddi/inquiry 
-business myBusiness

Ant build example:

<wst_antTask command="inquiry"  
inquiryURL="http://uddi.trysybase.com:8080/uddi/inquiry" 
business="myBusiness"/>

publish
Description Publishes Web service information to a UDDI registry.

Syntax Command line:  

publish 
[-inquiryURL URL] 
[-publishURL URL] 
[-user user_name] 
[-business business_name] 
[-pass password] 
[-serviceURL URL] 
[-publishName name] 
[-tmodel tModel_name] 

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="publish" > <wst_antTask command="publish"
[inquiryURL=“URL”] 

business Provide the business name if querying a business. 

Provide a business key if querying a service, which lists 
only those services for the particular business. If the key is 
not specified, all the services that match all business are 
listed.

exact True or false. If true (the default), only entities with exact 
matches are listed. If false, all entities that begin with the 
business, service, or tModel name specified are listed.

service Specify the service name to query a service. 

tmodel Specify the tModel name to query a tModel. 

Option Description



unpublish 

100  Web Services Toolkit

[publishURL=“URL”] 
[user=“user_name”] 
[business= “business_name”] 
[pass=“password”]
[serviceURL=“URL”] 
[publishName=“name”] 
[tmodel=“tModel_name” />

Where:

Examples This command publishes information about “testservice” to the TrySybase 
registry:

wstool publish -inquiryURL http://uddi.trysybase.com:8080/uddi/inquiry 
-publishURL http://uddi.trysybase.com:8080/uddi/publish -user testuser 
-business 6B9DD2D0-D81E-11D7-A0BA-000629DC0A13 -pass secret -serviceURL 
http://webservicehost:8080/ws/services/testservice -publishName 
testpublish -tmodel 216DD2D0-A21E

Ant build example:

<wst_antTask command="publish"  
inquiryURL="http://uddi.trysybase.com:8080/uddi/inquiry" 
publishURL="http://uddi.trysybase.com:8080/uddi/publish" user="me" 
pass="secret" business="myTestBusinessOnly"/>

unpublish
Description Unpublishes Web service information from a UDDI registry.

Option Description

inquiryURL Inquiry URL used to connect to the registry. Required.

publishURL Publish URL used to connect to the registry. Required.

user User name used to connect to the UDDI registry URL. 
Required.

business Provide the business name if publishing a business or 
specify the business key if publishing a service.

pass The password used to connect to the UDDI registry URL.

serviceURL The service URL of the service to be published. 

publishName Specifies a name with which the tModel can be published. 
to publish a service or a tModel, you must specify the 
publish.

tmodel Specifies the tModel key that associates the service to a 
specific tModel.



CHAPTER 9    Using wstool and wstant

User’s Guide 101

Syntax Command line:  

unpublish 
[-inquiryURL URL] 
[-publishURL URL] 
[-user user_name] 
[-business business_name] 
[-pass password] 
[-serviceURL URL] 
[-serviceKey key] 
[-tmodel true] 

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="unpublish" > <wst_antTask command="unpublish"
[inquiryURL=“URL”] 
[publishURL=“URL”] 
[user=“user_name”] 
[business= “business_name”] 
[pass=“password”]
[serviceURL=“URL”] 
[serviceKey=“key”] 
[tmodel=“tModel_name” />

Where:

Examples This command unpublishes information regarding “testservice” from 
TrySybase registry:

wstool unpublish -inquiryURL http://uddi.trysybase.com:8080/uddi/inquiry 
-publishURL http://uddi.trysybase.com:8080/uddi/publish -user testuser 
-business 6B9DD2D0-D81E-11D7-A0BA-000629DC0A13 -pass secret -serviceURL 
http://webservicehost:8080/ws/services/testservice -serviceKey 1234 -tmodel 
216DD2D0-A21E

Option Description

inquiryURL Inquiry URL used to connect to the registry. Required.

publishURL Publish URL used to connect to the registry. Required.

user User name used to connect to the UDDI registry URL. 
Required.

business Provide the business name if unpublishing a business or 
specify the business key if unpublishing a service.

pass The password used to connect to the UDDI registry URL.

serviceURL The service URL of the service being unpublished. 

serviceKey You must specify a service key to unpublish a tModel.

tmodel Specifies the tModel key that associates the service to a 
specific tModel.



Server management commands 

102  Web Services Toolkit

Ant build example:

<wst_antTask command="unpublish"  
inquiryURL="http://uddi.trysybase.com:8080/uddi/inquiry" 
publishURL="http://uddi.trysybase.com:8080/uddi/publish" user="me" 
pass="secret" business="myTestBusinessOnly"/>

Server management commands
Description Server management commands allow you to start, stop, and manage the server, 

as well as manage listeners for EAServer. 

Command list Table 9-3 lists the server management commands.

Table 9-3: wstool server management commands

list 
Description Returns a list of entities from the server’s repository, depending on the type of 

entity entered.

Note  Entity type is not an option, do not use a “-” when specifying an entity 
type.

Syntax Command line:  

list 
[Collections] 
[CompType] 
[Components] 
[Listeners] 
[Methods] 
[Packages] 
[Params] 

command name Description

list Lists entities in the repository.

refresh Refreshes a server or Web service collection.

restart Restarts the server to which you are connected.

shutdown Shuts down the server to which you are connected.



CHAPTER 9    Using wstool and wstant

User’s Guide 103

[Props] 
[PropsValue] 
[ReturnType] 
[ServerProps] 
[ServerVersion] 
[ServiceName] 
[Services] 
[URL] 
[WSDD] 
[WSDL] 
[typemappings] 
[undefTypes] 
Entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="list" > <wst_antTask command="list"
[option=“option_depending_on_entity”] >

Where:

Type Description

Collections Returns a list of Web service collections.

CompType Returns the component type. Entity is in the form of 
component:PackageName/ComponentName.

Components Returns a list of SOAPable components available on the 
server.

Listeners Returns a list of listeners in the format of 
“<protocol>:<host>:<port>”. For example, 
“http:localhost:8080”

Methods Returns a list of methods for the entity. Entity can be in the 
form of either:

• service:CollectionName/ServiceName or

• component:PackageName/ComponentName

Include the -methodType option and specify the type of 
methods returned:

allowed – list only the allowed methods.

disallowed – list only the disallowed methods.

all – list all methods (default).

Packages Returns a list of SOAPable packages available on the 
server.

Params Returns a list of parameters for a given method. Entity is 
in the format of:

method:CollectionName/ServiceName/MethodName



list 

104  Web Services Toolkit

Props Returns a list of properties of a given entity, for example:

collection:CollectionName

PropsValue Returns the property value for the given property. Use the
-name argument and provide the name of the property for 
which the value is returned. Entity can be one of:

• collection:CollectionName

• server:ServerName

ReturnType Returns the return type of a given method. Entity is in the 
form of:

method:CollectionName/ServiceName/MethodName

ServerProps Returns a list of server properties.

ServerVersion Returns the server version.

ServiceName Returns the Web service name of a given component. 
Entity is in the form of:

component:PackageName/ComponentName

Services Returns the list of Web services for a given collection. Use 
the -serviceType argument with one of the following 
options:

all – list all Web services

active – list only active Web services

Entity is in the form of:

collection:CollectionName

URL Returns the service URL of a given Web service is . Entity 
is in the form of:

service:CollectionName/ServiceName

WSDD Lists the .wsdd of a given Web service. Use the -out 
argument and supply a file name to direct the .wsdd to a 
file. The default file is 
collectionName_serviceName.wsdd. Entity is in the form 
of:

service:CollectionName/ServiceName

WSDL Lists the .wsdl of a given Web service. Use the -out 
argument and supply a file name to direct the .wsdl to a 
file. The default file is 
collectionName_serviceName.wsdl. Entity is in the form 
of:

service:CollectionName/ServiceName

Type Description



CHAPTER 9    Using wstool and wstant

User’s Guide 105

Examples Example 1 This command lists all the listeners running on the server: 

wstool list Listeners

Example 2  This command directs the WSDL for MyWebService to the 
test.wsdl file:

wstool list wsdl -out test.wsdl service:MyCollection/MyWebService

Ant build example:

<wst_antTask command="list" type="wsdl" entity: 
“service:MyCollection/MyWebService”/>

refresh
Description Refreshes a server or Web service collection, depending on the entity. Also 

refreshes the child properties of the specified entity. For example, if you refresh 
a server, all the server properties that belong to the server are refreshed.

Syntax Command line:  

refresh 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="refresh" > <wst_antTask command="refresh"
entity=”entity” />

Where:

typemappings Returns a list of the type mappings for a given Web 
service. Entity is in the format of:

service:CollectionName/ServiceName

undefTypes Returns a list of the undefined types for a given soapable 
component. Entity is on of:

• method:PackageName/ComponentName/MethodName

• class name

Entity Varies depending on the selected option.

Type Description



restart 

106  Web Services Toolkit

Examples This command refreshes the EAServer named “Jaguar:”

wstool refresh server:Jaguar

Ant build example:

<wst_antTask command="refresh" 
entity="server:Jaguar"/>

restart
Description Restarts the server to which you are connected.

Syntax Command line:  

restart 

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="restart" > <wst_antTask command="restart"

Examples This command restarts the server to which you are connected:

wstool restart

Ant build example:

<wst_antTask command="restart" />

shutdown
Description Shuts down the server to which you are connected.

Option Description

entity Can be one of:

• server:ServerName – identifies the server you are 
refreshing.

• collection:WebServiceCollectionName – identifies the 
Web service collection you are refreshing.



CHAPTER 9    Using wstool and wstant

User’s Guide 107

Syntax Command line:  

shutdown 

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="shutdown" > <wst_antTask command="shutdown"

Examples This command shuts down the server to which you are connected:

wstool shutdown

Ant build example:

<wst_antTask command="shutdown" />

Web service administration commands
Description Web service administration commands allow you to manage most aspects of 

Web services.

Command list Table 9-4 lists the Web service administration commands.



activate 

108  Web Services Toolkit

Table 9-4: wstool Web service commands

activate
Description Activates a Web service in a given Web service collection so that it is available 

to clients.

Syntax Command line:  

activate 
entity

Ant build file:  

command name Description

activate Activates a Web service and makes it available to clients.

allowMethods Makes available to clients the selected methods of a Web 
service.

deactivate Deactivates a Web service and makes it unavailable.

delete (1) Deletes a Web service.

delete (2) Deletes a Web service collection.

deploy (1) Creates and deploys a Web service from the implementation 
class file. 

deploy (2) Creates and deploys a Web service from a JAR file. 

deploy (3) Creates and deploys a Web service collection from a WAR file. 

deploy (4) Command-line deployment options for J2EE Web services.

disallowMethods Makes Web service methods unavailable to Web service 
clients.

exposeComponent Exposes an EAServer component as a Web service.

getTMjar Creates a type mapping JAR file.

isActive Returns a message that a given Web service is either “active” or 
“inactive.”

isAllowed Checks if the method is available to a client as a Web service 
endpoint. 

refresh Refreshes a server or Web service collection.

set_props Sets the value of the property for a component, Web 
application, or a Web service.

wsdl2Java Generates client artifacts and a client template capable of 
accessing server-side Web services.

java2Wsdl Generates a WSDL file from the Java implementation file.



CHAPTER 9    Using wstool and wstant

User’s Guide 109

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="activate" > <wst_antTask command="activate"
entity=”entity” >

Where:

Examples This command activates MyWebService which is contained in MyCollection:

wstool activate Service:MyCollection/MyWebService

Ant build example:

<wst_antTask command="activate" 
entity="service:myCollection/myService"/>

allowMethods
Description Makes Web service methods available to clients.

Syntax Command line:  

allowMethods
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="allowmethods" > <wst_antTask 
command="allowmethods"
entity=”entity” >

Where:

Option Description

entity Service:CollectionName/ServiceName – identifies the 
Web service you are activating.

Option Description

entity method:CollectionName/ServiceName/m1, m2, m3 – 
identifies the Web service to which the methods being 
made available belong, and a comma-separated list of 
method names that are available to a client.

The entity must be in quotes.



deactivate 

110  Web Services Toolkit

Examples This command makes testmethod1 and testmethod2 available to a Web service 
client that belongs to MyWebService:

wstool allowMethods “method:WebColl/MyWebService/testmethod1, testmethod2”

Ant build example:

<wst_antTask command="allowMethods"  
entity="method:myCollection/myService/myMethod"/>

deactivate
Description Deactivates a Web service so that it is unavailable to clients.

Syntax Command line:  

deactivate 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deactivate" > <wst_antTask command="deactivate"
entity=”entity” >

Where:

Examples This command deactivates MyWebService which is contained in 
MyCollection:

wstool deactivate service:MyCollection/MyWebService

Ant build example:

<wst_antTask command="deactivate" 
entity="service:myCollection/myService"/>

Option Description

entity service:CollectionName/ServiceName – identifies the 
Web service you are deactivating.



CHAPTER 9    Using wstool and wstant

User’s Guide 111

delete (1)
Description Deletes a Web service from a given Web service collection. The service 

element in the server-config.wsdd file is deleted and the files indicated by the 
“files” parameter of that service element are also deleted.

Syntax Command line:  

delete 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="delete" > <wst_antTask command="delete"
entity=”entity” >

Where:

Examples This command deletes MyWebService:

wstool delete Service:MyWebCollection/MyWebService

Ant build example:

<wst_antTask command="delete" 
entity="service:myCollection/myService"/>

delete (2)
Description Deletes a Web service collection.

Syntax Command line:  

delete 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="delete" > <wst_antTask command="delete"
entity=”entity” >

Option Description

entity Service:CollectionName/ServiceName – identifies the 
Web service you are deleting.



deploy (1) 

112  Web Services Toolkit

Where:

Examples This command deletes MyWebServiceCollection:

wstool delete collection:MyWebServiceCollection

Ant build example:

<wst_antTask command="delete" 
entity="collection:myCollection/>

deploy (1)
Description Creates and deploys a Web service using an implementation class file. This 

command creates a Web service in the Web service collection name provided 
by you, or uses “ws” as the default. This command creates the Web service 
collection if it does not already exist.

Syntax Command line:  

deploy 
[-overwrite true | false] 
[-collection collectionName] 
[-include directory] 
[-classpath path] 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[overwrite=“true | false”] 
[collection=“collectionName”] 
[include=“directory”] 
[classpath= “path”] 
entity =“className” >

Where:

Option Description

entity collection:CollectionName – identifies the Web service 
collection you are deleting.

Option Description

overwrite If set to true, overwrites an existing Web service if it has 
the same service name. The default is false.



CHAPTER 9    Using wstool and wstant

User’s Guide 113

Examples This example deploys the Web service from the com.sybase.mytest class file to 
MyServiceCollection:

wstool deploy -overwrite true -collection MyServiceCollection -include 
“d:\classes;d:\moreclasses” com.sybase.mytest

Ant build example:

<wst_antTask command="deploy" 
collection="CollectionName"
include=”d:\moreclasses”
entity="com.sybase.myTest"/>

Note  You cannot deploy a class that uses “DefaultNamespace” as the package 
name. For example:
wstool deploy -include “d:\mytest” DefaultNamespace.myTest is 
not valid.

deploy (2)
Description Creates and deploys a Web service from a Sybase Web services JAR file.

Syntax Command line:  

deploy 
[-overwrite true | false] 

collection Specifies the collection name. ws is the default Web 
collection.

include Specifies the directory that contains any dependent 
classes. For example:

d:\foo

This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.

Note  JARs must be specified in quotes.

entity The file that you are deploying. entity  should be located 
in the current directory, or provide the full path. If 
deploying from an implementation class file, entity is in 
the format of foo.bar.myclass or foo.bar.myclass.class.

Option Description



deploy (2) 

114  Web Services Toolkit

[-collection collectionName] 
[-include directory] 
[-classpath path] 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[overwrite=“true | false”] 
[collection=“collectionName”] 
[include=“directory”] 
[classpath= “path”] 
entity =“file” >

Where:

Examples This example deploys the Web service contained in the MyWebService.jar file:

wstool deploy MyWebService.jar

Ant build example:

<wst_antTask command="deploy" 
entity="d:\wstool\test\deploy\service.jar"/>

Option Description

overwrite If set to true, overwrites an existing Web service if it has 
the same service name. The default is false.

collection Specifies the collection name, if you are deploying a JAR 
file . ws is the default Web collection.

include Specifies the directory that contains any dependent 
classes. For example:

d:\foo

This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.

Note  JARs must be specified in quotes.

entity The file that you are deploying. entity  should be located 
in the current directory, or provide the full path. 



CHAPTER 9    Using wstool and wstant

User’s Guide 115

deploy (3)
Description Creates and deploys a Web service collection from a Sybase Web services 

WAR file.

Syntax Command line:  

deploy 
[-overwrite true | false] 
[-include directory] 
[-classpath path] 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[overwrite=“true | false”] 
[include=“directory”] 
[classpath= “path”] 
entity =“file” >

Where:

Examples This example deploys the Web service collection contained in the 
MyWebServiceCollection.war file:

wstool deploy MyWebServiceCollection.war

Ant build example:

<wst_antTask command="deploy" 
entity="d:\wstool\test\deploy\collection.war"/>

Option Description

overwrite If set to true, overwrites an existing Web service collection 
if it has the same collection name. The default is false.

include Specifies the directory that contains any dependent 
classes. For example:

d:\foo

This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.

Note  JARs must be specified in quotes.

entity The file that you are deploying. entity should be located in 
the current directory, or provide the full path.



deploy (4) 

116  Web Services Toolkit

deploy (4)
Description These are the command-line options for deploying J2EE Web services.

Syntax Command line:  

deploy 
[options] 
entity
[-contextpath path]

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[option] 
entity =“file” >

Where:

Option Description

ws There are three ws options that define how a Web service is 
exposed:

• -ws – expose any Stateless Session Beans with a Remote 
Interface as a Web service.

• -ws:<ejbName> – expose the Stateless Session Bean 
ejbName as a Web service.

• -ws:<jarFileInEar>:<ejbName> – expose the Stateless 
Session Bean ejbName located in an application EAR file 
jarFileInEar as a Web service.

wsClientAddress Use this syntax to specify the address (in the WSDL file) to 
which a client is referring:

-wsClientAddress:<serviceRefName>:
<portComponentName> <address>

wsContextPath Use this syntax to specify the context path for an EJB Web 
service in an application EAR file:

-wsContextPath:<jarFileInEar>:<contextpath>

Use this syntax to specify the context path for an EJB Web 
Service:

-wsContextPath <contextpath>



CHAPTER 9    Using wstool and wstant

User’s Guide 117

wsEndpointAddress
URI

Specify the endpoint address URI for an EJB Web service 
using this syntax:

-wsEndpointAddressURI <ejbName>:<endpoint-address-
uri>

Specify the endpoint address URI for an EJB Web service in 
an Application EAR file using this syntax:

-wsEndpointAddressURI:<jarFileInEar>:<ejbName>:
<endpoint-address-uri>

wsStyle Specify the Web service style ( DOCUMENT, RPC or 
WRAPPED) of the generated WSDL binding used when 
exposing an EJB as a Web service using this syntax:

-wsStyle <style>

Specify the Web service style ( DOCUMENT, RPC or 
WRAPPED) of the generated WSDL binding used when 
exposing an EJB as a Web service contained in an application 
EAR file using this syntax:

-wsStyle:<jarFileInEar>:<style>

wsUse Specify the use (LITERAL or ENCODED) of items in the 
generated WSDL binding when exposing an EJB as a Web 
service using this syntax:

-wsUse <use>

Specify the use (LITERAL or ENCODED) of items in the 
generated WSDL binding when exposing an EJB as a Web 
service in an application EAR file using this syntax:

-wsUse:<jarFileInEar>:<use>

wsWebAppName Override the default name for the Web application generated 
from an EJB Web Service using this syntax:

-wsWebAppName <webappname>

Override default name for the Web application generated from 
an EJB Web Service in an application EAR file using this 
syntax:

-wsWebAppName:<jarFileInEar>:<webappname>

entity The file that you are deploying. entity should be located in the 
current directory, or provide the full path using the contextpath 
option.

contextpath Specify the contextPath for Web application deployment. The 
default is the name of the WAR file.  If -package is specified, 
then the package is the context path.

Option Description



disallowMethods 

118  Web Services Toolkit

Examples This example deploys the Web service collection contained in the 
MyWebServiceCollection.war file:

wstool deploy MyWebServiceCollection.war

Ant build example:

<wst_antTask command="deploy" 
entity="d:\wstool\test\deploy\collection.war"/>

disallowMethods
Description Makes the listed methods unavailable to a Web service client.

Syntax Command line:  

disallowMethods
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="disallowMethods" > <wst_antTask 
command="disallowMethods"
entity=”entity” >

Where:

Examples This command makes MyMethod1 and MyMethod2 unavailable to clients:

wstool disallowMethods “method:MyWebCollection/MyWebService/Mymethod1, 
MyMethod2” 

Ant build example:

<wst_antTask command="disallowMethods"  
entity="method:myCollection/myService/myMethod"/>

Option Description

entity method:CollectionName/ServiceName/m1, m2  – 
identifies the Web service and a comma-separated list of 
methods you are making unavailable.

Entity must be specified in quotes.



CHAPTER 9    Using wstool and wstant

User’s Guide 119

exposeComponent
Description Exposes an EAServer component as a Web service.

Syntax Command line:  

exposeComponent 
[-collection webCollection] 
[-service webService] 
[-tm typeMapping] 
[-tmJar jarFile] 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="exposeComponent" > <wst_antTask 
command="exposeComponent"
[collection=“webCollection”] 
[service=“webService”] 
[tm=“typeMapping”] 
[tmJar=“jarFile”] 
entity =“package/component” >

Where:

Examples This command exposes myPkg/myComp as a Web service:

wstool exposeComponent -tm myTM.map -tmJar myTM.jar myPkg/myComp

Ant build example:

<wst_antTask command="exposeComponent"  
entity="component:myPackage/myComponent"/>

Option Description

collection Specifies the name of the Web service collection, to which 
the Web service belongs. ws is the default.

service Specifies the Web service name to which the component 
is exposed to. The default is 
PackageName_ComponentName.

tm Specifies the type mapping file name for any undefined 
custom datatypes.

tmJar Specifies the full path to the JAR file that contains any 
custom datatype mappings required by the component.

entity The name of the EAServer package/component being 
exposed.



getTMjar 

120  Web Services Toolkit

getTMjar
Description Creates a JAR file that contains type mappings identified by the class option 

and associates it with an entity for which the type mapping is needed.

Syntax Command line:  

getTMjar 
[-class classname] 
[-outJar jarFile] 
[-overwrite true | false] 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="getTMjar" > <wst_antTask command="getTMjar"
[class=“classname”] 
[outjar=“jarFile”] 
[overwrite=“true | false”] 
entity =“entity” >

Where:

Examples This command creates a testclass.jar file that contains the type mappings 
contained in testclass and required by MyWebService:

wstool getTMjar -class testclass -outjar testclass.jar 
Service:MyWebServiceCollection/MyWebService

Ant build example:

<wst_antTask command="getTMjar"  
class="myPkg.mysampleClass" 
entity="service:myCollection/myService"/>

Option Description

class The name of the class for which the type mapping JAR is 
needed.

outJar The name of the JAR to be used for the output of the class. 
The default is className.jar

overwrite overwrites the JAR, if it already exists. The default is not 
to overwrite.

entity Service:CollectionName/ServiceName – identifies the 
Web service that requires the type mappings contained in 
the JAR.



CHAPTER 9    Using wstool and wstant

User’s Guide 121

isActive
Description Returns a message that a given Web service is either “active” or “inactive.”

Syntax Command line:  

isActive 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isActive" > <wst_antTask command="isActive" 
entity=”entity” >

Where:

Examples This command returns either “active” or “inactive” for MyWebService:

wstool isActive Service:MyWebServiceCollection/MyWebService

Ant build example:

<wst_antTask command="isactive" 
entity="service:myCollection/myService"/>

isAllowed
Description Checks if the method is available to a client as a Web service endpoint. 

To make methods available to clients, see allowMethods on page 109.

Syntax Command line:  

isAllowed 
entity

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isAllowed" > <wst_antTask command="isAllowed" 
entity=”entity” >

Where:

Option Description

entity Service:CollectionName/ServiceName – identifies the 
Web service which is either “active” or “inactive.”



refresh 

122  Web Services Toolkit

Examples This command checks to see if MyMethod is available to the client:

wstool isAllowed method:MyWebServiceCollection/MyWebService/MyMethod

Ant build example:

<wst_antTask command="isallowed"  
entity="method:myCollection/myService/myMethod"/>

refresh
Description Refreshes a server or Web service collection.

Syntax Command line:  

refresh 
entity

Ant build file:  
<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>

<!-- Refresh a collection on the server -->

    <target name="refresh" >

        <wst_antTask command="refresh" 
entity="entity"/>

Where:

Examples This example refreshes MyWebServiceColl, including all the Web services it 
contains.

wstool refresh collection:MyWebServiceColl

Option Description

entity method:CollectionName/ServiceName/MethodName – 
the name of the method being queried.

Option Description

entity Can be one of:

• server:ServerName – identifies the server being 
refreshed.

• collection:CollectionName – identifies the Web service 
collection being refreshed.



CHAPTER 9    Using wstool and wstant

User’s Guide 123

Ant build example:

<wst_antTask command="refresh" entity="collection:myCollection"/>

set_props
Description Sets the value of the property for a Web service collection either using a name 

value pair or by specifying a file that contains the property name-value pair.

Syntax Command line:  

set_props 
[entity name value | file ] 

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="set_props" > <wst_antTask command="set_props"
entity=”entity” name=”nameOfProperty” value=”propertyValue”>

Where:

Examples This command sets the description of MyWebServiceCollection:

wstool set_props collection:MyWebServiceCollection 
com.sybase.jaguar.webApplication.description “My test description”

Ant build example:

<wst_antTask command="set_props" 
entity="collection:myCollection"
name=”com.sybase.jaguar.webApplication.description”
value=”My test description” />

Option Description

entity The entity that is being modified:

collection:CollectionName – identifies the Web service 
collection for which the properties are set.

name The name of the property being modified.

value The new value of the property.

file The name of the file that contains the name value pairs of 
properties being modified.



wsdl2Java 

124  Web Services Toolkit

wsdl2Java
Description Generates Java code for client side artifacts from the WSDL, where WSDL 

URI is the URI (universal resource identifier) of the WSDL file.

wsdl2java generates a service implementation template file with a .java.new 
extension. Remove the .new extension and enter your business logic into the 
implementation file before deploying it as a Web service.

Note  When you expose a component that uses EAServer-specific holder types 
as a Web service, the convention for generating the client-side holders classes 
is that they are always generated under a package.holders.type hierarchy. For 
example, when you expose a component as a Web service that uses 
BCD.MoneyHolder, the conversion on the client-side results in a JAX-RPC 
specific holder contained under BCD.holders.MoneyHolder. You will not use 
EAServer-specific types on the Web service client side.

Syntax Command line:  

wsdl2java 
[-classpath path ] 
[-compile true | false ] 
[-factory class_name ] 
[-fileNS2pkg file_name ] 
[-genAll true | false  ] 
[-genHelper true | false ] 
[-genImplTemplate true | false ] 
[-genRefrencedOnly true | false ] 
[-genSkeleton true | false ] 
[-genStub true | false ] 
[-gentestCase true | false ] 
[-gentypes true | false ] 
[-genWSDD true | false ] 
[-handlerFile fileName ] 
[-noImport true | false ] 
[-noWrapped true | false ] 
[-ns2pkg  package=namespace ] 
[-outputDir path] 
[-package packageName ] 
[-passwd password] 
[-scope Request | Application | Session ] 
[-serverside true | false] 
[-timeout seconds ] 
[-tm argument ] 
[-typeMappingVer 1.1 | 1.2 ] 
[-user userName ] 
WSDLURI



CHAPTER 9    Using wstool and wstant

User’s Guide 125

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="wsdl2java" > <wst_antTask command="wsdl2java" 
[classpath=“path”] 
[compile=“true | false ”] 
[factory=“class_name”] 
[fileNS2pkg=“file_name”] 
[genAll=“true | false ”] 
[genHelper=“true | false”] 
[genImplTemplate=“true | false”] 
[genRefrencedOnly=“true | false”] 
[genSkeleton=“true | false”] 
[genStub=“true | false”] 
[gentestCase=“true | false”] 
[gentypes=“true | false”] 
[genWSDD=“true | false”] 
[handlerFile=“fileName”] 
[noImport=“true | false ”] 
[noWrapped=“true | false”] 
[ns2pkg=“package=namespace”] 
[outputDir=“path”] 
[package=“packageName”] 
[passwd=“password”] 
[scope=“Request | Application | Session”] 
[serverside=“true | false”] 
[timeout=“seconds”] 
[tm=“argument”] 
[typeMappingVer=“1.1 | 1.2”] 
[user=“userName”] 
WSDLURI=“resourceIdentifier” >

Where:

Option Description

classpath Specify the classpath in quotes.

compile If true, compiles the generated source code.

factory Name of the class file that implements the GenerateFactory 
class.



wsdl2Java 

126  Web Services Toolkit

fileNS2pkg The name of the file that contains the ns2pkg (namespace to 
package) mappings. Use this option instead of the ns2pkg 
options to declare multiple mappings. For example, the 
Ns2pkg.properties file contains two mappings:

http\://Host:Port/Man.xsd=com.sybase.manf
http\:/Host:Port/Purch.xsd=com.sybase.Pur
chase

and can be used as follows:

wstool wsdl2java -fileNs2pkg Ns2pkg.properties 
myTest.wsdl

genWSDD If true, generates a Deploy.wsdd file. 

genImplTemplate If true, generates a template for the implementation code.

genStub If true, generates the stub files.

genAll If true, generates and compiles the stubs, wsdd, and 
ImplTemplate files. If set to true, this option overrides the 
settings of genWSDD, genImplTemplate, and genStub.

Note  When user defined types that are not Java beans are 
used, the generated test client is not compilable as wsdl2java 
cannot construct the type in the test code.

gentestCase If true, generates a test case.

gentypes Set this option to false when you start with java2wsdl, or you 
will overwrite existing types. Default is true.

genHelper If true, generates helper classes for metadata.

genSkeleton If true, generates the skeleton files.

handlerFile The handler class file that contains any special routines 
(handlers) for this Web service.

noImports If true, generates code for the current WSDL only.

noWrapped If true, turns off support for “wrapped” document/literal. 
Wrapped is a document literal variation, that wraps parameters 
as children of the root element.

ns2pkg The namespace to package value pair, in the form 
namespace=package. You can only declare one namespace to 
package pair using this option. Use the fileNS2pkg option to 
declare multiple mappings.

outDir The output directory for the generated files.

package The package name to be used for namespace to package 
mappings. 

passwd The password required by the user to access the WSDL URI. 

scope The scope of the deploy.wsdd: request, application, or session.

Option Description



CHAPTER 9    Using wstool and wstant

User’s Guide 127

Examples This example uses CodeGetTest.wsdl as the input WSDL file and generates the 
Java output file to the out directory:

wstool  wsdl2java -genTestCase false -genHelper true -genImplTemplate true 
-genRefrencedOnly false -genSkeleton true -genStub true -genWSDD true -tm 
tmfile.map -classpath "d:\out;d:\wstool\test\tm\classes" -genall false -
outDir out CodeGenTest.wsdl

Ant build example:

<wst_antTask command="wsdl2java" 

entity="d:\wstool\test\sample.wsdl" />

serverside If true, generates the server-side bindings for the Web service.

timeout In seconds, the amount of time allowed for this command to 
complete before timing out.

tm specify the type mapping file name, if any custom data types 
are being used. For example, the type mapping file  
myTMfile.map has the following contents: 

t1.QName = nonbeansample:Book 
t1.Serializer =  
nonbeansample.BookSerializer
t1.Deserializer =  
nonbeansample.BookDeserializer
t1.SerializerFactory =  
nonbeansample.BookSerFactory 
t1.DeserializerFactory =   
nonbeansample.BookDeserFactory 
t1.TypeName =  nonbeansample.Book 
t1.EncodingType = 
http://schemas.xmlsoap.org/soap/encoding/ 
# Specify the webservice if the type 
# mappings are on the server 
t1.ServiceName = myCollection/myService

typeMappingVer Type mapping version to use. The default is 1.1. Acceptable 
values are 1.1 and 1.2.

user The user name used to access the WSDL URI.

Option Description



java2Wsdl 

128  Web Services Toolkit

java2Wsdl
Description Generates code for client side artifacts from the Java class file, where 

locationURL and JavaClassName are the URL and name of the Java class file 
from which the WSDL is being generated.

Syntax Command line:  

java2wsdl 
[-binding binding_name ] 
[-classpath path ] 
[-exposeMethods m1, m2, m3 ] 
[-extraClass class1, class2, class3 ] 
[-importURL wsdl_interface ] 
[-impINS implementation_namespace ] 
[-implWSDL implementation_wsdl_filename ] 
[-implClass class_name ] 
[-inheritMethods  true | false] 
[-inputSchema file_or_url ] 
[-inputWSDL WSDL_file ] 
[-intfNS interface_namespace ] 
[-outputWsdl file_name ] 
[-pkg2ns package_namespace ] 
[-portName port_name ] 
[-portTypeName class_name ] 
[-serviceName service_name ] 
[-soapAction Default | Operation | None ] 
[-stopClasses class1, class2, class3 ] 
[-style Document | RPC | Wrapped ] 
[-tm argument ] 
[-typeMappingVer 1.1 | 1.2 ] 
[-use Literal | Encoded] 
[-wsdlMode All | Interface | Implemenation ] 
[-xcludeMethods m1, m2, m3 ] 
-locationURL<service location URL> javaClassName

Ant build file:  

<taskdef name="wst_antTask" 
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="java2wsdl" > <wst_antTask command="java2wsdl"
[binding=“binding_name”] 
[classpath=”path”] 
[exposeMethods=“m1, m2, m3 ”] 
[extraClass=“class1, class2, class3”] 
[importURL=“wsdl_interface”] 
[impINS=“implementation_namespace”] 
[implWSDL=“implementation_wsdl_filename”] 
[implClass=“class_name] 
[inheritMethods=“true | false”] 
[inputSchema=“file_or_url”] 
[inputWSDL=“WSDL_file”] 



CHAPTER 9    Using wstool and wstant

User’s Guide 129

[intfNS=“interface_namespace”] 
[outputWsdl=“file_name”] 
[pkg2ns=“package_namespace”] 
[portName=“port_name”] 
[porTypetName=“class_name”] 
[serviceName=“service_name”] 
[soapAction=“Default | Operation | None”] 
[stopClasses=“class1, class2, class3 ”] 
[style=“Document | RPC | Wrapped”] 
[tm=“argument”] 
[typeMappingVer=“1.1 | 1.2”] 
[use=“Literal | Encoded”] 
[wsdlMode=“All | Interface | Implemenation”] 
[xcludeMethods=“m1, m2, m3”] 
locationURL<service location URL>=“javaClassName” >

Where:

Option Description

binding The binding name. The default is servicePortName value 
“SOAPBinding.”

classpath Specify the classpath in quotes.

exposeMethods A comma-separated list of methods to expose.

extraClasses A comma-separated list of classes to be added to the type 
section. 

importURL The location of the interface URL. 

implNS The target namespace for the implementation WSDL.

intfNS The target namespace.

inputWSDL input WSDL filename.

implWSDL The output implementation WSDL file name. Setting this option 
causes the wsdlMode option to be ignored.

implClass An optional class that contains implementation of methods in 
class-of-portType. The debug information in the class is used to 
obtain the method parameter names, which are used to set the 
WSDL part names.

inputWsdl The input WSDL file name.

outputWsdl The output WSDL file name.

pkg2NS The package to namespace value pair, in the form 
package=namespace.

portName The service port name. The default is obtained from the 
locationURL.

portTypeName The port type name. The default is class-of-portType.

serviceName The service name. The default is servicePortName value 
“Service.”



java2Wsdl 

130  Web Services Toolkit

Examples This example uses nonBeanSample as input and generates the 
CodeGenTest.wsdl output file:

wstool java2wsdl  -locationURL 

inheritMethods True or false. If true, expose allowed methods in inherited 
classes.

xcludeMethods A comma-separated list of methods not to expose.

stopClasses A comma-separated list of class names that stops the inheritance 
search even if the inheritMethods option is specified.

tm specify the Type mapping file name, if any custom data types are 
being exposed. For example, the type mapping file  
myTMfile.map has the following contents: 

t1.QName = nonbeansample:Book 
t1.Serializer =  
nonbeansample.BookSerializer
t1.Deserializer =  
nonbeansample.BookDeserializer
t1.SerializerFactory =  
nonbeansample.BookSerFactory 
t1.DeserializerFactory =   
nonbeansample.BookDeserFactory 
t1.TypeName =  nonbeansample.Book 
t1.EncodingType = 
http://schemas.xmlsoap.org/soap/encoding/ 
# Specify the webservice if the type 
# mappings are on the server t1.ServiceName 
=  myCollection/myService

typeMappingVer The type mapping version. Valid options are 1.1 (the default) 
and 1.2.

soapAction The value of the operations soapAction field. Valid values are:

Default – causes the soapAction to be set according to 
operations in the metadata.

Operation – forces soapAction to the name of the operation.

None – forces the soapAction to blank, which is the default.

style The style of the binding in the WSDL. Options are “Document,” 
“Wrapped,” or “RPC” (the default). 

use Defines the use of the items in the binding. Options are “Literal” 
or “Encoded” (the default).

wsdlMode The output WSDL mode. Valid options are All (default), 
Interface, or Implementation.

inputSchema A file or URL that points to the XML schema used during 
WSDL generation. 

Option Description



CHAPTER 9    Using wstool and wstant

User’s Guide 131

"http://localhost:8080/nonBean/services/nonBeanSample"  -pkg2ns 
"nonbeansample=nonbeansample" -tm tmfile.map -outputwsdl CodeGenTest.wsdl  
-classpath d:\wstool\test\tm\classes nonbeansample.TestBookServiceIntf

Ant build example:

<wst_antTask command="java2wsdl" 
locationURL="http://${wst.host}/${wst.port}/nonBean/se
rvices/nonBeanSample" 
tm="d:\wstool\test\tm\tmfile.map" 
classpath="d:\wstool\test\classes" 
entity="nonbeansample.TestBookServiceIntf"/>



java2Wsdl 

132  Web Services Toolkit



User’s Guide 133

A
activate, wstool command 108
administration

other components 44
UDDI registry 42, 43, 52, 53
Web service 49
Web service collections 28
Web services 29, 47
Web services server 26

allowMethods, wstool command 109
architecture

Web services 5
audience vii

B
binding information

UDDI registries 66
business information

UDDI registries 63

C
category information

UDDI registries 67
client

holder class generation 23
clients

developing 73
components

supported 15
connecting

Web services server 27
connecting to a server

Web console 46
contact information

UDDI registries 69

container
Web services 26

conventions x
CORBA

datatype 16
creating

new server 33, 54
new Web services server 26

creating a JSP client
Web service clients 35

creating and managing
Web service clients 33

creating domains
Web console 46

creating from a Java file
Web service 29

creating from a WSDL file
Web service 29

creating server profiles
Web console 46

custom
type mappings 15

D
datatype

CORBA C++ with IDL datatypes 16
Java with IDL datatypes 16
JAX-RPC 16
supported 16
XML XSD 16

datatypes
supported 15

default
Web services server 27

delete, wstool command 111
deleting

Web service 33
Web service collections 29

Index



Index

134 Web Services Toolkit

deleting a JSP client
Web service clients 36

deleting a server
Web console 46

deleting a Web service
from the Web console 49

deleting a Web service collection
from the Web console 48

deleting domains
Web console 46

deploy, wstool command 81, 112, 113, 115, 116
disallowMethods, wstool command 118
disconnecting from a server

Web console 46
discovery URL information

UDDI registries 70
document style

Web service client 75
dynamic invocation interface

Web service client 75
dynamic proxy

Web service client 74

E
Eclipse

and the Web services plug-in 10
collections and folders 11
error logging 12
handlers 11
menu layout and navigation 12
more information 9
operations 11
other components 12
overview of 9
plug-in 9
ports 11
servers 11
SOAP inspector 12
starting 10
stopping 10
tasks 12
type mappings 11
Web services 11
Web services console 12

Web services toolkit development tool 9
environment variables

JAGUAR_HOST_NAME 94
error logging 12
exposeComponent, wstool command 119
exposing components

as Web services 38, 39
exposing components as Web services properties

collection name 38
name 38
target namespace 38

expsosing components as Web services properties
location URL 38

G
general server properties, description of 29, 37, 42, 43, 

52, 53, 61
generating WSDL

from Web services and components 40
generating WSDL properties

binding name 41
binding style 41
collection name 40
file location 41
implementation class 41
location URL 40
method name 41
port type name 41
service port name 41
SOAP action 41
SOAP use 41
target namespace 40
type mapping version 41
Web service name 40

getTMjar, wstool command 120

H
handlers 11
holder classes

client-side generation 23



Index

User’s Guide 135

I
identifier information

UDDI registries 68
IDL 16
importing

Web service collections 28
importing a Web service collection

from the Web console 48
inquiry, wstool command 98
invoking

Web service operations 36
invoking operations

from the Web console 50
isActive, wstool command 121
isAllowed, wstool command 121

J
jagtool

Jakarta Ant and 93
JAGUAR_HOST_NAME 94
Java

datatype 16
Java datatype

XML equivalent 16
java2Wsdl, wstool command 128
JAXM

more information 4
JAXP

description 4
JAX-RPC

datatype 16
description 3
holder classes 23
more information 3, 4

L
launching a JSP client

Web service clients 36
list, wstool command 102

M
management

Web service 33
managing

Web service operations 36
managing registry services

from Web console 57
managing security realms

for Web services 54
managing Web service operations

from the Web console 50
managing Web services

from Web console 45
menu layout and navigation 12
more information

Eclipse 9
JAXM 4
JAX-RPC 3, 4
SOAP 1.1 2
WSDL 3

N
navigating

Web console 58
non-Web service components

managing from the Web console 55

O
operations 11

invoking 50
properties 50
viewing 50
Web console 50

other components 12
administration 44

overloaded methods 36, 50
overview

private UDDI server 57
Web console 57
Web service clients 73
Web services 1



Index

136 Web Services Toolkit

P
parameters

managing 51
viewing 51
Web console 45

plug-in
Eclipse 9

preferences
Web console 45

private UDDI server
overview 57

projects
Web service 32

properties
Web service 49
Web service collection 48
Web service collections 29
Web service creation wizard 32

protocol
JAXP 1.1 4
JAX-RPC 1.0 3
SAAJ 1.1 4
SOAP 1.1 2
UDDI 2.0 4
WSDL 1.1 2

publish, wstool command 99, 110
publishing

UDDI 5
UDDI registries 63

Q
queries and searches

UDDI administration 61
quick exposing components

as Web services 39, 40

R
refresh, wstool command 105, 122
refreshing

Web service 33
Web service collections 29
Web service security realm 55

Web services server 28
registry profile

creating and connecting to 60
removing

Web services server 28
requirements

Web service clients 34
restart, wstool command 106
restarting

Web services server 28

S
SAAJ

description 4
search properties

UDDI registries 62
server

creating a new 33, 54
service information

UDDI registries 64
set_props, wstool command 123
shutdown, wstool command 106
SOAP

description 2
more information 2

SOAP inspector 12
standards

Web services 1
starting

Web services server 27
starting a server

Web console 46
stopping

Eclipse 10
Web services server 28

stopping a server
Web console 46

stub-based model
Web service client 74

supported
component types 15
datatypes 15, 16



Index

User’s Guide 137

T
tasks 12
tModel information

UDDI registries 65
type mappings 11

custom 15
viewing 54

typographical conventions x

U
UDDI

description 4
more information 5
publishing 5
registering 5

UDDI administration
queries and searches 61
registry administration 59
search properties 62
Web console 59

UDDI registries
binding information 66
business information 63
category information 67
contact information 69
discovery URL information 70
identifier information 68
publishing 63
service information 64
tModel information 65

UDDI registry
publishing 42, 52
unpublishing 43, 53

UDDI registry profile
creating and connecting to 60

UDDI registry profile properties
Web console 61

UDDI registry properties
business description 42, 53
business name 42, 53
delete profile 42, 53
name 42, 52, 53
password 42, 52, 53
ping 42, 53

publish URL 42, 52, 53
query url 42, 52, 53
retrieving existing information 43, 53
save profile 42, 53
service description 43, 53
use existing tmodel 43, 53
user name 42, 52, 53

UDDI.org
Web site 5

unpublish, wstool command 100

V
viewing a Web service collection

from the Web console 47
viewing operations

from the Web console 50
viewing parameters

from the Web console 51
viewing type mappings

from the Web console 54
viewing Web service properties

from the Web console 49
viewing WSDL

Web service 33

W
Web console

connecting to a server 46
creating a domain 46
creating server profiles 46
defining parameters 45
deleting a domain 46
deleting a server 46
deleting a Web service 49
deleting a Web service collection 48
disconnecting from a server 46
importing a Web service collection 48
invoking operations 50
managing registry services from 57
managing Web services from 45
navigating 58
non-Web service components 55



Index

138 Web Services Toolkit

operation properties 50
overloaded methods 50
overview 57
preferences 45
private UDDI administration 59
registry profile properties 61
starting a server 46
stopping a server 46
viewing a Web service collection 47
viewing operations 50
viewing parameters 51
viewing type mappings 54
viewing Web service properties 49
Web service administration 49
Web service operation management 50
Web service parameter management 51
Web services administration 47

Web console properties
plug-in 47
server 47

Web service
administration 29
creating from a Java file 29
creating from a WSDL file 29
deleting 33
management 33
managing security realms 54
other components 44
properties 49
publishing to a UDDI registry 42, 52
refreshing 33
unpublishing from a UDDI registry 43, 53
viewing WSDL 33

Web service client properties
document/literal 34
generate code for all elements 35
package 34
password 35
project name 34
separate helper classes 35
timeout 34
type mapping version 35
user name 35
WSDL2Java options 34

Web service clients
creating a JSP client 35

creating and managing 33
deleting a JSP client 36
document style 75
dynamic invocation interface 75
dynamic proxy 74
launching a JSP client 36
overview 73
requirements 34
stub-based model 74

Web service collection
properties 48

Web service creation wizard
properties 32

Web service operation properties
description 36
name 36
return type

Web service operation properties
is return value in response 36

SOAP action 36
Web service operations

invoking 36
managing 36

Web service projects
client 32
server 32

Web service properties
create from file 32
create from Java file 32
locate from file, URL, or UDDI 32
method selection 32
options 32
package name 32
project contents 32
project name 32
project type 32

Web service security realm
refreshing 55

Web services
about 1
architecture 5
exposing components as 38, 39
generating WSDL 40
overloaded methods 36
overview 1
quick exposing components as 39, 40



Index

User’s Guide 139

standards 1
Web services collection

administration 28
deleting 29
importing 28
properties 29
refreshing 29

Web services console 12
Web services plug-in

and Eclipse 10
collections and folders 11
error logging 12
handlers 11
menu layout and navigation 12
operations 11
other components 12
ports 11
servers 11
SOAP inspector 12
tasks 12
type mappings 11
Web services 11
Web services console 12

Web services server
connecting 27
creating a new 26
default 27
refreshing 28
removing 28
restarting 28
starting 27
stopping 28

Web services server properties
host name 27
is a local server 27
password 27
port number 27
profile name 27
script arguments 27
script location 27
user name 27

WSDL
description 2
more information 3

wsdl2Java, wstool command 124
WST development tool

Eclipse 9
wstkeytool

Ant build files 96
entity identifiers 95
script location 93
setting up wstkeytoolant 96
syntax 93
wstkeytoolant scripts 97

wstool
Ant build files 96
commands. See individual command names
entity identifiers 95
script location 93
setting up wstant 96
syntax 93
wstant scripts 97

X
XML datatype

Java equivalent 16
XML XSD

datatypes 16



Index

140 Web Services Toolkit


	Web Services Toolkit User’s Guide
	About This Book
	CHAPTER 1 Overview of Web Services in EAServer
	Web services background and standards
	SOAP 1.1
	WSDL 1.1
	JAX-RPC 1.0
	SAAJ 1.1
	JAXP 1.1
	UDDI 2.0

	EAServer Web Services architecture
	Installing Web services
	Defining, deploying, and exposing Web services using WST
	Service styles
	Retrieving the Web service’s WSDL


	CHAPTER 2 Using Sybase Web Services Toolkit-an Eclipse plug-in
	Starting and stopping Eclipse
	Web services plug-in
	Connecting to servers
	Organization
	Menu layout and navigation
	Accessibility features


	CHAPTER 3 Components and Datatypes
	Supported component types
	Supported datatypes
	Client-side generation of holder classes


	CHAPTER 4 Web Services Administration
	Introduction
	Web services server administration
	Web services collection administration
	Web service administration
	Creating Web services from files
	Web service projects

	Web service management
	Creating and managing Web service clients
	Web service operation management


	Type mappings
	Exposing and deploying components as Web services
	Exposing Components as Web services
	Using the quickly expose wizard

	Deploying Components as Web services
	Using the quickly deploy wizard


	Generating WSDL
	UDDI administration
	Other components

	CHAPTER 5 Management Console-Web Services
	Plug-in, domain, display, and server administration
	Web service collection administration
	Web service administration
	Web service operation management
	Web service parameter management

	UDDI administration
	Type mappings
	Managing security realms
	Non-Web service components

	CHAPTER 6 Management console-Registry Services
	Introduction
	Using the management console
	Navigating the console and managing resources

	UDDI administration
	UDDI registry profile administration

	Searching and publishing to UDDI registries
	Inquiries and searches
	Searching UDDI registries

	Publishing
	Businesses
	Services
	tModels
	Additional registry information for published businesses, tModels, and services



	CHAPTER 7 Developing Web Service Clients
	Introduction
	Stub-based model client
	Dynamic proxy client
	Dynamic invocation interface client
	Document style client

	CHAPTER 8 J2EE Web Service Support
	Overview
	J2EE Web services support

	Deploying J2EE Web services
	Viewing Web services
	Deploying Web services from the command line
	Deploying with a partial WSDL
	Stub properties

	Setting the EJB Web service Web application suffix

	Web service file locations and access points
	A PowerBuilder component deployed/exposed as a Web service
	An EJB exposed/deployed as a Web service
	A Web application deployed as a Web service


	CHAPTER 9 Using wstool and wstant
	Introduction
	Working with wstool
	wstool syntax
	Entity identifiers


	Working with wstant
	Setting up your environment
	wstant scripts
	wstant syntax

	wstool commands
	UDDI administration commands
	inquiry
	publish
	unpublish
	Server management commands
	list
	refresh
	restart
	shutdown
	Web service administration commands
	activate
	allowMethods
	deactivate
	delete (1)
	delete (2)
	deploy (1)
	deploy (2)
	deploy (3)
	deploy (4)
	disallowMethods
	exposeComponent
	getTMjar
	isActive
	isAllowed
	refresh
	set_props
	wsdl2Java
	java2Wsdl

	Index

