
Web Services Toolkit User’s Guide

EAServer
5.2

DOCUMENT ID: DC31727-01-0520-01

LAST REVISED: January 2005

Copyright © 1997-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, My AvantGo, My AvantGo Media
Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket,
Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-
DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and
XP Server are trademarks of Sybase, Inc. 10/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

User’s Guide iii

About This Book ... ix

CHAPTER 1 Overview of Web Services in EAServer .. 1
Web services background and standards .. 1

SOAP 1.1 .. 2
WSDL 1.1 .. 2
JAX-RPC 1.0 ... 3
SAAJ 1.1 ... 4
JAXP 1.1 ... 4
UDDI 2.0.. 4

EAServer Web Services architecture ... 5
Installing Web services.. 6
Defining, deploying, and exposing Web services using WST ... 6
Service styles .. 7
Retrieving the Web service’s WSDL ... 7

CHAPTER 2 Using Sybase Web Services Toolkit—an Eclipse plug-in 9
Starting and stopping Eclipse... 10
Web services plug-in .. 10
Connecting to servers .. 11
Organization... 11
Menu layout and navigation ... 13

Accessibility features... 13

CHAPTER 3 Components, Datatypes, and Type Mappings 15
Supported component types .. 15
Supported datatypes .. 16

Additional datatype support ... 17
Client-side generation of holder classes 18

Custom datatypes and mappings... 18
Creating custom type mappings.. 18

Contents

iv Web Services Toolkit

CHAPTER 4 Web Services Administration ... 29
Introduction .. 29
Web services server administration ... 30
Web services collection administration .. 32
Web service administration .. 34

Creating Web services from files... 34
Web service management... 37

Type mappings... 42
Handlers... 42

Defining handlers .. 42
Security .. 43

Roles and security realms ... 43
XML-Security... 46

Exposing and deploying components as Web services 48
Exposing Components as Web services................................. 48
Deploying Components as Web services................................ 52

Generating WSDL .. 53
UDDI administration ... 55
Other components.. 57

CHAPTER 5 Web Console—Web Services ... 59
Introduction .. 59

Logging in to the Web console versus logging into Sybase Central
60

Web console security and access ... 60
Disabling JavaScript.. 62
Browser support .. 62
Authentication time-out in EAServer 62
Session time-out in EAServer ... 63

Plug-in, domain, display, and server administration....................... 63
Web service collection administration .. 65
Web service administration .. 67

Web service operation management....................................... 68
Web service parameter management 70

UDDI administration ... 71
Type mappings... 73
Handlers... 73
Managing security realms and roles .. 74
Roles .. 74
Runtime monitoring .. 76
Non-Web service components ... 77

CHAPTER 6 Web Console—Registry Services .. 81

Contents

User’s Guide v

Introduction .. 81
Using the Web console .. 82

Navigating the console and managing resources 82
UDDI administration ... 83

UDDI registry profile administration... 83
Searching and publishing to UDDI registries 84

Inquiries and searches .. 84
Publishing.. 86

CHAPTER 7 The Private UDDI Server... 95
Introduction .. 95
Installing and starting the private UDDI server............................... 96
Starting and connecting to the private UDDI registry 96

Starting the default UDDI registry.. 96
Configuring other private UDDI registries................................ 97
Connecting to the private UDDI registry.................................. 98

Managing the private UDDI.. 98
Administering the private UDDI ... 99

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant 103
Introduction .. 103

Working with wstool and wstkeytool...................................... 104
Working with wstant and wstkeytoolant 106

Setting up your environment ... 107
wstant and wstkeytoolant scripts... 108
wstant and wstkeytoolant syntax... 108
wstant sample files .. 108

wstool commands .. 108
UDDI administration commands .. 109
inquiry... 109
publish.. 110
unpublish.. 112
Server management commands .. 113
list... 113
refresh .. 117
restart ... 118
shutdown.. 118
Web service administration commands 119
activate... 121
allowMethods ... 121
deactivate... 122
delete (1) .. 123
delete (2) .. 123

Contents

vi Web Services Toolkit

deploy (1) ... 124
deploy (2) ... 125
deploy (3) ... 127
disallowMethods... 128
export ... 128
exposeComponent ... 129
getTMjar ... 130
isActive... 131
isAllowed .. 132
isStatsEnabled ... 133
refresh .. 133
resetStats ... 134
set_props ... 135
startStats .. 136
stopStats .. 137
upgrade .. 138
wsdl2Java .. 138
java2Wsdl... 142
Security commands.. 145
add ... 146
remove ... 147
wstkeytool commands.. 148
changePin .. 148
deleteCert... 149
export ... 149
genCertReq.. 151
GetCACerts.. 153
GetOtherCerts.. 153
GetUserCerts ... 154
import ... 154
printCert ... 155

CHAPTER 9 Developing Web Service Clients .. 157
Introduction .. 157
Stub-based model client... 158

stub-based example .. 158
Dynamic proxy client .. 160

Dynamic proxy client example... 160
Dynamic invocation interface client .. 161

DII client example.. 162
Document style client ... 165

Document style example ... 165

Contents

User’s Guide vii

CHAPTER 10 Using the Web Services Toolkit Samples 169
Samples in WST... 169

Samples on the Sybase Web site.. 169
Sample and tutorial location .. 169
Creating the sample projects and installing the samples....... 170

Using the WST development tool and features 170
Exposing a Java class as a Web service............................... 170
Exposing a Web service that implements JAX-RPC defined

interfaces .. 173
Exposing a stateless EJB as a Web service.......................... 174
Establishing Web service security, and generating a test client ...

174
Exposing a CORBA component as a Web service................ 175
Google search API demonstration... 175

Developing client applications .. 175
Running a dynamic client... 176
.NET sample .. 176
PowerBuilder 9 sample.. 177

APPENDIX A Migrating 4.x Web Services.. 179
Introduction... 179
Server-side migration ... 179
Client-side migration... 180

Index.. 183

Contents

viii Web Services Toolkit

User’s Guide ix

About This Book

Audience The audience for this document is anyone responsible for creating,
deploying, and managing Web services. Sybase assumes that these
professionals have training in Java and XML and component technology.

How to use this book Create and manage Web services using the various tools, services, and
GUIs described in this book, collectively referred to as Web Services
Toolkit:

• Chapter 1, “Overview of Web Services in EAServer” – description
of the Web Services Toolkit and the various protocols it supports.

• Chapter 2, “Using Sybase Web Services Toolkit—an Eclipse plug-
in” – description of the Eclipse development and management
environment.

• Chapter 3, “Components, Datatypes, and Type Mappings” –
description of the component types supported as Web services,
datatypes, and type mappings.

• Chapter 4, “Web Services Administration” – the procedures to
develop and manage Web services from Eclipse.

• Chapter 5, “Web Console—Web Services” – the procedures for
managing Web services from the Sybase Management console.

• Chapter 6, “Web Console—Registry Services” – the procedures for
managing UDDI registries from the Sybase Management console.

• Chapter 7, “The Private UDDI Server” – the procedures to configure
and administer the private UDDI server.

• Chapter 8, “Using wstool, wstkeytool, wstant, and wstkeytoolant” –
description of how to use the wstool and wstkeytool command line
tools.

• Chapter 9, “Developing Web Service Clients” – description of how
to develop client applications from the files generated from the WST
development tool and from wstool commands.

• Chapter 10, “Using the Web Services Toolkit Samples” – description
of the samples included with WST.

x Web Services Toolkit

• Appendix A, “Migrating 4.x Web Services” – the procedures for
migrating Web services created with WST version 4.x to this version of
WST.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML format in your EAServer software installation, and in PDF
and DynaText format on the Technical Library CD.

What’s New in EAServer summarizes new functionality in this version.

The EAServer Cookbook contains tutorials and explains how to use the sample
applications included with your EAServer software.

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer System Administration Guide explains how to:

• Start the preconfigured Jaguar server and manage it with the EAServer
Manager plug-in for Sybase Central™

• Create, configure, and start new application servers

• Define connection caches

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools or
the Repository API

The EAServer Programmer’s Guide explains how to:

• Create, deploy, and configure components and component-based
applications

• Create, deploy, and configure Web applications, Java servlets, and
JavaServer Pages

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

 About This Book

User’s Guide xi

• Configure SSL certificate-based security for client connections using the
Security Manager plug-in for Sybase Central

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes, ActiveX interfaces, and C routines.

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://www.sybase.com/detail?id=1024509.

Message Bridge for Java™ Message Bridge for Java simplifies the parsing
and formatting of structured documents in Java applications. Message Bridge
allows you to define structures in XML or other formats, and generates Java
classes to parse and build documents and messages that follow the format. The
Message Bridge for Java User's Guide describes how to use the Message
Bridge tools and runtime APIs. This document is included in PDF and
DynaText format on your EAServer 5.2 Technical Library CD.

Adaptive Server Anywhere documents EAServer includes a limited-
license version of Adaptive Server Anywhere for use in running the samples
and tutorials included with EAServer. Adaptive Server Anywhere documents
are available on the Sybase Web site at http://sybooks.sybase.com/aw.html.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ driver to allow JDBC access to Sybase database servers and gateways.
The Programmer’s Reference jConnect for JDBC is available on the Sybase
Web site at http://sybooks.sybase.com/jc.html.

Conventions The formatting conventions used in this manual are:

xii Web Services Toolkit

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than EAServer Manager

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in EAServer Manager, a command line, or as program text

• Example program fragments

• Example output fragments

 About This Book

User’s Guide xiii

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
HTML, JavaHelp, and Eclipse help formats, which you can navigate using a
screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Sybase Central Overview,” in the
EAServer System Administration Guide.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
more information, see “Accessibility features” on page 13.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

xiv Web Services Toolkit

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

User’s Guide 1

C H A P T E R 1 Overview of Web Services in
EAServer

Web Services Toolkit (WST) is a set of tools that allows you to create and
manage Web services in EAServer. The toolkit supports standard Web
services protocols; Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Uniform Description, Discovery, and
Integration (UDDI), and includes tools for WSDL document creation,
client generation, UDDI registration, and SOAP management.

Web services background and standards
Using Web services and EAServer, you can take advantage of SOAP,
WSDL, and UDDI. These protocols enable you to use third-party
components called Web services, which are invoked from application
providers. A Web service contained in EAServer can be invoked remotely
over HTTP and HTTPS protocols. The Web service object has methods or
end points that provide the business logic of the Web service being
invoked. Methods are called using SOAP, and the client calling these
methods is said to consume the Web service. WSDL describes the service
and can be used in client applications. You can also publish business and
service information to a UDDI registry site on the Web and make your
Web service available to other users. SOAP provides a platform and
language-neutral way to access these services.

With SOAP, WSDL, and UDDI, collaboration between business partners
is easier because interfaces between applications become standardized
across platforms.

Web services can be embedded in Sybase’s Web container environment.
Web services supports these standards:

Topic Page
Web services background and standards 1

EAServer Web Services architecture 5

Web services background and standards

2 Web Services Toolkit

• SOAP 1.1 – see “SOAP 1.1” on page 2.

• WSDL 1.1 – see “WSDL 1.1” on page 2.

• JAX-RPC 1.0 – see “JAX-RPC 1.0” on page 3.

• SAAJ 1.1 – see “SAAJ 1.1” on page 4.

• JAXP 1.1 – see “JAXP 1.1” on page 4.

• UDDI 2.0 – see “UDDI 2.0” on page 4.

SOAP 1.1
As part of the Web services functionality, the Simple Object Access Protocol
(SOAP) servlet in EAServer provides you with a way to make your EAServer
components accessible to your customers with minimal firewall constraints,
platform dependencies, or complex development implementations involving
Distributed Component Object Model (DCOM) or Common Object Request
Broker Architecture (CORBA).

SOAP allows applications to communicate using existing Internet technologies
(such as HTTP, URLs, SSL, and XML) and the HTTP or HTTPS port. While
SOAP does not mandate which transfer protocol to use, it is the combination
of SOAP and HTTP that allows you to invoke remote procedures, even through
firewalls.

See the SOAP information pages at http://www.w3.org/TR/SOAP for more
information.

WSDL 1.1
As communications protocols and message formats are standardized, it
becomes increasingly important to describe these communications in some
structured way. The Web Services Description Language (WSDL) addresses
this need by defining an XML grammar for describing Web services as
collections of communication endpoints capable of exchanging messages.
WSDL service definitions provide documentation for distributed systems and
for automating the details involved in communication between applications.

When you define a Web service in EAServer, the WSDL file can be
automatically generated from the information you provide.

CHAPTER 1 Overview of Web Services in EAServer

User’s Guide 3

The WSDL document describes a component that you want to make available
as a Web service, as well as its location. You can also publish the location of a
WSDL document to a UDDI registry on the Web.

The Web services GUI allows you to select a UDDI public host site and login.
After you log in, you can add business and service data to the UDDI registry.
Once you have published information to the registry, each time you log in, the
information is retrieved and available for you to review, modify, or delete.

A business partner can invoke a Web service without knowing how to write
SOAP messages by using Web services generated client-side files and artifacts
(the collection of files on the client-side that handles communication between
a client and a Web service. They include the stub class, service definition
interface and additional classes), and the WSDL document that describes your
Web service.

See the WSDL information pages at http://www.w3.org/TR/WSDL for more
information.

JAX-RPC 1.0
Sun’s Java API for XML-based Remote Procedure Call (JAX-RPC) is an API
for building Web services and clients that use remote procedure calls (RPCs)
and XML. It uses technologies defined by the World Wide Web Consortium
(W3C): HTTP, SOAP, and WSDL.

Using JAX-RPC, a remote procedure call is represented by an XML-based
protocol (SOAP), which defines the structure, rules, and conventions for
representing RPCs and responses. These SOAP messages are transmitted over
HTTP or HTTPS. The Java API hides the complexity from the application
developer, allowing you to focus on creating the Web services that implement
business logic, and the client programs that access them.

See the JAX-RPC Web site at http://java.sun.com/xml/jaxrpc for more
information.

Web services background and standards

4 Web Services Toolkit

SAAJ 1.1
The SOAP with Attachments API for Java 1.1 (SAAJ) protocol enables
applications to send and receive document-oriented XML messages using a
pure Java API. SAAJ implements SOAP 1.1 so that developers can focus on
building, sending, receiving, and decomposing messages for their applications
instead of programming low-level XML communications routines.

See the JAXM/SAAJ Web site at
http://wwws.sun.com/software/communitysource/jaaxm_saaj for more
information.

JAXP 1.1
Java API for XML Processing (JAXP) supports processing of XML documents
using DOM, SAX, and XSLT. JAXP enables applications to parse and
transform XML documents independent of a particular XML processing
implementation, giving developers the flexibility to swap between XML
processors without making application code changes.

See the JAXP Web site at http://java.sun.com/xml/jaxp for more information.

UDDI 2.0
The UDDI specification creates a platform-independent, open framework for
describing services, discovering businesses, and integrating business services
using the Internet. UDDI is a cross-industry effort driven by major platform
and software providers, as well as by marketplace operators and e-business
leaders.

Using Web services in EAServer, you can publish a WSDL document that
describes your Web service and its location to a UDDI registry.

The UDDI protocol is the building block that businesses can use to transact
business with each another, using their preferred applications.

The UDDI specification takes advantage of World Wide Web Consortium
(W3C) and Internet Engineering Task Force (IETF) standards, such as
eXtensible Markup Language (XML), HTTP, and Domain Name System
(DNS) protocols. Additionally, cross-platform programming features are
addressed by adopting SOAP.

CHAPTER 1 Overview of Web Services in EAServer

User’s Guide 5

Web services allows you to publish a WSDL document that describes your
Web service and its location to a UDDI registry Web site. A UDDI registry is
a sort of yellow pages for businesses, the Web services they offer, and the
technical foundations or specifications (called tModels) upon which they are
written. You can specify an organization (business name) and description,
contact information, and Web service properties for your business. Once your
business or tModel is published, potential customers can find it easily from a
search. You can publish multiple Web services under the same business name,
or create a new business name for different Web services.

Because Web services connect directly to UDDI registry host sites on the Web,
you must first be a registered user on the site where you want to publish. To
register, go to www.UDDI.org/register.html. The UDDI.org Web site maintains
a current list of links to UDDI registry host sites where you can register.

EAServer Web Services architecture
Sybase Web Services Toolkit consists of these components:

• The basic SOAP engine, which implements SOAP 1.1, embedded in
EAServer.

• The tools for creating and managing Web services:

• Web-based console for administration, monitoring, and deployment
of Web services.

• Web-based console for UDDI administration, publish/unpublish, and
browsing UDDI registries.

• An Eclipse plug-in GUI that you can use to:

• Design, develop, and deploy Web services to the EAServer
environment.

• Control deployed Web services running in the EAServer
environment.

• Monitor incoming and outgoing messages for each Web service
using a SOAP inspector.

• Generate standalone Java test clients and JSP clients to invoke
Web Services deployed to EAServer environment.

• Publish and query Web services to or from UDDI registries.

EAServer Web Services architecture

6 Web Services Toolkit

• Command line tools for designing, developing, deploying, managing,
and securing Web services.

• A private UDDI server installed as a J2EE Web application. Access
control enables the UDDI user to control access to these basic UDDI data
structures: businessesEntity, businessService, bindingTemplate and
tModel.

These technologies and tools are collectively referred to as the Web Services
Toolkit (WST).

Installing Web services
Web Services is installed as part of a standard EAServer installation. If you
customize your installation, you will notice that Web services support consists
of:

• WST Runtime – the basic SOAP engine and Web services infrastructure.

• Administration Console – a Web based application described in Chapter 5,
“Web Console—Web Services” and Chapter 6, “Web Console—Registry
Services.”

• Eclipse based Development Tool – described in Chapter 2, “Using Sybase
Web Services Toolkit—an Eclipse plug-in” and Chapter 4, “Web Services
Administration.”

• Private UDDI Server – described in Chapter 7, “The Private UDDI
Server.”

Defining, deploying, and exposing Web services using WST
WST provides a number of options for defining a Web service, including:

• Importing from a JAR or WAR file – See “Importing a Web service
collection” on page 32 and deploy (3) on page 127.

• Creating a Web service from a local or remote WSDL file or Java file –
See “Creating Web services from files” on page 34 and

• Creating a Web service from a JAR file – See deploy (2) on page 125.

• Exposing an installed EAServer component as a Web service – See “Other
components” on page 57.

CHAPTER 1 Overview of Web Services in EAServer

User’s Guide 7

• Creating and deploying a Web service from an implementation class file –
See deploy (1) on page 124.

Service styles
WST supports the following service styles:

• RPC – the body of the SOAP message is an RPC call containing the
method name and serialized versions of the parameters. RPC services use
the SOAP RPC conventions, and also encoding rules defined in section
five of the SOAP specification.

• Document –the body of the SOAP message is viewed as an XML
document, as opposed to an RPC call. Document services do not use any
encoding, but still provide XML-to-Java databindings.

• Wrapped – similar to document services, except that rather than binding
the entire SOAP body into one big structure, they “unwrap” the body into
individual parameters.

Retrieving the Web service’s WSDL
To retrieve any WSDL file for a deployed Web service from a Web browser
enter the URL of the WSDL in the form
http://host:port/collectionName/services/service?wsdl. For example for the
canine shelter sample, enter:

http://hostname:8080/SoapSample/services/SoapDemo_FindDog?wsdl.

EAServer Web Services architecture

8 Web Services Toolkit

User’s Guide 9

C H A P T E R 2 Using Sybase Web Services
Toolkit—an Eclipse plug-in

Eclipse is a full-featured open source software development platform. A
Sybase Web Services plug-in to Eclipse provides developers and
administrators the ability to manage Web services contained in EAServer.
Throughout this book, Eclipse and the Sybase Web Services plug-in
together are referred to as the Web Services Toolkit development tool
(WST development tool).

The WST development tool provides graphical administration facilities
for Web services, including support for development, deployment, and
runtime monitoring of Web service-related statistics and messages.

You can develop Web services and create test clients for third-party Web
services. However, you can deploy Web services to the runtime engine
(EAServer, for example) and create test clients for Web services deployed
to EAServer only if you are connected to a running server.

For complete information about Eclipse, see the Eclipse Web site at
http://www.eclipse.org.

Topic Page
Starting and stopping Eclipse 10

Web services plug-in 10

Connecting to servers 11

Organization 11

Menu layout and navigation 13

Starting and stopping Eclipse

10 Web Services Toolkit

Starting and stopping Eclipse
You do not need authentication information to start or use Eclipse, but you do
need authentication information to connect to a runtime engine in the Web
services view of Eclipse. Authentication to EAServer requires the same
information from Eclipse as you would supply in EAServer Manager (user
name and password).

Note Eclipse is installed as part of the standard EAServer installation. To run
Eclipse you must have a complete JDK installation (jdk1.4 or higher), which is
not installed as part of the standard EAServer installation.

❖ Starting Eclipse in UNIX

• From the command line in the Shared/eclipse subdirectory, enter the
command:

./starteclipse.sh

❖ Starting Eclipse in Windows

• From the command line in the Shared\eclipse subdirectory, enter the
command:

starteclipse.bat

❖ Stopping Eclipse

• From Eclipse, select File | Exit

Web services plug-in
The Web services plug-in runs within Eclipse. It is installed when you select
the Web Services Toolkit option during the EAServer installation. You can use
the WST development tool to define and deploy Web services in projects and
applications so that clients can locate and run Web services.

❖ Accessing Sybase Web Services

1 Start Eclipse if it is not already running.

2 From Eclipse, select Window | Open Perspective | Other

CHAPTER 2 Using Sybase Web Services Toolkit—an Eclipse plug-in

User’s Guide 11

3 Select Sybase Web Services from the Select Perspective window and click
OK.

Connecting to servers
You can manage Web services for any server to which you are connected. See
“Web services server administration” on page 30 for more information.

Organization
Sybase Web services contains the following basic units and folders:

• Server – an EAServer runtime process that includes the server name and
version, host name on which it is running, and port number to which the
WST development tool is connected.

• Web Services – contains the various Web service collections.

• Collection – a group of Web services bundled into a single unit for easy
development and management. A collection in a Web services runtime
engine is analogous to a Web application in a J2EE container.

• Service – defines the component (EJB, CORBA, Java, PowerBuilder, and
so on) that is installed as a Web service. Some aspects of the Web service
that you can define include:

• Ports – the path, URL, or endpoint from which the Web service is
made available.

• Operations – the methods and parameters of the Web service that
execute business logic and access data sources.

• Type Mappings – the name and encoding style of the datatype
mapping used by the Web service, depending on the service type
(EJB, CORBA, PowerBuilder, and so on).

• Handlers – contain special routines that can be implemented should a
particular event occur. For example, to invoke customized
authentication logic, you can write a handler and install it in the
Handlers folder.

Organization

12 Web Services Toolkit

• Roles – EAServer’s authorization model is based on roles. The roles
that are attached to a Web service controls access to that Web service.

• Other Components – contains the packages (a collection of components
organized into cohesive, secure units) that are hosted on the EAServer to
which the WST development tool is connected. These components can be
deployed as Web services if they meet the criteria described in Chapter 3,
“Components, Datatypes, and Type Mappings.”

Error logging and
debugging

Error logging, debugging, and troubleshooting tools consists of several views:
Console, Tasks, SOAP Inspector, and Web Services Console. From the WST
development tool, select Window | Show View | and:

• Console – displays the output of the execution of programs and allows you
to enter input for the program. The console shows three different kinds of
text, each in a different color:

• Standard output

• Standard error

• Standard input

• Web Services Console – displays the messages, errors, and warnings
generated whenever you perform a Sybase Web services action. The Web
services console allows you to monitor the various log files; Jagaur.log,
Jaguarhttpservletl.log, Jaguarhttprequest.log, and so on, by selecting the
file from the Log file drop-down list.

• Tasks – displays auto-generated errors, warnings, or information
associated with a resource. Double-click an item in the Task view to
display more detailed information.

• SOAP Inspector – displays incoming and outgoing messages for a given
Web service. Each Web service displays in an Inbound Messages folder
and an Outbound Messages folder that includes the protocol, name of the
host, port number where the Web service is made available, and the name
of the Web service. Double-click the Web service to view either outbound
or inbound traffic. The SOAP or HTTP responses, which depend on the
tab you select, appear in the right pane.

There is also an Eclipse log, ${eclipse.home}\workspace\.metadata\.log ,where
errors are logged, as well as the EAServer log file, located in the bin
subdirectory of your EAServer installation.

CHAPTER 2 Using Sybase Web Services Toolkit—an Eclipse plug-in

User’s Guide 13

Menu layout and navigation
The WST development tool provides panes and tabs that provide views of Web
service-related properties and resources.

From the WST development tool, select Window | Show View | and:

• Sybase Web Services – the Web services, properties, and resources for the
server to which the WST development tool is attached. Perform most Web
service administrative tasks from this pane as described in Chapter 4,
“Web Services Administration.”

• Package Explorer – the contents of the projects, plug-ins, JAR files, and
so on for Web service projects and packages. View the contents of a file by
right-clicking a file and selecting Open (or Open Hiearchy). The selected
file displays in the right pane.

Accessibility features
WST supports accessibility features for those that cannot use a mouse, are
visually impaired or have other special needs. For information about these
features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box

4 Select Accessible user interfaces or Accessibility features for Eclipse

Menu layout and navigation

14 Web Services Toolkit

User’s Guide 15

C H A P T E R 3 Components, Datatypes, and
Type Mappings

Using WST, you can create a Web service from an EAServer component
and use SOAP to expose it across your firewall. You can select any
components in EAServer for a Web service that have return values or
parameters of supported datatypes. The components you select for a Web
service must be installed in EAServer.

Web services use XML to transfer data between service endpoints. WST
includes standard mappings for some basic Java datatypes to XML and
vice versa. It also allows you to create user-defined datatypes and
mappings for complex datatypes.

Supported component types
WST supports the following component types as Web services:

• Stateless EJBs

• Stateless Java–CORBA

• Stateless C++–CORBA

• Stateless PowerBuilder

• Class files

Note Supported components must contain supported datatypes, including
user-defined datatypes to be a valid Web service. See the EAServer
Programmer’s Guide for information about stateless components.

Topic Page
Supported component types 15

Supported datatypes 16

Custom datatypes and mappings 18

Supported datatypes

16 Web Services Toolkit

Supported datatypes
This section describes the datatypes supported in WST. The datatype must
belong to a supported component type for it to be available as a Web service.
Supported datatypes include:

• JAX-RPC defined data types – Refer to chapter four (WSDL/XML to Java
Mapping) and five (Java to XML/WSDL Mapping) of the Java API for
XML-based RPC JAX-RPC 1.0 specification. See the JAX-RPC download
site at http://java.sun.com/xml/downloads/jaxrpc.html

• Java with IDL datatypes – the component’s method declarations use the
datatype mappings that are specified by the CORBA document, IDL to
Java Language Mapping Specification (formal/99-07-53).

• CORBA C++ with IDL datatypes – the component’s method declarations
use the OMG standard for translating CORBA IDL to C++. For more
specifics, see C++ Language Mapping Specification (formal/99-07-41).
You can download this document from the OMG Web site at
http://www.omg.org. C++ datatype mappings are the same as the Java/IDL
component datatype mappings that are listed in Table 3-1.

Table 3-1 lists the datatypes supported in WST and EAServer by default, and
the equivalent XML XSD types.

CHAPTER 3 Components, Datatypes, and Type Mappings

User’s Guide 17

Table 3-1: Java datatype and XML equivalents

Additional datatype support
In addition to the datatypes described in Table 3-1, Web services supports
java.sql.ResultSet and TabularResults.ResultSet, which maps to a complex
schema element that contains the resultset data and the schema for the resultset:

For java.sql.ResultSet:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="jdbc.wst.sybase.com">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
 <complexType name="DataReturn">
 <sequence>
 <element name="XML" nillable="true" type="xsd:string" />
 <element name="updateCount" type="xsd:int" />
 <element name="DTD" nillable="true" type="xsd:string" />
 <element name="schema" nillable="true" type="xsd:string" />
 </sequence>
 </complexType>
</schema>
</wsdl:types>

For TabularResults.ResultSet:

XML XSD type Java datatypes

xsd:boolean org.omg.CORBA.BooleanHolder

xsd:byte org.omg.CORBA.ByteHolder

xsd:double org.omg.CORBA.DoubleHolder

xsd:float org.omg.CORBA.FloatHolder

xsd:int org.omg.CORBA.IntHolder

xsd:long org.omg.CORBA.LongHolder

xsd:short org.omg.CORBA.ShortHolder

xsd:string org.omg.CORBA.StringHolder

xsd:byte BCD.BinaryHolder

xsd:decimal BCD.Decimal

xsd:decimal BCD.DecimalHolder

xsd:base64Binary (same as byte[]) BCD.Money

xsd:base64Binary (same as byte[]) BCD.MoneyHolder

xsd:double MJD.Date

xsd:double MJD.Time

xsd:double MJD.Timestamp

Custom datatypes and mappings

18 Web Services Toolkit

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="TabularResults.wst.sybase.com">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
 <complexType name="DataReturn">
 <sequence>
 <element name="XML" nillable="true" type="xsd:string" />
 <element name="updateCount" type="xsd:int" />
 <element name="DTD" nillable="true" type="xsd:string" />
 <element name="schema" nillable="true" type="xsd:string" />
 </sequence>
 </complexType>
</schema>
</wsdl:types>

Client-side generation of holder classes
When you expose a component that uses EAServer-specific holder types as a
Web service, the convention for generating the client-side holders classes is
that they are always generated under a package.holders.type hierarchy. For
example, when you expose a component as a Web service that uses holder type
BCD.MoneyHolder, the conversion on the client-side results in a JAX-RPC
specific holder contained under BCD.holders.MoneyHolder. You cannot use
EAServer specific types on the Web service client side.

Custom datatypes and mappings
Theoretically, any object or datatype that can be described by a valid snippet of
XML can be used as a parameter within a SOAP call. Current support of
advanced datatypes in Web services is based on the serialization framework
specified by the JAX-RPC 1.0/1.1 specification. See the JAX-RPC Web site at
http://java.sun.com/xml/jaxrpc for more information.

Creating custom type mappings
This section describes how to use the WST development tool to create type
mappings and associate a Web service with a type mapping.

CHAPTER 3 Components, Datatypes, and Type Mappings

User’s Guide 19

❖ Creating a Web service type mapping

1 Select File | New | Other | Sybase Web Services | Type Mapping.

2 Follow the wizard instructions to create the type mapping. Table 3-2
describes the Web service type mapping properties.

Table 3-2: Web service type mapping wizard

Window Property Description

Type Mapping
Classes Selection

Type Class A user defined structure or Java class whose mapping to
XML is not standard. For example java.sql or resultsets.

Serializer Class The fully qualified name of the serialization class used to
convert the new datatype to XML.

Deserializer Class The fully qualified name of the deserialization class used
to convert the serialized XML data into application data.

SerializerFactory
Class

An instance of the serialization class.

 DeserializerFactory
Class

An instance of the deserializer class.

Type Mapping
WSDL Definition

Use Web Service
Target NameSpace as
Type Mapping’s
NameSpace

Each type mapping can have its own namespace or have
the same namespace as the Web service’s target
namespace. If this property is selected, then “Type
Mapping Namespace” is disabled.

Type Mapping
NameSpace

The type mapping namespace (if not using the Web
service’s target namespace).

Local Part The local part of a qualified name (QName) which
consists of a namespace plus “:” plus a local part serves as
a pointer to a WSDL definition part.

Encoding Style The encoding style used by the XML parser to apply when
transforming a SOAP message to a Java object. Use
“SOAP” unless you have defined an alternative encoding
style for this class.

Store the Created
Type Mapping to
Local Store

Select Local Store or
Create New Store

You can select an existing store for this type mapping or
create a new one. Normally, a type mapping store consists
of a description file and a list of JAR files. The description
file contains the information of the first two windows, the
JAR contains the serializer, deserializer, serializer factory,
and deserializer factory classes. You can select “Sybase
Web Service View,” and select type mappings to import
them into the desired local store.

Custom datatypes and mappings

20 Web Services Toolkit

Java coding standards
Web Services Toolkit follows Java coding standards. When you use any Java
class name in your Web service, or user defined types in the IDL, the name
must start with an upper case letter. If the names or types start with a lower
case letter, you might see a “class not found” error.

Creating serializers and deserializers

There might be instances where the existing serializers and deserializers
provided with the WST are not adequate to expose a class or component
through SOAP. In this case, you must create custom serializer and deserializer
classes to perform the necessary actions to convert the class to and from XML.

A new serializer and deserializer requires a new Java class that implements the
javax.xml.rpc.encoding.Serializer for the serializer and
javax.xml.rpc.encoding.DeSerializer for the deserializer.

The following nonbeansample example illustrates various aspects of creating
a serializer and deserializer for a user-defined datatype.

Description The following listing contains these files:

• Book.java – the type class, which needs a custom serializer/deserializer
since it’s not a valid Java Bean or a type for which WST provides built in
mappings (like IDL types).

• BookSerFactory – the factory used to get the serializer. Currently WST
supports only SAX serializer/deserializer, but factory is the interface to get
XML parser specific serializers/deserializers.

• BookDeserFactory – the factory used to get the deserializer.

• BookSerializer – contains the logic to convert Java type to XML, also
contains write schema which can be implemented. Write schema is used
during WSDL generation. This class implements
javax.xml.rpc.encoding.Serializer.

Undefined Type
Mapping Found in
Class

Please Define the
Undefined Type
Mapping Found for
This

When you click “Select a Java file,” and create a Web
service from it, this wizard displays if the selected Java
file contains an undefined type mapping.

Click Add to launch the Web Service Type Mapping
creation wizard to create a type mapping for this datatype.

Window Property Description

CHAPTER 3 Components, Datatypes, and Type Mappings

User’s Guide 21

• BookDeserializer – contains the logic to convert XML to java type. This
class is an extension of
org.apache.axis.encoding.DeserializerImpl and provides the
base functionality. The deserializerImpl class implements the
javax.xml.rpc.encoding.Deserializer. You can also write all the
deserialization logic on your own.

Listing

 /*
*/
package nonbeansample;

import org.apache.axis.encoding.DeserializerImpl;
import org.apache.axis.Constants;
import org.apache.axis.encoding.DeserializationContext;
import org.apache.axis.encoding.Deserializer;
import org.apache.axis.encoding.FieldTarget;
import org.apache.axis.message.SOAPHandler;
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;

import javax.xml.namespace.QName;
import java.util.Hashtable;

/**
 *
 *
 */
public class BookDeserializer extends DeserializerImpl {

 public static final String NAMEMEMBER = "name";
 public static final String AUTHORMEMBER = "author";
 public static final QName myTypeQName = new QName("typeNS", "Book");

 private Hashtable typesByMemberName = new Hashtable();

 public BookDeserializer()
 {
 typesByMemberName.put(NAMEMEMBER, Constants.XSD_STRING);
 typesByMemberName.put(AUTHORMEMBER, Constants.XSD_STRING);
 value = new Book("","");
 }

 /** DESERIALIZER - event handlers
 */

 /**

Custom datatypes and mappings

22 Web Services Toolkit

 * This method is invoked when an element start tag is encountered.
 * @param namespace is the namespace of the element
 * @param localName is the name of the element
 * @param prefix is the element's prefix
 * @param attributes on the element...used to get the type
 * @param context is the DeserializationContext
 */
 public SOAPHandler onStartChild(String namespace,
 String localName,
 String prefix,
 Attributes attributes,
 DeserializationContext context)
 throws SAXException
 {
 QName typeQName = (QName)typesByMemberName.get(localName);
 if (typeQName == null)

 throw new SAXException("Invalid element in Book struct - " +
localName);

 // These can come in either order.
 Deserializer dSer =

context.getDeserializerForType(typeQName);
 try {
 dSer.registerValueTarget(new FieldTarget(value, localName));
 } catch (NoSuchFieldException e) {
 throw new SAXException(e);
 }

 if (dSer == null)
 throw new SAXException("No deserializer for a " +

typeQName + "???");

 return (SOAPHandler)dSer;
 }

}
/*
 *
 *
 * package nonbeansample;

import org.apache.axis.encoding.DeserializerFactory;

import org.apache.axis.Constants;
import java.util.Iterator;
import java.util.Vector;

CHAPTER 3 Components, Datatypes, and Type Mappings

User’s Guide 23

/**
 * *
 *
 */
public class BookDeserFactory implements DeserializerFactory {

 private Vector mechanisms;

 public BookDeserFactory() {
 }
 public javax.xml.rpc.encoding.Deserializer getDeserializerAs(String

mechanismType) {
 return new BookDeserializer();
 }
 public Iterator getSupportedMechanismTypes() {
 if (mechanisms == null) {
 mechanisms = new Vector();
 mechanisms.add(Constants.AXIS_SAX);
 }
 return mechanisms.iterator();
 }

}
/*
 *
 *
 * */
package nonbeansample;

/**
 *
 *
 * */
public class Book {
 /** book name */
 public String name;

 /** book author */
 public String author;

 /**
 * Constructor.
 * @param name book name
 * @param author book author
 * @throws IllegalArgumentException name or author is null
 */

Custom datatypes and mappings

24 Web Services Toolkit

 public Book(String name, String author) {
 if (name == null) {
 throw new IllegalArgumentException("Name is null!");
 }

 if (author == null) {
 throw new IllegalArgumentException("Author is null!");
 }

 this.name = name;
 this.author = author;
 }

 /**
 * Test for equality.
 * @param object any object
 * @return true if books are equal
 */
 public boolean equals(Object object) {
 if (!(object instanceof Book)) {
 return false;
 }

 Book secondBook = (Book) object;

 return name.equals(secondBook.name) &&
 author.equals(secondBook.author);
 }
}
/*
 * */
package nonbeansample;

import java.util.Iterator;
import java.util.Vector;
import org.apache.axis.Constants;

import org.apache.axis.encoding.SerializerFactory;

/**
*/
public class BookSerFactory implements SerializerFactory {

 private Vector mechanisms;

 public BookSerFactory() {
 }

CHAPTER 3 Components, Datatypes, and Type Mappings

User’s Guide 25

 public javax.xml.rpc.encoding.Serializer getSerializerAs(String
mechanismType) {

 return new BookSerializer();
 }
 public Iterator getSupportedMechanismTypes() {
 if (mechanisms == null) {
 mechanisms = new Vector();
 mechanisms.add(Constants.AXIS_SAX);
 }
 return mechanisms.iterator();
 }

}
*/
package nonbeansample;

import java.io.IOException;

import javax.xml.namespace.QName;

import org.apache.axis.encoding.SerializationContext;
import org.apache.axis.encoding.Serializer;
import org.apache.axis.wsdl.fromJava.Types;
import org.w3c.dom.Element;
import org.xml.sax.Attributes;
import org.apache.axis.Constants;

/**
*/
public class BookSerializer implements Serializer {

 public static final String NAMEMEMBER = "name";
 public static final String AUTHORMEMBER = "author";
 public static final QName myTypeQName = new QName("nonBeanTypes",

"Book");

 /** SERIALIZER
 */
 /**
 * Serialize an element named name, with the indicated attributes
 * and value.
 * @param name is the element name
 * @param attributes are the attributes...serialize is free to add

more.
 * @param value is the value
 * @param context is the SerializationContext
 */
 public void serialize(

Custom datatypes and mappings

26 Web Services Toolkit

 QName name,
 Attributes attributes,
 Object value,
 SerializationContext context)
 throws IOException {
 if (!(value instanceof Book))
 throw new IOException(
 "Can't serialize a "
 + value.getClass().getName()
 + " with a BookSerializer.");
 Book data = (Book) value;

 context.startElement(name, attributes);
 context.serialize(new QName("", NAMEMEMBER), null,

data.name);
 context.serialize(new QName("", AUTHORMEMBER), null,

data.author);
 context.endElement();
 }
 public String getMechanismType() {
 return Constants.AXIS_SAX;
 }

 /* (non-Javadoc)
 * @see

org.apache.axis.encoding.Serializer#writeSchema(java.lang.Class,
org.apache.axis.wsdl.fromJava.Types)

 */
 public Element writeSchema(Class arg0, Types types) throws Exception

{
 // Auto-generated method stub
 Element complexType = types.createElement("complexType");
 types.writeSchemaElement(myTypeQName, complexType);
 complexType.setAttribute("name",

myTypeQName.getLocalPart());
 Element seq = types.createElement("sequence");
 complexType.appendChild(seq);

 Element element = types.createElement("element");
 element.setAttribute("name", "name");
 element.setAttribute("type", "xsd:string");
 seq.appendChild(element);
 Element element2 = types.createElement("element");
 element2.setAttribute("name", "author");
 element2.setAttribute("type", "xsd:string");
 seq.appendChild(element2);

CHAPTER 3 Components, Datatypes, and Type Mappings

User’s Guide 27

 return complexType;
 }

}

Deployment

The deployment of custom type mappings requires serializer and deserializer
classes and the associated factories, the SOAP encoding, and the qualifying
name (Qname). The Qname helps reduce the chance of collisions of elements
that use the same name (description, item, and other entities), by adding an
additional element, which makes it more likely to produce a unique element:

Qname = namespace identifier + local name

The deployment of type mappings occurs as part of Web service creation and
deployment. Type mappings are deployed at the Web service level.

Scope of type mappings

A type mapping can be deployed only as part of a Web service, or when
exposing a component. Even though a type mapping is deployed as only part
of a service, a client can look up all the service mappings installed on a server.

Once a type mapping is deployed, it is associated with a Web service. But the
same type mapping can be used with other Web services as well.

Exporting

From the Web service Server view, you can select a Type Mapping and export.
You can then specify the local store, and import the JAR and additional
information (Type Mapping Namespace, Local Part, and Encoding Style) to the
selected local store.

Custom datatypes and mappings

28 Web Services Toolkit

User’s Guide 29

C H A P T E R 4 Web Services Administration

This chapter describes how to administer Web services from the WST
development tool.

You can perform many of the same functions described in this chapter
using wstool and wstkeytool commands. See Chapter 8, “Using wstool,
wstkeytool, wstant, and wstkeytoolant” for more information.

Introduction
The WST development tool supports top-down (creating a Web service
from a component) and bottom-up (creating a Web service from the
WSDL) development of Web services, deployment of Web services to the
runtime engine, and UDDI publication and unpublication.

You can manage certain aspects of the Web service container, create and
manage Web service projects, and troubleshoot Web services using logs
and the SOAP inspector.

Before you can manage Web services, you must install the Web service
plug-in. See Chapter 2, “Using Sybase Web Services Toolkit—an Eclipse
plug-in” for more information.

Topic Page
Introduction 29

Web services server administration 30

Web services collection administration 32

Web service administration 34

Type mappings 42

Handlers 42

Security 43

Exposing and deploying components as Web services 48

Generating WSDL 53

UDDI administration 55

Other components 57

Web services server administration

30 Web Services Toolkit

Web services server administration
A Web services server is the container on EAServer that stores your Web
services. You can create any number of server profiles that allow you to
connect to a Web services container and manage the Web services that it
contains.

Note When managing Web services, the server must be running. You can
develop Web services and create test clients for third-party Web services
without connecting to the server.

❖ Creating and modifying a Web services server profile

1 Right-click the Sybase Web Services Servers icon and select Create Server
profile.

2 The Create Server Profile dialog box appears. Provide the information
described in Table 4-1 and click Finish. If a profile already exists, you can
select the profile, make modifications and click Finish.

CHAPTER 4 Web Services Administration

User’s Guide 31

Table 4-1: Create server profile properties

❖ Setting the default Web services server

If you have multiple Web services servers, you can designate a default to which
you connect when you start the WST development tool.

1 Right-click the server profile you are designating as the default.

2 Select Set Default.

❖ Connecting to a Web services server

You must be connected to a Web services server to manage Web service
collections, Web services, and so on. If you cannot connect to the server, make
sure it is running.

• Right-click the server profile and then select Connect.

❖ Disconnecting from a Web services server

• Right-click the server profile and then select Disconnect. Only available if
you are connected to the server.

❖ Starting a Web services server

1 Right-click the server profile to which the Web services server you are
starting belongs.

Property Description

Profile Name The name of the Web services server profile you
are creating.

User Name The name of the user connecting to the Web
services container. jagadmin is the default. Use
either jagadmin or another member of the
Admin role.

Password The password of the user connecting to the Web
services container. The default is blank.

Host Name The name of the host machine that contains the
Web services container to which you are
connecting. localhost is the default.

Port Number The port number of the host used to connect to
the Web services container. 8080 is the default.

Server Startup
Script File

(optional)

This path to the script if you providing
connection information in a script.

Script Arguments Any additional arguments you want to provide
to the script.

Web services collection administration

32 Web Services Toolkit

2 Select Start.

❖ Stopping a Web services server

1 Right-click the server profile to which the Web services server you are
stopping belongs.

2 Select Stop.

❖ Refreshing a Web services server

You must start a Web services server before refreshing.

1 Right-click the server profile to which the Web services server you are
refreshing belongs.

2 Select Refresh.

❖ Restarting a Web services server

1 Right-click the server profile to which the Web services server you are
restarting belongs.

2 Select Restart.

❖ Removing a Web services server

1 Right-click the server profile to which the Web services server you are
removing belongs.

2 Select Remove.

Web services collection administration
A Web services collection is a logical group of Web services contained in a
folder. You can manage collections only for the Web services server to which
you are connected. When you deploy a Web service to a server, it is placed in
a Web service collection. The default Web service collection is “ws.”

❖ Importing a Web service collection

You can import a Web service collection into the Web services development
tool from a WAR file.

1 Right-click the Web services icon and then select Import.

2 Enter, or browse for the Web service collection you are importing.

CHAPTER 4 Web Services Administration

User’s Guide 33

3 Click OK. The Web service collection is imported.

❖ Exporting a Web services collection

You can export a Web service collection and all the Web services it contains to
a WAR file.

1 Expand the Web Services icon.

2 Right-click the Web service collection you are exporting and select Export
Collection.

3 Enter the file name and location to which you are exporting the Web
services collection.

4 Click OK. The Web services collection is exported. You can now import
the Web services collection WAR file into other servers.

❖ Refreshing a Web services collection

If you make changes to a Web service collection, for example if you deploy a
Web service to a Web service collection, refresh the collection so you can see
the most current changes.

1 Highlight the server to which the Web service collection belongs.

2 Right-click the Web service collection, then select Refresh.

❖ Deleting a Web services collection

1 Highlight the server to which the Web service collection belongs.

2 Right-click the Web service collection and then select Delete.

Table 4-2 describes the Web services collection properties.

Web service administration

34 Web Services Toolkit

Table 4-2: Web service collection properties

Web service administration
This section describes how to create Web services and add them to a Web
service collection, and manage existing Web services. See “Exposing
Components as Web services” on page 48 for information about deploying
existing components as Web services.

Creating Web services from files
This section describes how to:

• Create a Web service from a WSDL file – this bottom-up approach
(creating a Web service from the WSDL) allows you to create a Web
service from an existing WSDL file.

• Create a Web service from a Java file – this top-down approach (creating
a Web service from a component) allows you to create a Web service from
a Java file.

The Web service can be contained in various projects. See “Web service
projects” on page 36 for more information about projects.

❖ Creating a Web service from a WSDL

1 From the Web Service container, select File | New | Other.

2 The New wizard displays. Select Sybase Web Services in the left pane, and
Web Service in the right pane. Click Next. You can also create the Web
service within a project by selecting Web Service Project. If you do not
select a project at this time, you will be asked later to provide a project for
the Web service.

3 The Create Web Service wizard displays. Follow the instructions to create
a Web service from a WSDL file. Table 4-3 on page 36 describes the
wizard properties.

 Property Description

Name The name of the Web services collection.

Description A description of the Web services collection.

CHAPTER 4 Web Services Administration

User’s Guide 35

4 Complete the wizard instructions and click Finish to create the Web
service. If you choose a Project for this Web service, you can view the
project by selecting Window | Show View | Package Explorer. The
Projects appear in the right pane. Expand the project and package to view
the Web service. Along with a Web service, the wizard generates the other
required files, including a .wsdd file.

You can right-click the .wsdd file and then select Deploy to deploy it as a
Web service.

❖ Creating a Web service from a Java file

1 From the Web Service container, select File | New | Other.

2 The New wizard displays. Select Sybase Web Services in the left pane, and
Web Service in the right pane. Click Next. You can also create the Web
service within a project by selecting Web Service Project. If you do not
select a project at this time, you are asked later to provide a project for the
Web service.

3 The Create Web Service wizard displays. Follow the instructions to create
a Web service from a Java file. Table 4-3 describes the wizard properties.

4 Complete the wizard instructions and click Finish to create the Web
service. If you choose a Project for this Web service, you can view the
project by selecting Window | Show View | Package Explorer. The
Projects appear in the right pane. Expand the project, and package to view
the Web service. Along with a Web service, the wizard generates the other
required files, including a .wsdd file.

You can right-click the .wsdd file and then select Deploy to deploy it as a
Web service.

Web service administration

36 Web Services Toolkit

Table 4-3: Web service creation wizard options and properties

Web service projects

The WST development tool allows you to create and maintain various projects
that contain collections of Web services, class files, readme files, and so on,
that make up a Web service project depending on your need. For example, you
can create:

Window Property Description

Select the Web
Service Project

Project Type Select the project in which you will create a
Web service.

The project wizard displays only if you choose
to create a Web service project.

Create the
Project

Project Name Provide a name for your project.

 Project Contents Use the Browse button to select the project
contents directory that contains your project, or
click the check box to use the default directory,
which is the project name located in the
$Eclipse/workspace directory.

 Select
Approach

Create from
WSDL or Create
from Java File

You can create the The Web service from an
existing Java file or .wsdl file. Click the
appropriate check box.

If Creating
From WSDL

Locate From a
Local File, URL,
or UDDI

Provide the location of the .wsdl file, by
entering the file location, URL, or UDDI site. If
the file is on the local file system use Browse to
locate it. If you are locating the file from a
UDDI site, follow the instructions for
publishing to a UDDI site as described in
Table 4-8 on page 55.

Package Name The name of the package in which the Web
service is created. If you do not enter a package
name, “default” is used.

If Creating
From Java File

Create From Java
File

Enter the Java file being used to create the Web
service.

Options You can specify various preferences used for
you Web service deployment. These options are
described in Table 4-6 on page 50.

Method
Selection

Select the methods/operations to be exposed in
the Web service’s WSDL file.

Summary A summary of your entries. Verify they are
accurate and click Finish, or Back to change
your selections.

CHAPTER 4 Web Services Administration

User’s Guide 37

• Server projects – generate and contain the server-side files required to
deploy a Web service project to the server.

• Client projects – generate and contain the client-side files required to
deploy a Web service project to the client.

• Projects – generate and contain both the server-side and client-side files
required to deploy a Web service project to the server and client.

Sybase recommends that when creating projects, you keep the client-side code
in a client project and server-side code in a separate server project. This allows
you to generate, compile, and maintain the client-side and server-side files,
artifacts, and dependent classes independently.

To get an idea of how projects can be used to keep track of your various Web
service projects, See “Creating the sample projects and installing the samples”
on page 170.

Web service management
This section describes how to use the WST development tool to manage Web
services already contained in a server. Each procedure described in this section
requires that you first:

1 Connect to the server that contains the Web service.

2 Expand the Web Services icon.

3 Expand the Web service collection to which the Web service belongs.

❖ Viewing the WSDL

1 Right-click the Web service and then select View WSDL.

2 The WSDL file for this Web service displays in the right pane. You cannot
edit this file.

❖ Activating a Web service

If a Web service is already activated, this option is dimmed; clients can only
access a Web service that is activated:

1 Right-click the Web service and then select Activate.

❖ Deactivating a Web service

If a Web service is already deactivated, this option is dimmed.

• Right-click the Web service and then select Deactivate.

Web service administration

38 Web Services Toolkit

❖ Refreshing a Web service

Refresh a Web service if you make any changes to it.

• Right-click the Web service and then select Refresh.

❖ Deleting a Web service

1 Right-click the Web service and then select Delete.

Creating and managing Web service clients

This section describes how to create and manage Web service clients from a
Web service. Each procedure requires that you first:

1 Connect to the server that contains the Web service.

2 Expand the Web Services icon.

3 Expand the Web service collection to which the Web service belongs.

Note The wizards described in this section generate a test client runtime JAR
file, sybasewstrt.jar, which contains one file, manifest.mf, that lists the JAR
files required by the runtime client:

• When compiling the client class, do not include sybasewstrt.jar. Set the
required JARs in the classpath individually.

• The classpath should include at a minimum: sybasewstrt.jar,
sybasewst.jar, jaxrpc.jar, and the path to the client artifacts.

• When running the client, use either the “-classpath” option, or “set
classpath” to specify the location of the required files identified by
sybasewstrt.jar.

After using the wizard to generate the various files required by the client, see
Chapter 9, “Developing Web Service Clients” for a description of how to
develop a client.

❖ Creating a Web service client

1 Right-click the Web service and then select Create Web Service Client.

2 The Create Web Service Client wizard displays.

3 Follow the wizard instructions described in Table 4-4. Click Finish when
done.

CHAPTER 4 Web Services Administration

User’s Guide 39

4 The wizard generates the test client, and necessary client artifacts in the
package you specify.

Table 4-4: Create Web service client wizard options and properties

Window Property Description

Select a Project Project Name The wizard displays a list of available projects. Highlight the project
to which the client you are generating belongs.

Java Package Package The name of the package where the client is generated. Enter a name
of a package, or use the drop down list to locate an existing package.

WSDL2Java
Options

Generate Code for
this WSDL Only

Select this checkbox to generate code only for this WSDL
document. Uncheck (The default) to generate files for all WSDL
documents, the immediate one and all imported ones.

Timeout The time, in seconds, for this operation to complete successfully
before timing out. In case of timeout, check the log files for possible
reasons.

Use Special
Treatment for
“wrapped”
Document/Literal

Allows support for “wrapped” document/literal. Wrapped is a
document literal variation, that wraps parameters as children of the
root element.

Uncheck this box to turn off the special treatment of “wrapped”
document/literal style operations.

If checked (the default), WSDL2Java recognizes these conditions:

• An input message has is a single part

• The part is an element

• The element has the same name as the operation

• The element’s complex type has no attributes

Under these conditions, the top level elements are “unwrapped”, and
each component of the element is treated as an argument to the
operation. This type of WSDL is the default for Microsoft .NET Web
services, which wraps RPC style arguments in this top level schema
element.

Type Mapping
Version

The type mapping version. Valid options are 1.1 (the default) and
1.2. This option determines which version of SOAP the Web service
uses, SOAP 1.1 or SOAP 1.2.

Generate Code for
All Elements

Allows you to generate and compile the stubs, wsdd, and
ImplTemplate files.

Emit separate
helper classes for
meta data

Helper classes are used by the primary class to help execute its
business methods/operations.

Helper classes are normally generated for user defined type beans.
You can think of them as wrappers for the user defined beans that
contain information (utility methods) which is used at runtime.

They allow you to write your own Java beans with custom behavior
and use them in the runtime SOAP stack.

Web service administration

40 Web Services Toolkit

❖ Creating a JSP client

This procedure generates JSP client pages from the Web service and stores
them on the server. Once created, you can test the JSP pages by Launching the
JSP client.

• Right-click the Web service and then select Create JSP client.

❖ Launching a JSP client

This procedure launches the JSP client you created in the proceeding
procedure, by starting a Web browser, and running the JSP.

• Right-click the Web service and then select Launch JSP Client.

❖ Deleting a JSP client

If you created a JSP client for this Web service, this procedure deletes it.

• Right-click the Web service and then select Delete JSP Client.

Web service operation management

This section describes how to manage Web service operations (or methods).
These procedures require that you:

1 Expand the Web service collection.

2 Expand the Web service.

3 Expand the operations folder.

Overloaded methods If you deploy a Web service that contains overloaded methods, the WST
development tool displays only the first method of the overloaded method.
Allowing or disallowing access to the method, affects all overloaded methods.

For example, if the Web service contains an overloaded method that contains
the methods echo(String, String) and echo (String), the GUI displays only echo
(String, String) twice, but the allowed/disallowed operation affects both
echo(String, String) and echo(String).

User name The user name used to access the WSDL URI.

Password The password required by the user to access the WSDL URI.

Summary Contains information from the previous pages. Review and click
Finish to accept your selections, or Back to change.

Window Property Description

CHAPTER 4 Web Services Administration

User’s Guide 41

❖ Invoking an operation

This procedure invokes an operation of the Web service to which it belongs.

• Right-click the operation and then select Invoke.

❖ Allowing an operation

Allowing a Web service operation makes it available to clients. If a Web
service operation is already allowed, this option is dimmed.

• Right-click the operation and then select Allow.

❖ Disallowing an operation

Prevent access to a Web service operation by following this procedure. If a
Web service operation is already disallowed, this option is dimmed.

• Right-click the operation and then select Disallow.

Table 4-5 describes the Web service operation properties.

Table 4-5: Web service operation properties

Property type Property Description

General Name The name of the operation.

Description A description of the Web service operation.

Style The SOAP binding style:

• Document – indicates that the SOAP body contains an
XML document, or

• RPC (remote procedure call) – indicates that the SOAP
body contains an XML representation of a
method/operation call.

Return Type Specifies the return type of the operation.

Is return value
in response
message

True or false.

SOAP Action The URI for the SOAPAction HTTP header for the HTTP
binding of SOAP. The SOAPAction HTTP request header
field can be used to indicate the intent of the SOAP HTTP
request. The URI identifies the intent.

Message
Operation Style

Document, RPC, or wrapped.

Type mappings

42 Web Services Toolkit

Type mappings
Type mappings are described in Chapter 3, “Components, Datatypes, and Type
Mappings.”

Handlers
A handler is a Java class that implements org.apache.axis.Handler. They are
contained in a Handlers folder for each Web service. You can have multiple
handlers for each Web service. A handler class can be deployed to the server in
the following ways:

• If deploying a service from the WST development tool, include the
handler class file in the current Web services project. When the service is
deployed to the server, the handler class is also deployed.

• If the handler class is contained in a JAR file, manually copy the JAR to
the java/classes subdirectory of your EAServer installation, and add the
JAR file to the server’s classpath. This may be a more efficient method if
the handler is to be used by more than one Web service.

You can define two types of handlers:

• Request handlers – are invoked before the actual Web service method is
invoked. For example, you may have a handler that implements
customized authentication logic, depending on the request.

• Response handlers – is invoked after the actual Web service method is
invoked. For example, you may have a handler that sends the contents of
a SOAP message after the method is invoked.

Handlers can not be created, edited, or moved using the WST development
tool, only added and deleted.

Defining handlers
A handler definition can be added to a Web service provided the handler class
has already been deployed or installed in the server, as described above.

The WST development tool and the Web console have menu options to add a
handler from the Handlers folder, and set necessary properties for the handler.
A request and response handler contains these properties:

CHAPTER 4 Web Services Administration

User’s Guide 43

• A name by which the handler is identified

• The Java class that implements the handler

• Any parameters that the handler requires

Some examples of built-in handlers include:

• org.apache.axis.handlers.LogHandler

• org.apache.axis.handlers.SimpleSessionHandler.

Refer to the Java documentation of these handlers for more information. Java
documentation can be accessed from the EAServer contents screen at
http://host_name:8080 where host_name is the name of the your EAServer host.
localhost is the default.

Security
This section describes how to implement security for Web services.

Roles and security realms
This section contains the procedures for establishing security for your Web
services from the WST development tool. Each procedure described in this
section requires that you first connect to the server that contains the Web
service.

Establishing Web services security is based on roles. For complete information
about roles, see the EAServer Security Administration and Programming
Guide.

Web services security tutorial

EAServer includes a Web services security tutorial that familiarizes you with
establishing different levels of security for a Web service and its
methods/operations. See Chapter 10, “Using the Web Services Toolkit
Samples” for more information.

Security

44 Web Services Toolkit

Managing security realms and roles

EAServer contains a default security realm. The security realm is a container
used to store the roles used to allow, and limit, access to your Web services.
When you connect to EAServer from the WST development tool, you see the
security realm.

❖ Refreshing a security realm

If you add a role to a security realm or make any other changes, refresh the
realm.

• Right-click the security realm and then select Refresh

Managing roles

A role can consist of authorized users, authorized digital Ids and authorized
operating system users. Create a role in a security realm. Add roles at the Web
service or Web service operation level to restrict access to those resources.

Note When you manage roles from the WST development tool, you
manipulate the Repository of the server to which you are connected. When you
add, delete, or otherwise modify a role, those changes are reflected in
EAServer Manager.

❖ Creating a role

1 Expand the security realm.

2 Right-click the Roles icon and then select Create role.

3 Enter a role name and description and click OK.

❖ Deleting an existing role

1 Expand the security realm.

2 Expand the roles icon.

3 Right-click the role and then select Delete.

❖ Allowing a user, group, or digital ID access to a role

Each role can include specific user names and digital IDs. If you use native
operation system authentication, you can also include operating system group
names; all users in the specified group are affected.

1 Expand the security realm.

CHAPTER 4 Web Services Administration

User’s Guide 45

2 Expand the roles icon.

3 Expand the role.

4 Right click one of the following:

• Allowed Users | Allow User

• Allowed Groups | Allow Group

• Allowed IDs | Allow ID

5 Supply the name of the allowed user, group, or ID.

Establishing Web service access

This section describes how to use roles to limit access to Web services and to
methods/operations within a Web service.

When you add a role to a Web service or Web service operation, only the
allowed users, groups, or digital IDs have access to that resource.

❖ Adding a role to a Web service

1 Expand the Web service collection.

2 Expand the Web service.

3 Right-click Roles and then select Add role.

4 Select a role from the list of defined roles that meets the security needs of
the Web service and click OK. EAServer comes with predefined roles. For
example, the “everybody” role allows unlimited access to authenticated
users.

❖ Adding a role to a Web service operation

You can further restrict access to a Web service by assigning roles at the Web
service operation/method level. For example, you could add the “everybody”
role to the Web service, which allows unrestricted access to the Web service,
but assign a more restrictive role to those operations that require additional
restrictions.

1 Expand the Web service collection.

2 Expand the Web service.

3 Expand the Operations icon.

4 Expand the operation to which you are adding a role.

5 Right-click Roles and then select Add role.

Security

46 Web Services Toolkit

6 Select a role from the list of defined roles that meets the security needs of
the Web service operation and click OK.

If you do not assign a role to a Web service or operation, you do not need to
provide a user name or password to invoke them. If you do assign a role to the
Web service or the operation, you need to provide a valid user name and
password for a user within the assigned role.

XML-Security
This section describes how to enable XML-Security for your Web services.

XML-Security provides a digital signature and encryption for the SOAP
messages sent to and from the Web services container in EAServer. An
implementation of XML Security is available at the Apache Web site at
http://xml.apache.org/security.

Configuring EAServer and enabling XML-Security

EAServer must be configured with the necessary JAR files for your XML-
Secure enabled Web service to work properly.

❖ Enabling XML-Security

1 Follow the instructions to locate and download the xml-security-bin-
1_0_4.zip file (which contains the following JAR files) from the XML-
Security package at http://xml.apache.org/security and install them in either
$JAGUAR/java/classes (UNIX), or %JAGUAR%\java\classes
(Windows):

• junit3.7.jar – do not install this JAR file, since one is installed as
part of your EAServer installation.

• xalan.jar – verify that no other xalan.jar file is set in the
EAServer classpath, otherwise you may experience class
conflicts.

• xml-apis.jar

• log4j-1.2.5.jar – do not install this JAR file, since one is installed
as part of your EAServer installation.

• xercesImpl.jar

• xmlParserAPIs.jar

CHAPTER 4 Web Services Administration

User’s Guide 47

• xmlsec.jar

• xmlsecSamples.jar

• xmlsecTests.jar

2 Update the EAServer classpath/bootclasspath to use the XML-Security
JAR files:

• For Win2k/WinXP:

Edit %JAGUAR%\bin\user_setenv.bat (create one if necessary) and
add these lines:

set JC=..\java\classes
set EAS_CLASSPATH_P0=%JC%\junit.jar
set EAS_CLASSPATH_P0=%EAS_CLASSPATH_P0%;%JC%\log4j.jar
set EAS_CLASSPATH_P0=%EAS_CLASSPATH_P0%;%JC%\xmlsec.jar
set EAS_CLASSPATH_P0=%EAS_CLASSPATH_P0%;%JC%\xalan.jar
set EAS_CLASSPATH_P0=%EAS_CLASSPATH_P0%;%JC%\xercesImpl.jar
set EAS_CLASSPATH_P0=%EAS_CLASSPATH_P0%;%JC%\xml-apis.jar
set EAS_CLASSPATH_P0=%EAS_CLASSPATH_P0%;%JC%\xmlParseAPIs.jar
set EAS_BOOTCLASSPATH_P0=%EAS_CLASSPATH_P0%

• For UNIX:

Edit $JAGUAR/bin/user_setenv.sh (create one if necessary), and add
these lines:

JC=../java/classes
EAS_CLASSPATH_P0=$JC/junit.jar
EAS_CLASSPATH_P0=$EAS_CLASSPATH_P0;$JC/log4j.jar
EAS_CLASSPATH_P0=$EAS_CLASSPATH_P0;$JC/xmlsec.jar
EAS_CLASSPATH_P0=$EAS_CLASSPATH_P0;$JC/xalan.jar
EAS_CLASSPATH_P0=$EAS_CLASSPATH_P0;$JC/xercesImpl.jar
EAS_CLASSPATH_P0=$EAS_CLASSPATH_P0;$JC/xml-apis.jar
EAS_CLASSPATH_P0=$EAS_CLASSPATH_P0;$JC/xmlParseAPIs.jar
EAS_BOOTCLASSPATH_P0=$EAS_CLASSPATH_P0

Note By setting the EAS_CLASSPATH_PO variable, you modify the
server startup script to place the XML-Security jars in the server
classpath/bootclasspath first.

3 Shutdown and restart EAServer.

Exposing and deploying components as Web services

48 Web Services Toolkit

Exposing and deploying components as Web services
This section describes how to expose and deploy files and components as Web
services:

• Deploying refers to the process of selecting a Java file or component that
is located in the WST development tool (In the Package Explorer or
Project view) and using one of the Deploy wizards to create the Web
service and install/deploy it to a server as well as display it in the Sybase
Web Services view.

• Exposing refers to the process of selecting a supported component type
that already resides on the server (Sybase Web Services view) and using
one of the Expose wizards to make it available as a Web service.

There are several ways to deploy and expose components as Web services
depending on the options you choose, type of component, and location of
component or file. For example:

• You can use the “Quickly Deploy as Web Service” or “Deploy as Web
Service” wizards. Both of these wizards are available from the package
explorer and from individual projects and are used to deploy a Java file as
a Web service. Quickly deploying a Web service automatically uses
default settings for most options.

• You can use the “Expose as Web Service” or “Quickly Expose as Web
Service” wizards. Both of these wizards are available from the Other
components folder of the Sybase Web Services view, and allow you to
expose an existing EAServer component as a Web service.

• From the package explorer you can also select a WSDD file and choose
Deploy (which is different from the wizards above).

Exposing Components as Web services
This section describes how to expose a component as a Web service.

Displaying parameter
names

For the parameter names of an exposed component to display in the WST
development tool:

1 Verify the parameter names are correct in the component’s IDL file.

2 Verify the stub classes are generated and compiled in debug mode before
the component is exposed as a Web service.

CHAPTER 4 Web Services Administration

User’s Guide 49

Before generating stubs from EAServer Manager for the component you are
exposing, use one of two ways to set the compiler to compile stubs using debug
mode:

1 Add -DSERVER_STUBS_DEBUG=true to the
com.sybase.jaguar.server.jvm.options property in the server.props file,
located in the /repository/Server subdirectory of your EAServer
installation. server is the name of the EAServer you are modifying. For
example, jaguar.props.

Restart the server. This server-wide setting results in all classes being
compiled with debug mode for the server.

2 Add com.sybase.jaguar.component.javac.debug=true to the
component.props file for the component you are exposing, located in the
/repository/component/package_name subdirectory of your EAServer
installation. package_name is the name of the package that contains the
component you are modifying, and component is the name of the
component within that package. For example,
/repository/SurfSideVideoPB/n_store.props.

This affects the modified component only, since code generation and
compilation checks the property at the component level first. If the
component.javac.debug is set to “false,” the classes are compiled with
normal mode (non-debug) even though SERVER_STUBS_DEBUG is set to
true in the server.props file.

❖ Using the Expose wizard to expose a Web service

1 From the Sybase Web Services view, highlight the component that you are
exposing.

2 Right-click the file and select Expose As Web Service.

3 The Expose as a Web Service wizard displays. Table 4-6 describes the
Expose as a Web Service properties. Complete the information and click
next to move to the next window and Finish when done.

Error messages are logged in the server’s log file and server’s servlet log
file. Check these files for any error conditions. For example, if you see a
non-unique context path error, verify that the exposed component does not
share the same Web collection name and Web service name as another
exposed component, and re-expose the Web service.

Exposing and deploying components as Web services

50 Web Services Toolkit

Table 4-6: Exposing and Deploying Web service wizard options and
properties

Window Property Description

General
Options

Collection
Name

Name of the Web service collection to which this Web service is exposed.

Make sure the Web collection name and Web service name combination are
unique when exposing the component as a Web service.

Web Service
Name

Name of the Web service.

Location URL The location where the Web service is available.

Target
Namespace

A valid Uniform Resource Identifier (URI) for the location where the WSDL
document is published. The target namespace should not include the file name;
WST appends the appropriate file name when the WSDL document is
generated. The target namespace can be a Uniform Resource Name (URN),
which is a globally unique and persistent URI.

http://www.com.sybase.webservices is an example of a valid URI.

urn:simpleJavaClass.test is an example of a valid URN.

Port Type Name Describes a collection of operation elements that define the abstract interface
of the Web service. The port type name provides a unique name among all port
types defined within the WSDL document. For example:

<portType name="SimplePortType">

Binding Name Contains the details of how the elements of the port type name are converted
to a concrete representation of the Web service by combining data formats and
protocols:

<binding name="TestBinding"

Service Port
Name

Indicates the Web service endpoint address. For example:

http://EAServer_1:8080/webservices/testPort or

testPort

Implementation
Class

The implementation class file to which the Web service is mapped.

When you expose a component as a Web service a service implementation
class file with a .java.new extension is created. Remove the .new extension and
enter your business logic into the implementation file before deploying it as a
Web service. Right-click the file and select Refactor | Rename to rename or
remove the .new exention..

Type Mapping
Version

The type mapping version. Valid options are 1.1 (the default) and 1.2.

Soap Action The URI for the SOAPAction HTTP header for the HTTP binding of SOAP.
The SOAPAction HTTP request header field can be used to indicate the intent
of the SOAP HTTP request. The URI identifies the intent.

CHAPTER 4 Web Services Administration

User’s Guide 51

Binding Style The SOAP binding style:

• Document – indicates that the SOAP body contains an XML document.

• RPC (remote procedure call) – indicates that the SOAP body contains an
XML representation of a method/operation call.

• Wrapped – a document literal variation, that wraps parameters as children
of the root element.

Soap Use The SOAP body use:

• Literal – if using a document binding style.

• Encoded – if using an RPC binding style.

Method
Selection

Method Name Select the methods/operations of the Web service for which the WSDL is to be
generated.

Mapping Package Name The package to which this Web service maps.

Deployment Deployment
Scope

The scope of the Web service deployment defined in the server-config.wsdd;
application, session, or request (the default). For example:

 <parameter name="scope" value="Application"/>

If Set to:

• request – a new service implementation instance is created for any request.

• application – only one shared service object is created for all requests.

• session – a new object for each session-enabled client is created.

If this is a Java class being deployed to EAServer there are two session
classes/tables to store the objects; one for an application scoped service, and
the other for a session scoped service. Once the object is created, it is saved in
the appropriate table. When the next request arrives, the server checks the
table for the object with the service name and reuses the object. If the object is
not found, a new object for the class is created.

The session scope can have a timeout setup to remove an object from the table.
You can define a handler to set the timeout in the service. You can not set a
timeout paramter in the .wsdd file, since the runtime environment does not read
the timeout option in the .wsdd file. The application scope service timeout is
not currently implemented.

Destination Server Highlight the server to which this Web service is deployed and exposed from.

Web Service
Collection

The Web service collection to where this Web service is contained.

Window Property Description

Exposing and deploying components as Web services

52 Web Services Toolkit

Using the quickly expose wizard

Use the quickly expose wizard to use commonly used defaults to expose a
component as a Web service.

❖ Using the quickly expose wizard to expose a Web service

1 Highlight the package that contains the file (Java file, component, Web
service, and so on) that you are deploying and exposing.

2 Right click the file and select Quickly Expose As a Web Service.

3 The Progress information window displays, indicating that the Web
service is being exposed to the server to which you are connected.

Deploying Components as Web services
This section describes how to deploy a component or file as a Web service.

❖ Using the deploy wizard to deploy a Web service

1 From the Package Explorer or Project that contains the file to be deployed,
highlight the Java file that you are deploying.

2 Right click the file and then select Deploy As Web Service.

3 The Deploy as a Web Service wizard displays. Table 4-6 describes the
Deploy as a Web Service properties. Complete the information and click
next to move to the next wizard and Finish when done.

Using the quickly deploy wizard

Use the quickly deploy wizard to use commonly used defaults to deploy a
component as a Web service.

Summary Summary of your selections. Review and click Finish to deploy, or Back to
make modifications.

If you are deploying a Java class, when you click Finish, the wizard creates a
.wsdd (Web service deployment descriptor) which is an XML file that contains
deployment information and location of the service implementation file, and
all dependent JARs and classes. The JAR file’s format matches the format that
the server uses to export Web services and expects on import.

Window Property Description

CHAPTER 4 Web Services Administration

User’s Guide 53

❖ Using the quickly deploy wizard to deploy a Web service

1 Highlight the component that you are deploying.

2 Right click the file and then select Quickly Deploy As a Web Service.

3 The Progress information screen displays indicating that the Web service
is being deployed to the server to which you are connected. The deployed
Web service also appears in the Sybase Web services view.

Generating WSDL
Web service definition language (WSDL) is the XML file that stores the
metadata used to describe your Web service, defines service endpoints, and
publishes information about your Web service. WSDL helps automate the
generation of client proxies for Web services in a language-and platform-
independent way. Like the IDL file for CORBA, a WSDL file provides the
framework for client and server communication.

❖ Generating the WSDL

1 From a project or Package Explorer, highlight the package that contains
the Java file for which you are generating WSDL.

2 Right click the file and select Generate WSDL.

3 The Generate WSDL wizard displays. Table 4-7 describes the Generate
WSDL properties. Complete the information and click next to move to the
next window and Finish when done.

Table 4-7: Generating WSDL wizard options and properties

Window Property Description

General options Web Service
Name

The Web service for which you are generating WSDL.

Location URL The location where the Web service is available.

Target
Namespace

A valid Uniform Resource Identifier (URI) for the location where the WSDL
document is published. The target namespace should not include the file name;
WST appends the appropriate file name when the WSDL document is
generated. The target namespace can be a Uniform Resource Name (URN),
which is a globally unique and persistent URI.

http://www.com.sybase.webservices is an example of a valid URI.

urn:simpleJavaClass.test is an example of a valid URN.

Generating WSDL

54 Web Services Toolkit

Port Type Name Describes a collection of operation elements that define the abstract interface
of the Web service. The port type name provides a unique name among all port
types defined within the WSDL document. For example:

<portType name="SimplePortType">

Binding Name Contains the details of how the elements of the Port type name are converted
to a concrete representation of the Web service by combining data formats and
protocols:

<binding name="TestBinding"

Service Port
Name

Indicates the Web service endpoint address. For example:

http://EAServer_1:8080/webservices/testPort or

testPort

Implementation
Class

The name of the class file implementing the Web service.

Type Mapping
Version

The type mapping version. Valid options are 1.1 (the default) and 1.2.

Soap Action The URI for the SOAPAction HTTP header for the HTTP binding of SOAP.
The SOAPAction HTTP request header field can be used to indicate the intent
of the SOAP HTTP request. The URI identifies the intent.

Binding Style The SOAP binding style:

• Document – indicates that the SOAP body contains an XML document.

• RPC (remote procedure call) – indicates that the SOAP body contains an
XML representation of a method/operation call.

• Wrapped – a document literal variation, that wraps parameters as children
of the root element.

Soap uUse The SOAP body use:

• Literal – if using a document binding style.

• Encoded – if using an RPC binding style.

Method
Selection

Method nName Select the methods/operations of the Web service for which the WSDL is to be
generated.

Location File Location The location and file name (ending with .wsdl) of the generated WSDL file.

Summary Summarizes your selections. Review and click Finish to generate the WSDL,
or click Back to change any of your selections.

Window Property Description

CHAPTER 4 Web Services Administration

User’s Guide 55

UDDI administration
From the Sybase Web Services view of the WST development tool, you can
publish a WSDL document that describes your Web service and its location to
a UDDI registry and unpublish from a UDDI site. See “UDDI 2.0” on page 4
for more information.

❖ Publishing to a UDDI registry

1 Expand the Web services folder.

2 Right-click the Web service and select Publish.

3 The Publish to UDDI wizard displays. Table 4-8 describes the Publish to
UDDI properties. Complete the information and click Next to move to the
next window and click Finish when you are done.

Table 4-8: Publishing to a UDDI wizard options and properties

Window Property Description

Select registry
Profile

Registry Name The registry to which you are connecting. From the Registry Name
drop-down list, select a predefined site to which you want to log in,
or select the Enter New Registry Name entry and enter a new name.
You must be a registered user on the site where you log in. The
registry name you select determines the default values of the query
URL and the publish URL. You can modify these entries. For new
names, you must provide connection information.

Query URL The query URL is the location from which you query the UDDI.

 Publish URL For publishing purposes, you need both the query and publish URLs.

 User Name The user name used for accessing the UDDI site.

Password The password used with the user name used to access the UDDI site.

Save Profile Use this button to save a profile. It will be added to the Registry
Name drop-down list for easy access.

Delete Profile Use this button to delete a profile that you no longer require.

Ping Use this button to test your profile connection. You should be able to
ping before moving on to the other windows.

Business
Information

Name The name of the organization name by which this UDDI entry is
known.

Description A description of the organization.

Use Existing
tModel Key

Your business model. The tModel is an abstract description of a
particular specification or behavior to which the Web service
adheres.

Service
Description

A description of the service the business provides.

UDDI administration

56 Web Services Toolkit

❖ Unpublishing from a UDDI

1 Expand the Web services folder.

2 Right-click the Web service and select Unpublish.

3 The Unpublish from UDDI wizard displays. Table 4-9 describes the
Unpublish to UDDI properties. Complete the information and click Next
to move to the next window and Finish when done.

Table 4-9: Unpublishing from a UDDI wizard options and properties

Retrieve Existing
Businesses and
tModels from
Registry

You can use this button to query the UDDI registry for tModel and
business information instead of entering this information manually.

Summary Displays a summary of your selections. Click Finish to publish to the
UDDI site, or click Back to change your selections.

Window Property Description

Window Property Description

Select
Publishing
Profile

Registry Name The registry to which you are connecting. From the Registry Name
drop-down list, select a predefined site to which you want to log in,
or select the Enter New Registry Name entry and enter a new name.
You must be a registered user on the site where you log in. The
registry name you select determines the default values of the Query
URL and the Publish URL. You can modify these entries. For new
names, you must provide connection information.

Query URL The query URL is the location from which you query the UDDI.

 Publish URL For publishing and unpublishing purposes, you need both the query
and publish URLs.

 User Name The user name used for accessing the UDDI site.

Password The password used in connection with the user name used to access
the UDDI site.

Save Profile Use this button to save a profile. It will be added to the Registry
Name drop-down list for easy access.

Delete Profile Use this button to delete a profile that you no longer require.

Ping Use this button to test your profile connection. You should be able to
ping before moving on to the other windows.

Select UUIDs Name of UUID A list of universally unique identifier (UUID) that identifies the
UDDI entry for all of your UDDI entries is displayed. Check only
those entries that you want to unpublish.

Check for Empty
Businesses

Select to check for empty businesses. An empty business may not
have a UDDI associated with it.

CHAPTER 4 Web Services Administration

User’s Guide 57

Other components
The Other Components folder shows components located on the server to
which you are connected that can be converted to the SOAP message format.
In other words the Other Components folder contains components capable of
being exposed as Web services.

There may be components on the server to which you are connected that, in
order to make available, you must modify the component. For example, a
component can be exposed as a Web service only if it is stateless. You can use
EAServer Manager to mark the component stateless. Until then, it does not
display in the Other Components folder.

See “Exposing Components as Web services” on page 48 and “Using the
quickly expose wizard” on page 52 for information about deploying other
components as Web services.

Check for
Unused tModels

select to check for unused tModels. An unused tModel may not have
a UDDI associated with it.

Selected UUID
Details

Service Details The service details of your UDDI entry as identified by the UUID
identifier.

Summary Displays a summary of your selections. Click Finish to unpublish
from the UDDI site, or click Back to change your selections.

Window Property Description

Other components

58 Web Services Toolkit

User’s Guide 59

C H A P T E R 5 Web Console—Web Services

The Sybase Web console is a Web based management console that
provides plug-in support, for example Web Services Toolkit. This chapter
describes how to use the Web console to manage Web services. For
information about using the Web console to manage the private UDDI
server, and publish to UDDI registries, see Chapter 6, “Web Console—
Registry Services.”

Introduction
The Web console is a J2EE Web application, distributed with EAServer,
which allows you to view and manage Web services contained in
EAServer.

You can perform many of the same functions described in this chapter
using wstool and wstkeytool commands or the WST development tool
interface.

❖ Connecting to the Web console

To connect to the Web console, EAServer must be running.

Topic Page
Introduction 59

Plug-in, domain, display, and server administration 63

Web service collection administration 65

Web service administration 67

UDDI administration 71

Type mappings 73

Managing security realms and roles 74

Roles 74

Runtime monitoring 76

Non-Web service components 77

Introduction

60 Web Services Toolkit

1 In your Web browser, go to the Web console application located at at
http://hostname:8080/WebConsole, where hostname is where
EAServer runs.

2 Enter a user name and password and click Login to connect to the Web
console. For complete access use jagadmin as the user name. The
default password for jagadmin is blank.

Logging in to the Web console versus logging into Sybase Central
There are some differences you should be aware of regarding logging in to
the Web console versus EAServer using Sybase Central:

• Sybase Central does not require you to log in. Sybase Central is not
hosted in an application server, has no security in and of itself, and
stores its information based on operating system authentication
information, not a separate authentication system. Sybase Central
stores its information related to who the user logged in to the
operating system as and what machine you logged in from.

• Web console stores its information based on the user logged in to the
Web console. This allows you to retain your preferences no matter
what machine you logged in from or who you logged in to the
operating system as.

If the Web console is hosted in the same server that you want to connect
to, you must log in to both the Web console and the server, using, in most
cases, the same user name and password. You can, however, mark your
server profile as “auto connect” (described in Table 5-1 on page 65),
which means you only need to log in to the Web console, and it
automatically logs in to the server.

Web console security and access
The Web console uses Web application security. A user must be created
and added to the Admin role to have access to all of the Web console’s
features. By default, jagadmin is a member of the Admin role. There is
also a role named WebConsole_ReadOnly. Users that belong to this role
have read only access to the Web console; changes made to user’s
preferences or any profiles are not saved.

CHAPTER 5 Web Console—Web Services

User’s Guide 61

Adding an authentication service to EAServer

By default, EAServer does not have a default authentication service
installed. Only the jagadmin user is authenticated. Authentication is
enabled either by installing a custom authentication service (see
html/ir/CtsSecurity__AuthService.html in your EAServer installation
directory), or by installing a JAAS login module.

EAServer provides a sample server side JAAS login module. To install the
sample JAAS login module in EAServer:

1 From EAServer Manager, select Server Properties | Security, and set
the JAAS configuration file to
$JAGUAR/html/classes/Sample/JAAS/jaas.cfg.

2 Select Server | Advanced | All Properties tab, and if necessary, define
a new property com.sybase.jaguar.server.jaas.section. Set the value of
this property to UsernamePasswordBased.

3 Restart the server.

The jaas.cfg file points to your
$JAGUAR/html/classes/Sample/JAAS/users.xml file, which contains
two users, jagadmin and anonymous. By default, jagadmin is a
member of the Admin role and anonymous is a member of the
WebConsole_ReadOnly role. If you log in to the Web console as
anonymous, and use the password “pwd,” you see that changes made
to server profiles, preferences, and so on, persist only for the length of
your session (until you log out or the session times out).

Note Check with your EAServer administrator before making any
changes. For more information see the JAAS Web site at
http://java.sun.com/products/jaas/.

users.xml file This modified users.xml file illustrates how you can implement
authentication using a JAAS login module:

 <?xml version="1.0" encoding="UTF-8" ?>
 <user_info policy="MD5">
 <user>
 <name>jagadmin</name>
 <description>com.sybase.jaguar.server.jaas.section=UsernamePasswordBased
 </description>
 </user>
 <user>
 <name>anonymous</name>

Introduction

62 Web Services Toolkit

 <description />
 <password>pwd</password>
</user>
<user>
 <name>new_user</name>
 <description />
 <password>pwd</password>
</user>
</user_info>

Disabling JavaScript
You can run the Web console with JavaScript disabled, although the
context-sensitive menus require JavaScript. After enabling JavaScript in
the browser, log in to the console again.

The wizard functionality of the Web console assumes that JavaScript is
enabled. If disabled, there are minor differences in wizard behavior. These
differences include:

• The context menus do not appear. You must instead use the menu
below the tree view.

• Combination dialogs do not work.

• Wizards and property sheets do not indicate default values.

• Wizards are always shown in the right pane, even if the preference is
set for pop-up windows.

Browser support
The console runs best with Internet Explorer version 5.5 and higher,
Netscape version 7.x and higher, and Mozilla version 1.0 and higher.

Authentication time-out in EAServer
The default EAServer authentication time-out is set to 1 hour or 3600
seconds. If the console remains unused for longer than this, you must log
in again. You can adjust the time-out property by modifying the
com.sybase.jaguar.server.authtimeout property from EAServer Manager.

CHAPTER 5 Web Console—Web Services

User’s Guide 63

Session time-out in EAServer
The default session time-out for the console is to never time-out. The
associated properties are:

• com.sybase.jaguar.webapplication.session-config.session-timeout

• com.sybase.jaguar.webapplication.session-config

Plug-in, domain, display, and server administration
This section describes how to use the Web console to manage the Sybase
Web services plug-in, domains, and servers to which Web service
collections belong. It also describes how to modify preferences which
determines how Web console wizards, nodes, and the interface are
displayed.

❖ Modifying preferences

1 Highlight the Preferences icon. The General properties tab displays.

• Show wizards in – determines where and how the Web console
display wizards.

• Show category nodes in – determines how category nodes
display.

• Look and feel – determines the look and feel of the interface.

2 Click Apply when done.

❖ Defining Web Services Toolkit plug-in parameters

You can establish default values for Web Services Toolkit, which allows
you to manage the connection information for server profiles.

1 Click the Plug-ins folder.

2 Highlight the Sybase Web Services Toolkit folder.

3 Complete the General properties section to establish server profile
values. Table 5-1 on page 65 describes the properties.

❖ Creating a domain

1 Right-click the Web Services Toolkit icon and select Create Domain.

Plug-in, domain, display, and server administration

64 Web Services Toolkit

2 The Create Domain wizard appears. Enter the information as
instructed by the wizard and click Next. When finished, click Finish.
The new domain appears.

❖ Deleting a domain

• Right-click the domain to delete and select Delete.

❖ Creating a server profile

1 Right-click the domain in which the server profile you are creating
belongs and select Create Server Profile.

2 The Create Server Profile wizard appears. Enter the information as
instructed by the wizard and click Next. When finished, click Finish.
The new server profile appears in the domain in which it was created.
Table 5-1 on page 65 describes the server profile properties.

❖ Connecting to a server

You can connect only to those servers for which you have a server profile.

1 Expand the domain in which the server profile you are connecting
belongs.

2 Right-Click the server profile you want to connect to and choose
Connect from the menu.

3 If the connection fails, click the Connection Details tab to review the
connection details. Table 5-1 on page 65 describes the connection
properties.

❖ Restarting, stopping, deleting, or disconnecting from a server profile

• Right-click the server and click the action you want to perform:

• Restart – restarts the server to which you are connected.

• Stop – stops the server to which you are connected.

• Delete – deletes the server profile for the server to which you are
connected.

• Disconnect – disconnects from the server to which you are
connected.

Table 5-1 describes plug-in, domain, and server properties.

CHAPTER 5 Web Console—Web Services

User’s Guide 65

Table 5-1: Plug-in, domain, and server profile properties

A node can be a plug-in, domain, server profile, Web service collection,
Web service, and so on. If node information changes, or you want to reset
the view, right-click the node you are refreshing and select Refresh.

Web service collection administration
You can create and maintain Web service collections on each server being
administered by the Web console.

❖ Viewing or modifying Web service collection properties

1 Expand the server that contains the Web service collection whose
properties you are viewing or changing.

Property Description

Select Domain
(plug-in property
only)

The domain for the plug-in.

Select Server
(plug-in property
only)

The server for the plug-in.

Server Profile
Name (server
property only)

The name of the server profile that you are creating.

Machine Name The name of the host machine where the server resides.

Protocol The protocol used to connect to the server; “http” or
“https.”

HTTP Port The port number of the host used to connect to the server;
for example, 8080.

User ID The user name used to connect to the server. jagadmin is
the default. Use jagadmin or another member of the
Admin role to connect to the Web services container for
access to all of Web Console’s functions. Members of the
WebConsole_ReadOnly role have limited access to the
Web Console.

Password The password of the user connecting to the server. The
default for jagadmin is blank.

Auto Connect on
Console Login

Select this box to connect to this profile automatically
when you log in to the Web console.

Web service collection administration

66 Web Services Toolkit

2 Highlight the Web service collection. The Web console displays
General and Web Service tabs. Table 5-2 on page 67 describes the
Web service collection properties.

3 Make any changes and click Accept when done or Reset to ignore
your changes.

❖ Exporting a Web service collection

You can export a Web service collection to a WAR file. Once exported,
you can import and deploy the WAR file to and from other Web service
servers.

1 Expand the server that contains the Web service collection you are
exporting.

2 Right-click the Web service collection and select Export.

3 Follow the wizard instructions to export the Web service collection.
By default, the Web service collection is exported to a file named
wscoll.war, where wscoll is the name of the Web service collection.

❖ Importing a Web service collection

You can import a Web service collection from a WAR file into the Web
services server to which you are connected.

1 Expand the server to which you want to import the Web service
collection.

2 Right-click the Web Service Collection folder and select Import.

3 Follow the wizard instructions to import the Web service collection.
Use Browse to locate the WAR file that contains the Web service
collection. “ws” is the default Web service collection, if not specified.

4 When you click Finish, the Web service collection is imported and
displays under the Web Service Collection folder.

❖ Deleting a Web services collection

To delete a Web collection and all of the Web services it contains:

1 Expand the server that contains the Web service collection you are
deleting.

2 Right-click the Web service collection and select Delete.

Table 5-2 describes the Web services collection properties.

CHAPTER 5 Web Console—Web Services

User’s Guide 67

Table 5-2: Web service collection properties

Web service administration
This section describes the procedures used to manage individual Web
services.

❖ Viewing or modifying Web service properties

1 Expand the Web service collection that contains the Web service you
want to view or modify.

2 Highlight the Web service.

3 Select the General tab to view the Web service properties. See
Table 5-3 on page 68 for a description of the Web service properties.

4 Select the WSDL tab to view the WSDL for this Web service.

❖ Activating a Web service

If a Web service is deactivated, the Web service icon has an “X” through
it. You must activate the Web service to make it available to clients.

1 Expand the Web service collection that contains the Web service you
want to activate.

2 Right-click the Web service and select Activate.

❖ Deactivating a Web service

If a Web service is activated, the Web service icon appears without an “X”
through it. Deactivate a Web service to make it unavailable to clients.

 Property Description

Name The name of the Web services collection.

Description A description of the Web services collection.

Realm The realm (if any) to which the Web collection belongs. A realm defines the
scope of authentication and authorization, and is also referred to as a security
realm.

HTTP
Authentication
Method

The authentication method (if any) used by your Web service collection.
Authentication method choices are the same as used by Web applications. See
Chapter 3, “Web Application Security” in the EAServer Security
Administration and Programming Guide for more information.

Web service administration

68 Web Services Toolkit

1 Expand the Web service collection that contains the Web service you
want to deactivate.

2 Right-click the Web service and select Deactivate.

❖ Deleting a Web service

This procedure deletes a Web service from a Web service collection.

1 Expand the Web service collection you are deleting.

2 Right-click the Web service and select Delete.

Table 5-3 describes the Web service properties.

Table 5-3: Web service properties

Web service operation management
This section includes the procedures used to manage the operations
(methods) of a Web service.

Overloaded methods If you deploy a Web service that contains overloaded methods, the Web
console displays only the first method of the overloaded method. Allowing
or disallowing access to the method, affects all overloaded methods.

Property type Property Description

General Name The name of the Web service.

Description A description of the Web service.

Implementation
type

The type of component, class, or file that implements the
Web service.

Implementation
class name

The name of the class file implementing the Web service.

Style The SOAP binding style:

• Document – indicates that the SOAP body contains an
XML document.

• RPC (remote procedure call) – indicates that the SOAP
body contains an XML representation of a method call.

Use The SOAP body use:

• Literal – if using a document binding style.

• Encoded – if using an RPC binding style.

 Service URL The path, URL, or endpoint from which the Web service
can be accessed.

CHAPTER 5 Web Console—Web Services

User’s Guide 69

For example, if the Web service contains an overloaded method that
contains the methods echo(String, String) and echo (String), the GUI
displays only echo (String, String) twice, but the allowed/disallowed
operation affects both echo(String, String) and echo(String).

❖ Viewing or modifying Web service operation properties

1 Select the Web service collection and Web service you want to view
or modify.

2 Highlight the Operations folder.

3 Select the General tab to view the Web service Operations properties.
See Table 5-4 on page 70 for a description of the Web service
properties.

❖ Allowing an operation

1 Select the Web service collection and Web service that contains the
operation to which you want to allow client access.

2 Highlight the Operations folder.

3 Right-click the operation and select Allow.

❖ Disallowing an operation

1 Select the Web service collection and Web service that contains the
operation to which you want to disallow client access.

2 Highlight the Operations folder.

3 Right-click the operation and select Disallow.

❖ Invoking an operation

1 Select the Web service collection and Web service that contains the
operation you want to invoke.

2 Highlight the Operations folder.

3 Right-click the operation and select Invoke.

4 If a role is assigned to the operation, you may need to provide a user
name and password to invoke the operation:

If a role is not assigned to a Web service operation, you do not need
to provide a user name or password to invoke it. If a role is assigned
to the Web service operation, you must provide a valid user name and
password for a user within the assigned role.

Table 5-4 describes the Web service operation properties.

Web service administration

70 Web Services Toolkit

Table 5-4: Web service operation properties

Web service parameter management
This section describes the procedures used to manage the parameters for a
given method or operation of a Web service.

❖ Viewing or modifying parameters

1 Select the Web service collection and Web service you want to view
or modify.

2 Highlight the Operations folder.

3 Highlight the operation of interest.

4 Click the Parameters folder.

5 Highlight the parameter of interest.

6 Select the General tab to view the parameter properties. See Table 5-
5 for a description of the parameter properties.

Property type Property Description

General Name The name of the operation.

Description A description of the Web service operation.

Binding Style Specify the SOAP binding style:

• Document – indicates that the SOAP body contains an
XML document.

• RPC (remote procedure call) – indicates that the SOAP
body contains an XML representation of a method call.

Return Type Specifies the return type of the method.

Is Return Value
In Response
Message

True or false.

SOAP Action The URI for the SOAPAction HTTP header for the HTTP
binding of SOAP. The SOAPAction HTTP request header
field can be used to indicate the intent of the SOAP HTTP
request. The URI identifies the intent.

Message
Operation Style

Document, RPC, or wrapped.

Is Allowed True or false. Determines whether or not the method is
available to a client as a Web service endpoint.

CHAPTER 5 Web Console—Web Services

User’s Guide 71

Table 5-5: Web service parameter properties

UDDI administration
This section describes how to publish information about your Web service
and its location to a UDDI registry and unpublish from a UDDI site.

❖ Publishing to a UDDI registry

1 Expand the Web Service Collection folder.

2 Expand the Web service collection to which the Web service you are
publishing belongs.

3 Right-click the Web service and then select Publish to UDDI.

4 The Publish to UDDI wizard displays. Table 5-6 describes the Publish
to UDDI properties. Complete the information and click Next to move
to the next window. Click Finish when done.

Table 5-6: Publishing to a UDDI wizard options and properties

 Property Description

Name Name of the parameter.

Type The type of parameter. The type cannot be edited.

Mode The mode of the parameter, “in”, “out”, or “inout”.

Order The order of the parameters. If there is only one parameter,
the order is “0”.

Window Property Description

Publish to
UDDI

Registry Profile The registry to which you are connecting. From the Registry Profile
drop-down list, select a predefined site to which you want to log in
or select the Enter New Registry Profile entry and enter a new name.
You must be a registered user on the site where you log in. The
registry profile you select determines the default values of the
registry name, query URL, and the publish URL. You can modify
these entries. For new profiles, you must provide connection
information.

Registry Name The name of the registry to which you are connecting.

Query URL The location from which you query the UDDI registry.

 Publish URL For publishing purposes, you need both the query and publish URLs.

 User Name The user name for accessing the UDDI site.

Password The password used with the user name used to access the UDDI site.

UDDI administration

72 Web Services Toolkit

❖ Unpublishing from a UDDI

1 Expand the Web Service Collections folder.

2 Expand the Web service collection that contains the Web service you
are unpublishing.

3 Right-click the Web service and then select Unpublish from UDDI.

4 The Unpublish from UDDI wizard displays. Table 5-7 describes the
properties. Complete the information and click Next to move to the
next window. Click Finish when done.

Table 5-7: Unpublishing from a UDDI wizard options and properties

Save Profile Save a profile. It will be added to the Registry Name drop-down list
for easy access.

Delete Profile Delete a profile that you no longer require.

Ping Test your profile connection. You should be able to ping before
moving on to the other wizards.

Business
Information

Name The name of the organization name by which this UDDI entry is
known.

Description A description of the organization.

Use Existing
tModel Key

Your business model. The tModel is an abstract description of a
particular specification or behavior to which the Web service
adheres.

Retrieve Existing
Businesses and
tModels from
Registry

Query the UDDI registry for tModel and business information
instead of entering this information manually.

New Business Add a new business name and information for this Web service.

Summary Displays a summary of your selections. Click Finish to publish to the
UDDI site, or click Back to change your selections.

Window Property Description

Window Property Description

Unpublish from
UDDI

Registry Profile The registry to which you are connecting. From the Registry Profile
drop-down list, select a predefined site to which you want to log in,
or select the Enter New Registry Profile entry and enter a new name.
You must be a registered user on the site where you log in. The
registry profile you select determines the default values of the
registry name, query URL, and publish URL. You can modify these
entries. For new profiles, you must provide connection information.

Registry Name The name of the registry to which you are connecting.

Query URL The location from which you query the UDDI registry.

CHAPTER 5 Web Console—Web Services

User’s Guide 73

Type mappings
Each Web service contains a Type Mapping folder that contains the type
mappings used to transfer data between service endpoints.

For complete information, see Chapter 3, “Components, Datatypes, and
Type Mappings.”

Handlers
See “Handlers” on page 42 for information about handlers.

 Publish URL For publishing and unpublishing purposes, you need both the query
and publish URLs.

 User Name The user name for accessing the UDDI site.

Password The password used in connection with the user name used to access
the UDDI site.

Save Profile Save a profile. It is added to the Registry Name drop-down list for
easy access.

Delete Profile Delete a profile that you no longer require.

Ping Test your profile connection. You should be able to ping before
moving on to the other wizards.

Select
Published
UUIDs to be
Unpublished

Name of UUID Click the Get Published Services Named WebServiceName (where
WebServiceName is the name of the Web service you are
unpublishing). This returns a list of universally unique identifier
(UUID) that identifies the UDDI entry for this Web service. Select
only those entries that you want to unpublish.

Unpublish the
Business

Click this checkbox to unpublish business information for this Web
service.

Unpublish the
tModel

Unpublish tModel information for this Web service.

Summary Displays a summary of your selections. Click Finish to unpublish
from the UDDI site, or click Back to change your selections.

Window Property Description

Managing security realms and roles

74 Web Services Toolkit

Managing security realms and roles
EAServer contains a default security realm. The security realm is a
container used to store the roles used to allow and limit access to your Web
services. When you connect to EAServer from the Web console, you see
the security realm.

❖ Refreshing a security realm

If you add a role to a security realm or make any other changes outside the
current session of the Web console, you must refresh the realm to see those
changes.

• Right-click the security realm and select Refresh.

Roles
EAServer’s authorization model is based on roles. Roles control access to
that Web service, and are located in the Roles folder under each Web
service.

You can also define roles at the Web service operation level. Establishing
roles at the operation/method level gives you even greater access control
of Web services resources.

You can define new roles from the Web console. See the EAServer
Security Administration and Programming Guide for information about
creating and installing roles in EAServer.

❖ Adding a role to a Web service

1 Select the Web service collection and Web service to which you are
adding a role.

2 Right-click the Roles folder and select Assign Roles.

3 Click Next and follow the instructions to add a role to the Web
service. The Role wizard displays a list of existing roles contained on
the server to which you are connected in the Available roles box.
Highlight a role and click the arrow button to place it in the assigned
roles box.

CHAPTER 5 Web Console—Web Services

User’s Guide 75

You can also enter a name of a newly created role and click Add
Newly Available Role to add this role to the Available roles box,
which can then be assigned to the Web service.

4 Click Next to review the roles that you have assigned to the Web
service. Click Finish, Back (to change your settings), or Cancel.

❖ Removing a role from a Web service

This procedure allows you to remove a role that is assigned to a Web
service. It does not delete the role from the server.

1 Select the Web service collection and Web service from which you are
removing a role.

2 Right-click the Roles folder, select the role you want to remove, and
select Remove Role.

3 Click Next and follow the wizard instructions to remove the role from
the Web service. Click Finish, Back (to change your settings), or
Cancel.

❖ Adding a role to a Web service operation

1 Select the Web service collection and Web service to which the
operation belongs.

2 Select the Operations folder and the operation to which you are
adding a role.

3 Right-click the Roles folder and select Assign Roles.

4 Click Next and follow the instructions to add a role to the Web service
operation. The Role wizard displays a list of existing roles in the
Available roles box. Highlight a role and click the arrow button to
place it in the Assigned Roles box.

You can also enter a name of a newly created role and click Add
Newly Available Role to add this role to the Available roles, which
can then be assigned to the Web service operation.

5 Click Next to review the roles that you have assigned. Click Finish,
Back (to change your settings), or Cancel.

❖ Removing a role from a Web service operation

This procedure allows you to remove a role that is assigned to a Web
service operation. It does not delete the role from the server.

Runtime monitoring

76 Web Services Toolkit

1 Select the Web service collection and Web service to which the
operation belongs.

2 Select the Operations folder and the operation from which you are
removing a role.

3 Right-click the Roles folder, select the role you want to remove, and
select Remove Role. The Remove Role wizard displays.

4 Click Next and follow the wizard instructions to remove the role from
the Web service operation. Click Finish, Back (to change your
settings), or Cancel.

Runtime monitoring
You can monitor statistics and performance of your Web services from
within the Runtime Monitoring folder.

❖ Monitoring a Web service

1 Select the server profile, then select RunTime Monitoring folder |
Web Services folder | Web service collection. Select the Web service
that you want to monitor.

2 Right-click the Web service, then select Enable Service Statistics.

3 The Web console displays the available monitoring options. Select:

• Data Throughput – allows you to view various throughput
statistics for this Web service, including:

• Hits – number of times the Web service has been accessed.

• Input statistics – the total number of bytes, message size, and
message timestamp of an incoming message directed to the
Web service.

• Output statistics – the total number of bytes, message size,
and message timestamp of outgoing messages generated by
the Web service.

• Number of failed requests – the total number of failed Web
service requests.

• Performance – allows you to view various performance statistics
for this Web service, including:

CHAPTER 5 Web Console—Web Services

User’s Guide 77

• Hits – number of times the Web service has been accessed.

• Enabled time and total time – when and the amount of time
since monitoring was enabled.

• Dispatch measurements – various statistics that monitor the
performance by calculating various dispatch times, that is,
how quickly the server is responding to a client’s Web
service request.

You should also view the EAServer log files regarding Web service
messages and errors.

Non-Web service components
The Non-Web Service Components folder contains components that are
hosted on the server to which the Web console is connected and capable of
being exposed as Web services.

❖ Exposing a non-Web service component

1 Expand the Non-Web Service Component folder.

2 Expand the package that contains the component you want to expose
as a Web service.

3 Right-click the component and select Expose as Web Service. Follow
the instructions to expose the component as a Web service. Table 4-6
on page 50 describes the properties. When you click Finish, the Web
service is exposed in the Web service collection you entered.

Non-Web service components

78 Web Services Toolkit

CHAPTER 5 Web Console—Web Services

User’s Guide 79

Non-Web service components

80 Web Services Toolkit

User’s Guide 81

C H A P T E R 6 Web Console—Registry Services

This chapter describes how to use the Sybase Management Web console
to administer information contained in the private UDDI server, and
publish to a UDDI registry.

For information about using the Web console to manage Web services, see
Chapter 5, “Web Console—Web Services.”

For information about starting, and configuring the private UDDI server,
see Chapter 7, “The Private UDDI Server.”

Introduction
This portion of the Web console consists of two independent parts:

• An administration console for the private UDDI server – Sybase
provides a private UDDI registry as part of Web services. The private
UDDI registry is an internal registry that provides an index of Web
services in a particular domain, behind the firewall and isolated from
the public network. This ensures that access to both the administrative
features and registry data are secured. Data in the registry is not
shared with any other registries.

• A browser capable of searching and publishing to any UDDI registry.

Topic Page
Introduction 81

Using the Web console 82

UDDI administration 83

Searching and publishing to UDDI registries 84

Using the Web console

82 Web Services Toolkit

Using the Web console
This section describes how to connect to and navigate the Web services registry
section of the Web console.

❖ Connecting to the Web console

To connect to the Web console, EAServer must be running.

1 In your Web browser go to the Web console application located at at
http://hostname:8080/WebConsole, where hostname is the name of the host
on which EAServer runs.

2 Enter a user name and password and click Login to connect to the Web
console. Use jagadmin as the user name. The default password for
jagadmin is blank.

Navigating the console and managing resources
Navigate the Web console by selecting the desired option or folder in the left
pane. UDDI administration functions and property sheets are located in the
UDDI Registries folder within Web Services Registries, and include:

• UDDI on localhost – this is the private UDDI registry.

• Registry Administration – includes defining and managing registries. See
“UDDI registry profile administration” on page 83.

• Search – search UDDI registries. See “Inquiries and searches” on page 84.

• Publish – publish business information to UDDI registries. See
“Publishing” on page 86.

Note For all property sheets, the contents cannot be edited if they are
properties of a node rooted in the Search hierarchy. If they are properties of a
node rooted in the Publish hierarchy, they can be edited, unless they are keys,
which can never be edited. Tables that can be edited include a Delete check box
column and an Add button. Property sheet pages that can be edited display
Apply and Cancel buttons at the bottom of the page.

CHAPTER 6 Web Console—Registry Services

User’s Guide 83

UDDI administration
This section describes how to administer UDDI registries including, the private
UDDI server from the Web console.

Registry profile information (URLs, user IDs, passwords, and so on) and the
users allowed to access them are stored in a repository accessible by the Web
console, along with the information necessary to publish a Web service to a
registry.

Note You must install JDK 1.4 to run the UDDI server. A typical EAServer
installation includes JDK 1.4 and installs the UDDI server.

UDDI registry profile administration
You can create, modify, or delete UDDI registry profiles for the private UDDI
server on the machine to which you are connected, where you can publish
business and service information.

❖ Creating a UDDI registry profile

1 Right-click the Web Services Registry icon and select Create Registry
Profile.

2 Follow the wizard instructions to create the UDDI registry profile. See
Table 6-1 on page 84.

❖ Connecting to a UDDI registry profile

1 Expand the Web Services Registry icon.

2 Right-click the registry profile to which you want to connect and select
Connect. The Web console attempts to connect to the registry with the
information provided when it was created. See Table 6-1 on page 84. If the
Web console successfully connects to the registry, the Search and Publish
folders display. If you want the profile to connect to the private UDDI
registry server when you connect to the profile, click “Automatically
connect to registry Server” checkbox available from the Connection
Details window.

❖ Deleting or modifying a UDDI registry profile

1 Expand the Web Services Registry icon.

2 Right-click the registry profile you want to delete and select Delete.

Searching and publishing to UDDI registries

84 Web Services Toolkit

Table 6-1: UDDI registry profile properties

Searching and publishing to UDDI registries
This section describes how to search, query, and publish to UDDI registries.

Inquiries and searches
From the Web console, you can query the private UDDI registry as well as
external UDDI registries to locate potential clients or suppliers based on
business type, categories, services, and so on. Locate information about
specifications, protocols, and namespaces of services and classification
systems through the tModels that describe and identify them.

Searching UDDI registries

This section describes how to search a registry by business, service, or tModel
entry.

Wizard Property Description

Create UDDI
registry profile

Registry name The name of the registry you are creating or
modifying.

Query URL The location from which you query the UDDI.
The default query URL for the private UDDI
registry is at http://localhost:8080/uddi-
server/inquiry.

 Publish URL To publish, you need both query and publish
URLs. The default publish URL for the private
UDDI registry is at http://localhost:8080/uddi-
server/publish

 User name The user name used for accessing the UDDI
site.

Password The password used in connection with the user
name used to access the UDDI site.

Summary Displays a summary of your selections. Click
Finish to create the UDDI site, or click Back to
change selections.

CHAPTER 6 Web Console—Registry Services

User’s Guide 85

❖ Searching a registry

1 Select the Search folder.

2 Complete the search options for the type of search you want to perform
and click Search. Table 6-2 describes the search properties.

3 When the search completes, click the Results folder to view the results.

4 Click any of the items returned from the search to view additional
information about a business, service, or tModel.

Table 6-2: Search properties

Search type Options Description

Business Business name Enter a name of a business for which you are searching.

Sort by name Select this check box and click Ascending or Descending,
depending on the order you want to display the businesses.

 Sort by date Select this check box to sort businesses by the date they
were created or modified.

 Case sensitive Considers case when performing a search.

Exact match Search only for those businesses that exactly match the
Business name.

Advanced options Advanced search options allow you to search by:

Categories – can be used in searches to locate information
in a registry based on business, service, or tModel
category.

Identifiers – an industry-standard identifier is unique to a
business or tModel.

Add Category Add a category to this business. See “Categories” on page
90 for more information about categories.

Add Identifier Add an identifier to this business. See “Identifiers” on
page 91 for more information about identifiers.

Service Service name Enter a name of a service for which you are searching.

Sort by name Select this check box and click Ascending or Descending
depending on the order you want to display the service.

 Sort by date Select this check box to sort services by the date they were
created or modified.

 Case sensitive Consider case when performing a search.

Exact match Search only for those services that exactly match the
Business name.

Add Category Add a category to this business. See “Categories” on page
90 for more information about categories.

tModel tModel name Enter a name of a tModel for which you are searching.

Searching and publishing to UDDI registries

86 Web Services Toolkit

Publishing
You can publish and manage information about your business, its organization,
Web services, or other services offered from the Web console to a UDDI
registry. After the business or service is published, the information is accessible
to the clients of the registry.

Businesses

A UDDI registry allows you to describe your business and publish information
about the services of that business. You can list categories and identifiers to
which the business belongs, which provides additional ways for clients to
search your business for particular services. You can supply contact
information so that your business can be located easily.

❖ Adding a business

1 Expand the Publish folder.

2 Right-click the Published Businesses folder and select Add Business.

3 Follow the Add Business Entity wizard to add a business. See Table 6-3
on page 87 for a description of the business properties.

❖ Deleting a business

1 Expand the Publish folder.

2 Expand the Published Businesses folder.

3 Right-click the business you want to delete and select Delete.

Sort by name Select this check box and click Ascending or Descending,
depending on the order you want to display the tModel.

 Sort by date Select this check box to sort tModels by the date they were
created or modified.

 Case sensitive Consider case when performing a search.

Exact match Search only for those services that exactly match the
tModel name.

Add Category Add a category to this business. See “Categories” on page
90 for more information about categories.

Add Identifier Add an identifier to this business. See “Identifiers” on
page 91 for more information about identifiers.

Search type Options Description

CHAPTER 6 Web Console—Registry Services

User’s Guide 87

Table 6-3: Business properties

For each published business, you can add a:

• Service – see “Services” on page 87

• Contact – see “Contacts” on page 92

• Discovery URLs – see “Discovery URLs” on page 93

• Categories – see “Categories” on page 90

• Identifiers – see “Identifiers” on page 91

Services

Web services reside in businesses. Web services can be organized into
categories using identifiers, and can include access information that provides
easy access to clients.

❖ Adding a service

1 Expand the Publish folder.

2 Right-click the Published Services folder and select Add Service. Or, to
add a service to an existing business, expand the Published Businesses
folder and select the Published Services folder within it and select Add
Service.

3 Follow the Add Service Entity wizard to add a service. See Table 6-4 on
page 88 for a description of the service properties.

❖ Deleting a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

3 Right-click the service you want to delete and select Delete.

Tab Property Description

Business Name The name of the published business.

Description A description of the business.

Key A unique key that is generated when the business is
registered.

Related
businesses

The key of any related or similar businesses.

Summary Displays a summary of your selections. Click Finish to
create the business, or click Back to change selections.

Searching and publishing to UDDI registries

88 Web Services Toolkit

Table 6-4 describes the service properties.

Table 6-4: Service properties

For each published service, you can add:

• Bindings – see “Bindings” on page 89

• Categories – see “Categories” on page 90

• Identifiers – see “Identifiers” on page 91

tModels

tModels reference a technical specification or description of a Web service.
They provide descriptions of Web services that define service types. Each
tModel includes a unique identifier (key) and points to a specification that
describes the Web service. tModels provide a common point of reference that
allows you to locate compatible services.

❖ Adding a tModel

1 Expand the Publish folder.

2 Right-click the Published tModels folder and select Add tModel.

3 Follow the Add tModel Entity wizard to add a tModel. See Table 6-5 on
page 89 for a description of the tModel properties.

❖ Deleting a tModel

1 Expand the Publish folder.

2 Expand the Published tModels folder.

3 Right-click the tModel you want to delete and select Delete.

Tab Property Description

General Name The name of the service.

Description The description of the service.

Language The language name and description.

Summary Displays a summary of your selections. Click
Finish to add a service, or click Back to change
selections.

CHAPTER 6 Web Console—Registry Services

User’s Guide 89

Table 6-5: tModel properties

For each published tModel, you can add a:

• Discovery URL– see “Discovery URLs” on page 93

• Categories – see “Categories” on page 90

• Identifiers – see “Identifiers” on page 91

Additional registry information for published businesses, tModels, and services

After you have published businesses, tModels, or services to a registry, you can
add additional information to each.

Bindings

Bindings are the mechanisms that bind the abstract definition (overview
document, or description) of a Web service to the concrete representation
(access point) of that service.

❖ Adding a binding to a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

3 Expand the service to which you are adding a binding.

4 Right-click the Bindings folder and select Add ServiceBinding.

5 Follow the Add ServiceBinding Entity wizard to add a binding. See
Table 6-6 on page 90 for a description of the binding properties.

❖ Deleting a binding from a service

1 Expand the Publish folder.

2 Expand the Published Services folder.

3 Expand the service to which the binding you are deleting belongs.

Tab Property Description

General Name Name of the tModel.

Description Description of the tModel.

Language The language name and description.

Summary Displays a summary of your selections. Click
Finish to create the tModel, or click Back to
change selections.

Searching and publishing to UDDI registries

90 Web Services Toolkit

4 Expand the Bindings folder.

5 Right-click the binding you want to delete and select Delete.

Table 6-6 describes the binding properties.

Table 6-6: Binding properties

Categories

Each business classification system has codes for the various categories. A
categories scheme allows you to group registry entries by a given category. For
example, large businesses that conduct a variety of business may be sorted by
several classifications. A company might sell computer hardware and
software. Such a business might be listed with several classifications, such as
computer training, data processing services, and software publishers, and so
on. Each business classification also has a corresponding key.

❖ Adding a category to a service, tModel, or business

1 Expand the Publish folder.

2 Expand the Published Services, tModel, or businesses folder.

3 Expand the service, tModel, or business for which you are adding a
category.

4 Right-click the Categories folder and select Add Category.

5 Follow the Add Category Entity wizard to add a category. See Table 6-7
on page 91 for a description of the category properties.

❖ Deleting a category from a service, tModel, or business

1 Expand the Publish folder.

2 Expand the Published Services, tModels, or Businesses folder.

3 Expand the service, tModel, or business to which the category you are
deleting belongs.

Tab Property Description

General Description A description of the binding.

Access point An address for accessing a Web service must be
a valid URL.

Language The language name and description.

Summary Displays a summary of your selections. Click
Finish to create the binding, or click Back to
change selections.

CHAPTER 6 Web Console—Registry Services

User’s Guide 91

4 Expand the Categories folder.

5 Right-click the category you want to delete and select Delete.

Table 6-7 describes the category properties.

Table 6-7: Category properties

Identifiers

Similar to categories, identifiers provide identification information, which
allows businesses, services, and tModels to be associated with some
identification scheme, such as model identification, or an industry group
identification number.

❖ Adding an identifier to a business, service, or tModel

1 Expand the Publish folder.

2 Expand the Published Businesses, Services, or tModels folder.

3 Expand the business, service, or tModel for which you are adding an
identifier.

4 Right-click the Identifiers folder and select Add Identifier.

5 Follow the Add Identifier Entity wizard to add an identifier. See Table 6-
8 on page 92 for a description of the identifiers properties.

❖ Deleting an identifier from a business, service, or tModel

1 Expand the Publish folder.

2 Expand the Published Businesses, Services, or tModels folder.

3 Expand the business, service, or tModel to which the identifier you are
deleting belongs.

4 Expand the Identifiers folder.

5 Right-click the identifier you want to delete and select Delete.

Tab Property Description

General Categorization
Scheme

Select the categorization scheme to use with the
Web service, tModel, or business.

Name The name of the category.

 Value Each category has a corresponding value.

Key A unique key that is generated when the
category is registered.

Searching and publishing to UDDI registries

92 Web Services Toolkit

Table 6-8: Identifier properties

Contacts

A contact (name, phone number, address) for a given business or business
service.

❖ Adding a contact to a business

1 Expand the Publish folder.

2 Right-click the Published Businesses folder.

3 Right-click the business to which you are adding a contact and select Add
Contact.

4 Follow the Add Contact wizard to add a contact. See Table 6-9 on page 93
for a description of the contact properties.

❖ Deleting a contact from a business

1 Expand the Publish folder.

2 Expand the Published Businesses folder.

3 Expand the business which contains the contact you are deleting.

4 Right-click the contact you want to delete and select Delete.

Tab Property Description

General Identification
scheme

Select the identification scheme to use with the
Web service.

Name The name of the identification.

 Value Each identifier has a corresponding value.

Key A unique key that is generated when the
identifier is registered.

Summary Displays a summary of your selections. Click
Finish to create the identifier, or click Back to
change selections.

CHAPTER 6 Web Console—Registry Services

User’s Guide 93

Table 6-9: Contact properties

Discovery URLs

A discovery URL is used to retrieve discovery documents for a specific
instance of a business entity.

❖ Adding a discovery URL to a business or tModel

1 Expand the Publish folder.

2 Right-click the Published Businesses or Published tModel folder.

3 Right-click the business or tModel to which you are adding a discovery
URL and select Add Discovery URL.

4 Follow the Add Discovery URL wizard to add a Discovery URL. See
Table 6-10 on page 93 for a description of the Discovery URL properties.

❖ Deleting a discovery URL from a business or tModel

1 Expand the Publish folder.

2 Expand the Published Businesses or Published tModel folder.

3 Expand the business or tModel which contains the discovery URL you are
deleting.

4 Right-click the discovery URL you want to delete and select Delete.

Table 6-10: Discovery URL properties

Tab Property Description

General Contact The name of the contact; this could be a
company or organization name.

Description A contact description.

 Contact person A contact person.

Address The address of the contact.

Phone number The phone number of the contact.

Summary Displays a summary of your selections. Click
Finish to create the contact, or click Back to
change selections.

Tab Property Description

General Discovery URL URL to the discovery document.

Description A description of the discovery document.

Use type

Language The language name and description.

Searching and publishing to UDDI registries

94 Web Services Toolkit

Summary Displays a summary of your selections. Click
Finish to create the discovery URL, or click
Back to change selections.

Tab Property Description

User’s Guide 95

C H A P T E R 7 The Private UDDI Server

This chapter describes how to configure, start, and manage the private
Sybase UDDI server. Once the server is running and connected to the
registry, use the Web console to administer UDDI data. See Chapter 6,
“Web Console—Registry Services.”

Introduction
A private UDDI server is an internal server that contains a UDDI registry,
located behind a firewall that is isolated from the public network. Access
to administrative features and registry data is secure, and not shared with
other registries.

The private UDDI server adheres to the following UDDI specifications
published at at http://www.uddi.org:

• API Specification 2.04 – the application user interface for accessing
UDDI programmatically.

• Data Structure Reference 2.03 – the datatypes that make up the
complete amount of information provided within the UDDI service
description framework.

• Operator Specification 2.01 – general guidelines for managing and
maintaining the registration information within the UDDI registry.

Topic Page
Introduction 95

Installing and starting the private UDDI server 96

Starting and connecting to the private UDDI registry 96

Managing the private UDDI 98

Installing and starting the private UDDI server

96 Web Services Toolkit

Installing and starting the private UDDI server
The EAServer installation program installs the private UDDI server by default,
which installs the server and the scripts that start the server, and a database that
contains registry information.

Note You must install JDK 1.4 to run the UDDI server. A typical EAServer
installation does not include JDK 1.4.

❖ Starting the private UDDI server in UNIX

1 From the command line, verify that the JAGUAR environment variable is
set to your EAServer installation directory.

2 Verify that EAServer is not running.

3 In the $JAGUAR/bin subdirectory, enter the command:

./uddiserver.sh

❖ Starting the private UDDI server in Windows

1 From the command line, verify that the JAGUAR environment variable is
set to your EAServer installation directory.

2 Verify that EAServer is not running.

3 In the %JAGUAR%\bin subdirectory, enter the command:

uddiserver.bat

Starting and connecting to the private UDDI registry
EAServer contains a connection cache, UDDIServerCache, from which you
can manage connection information. The UDDIServerCache uses the Adaptive
Server Anywhere (ASA) database by default.

Starting the default UDDI registry
An ASA database is installed as the default UDDI server database.

CHAPTER 7 The Private UDDI Server

User’s Guide 97

❖ Starting the ASA database in UNIX

1 Edit the $JAGUAR/bin/uddidb.sh file. Modify the ASA_HOME variable
to point to the location of your ASA installation.

2 From the command line in the $JAGUAR/bin subdirectory, enter:

./uddidb.sh

❖ Starting the ASA database in Windows

1 Edit the %JAGUAR%\bin\uddidb.bat file. Modify the ASA_HOME
variable to point to the location of your ASA installation.

2 From the command line in the %JAGUAR%\bin subdirectory, enter:

uddidb.bat

Configuring other private UDDI registries
Along with the ASA database, the private UDDI server supports the Adaptive
Server Enterprise database and Oracle databases as repositories for registry
information. The SQL commands used to create the required database tables
are in:

• $JAGUAR/repository/WebApplication/uddi-server/META-
INF/createdb_oracle.sql (or the Windows equivalent) and

• $JAGUAR/repository/WebApplication/uddi-server/META-
INF/createdb_ase.sql (or the Windows equivalent)

To use either of these databases with your private UDDI registry, use EAServer
Manager to modify the UDDIServerCache connection cache to access the
database of your choice (or create a new connection cache with the appropriate
settings). See Chapter 4, “Database Access,” in the EAServer System
Administration Guide for more information.

If you create a new connection cache, you can use the Web console to change
to the connection cache:

1 Connect to the private UDDI server (UDDI on localhost).

2 Right-click the Registry Administration folder and select Configure
Connection Cache.

3 Follow the wizard instructions to change the connection cache.

Managing the private UDDI

98 Web Services Toolkit

Connecting to the private UDDI registry
Before you can connect to the private UDDI registry, verify that you have:

1 Started the UDDI server.

2 Started the registry.

3 Started the Web console.

❖ Connecting to the private UDDI registry

1 From the Web console, right-click UDDI on localhost and select Connect.

2 The Web console connects to the UDDI registry using the default values:

• Query URL – http://localhost:8080/uddi-server/inquiry

• Publish URL – http://localhost:8080/uddi-server/publish

• Username – jagadmin

• Password – The jagadmin password

If you have modified the host name setting in your EAServer installation
from localhost to the actual host name, you must make the same change in
the Query URL and Publish URL fields above.

Managing the private UDDI
This section describes how to administer the private UDDI server from the
Web console.

Once connected to the private UDDI server, you see three folders:

• Administration – contains the Registry and Security Administration
folders, from which you can administer the private UDDI server. See
“Administering the private UDDI” on page 99.

• Search – allows you to search the private UDDI repository for specific
information based on your input. See “Inquiries and searches” on page 84.

• Publish – allows you to publish information about your business, Web
service tModel, and so on, to the private UDDI repository. See
“Publishing” on page 86.

CHAPTER 7 The Private UDDI Server

User’s Guide 99

Administering the private UDDI
Private UDDI administration consists of:

• Changing the connection cache – allows you to change connection caches,
which allows you to use another database as the private UDDI repository.

• Initializing the database – this option is available from the Connection
Cache property sheet, and appears only if the database being used as the
repository has not been initialized.

• Controlling access to resources – map private UDDI repository roles to
EAServer roles to control which users can query, search, and administer
the private UDDI registry.

❖ Changing the connection cache

1 Connect to the private UDDI registry.

2 Right-click the Registry Administration folder and select Configure
Connection Cache.

3 Follow the instructions in the Configure Connection Cache wizard to
change the connection cache. You can select only a connection cache that
is already defined in the EAServer to which you are connected.

❖ Initializing the repository database

If the database has not been initialized, follow this procedure to create the
tables within the database that are required by the UDDI server.

1 Connect to the private UDDI registry.

2 Highlight the Registry Administration folder.

You see the status of the database; true - the database is initialized, or
false - the database has not been initialized.

3 If false, select Initialize Database.

To start the initialized database run either uddidb.bat (Windows) or
uddidb.sh (UNIX).

Controlling access to resources

You can implement a flexible authorization policy using roles. Membership in
a role determines the level of authoriization for a given user. There are three
roles that are predefined as Web application roles and used for the private
UDDI server:

Managing the private UDDI

100 Web Services Toolkit

• UddiInquire role – members can search and query the UDDI registry. By
default, UDDI does not require the user to be authenticated to search the
UDDI server. However, you might not want to do this in a production
environment. So, by mapping this role appropriately in a publish or
aadministration capacity authentication and authorization can be explicitly
enforced by the container.

• UddiPublish role – members can publish information to and query from
the UDDI registry. Members of this role can modify or delete only
information that they have published.

• UddiAdmin role – members can modify or delete any information
published in the UDDI registry. In addition, members of this role have
publish and query privileges, and can add, modify, and delete
configuration parameters.

You can map these roles to any EAServer role to enforce the desired
authorization policy. See Chapter 3, “Using Web Application Security,” in the
EAServer Security Administration and Programming Guide for information
about roles and role mapping.

In a development environment, you might want to map the UddiAdmin role to
EAServer’s Admin role, and map the other two roles to “everyone.” In this
case, any authenticated user is considered a member of the role and can publish
and query. Only the jagadmin user can modify published data and UDDI
configuration settings.

The default security policy permits unauthenticated users to query the UDDI
registry. However, you can modify the policy by defining the UddiInquire role
for the Web application.

❖ Mapping UDDI registry roles

1 Connect to the private UDDI server (UDDI on localhost).

2 Expand the Administration folder.

3 Highlight the Security Administration folder. The UDDI registry roles
display in the right pane.

4 Each role is mapped to an EAServer role. To change the role mapping,
select an EAServer role from the drop-down list to which you want to map
the UDDI role. Click Apply to apply the changes.

CHAPTER 7 The Private UDDI Server

User’s Guide 101

Using security constraints

In addition to using roles to enforce security, you can use secure transport
connections when publishing information to the UDDI server. By setting the
appropriate security constraints for the private UDDI Web application, the
EAServer Web container enforces HTTPS access for publish only.

See Chapter 3, “Using Web Application Security,” in the EAServer Security
Administration and Programming Guide for information about establishing
security constraints.

Managing the private UDDI

102 Web Services Toolkit

User’s Guide 103

C H A P T E R 8 Using wstool, wstkeytool, wstant,
and wstkeytoolant

This chapter contains instructions on how to use wstool, either by itself, or
with wstant.

Introduction
wstool is a command line interface that allows you to administer, monitor,
and deploy Web services contained in the EAServer Web service
container.

You can use wstool from the command line, from scripts or makefiles, or
with Jakarta Ant (wstant).

wstkeytool is a command line interface that allows you to manage a
keystore (database or file) of private keys and their associated X.509
certificate chains. In this case, the keystore is the EAServer security
module. wstkeytool commands allow you to manipulate the EAServer
security module without having to use Security Manager.

See the EAServer Security Administration and Programming Guide for
definitions and information about Security Manager.

You can use wstkeytool from the command line, from scripts or makefiles,
or with Jakarta Ant (wstkeytoolant).

Topic Page
Introduction 103

Working with wstool and wstkeytool 104

Working with wstant and wstkeytoolant 106

wstool commands 108

wstkeytool commands 148

Introduction

104 Web Services Toolkit

Working with wstool and wstkeytool
Before using wstool or wstkeytool, make sure that the JAGUAR environment
variable is set to the EAServer installation directory. Use the following scripts
to run wstool and wstkeytool:

• UNIX $JAGUAR/bin/wstool and $JAGUAR/bin/wstkeytool

• Windows %JAGUAR%\bin\wstool.bat and
%JAGUAR%\bin\wstkeytool.bat

wstool and wstkeytool syntax

The syntax for wstool and wstkeytool is:

wstool or wstkeytool [connection-arguments] [command]

Where:

• connection-arguments specify optional parameters required to connect to
the server, including:

• command is a wstool or wstkeytool command.

For example, to connect to the server running on “paloma” at HTTP port
“9005”, using account “jagadmin” with password “secret” enter:

wstool -h paloma -n 9005 -p secret or wstkeytool -h paloma -n 9005 -p secret

Flag To specify

-h or -host Server host name; default is the value of
JAGUAR_HOST_NAME (localhost)

-n or -port Web services host port number; default is
8080

-u or -user User name; default is “jagadmin”

-p or -password Password; default is “” (no password)

-k or -protocol Communication protocol; default is “http”

-l or -logfile Log file name; default is “System.out”

-r or -pin

(wstkeytool only)

Keystore PIN of EAServer’s PKCS#11
token; default is “sybase”

-s or -provider

(wstkeytool only)

The keytool provider. This option is not
used with EAServer.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 105

You can omit the -u flag because jagadmin is the default user name.

Note wstool and wstkeytool command options are not case sensitive.

Return codes

wstool and wstkeytool commands return the following codes:

0 – if the command runs successfully, and the result is true/success

1 – if the command runs successfully, and the result is false/failure

2 – if an exception is thrown during the running of the command

Help

You can display usage for any wstool or wstkeytool command by using the help
option. For example to display all of the wstool or wstkeytool commands, enter:

wstool help or wstkeytool help

You can also display individual command help. For example, to display
options and valid usage for the wstool delete command, enter:

wstool help delete

To display options and valid usage for the wstkeytool deleteCert command,
enter:

wstkeytool help deleteCert

Verbose

All wstool and wstkeytool commands include the verbose option, which
displays stack trace information, if any is generated, when you run the
command. The default value is false. For example, to display stack trace
information for the wstool delete command, enter:

wstool delete -verbose true
Service:CollectionName/WebServiceName

Entity identifiers

Many wstool and wstkeytool commands take one or more entity identifiers as
arguments. An entity identifier is a string of the form EntityType:EntityName
that uniquely identifies an entry in the repository; for example, a server,
component, collection, or keystore name.

Working with wstant and wstkeytoolant

106 Web Services Toolkit

Table 8-1 provides examples of entity identifiers for each entity type.

Table 8-1: Example entity identifiers

Not all wstool or wstkeytool commands support every type of entity in the
repository. Use the help option to see the supported entities for each command.

When a command specifies an invalid entity type, an error message displays.

Working with wstant and wstkeytoolant
wstant and wstkeytoolant lets you run wstool and wstkeytool commands from
Ant build files. This allows you to write build files that automate many
development, deployment, and management tasks.

Entity identifier Specifies

component:SVU/SVULogin

(wstool)

Component named SVULogin that is installed in the SVU
package. The package name is included because
EAServer components always reside in packages.

collection:MyCollection

(wstool)

The Web services collection named MyCollection.

method:SVU/SVULogin/isLogin

(wstool)

The isLogin method of component SVULogin in package
SVU.

role:MyRole

(wstool)

The role named MyRole.

server:Jaguar

(wstool)

The server named Jaguar.

service:MyWcoll/MyWebService

(wstool)

The Web service named MyWebService contained in the
MyWcoll Web collection.

methodParams:SVU/SVULogin/isLogin

(wstool)

The method parameters for the isLogin method of
component SVULogin in package SVU.

Key:name

(wstkeytool)

The name of a private key contained in the keystore.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 107

Jakarta Ant is a Java-based build tool developed by the Apache Jakarta project.
To obtain Ant software and documentation, see the Ant Web site at
http://jakarta.apache.org/ant/. Ant functions are similar to other build tools
(such as make, gnumake, or jam) but are platform-independent, extending Java
classes rather than OS-specific shell commands. Ant includes a number of
tasks that are frequently used to perform builds, including compiling Java files
and creating JAR files. It also includes common functions such as copy, delete,
chmod, and so on.

Ant build files (similar to a makefile) are written in XML. Like makefiles, Ant
build files can include targets that perform a series of tasks. Instead of
extending shell commands, Ant’s build file calls out a target tree where various
tasks are executed. Each task is run by an object that implements a particular
task interface.

Setting up your environment
Install Ant and read the accompanying documentation.

wstant and wstkeytoolant scripts requires a full JDK installation. If you are
running wstant or wstkeytoolant from an EAServer client install, make sure you
have installed the full JDK. By default, only the JRE files are installed.

Before running wstant or wstkeytoolant, verify that:

• The JAGUAR environment variable is set.

• A full JDK installation is present.

• Jakarta Ant is installed on your system.

By default, wstant and wstkeytoolant searches for Jakarta Ant in
%JAGUAR%\jakarta-ant (Windows) or $JAGUAR/jakarta-ant (UNIX).
If you install Jakarta Ant in a different location, set the ANT_HOME
environment variable to reflect the change before you run wstant or
wstkeytoolant scripts.

You can also set ANT_HOME in the user environment file,
%JAGUAR%\bin\user_setenv.bat (Windows) or
$JAGUAR/bin/user_setenv.sh (UNIX). wstant and wstkeytoolant scripts
check the user environment file each time it runs.

wstool commands

108 Web Services Toolkit

wstant and wstkeytoolant scripts
The following scripts are provided for running Ant with wstool and wstkeytool
commands:

• Windows %JAGUAR%\bin\wstant.bat and
%JAGUAR%\bin\wstkeytoolant.bat

• UNIX $JAGUAR/bin/wstant and $JAGUAR/bin/wstkeytoolant

wstant and wstkeytoolant syntax
wstant and wstkeytoolant scripts uses this syntax:

wstant or wstkeytoolant [ant_options]

where ant_options are any options and commands supported by Ant; see the
Ant documentation for details on these options.

You may frequently use the -buildfile flag, which lets you specify a build file
other than the default build.xml for the Ant XML build file.

wstant sample files
The EAServer installation includes wstant sample files. The
ReadmeForWSTant.html and build.xml files are located in
%JAGUAR%\sample\wst_samples\JavaClass\SimpleJavaClass (Windows) or
$JAGUAR/sample/wst_samples/JavaClass/SimpleJavaClass (UNIX). See the
ReadmeForWSTant.html file for instructions on using the samples.

wstool commands
Description This section contains information on wstool commands, and lists the

commands that wstool accepts.

Each command section contains a description of the command, its syntax, a list
of options, and an example of its use at the command line. wstool commands
are divided into four sections:

• UDDI administration commands on page 109

• Server management commands on page 113

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 109

• Web service administration commands on page 119

• Security commands on page 145

UDDI administration commands
Description UDDI commands allow you to publish and unpublish Web service information

to and from a UDDI registry.

Command list Table 8-2 lists the UDDI administration commands described in this section.

Table 8-2: wstool UDDI administration commands

inquiry
Description Queries a UDDI registry for business, service, or tModel information.

Syntax Command line:

inquiry
[-inquiryURL URL]
[-business business_name]
[-exact true | false]
[-service service_name]
[-tmodel tModel_name]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="inquiry" > <wst_antTask command="inquiry"
[inquiryURL=“URL”]
[business= “business_name”]
[exact=“true | false”]
[service=“service_name”]
[tmodel=“tModel_name” />

command name Description

inquiry Queries a UDDI registry for business, service, or tModel
information.

publish Publishes Web service information to a UDDI registry.

unpublish Unpublishes Web service information from a UDDI.

publish

110 Web Services Toolkit

Where:

Examples This command queries information about “myBusiness” from the IBM test
registry:

wstool inquiry -inquiryURL http://uddi.ibm.com/testregistry/inquiryapi
-business myBusiness

Ant build example:

<wst_antTask command="inquiry"
inquiryURL="https://uddi.ibm.com/testregistry/inquiryapi"
business="myBusiness"/>

publish
Description Publishes Web service information to a UDDI registry.

Syntax Command line:

publish
[-inquiryURL URL]
[-publishURL URL]
[-user user_name]
[-business business_name]
[-pass password]
[-serviceURL URL]
[-publishName name]
[-tmodel tModel_name]

Ant build file:

Option Description

inquiryURL Inquiry URL used to connect to the registry. Required.

business Provide the business name if querying a business.

Provide a business key if querying a service, which lists
only those services for the particular business. If the key is
not specified, all the services that match all business are
listed.

exact True or false. If true (the default), only entities with exact
matches are listed. If false, all entities that begin with the
business, service, or tModel name specified are listed.

service Specify the service name to query a service.

tmodel Specify the tModel name to query a tModel.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 111

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="publish" > <wst_antTask command="publish"
[inquiryURL=“URL”]
[publishURL=“URL”]
[user=“user_name”]
[business= “business_name”]
[pass=“password”]
[serviceURL=“URL”]
[publishName=“name”]
[tmodel=“tModel_name” />

Where:

Examples This command publishes information about “testservice” to the IBM test
registry:

wstool publish -inquiryURL http://uddi.ibm.com/testregistry/inquiryapi
-publishURL https://uddi.ibm.com/testregistry/publishapi -user testuser
-business 6B9DD2D0-D81E-11D7-A0BA-000629DC0A13 -pass secret -serviceURL
http://webservicehost:8080/ws/services/testservice -publishName
testpublish -tmodel 216DD2D0-A21E

Ant build example:

<wst_antTask command="publish"
inquiryURL="https://uddi.ibm.com/testregistry/inquiryapi"
publishURL="https://uddi.ibm.com/testregistry/publishapi" user="me"
pass="secret" business="myTestBusinessOnly"/>

Option Description

inquiryURL Inquiry URL used to connect to the registry. Required.

publishURL Publish URL used to connect to the registry. Required.

user User name used to connect to the UDDI registry URL.
Required.

business Provide the business name if publishing a business or
specify the business key if publishing a service.

pass The password used to connect to the UDDI registry URL.

serviceURL The service URL of the service to be published.

publishName Specifies a name with which the tModel can be published.
to publish a service or a tModel, you must specify the
publish.

tmodel Specifies the tModel key that associates the service to a
specific tModel.

unpublish

112 Web Services Toolkit

unpublish
Description Unpublishes Web service information from a UDDI registry.

Syntax Command line:

unpublish
[-inquiryURL URL]
[-publishURL URL]
[-user user_name]
[-business business_name]
[-pass password]
[-serviceURL URL]
[-serviceKey key]
[-tmodel true]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="unpublish" > <wst_antTask command="unpublish"
[inquiryURL=“URL”]
[publishURL=“URL”]
[user=“user_name”]
[business= “business_name”]
[pass=“password”]
[serviceURL=“URL”]
[serviceKey=“key”]
[tmodel=“tModel_name” />

Where:

Examples This command unpublishes information regarding “testservice” from the IBM
test registry:

wstool unpublish -inquiryURL http://uddi.ibm.com/testregistry/inquiryapi

Option Description

inquiryURL Inquiry URL used to connect to the registry. Required.

publishURL Publish URL used to connect to the registry. Required.

user User name used to connect to the UDDI registry URL.
Required.

business Provide the business name if unpublishing a business or
specify the business key if unpublishing a service.

pass The password used to connect to the UDDI registry URL.

serviceURL The service URL of the service being unpublished.

serviceKey You must specify a service key to unpublish a tModel.

tmodel Specifies the tModel key that associates the service to a
specific tModel.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 113

-publishURL https://uddi.ibm.com/testregistry/publishapi -user testuser
-business 6B9DD2D0-D81E-11D7-A0BA-000629DC0A13 -pass secret -serviceURL
http://webservicehost:8080/ws/services/testservice -serviceKey 1234 -tmodel
216DD2D0-A21E

Ant build example:

<wst_antTask command="unpublish"
inquiryURL="https://uddi.ibm.com/testregistry/inquiryapi"
publishURL="https://uddi.ibm.com/testregistry/publishapi" user="me"
pass="secret" business="myTestBusinessOnly"/>

Server management commands
Description Server management commands allow you to start, stop, and manage the server,

as well as manage listeners for EAServer.

Command list Table 8-3 lists the server management commands.

Table 8-3: wstool server management commands

list
Description Returns a list of entities from the server’s repository, depending on the type of

entity entered.

Note Entity type is not an option, do not use a “-” when specifying an entity
type.

Syntax Command line:

list
[Collections]
[CompType]

command name Description

list Lists entities in the repository.

refresh Refreshes a server or Web service collection.

restart Restarts the server to which you are connected.

shutdown Shuts down the server to which you are connected.

list

114 Web Services Toolkit

[Components]
[Listeners]
[Methods]
[Packages]
[Params]
[Props]
[PropsValue]
[ReturnType]
[Roles]
[ServerProps]
[ServerVersion]
[ServiceName]
[Services]
[Stats]
[URL]
[WSDD]
[WSDL]
[typemappings]
[undefTypes]
Entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="list" > <wst_antTask command="list"
[option=“option_depending_on_entity”] >

Where:

Type Description

Collections Returns a list of Web service collections.

CompType Returns the component type. Entity is in the form of
component:PackageName/ComponentName.

Components Returns a list of SOAPable components available on the
server.

Listeners Returns a list of listeners in the format of
“<protocol>:<host>:<port>”. For example,
“http:localhost:8080”

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 115

Methods Returns a list of methods for the entity. Entity can be in the
form of either:

• service:CollectionName/ServiceName or

• component:PackageName/ComponentName

Include the -methodType option and specify the type of
methods returned:

allowed – list only the allowed methods.

disallowed – list only the disallowed methods.

all – list all methods (default).

Packages Returns a list of SOAPable packages available on the
server.

Params Returns a list of parameters for a given method. Entity is
in the format of:

method:CollectionName/ServiceName/MethodName

Props Returns a list of properties of a given entity, for example:

collection:CollectionName

PropsValue Returns the property value for the given property. Use the
-name argument and provide the name of the property for
which the value is returned. Entity can be one of:

• collection:CollectionName

• server:ServerName

ReturnType Returns the return type of a given method. Entity is in the
form of:

method:CollectionName/ServiceName/MethodName

Roles Returns a list of roles for a given Web service or Web
service method. Entity is one of:

• method:CollectionName/ServiceName/MethodName

• service:CollectionName/ServiceName

ServerProps Returns a list of server properties.

ServerVersion Returns the server version.

ServiceName Returns the Web service name of a given component.
Entity is in the form of:

component:PackageName/ComponentName

Type Description

list

116 Web Services Toolkit

Examples Example 1 This command lists all the listeners running on the server:

Services Returns the list of Web services for a given collection. Use
the -serviceType argument with one of the following
options:

all – list all Web services

active – list only active Web services

Entity is in the form of:

collection:CollectionName

Stats Displays the statistics for a given Web service or Web
service method. Entity is one of:

• method:CollectionName/ServiceName/MethodName

• service:CollectionName/ServiceName

Note You must first enable statistics monitoring before
you can display statistics. See startStats on page 136.

URL Returns the service URL of a given Web service is . Entity
is in the form of:

service:CollectionName/ServiceName

WSDD Lists the .wsdd of a given Web service. Use the -out
argument and supply a file name to direct the .wsdd to a
file. The default file is
collectionName_serviceName.wsdd. Entity is in the form
of:

service:CollectionName/ServiceName

WSDL Lists the .wsdl of a given Web service. Use the -out
argument and supply a file name to direct the .wsdl to a
file. The default file is
collectionName_serviceName.wsdl. Entity is in the form
of:

service:CollectionName/ServiceName

typemappings Returns a list of the type mappings for a given Web
service. Entity is in the format of:

service:CollectionName/ServiceName

undefTypes Returns a list of the undefined types for a given soapable
component. Entity is on of:

• method:PackageName/ComponentName/MethodName

• class name

Entity Varies depending on the selected option.

Type Description

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 117

wstool list Listeners

Example 2 This command directs the WSDL for MyWebService to the
test.wsdl file:

wstool list wsdl -out test.wsdl service:MyCollection/MyWebService

Ant build example:

<wst_antTask command="list" type="wsdl" entity:
“service:MyCollection/MyWebService”/>

refresh
Description Refreshes a server or Web service collection, depending on the entity. Also

refreshes the child properties of the specified entity. For example, if you refresh
a server, all the server properties that belong to the server are refreshed.

Syntax Command line:

refresh
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="refresh" > <wst_antTask command="refresh"
entity=”entity” />

Where:

Examples This command refreshes the EAServer named “Jaguar:”

wstool refresh server:Jaguar

Ant build example:

<wst_antTask command="refresh"
entity="server:Jaguar"/>

Option Description

entity Can be one of:

• server:ServerName – identifies the server you are
refreshing.

• collection:WebServiceCollectionName – identifies the
Web service collection you are refreshing.

restart

118 Web Services Toolkit

restart
Description Restarts the server to which you are connected.

Syntax Command line:

restart

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="restart" > <wst_antTask command="restart"

Examples This command restarts the server to which you are connected:

wstool restart

Ant build example:

<wst_antTask command="restart" />

shutdown
Description Shuts down the server to which you are connected.

Syntax Command line:

shutdown

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="shutdown" > <wst_antTask command="shutdown"

Examples This command shuts down the server to which you are connected:

wstool shutdown

Ant build example:

<wst_antTask command="shutdown" />

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 119

Web service administration commands
Description Web service administration commands allow you to manage most aspects of

Web services.

Command list Table 8-4 lists the Web service administration commands.

Web service administration commands

120 Web Services Toolkit

Table 8-4: wstool Web service commands

command name Description

activate Activates a Web service and makes it available to clients.

allowMethods Makes available to clients the selected methods of a Web
service.

deactivate Deactivates a Web service and makes it unavailable.

delete (1) Deletes a Web service.

delete (2) Deletes a Web service collection.

deploy (1) Creates and deploys a Web service from the implementation
class file.

deploy (2) Creates and deploys a Web service from a JAR file.

deploy (3) Creates and deploys a Web service collection from a WAR file.

disallowMethods Makes Web service methods unavailable to Web service
clients.

export Exports a Web service collection to a Sybase Web services
WAR file.

exposeComponent Exposes an EAServer component as a Web service.

getTMjar Creates a type mapping JAR file.

isActive Returns a message that a given Web service is either “active” or
“inactive.”

isAllowed Checks if the method is available to a client as a Web service
endpoint.

isStatsEnabled Determines if statistic logging for a given Web service is
enabled or not.

refresh Refreshes a server or Web service collection.

resetStats Resets the runtime monitor statistics of a given Web service
collection.

set_props Sets the value of the property for a component, Web
application, or a Web service.

startStats The runtime monitor starts and monitors statistics of a given
Web service collection or Web service.

stopStats The runtime monitor stops monitoring statistics of a given Web
service collection or Web service.

wsdl2Java Generates client artifacts and a client template capable of
accessing server-side Web services.

java2Wsdl Generates a WSDL file from the Java implementation file.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 121

activate
Description Activates a Web service in a given Web service collection so that it is available

to clients.

Syntax Command line:

activate
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="activate" > <wst_antTask command="activate"
entity=”entity” >

Where:

Examples This command activates MyWebService which is contained in MyCollection:

wstool activate Service:MyCollection/MyWebService

Ant build example:

<wst_antTask command="activate"
entity="service:myCollection/myService"/>

allowMethods
Description Makes Web service methods available to clients.

Syntax Command line:

allowMethods
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="allowmethods" > <wst_antTask
command="allowmethods"
entity=”entity” >

Option Description

entity Service:CollectionName/ServiceName – identifies the
Web service you are activating.

deactivate

122 Web Services Toolkit

Where:

Examples This command makes testmethod1 and testmethod2 available to a Web service
client that belongs to MyWebService:

wstool allowMethods “method:WebColl/MyWebService/testmethod1, testmethod2”

Ant build example:

<wst_antTask command="allowMethods"
entity="method:myCollection/myService/myMethod"/>

deactivate
Description Deactivates a Web service so that it is unavailable to clients.

Syntax Command line:

deactivate
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deactivate" > <wst_antTask command="deactivate"
entity=”entity” >

Where:

Examples This command deactivates MyWebService which is contained in
MyCollection:

wstool deactivate service:MyCollection/MyWebService

Ant build example:

Option Description

entity method:CollectionName/ServiceName/m1, m2, m3 –
identifies the Web service to which the methods being
made available belong, and a comma-separated list of
method names that are available to a client.

The entity must be in quotes.

Option Description

entity service:CollectionName/ServiceName – identifies the
Web service you are deactivating.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 123

<wst_antTask command="deactivate"
entity="service:myCollection/myService"/>

delete (1)
Description Deletes a Web service from a given Web service collection. The service

element in the server-config.wsdd file is deleted and the files indicated by the
“files” parameter of that service element are also deleted.

Syntax Command line:

delete
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="delete" > <wst_antTask command="delete"
entity=”entity” >

Where:

Examples This command deletes MyWebService:

wstool delete Service:MyWebCollection/MyWebService

Ant build example:

<wst_antTask command="delete"
entity="service:myCollection/myService"/>

delete (2)
Description Deletes a Web service collection.

Syntax Command line:

delete
entity

Option Description

entity Service:CollectionName/ServiceName – identifies the
Web service you are deleting.

deploy (1)

124 Web Services Toolkit

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="delete" > <wst_antTask command="delete"
entity=”entity” >

Where:

Examples This command deletes MyWebServiceCollection:

wstool delete collection:MyWebServiceCollection

Ant build example:

<wst_antTask command="delete"
entity="collection:myCollection/>

deploy (1)
Description Creates and deploys a Web service using an implementation class file. This

command creates a Web service in the Web service collection name provided
by you, or uses “ws” as the default. This command creates the Web service
collection if it does not already exist.

Syntax Command line:

deploy
[-overwrite true | false]
[-collection collectionName]
[-include directory]
[-classpath path]
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[overwrite=“true | false”]
[collection=“collectionName”]
[include=“directory”]
[classpath= “path”]
entity =“className” >

Option Description

entity collection:CollectionName – identifies the Web service
collection you are deleting.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 125

Where:

Examples This example deploys the Web service from the com.sybase.mytest class file to
MyServiceCollection:

wstool deploy -overwrite true -collection MyServiceCollection -include
“d:\classes;d:\moreclasses” com.sybase.mytest

Ant build example:

<wst_antTask command="deploy"
collection="CollectionName"
include=”d:\moreclasses”
entity="com.sybase.myTest"/>

Note You cannot deploy a class that uses “DefaultNamespace” as the package
name. For example:
wstool deploy -include “d:\mytest” DefaultNamespace.myTest is
not valid.

deploy (2)
Description Creates and deploys a Web service from a Sybase Web services JAR file.

Option Description

overwrite If set to true, overwrites an existing Web service if it has
the same service name. The default is false.

collection Specifies the collection name. ws is the default Web
collection.

include Specifies the directory that contains any dependent
classes. For example:

d:\foo

This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.

Note JARs must be specified in quotes.

entity The file that you are deploying. entity should be located
in the current directory, or provide the full path. If
deploying from an implementation class file, entity is in
the format of foo.bar.myclass or foo.bar.myclass.class.

deploy (2)

126 Web Services Toolkit

Syntax Command line:

deploy
[-overwrite true | false]
[-collection collectionName]
[-include directory]
[-classpath path]
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[overwrite=“true | false”]
[collection=“collectionName”]
[include=“directory”]
[classpath= “path”]
entity =“file” >

Where:

Examples This example deploys the Web service contained in the MyWebService.jar file:

wstool deploy MyWebService.jar

Ant build example:

<wst_antTask command="deploy"
entity="d:\wstool\test\deploy\service.jar"/>

Option Description

overwrite If set to true, overwrites an existing Web service if it has
the same service name. The default is false.

collection Specifies the collection name, if you are deploying a JAR
file . ws is the default Web collection.

include Specifies the directory that contains any dependent
classes. For example:

d:\foo

This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.

Note JARs must be specified in quotes.

entity The file that you are deploying. entity should be located
in the current directory, or provide the full path.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 127

deploy (3)
Description Creates and deploys a Web service collection from a Sybase Web services

WAR file.

Syntax Command line:

deploy
[-overwrite true | false]
[-include directory]
[-classpath path]
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deploy" > <wst_antTask command="deploy"
[overwrite=“true | false”]
[include=“directory”]
[classpath= “path”]
entity =“file” >

Where:

Examples This example deploys the Web service collection contained in the
MyWebServiceCollection.war file:

wstool deploy MyWebServiceCollection.war

Ant build example:

<wst_antTask command="deploy"
entity="d:\wstool\test\deploy\collection.war"/>

Option Description

overwrite If set to true, overwrites an existing Web service collection
if it has the same collection name. The default is false.

include Specifies the directory that contains any dependent
classes. For example:

d:\foo

This option must be in quotes.

classpath Specifies additional JARs/classes to set in classpath.

Note JARs must be specified in quotes.

entity The file that you are deploying. entity should be located in
the current directory, or provide the full path.

disallowMethods

128 Web Services Toolkit

disallowMethods
Description Makes the listed methods unavailable to a Web service client.

Syntax Command line:

disallowMethods
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="disallowMethods" > <wst_antTask
command="disallowMethods"
entity=”entity” >

Where:

Examples This command makes MyMethod1 and MyMethod2 unavailable to clients:

wstool disallowMethods “method:MyWebCollection/MyWebService/Mymethod1,
MyMethod2”

Ant build example:

<wst_antTask command="disallowMethods"
entity="method:myCollection/myService/myMethod"/>

export
Description Exports a Web service collection to a Sybase Web archive (WAR) file.

Syntax Command line:

export
[-out outputFile]
[-component true | false]
[-configXML true | false]
entity

Ant build file:

Option Description

entity method:CollectionName/ServiceName/m1, m2 –
identifies the Web service and a comma-separated list of
methods you are making unavailable.

Entity must be specified in quotes.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 129

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="export" > <wst_antTask command="export"
[out=“outputfile”]
[component=“true | false”]
[configXML=“true | false”]
entity =“entity” >

Where:

Examples This command exports MyWebServiceCollection to the
MyWebServiceCollection.war file:

wstool export -out MyWebServiceCollection.war collection:MyWebCollection

Ant build example:

<wst_antTask command="export" out="outDir"
entity="collection:myCollection"/>

exposeComponent
Description Exposes an EAServer component as a Web service.

Syntax Command line:

exposeComponent
[-collection webCollection]
[-service webService]
[-tm typeMapping]
[-tmJar jarFile]
entity

Option Description

out Specifies the exported archive file. Provide the complete
path or the file is placed in the current directory. For a Web
service collection the output is in the format of
collectionName.war.

component Set this option to true (default) if the service contained in
the collection is exposed as a Jaguar component, which
will export the Jaguar component related files.

configXML Set this option to true (default) to export the
sybase_easerver_config.xml file.

entity collection:CollectionName – identifies the Web service
collection you are exporting.

getTMjar

130 Web Services Toolkit

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="exposeComponent" > <wst_antTask
command="exposeComponent"
[collection=“webCollection”]
[service=“webService”]
[tm=“typeMapping”]
[tmJar=“jarFile”]
entity =“package/component” >

Where:

Examples This command exposes myPkg/myComp as a Web service:

wstool exposeComponent -tm myTM.map -tmJar myTM.jar myPkg/myComp

Ant build example:

<wst_antTask command="exposeComponent"
entity="component:myPackage/myComponent"/>

getTMjar
Description Creates a JAR file that contains type mappings identified by the class option

and associates it with an entity for which the type mapping is needed.

Syntax Command line:

getTMjar
[-class classname]
[-outJar jarFile]

Option Description

collection Specifies the name of the Web service collection, to which
the Web service belongs. ws is the default.

service Specifies the Web service name to which the component
is exposed to. The default is
PackageName_ComponentName.

tm Specifies the type mapping file name for any undefined
custom datatypes.

tmJar Specifies the full path to the JAR file that contains any
custom datatype mappings required by the component.

entity The name of the EAServer package/component being
exposed.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 131

[-overwrite true | false]
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="getTMjar" > <wst_antTask command="getTMjar"
[class=“classname”]
[outjar=“jarFile”]
[overwrite=“true | false”]
entity =“entity” >

Where:

Examples This command creates a testclass.jar file that contains the type mappings
contained in testclass and required by MyWebService:

wstool getTMjar -class testclass -outjar testclass.jar
Service:MyWebServiceCollection/MyWebService

Ant build example:

<wst_antTask command="getTMjar"
class="myPkg.mysampleClass"
entity="service:myCollection/myService"/>

isActive
Description Returns a message that a given Web service is either “active” or “inactive.”

Syntax Command line:

isActive
entity

Option Description

class The name of the class for which the type mapping JAR is
needed.

outJar The name of the JAR to be used for the output of the class.
The default is className.jar

overwrite overwrites the JAR, if it already exists. The default is not
to overwrite.

entity Service:CollectionName/ServiceName – identifies the
Web service that requires the type mappings contained in
the JAR.

isAllowed

132 Web Services Toolkit

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isActive" > <wst_antTask command="isActive"
entity=”entity” >

Where:

Examples This command returns either “active” or “inactive” for MyWebService:

wstool isActive Service:MyWebServiceCollection/MyWebService

Ant build example:

<wst_antTask command="isactive"
entity="service:myCollection/myService"/>

isAllowed
Description Checks if the method is available to a client as a Web service endpoint.

To make methods available to clients, see allowMethods on page 121.

Syntax Command line:

isAllowed
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isAllowed" > <wst_antTask command="isAllowed"
entity=”entity” >

Where:

Examples This command checks to see if MyMethod is available to the client:

wstool isAllowed method:MyWebServiceCollection/MyWebService/MyMethod

Option Description

entity Service:CollectionName/ServiceName – identifies the
Web service which is either “active” or “inactive.”

Option Description

entity method:CollectionName/ServiceName/MethodName –
the name of the method being queried.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 133

Ant build example:

<wst_antTask command="isallowed"
entity="method:myCollection/myService/myMethod"/>

isStatsEnabled
Description Determines if statistic logging for a given Web service or Web service

collection is enabled or not. Returns true if enabled and false if disabled.

Syntax Command line:

isStatsEnabled
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="isStatsEnabled" > <wst_antTask
command="isStatsEnabled"
entity=”entity” >

Where:

Examples This command returns true if statistics are being gathered for MyWebService:

wstool isStatsEnabled service:MyWebCollection/MyWebService

Ant build example:

<wst_antTask command="isstatsenabled"
entity="service:myCollection/myService"/>

refresh
Description Refreshes a server or Web service collection.

Option Description

entity The name of the Web service or Web service collection
being queried:

• service:CollectionName/ServiceName

• collection:CollectionName

resetStats

134 Web Services Toolkit

Syntax Command line:

refresh
entity

Ant build file:
<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

<!-- Refresh a collection on the server -->

 <target name="refresh" >

 <wst_antTask command="refresh"
entity="entity"/>

Where:

Examples This example refreshes MyWebServiceColl, including all the Web services it
contains.

wstool refresh collection:MyWebServiceColl

Ant build example:

<wst_antTask command="refresh" entity="collection:myCollection"/>

resetStats
Description Resets the runtime monitor statistics of a given Web service collection or Web

service.

Syntax Command line:

resetStats
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

Option Description

entity Can be one of:

• server:ServerName – identifies the server being
refreshed.

• collection:CollectionName – identifies the Web service
collection being refreshed.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 135

<target name="resetStats" > <wst_antTask command="resetStats"
entity=”entity” >

Where:

Examples This command resets the runtime monitor statistics of
MyWebServiceCollection:

wstool resetStats collection:MyWebServiceCollection

Ant build example:

<wst_antTask command="resetstats"
entity="service:myCollection/myService"/>

set_props
Description Sets the value of the property for a Web service collection either using a name

value pair or by specifying a file that contains the property name-value pair.

Syntax Command line:

set_props
[entity name value | file]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="set_props" > <wst_antTask command="set_props"
entity=”entity” name=”nameOfProperty” value=”propertyValue”>

Where:

Option Description

entity Can be one of:

• service:CollectionName/ServiceName – identifies the
Web service for which the statistics are reset.

• collection:CollectionName – identifies the Web service
collection for which the statistics are reset.

Option Description

entity The entity that is being modified:

collection:CollectionName – identifies the Web service
collection for which the properties are set.

startStats

136 Web Services Toolkit

Examples This command sets the description of MyWebServiceCollection:

wstool set_props collection:MyWebServiceCollection
com.sybase.jaguar.webApplication.description “My test description”

Ant build example:

<wst_antTask command="set_props"
entity="collection:myCollection"
name=”com.sybase.jaguar.webApplication.description”
value=”My test description” />

startStats
Description The runtime monitor starts and monitors statistics of a given Web service

collection or Web service.

Syntax Command line:

startStats
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="startStats" > <wst_antTask command="startStats"
entity=”entity” >

Where:

name The name of the property being modified.

value The new value of the property.

file The name of the file that contains the name value pairs of
properties being modified.

Option Description

Option Description

entity The entity can be either:

• service:CollectionName/ServiceName – identifies the
Web service for which statistics are monitored.

• collection:CollectionName – identifies the Web service
collection for which statistics are monitored.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 137

Examples This command starts the runtime monitor and monitors statistics of
MyWebServiceCollection:

wstool startStats collection:MyWebServiceCollection

Ant build example:

<wst_antTask command="startstats"
entity="service:myCollection/myService"/>

stopStats
Description Stops the runtime monitor from monitoring statistics for a given Web service

collection or Web service.

Syntax Command line:

stopStats
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="stopStats" > <wst_antTask command="stopStats"
entity=”entity” >

Where:

Examples This command stops monitoring statistics of MyWebServiceCollection:

wstool stopStats collection:MyWebServiceCollection

Ant build example:

<wst_antTask command="stopstats"
entity="service:myCollection/myService"/>

Option Description

entity The entity can be either:

• service:CollectionName/ServiceName – identifies the
Web service for which statistics are no longer
monitored.

• collection:CollectionName – identifies the Web service
collection for which statistics are no longer monitored.

upgrade

138 Web Services Toolkit

upgrade
Description Upgrades all the Web services from a Web Services Toolkit version 4.x to 5.0

on the server to which you are connected.

Syntax Command line:

upgrade

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="upgrade" > <wst_antTask command="upgrade">

Examples This command upgrades all 4.x Web services to 5.0.

wstool upgrade

Ant build example:

<wst_antTask command="upgrade" />

wsdl2Java
Description Generates Java code for client side artifacts from the WSDL, where WSDL

URI is the URI (universal resource identifier) of the WSDL file.

wsdl2java generates a service implementation template file with a .java.new
extension. Remove the .new extension and enter your business logic into the
implementation file before deploying it as a Web service.

Note When you expose a component that uses EAServer-specific holder types
as a Web service, the convention for generating the client-side holders classes
is that they are always generated under a package.holders.type hierarchy. For
example, when you expose a component as a Web service that uses
BCD.MoneyHolder, the conversion on the client-side results in a JAX-RPC
specific holder contained under BCD.holders.MoneyHolder. You will not use
EAServer-specific types on the Web service client side.

Syntax Command line:

wsdl2java
[-classpath path]
[-compile true | false]
[-factory class_name]

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 139

[-fileNS2pkg file_name]
[-genAll true | false]
[-genHelper true | false]
[-genImplTemplate true | false]
[-genRefrencedOnly true | false]
[-genSkeleton true | false]
[-genStub true | false]
[-gentestCase true | false]
[-gentypes true | false]
[-genWSDD true | false]
[-handlerFile fileName]
[-noImport true | false]
[-noWrapped true | false]
[-ns2pkg package=namespace]
[-outputDir path]
[-package packageName]
[-passwd password]
[-scope Request | Application | Session]
[-serverside true | false]
[-timeout seconds]
[-tm argument]
[-typeMappingVer 1.1 | 1.2]
[-user userName]
WSDLURI

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="wsdl2java" > <wst_antTask command="wsdl2java"
[classpath=“path”]
[compile=“true | false ”]
[factory=“class_name”]
[fileNS2pkg=“file_name”]
[genAll=“true | false ”]
[genHelper=“true | false”]
[genImplTemplate=“true | false”]
[genRefrencedOnly=“true | false”]
[genSkeleton=“true | false”]
[genStub=“true | false”]
[gentestCase=“true | false”]
[gentypes=“true | false”]
[genWSDD=“true | false”]
[handlerFile=“fileName”]
[noImport=“true | false ”]
[noWrapped=“true | false”]
[ns2pkg=“package=namespace”]
[outputDir=“path”]
[package=“packageName”]
[passwd=“password”]
[scope=“Request | Application | Session”]
[serverside=“true | false”]

wsdl2Java

140 Web Services Toolkit

[timeout=“seconds”]
[tm=“argument”]
[typeMappingVer=“1.1 | 1.2”]
[user=“userName”]
WSDLURI=“resourceIdentifier” >

Where:

Option Description

classpath Specify the classpath in quotes.

compile If true, compiles the generated source code.

factory Name of the class file that implements the GenerateFactory
class.

fileNS2pkg The name of the file that contains the ns2pkg (namespace to
package) mappings. Use this option instead of the ns2pkg
options to declare multiple mappings. For example, the
Ns2pkg.properties file contains two mappings:

http\://Host:Port/Man.xsd=com.sybase.manf
http\:/Host:Port/Purch.xsd=com.sybase.Pur
chase

and can be used as follows:

wstool wsdl2java -fileNs2pkg Ns2pkg.properties
myTest.wsdl

genWSDD If true, generates a Deploy.wsdd file.

genImplTemplate If true, generates a template for the implementation code.

genStub If true, generates the stub files.

genAll If true, generates and compiles the stubs, wsdd, and
ImplTemplate files. If set to true, this option overrides the
settings of genWSDD, genImplTemplate, and genStub.

Note When user defined types that are not Java beans are
used, the generated test client is not compilable as wsdl2java
cannot construct the type in the test code.

gentestCase If true, generates a test case.

gentypes Set this option to false when you start with java2wsdl, or you
will overwrite existing types. Default is true.

genHelper If true, generates helper classes for metadata.

genSkeleton If true, generates the skeleton files.

handlerFile The handler class file that contains any special routines
(handlers) for this Web service.

noImports If true, generates code for the current WSDL only.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 141

Examples This example uses CodeGetTest.wsdl as the input WSDL file and generates the
Java output file to the out directory:

wstool wsdl2java -genTestCase false -genHelper true -genImplTemplate true
-genRefrencedOnly false -genSkeleton true -genStub true -genWSDD true -tm
tmfile.map -classpath "d:\out;d:\wstool\test\tm\classes" -genall false -

noWrapped If true, turns off support for “wrapped” document/literal.
Wrapped is a document literal variation, that wraps parameters
as children of the root element.

ns2pkg The namespace to package value pair, in the form
namespace=package. You can only declare one namespace to
package pair using this option. Use the fileNS2pkg option to
declare multiple mappings.

outDir The output directory for the generated files.

package The package name to be used for namespace to package
mappings.

passwd The password required by the user to access the WSDL URI.

scope The scope of the deploy.wsdd: request, application, or session.

serverside If true, generates the server-side bindings for the Web service.

timeout In seconds, the amount of time allowed for this command to
complete before timing out.

tm specify the type mapping file name, if any custom data types
are being used. For example, the type mapping file
myTMfile.map has the following contents:

t1.QName = nonbeansample:Book
t1.Serializer =
nonbeansample.BookSerializer
t1.Deserializer =
nonbeansample.BookDeserializer
t1.SerializerFactory =
nonbeansample.BookSerFactory
t1.DeserializerFactory =
nonbeansample.BookDeserFactory
t1.TypeName = nonbeansample.Book
t1.EncodingType =
http://schemas.xmlsoap.org/soap/encoding/
Specify the webservice if the type
mappings are on the server
t1.ServiceName = myCollection/myService

typeMappingVer Type mapping version to use. The default is 1.1. Acceptable
values are 1.1 and 1.2.

user The user name used to access the WSDL URI.

Option Description

java2Wsdl

142 Web Services Toolkit

outDir out CodeGenTest.wsdl

Ant build example:

<wst_antTask command="wsdl2java"

entity="d:\wstool\test\sample.wsdl" />

java2Wsdl
Description Generates code for client side artifacts from the Java class file, where

locationURL and JavaClassName are the URL and name of the Java class file
from which the WSDL is being generated.

Syntax Command line:

java2wsdl
[-binding binding_name]
[-classpath path]
[-exposeMethods m1, m2, m3]
[-extraClass class1, class2, class3]
[-importURL wsdl_interface]
[-impINS implementation_namespace]
[-implWSDL implementation_wsdl_filename]
[-implClass class_name]
[-inheritMethods true | false]
[-inputSchema file_or_url]
[-inputWSDL WSDL_file]
[-intfNS interface_namespace]
[-outputWsdl file_name]
[-pkg2ns package_namespace]
[-portName port_name]
[-portTypeName class_name]
[-serviceName service_name]
[-soapAction Default | Operation | None]
[-stopClasses class1, class2, class3]
[-style Document | RPC | Wrapped]
[-tm argument]
[-typeMappingVer 1.1 | 1.2]
[-use Literal | Encoded]
[-wsdlMode All | Interface | Implemenation]
[-xcludeMethods m1, m2, m3]
-locationURL<service location URL> javaClassName

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="java2wsdl" > <wst_antTask command="java2wsdl"

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 143

[binding=“binding_name”]
[classpath=”path”]
[exposeMethods=“m1, m2, m3 ”]
[extraClass=“class1, class2, class3”]
[importURL=“wsdl_interface”]
[impINS=“implementation_namespace”]
[implWSDL=“implementation_wsdl_filename”]
[implClass=“class_name]
[inheritMethods=“true | false”]
[inputSchema=“file_or_url”]
[inputWSDL=“WSDL_file”]
[intfNS=“interface_namespace”]
[outputWsdl=“file_name”]
[pkg2ns=“package_namespace”]
[portName=“port_name”]
[porTypetName=“class_name”]
[serviceName=“service_name”]
[soapAction=“Default | Operation | None”]
[stopClasses=“class1, class2, class3 ”]
[style=“Document | RPC | Wrapped”]
[tm=“argument”]
[typeMappingVer=“1.1 | 1.2”]
[use=“Literal | Encoded”]
[wsdlMode=“All | Interface | Implemenation”]
[xcludeMethods=“m1, m2, m3”]
locationURL<service location URL>=“javaClassName” >

Where:

Option Description

binding The binding name. The default is servicePortName value
“SOAPBinding.”

classpath Specify the classpath in quotes.

exposeMethods A comma-separated list of methods to expose.

extraClasses A comma-separated list of classes to be added to the type
section.

importURL The location of the interface URL.

implNS The target namespace for the implementation WSDL.

intfNS The target namespace.

inputWSDL input WSDL filename.

implWSDL The output implementation WSDL file name. Setting this option
causes the wsdlMode option to be ignored.

implClass An optional class that contains implementation of methods in
class-of-portType. The debug information in the class is used to
obtain the method parameter names, which are used to set the
WSDL part names.

inputWsdl The input WSDL file name.

java2Wsdl

144 Web Services Toolkit

outputWsdl The output WSDL file name.

pkg2NS The package to namespace value pair, in the form
package=namespace.

portName The service port name. The default is obtained from the
locationURL.

portTypeName The port type name. The default is class-of-portType.

serviceName The service name. The default is servicePortName value
“Service.”

inheritMethods True or false. If true, expose allowed methods in inherited
classes.

xcludeMethods A comma-separated list of methods not to expose.

stopClasses A comma-separated list of class names that stops the inheritance
search even if the inheritMethods option is specified.

tm specify the Type mapping file name, if any custom data types are
being exposed. For example, the type mapping file
myTMfile.map has the following contents:

t1.QName = nonbeansample:Book
t1.Serializer =
nonbeansample.BookSerializer
t1.Deserializer =
nonbeansample.BookDeserializer
t1.SerializerFactory =
nonbeansample.BookSerFactory
t1.DeserializerFactory =
nonbeansample.BookDeserFactory
t1.TypeName = nonbeansample.Book
t1.EncodingType =
http://schemas.xmlsoap.org/soap/encoding/
Specify the webservice if the type
mappings are on the server t1.ServiceName
= myCollection/myService

typeMappingVer The type mapping version. Valid options are 1.1 (the default)
and 1.2.

soapAction The value of the operations soapAction field. Valid values are:

Default – causes the soapAction to be set according to
operations in the metadata.

Operation – forces soapAction to the name of the operation.

None – forces the soapAction to blank, which is the default.

style The style of the binding in the WSDL. Options are “Document,”
“Wrapped,” or “RPC” (the default).

use Defines the use of the items in the binding. Options are “Literal”
or “Encoded” (the default).

Option Description

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 145

Examples This example uses nonBeanSample as input and generates the
CodeGenTest.wsdl output file:

wstool java2wsdl -locationURL
"http://localhost:8080/nonBean/services/nonBeanSample" -pkg2ns
"nonbeansample=nonbeansample" -tm tmfile.map -outputwsdl CodeGenTest.wsdl
-classpath d:\wstool\test\tm\classes nonbeansample.TestBookServiceIntf

Ant build example:

<wst_antTask command="java2wsdl"
locationURL="http://${wst.host}/${wst.port}/nonBean/se
rvices/nonBeanSample"
tm="d:\wstool\test\tm\tmfile.map"
classpath="d:\wstool\test\classes"
entity="nonbeansample.TestBookServiceIntf"/>

Security commands
Description Security administration commands allow you to perform security-related Web

service management.

Command list Table 8-5 lists the security administration commands.

Table 8-5: wstool security administration commands

Note To run security administration commands, you must be a member of the
Admin Role.

wsdlMode The output WSDL mode. Valid options are All (default),
Interface, or Implementation.

inputSchema A file or URL that points to the XML schema used during
WSDL generation.

Option Description

command name Description

add Adds existing roles to a method or Web service.

remove Removes a role from a method or Web service.

add

146 Web Services Toolkit

add
Description Adds existing roles to a Web service or Web service method.

Syntax Command line:

add
[-sourceEntity r1, r2, r3]
TargetEntity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="add" > <wst_antTask command="add"
[sourceEntity=“r1, r2, r3”]
TargetEntity=”entity” >

Where:

Examples Example 1 This example adds role1 and role2 to myMethod:

wstool add “role:role1, role2” “method:WebColl/WebServ/myMethod”

Example 2 This example adds the role everybody to myWebServ:

wstool add “role:everybody” “service:WebColl/myWebServ”

Ant build example:

<wst_antTask command="add"
sourceentity="role:testRole"
targetentity="service:myCollection/myService"/>

Note Entities must be specified in quotes.

Option Description

sourceEntity A comma-separated list of roles to be added in the format
of:

role:role1, role2

targetEntity The target entity to which the roles are assigned:

• method:CollectionName/ServiceName/MethodName –
identifies the method to which the roles are added.

• service:CollectionName/ServiceName – identifies the
Web service to which the roles are added.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 147

remove
Description Removes roles from a Web service or Web service method.

Syntax Command line:

remove
[-sourceEntity r1, r2, r3]
TargetEntity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="remove" > <wst_antTask command="remove"
[sourceEntity=“r1, r2, r3”]
TargetEntity=”entity” >

Where:

Examples Example 1 This example removes role1 and role2 from myMethod:

wstool remove “role:role1, role2” “method:WebColl/WebServ/myMethod”

Example 2 This example removes the role everybody from myWebServ:

wstool remove “role:everybody” “service:WebColl/myWebServ”

Ant build example:

<wst_antTask command="remove"
sourceentity="role:testRole"
targetentity="service:myCollection/myService"/>

Note Entities must be specified in quotes.

Option Description

sourceEntity A comma-separated list of roles to be removed from the
format of:

role:role1, role2

targetEntity The target entity to which the roles are removed:

• method:CollectionName/ServiceName/MethodName –
identifies the method from which the roles are
removed.

• service:CollectionName/ServiceName – identifies the
Web service from which the roles are removed.

wstkeytool commands

148 Web Services Toolkit

wstkeytool commands
Description This section contains information on wstkeytool commands, and lists the

commands that wstkeytool accepts. Each command has a brief description, a list
of options, and an example of its usage.

Each command has its own section heading (the text in the far left margin).
Each command section contains a description of the command, its syntax, a list
of options, and an example of its use at the command line and in Ant build files.
Table 8-6 lists the wstkeytool commands.

Table 8-6: wstkeytool command

Note To run wstkeytool commands, you must belong to the Admin Role.

changePin
Description Changes the password used to protect the integrity of the keystore contents.

Syntax Command line:

changePin
[-newpin new_pin]

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>

Command Description

changePin Changes the password of the keystore.

deleteCert Deletes a key from the keystore.

export Exports a certificate from the keystore to a file.

genCertReq Generates a certificate request using PKCS#10 format.

GetCACerts Lists the CA certificates contained in the keystore.

GetOtherCerts Lists the Other certificates contained in the keystore.

GetUserCerts Lists the User certificates contained in the keystore.

import Imports a certificate from a file to the keystore.

printCert Prints the certificate information from a file.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 149

<target name="changePin" > <wst_antTask command="changePin"
[newpin=“new_pin” >]

Where:

Examples This command changes the keystore password to “new_password:”

wstkeytool changePin -newpin new_password

Ant build example:

<wst_antTask command="changepin" newpin="secret" />

deleteCert
Description Deletes a certificate identified by the entry identified by keyname from the

keystore.

Syntax Command line:

deleteCert
keyname

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="deleteCert" > <wst_antTask command="deleteCert"
keyname=”key” >

Examples This command deletes the certificate identified by testkey from the keystore:

wstkeytool deleteCert testkey

export
Description Reads the certificate associated with the entity stored in the keystore and

exports it to a file.

Syntax Command line:

Option Description

newpin The new keystore password

export

150 Web Services Toolkit

export
[-p12 pin]
[-certFile file_name]
[-encoding encodingFormat]
[-format exportFormat]
[-includeCertChain true | false]
[-privPbeAlgo algorithm]
[-certPbeAlgo algorithm]
entity

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="export" > <wst_antTask command="export"
[p12=“pin]
[certFile=“encodingFormat”]
[encoding=“encodingFormat”]
[format=“exportFormat”]
[includeCertChain=“true | false”]
[privPbeAlgo=“algorithm”]
[certPbeAlgo=“algorithm”]
entity=“entity” >

Where:

Option Description

p12 This option must be used if the type of certificate is
pkcs12. Valid arguments are:

• PBEWithSHA1And3KeyTripleDESCBC

• PBEWithSHA1And2KeyTripleDESCBC

• PBEWithSHA1And128BitRC2CBC

• PBEWithSHA1And128BitRC4

• PBEWithSHA1And40BitRC4

certFile File name with extension of the exported certificate
generated in the current directory.

format The format of the exported certificate. Options are:

• der (default)

• netxcape

• pkcs7

• pkcs12

encoding The encoding of the exported certificate. Either
binary (default), or base64.

includeCertChain True or false. If true, includes certificate chain
information. The default is true.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 151

Examples This example exports information from the certificate mytest.crt from the
keystore, and exports it to the file exported_cert:

wstkeytool export -format pkcs7 -certFile exported_cert -p12 Pin
-privPbeAlgo PBEWithSHA11And3keyTripleDESCBC -certPbeAlgo
PBEWithSHA11And3keyTripleDESCBC -certfile d:\mykeys\mytest.crt key:”Sybase
Jaguar User Test Certificate”

genCertReq
Description Generates a Certificate Signing Request (CSR), using the PKCS#10 format.

The key is stored as keyname in the keystore, and stores the certificate request
to the certFile if supplied.

Syntax Command line:

genCertReq
[-certFile file_name]
[-emailId email_address]
[-isSensitive true | false]
[-phone number]
[-requestorName name]
[-serverAdmin name]
[-sigalg sigalg_name]
[-keysize number]
[-dname distinguished_name]
[-userId name]
keyname

Ant build file:

privPbeAlgo The private pbe’s algorithm. Possible values
include:

• PBEWithSHA1And3KeyTripleDESCBC

• PBEWithSHA1And2KeyTripleDESCBC

• PBEWithSHA1And128BitRC2CBC

• PBEWithSHA1And40BitRC2CBC

• PBEWithSHA1And128BitRC4

• PBEWithSHA1And40BitRC4

certPbeAlgo The certificate pbe’s algorithm. The possible values
are the same as privPbeAlgo.

Entity The exported certificate in the form key:certificate

Option Description

genCertReq

152 Web Services Toolkit

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="genCertReq" > <wst_antTask command="genCertReq"
[certFile=“file_name”]
[emailId=“email_addresse”]
[isSensitive=“true | false”]
[phone=“number”]
[requestorName=“name”]
[serverAdmin=“name”]
[sigalg=“sigalg_name”]
[keysize=“number”]
[dname=“distinguished_name”]
[userId=“name”]
keyname=“key” >

Where:

Examples This example generates a CSR named certreq, using the signature algorithm
md5withRSA. Information contained in the testcert key is used to generate the
CSR.

wstkeytool genCertReq -sigalg md5withRSA keysize 1024 -certFile testcert
testcert

Option Description

sigalg The signature algorithm that defines the key algorithm
used and the hash method used to compute the message
digest. MD5withRSA is the default. If key is of type
“DSA”, the default is “SHA1withDSA”, if key is of type
“RSA”, the default is “MD5withRSA”

keysize The size indicates the authentication key strength. The
greater the number, the stronger the encryption. Your
options are 512, 768, or 1024. 1024 is the default.

dname The distinguished name in the format:

“CN=cName, OU=orgUnit, O=org, L=city, S=state,
C=countryCode”

userId An optional user name or ID.

emailId An optional e-mail address.

requestorName An optional requestor name.

serverAdmin A optional server administrator name.

phone An optional phone number.

certFile An optional file name. If specified, the output is written to
this file; if not, it is displayed on the console.

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 153

GetCACerts
Description Lists the CA (certification authority) certificates contained in the server.

Syntax Command line:

GetCACerts

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="GetCACerts" > <wst_antTask command="GetCACerts" >

Examples This command lists the CA certificates contained in the server:

wstkeytool GetCACerts

Ant build example:

<wst_antTask command="getcacerts" />

GetOtherCerts
Description Lists the other certificates (listed in the other certificates folder) contained in

the server.

Syntax Command line:

GetOtherCerts

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="GetOtherCerts" > <wst_antTask
command="GetOtherCerts" >

Examples This command lists the other certificates contained in the server:

wstkeytool GetOtherCerts

Ant build example:

<wst_antTask command="getOthercerts" />

GetUserCerts

154 Web Services Toolkit

GetUserCerts
Description Lists the user certificates (listed in the User folder) contained in the server.

Syntax Command line:

GetUserCerts

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="GetUserCerts" > <wst_antTask
command="GetUserCerts" >

Examples This command lists the user certificates contained in the server:

wstkeytool GetUserCerts

Ant build example:

<wst_antTask command="getusercerts" />

import
Description Reads the certificate from a file and stores it as a keystore entry.

Syntax Command line:

import
[-p12 pin]
filename

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="import" > <wst_antTask command="import"
p12= “pin”
filename=“file” >

Where:

Option Description

p12 This option must be used if the imported certificate is
pkcs12 (the certificate file ends with .p12 or .pfx).

CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant

User’s Guide 155

Examples This example imports a certificate from import_cert.crt, and stores it in the
keystore:

wstkeytool import imported_cert.crt

Ant build example:

<wst_antTask command="importcert"
entity="d:\test\test.crt"/>

printCert
Description Reads the certificate information from the keystore, and prints its contents in a

human-readable format to the display. keyname is the name of the printed
certificate.

Syntax Command line:

printCert
keyname

Ant build file:

<taskdef name="wst_antTask"
classname="com.sybase.wst.wstool.ant.AntTask"/>
<target name="printCert" > <wst_antTask command="printCert"
keyname=“key” >

Examples This command displays the information contained in the Jaguar user test CA:

wstkeytool printCert “Sybase Jagauar User Test CA”

Ant build example:

<wst_antTask command="printcert" entity="Sybase Jaguar
User Test CA"/>

filename The file that contains the information being imported into
the keystore. File type can be base64, binary, der, pkcs7,
or Netscape.

Option Description

printCert

156 Web Services Toolkit

User’s Guide 157

C H A P T E R 9 Developing Web Service Clients

This chapter describes how to develop Web service clients from the client
files created from the WST development tool and wstool commands.

Introduction
When you use Web Services Toolkit to generate client files, you generate
a variety of files based on the options selected and the client model used.
This chapter describes how to create Web service client applications based
on various programming models, including:

• “Stub-based model client” on page 158

• “Dynamic proxy client” on page 160

• “Dynamic invocation interface client” on page 161

• “Document style client” on page 165

Topic Page
Introduction 157

Stub-based model client 158

Dynamic proxy client 160

Dynamic invocation interface client 161

Document style client 165

Stub-based model client

158 Web Services Toolkit

Stub-based model client
The stub-based model generates local stub classes for the proxy from a WSDL
document. This is the model used by the WST development tool to create a
Web service client. When you change the WSDL document, you must
regenerate the stubs. WST provides tools to generate and compile stubs. See
“Creating and managing Web service clients” on page 38 and wsdl2Java on
page 138. Along with the stubs, the tools generate additional classes, and a
service definition interface (SDI), which is the interface that is derived from a
WSDL’s portType. This is the interface you use to access the operations on the
Web service. The combination of these files are called client-side artifacts.
Client-side artifacts are a collection of files on the client-side that handle
communication between a client and a Web service.

Generated client-side artifacts must include:

• A stub class – for example, AddNumbersStub.java:

public class AddNumbersStub extends org.apache.axis.client.Stub
implements client.AddNumbers_Port

• A service endpoint interface – for example, AddNumbers_Port.java:

public interface AddNumbers_Port extends java.rmi.Remote

• A service definition interface – for example, AddNumbers_Service.java:

public interface AddNumbers_Service extends javax.xml.rpc.Service

• An implementation of the service definition interface (the location class to
help you find the endpoint) – for example,
AddNumbers_ServiceLocator.java:

public class AddNumbers_ServiceLocator extends
org.apache.axis.client.Service implements client.AddNumbers_Service

stub-based example
This stub-based client example can be found in
%JAGUAR%\sample\wst_samples\JavaClassClient\client\AddClient.java.

package client;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

CHAPTER 9 Developing Web Service Clients

User’s Guide 159

/**
* @author Sybase
*
* A sample client to access the add method in the service.
* The add method returns the addition of two numbers
* which is calculated by the webservice AddNumbers.
*
*/
public class AddClient
{
 public static void main(String[] args)
 {
 AddNumbers_ServiceLocator context;
 AddNumbers_Port client;
 try
 {
 int num1 = 10;
 int num2 = 10;
 context = new AddNumbers_ServiceLocator();
 client = context.getAddNumbers();

 if (args.length > 0)
 {
 num1 = new Integer(args[0]).intValue();
 if (args.length >1)
 {
 num2 = new Integer(args[1]).intValue();
 }
 }
 int value= client.add(num1, num2);
 System.out.println("Result of adding " + num1 + " and " + num2 +
" is: " + value);
 }
 catch (ServiceException ex1)
 {
 ex1.printStackTrace();
 }
 catch (RemoteException ex2)
 {
 ex2.printStackTrace();
 }
 }
}

Dynamic proxy client

160 Web Services Toolkit

Dynamic proxy client
The dynamic proxy client creates dynamic proxy stubs at runtime using JAX-
RPC client APIs. The client gets the service information from a given WSDL
document. It uses the service factory class to create the service based on the
WSDL document and obtains the proxy from the service.

The significant JAX-RPC client APIs used are:

• javax.xml.rpc.rpc.Service

• javax.xml.rpc.ServiceFactory

Dynamic proxy client example
This section contains a listing of a sample dynamic proxy client:

package client;

import java.net.URL;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
import javax.xml.namespace.QName;

public class JAXRPC_DynClient
{
 public static void main(String[] args)
 {
 try
 {

/*
 * URL to the Service's WSDL document
*/

 URL wsdl = new
URL("http://localhost:8080/ws/services/AddNumbers?wsdl");
 String namespaceURI = "urn:simpleJavaClass.AddNumbers";
 String serviceName = "AddNumbers";
 String portName = "AddNumbers";
 int num1 = 10;
 int num2 = 20;

 ServiceFactory factory = ServiceFactory.newInstance();

 /*

CHAPTER 9 Developing Web Service Clients

User’s Guide 161

* Create a service using the WSDL document
*/
 Service service = factory.createService(wsdl, new QName(namespaceURI,
serviceName));

/*
 * Get the proxy by calling getPort method from an instance of Service.
*/

 AddNumbers_Port port = (AddNumbers_Port)service.getPort(new
QName(namespaceURI, portName), AddNumbers_Port.class);
 int value= port.add(num1, num2);
 System.out.println("Result of adding " + num1 + " and " + num2 +
" is: " + value);

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

}

Dynamic invocation interface client
The Dynamic Invocation Interface (DII) client does not require a WSDL file to
generate static stubs or pass the WSDL file to the service factory to create the
service; instead, the client must know a service’s address, operations, and
parameters in advance. A DII client discovers service information dynamically
at runtime by a given set of service operations and parameters as you will see
in the example.

The significant JAX-RPC client APIs used are:

• javax.xml.rpc.Call

• javax.xml.rpc.Service

• javax.xml.rpc.ServiceFactory

Dynamic invocation interface client

162 Web Services Toolkit

DII client example
This section contains a listing of several sample DII clients.

In addition, you can find a DII sample in
%JAGUAR%\sample\wst_samples\JAXRPCClient\client\DIIClient.java

package client;
import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;

public class JAXRPC_DIIClient
{
 public static void main(String[] args)
 {
 try
 {
 /*

* URL of the web service
*/

 String address = "http://localhost:8080/ws/services/AddNumbers";
 String namespaceURI = "urn:simpleJavaClass.AddNumbers";
 String serviceName = "AddNumbers";
 String portName = "AddNumbers";
 int num1 = 10;
 int num2 = 20;

 ServiceFactory factory = ServiceFactory.newInstance();

 /*
* Create an instance of the Service with the given service QName
*/

 Service service = factory.createService(new QName(serviceName));

 Call call = service.createCall(new QName(portName));

 call.setTargetEndpointAddress(address);

 QName intQName = new QName("http://www.w3.org/2001/XMLSchema", "int");

 /*
 * Set operation name to invoke.
 */
 call.setOperationName(new QName(namespaceURI,"add"));

CHAPTER 9 Developing Web Service Clients

User’s Guide 163

 /*
 * Add parameters definitions in the call object.
 */
 call.addParameter("number1", intQName, ParameterMode.IN);
 call.addParameter("number2", intQName, ParameterMode.IN);

 /*
 * Set definition of the return type.
 */
 call.setReturnType(intQName);

 Object[] inParams = new Object[2];
 inParams[0] = new Integer(num1);
 inParams[1] = new Integer(num2);

 int value= ((Integer)call.invoke(inParams)).intValue();
 System.out.println("Result of adding " + num1 + " and " + num2 +
" is: " + value);

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

}

Significant AXIS client APIs used for the following sample are:

• org.apache.axis.client.Call

• org.apache.axis.client.Service

The sample client is in
%JAGUAR%\sample\wst_samples\DynamicClient\client\DynClient.java

package client;
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import javax.xml.rpc.ParameterMode;
import java.net.URL;

/**
 * @author Sybase
 */
public class DynClient

Dynamic invocation interface client

164 Web Services Toolkit

{
 public static void main(String[] args) throws Exception
 {
 /*
 * URL of the web service.
 * See under eclipse ->Web services perspective ->'ws'->AddNumbers
 */
 String url = "http://localhost:8080/ws/services/AddNumbers";
 Integer number1 = new Integer(1);
 Integer number2 = new Integer(2);

 /*
 * Create an instance of the Call object.
 */
 Call call = (Call)service.createCall();
 System.out.println("Connecting to: " + url);
 call.setTargetEndpointAddress(new URL(url));
 /*
 * Set parameters definitions in the call object.
 */
 call.addParameter("n1", XMLType.XSD_INT, ParameterMode.IN);
 call.addParameter("n2", XMLType.XSD_INT, ParameterMode.IN);
 /*
 * Set definition of the return type.
 */
 call.setReturnType(XMLType.XSD_INT);
 /*
 * Name of the method to invoke.
 */
 call.setOperation("add");
 System.out.println("Adding: " + number1 + " & " + number2);
 /*
 * Finally invoke the method.
 */
 Integer i = (Integer)call.invoke(new Object[]
 {
 number1, number2
 }
);
 System.out.println("Result: "+ i);
 }
}

CHAPTER 9 Developing Web Service Clients

User’s Guide 165

Document style client
The previous client examples use different invocation modes to interact with
RPC style Web services. To interact with document style Web services, the
XML document must be defined in the client. The clients do not invoke the
Web service by sending a discrete set of parameters and receiving return values
as described in a WSDL document; instead, they send the parameter to the
service as XML documents.

Document style example
This section contains document style client examples.

package client;
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import javax.xml.namespace.QName;
import javax.xml.rpc.ParameterMode;
import org.apache.axis.enum.Style;
import org.apache.axis.enum.Use;
import org.apache.axis.message.SOAPBodyElement;
import org.apache.axis.message.SOAPEnvelope;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.apache.axis.utils.XMLUtils;
import java.util.Vector;

public class DIIDocClient
{

 public static void main(String[] args)
 {
 try
 {
 /*

* NOTE: The web service uses document style
* eg:
*<service name="MyDocSample" provider="java:RPC" style="document"

use="literal">
*/

 String url = "http://localhost:8080/ws/services/MyDocSample";
 Service service = new Service();
 Call call = (Call) service.createCall();

Document style client

166 Web Services Toolkit

 call.setTargetEndpointAddress(url);
 String param= "hello";

/*
 *construct the XML document

 */
 SOAPBodyElement[] input = new SOAPBodyElement[1];

 input[0] = new
SOAPBodyElement(XMLUtils.StringToElement("http://www.w3.org/2001/XMLSchema",
 "echo", param));
 Vector elems = (Vector) call.invoke(input);

 SOAPBodyElement elem = (SOAPBodyElement) elems.get(0);
 Element e = elem.getAsDOM();
 System.out.println("returned value: " + XMLUtils.ElementToString(e));

 }
 catch (Throwable t)
 {
 t.printStackTrace();
 }
 }
}

In the above example, the XML in the request sent to the server is:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
<xsd:echo>hello</xsd:echo>
</soapenv:Body>
</soapenv:Envelope>

If the example is RPC-style, the XML in the request sent to the server is:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <echo xmlns="">
 <arg0 xsi:type="xsd:string">hello</arg0>

CHAPTER 9 Developing Web Service Clients

User’s Guide 167

 </echo>
 </soapenv:Body>
</soapenv:Envelope>

Document style client

168 Web Services Toolkit

User’s Guide 169

C H A P T E R 1 0 Using the Web Services Toolkit
Samples

This chapter describes the samples and tutorials included with WST.

Samples in WST
WST includes sample Web services that guide you through using the WST
development tool, deploying Web services, establishing security
constraints, creating clients, and so on.

Samples on the Sybase Web site
You can find additional EAServer samples on the EAServer CodeXchange
pages at http://easerver.codexchange.sybase.com/. The CodeXchange site
allows Sybase users to share code samples and utilities for EAServer and
other Sybase products.

Sample and tutorial location
WST is included as part of an EAServer installation, if you select the Web
Services option. Samples and tutorials are installed in:

• Windows – %JAGUAR%\sample\wst_samples

• UNIX – $JAGUAR/sample/wst_samples

Topic Page
Samples in WST 169

Using the WST development tool and features 170

Developing client applications 175

Using the WST development tool and features

170 Web Services Toolkit

Each sample and tutorial contains its own subdirectory that contains a
Readme.txt file that describes the sample and how to run it, and the files
necessary to run the sample.

Creating the sample projects and installing the samples
Before running any of the samples described in “Using the WST development
tool and features” on page 170, you need to create the projects and install the
samples in the WST development tool environment. From the WST
development tool:

1 Select Sybase Web Services and click OK.

2 Select Help | Welcome.

3 Scroll down to “Sample Projects” and click the “here” link.

The projects are created and populated with samples which you can see
from the Package Explorer (Window | Show View | Package Explorer).

Using the WST development tool and features
Your WST installation includes the following samples and tutorials that
familiarize you with the WST development tool. All samples in this section
require Eclipse to be running and the Sybase Web services plug-in installed.
See Chapter 4, “Web Services Administration.”

Exposing a Java class as a Web service
The WST development tool provides the architecture and tools to create and
deploy Web services from various types of files, which generate a WSDL file
as part of the Web service creation. From the generated WSDL file, use the
WST development tool to create a test client that tests your newly exposed Web
service.

In this tutorial, you:

• Connect to EAServer (Web services container)

• Expose a Java class as a Web service

CHAPTER 10 Using the Web Services Toolkit Samples

User’s Guide 171

• Generate a test client for the exposed Web service

• Run the test client

The Java source files are in the JavaClass/simpleJavaClass and
JavaClassClient subdirectories. Instructions for running the tutorial are in the
file ReadmeForEclipse.txt in the JavaClass/simpleJavaClass directory.

Running the test client using HTTPS

The sample described above includes a client, AddClient.java located in the
JavaClassClient/client subdirectory. This section describes how to modify this
sample and import a test certificate into a keystore so that you can run the
tutorial using HTTPS.

To run the test client using HTTPS, you must have Java Secure Socket
Extension (JSSE) installed and configured on the client. See Chapter 5, “Using
SSL in Java Clients”, in the EAServer Security Administration and
Programming Guide for more information.

❖ Exporting the Jaguar Test CA

You must export the Jaguar Test CA using Security Manager. See the EAServer
Security Administration and Programming Guide for information about
starting and using Security Manager.

1 From Security Manager, select the CA Certificates folder.

2 Highlight the Sybase Jaguar User Test CA.

3 Select File | Export Certificate.

4 From the Export Certificate wizard, select the format type for the exported
certificate. For the Test CA, select Binary Encode X509 Certificate. Click
Next.

5 Select Save to File and enter the full path name to a file that will contain
the test CA. Use EASTestCA as the certificate name.

Do not add any extension to the file name. A .crt extension is
automatically added to the exported certificate by Security Manager.

6 Click Finish to export the certificate to the EASTestCA.crt.

❖ Create a Java Keystore containing the Sybase Jaguar test CA and mark
the certificate trusted.

This procedure uses the Java keytool command to create a keystore, import the
EASTestCA.crt certificate, and mark it trusted.

Using the WST development tool and features

172 Web Services Toolkit

1 From the command line, go to the $JAGUAR/sample/wst_samples
directory.

2 Enter this command to create the keystore named EASTestCA.jks and
install EASTestCA.crt, mark it trusted, and protect the keystore with the
password “changeit”:

<path_to_JDK_1.3>/bin/keytool -import -v -trustcacerts -alias eastestca -file
EASTestCA.crt -keypass changeit -keystore EASTestCA.jks

The Java keytool command requires you to answer two questions. Here are
the questions, answers you should provide, and output:

Enter keystore password: changeit
Owner: L=Sybase Jaguar User Test Locality, O=Sybase Jaguar User Test,
CN=Sybase Jaguar User Test CA (TEST USE ONLY)
Issuer: L=Sybase Jaguar User Test Locality, O=Sybase Jaguar User Test,
CN=Sybase Jaguar User Test CA (TEST USE ONLY)
Serial number: 1
Valid from: Fri Oct 16 11:02:16 PDT 1998 until: Thu Oct 16 11:02:16 PDT
2003
Certificate fingerprints:
MD5: 5B:66:65:6A:4F:11:41:7C:B4:9B:17:CF:30:61:26:5F
SHA1: B5:38:55:36:E2:FF:F2:28:5E:45:80:94:BF:54:20:96:28:5B:CC:F8
Trust this certificate? [no]: yes
Certificate was added to keystore
[Saving EASTestCA.jks]

❖ Modify the client program

Make these changes to the AddClient.java file. When you run the program, the
client will connect to the listener at port 8081. This tutorial assumes that you
are running the client on the same machine as your EAServer installation.

• modify AddClient.java as follows:

import java.net.URL;
import java.net.MalformedURLException;
import java.security.Security;
import java.io.File;

public class AddClient
{
public static void main(String[] args)
{

...
String jksStore=

CHAPTER 10 Using the Web Services Toolkit Samples

User’s Guide 173

".." + File.separator + ".." + File.separator +
"EASTestCA.jks";

System.setProperty("javax.net.ssl.trustStore", jksStore);
System.out.println("Set system property " +
javax.net.ssl.trustStore to " + jksStore);
// Dynamically register the JSSE provider
Security.addProvider(new
com.sun.net.ssl.internal.ssl.Provider());

context = new AddNumbers_ServiceLocator();
URL newURL = null;
try
{
newURL =
new URL("https://localhost:8081/AddSample/services/AddNumbers");
}
catch(MalformedURLException me)
{
me.printStackTrace();
return;
}

System.out.println("Connecting to: " + newURL.toString());
client = context.getAddNumbers(newURL);

❖ Compile and run the sample

• Change to the JavaClassClient/client subdirectory and compile and run
the test client. For example:

$JAGUAR/bin/wstant compile run -Dnum1=5 -Dnum2=8

Exposing a Web service that implements JAX-RPC defined
interfaces

The WST development tool allows you to develop, deploy, and run Web
services that conform to the JAX-RPC specification.

In this tutorial, you:

• Deploy the Web service described in “Establishing Web service security,
and generating a test client” on page 174

• Deploy a Java class as a Web service

Using the WST development tool and features

174 Web Services Toolkit

• Run the JAX-RPC client

The source files are in the JAXRPCService and JAXRPCClient subdirectories.
Instructions for running the tutorial are in the file readmeEclipse.txt in the
JAXRPCService/server directory.

Exposing a stateless EJB as a Web service
The WST development tool offers different options for exposing Web services
and generating test clients.

In this tutorial, you:

• Use EAServer Manager to install an EJB into EAServer

• Use the Quick Expose option to expose your EJB as a Web service

• Generate a JSP test client for the exposed Web service

• Run the JSP test client

The source files are in the EJBSample/statelessEjbSample subdirectory.
Instructions for running the tutorial are in the file readme.txt.

Establishing Web service security, and generating a test client
Authorization for Web services is enforced by roles. Using the WST
development tool you can create new roles, or use predefined roles to establish
security at the Web service and Web service operation level. Using different
levels of security at the operation level allows you to closely control who has
access to your resources.

In this tutorial, you:

• Expose a Java class as a Web service

• Create an administrator role and a general role and assign those roles to
Web service operations/methods

• Generate two test clients: one to administer, the other for general business
purposes

• Run the test clients to verify that the security constraints provided by the
roles work as expected

CHAPTER 10 Using the Web Services Toolkit Samples

User’s Guide 175

The source files are in the SecuritySample and SecuritySampleClient
subdirectories. Instructions for running the tutorial are in the file readme.txt in
the SecuritySample directory.

Exposing a CORBA component as a Web service
This sample demonstrates how to expose an existing CORBA component as a
Web service. In addition, the sample illustrates which component properties
enable the component to be exposed. The WST development tool contains an
“Other components” folder, which contains components that can be deployed
as Web services. Once deployed, the components remain listed in the Other
Components folder. This tutorial contains a CORBA Java component that can
be exposed as a Web service once it is made stateless. Use EAServer Manager
and the WST development tool together to run this tutorial.

In this tutorial, you:

• Use EAServer Manager to install a CORBA component in EAServer

• Modify the CORBA component’s properties so it is stateless

• Expose the component as a Web service

• Create and run a Web service client

The source files are in the CORBAComponent subdirectory. Instructions for
running the tutorial are in the file readme.txt.

Google search API demonstration
In this sample you download the Google Web services APIs and create a Web
service client that allows you to perform sample Google searches.

The source files are in the GoogleAPI subdirectory. Instructions for running the
tutorial are in the file GoogleSearchEAS5.htm.

Developing client applications
This section provides samples of client applications that you can use to access
the Web services contained on EAServer.

Developing client applications

176 Web Services Toolkit

In addition to the samples described in this chapter, see Chapter 9,
“Developing Web Service Clients” for a description of various types of clients,
including sample code.

Running a dynamic client
This sample is an example of using a dynamic client (a client that needs no
client-side artifacts because it already knows the name and how to access the
Web service method) to invoke your Web service’s methods.

In this tutorial, you:

• Deploy and expose a Web service

• Run the dynamic client

The source files are in the DynamicClient subdirectory. Instructions for
running the tutorial are in the file readme.txt.

.NET sample
Client applications created with Microsoft’s .NET framework can access Web
services hosted in EAServer; wsdl.exe generates the required client side proxy
from the WSDL document on EAServer. The C# (“C-sharp”) compiler csc.exe
compiles the client executable program that accesses the Web service through
the client-side proxy.

The example in this section describes the steps for creating both the server-side
Web service and client-side proxy and executable program. For more
information about .NET, go to Microsoft’s .NET Web site at
http://www.microsoft.com/net/.

Note Only primitive data types are supported as Web services accessible by
.NET clients, not user-defined data types. See Chapter 3, “Components,
Datatypes, and Type Mappings,” for a list of supported data types.

In this sample, you:

• Deploy a Web service using an example from a previous tutorial for this
step. See “Exposing a stateless EJB as a Web service” on page 174.

• Install Microsoft’s .NET SDK on your machine and add the .NET libraries
to your environment.

CHAPTER 10 Using the Web Services Toolkit Samples

User’s Guide 177

• Run .NET’s wsdl.exe command or a batch file to create the client proxy.

• Create the client executable program and compile it using csc.exe.

• Run the client program to invoke the service.

The source files are in the DotNetSample subdirectory. Instructions for running
the tutorial are in the file readme.txt.

PowerBuilder 9 sample
This sample illustrates how to deploy a PowerBuilder 9 component as a Web
service in EAServer, and use a PowerBuilder 9 client to invoke the Web
service. In this sample, you:

• Deploy the PowerBuilder component

• Create the required stub and skeleton files

• Expose the component as a Web service

• Invoke the Web service from the PowerBuilder client

The source files are in the PB9 subdirectory. Instructions for running the
tutorial are in the file wsPBEAServer.htm.

Developing client applications

178 Web Services Toolkit

User’s Guide 179

A P P E N D I X A Migrating 4.x Web Services

This appendix describes how to migrate Web services created with Web
Services Toolkit version 4.x to be compatible with Web Services Toolkit
version 5.0 and above.

Introduction
When you upgrade an existing EAServer 4.x installation to EAServer
version 5.0 or later, any 4.x EAServer components and packages are
automatically migrated to the 5.x EAServer.

To use your Web services in the 5.x server you must modify both the client
application and the server-side Web service.

This appendix uses the CanineShelter example to illustrate how to migrate
Web services and Web service client applications. The CanineShelter
example is located in the /sample/wst_samples/CanineShelter
subdirectory of your EAServer installation.

All paths listed below are for Microsoft Windows. UNIX users should
make the necessary adjustments.

Server-side migration
Migrating Web services on the server side requires you to:

Topic Page
Introduction 179

Server-side migration 179

Client-side migration 180

Client-side migration

180 Web Services Toolkit

1 Verify that the skeletons are generated for all of the migrated 4.x
components. If any of the skeletons are not available, use jagtool or
EAServer Manager to generate them. See “Generating Stubs and
Skeletons” in the EAServer Programmer’s Guide.

2 Run the wstool upgrade command. This ensures that all the 4.x Web
services are migrated to 5.x Web services. See upgrade on page 138.

Let’s use the CanineShelter example to show how to perform the server-side
migration:

1 Once you have installed EAServer 5.x, the SoapDemo package is migrated
from 4.x to 5.x.

2 Verify the skeletons for the SoapDemo package are available, or generate
the skeletons for the component using:

 jagtool gen_skels Package:SoapDemo

3 Verify that the WSDL files, SoapSample.wsdl and SoapSampleImpl.wsdl
are available in the directory %JAGUAR%\Webservices\work\wsdl.

4 Run the wstool upgrade command to upgrade the Web services:

wstool upgrade

5 List the collections on the server:

wstool list collections

You should see “SoapSample” listed.

This completes the server-side migration.

Client-side migration
If an existing 4.x client uses the Sybase soapproxy, you need to re-write the
client. See Chapter 9, “Developing Web Service Clients.”

To migrate the CanineShelter client-side code, you must:

1 Rewrite the client-side code. See Chapter 9, “Developing Web Service
Clients.” When you are done, the new client should resemble the sample
client that is located in the
%JAGUAR%\samples\wst_samples\CanineShelter\client\src\com\Sybase
\webservice\sample\soap\client directory.

APPENDIX A Migrating 4.x Web Services

User’s Guide 181

2 Run the sample. Follow the instructions located in the Readme.html file
located in the %JAGUAR%\samples\wst_samples\CanineShelter
directory.

Client-side migration

182 Web Services Toolkit

User’s Guide 183

Symbols
.NET

csc.exe C# compiler 176
more information 176
samples 176
wsdl.exe client proxy generation 176

A
access

to roles 44
activate, wstool command 121
activating

Web service 37
activating a Web service

from the Web console 67
add, wstool command 146
adding roles

from the Web console 74
adding to a Web service

roles 45
adding to a Web service operation

roles 45
administration

other components 57
private UDDI 95
UDDI registry 55, 56, 71, 72
Web service 67
Web service collections 32
Web services 34, 65
Web services server 30

allowing
Web service operations 41

allowMethods, wstool command 121
architecture

Web services 5
audience ix

B
binding information

UDDI registries 89
business information

UDDI registries 86

C
category information

UDDI registries 90
changePin, wstkeytool command 148
changing the connection cache

private UDDI registry 99
client

holder class generation 18
clients

developing 157
components

defined 12
supported 15

configuring
private UDDI registry 97

connecting
Web services server 31

connecting to
private UDDI registry 98
the Web console 59, 82

connecting to a server
Web console 64

contact information
UDDI registries 92

container
Web services 30

conventions xi
CORBA

datatype 16
sample 175

creating

Index

Index

184 Web Services Toolkit

custom type mappings 18
deserializers 20
new server 37, 38, 44, 74
new Web services server 30
roles 44
serializers 20

creating a JSP client
Web service clients 40

creating and managing
Web service clients 38

creating domains
Web console 63

creating from a Java file
Web service 34

creating from a WSDL file
Web service 34

creating server profiles
Web console 64

csc.exe
.NET compiler 176

custom
datatypes and mappings 18
type mappings 15

custom type mappings
creating 18

D
datatype

CORBA C++ with IDL datatypes 16
Java with IDL datatypes 16
JAX-RPC 16
supported 16
XML XSD 16

datatypes
custom 18
supported 15

deactivating
Web service 37

deactivating a Web service
from the Web console 67

default
private UDDI registry 96
Web services server 31

delete, wstool command 123

deleteCert, wstkeytool command 149
deleting

roles 44
Web service 38
Web service collections 33

deleting a JSP client
Web service clients 40

deleting a server
Web console 64

deleting a Web service
from the Web console 68

deleting a Web service collection
from the Web console 66

deleting domains
Web console 64

deploy, wstool command 124, 125, 127
deploying

type mappings 27
deserializer

creating 20
example 20

disallowing
Web service operations 41

disallowing operations
from the Web console 69

disallowMethods, wstool command 128
disconnecting from a server

Web console 64
discovery URL information

UDDI registries 93
document style

Web service client 165
dynamic client

sample 176
dynamic invocation interface

Web service client 161
dynamic proxy

Web service client 160

E
Eclipse

and the Web services plug-in 10
collections and folders 11
error logging 12

Index

User’s Guide 185

handlers 11
menu layout and navigation 13
more information 9
operations 11
other components 12
overview of 9
plug-in 9
ports 11
servers 11
SOAP inspector 12
starting 10
stopping 10
tasks 12
type mappings 11
Web services 11
Web services console 12
Web services toolkit development tool 9

EJB
sample 173, 174

environment variables
JAGUAR_HOST_NAME 104

error logging 12
example

deserializers 20
serializer 20

export, wstkeytool command 149
export, wstool command 128
exporting

type mappings 27
Web service collections 33

exporting a Web service collection
from the Web console 66

exposeComponent, wstool command 129
exposing components

as Web services 48, 52
exposing components as Web services properties

binding name 50
class 50
collection name 50
method name 51
name 50
package name 51
port type name 50
SOAP action 50
SOAP use 50
target namespace 50

type mapping version 50
expsosing components as Web services properties

binding style 50
location URL 50
service port name 50
Web service collection 51

G
genCertReq, wstkeytool command 151
general server properties, description of 34, 41, 50, 55,

56, 71, 72, 84
generating WSDL

from Web services and components 53
generating WSDL properties

binding name 54
binding style 54
collection name 53
file location 54
implementation class 54
location URL 53
method name 54
port type name 54
service port name 54
SOAP action 54
SOAP use 54
target namespace 53
type mapping version 54
Web service name 53

GetCACerts, wstkeytool command 153, 154
getTMjar, wstool command 130

H
handlers 11

for Web services 42
holder classes

client-side generation 18
HTTPS

sample 171

Index

186 Web Services Toolkit

I
identifier information

UDDI registries 91
IDL 16
import, wstkeytool command 154
importing

Web service collections 32
importing a Web service collection

from the Web console 66
initializing the repository database

private UDDI registry 99
inquiry, wstool command 109
invoking

Web service operations 41
invoking operations

from the Web console 69
isActive, wstool command 131
isAllowed, wstool command 132
isStatsEnabled, wstool command 133

J
jagtool

Jakarta Ant and 103
JAGUAR_HOST_NAME 104
Java

datatype 16
Java datatype

XML equivalent 16
Java script

and the Web console 62
java2Wsdl, wstool command 142
JAXM

more information 4
JAXP

description 4
JAX-RPC

datatype 16
description 3
holder classes 18
more information 3, 4
specification 18

L
launching a JSP client

Web service clients 40
list, wstool command 113

M
management

Web service 37
managing

private UDDI registry 98
roles 44
Web service operations 40

managing registry services
from Web console 81

managing security realms
for Web services 44, 74

managing Web service operations
from the Web console 68

managing Web services
from Web console 59

menu layout and navigation 13
more information

.NET 176
Eclipse 9
JAXM 4
JAX-RPC 3, 4
SOAP 1.1 2
WSDL 3

N
navigating

Web console 82
non-Web service components

managing from the Web console 77

O
operations 11

disallowing 69
invoking 69
properties 70

Index

User’s Guide 187

viewing 69
Web console 68

other components 12
administration 57

overloaded methods 40, 68
overview

private UDDI 95
private UDDI server 81
Web console 81
Web service clients 157
Web services 1

P
parameters

managing 70
viewing 70
Web console 63

plug-in
Eclipse 9

preferences
Web console 63

printCert, wstkeytool command 155
private UDDI

administration 95
managing 98
overview 95

private UDDI registry
changing the connection cache 99
configuring 97
connecting to 98
default 96
initializing the repository database 99
publishing 98
searching 98
starting 96

private UDDI server
overview 81
starting 96

projects
Web service 36

properties
type mapping 19
Web service 68
Web service collection 67

Web service collections 34
Web service creation wizard 36

protocol
JAXP 1.1 4
JAX-RPC 1.0 3
SAAJ 1.1 4
SOAP 1.1 2
UDDI 2.0 4
WSDL 1.1 2

publish, wstool command 110, 122
publishing

private UDDI registry 98
UDDI 5
UDDI registries 86

Q
qname

and type mappings 27
queries and searches

UDDI administration 84
quick exposing components

as Web services 52

R
refresh, wstool command 117, 133
refreshing

Web service 38
Web service collections 33
Web service security realm 44, 74
Web services server 32

registry profile
creating and connecting to 83

remove, wstool command 147
removing

Web services server 32
removing roles

from the Web console 75
requirements

Web service clients 38
resetStats, wstool command 134
restart, wstool command 118
restarting

Index

188 Web Services Toolkit

Web services server 32
roles

adding 74
adding to a Web service 45
adding to a Web service operation 45
allowing access 44
creating 44
creating and assigning 174
deleting 44
managing 44
removing 75

roles and security realms
for Web services 43

runtime monitoring
from the Web console 76

S
SAAJ

description 4
samples

.NET 176
developing client applications 175
establishing Web service security 174
exposing a CORBA component as a Web service 175
exposing a Java class as a Web service 170
location 169
on the Sybase Web site 169
quickly exposing a stateless EJB as a Web service

173, 174
running a dynamic test client 176
running the test client using HTTPS 171
using WST tools and features 170
WST 169

scope
type mappings 27

search properties
UDDI registries 85

searching
private UDDI registry 98

security
configuring XML-security 46
for Web services 43, 174
XML 46

security tutorial

for Web services 43
serializer

creating 20
example 20

server
creating a new 37, 38, 44, 74

service information
UDDI registries 87

set_props, wstool command 135
shutdown, wstool command 118
SOAP

description 2
more information 2

SOAP inspector 12
specification

JAX-RPC 18
standards

Web services 1
starting

private UDDI registry 96
private UDDI server 96
Web services server 31

starting a server
Web console 64

startStats, wstool command 136
stopping

Eclipse 10
Web services server 32

stopping a server
Web console 64

stopStats, wstool command 137
stub-based model

Web service client 158
supported

component types 15
datatypes 15, 16

T
tasks 12
tModel information

UDDI registries 88
type mapping

creating 18
deploying 27

Index

User’s Guide 189

exporting 27
properties 19
qname 27
scope 27

type mapping properties
deserializer class 19
deserializer factory class 19
encoding style 19
local part 19
local store 20
namespace 19
serializer class 19
serializer factory class 19
type class 19
undefined type 20

type mappings 11
custom 15
viewing 73

typographical conventions xi

U
UDDI

description 4
more information 5
publishing 5
registering 5

UDDI administration
queries and searches 84
registry administration 83
search properties 85
Web console 83

UDDI registries
binding information 89
business information 86
category information 90
contact information 92
discovery URL information 93
identifier information 91
publishing 86
service information 87
tModel information 88

UDDI registry
publishing 55, 71
unpublishing 56, 72

UDDI registry profile
creating and connecting to 83

UDDI registry profile properties
Web console 84

UDDI registry properties
business description 55, 72
business name 55, 72
delete profile 55, 72
name 55, 71, 72
password 55, 71, 72
ping 55, 72
publish URL 55, 71, 72
query url 55, 71, 72
retrieving existing information 55, 72
save profile 55, 72
service description 55, 72
use existing tmodel 55, 72
user name 55, 71, 72

UDDI.org
Web site 5

unpublish, wstool command 112
upgrade, wstool command 138

V
viewing a Web service collection

from the Web console 65
viewing operations

from the Web console 69
viewing parameters

from the Web console 70
viewing type mappings

from the Web console 73
viewing Web service properties

from the Web console 67
viewing WSDL

Web service 37

W
Web

finding samples on 169
Web console

activating a Web service 67

Index

190 Web Services Toolkit

adding roles 74
and Java script 62
connecting to 59, 82
connecting to a server 64
creating a domain 63
creating server profiles 64
deactivating a Web service 67
defining parameters 63
deleting a domain 64
deleting a server 64
deleting a Web service 68
deleting a Web service collection 66
disallowing operations 69
disconnecting from a server 64
exporting a Web service collection 66
importing a Web service collection 66
invoking operations 69
managing registry services from 81
managing Web services from 59
navigating 82
non-Web service components 77
operation properties 70
overloaded methods 68
overview 81
preferences 63
private UDDI administration 83
registry profile properties 84
removing roles 75
runtime monitoring 76
starting a server 64
stopping a server 64
viewing a Web service collection 65
viewing operations 69
viewing parameters 70
viewing type mappings 73
viewing Web service properties 67
Web service administration 67
Web service operation management 68
Web service parameter management 70
Web services administration 65

Web console properties
plug-in 65
server 65

Web service
activating 37
administration 34

creating from a Java file 34
creating from a WSDL file 34
deactivating 37
deleting 38
handlers 42
management 37
managing security realms 44, 74
other components 57
properties 68
publishing to a UDDI registry 55, 71
refreshing 38
roles and security realms 43
sample 170
security 43
security tutorial 43
unpublishing from a UDDI registry 56, 72
viewing WSDL 37

Web service client properties
document/literal 39
generate code for all elements 39
package 39
password 39
project name 39
separate helper classes 39
timeout 39
type mapping version 39
user name 39
WSDL2Java options 39

Web service clients
creating a JSP client 40
creating and managing 38
deleting a JSP client 40
developing 175
document style 165
dynamic invocation interface 161
dynamic proxy 160
launching a JSP client 40
overview 157
requirements 38
stub-based model 158

Web service collection
properties 67

Web service creation wizard
properties 36

Web service operation properties
description 41

Index

User’s Guide 191

name 41
return type

Web service operation properties
is return value in response 41

SOAP action 41
Web service operations

allowing 41
disallowing 41
invoking 41
managing 40

Web service projects
client 36
server 36

Web service properties
create from file 36
create from Java file 36
locate from file, URL, or UDDI 36
method selection 36
options 36
package name 36
project contents 36
project name 36
project type 36

Web service security
creating and assigning roles 174
sample 174

Web service security realm
refreshing 44, 74

Web services
about 1
architecture 5
exposing components as 48, 52
generating WSDL 53
overloaded methods 40
overview 1
quick exposing components as 52
standards 1

Web services collection
administration 32
deleting 33
exporting 33
importing 32
properties 34
refreshing 33

Web services console 12
Web services plug-in

and Eclipse 10
collections and folders 11
error logging 12
handlers 11
menu layout and navigation 13
operations 11
other components 12
ports 11
servers 11
SOAP inspector 12
tasks 12
type mappings 11
Web services 11
Web services console 12

Web services server
connecting 31
creating a new 30
default 31
refreshing 32
removing 32
restarting 32
starting 31
stopping 32

Web services server properties
host name 31
is a local server 31
password 31
port number 31
profile name 31
script arguments 31
script location 31
user name 31

WSDL
description 2
more information 3

wsdl.exe
.NET client proxy generator 176

wsdl2Java, wstool command 138
WST

samples 169
WST development tool

Eclipse 9
wstkeytool 148–155

Ant build files 106
commands. See individual command names
description 103

Index

192 Web Services Toolkit

entity identifiers 105
script location 104
setting up wstkeytoolant 107
syntax 104
wstkeytoolant scripts 108

wstool
Ant build files 106
commands. See individual command names
description 103
entity identifiers 105
sample file 108
script location 104
setting up wstant 107
syntax 104
wstant scripts 108

X
XML datatype

Java equivalent 16
XML XSD

datatypes 16
XML-security

configuring 46
for Web services 46

	Web Services Toolkit User’s Guide
	About This Book
	CHAPTER 1 Overview of Web Services in EAServer
	Web services background and standards
	SOAP 1.1
	WSDL 1.1
	JAX-RPC 1.0
	SAAJ 1.1
	JAXP 1.1
	UDDI 2.0

	EAServer Web Services architecture
	Installing Web services
	Defining, deploying, and exposing Web services using WST
	Service styles
	Retrieving the Web service’s WSDL

	CHAPTER 2 Using Sybase Web Services Toolkit-an Eclipse plug-in
	Starting and stopping Eclipse
	Web services plug-in
	Connecting to servers
	Organization
	Menu layout and navigation
	Accessibility features

	CHAPTER 3 Components, Datatypes, and Type Mappings
	Supported component types
	Supported datatypes
	Additional datatype support
	Client-side generation of holder classes

	Custom datatypes and mappings
	Creating custom type mappings
	Creating serializers and deserializers
	Deployment
	Exporting

	CHAPTER 4 Web Services Administration
	Introduction
	Web services server administration
	Web services collection administration
	Web service administration
	Creating Web services from files
	Web service projects

	Web service management
	Creating and managing Web service clients
	Web service operation management

	Type mappings
	Handlers
	Defining handlers

	Security
	Roles and security realms
	Web services security tutorial
	Managing security realms and roles
	Managing roles
	Establishing Web service access

	XML-Security
	Configuring EAServer and enabling XML-Security

	Exposing and deploying components as Web services
	Exposing Components as Web services
	Using the quickly expose wizard

	Deploying Components as Web services
	Using the quickly deploy wizard

	Generating WSDL
	UDDI administration
	Other components

	CHAPTER 5 Web Console-Web Services
	Introduction
	Logging in to the Web console versus logging into Sybase Central
	Web console security and access
	Adding an authentication service to EAServer

	Disabling JavaScript
	Browser support
	Authentication time-out in EAServer
	Session time-out in EAServer

	Plug-in, domain, display, and server administration
	Web service collection administration
	Web service administration
	Web service operation management
	Web service parameter management

	UDDI administration
	Type mappings
	Handlers
	Managing security realms and roles
	Roles
	Runtime monitoring
	Non-Web service components

	CHAPTER 6 Web Console-Registry Services
	Introduction
	Using the Web console
	Navigating the console and managing resources

	UDDI administration
	UDDI registry profile administration

	Searching and publishing to UDDI registries
	Inquiries and searches
	Searching UDDI registries

	Publishing
	Businesses
	Services
	tModels
	Additional registry information for published businesses, tModels, and services

	CHAPTER 7 The Private UDDI Server
	Introduction
	Installing and starting the private UDDI server
	Starting and connecting to the private UDDI registry
	Starting the default UDDI registry
	Configuring other private UDDI registries
	Connecting to the private UDDI registry

	Managing the private UDDI
	Administering the private UDDI
	Controlling access to resources

	CHAPTER 8 Using wstool, wstkeytool, wstant, and wstkeytoolant
	Introduction
	Working with wstool and wstkeytool
	wstool and wstkeytool syntax
	Entity identifiers

	Working with wstant and wstkeytoolant
	Setting up your environment
	wstant and wstkeytoolant scripts
	wstant and wstkeytoolant syntax
	wstant sample files

	wstool commands
	UDDI administration commands
	inquiry
	publish
	unpublish
	Server management commands
	list
	refresh
	restart
	shutdown
	Web service administration commands
	activate
	allowMethods
	deactivate
	delete (1)
	delete (2)
	deploy (1)
	deploy (2)
	deploy (3)
	disallowMethods
	export
	exposeComponent
	getTMjar
	isActive
	isAllowed
	isStatsEnabled
	refresh
	resetStats
	set_props
	startStats
	stopStats
	upgrade
	wsdl2Java
	java2Wsdl
	Security commands
	add
	remove
	wstkeytool commands
	changePin
	deleteCert
	export
	genCertReq
	GetCACerts
	GetOtherCerts
	GetUserCerts
	import
	printCert

	CHAPTER 9 Developing Web Service Clients
	Introduction
	Stub-based model client
	stub-based example

	Dynamic proxy client
	Dynamic proxy client example

	Dynamic invocation interface client
	DII client example

	Document style client
	Document style example

	CHAPTER 10 Using the Web Services Toolkit Samples
	Samples in WST
	Samples on the Sybase Web site
	Sample and tutorial location
	Creating the sample projects and installing the samples

	Using the WST development tool and features
	Exposing a Java class as a Web service
	Running the test client using HTTPS

	Exposing a Web service that implements JAX-RPC defined interfaces
	Exposing a stateless EJB as a Web service
	Establishing Web service security, and generating a test client
	Exposing a CORBA component as a Web service
	Google search API demonstration

	Developing client applications
	Running a dynamic client
	.NET sample
	PowerBuilder 9 sample

	APPENDIX A Migrating 4.x Web Services
	Introduction
	Server-side migration
	Client-side migration

	Index

