Contents

About This Book .. xv

PART 1 BASICS OF SYSTEM ADMINISTRATION

CHAPTER 1 Overview of System Administration

- Adaptive Server administration tasks ... 3
- Roles required for system administration tasks ... 4
- Using isql to perform system administration tasks .. 7
- Using Sybase Central for system administration tasks 8
- System tables .. 9
 - Querying the system tables ... 10
 - Keys in system tables .. 11
 - Updating system tables .. 11
- System procedures .. 12
 - Using system procedures .. 12
 - System procedure tables .. 13
 - Creating system procedures ... 14
- System extended stored procedures ... 14
 - Creating system ESPs ... 15
- Logging error messages .. 15
- Connecting to Adaptive Server ... 16
 - The interfaces file ... 16
 - Directory services .. 17
 - LDAP as a directory service .. 18
- Security features available in Adaptive Server ... 20

CHAPTER 2 System and Optional Databases

- Overview of system databases .. 23
- master database .. 25
 - Controlling object creation in master ... 26
 - Backing up master and keeping copies of system tables 26
- model database ... 27
- sybsystemprocs database ... 28
CHAPTER 4

Introduction to the Adaptive Server Plug-in for Sybase Central 49

Overview for Adaptive Server Sybase Central Plug-in 49
Adaptive Server plug-In and command line updates 50
Using the Adaptive Server Plug-in...................................... 51
Starting and stopping Sybase Central.............................. 52
Registering Adaptive Server Plug-in............................... 53
Performing common tasks.. 53
Using Interactive SQL.. 60
Starting Interactive SQL.. 61

CHAPTER 5

Setting Configuration Parameters ... 63

Overview... 63
The Adaptive Server configuration file.............................. 64
Modifying configuration parameters................................. 64
Required roles for modifying configuration parameters 64
Unit specification using sp_configure................................. 66
Getting help information on configuration parameters......... 66
Using sp_configure... 67
Syntax elements... 68
Using sp_configure with a configuration file 69
The parameter hierarchy ... 73
User-defined subsets of the parameter hierarchy: display levels .. 75
Performance tuning with sp_configure and sp_sysmon 77
Using configuration parameters in a clustered environment... 77
sp_configure output... 78
Named cache configuration parameters............................... 80
sysconfigures and syscurconfigs tables............................... 80
Querying syscurconfigs and sysconfigures: an example 81
Configuration parameters... 81
Alphabetical listing of configuration parameters.................. 82

CHAPTER 6

Overview of Disk Resource Issues.. 271

Device allocation and object placement.............................. 271
Commands for managing disk resources............................. 272
Considerations in storage management decisions................ 274
Recovery.. 274
Performance.. 275
Status and defaults at installation time.............................. 275
System tables that manage storage...................................... 276
The sysdevices table... 277
The sysusages table... 278
The syssegments table... 279
CHAPTER 7 Initializing Database Devices ... 281
Database devices ... 281
Using the disk init command ... 282
disk init syntax .. 282
Specifying a logical device name ... 282
Specifying a physical device name ... 283
Choosing a device number .. 283
Specifying the device size ... 284
Specifying the dsync setting (optional) .. 285
Using directio to bypass operating system buffer .. 287
Other optional parameters for disk init .. 288
Getting information about devices ... 288
Dropping devices .. 290
Designating default devices .. 290
Choosing default and nondefault devices ... 291
Increasing the size of devices with disk resize ... 292
Insufficient disk space .. 293

CHAPTER 8 Setting Database Options .. 295
Using the sp_dboption procedure ... 295
Database option descriptions .. 296
Viewing the options on a database ... 297

CHAPTER 9 Configuring Character Sets, Sort Orders, and Languages 299
Understanding internationalization and localization 299
Advantages of internationalized systems ... 300
A sample internationalized system .. 301
Elements of an internationalized system ... 303
Selecting the character set for your server ... 303
Unicode ... 306
Selecting the server default character set ... 310
Selecting the sort order .. 313
Using sort orders ... 314
Different types of sort orders ... 314
Selecting the default sort order ... 315
Selecting a language for system messages .. 321
Setting up your server: examples ... 323
A Spanish-version server ... 323
A U.S.-based company in Japan ... 323
A Japan-based company with multinational clients 324
Changing the character set, sort order, or message language 325
Changing the default character set .. 325
Changing the sort order with a resources file 326
Changing the default sort order ... 327
Reconfiguring the character set, sort order, or message language 327
Unicode examples ... 328
Preliminary steps .. 330
Setting the user’s default language 331
Recovery after reconfiguration ... 331
Handling suspect partitions .. 334
Installing date strings for unsupported languages 335
Server versus client date interpretation 336
Internationalization and localization files 337
Types of internationalization files.. 337
Character sets directory structure ... 338
Types of localization files... 338
Software messages directory structure 339
Message languages and global variables.......................... 340

CHAPTER 10 Configuring Client/Server Character Set Conversions 341
Character set conversion .. 341
Supported character set conversions 342
Conversion for native character sets 342
Conversion in a Unicode system .. 343
Adaptive Server direct conversions 344
Unicode conversions ... 344
Choosing a conversion type ... 344
Non-Unicode client/server systems 345
Unicode client/server systems ... 345
Configuring the server ... 346
Enabling and disabling character set conversion 347
Characters that cannot be converted 347
Error handling in character set conversion 348
Conversions and changes to data lengths 349
Configuring your system and application 349
Specifying the character set for utility programs 350
Display and file character set command line options 350

CHAPTER 11 Diagnosing System Problems .. 353
How Adaptive Server uses error messages 353
Error messages and message numbers 355
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discretionary access control</td>
<td>392</td>
</tr>
<tr>
<td>Division of roles</td>
<td>393</td>
</tr>
<tr>
<td>Auditing for accountability</td>
<td>394</td>
</tr>
<tr>
<td>Confidentiality of data</td>
<td>395</td>
</tr>
</tbody>
</table>

CHAPTER 14 Managing Adaptive Server Logins, Database Users, and Client Connections

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choosing and creating a password</td>
<td>398</td>
</tr>
<tr>
<td>Adding logins to Adaptive Server</td>
<td>399</td>
</tr>
<tr>
<td>Login failure</td>
<td>400</td>
</tr>
<tr>
<td>Creating groups</td>
<td>401</td>
</tr>
<tr>
<td>Adding users to databases</td>
<td>402</td>
</tr>
<tr>
<td>Adding a "guest" user to a database</td>
<td>403</td>
</tr>
<tr>
<td>Adding a guest user to the server</td>
<td>405</td>
</tr>
<tr>
<td>Adding remote users</td>
<td>405</td>
</tr>
<tr>
<td>Number of user and login IDs</td>
<td>405</td>
</tr>
<tr>
<td>Limits and ranges of ID numbers</td>
<td>405</td>
</tr>
<tr>
<td>Login connection limitations</td>
<td>406</td>
</tr>
<tr>
<td>Creating and assigning roles to users</td>
<td>408</td>
</tr>
<tr>
<td>System-defined roles</td>
<td>408</td>
</tr>
<tr>
<td>System administrator privileges</td>
<td>409</td>
</tr>
<tr>
<td>System security officer privileges</td>
<td>409</td>
</tr>
<tr>
<td>Operator privileges</td>
<td>410</td>
</tr>
<tr>
<td>Sybase Technical Support</td>
<td>411</td>
</tr>
<tr>
<td>Replication role</td>
<td>411</td>
</tr>
<tr>
<td>Distributed Transaction Manager role</td>
<td>411</td>
</tr>
<tr>
<td>High availability role</td>
<td>411</td>
</tr>
<tr>
<td>Monitoring and diagnosis</td>
<td>412</td>
</tr>
<tr>
<td>Job Scheduler roles</td>
<td>412</td>
</tr>
<tr>
<td>Real-time messaging role</td>
<td>412</td>
</tr>
<tr>
<td>Web Services role</td>
<td>412</td>
</tr>
<tr>
<td>Key custodian role</td>
<td>413</td>
</tr>
<tr>
<td>User-defined roles</td>
<td>413</td>
</tr>
<tr>
<td>Adding and removing passwords from a role</td>
<td>414</td>
</tr>
<tr>
<td>Role hierarchies and mutual exclusivity</td>
<td>415</td>
</tr>
<tr>
<td>Role hierarchies and mutual exclusivity</td>
<td>415</td>
</tr>
<tr>
<td>Setting up default activation at login</td>
<td>418</td>
</tr>
<tr>
<td>Activating and deactivating roles</td>
<td>419</td>
</tr>
<tr>
<td>Setting up groups and adding users</td>
<td>420</td>
</tr>
<tr>
<td>Dropping users, groups, and user-defined roles</td>
<td>420</td>
</tr>
<tr>
<td>Dropping users</td>
<td>420</td>
</tr>
<tr>
<td>Dropping groups</td>
<td>421</td>
</tr>
<tr>
<td>Dropping user-defined roles</td>
<td>421</td>
</tr>
<tr>
<td>Locking or dropping Adaptive Server login accounts</td>
<td>422</td>
</tr>
</tbody>
</table>
CHAPTER 15 Managing Remote Servers ... 479

- Overview... 479
- Managing remote servers... 480
 - Adding a remote server ... 481
 - Managing remote server names .. 482
 - Setting server connection options.. 483
 - Getting information about servers.. 485
 - Dropping remote servers ... 485
- Adding remote logins.. 486
 - Mapping users’ server IDs... 486
 - Mapping remote logins to particular local names 487
 - Mapping all remote logins to one local name 487
 - Keeping remote login names for local servers....................... 488
 - Example of remote user login mapping.................................. 488
- Password checking for remote users ... 490
 - Effects of using the untrusted mode 490
- Getting information about remote logins....................................... 491
 - Configuration parameters for remote logins............................. 491

CHAPTER 16 External Authentication .. 493

- Configuring Adaptive Server for network-based security 494
 - Security services and Adaptive Server.................................. 495
 - Administering network-based security................................... 496
 - Setting up configuration files for security............................. 497
 - Identifying users and servers to the security mechanism 502
 - Configuring Adaptive Server for security............................. 503
 - Adding logins to support unified login.................................... 507
 - Establishing security for remote procedures.......................... 508
 - Connecting to the server and using the security services 514
 - Getting information about available security services............ 517
 - Using Kerberos .. 518
 - Using principal names ... 524
 - Concurrent Kerberos authentication.. 530
 - Configuring Adaptive Server for LDAP user authentication...... 530
 - Composed DN algorithm ... 531
 - Searched DN algorithm .. 532
 - Configuring LDAP ... 533
 - LDAP user authentication administration............................... 533
 - Adaptive Server logins and LDAP user accounts 537
 - Secondary lookup server support... 538
 - LDAP server state transitions .. 540
 - LDAP user authentication tuning.. 542
 - Adding tighter controls on login mapping............................... 543
 - Troubleshooting LDAP user authentication errors 546
Setting SSL cipher suite preferences ..97
Using SSL to specify a common name..703
Specifying a common name with sp_listener703
 Stored procedure sp_addserver changed704
 Kerberos confidentiality ..704
Dumping and loading databases with password protection.......704
 Passwords and earlier versions of Adaptive Server705
 Passwords and character sets ...705

Index ..707
About This Book

This manual, the System Administration Guide: Volume 1, describes how to administer and control Sybase® Adaptive Server® Enterprise databases independent of any specific database application.

Audience

This manual is for Sybase system administrators and database owners.

How to use this book

This guide comprises two parts: Part 1 describes basic concepts about system administration, and includes these chapters:

- Chapter 1, “Overview of System Administration,” describes the structure of the Sybase system.
- Chapter 2, “System and Optional Databases,” discusses the contents and function of the Adaptive Server system databases.
- Chapter 3, “System Administration for Beginners,” summarizes important tasks that new system administrators must perform.
- Chapter 4, “Introduction to the Adaptive Server Plug-in for Sybase Central,” describes how to start and use Sybase Central, a graphical user interface for managing Adaptive Server.
- Chapter 5, “Setting Configuration Parameters,” summarizes the configuration parameters that you set with sp_configure, which control many aspects of Adaptive Server behavior.
- Chapter 6, “Overview of Disk Resource Issues,” discusses Adaptive Server and Backup Server™ error handling and how to shut down servers and kill user processes.
- Chapter 8, “Setting Database Options,” describes how to set database options.
- Chapter 9, “Configuring Character Sets, Sort Orders, and Languages,” discusses international issues, such as the files included in the Language Modules and how to configure an Adaptive Server language, sort order, and character set.
Chapter 10, “Configuring Client/Server Character Set Conversions,” discusses character set conversion between Adaptive Server and clients in a heterogeneous environment.

Chapter 11, “Diagnosing System Problems,” discusses Adaptive Server and Backup Server error handling and shows how to shut down servers and kill user processes.

Part 2, which discusses security administration, includes these chapters:

- Chapter 12, “Introduction to Security,” introduces you to security concepts.
- Chapter 13, “Getting Started With Security Administration in Adaptive Server,” is an overview of the security features available in Adaptive Server.
- Chapter 15, “Managing Remote Servers,” discusses the steps the system administrator and system security officer of each Adaptive Server must execute to enable remote procedure calls (RPCs).
- Chapter 16, “External Authentication,” describes the network-based security services that enable you to authenticate users and protect data transmitted among machines on a network.
- Chapter 17, “Managing User Permissions,” describes the use and implementation of user permissions.
- Chapter 18, “Auditing,” describes how to set up auditing for your installation.
- Chapter 19, “Confidentiality of Data,” describes how to configure Adaptive Server to ensure that all data is secure and confidential.

Related documents

The Adaptive Server® Enterprise documentation set consists of:

- The release bulletin for your platform – contains last-minute information that was too late to be included in the books.

A more recent version of the release bulletin may be available. To check for critical product or document information that was added after the release of the product CD, use the Sybase® Product Manuals Web site.
• The installation guide for your platform – describes installation, upgrading, and some configuration procedures for all Adaptive Server and related Sybase products.

• New Feature Summary – describes the new features in Adaptive Server, the system changes added to support those features, and changes that may affect your existing applications.

• Active Messaging Users Guide – describes how to use the Active Messaging feature to capture transactions (data changes) in an Adaptive Server Enterprise database, and deliver them as events to external applications in real time.

• Component Integration Services Users Guide – explains how to use Component Integration Services to connect remote Sybase and non-Sybase databases.

• The Configuration Guide for your platform – provides instructions for performing specific configuration tasks.

• Glossary – defines technical terms used in the Adaptive Server documentation.

• Historical Server Users Guide – describes how to use Historical Server to obtain performance information from Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java classes as datatypes, functions, and stored procedures in the Adaptive Server database.

• Job Scheduler Users Guide – provides instructions on how to install and configure, and create and schedule jobs on a local or remote Adaptive Server using the command line or a graphical user interface (GUI).

• Migration Technology Guide – describes strategies and tools for migrating to a different version of Adaptive Server.

• Monitor Client Library Programmers Guide – describes how to write Monitor Client Library applications that access Adaptive Server performance data.

• Monitoring Tables Diagram – illustrates monitor tables and their entity relationships in a poster format. Full-size available only in print version; a compact version is available in PDF format.
• Performance and Tuning Series – is a series of books that explain how to tune Adaptive Server for maximum performance:
 • Basics – contains the basics for understanding and investigating performance questions in Adaptive Server.
 • Improving Performance with Statistical Analysis – describes how Adaptive Server stores and displays statistics, and how to use the set statistics command to analyze server statistics.
 • Locking and Concurrency Control – describes how to use locking schemes to improve performance, and how to select indexes to minimize concurrency.
 • Monitoring Adaptive Server with sp_sysmon – discusses how to use sp_sysmon to monitor performance.
 • Monitoring Tables – describes how to query Adaptive Server monitoring tables for statistical and diagnostic information.
 • Physical Database Tuning – describes how to manage physical data placement, space allocated for data, and the temporary databases.
 • Query Processing and Abstract Plans – explains how the optimizer processes queries, and how to use abstract plans to change some of the optimizer plans.

• Quick Reference Guide – provides a comprehensive listing of the names and syntax for commands, functions, system procedures, extended system procedures, datatypes, and utilities in a pocket-sized book (regular size when viewed in PDF format).

• Reference Manual – is a series of books that contains detailed Transact-SQL® information:
 • Building Blocks – discusses datatypes, functions, global variables, expressions, identifiers and wildcards, and reserved words.
 • Commands – documents commands.
 • Procedures – describes system procedures, catalog stored procedures, system extended stored procedures, and dbcc stored procedures.
 • Tables – discusses system tables, monitor tables, and dbcc tables.

• System Administration Guide –
About This Book

- **Volume 1** – provides an introduction to the basics of system administration, including a description of configuration parameters, resource issues, character sets, sort orders, and instructions for diagnosing system problems. The second part of Volume 1 is an in-depth discussion about security administration.

- **Volume 2** – includes instructions and guidelines for managing physical resources, mirroring devices, configuring memory and data caches, managing multiprocessor servers and user databases, mounting and unmounting databases, creating and using segments, using the `reorg` command, and checking database consistency. The second half of Volume 2 describes how to back up and restore system and user databases.

- **System Tables Diagram** – illustrates system tables and their entity relationships in a poster format. Full-size available only in print version; a compact version is available in PDF format.

- **Transact-SQL Users Guide** – documents Transact-SQL, the Sybase-enhanced version of the relational database language. This guide serves as a textbook for beginning users of the database management system, and also contains detailed descriptions of the `pubs2` and `pubs3` sample databases.

- **Troubleshooting: Error Messages Advanced Resolutions** – contains troubleshooting procedures for problems you may encounter. The problems discussed here are the ones the Sybase Technical Support staff hear about most often.

- **Encrypted Columns Users Guide** – describes how to configure and use encrypted columns with Adaptive Server.

- **In-Memory Database Users Guide** – describes how to configure and use in-memory databases.

- **Using Adaptive Server Distributed Transaction Management Features** – explains how to configure, use, and troubleshoot Adaptive Server DTM features in distributed transaction processing environments.

- **Using Backup Server with IBM® Tivoli® Storage Manager** – describes how to set up and use the IBM Tivoli Storage Manager to create Adaptive Server backups.

- **Using Sybase Failover in a High Availability System** – provides instructions for using Sybase Failover to configure an Adaptive Server as a companion server in a high availability system.
Adaptive Server Enterprise

- *Unified Agent and Agent Management Console* – describes the Unified Agent, which provides runtime services to manage, monitor, and control distributed Sybase resources.

- *Utility Guide* – documents the Adaptive Server utility programs, such as *isql* and *bcp*, which are executed at the operating system level.

- *XA Interface Integration Guide for CICS, Encina, and TUXEDO* – provides instructions for using the Sybase DTM XA interface with X/Open XA transaction managers.

- *XML Services in Adaptive Server Enterprise* – describes the Sybase native XML processor and the Sybase Java-based XML support, introduces XML in the database, and documents the query and mapping functions that are available in XML services.

Other sources of information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase Product Manuals Web site to learn more about your product:

- The Getting Started CD contains release bulletins and installation guides in PDF format, and may also contain other documents or updated information not included on the SyBooks CD. It is included with your software. To read or print documents on the Getting Started CD, you need Adobe Acrobat Reader, which you can download at no charge from the Adobe Web site using a link provided on the CD.

- The SyBooks CD contains product manuals and is included with your software. The Eclipse-based SyBooks browser allows you to access the manuals in an easy-to-use, HTML-based format.

 Some documentation may be provided in PDF format, which you can access through the PDF directory on the SyBooks CD. To read or print the PDF files, you need Adobe Acrobat Reader.

 Refer to the *SyBooks Installation Guide* on the Getting Started CD, or the `README.txt` file on the SyBooks CD for instructions on installing and starting SyBooks.

- The Sybase Product Manuals Web site is an online version of the SyBooks CD that you can access using a standard Web browser. In addition to product manuals, you will find links to EBFs/Maintenance, Technical Documents, Case Management, Solved Cases, newsgroups, and the Sybase Developer Network.
To access the Sybase Product Manuals Web site, go to Product Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications on the Web

Technical documentation at the Sybase Web site is updated frequently.

- **Finding the latest information on product certifications**
 2. Click Certification Report.
 3. In the Certification Report filter select a product, platform, and timeframe and then click Go.
 4. Click a Certification Report title to display the report.

- **Finding the latest information on component certifications**
 2. Either select the product family and product under Search by Base Product; or select the platform and product under Search by Platform.
 3. Select Search to display the availability and certification report for the selection.

- **Creating a personalized view of the Sybase Web site (including support pages)**
 Set up a MySybase profile. MySybase is a free service that allows you to create a personalized view of Sybase Web pages.
 2. Click MySybase and create a MySybase profile.

Sybase EBFs and software maintenance

- **Finding the latest information on EBFs and software maintenance**
 2. Select EBFs/Maintenance. If prompted, enter your MySybase user name and password.
 3. Select a product.
4 Specify a time frame and click Go. A list of EBF/Maintenance releases is displayed.

Padlock icons indicate that you do not have download authorization for certain EBF/Maintenance releases because you are not registered as a Technical Support Contact. If you have not registered, but have valid information provided by your Sybase representative or through your support contract, click Edit Roles to add the “Technical Support Contact” role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the product description to download the software.

Conventions

The following sections describe conventions used in this manual.

SQL is a free-form language. There are no rules about the number of words you can put on a line or where you must break a line. However, for readability, all examples and most syntax statements in this manual are formatted so that each clause of a statement begins on a new line.Clauses that have more than one part extend to additional lines, which are indented. Complex commands are formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

<table>
<thead>
<tr>
<th>Table 1: Font and syntax conventions for this manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Command names, procedure names, utility names, and other keywords display in sans serif font.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Database names and datatypes are in sans serif font.</td>
</tr>
<tr>
<td>Book names, file names, variables, and path names are in italics.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Variables—or words that stand for values that you fill in—when they are part of a query or statement, are in italics in Courier font.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Type parentheses as part of the command.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Double colon, equals sign indicates that the syntax is written in BNF notation. Do not type this symbol. Indicates “is defined as”.</td>
</tr>
<tr>
<td>Curly braces mean that you must choose at least one of the enclosed options. Do not type the braces.</td>
</tr>
<tr>
<td>Brackets mean that to choose one or more of the enclosed options is optional. Do not type the brackets.</td>
</tr>
</tbody>
</table>
Syntax statements (displaying the syntax and all options for a command) appear as follows:

\[\text{sp_dropdevice [device_name]} \]

For a command with more options:

\[\text{select column_name} \]
\[\text{from table_name} \]
\[\text{where search_conditions} \]

In syntax statements, keywords (commands) are in normal font and identifiers are in lowercase. Italic font shows user-supplied words.

- Examples showing the use of Transact-SQL commands are printed like this:

\[\text{select * from publishers} \]

- Examples of output from the computer appear as follows:

```
<table>
<thead>
<tr>
<th>pub_id</th>
<th>pub_name</th>
<th>city</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0736</td>
<td>New Age Books</td>
<td>Boston</td>
<td>MA</td>
</tr>
<tr>
<td>0877</td>
<td>Binnet &amp; Hardley</td>
<td>Washington</td>
<td>DC</td>
</tr>
<tr>
<td>1389</td>
<td>Algodata Infosystems</td>
<td>Berkeley</td>
<td>CA</td>
</tr>
</tbody>
</table>
```

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can disregard case when typing Transact-SQL keywords. For example, SELECT, Select, and select are the same.
Adaptive Server sensitivity to the case of database objects, such as table names, depends on the sort order installed on Adaptive Server. You can change case sensitivity for single-byte character sets by reconfiguring the Adaptive Server sort order. For more information, see the System Administration Guide.

This document is available in an HTML version that is specialized for accessibility. You can navigate the HTML with an adaptive technology such as a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with U.S. government Section 508 Accessibility requirements. Documents that comply with Section 508 generally also meet non-U.S. accessibility guidelines, such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use. Some screen readers pronounce text based on its case; for example, they pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You might find it helpful to configure your tool to announce syntax conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility site includes links to information on Section 508 and W3C standards.

Each Sybase installation that has purchased a support contract has one or more designated people who are authorized to contact Sybase Technical Support. If you cannot resolve a problem using the manuals or online help, please have the designated person contact Sybase Technical Support or the Sybase subsidiary in your area.

If you need help

Accessibility features
These chapters introduce the concepts of system administration in Adaptive Server:

- Chapter 1, “Overview of System Administration,” describes the structure of the Sybase system.
- Chapter 2, “System and Optional Databases,” discusses the contents and function of the Adaptive Server system databases.
- Chapter 3, “System Administration for Beginners,” summarizes important tasks that new system administrators must perform.
- Chapter 4, “Introduction to the Adaptive Server Plug-in for Sybase Central,” describes how to start and use Sybase Central, a graphical user interface for managing Adaptive Server.
- Chapter 5, “Setting Configuration Parameters,” summarizes the configuration parameters that you set with `sp_configure`, which control many aspects of Adaptive Server behavior.
- Chapter 6, “Overview of Disk Resource Issues,” describes issues relating to physical placement of databases, tables, and indexes on disks.
- Chapter 8, “Setting Database Options,” describes how to set database options.
Chapter 9, “Configuring Character Sets, Sort Orders, and Languages,” discusses international issues, such as the files included in the Language Modules and how to configure an Adaptive Server language, sort order, and character set.

Chapter 10, “Configuring Client/Server Character Set Conversions,” discusses character set conversion between Adaptive Server and clients in a heterogeneous environment.

Chapter 11, “Diagnosing System Problems,” discusses Adaptive Server and Backup Server™ error handling and how to shut down servers and kill user processes.
CHAPTER 1
Overview of System Administration

This chapter introduces the basic topics of Adaptive Server system administration.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Server administration tasks</td>
<td>3</td>
</tr>
<tr>
<td>System tables</td>
<td>9</td>
</tr>
<tr>
<td>System procedures</td>
<td>12</td>
</tr>
<tr>
<td>System extended stored procedures</td>
<td>14</td>
</tr>
<tr>
<td>Logging error messages</td>
<td>15</td>
</tr>
<tr>
<td>Connecting to Adaptive Server</td>
<td>16</td>
</tr>
<tr>
<td>Security features available in Adaptive Server</td>
<td>20</td>
</tr>
</tbody>
</table>

Adaptive Server administration tasks

Adaptive Server administration tasks include:

- Installing Adaptive Server and Backup Server
- Creating and managing Adaptive Server login accounts
- Granting roles and permissions to Adaptive Server users
- Managing and monitoring the use of disk space, memory, and connections
- Backing up and restoring databases
- Diagnosing system problems
- Configuring Adaptive Server to achieve the best performance

In addition, system administrators may assist with certain database design tasks that overlap with the work of application designers, such as enforcing integrity standards.
Although generally, a system administrator concentrates on tasks that are independent of the applications running on Adaptive Server, he or she is likely to have the best overview of all applications. For this reason, a system administrator can advise application designers about the data that already exists on Adaptive Server, make recommendations about standardizing data definitions across applications, and so on.

However, the distinction between what is specific to an application is sometimes unclear. Owners of user databases may consult certain sections of this book. Similarly, system administrators and database owners will use the Transact-SQL Users Guide (especially the chapters on data definition, stored procedures, and triggers). Both system administrators and application designers will use the Performance and Tuning Series.

Roles required for system administration tasks

Many of the commands and procedures discussed in this manual require the system administrator or system security officer role. Other sections in this manual are relevant to database owners.

Various security-related, administrative, and operational tasks are grouped into the following user roles:

- **system administrator** – by default, the system administrator (sa) is assigned these roles:
 - sa_role
 - sso_role
 - oper_role
 - sybase_ts_role

The system administrator’s tasks include:

- Managing disk storage
- Monitoring the Adaptive Server automatic recovery procedure
- Fine-tuning Adaptive Server by changing configurable system parameters
- Diagnosing and reporting system problems
- Backing up and loading databases
- Modifying and dropping server login accounts
• Granting and revoking the system administrator role
• Granting permissions to Adaptive Server users
• Creating user databases and granting ownership of them
• Setting up groups, which can be used for granting and revoking permissions

• **System security officer** – performs security-related tasks, such as:
 • Creating server login accounts, which includes assigning initial passwords
 • Changing the password of any account
 • Granting and revoking the system security officer and operator roles
 • Creating, granting, and revoking user-defined roles
 • Granting the capability to impersonate another user throughout the server
 • Setting the password expiration interval
 • Setting up Adaptive Server to use network-based security services
 • Managing the audit system

• **Operator** – backs up and loads databases on a server-wide basis. The operator role allows a single user to use the `dump database`, `dump transaction`, `load database`, and `load transaction` commands to back up and restore all databases on a server without having to be the owner of each one. These operations can be performed for an individual database by the database owner or by a system administrator. However, an operator can perform them for any database.

These roles provide individual accountability for users performing operational and administrative tasks. Their actions can be audited and attributed to them. A system administrator operates outside the discretionary access control (DAC) protection system; that is, when a system administrator accesses objects, Adaptive Server does not check the DAC permissions.

In addition, two kinds of object owners have special status because of the objects they own. These ownership types are:

• Database owner
• Database object owner
Database owner

The **database owner** is the creator of a database or someone to whom database ownership has been transferred. A system administrator can use the grant command to grant users the authority to create databases.

A database owner logs in to Adaptive Server using his or her assigned login name and password, and has the “dbo” account. When this user logs in to databases they did not create, this user is known by his or her regular user name.

A database owner can:

- Run the system procedure `sp_adduser` to allow other Adaptive Server users access to the database
- Use the `grant` command to give other users permission to create objects and execute commands within the database

Adding users to databases is discussed in Chapter 14, “Managing Adaptive Server Logins, Database Users, and Client Connections.” Granting permissions to users is discussed in Chapter 17, “Managing User Permissions.”

The database owner does not automatically receive permissions on objects owned by other users. However, a database owner can temporarily assume the permissions of other users in the database at any time by using the `setuser` command. Using a combination of the `setuser` and `grant` commands, the database owner can acquire permissions on any object in the database.

Note Because the database owner role is so powerful, the system administrator should plan carefully who should own databases in the server. The system security officer should consider auditing the database activity of all database owners.

Database object owner

A **database object owner** is a user who creates a database object. **Database objects** include tables, indexes, views, defaults, triggers, rules, constraints, and procedures. Before a user can create a database object, the database owner must grant the user permission to create objects of a particular type. There is no special login name or password for a database object owner.

The database object owner creates an object using the appropriate `create` statement, and then grants permission to other users.
The creator of a database object is automatically granted all permissions on that object. The system administrator also has all permissions on the object. The owner of an object must explicitly grant permissions to other users before they can access the object. Even the database owner cannot use an object directly unless the object owner grants him or her the appropriate permission. However, the database owner can always use the `setuser` command to impersonate any other user in the database, including the object owner.

Note When a database object is owned by someone other than the database owner, the user (including a system administrator) must qualify the name of that object with the object owner’s name—`ownername.objectname`—to access the object. If an object or a procedure must be accessed by a large number of users, particularly in ad hoc queries, having these objects owned by “dbo” greatly simplifies access.

Using `isql` to perform system administration tasks

This book assumes that you use the command line utility `isql` to perform the system administration tasks described in this guide. This section provides some basic information about using `isql`. For complete information, see the Utility Guide.

You can also use the graphic tool Sybase Central™ to perform many of the tasks described in this book, as described in “Using Sybase Central for system administration tasks” on page 8.

Starting `isql`

To start `isql` on most platforms, type this command at an operating system prompt, where `username` is the system administrator:

```
isql -U username
```

Adaptive Server prompts you for your password.

Note Do not use the `-P` option of `isql` to specify your password; another user might then see your password.

You can use `isql` in command line mode to enter many of the Transact-SQL examples in this manual.
Adaptive Server administration tasks

Entering statements

The statements that you enter in isql can span several lines. isql does not process statements until you type “go” on a separate line. For example:

```
1> select *
2> from sysobjects
3> where type = "TR"
4> go
```

The examples in this manual do not include the go command between statements. If you are typing the examples, you must enter the go command to see the sample output.

Saving and reusing statements

This manual frequently suggests that you save the Transact-SQL statements you use to create or modify user databases and database objects. The easiest way to do this is to create or copy the statements to an ASCII-formatted file. You can then use the file to supply statements to isql to re-create databases or database objects later.

The syntax for using isql with an ASCII-formatted file is the following, where `filename` is the full path and file name of the file that contains Transact-SQL statements:

```
isql -U username -i filename
```

On UNIX and other platforms, use the “less than” symbol (<) to redirect the file.

The Transact-SQL statements in the ASCII file must use valid syntax and the go command.

When reading commands from a file, you must:

- Supply the `-P password` option at the command line, or,
- Include the named user’s password on the first line of the input file.

Using Sybase Central for system administration tasks

You can perform many system administration tasks using Sybase Central, a graphic tool that comes with Adaptive Server:

- Initializing database devices
CHAPTER 1 Overview of System Administration

- Setting configuration parameters
- Viewing the amount of free log space in a database
- Generating data definition language (DDL)
- Creating logins
- Adding remote servers
- Creating databases
- Creating stored procedures
- Defining roles
- Adding data caches
- Setting database options
- Backing up and restoring databases

Use the Monitor Viewer feature of Sybase Central to access Adaptive Server Monitor™. Sybase Central includes extensive online help.

Use the Sybase Central DDL-generation feature to record your work to Transact-SQL scripts. The DDL-generation feature lets you save to a script the actions you perform in an entire server or within a specific database.

System tables

The master database contains system tables that keep track of information about Adaptive Server. In addition, each database (including the master database) contains system tables that keep track of information specific to that database.

All the Adaptive Server-supplied tables in the master database (the Adaptive Server controlling database) are considered system tables. Each user database is created with a subset of these system tables. The system tables may also be called the data dictionary or the system catalogs.

A master database and its tables are automatically created when Adaptive Server is installed. The system tables in a user database are created when the create database command is issued. The names of all system tables start with "sys". You cannot create tables in user databases that have the same names as system tables. See Reference Manual: Tables for detailed descriptions of system tables and their columns.
Querying the system tables

Query system tables in the same manner as any other tables. For example, the following statement returns the names of all triggers in the database:

```
select name
from sysobjects
where type = "TR"
```

In addition, Adaptive Server supplies stored procedures (called system procedures), many of which provide shortcuts for querying the system tables.

These system procedures provide information from the system tables:

- `sp_commonkey`
- `sp_configure`
- `sp_countmediatada`
- `sp_dboption`
- `sp_estspace`
- `sp_help`
- `sp_helppartition`
- `sp_helpcache`
- `sp_helpconfig`
- `sp_helpconstraint`
- `sp_helpdb`
- `sp_helpdevice`
- `sp_helpgroup`
- `sp_helplindex`
- `sp_helpjava`
- `sp_helpjoins`
- `sp_helpkey`
- `sp_helplanguage`
- `sp_helplog`
- `sp_helpremotelogin`
- `sp_help_resource_limit`
- `sp_helpprotect`
- `sp_helpsegment`
- `sp_helpserver`
- `sp_helpsort`
- `sp_helptext`
- `sp_helpthreshold`
- `sp_heluser`
- `sp_lock`
- `sp_monitor`
- `sp_monitorconfig`
- `sp_showcontrolinfo`
- `sp_showexeclass`
- `sp_showplan`
- `sp_spaceused`
- `sp_who`
- `sp_help_resource_limit`

For complete information about the system procedures, see the Reference Manual: Procedures.
Keys in system tables

Primary, foreign, and common keys for system tables are defined in the master and model databases. You can generate a report on defined keys by executing `sp_helpkey`. For a report on columns in two system tables that are likely join candidates, execute `sp_helpjoins`.

The *Adaptive Server System Tables Diagram* shows the relationships between columns in the system tables.

Updating system tables

The Adaptive Server system tables contain information that is critical to the operation of your databases. Under ordinary circumstances, you need not perform direct data modifications to system tables.

Update system tables only when you are instructed to do so by Sybase Technical Support, by an instruction in the *Error Messaging and Troubleshooting Guide*, or in this manual.

Before you update system tables, you must issue an `sp_configure` command that enables system table updates. While this command is in effect, any user with appropriate permission can modify a system table. Other requirements for direct changes to system tables are:

- Modify system tables only inside a transaction. Issue a `begin transaction` command before you issue the data modification command.
- Verify that only the rows you wanted changed have been affected by the command, and that the data has been changed correctly.
- If the command was incorrect, issue a `rollback transaction` command. If the command was correct, issue a `commit transaction` command.

Warning! Some system tables should not be altered by any user under any circumstances. Some system tables are dynamically built by system processes, contain encoded information, or display only a portion of their data when queried. Imprudent, ad hoc updates to certain system tables can prevent Adaptive Server from running, make database objects inaccessible, scramble permissions on objects, or terminate a user session. Moreover, never attempt to alter the definition of the system tables in any way. For example, do not alter system tables to include constraints. Triggers, defaults, and rules are not allowed in system tables. If you create a trigger, bind a rule, or default to a system table, you see an error message.
System procedures

The names of all system procedures begin with “sp_”. They are located in the sybsystemprocs database, but you can run many of them in any database by issuing the stored procedure from the database or by qualifying the procedure name with the database name.

Sybase-supplied system procedures (such as sp_who) are created using the installmaster installation script. Use sp_version to determine the version of installmaster was most recently executed. See the Reference Manual: System Procedures for more information about sp_version.

If you execute a system procedure in a database other than sybsystemprocs, the procedure operates on the system tables in the database from which it was executed. For example, if the database owner of pubs2 runs sp_adduser from pubs2 or issues the command pubs2..sp_adduser, the new user is added to pubs2..sysusers. However, this does not apply to system procedures that update only tables in the master database.

Permissions on system procedures are discussed in the Reference Manual: Procedures.

Using system procedures

A parameter is an argument to a stored or system procedure. If a parameter value for a system procedure contains reserved words, punctuation, or embedded blanks, you must enclose it in single or double quotes. If the parameter is an object name, and the object name is qualified by a database name or owner name, enclose the entire name in single or double quotes.

System procedures can be invoked during a session using either chained or unchained transaction mode. Chained mode implicitly begins a transaction before any data retrieval or modification statement. Unchained mode requires explicit begin transaction statements paired with commit transaction or rollback transaction statements to complete the transaction. See Chapter 21, “Transactions: Maintaining Data Consistency and Recovery,” in the Transact-SQL Users Guide.

You cannot execute the system procedures that modify data in system tables in the master database from within a transaction, since this may compromise recovery. You cannot run system procedures that create temporary worktables from transactions.
If no transaction is active when you execute a system procedure, Adaptive Server turns off chained mode and sets transaction isolation level 1 for the duration of the procedure. Before returning, the session’s chained mode and isolation level are reset to their original settings. See Chapter 21, “Transactions: Maintaining Data Consistency and Recovery,” in the Transact-SQL Users Guide.

All system procedures report a return status. For example, the following means that the procedure executed successfully:

\[
\text{return status} = 0
\]

If the system procedures do not execute successfully, the return status is a number other than 0.

System procedure tables

The system procedures use several system procedure tables in the master and sybsystemdb databases to convert internal system values (for example, status bits) into human-readable format. One of these tables, spt_values, is used by a variety of system procedures, including:

- `sp_configure`
- `sp_dboption`
- `sp_depends`
- `sp_help`
- `sp_helpdb`
- `sp_helpdevice`
- `sp_helprotect`
- `sp_helpindex`
- `sp_helpkey`
- `sp_lock`
- `sp_monitor`
- `sp_committab`
- `sp_devtab`
- `sp_indtab`
- `sp_lock`

The spt_values table can be updated only by an upgrade; you cannot modify it. To see how it is used, execute `sp_helptext` and look at the text for one of the system procedures that references it.

The other system procedure tables are spt_monitor, spt_committab, and tables needed by the catalog stored procedures. (The spt_committab table is located in the sybsystemdb database.)

In addition, several system procedures create, and then drop, temporary tables. For example, `sp_helpdb` creates `#spdbdesc`, `sp_helpdevice` creates `#spdevtab`, and `sp_helpindex` creates `#spindtab`.
Creating system procedures

Many system procedures are explained in this manual, in the sections where they are relevant. For detailed reference information, see the Reference Manual: Procedures.

System administrators can write system procedures that can be executed in any database. Create a stored procedure in sybsystemprocs and assign it a name that begins with "sp_". The uid of the stored procedure must be 1, the uid of the database owner.

Most system procedures that you create query the system tables. Sybase recommends that you do not create stored procedures that modify the system tables.

To create a stored procedure that modifies system tables, a system security officer must first turn on the allow updates to system tables configuration parameter. Any stored procedure created while this parameter is set on can always update system tables, even when allow updates to system tables is turned off. To create a stored procedure that updates the system tables:

1. Use sp_configure to set allow updates to system tables on.
2. Use create procedure to create the stored procedure.
3. Use sp_configure to set allow updates to system tables off.

Warning! Use caution when you modify system tables. Always test the procedures that modify system tables in development or test databases, rather than in your production database.

System extended stored procedures

An extended stored procedure (ESP) letes you call external language functions from within Adaptive Server. Adaptive Server includes a set or predefined ESPs; users can also create their own. The names of all system extended stored procedures begin with “xp_”, and are located in the sybsystemprocs database.

One very useful system ESP is xp_cmdshell, which executes an operating system command on the system that is running Adaptive Server.
Invoke a system ESP just like a system procedure. The difference is that a system ESP executes procedural language code rather than Transact-SQL statements. All ESPs are implemented by an Open Server™ application called XP Server™, which runs on the same machine as Adaptive Server. XP Server starts automatically on the first ESP invocation.

For information about the system ESPs provided with Adaptive Server, see the Reference Manual: Procedures.

Creating system ESPs

Use `create procedure` to create a system ESP in the `sybsystemprocs` database. System procedures are automatically included in the `sybsystemprocs` database. The name of the ESP, and its procedural language function, must begin with “xp_”. The uid of the stored procedure must be 1, the uid of the database owner.

For general information about creating ESPs see Chapter 17, “Using Extended Stored Procedures,” in the Transact-SQL Users Guide.

Logging error messages

Each time it starts, Adaptive Server writes start-up information to a local error log file. The installation program automatically sets the error log location when you configure a new Adaptive Server. See the Configuration Guide for your platform to learn the default location and file name of the error log.

Many error messages from Adaptive Server are written only to the user’s terminal. However, fatal error messages (severity levels 19 and above), kernel error messages, and informational messages from Adaptive Server are recorded in the error log file.

Adaptive Server keeps the error log file open until you stop the server process. Before deleting old messages to reduce the size of the error log, stop the Adaptive Server process.

Note On some platforms, such as Windows, Adaptive Server also records error messages in the operating system event log. See the installation guide and configuration guide for your platform.
Connecting to Adaptive Server

Adaptive Server can communicate with other Adaptive Servers, Open Server applications, and client software on the network. Clients can talk to one or more servers, and servers can communicate with other servers using remote procedure calls. For products to interact with one another, each must know where the others reside on the network. This network service information is stored in the *interfaces* file.

The *interfaces* file

The *interfaces* file is usually named *interfaces*, *interface*, or *sql.ini*, depending on the operating system.

The *interfaces* file lists the name and address of every known server. When you use a client program to connect to a server, the program looks up the server name in the *interfaces* file and then connects to the server using the address, as shown in Figure 1-1.

Figure 1-1: Connecting to Adaptive Server

“Connect me to the TEST Adaptive Server.”

The name, location, and contents of the *interfaces* file differ between operating systems. Also, the format of the Adaptive Server addresses in the *interfaces* file differs between network protocols.
The Adaptive Server installation program creates a simple *interfaces* file that you can use for local connections to Adaptive Server over one or more network protocols. As a system administrator, modify the *interfaces* file and distribute it to users so that they can connect to Adaptive Server over the network. See the *Configuration Guide* for your platform for information about the *interfaces* file.

See Chapter 2, “Networks and Performance” in the *Performance and Tuning Series: Basics* for more information about the *interfaces* file and network listeners.

Directory services

A directory service manages the creation, modification, and retrieval of network service information. Directory services are provided by platform or third-party vendors and must be purchased and installed separately from Adaptive Server. Two examples of directory services are Registry and Distributed Computing Environment (DCE).

The $SYBASE/$SYBASE_OCS/config/libtcl.cfg file is a Sybase-supplied configuration file used by servers and clients to determine:

- Which directory service to use, and
- The location of the specified directory service driver.

If no directory services are installed or listed in the *libtcl.cfg* file, Adaptive Server defaults to the *interfaces* file for obtaining network service information.

The system administrator must modify the *libtcl.cfg* file as appropriate for the operating environment.

Some directory services are specific to a given platform; others can be used on several different platforms. Because of the platform-specific nature of directory services, see the configuration documentation for your platform for detailed information about configuring for directory services.
LDAP as a directory service

Lightweight Directory Access Protocol (LDAP) is an industry standard for accessing directory services. Directory services allow components to look up information by a distinguished name (DN) from an LDAP server that stores and manages server, user, and software information that is used throughout the enterprise or over a network.

The LDAP server can be located on a different platform from the one on which Adaptive Server or the clients are running. LDAP defines the communication protocol and the contents of messages exchanged between clients and servers. Messages are operators, such as client requests for read, write and query, and server responses, including metadata (data about data).

The LDAP server can store and retrieve information about:

- Adaptive Server, such as IP address, port number, and network protocol
- Security mechanisms and filters
- High availability companion server name
- Authentication information for user access to Adaptive Server

You can authenticate users logging in to Adaptive Server through information stored in the syslogins directory or through a centralized LDAP server that enables a single login and password throughout the enterprise. See Chapter 14, “Managing Adaptive Server Logins, Database Users, and Client Connections.”

You can configure the LDAP server to use these access restrictions:

- Anonymous authentication – all data is visible to any user.
- User name and password authentication – Adaptive Server uses the default user name and password from the appropriate file:
 - UNIX, 32-bit – $SYBASE/$SYBASE_OCS/config/libtcl.cfg
 - UNIX, 64-bit – $SYBASE/$SYBASE_OCS/config/libtcl64.cfg
 - Windows – %SYBASE%\%SYBASE_OCS%\libtcl.cfg
User name and password authentication properties establish and end a session connection to an LDAP server.

Note The default user name and password stored in `libtcl.cfg` and passed to the LDAP server for authentication purposes are distinct and different from those used to access Adaptive Server. The default user name and password allow access to the LDAP server for administrative tasks.

When an LDAP server is specified in the `libtcl.cfg` or `libtcl64.cfg` file (collectively called `libtcl*.cfg` file), the server information is then accessible only from the LDAP server; Adaptive Server ignores the `interfaces` file.

If multiple directory services are supported in a server, the order in which they are searched is specified in `libtcl*.cfg`. You cannot use the `dataserver` command line option to specify the search order.

Multiple directory services

Any type of LDAP service, whether it is an actual server or a gateway to other LDAP services, is called an LDAP server.

You can specify multiple directory services for high-availability failover protection in `libtcl*.cfg`. Not every directory service in the list must be an LDAP server.

In the following example, if the connection to `test:389` fails, the connection fails over to the DCE driver with the specified directory information tree (DIT) base. If this also fails, a connection to the LDAP server on `huey:11389` is attempted. Different vendors employ different DIT base formats.

```
[DIRECTORY]
ldap=libdldap.so ldap://test:389/dc=sybase,dc=com
dce=libddce.so ditbase=./subsys/sybase/dataservers
ldap=libdldap.so ldap://huey:11389/dc=sybase,dc=com
```


LDAP directory services versus the Sybase **`interfaces` file**

The LDAP driver implements directory services for use with an LDAP server. The LDAP infrastructure provides:

- A network-based alternative to the traditional Sybase `interfaces` file
Security features available in Adaptive Server

- A single, hierarchical view of information, including users, software, resources, networks, files, and so on

Table 1-1 highlights the differences between the Sybase interfaces file and an LDAP server.

Table 1-1: interfaces file versus LDAP directory services

<table>
<thead>
<tr>
<th>interfaces file</th>
<th>Directory services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform-specific</td>
<td>Platform-independent</td>
</tr>
<tr>
<td>Specific to each Sybase installation</td>
<td>Centralized and hierarchical</td>
</tr>
<tr>
<td>Contains separate master and query entries</td>
<td>One entry for each server that is accessed by both clients and servers</td>
</tr>
<tr>
<td>Cannot store metadata about the server</td>
<td>Stores metadata about the server</td>
</tr>
</tbody>
</table>

Performance

Performance when using an LDAP server may be slower than when using an interfaces file because the LDAP server requires time to make a network connection and retrieve data. Since this connection is made when Adaptive Server is started, changes in performance are seen at login time, if at all. During normal system load, the delay should not be noticeable. During high system load with many connections, especially repeated connections with short duration, the overall performance difference of using an LDAP server versus the traditional interfaces file might be noticeable.

Security features available in Adaptive Server

Table 1-2 summarizes the major security features that are available for Adaptive Server. For information about configuring Adaptive Server for security, see Part 2 of this manual.

Table 1-2: Major security features

<table>
<thead>
<tr>
<th>Security feature</th>
<th>Description</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification and authentication controls</td>
<td>Ensures that only authorized users can log in to the system. In addition to password-based login authentication, Adaptive Server supports external authentication using Kerberos, LDAP, or pluggable authentication modules (PAM).</td>
<td>“Identification and authentication” on page 391</td>
</tr>
<tr>
<td>Discretionary access controls (DAC)</td>
<td>Provides access controls that let object owners restrict access to objects, usually with the grant and revoke commands. This type of control is dependent upon an object owner’s discretion.</td>
<td>“Discretionary access control” on page 392</td>
</tr>
</tbody>
</table>
CHAPTER 1 Overview of System Administration

<table>
<thead>
<tr>
<th>Security feature</th>
<th>Description</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of roles</td>
<td>Allows an administrator to grant privileged roles to specified users so only designated users can perform certain tasks. Adaptive Server has predefined roles, called “system roles,” such as system administrator and system security officer. In addition, Adaptive Server allows system security officers to define additional roles, called “user-defined roles.”</td>
<td>“Division of roles” on page 393</td>
</tr>
<tr>
<td>Accountability</td>
<td>Provides the ability to audit events such as logins, logouts, server start operations, remote procedure calls, accesses to database objects, and all actions performed by a specific user or with a particular role active. Adaptive Server also provides a single option to audit a set of server-wide, security-relevant events.</td>
<td>“Auditing for accountability” on page 394</td>
</tr>
<tr>
<td>Confidentiality of data</td>
<td>Maintains a confidentiality of data using encryption for client/server communication, available with Kerberos or secure sockets layer (SSL). Inactive data is kept confidential with password-protected database backup.</td>
<td>“Confidentiality of data” on page 395</td>
</tr>
</tbody>
</table>
This chapter describes the system databases that reside on all Adaptive Server systems. It also describes optional Sybase-supplied databases that you can install, and the sybdiag database, which Sybase Technical Support may install for diagnostic purposes.

Topic

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of system databases</td>
<td>23</td>
</tr>
<tr>
<td>master database</td>
<td>25</td>
</tr>
<tr>
<td>model database</td>
<td>27</td>
</tr>
<tr>
<td>sybsystemprocs database</td>
<td>28</td>
</tr>
<tr>
<td>tempdb database</td>
<td>28</td>
</tr>
<tr>
<td>sybsecurity database</td>
<td>30</td>
</tr>
<tr>
<td>sybsystemdb database</td>
<td>30</td>
</tr>
<tr>
<td>Chapter , “sybmgmtdb database,”</td>
<td>31</td>
</tr>
<tr>
<td>pubs2 and pubs3 sample databases</td>
<td>31</td>
</tr>
<tr>
<td>dbccdb database</td>
<td>32</td>
</tr>
<tr>
<td>sybdiag database</td>
<td>32</td>
</tr>
</tbody>
</table>

Overview of system databases

A default installation of Adaptive Server includes these system databases:

- The master database
- The model database
- The system procedure database, sybsystemprocs
- The two-phase commit transaction database, sybsystemdb
- The temporary database, tempdb

Optionally, you can install:

- The auditing database, sybsecurity
Overview of system databases

- The sample databases, pubs2 and pubs3
- The dbcc database, dbccdb
- The Job Scheduler database, sybmgmtdb

For information about installing the master, model, sybsystemprocs, tempdb, and sybmgmtdb databases, see the installation guide for your platform. For information on installing dbccdb, Chapter 10, “Checking Database Consistency,” in the *System Administration Guide: Volume 2*. For information about using Job Scheduler, see the *Job Scheduler Users Guide*.

The master, model, sybsystemdb, and temporary databases reside on the master device which is named during installation. The master database is contained entirely on the master device and cannot be expanded onto any other device. Create all other databases and user objects on other devices.

Warning! Do not store user databases on the master device; doing so makes it difficult to recover both the system databases and any user databases stored on the master device.

Install the sybsecurity and sybmgmtdb databases on their own devices and segment. See the installation documentation for your platform.

Install the sybsystemprocs database on a device of your choice. You may want to modify the installation scripts for pubs2 and pubs3 to share the device you create for sybsystemprocs.

Use the *installjsdb* script (located in $SYBASE/ASE-15_0/scripts) to install the sybmgmtdb database. *installjsdb* looks for a device named sybmgmtdev on which to create the sybmgmtdb database and its accompanying tables and stored procedures. If the sybmgmtdb database already exists, *installjsdb* creates the Job Scheduler tables and stored procedures in the existing database. If *installjsdb* cannot find either a sybmgmtdev device or a sybmgmtdb database, it creates sybmgmtdb on the master device. However, Sybase strongly recommends that you remove the sybmgmtdb database from the master device.

The *installpubs2* and the *installpubs3* scripts do not specify a device in their create database statement, so they are created on the default device. During installation, the master device is the default device. To change this, either edit the scripts or follow the instructions in Chapter 7, “Initializing Database Devices.”
master database

The *master* database controls the operation of Adaptive Server and stores information about all user databases and their associated database devices. Table 2-1 describes the information that the *master* database stores.

<table>
<thead>
<tr>
<th>Information</th>
<th>System table</th>
</tr>
</thead>
<tbody>
<tr>
<td>User accounts</td>
<td>syslogins</td>
</tr>
<tr>
<td>Remote user accounts</td>
<td>sysremotelogins</td>
</tr>
<tr>
<td>Remote servers that this server can interact with</td>
<td>sysservers</td>
</tr>
<tr>
<td>Ongoing processes</td>
<td>sysprocesses</td>
</tr>
<tr>
<td>Configurable environment variables</td>
<td>sysconfigures</td>
</tr>
<tr>
<td>System error messages</td>
<td>sysmessages</td>
</tr>
<tr>
<td>Databases on Adaptive Server</td>
<td>syssdatabases</td>
</tr>
<tr>
<td>Storage space allocated to each database</td>
<td>syssusages</td>
</tr>
<tr>
<td>Tapes and disks mounted on the system</td>
<td>sysdevices</td>
</tr>
<tr>
<td>Active locks</td>
<td>syslocks</td>
</tr>
<tr>
<td>Character sets</td>
<td>syscharsets</td>
</tr>
<tr>
<td>Languages</td>
<td>syslanguages</td>
</tr>
<tr>
<td>Users who hold server-wide roles</td>
<td>sysloginroles</td>
</tr>
<tr>
<td>Server roles</td>
<td>syssrvroles</td>
</tr>
<tr>
<td>Adaptive Server engines that are online</td>
<td>syssengines</td>
</tr>
</tbody>
</table>

Because the *master* database stores information about user databases and devices, you must be in the *master* database to issue the `create database`, `alter database`, `disk init`, `disk refit`, `disk reinit`, and `disk mirroring` commands.

The minimum size of your *master* database depends on your server's logical page size. The *master* database must contain at least 6656 logical pages, so its minimum physical size for each logical page size is:

- 2K page – 13MB
- 4K page – 26MB
- 8K page – 52MB
- 16K page – 104MB
Controlling object creation in master

When you install Adaptive Server, only a system administrator can create objects in the master database, because the system administrator implicitly becomes “dbo” of any database he or she uses. Any objects created on the master database should be used only for system administration. Set permissions in master so that most users cannot create objects there.

Warning! Do not place user objects in master. Storing user objects in master causes the transaction log to fill quickly. If the transaction log runs out of space completely, you cannot use dump transaction commands to free space in master.

You may also want to use sp_modifylogin to change the default database for users (the database to which a user is connected when he or she logs in). See “Adding users to databases” on page 402.

Create any system procedures in the sybsystemprocs database rather than in master.

Backing up master and keeping copies of system tables

To be prepared for hardware or software failure on Adaptive Server:

- Keep a copy (preferably offline) of these system tables: sysusages, sysdatabases, sysdevices, sysloginroles, and syslogins. See “Keep offline copies of system tables” on page 42. If you have copies of these scripts, and a hard-disk failure or other disaster makes your database unusable, you can use the recovery procedures described in Chapter 13, “Restoring the System Databases,” in System Administration Guide: Volume 2. If you do not have current copies of your scripts, it is much more difficult to recover Adaptive Server when the master database is damaged.
model database

Adaptive Server includes the model database, which provides a template, or prototype, for new user databases. Each time a user enters the `create database` command, Adaptive Server makes a copy of the model database and extends the new database to the size specified by the `create database` command.

Note New databases must be at least as large as the model database.

The model database contains the required system tables for each user database. You can modify model to customize the structure of newly created databases—everything you do to model is reflected in each new database. Some of the changes that system administrators commonly make to model are:

- Adding user-defined datatypes, rules, or defaults.
- Adding users who need access to all databases on Adaptive Server.
- Granting default privileges, particularly for “guest” accounts.
- Setting database options such as `select into/bulkcopy/plsor`. These settings are reflected in all new databases. The default settings for these options in model is off. See Chapter 8, “Setting Database Options.”

Typically, most users do not have permission to modify the model database. There is not much point in granting read permission either, since Adaptive Server copies its entire contents into each new user database.

The model database cannot be larger than tempdb. By default, the size of model is six allocation units (an allocation unit is 256 logical pages.). You see error message if you increase the size of model without making tempdb at least as large.

Note Keep a backup copy of the model database, and back up model with `dump database` each time you change it. In case of media failure, restore model as you would a user database.
sybsystemprocs database

Sybase system procedures are stored in the database sybsystemprocs. When a user in any database executes a system stored procedure (that is, a procedure whose name begins with `sp_`), Adaptive Server first looks for that procedure in the user’s current database. If there is no procedure there with that name, Adaptive Server looks for it in sybsystemprocs. If there is no procedure in sybsystemprocs, Adaptive Server looks for the procedure in master.

If the procedure modifies system tables (for example, `sp_adduser` modifies the `sysusers` table), the changes are made in the database from which the procedure was executed.

To change the default permissions on system procedures, modify those permissions in sybsystemprocs.

Note Any time you make changes to sybsystemprocs, back up the database.

tempdb database

Adaptive Server has a **temporary database**, `tempdb`, that provides a storage area for temporary tables and other temporary working storage needs. The space in `tempdb` is shared among all users of all databases on the server.

The default size of `tempdb` depends on the logical page size for your server, 2, 4, 8, or 16K. Certain activities may make it necessary for you to increase the size of `tempdb`:

- Large temporary tables.
- A lot of activity on temporary tables, which fills up the `tempdb` logs.
- Large or many simultaneous sorts. Subqueries and aggregates with `group` by also cause some `tempdb` activity.

Use `alter database` to increase the size of `tempdb`. `tempdb` is initially created on the master device. You can add space to `tempdb` from the master device or from any other database device.

If you run `update index statistics` against large tables, the command fails with error number 1105 if `tempdb` is not large enough.
You can create and manage multiple temporary databases in addition to the system temporary database, tempdb. Multiple temporary databases reduce contention on system catalogs and logs in tempdb.

Creating temporary tables

No special permissions are required to create temporary tables or to execute commands that may require storage space in the temporary database.

Create temporary tables either by preceding the table name in a create table statement with a pound sign (#), or by specifying the name prefix “tempdb..”.

Temporary tables created with a pound sign are accessible only by the current Adaptive Server session: users on other sessions cannot access them. These non-sharable, temporary tables are destroyed at the end of each session. The first 13 bytes of the table’s name, including the pound sign (#), must be unique. Adaptive Server assigns the names of such tables a 17-byte number suffix. (You can see the suffix by querying tempdb..sysobjects.)

Temporary tables created with the “tempdb..” prefix are stored in tempdb and can be shared among Adaptive Server sessions. Adaptive Server does not change the names of temporary tables created this way. The table exists either until you restart Adaptive Server or until its owner drops it using drop table.

System procedures work on temporary tables, but only if you use them from tempdb.

If a stored procedure creates temporary tables, the tables are dropped when the procedure exits. You can also explicitly drop temporary tables before a session ends.

Warning! Do not create temporary tables with the “tempdb..” prefix from inside a stored procedure unless you intend to share those tables among other users and sessions.

Each time you restart Adaptive Server, it copies model to tempdb, which clears the database. You cannot recover temporary tables.
sybsecurity database

The sybsecurity database, which contains the auditing system for Adaptive Server, includes:

- The system tables, sysaudits_01, sysaudits_02, ... sysaudits_08, which contain the audit trail
- The sysauditoptions table, which contains rows describing the global audit options
- All other default system tables that are derived from model

See Chapter 18, “Auditing.”

sybsystemdb database

The sybsystemdb database stores information about distributed transactions. Adaptive Server versions 12.0 and later can provide transaction coordination services for transactions that are propagated to remote servers using remote procedure calls (RPCs) or Component Integration System (CIS). Information about remote servers participating in distributed transactions is stored in the syscoordinations table.

Note Distributed transaction management (DTM) services are available in Adaptive Server version 12.0 and later as a separately licensed feature. You must purchase and install a Distributed Transaction Management license before you can use DTM services. See Using Adaptive Server Distributed Transaction Management Features and the installation guide.

The sybsystemdb database also stores information about SYB2PC transactions that use the Sybase two-phase commit protocol. The spt_committab table, which stores information about and tracks the completion status of each two-phase commit transaction, is stored in the sybsystemdb database.

See the Configuration Guide for your platform for information about two-phase commit transactions and how to create the sybsystemdb database.
sybmgmtdb database

The sybmgmtdb database stores jobs, schedules, scheduled jobs information, and data the internal Job Scheduler task needs for processing. sybmgmtdb also maintains the output and results from these executed tasks. See the *Job Scheduler Users Guide*.

pubs2 and pubs3 sample databases

Installing the pubs2 and pubs3 sample databases is optional. These databases are provided as a learning tool for Adaptive Server. The pubs2 sample database is used for most of the examples in the Adaptive Server documentation, except for examples, where noted, that use the pubs3 database. For information about installing pubs2 and pubs3, see the installation guide for your platform. For information about the contents of these sample databases, see the *Transact-SQL Users Guide*.

Maintaining the sample databases

The sample databases include a “guest” user login that allows access to the database by any authorized Adaptive Server user. The “guest” login has been given a wide range of privileges in pubs2 and pubs3, including permissions to select, insert, update, and delete user tables. See Chapter 14, “Managing Adaptive Server Logins, Database Users, and Client Connections.”

The size of the pubs2 and pubs3 databases are determined by the size of the logical page size for your server; 2, 4, 8, and 16K. If possible, give each new user a clean copy of pubs2 and pubs3 so that she or he is not confused by other users’ changes. To place pubs2 or pubs3 on a specific database device, edit the installation script before installing the database.

If space is a problem, instruct users to issue the `begin transaction` command before updating a sample database. After the user has finished updating one of the sample databases, he or she can issue the `rollback transaction` command to undo the changes.
pubs2 image data

Adaptive Server includes a script for installing image data in the pubs2 database (pubs3 does not use the image data). The image data consists of six pictures, two each in PICT, TIF, and Sun raster file formats. Sybase does not provide any tools for displaying image data. You must use the appropriate screen graphics tools to display the images after you extract them from the database.

See the installation documentation for your platform for information about installing the image data in pubs2.

dbccdb database

`dbcc checkstorage` records configuration information for the target database, operation activity, and the results of the operation in the `dbccdb` database. Stored in the database are `dbcc` stored procedures for creating and maintaining `dbccdb` and for generating reports on the results of `dbcc checkstorage` operations. See Chapter 10, “Checking Database Consistency,” in the System Administration Guide: Volume 2.

sybdiag database

Sybase Technical Support may create the `sybdiag` database on your system for debugging purposes. This database holds diagnostic configuration data, and should not be used by customers.

Determining the version of the installation scripts

`sp_version` lets you determine the current version of the scripts (`installmaster`, `installdbccdb`, and so on) installed on Adaptive Server, whether they ran successfully or not, and the length of time they took to complete.

The syntax for `sp_version` is:

```
sp_version [script_file [, "all"]]
```
where:

- `script_file` is the name of the installation script (the default value is `NULL`).
- all reports details about each script, such as the date executed, and the length of time for execution.

If you run `sp_version` without any parameters, it reports on all scripts.

This example describes what installation scripts were run, what time they were run, and what time they finished:

```plaintext
sp_version null, 'all'
Script       Version
Status

----------- -------------------------------------------------------------
-----------
installmaster  15.0/EBF XXXXX/B/Sun_svr4/OS 5.8/asemain/1/32-bit/OPT/Thu Sep 23 22:12:12 2004
Complete [Started=Sep 24 2004 3:39PM]-[Completed=Sep 24 2004 3:45PM]
```
Determining the version of the installation scripts
CHAPTER 3

System Administration for Beginners

This chapter:

• Introduces new system administrators to important topics
• Helps system administrators find information in the Sybase documentation

Experienced administrators may also find this chapter useful for organizing ongoing maintenance activities.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical page sizes</td>
<td>35</td>
</tr>
<tr>
<td>Using “test” servers</td>
<td>36</td>
</tr>
<tr>
<td>Considerations when installing Sybase products</td>
<td>37</td>
</tr>
<tr>
<td>Allocating physical resources</td>
<td>39</td>
</tr>
<tr>
<td>Backup and recovery</td>
<td>41</td>
</tr>
<tr>
<td>Ongoing maintenance and troubleshooting</td>
<td>44</td>
</tr>
<tr>
<td>Keeping records</td>
<td>45</td>
</tr>
<tr>
<td>Additional resources</td>
<td>48</td>
</tr>
</tbody>
</table>

Logical page sizes

Database objects are built with logical pages. A databases and any of its related objects must use the same logical page size. That is, you cannot create a server that uses more than one logical page size. Adaptive Server allows you to create master devices and databases with logical page sizes of 2K, 4K, 8K, or 16K, but a given server installation can use only one of these four logical page sizes. All databases in a server—and all objects in every database—use the same logical page size. For example, all the pages on a server with a logical page size of 4K must be 4K, even though you may not use some pages beyond the initial 2K.

Select the page size when you create the master device with dataserver -z.
For more information about the *dataserver* command, which is the command used to create the master device, see the *Utility Guide*. For more information about logical page sizes, see Chapter 3, “Configuring Memory,” in *System Administration Guide: Volume 2*.

Using “test” servers

Sybase suggests that you install and use a test or development Adaptive Server, then remove it before you create the production server. Using a test server makes it easier to plan and test different configurations and less stressful to recover from mistakes. It is much easier to learn how to install and administer new features when there is no risk of having to restart a production server or re-create a production database.

If you use a test server, Sybase suggests that you do so from the point of installing or upgrading Adaptive Server through the process of configuring the server. It is in these steps that you make some of the most important decisions about your final production system. The following sections describe how using a test server can help system administrators.

Planning resources

Using a test server helps you plan the final resource requirements for your system and helps you discover resource deficiencies that you might not have anticipated.

In particular, disk resources can have a dramatic effect on the final design of the production system. For example, you may decide that, in the event of a media failure, a particular database requires nonstop recovery. This means you must configure one or more additional database devices to mirror the critical database. Discovering these resource requirements in a test server allows you to change the physical layout of databases and tables without affecting database users.

Use a test server to benchmark both Adaptive Server and your applications using different hardware configurations. This allows you to determine the optimal setup for physical resources at both the Adaptive Server level and the operating system level before bringing the entire system online for general use.
Achieving performance goals

Most performance objectives can be met only by carefully planning a database's design and configuration. For example, you may discover that the insert and I/O performance of a particular table causes a bottleneck. In this case, the best course of action may be to re-create the table on a dedicated segment and partition the table. Changes of this nature are disruptive to a production system; even changing a configuration parameter may require you to restart Adaptive Server.

Considerations when installing Sybase products

The responsibility for installing Adaptive Server and other Sybase products is sometimes placed with the system administrator. If installation is one of your responsibilities, use the following pointers to help you in the process.

Check product compatibility

Before installing new products or upgrading existing products, always read the release bulletin included with the products to understand any compatibility issues that might affect your system. Compatibility problems can occur between hardware and software and between different release levels of the same software. Reading the release bulletin in advance can save the time and guesswork of troubleshooting known compatibility problems. Pay particular attention to the lists of known problems that are included in the release bulletin.

Install or upgrade Adaptive Server

Read through the installation guide for your platform before you begin a new installation or upgrade. You may also want to consult with the operating system administrator to discuss operating system requirements for Adaptive Server. These requirements can include the configuration of memory, raw devices, asynchronous I/O, and other features, depending on the platform you use. Many of these tasks must be completed before you begin the installation.
Considerations when installing Sybase products

If you are upgrading a server, back up all data (including the master database, user databases, triggers, and system procedures) offline before you begin. After upgrading, immediately create a separate, full backup of your data, especially if there are incompatibilities between older dump files and the newer versions.

Install additional third-party software

Adaptive Server generally includes support for the network protocols that are common to your hardware platform. If your network supports additional protocols, install the required protocol support.

As an alternative to the Sybase interfaces file, you can use a directory service to obtain a server’s address and other network information. Directory services are provided by platform or third-party vendors and must be purchased and installed separately from the installation of Adaptive Server. See also “Directory services” on page 17 and the Configuration Guide for your platform for a list of the directory services that Adaptive Server currently supports.

Configure and test client connections

A successful client connection depends on the coordination of Adaptive Server, the client software, and network products. If you are using one of the network protocols installed with Adaptive Server, see the Configuration Guide for your platform for information about testing network connections. If you are using a different network protocol, follow the instructions that are included with the network product. You can also use “ping” utilities that are included with Sybase connectivity products to test client connections with Adaptive Server. For a general description of how clients connect to Adaptive Server, see “Connecting to Adaptive Server” on page 16. For details about the name and contents of the interfaces file, see the Configuration Guide for your platform.
Allocating physical resources

Allocating physical resources is providing Adaptive Server the memory, disk space, worker processes, and CPU power required to achieve your performance and recovery goals. When installing a new server, every system administrator must make decisions about resource utilization. If you upgrade your platform, or if the design of your database system changes, you must also reallocate Adaptive Server resources by adding new memory, disk controllers, or CPUs. Early benchmarking of Adaptive Server and your applications can help you identify hardware resource deficiencies that create performance bottlenecks.

The following sections provide helpful pointers in determining physical resource requirements.

Dedicated versus shared servers

The first step in planning Adaptive Server resources to understand the resources required by other applications running on the same machine. Generally, system administrators dedicate an entire machine for Adaptive Server use, which means that only the operating system and network software consume resources that might otherwise be reserved for Adaptive Server. On a shared system, other applications, such as Adaptive Server client programs or print servers, run on the same machine as Adaptive Server. It can be difficult to calculate the resources available to Adaptive Server on a shared system, because the types of applications and their pattern of use may change over time.

It is the system administrator’s responsibility to take into account the resources used by operating systems, client programs, windowing systems, and so forth when configuring resources for Adaptive Server. Configure Adaptive Server to use only the resources that are available to it. Otherwise, the server may perform poorly or fail to start.
Allocating physical resources

Decision-support and OLTP applications

Adaptive Server contains many features that optimize performance for OLTP, decision-support, and mixed-workload environments. However, to make optimal use of these features, determine in advance the requirements of your system’s applications.

For mixed-workload systems, list the individual tables that you anticipate will be most heavily used for each type of application; this can help you achieve maximum performance for applications.

Advance resource planning

It is extremely important that you understand and plan resource usage in advance. In the case of disk resources, for example, after you initialize and allocate a device to Adaptive Server, that device cannot be used for any other purpose (even if Adaptive Server never fills the device with data). Likewise, Adaptive Server automatically reserves the memory for which it is configured, and this memory cannot be used by any other application.

When planning resource usage:

- For recovery purposes, always place a database’s transaction log on a separate physical device from its data. See Chapter 6, “Creating and Managing User Databases,” in *System Administration Guide: Volume 2*.

- Consider mirroring devices that store mission-critical data. See Chapter 2, “Mirroring Database Devices,” in *System Administration Guide: Volume 2*. If your operating system supports these features, consider using disk arrays and disk mirroring for Adaptive Server data.

- If you are working with a test Adaptive Server, for convenience, you may find it easier to initialize database devices as operating system files, rather than raw devices. Adaptive Server supports either raw partitions or certified file systems for its devices.

- Changing configuration options can affect the way Adaptive Server consumes physical resources, especially memory. See Chapter 5, “Setting Configuration Parameters,” for details about the amount of memory used by individual parameters.
Operating system configuration

Once you have determined the resources that are available to Adaptive Server and the resources you require, configure these physical resources at the operating system level:

- If you are using raw partitions, initialize the raw devices to the sizes required by Adaptive Server. If you initialize a raw device for Adaptive Server, you cannot use that device for any other purpose (for example, to store operating system files). Ask your operating system administrator for assistance in initializing and configuring raw devices to the required sizes.

- Configure the number of network connections. Make sure that the machine on which Adaptive Server runs can actually support the number of connections you configure. See your operating system documentation.

- Additional configuration may be required for your operating system and the applications that you use. Read the installation guide for your platform. Also read your client software documentation or consult with your engineers to understand the operating system requirements for your applications.

Backup and recovery

Making regular backups of your databases is crucial to the integrity of your database system. Although Adaptive Server automatically recovers from system crashes (for example, power outages) or server failures, only you can recover from data loss caused by media failure.

The following chapters, from the System Administration Guide: Volume 2, describe how to develop and implement a backup and recovery plan:

- Chapter 11, “Developing a Backup and Recovery Plan”
- Chapter 12, “Backing Up and Restoring User Databases”
- Chapter 13, “Restoring the System Databases”
- Chapter 16, “Managing Free Space with Thresholds”
Backup and recovery

Keep up-to-date backups of master

Backing up the master database is the most crucial element of any backup and recovery plan. The master database contains details about the structure of your entire database system. It stores information about the Adaptive Server databases, devices, and device fragments that make up those databases. Because Adaptive Server needs this information for recovery, it is crucial that you maintain an up-to-date backup copy of the master database at all times.

To ensure that your backup of master is always up to date, back up the database after each command or procedure that affects disks, storage, databases, or segments, including:

- Creating or deleting databases
- Initializing new database devices
- Adding new dump devices
- Using any device mirroring command
- Creating or dropping system stored procedures, if they are stored in master
- Creating, dropping, or modifying a segment
- Adding new Adaptive Server logins

To back up master to a tape device, start isql and enter the command:

```
dump database master to "tape_device"
```

where tape_device is the name of the tape device (for example, /dev/rmt0).

Keep offline copies of system tables

In addition to backing up master regularly, keep offline copies of these system tables: sysdatabases, sysdevices, sysusages, sysloginroles, and syslogins. Use the bcp utility described in the Utility Guide and store a printed copy of the contents of each system table. Create a printed copy by printing the output of:

```
select * from sysusages order by vstart
select * from sysdatabases
select * from sysdevices
select * from sysloginroles
select * from syslogins
```

If you have copies of these tables, and a hard-disk failure or other disaster makes your database unusable, you can use the recovery procedures described in Chapter 13, “Restoring the System Databases,” in System Administration Guide: Volume 2.
Also keep copies of all data definition language (DDL) scripts for user objects, as described under “Keeping records” on page 45.

Automate backup procedures

Creating an automated backup procedure makes the process easier and quicker to perform. Automating backups can be as simple as using an operating system script or a utility (for example, the UNIX cron utility) to perform the necessary backup commands. Or you can automate the procedure further by using thresholds, which are discussed in Chapter 16, “Managing Free Space with Thresholds,” in System Administration Guide: Volume 2.

❖ Creating an automated backup procedure

Although the commands required to create an automated script vary, depending on the operating system you use, all scripts should accomplish the same basic steps:

1. Start [sql] and dump the transaction log to a holding area (for example, a temporary file).
2. Rename the dump file to a name that contains the dump date, time, and database name.
3. In a history file, record information about the new backup.
4. In a separate file, record any errors that occurred during the dump.
5. Automatically send mail to the system administrator for any error conditions.

Verify data consistency before backing up a database

Your database backups must be consistent and accurate, especially for master. If you back up a database that contains internal errors, the errors persist in a restored version of the database.

Use the `dbcc` commands to check a database for errors before backing it up. Always use `dbcc` commands to verify the integrity of a database before dumping it. If `dbcc` detects errors, correct them before dumping the database.
Over time, if you discover few or no errors while running `dbcc`, you may decide that the risk of database corruption is small and that you need to run `dbcc` only occasionally. If the consequences of losing data are too high, continue to run `dbcc` commands each time you back up a database.

Note For performance considerations, many sites choose to run `dbcc` checks outside of peak hours or on separate servers.

Monitor the log size

When the transaction log becomes nearly full, it may be impossible to use standard procedures to dump transactions and reclaim space. The system administrator should monitor the log size and perform regular transaction log dumps (in addition to regular database dumps) to avoid this situation. Set up a threshold stored procedure that notifies you (or dumps the log) when the log reaches a certain capacity. See Chapter 16, “Managing Free Space with Thresholds,” in *System Administration Guide: Volume 2*. Sybase also suggests that, to shorten the time required to dump and load the database, dump the transaction log immediately prior to performing a full database dump.

You can also monitor the space used in the log segment manually using `sp_helpsegment`, as described under Chapter 8, “Creating and Using Segments in *System Administration Guide: Volume 2*.”

Ongoing maintenance and troubleshooting

In addition to making regularly scheduled backups, the system administrator performs the maintenance activities throughout the life of a server discussed in this section.
Starting and stopping Adaptive Server

Most system administrators automate the procedure for starting Adaptive Server to coincide with the start-up of the server machine. Do this by editing operating system start-up scripts, or by using other operating system procedures. See the configuration documentation for your platform to determine how to start and stop Adaptive Server.

Viewing and pruning the error log

Examine the contents of the error log on a regular basis to determine whether serious errors have occurred. You can also use operating system scripts to scan the error log for particular messages and to automatically notify the system administrator when specific errors occur. Checking the error log regularly may help determine whether there are continuing problems of the same nature, or whether a particular database device is likely to fail. See Chapter 11, “Diagnosing System Problems,” for more information about error messages and their severity.

The error log file can grow large over time, since Adaptive Server appends informational and status messages to it each time it starts. You can periodically “prune” the log file by opening the file and deleting old records. Keeping the log file to a manageable size saves disk space and makes it easier to locate current errors.

Keeping records

Keeping records about your Adaptive Server system is an important part of your job as a system administrator. Accurate records of changes and problems that you have encountered can be a valuable reference when you are contacting Sybase Technical Support or recovering databases. They can also provide vital information for administrators who manage the Adaptive Server system in your absence.
Keeping records

Contact information
Maintain a list of contact information for yourself as well as the System Security Officer, Operator, and database owners on your system. Also, record secondary contacts for each role. Make this information available to all Adaptive Server users so that the appropriate contacts receive enhancement requests and problem reports.

Configuration information
Ideally, create databases and database objects, and configure Adaptive Server using script files that you store in a safe place. Storing the script files makes it possible to re-create your entire system in the event of a disaster. You can also use script files to quickly re-create database systems for evaluation purposes on new hardware platforms. If you use a third-party tool to perform system administration, remember to generate equivalent scripts after performing administration tasks.

Consider recording the following kinds of information:

- Commands used to create databases and database objects (DDL scripts)
- Commands that add new Adaptive Server logins and database users
- The current Adaptive Server configuration file, as described in “Using sp_configure with a configuration file” on page 69
- The names, locations, and sizes of all files and raw devices initialized as database devices

Maintain a dated log of all changes to the Adaptive Server configuration. Mark each change with a brief description of when and why you made the change, as well a summary of the end result.

Maintenance schedules
Keep a calendar of regularly scheduled maintenance activities; list any of the procedures you perform at your site:

- Using dbcc to check database consistency
- Backing up user and system databases
- Monitoring the space left in transaction logs (if this is not done automatically)
Dumping the transaction log

Examining the error log contents for Adaptive Server, Backup Server, and Adaptive Server Monitor

Running the update statistics command (see Chapter 1, “Using the set statistics Commands,” in Performance and Tuning Series: Improving Performance with Statistical Analysis)

Examining auditing information, if the auditing option is installed

Recompiling stored procedures

Monitoring resource utilization of the server machine

System information

Record information about the hardware and operating system on which you run Adaptive Server, including:

- Copies of operating system configuration files or start-up files
- Copies of network configuration files (for example, the hosts and services files)
- Names and permissions for the Adaptive Server executable files and database devices
- Names and locations of the tape devices used for backups
- Copies of operating system scripts or programs for automated backups, starting Adaptive Server, or performing other administration activities

Disaster recovery plan

Consolidate the basic backup and recovery procedures, the guidelines in “Backup and recovery” on page 41, and your personal experiences in recovering data into a concise list of recovery steps tailored to your system. This can be useful to both yourself and to other system administrators who may need to recover a production system in the event of an emergency.
Additional resources

The amount of information for system administrators to learn may seem overwhelming. There are several software tools that can help you learn and facilitate basic administration tasks. These include Adaptive Server Monitor, used for monitoring server performance and other activities, and Sybase Central, which simplifies many administration tasks. There are also many third-party software packages available designed to help system administrators manage daily maintenance activities.
CHAPTER 4

Overview for Adaptive Server Sybase Central Plug-in

Sybase Central is a graphical user interface (GUI) management tool. Sybase Central accepts a variety of “plug-ins” that allow you to manage specific Sybase products. The Adaptive Server plug-in allows you to manage Adaptive Server and helps you perform complex administration tasks without the need to remember the syntax of Transact-SQL commands or system stored procedures. You can use the Adaptive Server plug-in to:

- Manage multiple servers from one console – You can manage all the Adaptive Server installations from the Sybase Central main window.
- Generate database definition language (DDL) – You can generate DDL for the objects in Adaptive Server.
Adaptive Server plug-In and command line updates

- Visually represent objects – You can see the databases and logins in each Adaptive Server and the objects in each database, and windows expand and contract to display information about databases and logins. The Adaptive Server plug-in expands to display information about many items, including:
 - Databases and tables
 - Disk devices
 - Active processes and locks
 - Logins and users
 - Data caches
 - ASE Replicator, Job Scheduler, and Messaging Services
 - Access to other utilities such as Interactive SQL (for sending queries and displaying query results).
- Navigate between related objects – To get more information about a database object related to the one whose property sheet you are displaying, navigate directly through the displayed object’s dialog box to the related object.
- Create a cluster – The Adaptive Server plug-in allows you to create a cluster if you have purchased Adaptive Server Cluster Edition. See the online help and the User Guide to Clusters.

Adaptive Server plug-In and command line updates

The Adaptive Server Plug-in for Sybase Central manages various Adaptive Server Enterprise products. In versions earlier than 15.0.3, the Adaptive Server plug-in ran on Sybase Central 4.3. In 15.0.3 the Adaptive Server plug-in runs on Sybase Central 6.00. These features are new to version 15.0.3, Sybase Central 6.00:

- A Search tool helps you find objects displayed by plug-ins. Select View | Search Pane to select objects according to the plug-in they belong to.
- The Connection Profile Description, Import, and Export options allow you to add a text description to a profile connection. You can also import and export connection profiles to and from files, allowing them to be shared among users.
CHAPTER 4 Introduction to the Adaptive Server Plug-in for Sybase Central

• Better support for Windows Vista.

These features are new to the version 15.0.3 Adaptive Server plug-in.

• Create objects by selecting the Add icon from a context-sensitive toolbar, located below the Sybase Central context bar, which in turn is under the standard toolbar.

• Stored procedures and SQLJ procedures are located in the Procedures folder.

• Scalar functions, or user-defined functions, are now supported, and are located, along with SQLJ functions, in the Functions folder. They are also documented in the Adaptive Server plug-in Help.

• Utilities items are now accessible from the menu on the context-sensitive toolbar, or Context Bar, under the Standard Toolbar.

DBISQL11, which was previously shipped as part of Adaptive Server plug-in, is now a separate product, version 11.0, and includes these enhanced features:

• The number of multiple result sets is no longer limited to 10.

• The login dialog for Adaptive Server now retains and displays the last five connected server names.

• DBISQL11, or interactive SQL, now supports connection favorites, which are similar to connection profiles.

• The SQL statements pane now contains line numbers.

• The Results pane now shows using select all, insert/update/delete SQL statements, and sorting and generating, from selected rows.

Using the Adaptive Server Plug-in

The Adaptive Server plug-in for Sybase Central provides you with an intuitive and easy way to administer Adaptive Server Enterprise. Sybase Central displays the Adaptive Server plug-in in its left-hand pane. Included in this pane is a hierarchical list of folders that represent different objects the plug-in can manage, including:

• Viewing and changing the characteristics of the object

• Creating another object:
Starting and stopping Sybase Central

Starting and stopping Sybase Central

To start Sybase Central:

- On UNIX, move to the $SYBASE/shared/sybcentral600 directory and run the scjview.sh script.
- On Windows, choose Programs | Sybase | Sybase Central v6 from the Start menu, or
 - On Windows, move to the %SYBASE%\Shared\Sybase Central 6.0.0\ directory and run the scjview.bat script.

To stop Sybase Central, select File | Exit

- Generating the SQL text for creating an object (which allows you to reverse engineer Adaptive Server objects)
- Deleting an object
- Configuring Adaptive Server
- Managing:
 - Database devices
 - Proxy and temporary databases
 - Indexes
 - Partitions
 - Segments
 - Triggers
 - Logins and roles
 - Views
 - ASE Replicator
- Configuring Adaptive Server jobs with Job Scheduler
- Starting and stopping Adaptive Server
- Executing queries
- Logging SQL statements generated by the plug-in, based on a user’s actions.
CHAPTER 4 Introduction to the Adaptive Server Plug-in for Sybase Central

Registering Adaptive Server Plug-in

The Adaptive Server plug-in is registered in Sybase Central as part of the server installation. However, if Adaptive Server plug-in is not correctly registered, you can manually register the Adaptive Server plug-in:

- On Unix, run `$SYBASE/ASEP/bin/registerASEP`.
- On Windows, run `%SYBASE%\ASEP\bin\registerASEP.bat`.
- You can register the Adaptive Server plug-in manually by:
 a. Select Register from Tools | Plug-ins. A registration wizard appears.
 b. Select Register.
 c. Select “Register a plug-in by specifying a plug-in registration file.”
 d. Click Browse.
 e. Navigate to `$SYBASE/ASEP/bin` (%SYBASE%\ASEP\bin on Windows) and select `ASEPlugin.jpr`. Follow the wizard to register the Adaptive Server plug-in.

Performing common tasks

The following are some common tasks users perform with the Adaptive Server plug-in.

For more information about all the following tasks, see the Adaptive Server plug-in online help.

Starting and stopping Adaptive Server

If the Unified Agent is monitoring Adaptive Server, you can start, stop, and restart the server by right-clicking on the server and selecting Shutdown, Start, or Restart.

If the Unified Agent is not monitoring Adaptive Server, you can shutdown the server by selecting Shutdown.

Connecting to Adaptive Server

You can connect to an Adaptive Server by any of these methods:

- Select the Connect icon from the tool bar.
- Right click on Adaptive Server Enterprise and select Connect from the menu.
- Right click on any server group and select Connect from the menu.
Performing common tasks

The connected server is displayed in the Default server group if the connection is initiated from the Adaptive Server Enterprise folder or the connect icon. The plug-in displays “Connected to server” in the corresponding server group if the connection is initiated from the server group.

You can also specify a server to which you want to connect by any of the following:

- Specifying the server’s host name and port number in the Connect dialog box.
- Selecting a pre-defined Adaptive Server from the server name dropdown list. This drop down list is derived from the servers listed in the interfaces file (UNIX) and sql.ini files (Windows) and LDAP servers.
- Discover which Adaptive Servers are available by clicking on Find in the Connect dialog. Before you can use this method, you must first define the discovery servers in Server Discovery tab located in the Adaptive Server Enterprise property page.

Creating a database

Before creating a database, make sure enough space is available on the database devices you plan to use.

To create a database:

- Right-click on the Add Database icon in the right-hand panel, or,
 1 Select the Databases folder.
 2 Choose File | New | Database or click on the Add Database option in the Databases folder. The Create a New Database wizard opens. The Create a New Database wizard asks for the following information:
Introduction to the Adaptive Server Plug-in for Sybase Central

Table 4-1: Inputs to create a new database wizard

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database name</td>
<td>Enter a name for the database</td>
</tr>
<tr>
<td>Database device</td>
<td>Specify the database device or devices on which to allocate the new database</td>
</tr>
<tr>
<td>Database device size</td>
<td>Specify a size for each database device</td>
</tr>
<tr>
<td>Data or log</td>
<td>Specify whether the database device will store data or the transaction log.</td>
</tr>
<tr>
<td>With override</td>
<td>Specify with override if you want to store data and log on the same device.</td>
</tr>
<tr>
<td>For load</td>
<td>If you are creating the database so you can restore it from a backup, check the For Load check box. This is the case only if you are recovering from media failure or if you are moving a database from one location to another.</td>
</tr>
<tr>
<td>Guest account</td>
<td>Specify whether to create a guest user in the database.</td>
</tr>
</tbody>
</table>

If you do not enter a size, Adaptive Server allocates either the value of the database size configuration variable or the size of the model database, whichever is larger.

If you have limited storage and must put the transaction log and the data on the same logical device, specifying With Override allows Adaptive Server to maintain the log on separate device fragments from the data.

You cannot remove or change a database device after creating the database unless you first delete the database.

Warning! Deleting a database also deletes all its objects.

Deleting a database

Only the owner of a database can delete it.

To delete a database:
1. Select the database icon.
2. Choose Edit | Delete.
3. Confirm the deletion in the confirmation dialog box.

Note Sybase recommends that you back up the master database after you delete a user database.

Adding a user

Database owners can add and delete users in the databases they own.
Performing common tasks

To create a user:

1. Expand the databases folder (select the “+” icon) and select the Users folder.
2. Choose File | New | User.

The Add a New User wizard opens and asks for this information:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the user. The name does not have to be the same as the login.</td>
</tr>
<tr>
<td>Login name</td>
<td>Login to which this user is assigned.</td>
</tr>
<tr>
<td>Group</td>
<td>Optionally, assign a group to the user. Default: public</td>
</tr>
</tbody>
</table>

Table 4-2: Inputs to Add a New User wizard

Note A user can be a member of one assigned group or the default “public” group.

You can also select the Users folder. In the right pane, double-click the Add User icon.

Deleting a user

You cannot delete a user who owns objects. Since there is no command to transfer ownership of objects, you must delete objects owned by a user before you can delete the user. Also, you cannot delete a user who has granted permissions to other users without first revoking the permissions with cascade. If appropriate, re-grant the permissions to the other users.

Locking a login is a simple alternative to deleting a user.

To delete a user:

1. Select the user icon.
2. Choose Edit | Delete.
3. Confirm the deletion in the confirmation dialog box.

You can also select the user folder by right-clicking on the user icon and selecting Delete.

Before you delete a user:

1. Revoke the user’s command and object permissions with cascade.
2. Re-grant the permissions to the other users, if appropriate.
3. Delete the user’s objects.
Creating a table

Only a database owner or a user with create table permission can create a table.

To create a table:

1. In a database you are working in, select the User Tables folder.
2. Choose File | New | Table or click on the Add Table icon in the User Tables folder.
 The Table Editor opens.
3. In the Name box, enter a name.
4. From the Owner list, choose an owner. The default is “dbo”.

You can also select the User Tables folder. In the right pane, double-click the Add Table icon.

Deleting a table

Before you delete a table, be sure that no other objects reference it. If any objects reference it, edit those objects to avoid errors. To find out if other objects reference a table, check its dependencies.

Note When you delete a table, Adaptive Server deletes the indexes and triggers associated with the table and unbinds the rules or defaults that are bound to its columns.

Only table owners can delete tables.

To delete a table:

- Follow these steps:
 - Select the table icon.
 - Choose Edit | Delete.
 - Confirm the deletion in the confirmation dialog box, or,
 - You can also select the table by right-clicking on the table icon and selecting Delete.

Creating a server group

To create a server group:

1. Select Adaptive Server Enterprise
2. Choose File | New | Server Group
3. Follow the steps provided by the Create New Server Group wizard.

You can also add a server group by double-clicking on the Add Server Group from the right-hand pane.
Performing common tasks

Getting server status

If the Unified Agent is monitoring Adaptive Server, check the server status by any of the following:

- Click on the server group to which the server belongs. Check the Status column in the Details pane of the server group.

- Click on the Adaptive Server Enterprise listed under Sybase Central, and then click on Servers tab on the right hand side panel. The server status is printed in the Status column.

- A green triangle on the lower right-hand side of the server icon indicates that Adaptive Server is running. A red square indicates that Adaptive Server is stopped.

Note By default, the Adaptive Server plug-in does not have Check Server Status enabled. To enable Unified Agent to monitor Adaptive Server:

- Right click on Adaptive Server Enterprise and select Properties.
- Select Preferences and check “Enable Unified Agent (UA) related features.”

Getting the server log

If the Unified Agent is monitoring Adaptive Server, retrieve the server log by selecting the server and clicking on the Server Log tab in the right-hand pane.

The server log is retrieved based on how you have configured the filter for the server log. To configure the server log filtering, right-click on the server and select Server Log Filter. By default, the Adaptive Server plug-in retrieves the last 1000 lines from the server log. You can configure the server filter to retrieve:

- The entire log file.
- The last \(n \) number of lines.
- The log from the last \(n \) number of days.
- The lines that match the regular expression

Logging SQL statements

To log all SQL statements executed through the Adaptive Server plug-in:

- Right click on a server and select “Log SQL Statement.”

- Select whether you want SQL statements logged directly to a window or to a file.

Executing SQL statements

Execute SQL statements from within the Adaptive Server plug-in by using the Interactive SQL query tool. To start the Interactive SQL tool, you can either:
Right-click the server on which you want to execute the SQL statements
and select Open Interactive SQL from the menu, or
1. Click on Adaptive Server Enterprise.
2. Click the Utilities tab on the right-hand pane and select Interactive SQL

Execute SQL statements simultaneously on a set of servers belonging to a
server group:
1. Right-click the server group and choose Execute SQL.
2. Select the servers on which you want to execute the SQL statements
3. Click Execute.

The result set for each server is listed in the Result Set pane of the SQL
Execution dialog.

Use the Adaptive Server plug-in to view a GUI version of the SQL execution
plan for individual queries (much like a GUI version of showplan) and
execution plans for all queries in a stored procedure. This GUI display includes
nodes for each of the operators of the execution plan.

To get the GUI plan:
1. Start Interactive SQL.
2. Execute the query or stored procedure
3. Click on the plan tab in the Results pane of Interactive SQL
4. Select a query from the queries drop down list.
5. Click the Details tab to see the GUI plan of the selected query. Click on an
 operator node to see the detailed statistics for that node.
6. Click on the XML tab to see an XML representation of the execution plan
 for the selected query
7. Click on the Text tab to see the execution plan in a text format for the
 submitted queries

For more information about Interactive SQL, see “Starting Interactive
SQL” on page 61.
Using Interactive SQL

Interactive SQL allows you to execute SQL statements, build scripts, and display database data to the server. You can use it to:

- Browse the information in a database.
- Test SQL statements that you plan to include in an application.
- Save query results to a file.
- Edit data in result sets.
- Load data into a database and carry out administrative tasks.

In addition, Interactive SQL can run command files or script files. For example, you can build repeatable scripts to run against a database and then use Interactive SQL to execute these scripts as batches.
Starting Interactive SQL

To start Interactive SQL, either:

- Select a database in Sybase Central and select File | Open Interactive SQL. Interactive SQL connects to the database. You can also right-click on the database and select Open Interactive SQL.

 The menu item Open Interactive SQL opens a connection to a server. However, when you select the menu item for a server, Interactive SQL opens a connection to the default database for that server. When you select a specific database from the Open Interactive SQL menu, Interactive SQL opens to the selected database.

- Select Tools | Adaptive Server Enterprise | Open Interactive SQL to start Interactive SQL without a connection to a server. The Connect dialog appears.

To start Interactive SQL from the command line depends on your operating system.

If you start Interactive SQL independently, the Connect dialog appears, which lets you connect to a database just as you would in Sybase Central.

- For UNIX, change to the $SYBROOT/DBISQL/bin directory and enter:

 \texttt{dbisql}

 On Windows, change to the %SYBROOT%\DBISQL\bin directory and enter:

 \texttt{dbisql.bat}

- In the Connection dialog, enter the information to connect to a database in the Connect dialog box and click OK.

To open a new Interactive SQL window:

1. Choose Window | New Window. The Connect dialog appears.
2. In the Connect dialog, enter connection options, and click OK to connect.

 The connection information (including the database name, your user ID, and the database server) appears on the title bar above the SQL Statements pane.

 You can also connect to or disconnect from a database with the Connect and Disconnect commands in the SQL menu, or by executing a connect or disconnect statement in the SQL Statements pane.
This chapter describes the Adaptive Server configuration parameters, which are listed here alphabetically.

A configuration parameter is a user-definable setting that you set with `sp_configure`. Configuration parameters are used for a wide range of services, from basic to specific server operations, and for performance tuning.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>63</td>
</tr>
<tr>
<td>Using <code>sp_configure</code></td>
<td>67</td>
</tr>
<tr>
<td><code>sp_configure</code> output</td>
<td>78</td>
</tr>
<tr>
<td>Named cache configuration parameters</td>
<td>80</td>
</tr>
<tr>
<td><code>sysconfigures</code> and <code>syscurconfigs</code></td>
<td>80</td>
</tr>
<tr>
<td>Configuration parameters</td>
<td>81</td>
</tr>
</tbody>
</table>

Overview

Configuration parameters are user-definable settings that control various aspects of Adaptive Server behavior. Adaptive Server supplies default values for all configuration parameters. Use configuration parameters to tailor Adaptive Server for an installation’s particular needs.

Read this chapter carefully to determine which configuration parameters you should reset to optimize server performance.

Warning! Change configuration parameters with caution. Arbitrary changes in parameter values can adversely affect Adaptive Server performance and other aspects of server operation.
Overview

The Adaptive Server configuration file

Adaptive Server stores the values of configuration parameters in a configuration file, which is an ASCII text file. When you install a new Adaptive Server, your parameters are set to the default configuration; the default name of the file is server_name.cfg, and the default location of the file is the Sybase Adaptive Server home directory ($SYBASE_ASE). Each time you modify a configuration parameter, Adaptive Server creates a copy of the outdated configuration file, using the naming convention server_name.001, server_name.002, server_name.003...server_name.999. Adaptive Server writes the new values to the file server_name.cfg or to a file name you specify at start-up.

Modifying configuration parameters

Set or change configuration parameters in one of the following ways:

• By executing sp_configure with the appropriate parameters and values,
• By editing your configuration file and then invoking sp_configure with the configuration file option, or
• By specifying the name of a configuration file at start-up.

Configuration parameters are either dynamic or static. Dynamic parameters take effect as soon as you execute sp_configure. Static parameters require memory to be reallocated, so they take effect only after you have restarted Adaptive Server. The description of each parameter in this chapter indicates whether it is static or dynamic.

Adaptive Server writes the new value to the system table sysconfigures and to the configuration file when you change the value. The current configuration file and sysconfigures reflect configured values, not run values. The system table syscurconfigs reflects current run values of configuration parameters.

Required roles for modifying configuration parameters

The roles required for using sp_configure:

• Any user can execute sp_configure to display information about parameters and their current values.
• Only a system administrator or a system security officer can execute sp_configure to modify configuration parameters.
• Only a system security officer can execute sp_configure to modify values for:
 • allow procedure grouping
 • allow remote access
 • allow sendmsg
 • allow updates to system tables
 • auditing
 • audit queue size
 • check password for digit
 • current audit table
 • enable ldap user auth
 • enable pam user auth
 • enable ssl
 • log audit logon failure
 • log audit logon success
 • maximum failed logins
 • minimum password length
 • msg confidentiality reqd
 • msg integrity reqd
 • secure default login
 • select on syscomments.text
 • SQL Perfmon Integration
 • syb_sendmsg port number
 • suspended audit when device full
 • systemwide password expiration
 • unified login required
 • use security services
Overview

Unit specification using *sp_configure*

sp_configure allows you to specify the value for configuration parameters in unit specifiers. The unit specifiers are *p* or *P* for pages, *m* or *M* for megabytes, and *g* or *G* for gigabytes. If you do not specify a unit, and you are configuring a parameter that controls memory, Adaptive Server uses the logical page size for the basic unit.

Note When you are configuring memory-related parameters, use only the *P* (page size) parameter for your unit specification. If you use any other parameter to configure memory related parameters, Adaptive Server may issue an arithmetic overflow error message.

The syntax to indicate a particular unit specification is:

```
sp_configure "parameter name", 0, "p|P|k|K|m|M|g|G"
```

You must include the "0" as a placeholder.

You can use this unit specification to configure any parameter. For example, when setting *number of locks* to 1024 you can enter:

```
sp_configure "number of locks", 1024
```

or:

```
sp_configure "number of locks", 0, "1K"
```

This functionality does not change the way in which Adaptive Server reports *sp_configure* output.

Getting help information on configuration parameters

Use either *sp_helpconfig* or *sp_configure* to display information on a particular configuration parameter. For example:

```
sp_helpconfig "number of open"
```

<table>
<thead>
<tr>
<th>option_name</th>
<th>config_value</th>
<th>run_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of open databases</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>number of open indexes</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>number of open objects</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

```
sp_helpconfig "number of open indexes"
```
number of open indexes sets the maximum number of indexes that can be open at one time on SQL Server. The default value is 500.

Minimum Value Maximum Value Default Value Current Value Memory Used
------------- ------------- ------------- ------------- -------------
100 2147483647 500 500 208

sp_configure "number of open indexes"

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default</th>
<th>Memory Used</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of open indexes</td>
<td>500</td>
<td>208</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Using sp_configure

sp_configure displays and resets configuration parameters. You can restrict the number of parameters that sp_configure shows by using sp_displaylevel to set your display level to one of:

- Basic
- Intermediate
- Comprehensive

For information about display levels, see “User-defined subsets of the parameter hierarchy: display levels” on page 75. For information about sp_displaylevel, see the *Reference Manual: Procedures.*

Table 5-1 describes the syntax for sp_configure. The information in the “Effect” column assumes that your display level is set to “comprehensive.”

<table>
<thead>
<tr>
<th>Command</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_configure</td>
<td>Displays all configuration parameters by group, their current values, their default values, the value to which they have most recently been set, and the amount of memory used by this particular setting.</td>
</tr>
<tr>
<td>sp_configure “parameter”</td>
<td>Displays current value, default value, most recently changed value, and amount of memory used by the specified parameter.</td>
</tr>
<tr>
<td>sp_configure “parameter”.value</td>
<td>Resets parameter to value.</td>
</tr>
</tbody>
</table>
Using sp_configure

<table>
<thead>
<tr>
<th>Command</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sp_configure "parameter", 0, "default"</code></td>
<td>Resets the specified parameter to its default value.</td>
</tr>
<tr>
<td><code>sp_configure "group_name"</code></td>
<td>Displays all configuration parameters in <code>group_name</code>, their current values, their default values, the values to which they were recently set, and the amount of memory used by each.</td>
</tr>
<tr>
<td><code>sp_configure "configuration file", 0, "sub_command", "file_name"</code></td>
<td>Sets configuration parameters from the configuration file. See “Using sp_configure with a configuration file” on page 69 for descriptions of the parameters.</td>
</tr>
</tbody>
</table>

Syntax elements

The commands in Table 5-1 use the following variables:

- `parameter` – is any valid Adaptive Server configuration parameter or parameter substring.
- `value` – is any integer within the valid range for that parameter. (See the descriptions of the individual parameters for valid range information.) Parameters that work as toggles have only two valid values: 1 (on) and 0 (off).
- `group_name` – is the name of any group in the parameter hierarchy.

Parameter parsing

`sp_configure` parses each parameter (and parameter name fragment) as “%parameter%”. A string that does not uniquely identify a particular parameter returns values for all parameters matching the string.

The following example returns values for all configuration parameters that include “lock,” such as lock shared memory, number of locks, lock promotion HWM, server clock tick length, print deadlock information, and deadlock retries:

```
sp_configure "lock"
```

Note If you attempt to set a parameter value with a nonunique parameter name fragment, `sp_configure` returns the current values for all parameters matching the fragment and asks you to specify a unique parameter name.
Using sp_configure with a configuration file

Configure Adaptive Server either interactively, by using sp_configure as described above, or noninteractively, by instructing Adaptive Server to read values from an edited or restored version of the configuration file.

By making your changes from the configuration file, you can:

- Replicate a specific configuration across multiple servers by using the same configuration file.
- Use a configuration file as a baseline for testing configuration values on your server.
- Use a configuration file to perform validation checking on parameter values before actually setting the values.
- Create multiple configuration files and switch between them as your resource needs change.

For information on editing the file, see “Editing the configuration file” on page 71. For information on specifying the name of the configuration file at start-up, see “Starting Adaptive Server with a configuration file” on page 72.

Naming tips for the configuration file

To work with a configuration file that has a name other than the default name, keep the server_name part of the file name, and include at least one alphabetic character in the extension (for example my_server.A001). Alternatively, you can change the server_name part of the file name (for example, A_my_server.001). Doing this avoids confusion with the backup configuration files generated by Adaptive Server when you modify a parameter.

Using sp_configure to read or write the configuration file

The syntax for using the configuration file option with sp_configure is:

\[\text{sp_configure "configuration file", 0, "subcommand", "file_name"} \]

where:

- "configuration file" – including quotes, specifies that this command uses the configuration file.
- 0 – required—for backward compatibility—after the configuration file parameter.
- "subcommand" – is one of:
Using sp_configure

- **write** – creates a file named `file_name` with the current configuration. If `file_name` already exists, a message is written to the error log; the existing file is renamed using the convention `server_name.001`, `server_name.002`, and so on. If you have changed a static parameter, but you have not restarted your server, write displays the currently running value for that parameter. If you do not specify a directory with `file_name`, the file is written to the directory from which Adaptive Server was started.

- **read** – performs validation checking on values contained in `file_name` and reads those values that pass validation into the server. If any parameters are missing from `file_name`, the current values for those parameters are used. If the value of a static parameter in `file_name` is different from its current running value, read fails and a message is printed. However, validation is still performed on the values in `file_name`.

- **verify** – performs validation checking on the values in `file_name`. This is useful if you have edited the configuration file, as it prevents you from attempting to configure your server with invalid configuration values.

- **restore** – creates `file_name` with the most recently configured values. If you have configured static parameters to new values, this subcommand writes the configured, not the currently running, values to the file. This is useful if all copies of the configuration file have been lost and you must generate a new copy. If you do not specify a directory with `file_name`, the file is written to the directory from which Adaptive Server was started.

- **file_name** – specifies the configuration file to use in conjunction with any subcommand. If you do not specify a directory as part of the file name, the directory where Adaptive Server was started is used.

Examples

Example 1 Performs validation checking on the values in the file `srv.config` and reads the parameters that pass validation into the server. Current run values are substituted for values that do not pass validation checking:

```sql
sp_configure "configuration file", 0, "read", "srv.config"
```

Example 2 Creates the file `my_server.config` and writes the current configuration values the server is using to that file:

```sql
sp_configure "configuration file", 0, "write", "my_server.config"
```
Editing the configuration file

The configuration file is an ASCII file that you can edit with any text editor that can save files in ASCII format. The syntax for each parameter is:

\[
\text{parameter name} = \{ \text{value} | \text{DEFAULT} \}
\]

where:

- \text{parameter name} – is the name of the parameter you want to specify.
- \text{value} – is the numeric value for set \text{parameter name}.
- “DEFAULT” – specifies that you want to use the default value for \text{parameter name}.

Examples

\textbf{Example 1} This example specifies that the transaction can retry its attempt to acquire a lock one time when deadlocking occurs during an index page split or shrink:

\[
\text{deadlock retries} = 1
\]

\textbf{Example 2} This example specifies that the default value for the parameter \text{cpu accounting flush interval} should be used:

\[
\text{cpu accounting flush interval=} \text{DEFAULT}
\]

When you edit a configuration file, your edits are not validated until you check the file using the \text{verify} option, read the file with the \text{read} option, or restart Adaptive Server with that configuration file.

If all your configuration files are lost or corrupted, you can re-create one from a running server by using the \text{restore} subcommand and specifying a name for the new file. The parameters in the new file are set to the values with which your server is currently running.
Using sp_configure

Permissions for configuration files

Configuration files are nonencrypted ASCII text files. By default, they are created with read and write permissions set for the file owner, and read permission set for all other users. If you created the configuration file at the operating system level, you are the file owner; if you created the configuration file from Adaptive Server, using the write or restore parameter, the file owner is the user who started Adaptive Server. Usually, this is the user “sybase.” To restrict access to configuration files, use your operating system’s file permission command to set read, write, and execute permissions as appropriate.

Note You must set permissions accordingly on each configuration file created.

Backing up configuration files

Configuration files are not automatically backed up when you back up the master database. They are operating system files—back them up in the same way you back up your other operating system files.

Checking the name of the configuration file currently in use

Due to space limitations, sp_configure output truncates the name of the configuration file. To see the full name of the configuration file, use:

```sql
select s1.value2
from syscurconfigs s1, sysconfigures s2
where s1.config = s2.config
and s2.name = "configuration file"
```

Starting Adaptive Server with a configuration file

By default, Adaptive Server reads the configuration file server_name.cfg in the start-up directory when it starts. If this file does not exist, it creates a new file and uses Adaptive Server defaults for all values.

You can start Adaptive Server with a specified configuration file. For more information, see the Utility Guide.

If the configuration file you specify does not exist, Adaptive Server prints an error message and does not start.
If the command is successful, the file `server_name.bak` is created. This file contains the configuration values stored in `sysconfigures` prior to the time `sysconfigures` was updated with the values read in from the configuration file you specified. This file is overwritten with each subsequent start-up.

Configuration file errors

When there are errors in the configuration file, Adaptive Server may not start, or may use default values.

Adaptive Server uses default values if:

- There are illegal values. For example, if a parameter requires a numeric value, and the configuration file contains a character string, Adaptive Server uses the default value.
- Values are below the minimum allowable value.

The parameter hierarchy

Configuration parameters are grouped according to the area of Adaptive Server behavior they affect. This makes it easier to identify all parameters that you might need to tune to improve a particular area of Adaptive Server performance.

Although each parameter has a primary group to which it belongs, many have secondary groups to which they also belong. For example, `number of remote connections` belongs primarily to the network communication group, but it also belongs secondarily to the memory use group. This reflects the fact that some parameters have implications for a number of areas of Adaptive Server behavior. `sp_configure` displays parameters in all groups to which they belong.

Table 5-2 lists the configuration parameter groups.

<table>
<thead>
<tr>
<th>Parameter group</th>
<th>Configures Adaptive Server for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup/Recovery</td>
<td>Backing up and recovering data</td>
</tr>
<tr>
<td>Cache manager</td>
<td>Data and procedure caches</td>
</tr>
<tr>
<td>Component Integration Services administration</td>
<td>Component Integration Services</td>
</tr>
<tr>
<td>DTM administration</td>
<td>Distributed transaction management (DTM) facilities</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Diagnostic principles</td>
</tr>
<tr>
<td>Disk I/O</td>
<td>Disk I/O</td>
</tr>
</tbody>
</table>
Using sp_configure

<table>
<thead>
<tr>
<th>Parameter group</th>
<th>Configures Adaptive Server for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error log</td>
<td>Error log, and the logging of Adaptive Server events to the Windows event log</td>
</tr>
<tr>
<td>Extended stored procedures</td>
<td>The behavior of extended stored procedures (ESPs).</td>
</tr>
<tr>
<td>General information</td>
<td>Basic system administration</td>
</tr>
<tr>
<td>Java services</td>
<td>Memory for Java in Adaptive Server</td>
</tr>
<tr>
<td></td>
<td>See the Java in Adaptive Server Enterprise manual for complete information about Java in the database.</td>
</tr>
<tr>
<td></td>
<td>If you use method calls to JDBC, you may need to increase the size of the execution stack available to the user. See “stack size” on page 249.</td>
</tr>
<tr>
<td>Languages</td>
<td>Languages, sort orders, and character sets</td>
</tr>
<tr>
<td>Lock manager</td>
<td>Locking</td>
</tr>
<tr>
<td>Memory use</td>
<td>Memory consumption</td>
</tr>
<tr>
<td>Metadata caches</td>
<td>Setting the metadata cache size for frequently used system catalog information. The metadata cache is a reserved area of memory used for tracking information on databases, indexes, or objects. The greater the number of open databases, indexes, or objects, the larger the metadata cache size. For a discussion of metadata caches in a memory-usage context, see Chapter 3, “Configuring Memory,” in System Administration Guide: Volume 2.</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Collecting monitoring information. By default, Adaptive Server does not collect monitoring information.</td>
</tr>
<tr>
<td>Network communication</td>
<td>Communication between Adaptive Server and remote servers, and between Adaptive Server and client programs</td>
</tr>
<tr>
<td>O/S resources</td>
<td>Use of operating system resources</td>
</tr>
<tr>
<td>Physical memory</td>
<td>Your machine’s physical memory resources</td>
</tr>
<tr>
<td>Processors</td>
<td>Processors in an SMP environment</td>
</tr>
<tr>
<td>Query Tuning</td>
<td>Query optimization</td>
</tr>
<tr>
<td>RepAgent thread administration</td>
<td>Replication via Replication Server</td>
</tr>
<tr>
<td>SQL Server administration</td>
<td>General Adaptive Server administration.</td>
</tr>
<tr>
<td>Security related</td>
<td>Security-related features</td>
</tr>
<tr>
<td>Unicode</td>
<td>Unicode-related features</td>
</tr>
<tr>
<td>User environment</td>
<td>User environments</td>
</tr>
</tbody>
</table>

The syntax for displaying all groups and their associated parameters, and the current values for the parameters, is:
sp_configure

Note The number of parameters returned by sp_configure depends on the value to which you have your display level set. See “User-defined subsets of the parameter hierarchy: display levels” on page 75.

The following is the syntax for displaying a particular group and its associated parameter:

```
sp_configure "group_name"
```

For example, to display the disk I/O group, enter:

```
sp_configure "Disk I/O"
```

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default</th>
<th>Memory Used</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow sql server async i/o</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>switch</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>disable disk mirroring</td>
<td>256</td>
<td>0</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>number of devices</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>number of large I/O buffers</td>
<td>6</td>
<td>12352</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>page utilization percent</td>
<td>95</td>
<td>0</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

Note If the server uses a case-insensitive sort order, sp_configure with no parameters returns a list of all configuration parameters and groups in alphabetical order with no grouping displayed.

User-defined subsets of the parameter hierarchy: display levels

Depending on how you use Adaptive Server, you may need to adjust some parameters more frequently than others. It may be easier to work with a subset of parameters.
Using *sp_configure*

The default display level is **comprehensive**. When you set your display level, the setting persists across multiple sessions. However, you can reset it at any time.

- **Basic** – shows only the most basic parameters, and is appropriate for general server tuning.
- **Intermediate** – includes parameters that are somewhat more complex, in addition to the basic parameters.
- **Comprehensive** – includes all the parameters, including the most complex ones. This level is appropriate for users doing highly detailed server tuning.

The syntax for showing your current display level is:

\[\text{sp_displaylevel} \]

To set the display level, use:

\[\text{sp_displaylevel user_name[, basic | intermediate | comprehensive]} \]

where *user_name* is your Adaptive Server login name.

The effect of the display level on *sp_configure* output

If your display level is set to either **basic** or **intermediate**, *sp_configure* returns only a subset of the parameters that are returned when your display level is set to **comprehensive**. For instance, if your display level is set to **intermediate**, and you want to see the parameters in the languages group, enter:

\[\text{sp_configure "Languages"} \]

The output looks like this:

```plaintext
sp_configure
Group: Languages

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default</th>
<th>Used</th>
<th>Config</th>
<th>Run</th>
<th>Value</th>
<th>Unit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>default character set</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>id</td>
<td>static</td>
<td></td>
</tr>
<tr>
<td>default language id</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>id</td>
<td>dyna</td>
<td></td>
</tr>
</tbody>
</table>
```

This represents only a subset of the parameters in the languages group; some language parameters appear only when your display level is **comprehensive**.
Performance tuning with sp_configure and sp_sysmon

sp_sysmon monitors Adaptive Server performance and generates statistical information that describes the behavior of your Adaptive Server system. See the Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

You can run sp_sysmon before and after using sp_configure to adjust configuration parameters. The output gives you a basis for performance tuning and allows you to observe the results of configuration changes.

Using configuration parameters in a clustered environment

For the Cluster Edition, Sybase supports both cluster-wide and instance-specific configuration. Cluster-wide configuration parameters are applied to all instances in the cluster. Local configuration parameters are applied only to a specified instance.

- Local configuration overrides cluster-wide configuration.
- If an instance-specific configuration has not been applied, the cluster-wide configuration applies.
- Some parameters, such as default character set id, cannot be applied to a specific instance. These parameters can only be used over an entire cluster.

The cluster configuration file includes an instance-specific configuration block. Parameter settings in the instance-specific block override cluster-wide settings. For example:

```
max online engines = DEFAULT

[Instance:ase1]
max online engines = 5

[Instance:ase2]
max online engines = 3
```

See the Users Guide to Clusters.
sp_configure output

The sample output below shows the type of information `sp_configure` prints if your display level is comprehensive, and you execute `sp_configure` with no parameters. The values it prints vary, depending on your platform and on what values you have already changed.

```
sp_configure
Group: Configuration Options

Group: Backup/Recovery

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default</th>
<th>Memory Used</th>
<th>Config Value</th>
<th>Run Value</th>
<th>Unit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow remote access</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>switch</td>
<td>dyn</td>
</tr>
<tr>
<td>print recovery info</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>switch</td>
<td>dyn</td>
</tr>
<tr>
<td>recovery interval in m</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>minutes</td>
<td>dyn</td>
</tr>
</tbody>
</table>
...
```

Note All configuration groups and parameters appears in output if your display level is set to “comprehensive.”

Where:

- The “Default” column displays the default value. If you do not explicitly reconfigure a parameter, it retains its default value.
- “Memory Used” shows the amount of memory, in kilobytes, used by the parameter at its current value. Some related parameters draw from the same memory pool. For instance, the memory used for stack size and stack guard size is already accounted for in the memory used for number of user connections. If you added the memory used by each of these parameters separately, the sume is more than the amount actually used. Parameters that “share” memory with other parameters are marked with a hash mark (“#”).
- “Config Value” displays the most recent value to which the configuration parameter has been set. When you execute `sp_configure` to modify a dynamic parameter:
 - The configuration and run values are updated.
 - The configuration file is updated.
 - The change takes effect immediately.

When you modify a static parameter:
• The configuration value is updated.
• The configuration file is updated.
• The change takes effect only when you restart Adaptive Server.
• “Run Value” displays the value Adaptive Server is currently using. It changes when you modify a dynamic parameter’s value and, for static parameters, after you restart Adaptive Server.
• “Unit” displays the unit value of the configuration parameter. Adaptive Server displays information in the following units:

<table>
<thead>
<tr>
<th>Name of unit</th>
<th>Unit description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>Number of items.</td>
</tr>
<tr>
<td>clock ticks</td>
<td>Number of clock ticks.</td>
</tr>
<tr>
<td>microseconds</td>
<td>Number of microseconds.</td>
</tr>
<tr>
<td>milliseconds</td>
<td>Number of millisecond.s</td>
</tr>
<tr>
<td>seconds</td>
<td>Number of seconds.</td>
</tr>
<tr>
<td>minutes</td>
<td>Number of minutes.</td>
</tr>
<tr>
<td>hours</td>
<td>Number of hours.</td>
</tr>
<tr>
<td>bytes</td>
<td>Number of bytes.</td>
</tr>
<tr>
<td>days</td>
<td>Number of days.</td>
</tr>
<tr>
<td>kilobytes</td>
<td>Number of kilobytes.</td>
</tr>
<tr>
<td>megabytes</td>
<td>Number of megabytes.</td>
</tr>
<tr>
<td>memory pages (2K)</td>
<td>Number of 2K memory pages.</td>
</tr>
<tr>
<td>virtual pages (2K)</td>
<td>Number of 2K virtual pages.</td>
</tr>
<tr>
<td>logical pages</td>
<td>Number of logical pages. This value depends on the logical page size your server is using: 2, 4, 8, or 16K.</td>
</tr>
<tr>
<td>percent</td>
<td>Value of the configured parameter as a percentage.</td>
</tr>
<tr>
<td>ratio</td>
<td>Value of the configured parameter as a ratio.</td>
</tr>
<tr>
<td>switch</td>
<td>Value of the parameter is either TRUE (the parameter is turned on), or FALSE.</td>
</tr>
<tr>
<td>id</td>
<td>ID of the configured parameter you are investigating.</td>
</tr>
<tr>
<td>name</td>
<td>Character string name assigned to the run or configure value of the parameter. For example, “binary” appears under the “Run Value or “Config Value” column for the output of sp_configure “lock scheme”.</td>
</tr>
<tr>
<td>row</td>
<td>Number of rows</td>
</tr>
</tbody>
</table>

• “Type” displays whether the configuration option is static or dynamic. Changes to static parameters require that you restart Adaptive Server for the changes to take effect. Changes to dynamic parameters take effect immediately without having to restart Adaptive Server.
Named cache configuration parameters

The Named Cache configuration parameter group provides details for named caches:

- **cache size** - size of the cache. By default Adaptive Server creates 8MB caches. Change this parameter dynamically with `sp_cacheconfig`, or change the value in the server configuration file to have the change take place after the next server restart.

- **cache status** – status of the cache. One of `default data cache`, `log only`, `mixed`, or `in-memory storage`. The default data cache must have a cache status of `default data cache`, and cannot be changed. cache status for named caches can be `log only`, `mixed`, or, for in-memory databases, `in-memory storage` (you cannot change the cache status for in-memory databases).

You cannot dynamically change the cache status in a clustered environment from `log only` on a local cache while other instance use a different cache status.

- **cache replacement** – describes the cache replacement policy. For named caches and default data caches, the replacement policy is `strict LRU` or `relaxed LRU`. Change this parameter dynamically with `sp_cacheconfig`, or change the value in the server configuration file to have the change take place after the next server restart. The cache replacement policy must be `none` for in-memory databases because they do not use buffer or page replacement.

- **local cache partition number** – number of cache partitions. You may partition a named cache into multiple cache partitions. The acceptable values are 0, 2, 4, 8, 16, 32, 64 or 128. You cannot change the number of cache partitions dynamically; you must restart Adaptive Server for the change to take effect.

sysconfigures and syscurconfigs tables

The report displayed by `sp_configure` is constructed mainly from the `master..sysconfigures` and `master..syscurconfigs` system tables, with additional information provided from `sysattributes`, `sysdevices`, and other system tables.
The value column in the sysconfigures table records the last value set from sp_configure or the configuration file; the value column in syscurconfigs stores the value currently in use. For dynamic parameters, the two values match; for static parameters, which require a restart of the server to take effect, the two values are different if the values have been changed since Adaptive Server was last started. The values may also be different when the default values are used. In this case, sysconfigures stores 0, and syscurconfigs stores the value that Adaptive Server computes and uses.

sp_configure performs a join on sysconfigures and syscurconfigs to display the values reported by sp_configure.

Querying syscurconfigs and sysconfigures: an example

You might want to query sysconfigures and syscurconfigs to get information organized the way you want. For example, sp_configure without any arguments lists the memory used for configuration parameters, but does not list minimum and maximum values. Use this query to get a complete list of current memory usage, as well as minimum, maximum, and default values:

```sql
select b.name, memory_used, minimum_value, maximum_value, defvalue
from master.dbo.sysconfigures b,
     master.dbo.syscurconfigs c
where b.config *= c.config and parent != 19
and b.config > 100
```

Configuration parameters

In many cases, the maximum allowable values for configuration parameters are usually limited by available memory, rather than by sp_configure limitations.

Note To find the maximum supported values for your platform and version of Adaptive Server, see “Adaptive Server Specifications” in the *Installation Guide* for your platform.
Alphabetical listing of configuration parameters

The following sections include both summary and detailed information about each configuration parameter.

abstract plan cache

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Query Tuning</td>
</tr>
</tbody>
</table>

abstract plan cache enables caching of abstract plan hash keys. See Chapter 12, “Creating and Using Abstract Plans” in the Performance and Tuning Series: Query Processing and Abstract Plans. abstract plan load must be enabled for plan caching to take effect.

abstract plan dump

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Query Tuning</td>
</tr>
</tbody>
</table>

abstract plan load

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
</tbody>
</table>

abstract plan replace

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

abstract plan replace enables plan replacement for abstract plans in the ap stdout abstract plans group. See Chapter 12, “Creating and Using Abstract Plans” in the Performance and Tuning Series: Query Processing and Abstract Plans. abstract plan load must be enabled for replace mode to take effect.

additional network memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
additional network memory sets the maximum size of additional memory that can be used for network packets that are larger than the default packet size. Adaptive Server rounds down the value you enter to the nearest 2K value. The default value indicates that no extra space is allocated for large packets.

When a login requests a large packet size, Adaptive Server verifies it has sufficient memory available to satisfy the request. If it does not, Adaptive Server finds the largest available block of memory and tries the appropriate size (which is a multiple of default network packet size) less than the largest memory block. If that fails, Adaptive Server decreases the value of the request by the number of bytes equal to default network packet size, if this is available. Adaptive Server continues for 10 iterations, or until the size equals the value of default network packet size, whichever comes first. On the tenth iteration, Adaptive Server uses the value of the default network packet size for the packet size.

If you increase max network packet size, you must increase additional network memory because all allocated network memory is reserved for users at the default size. Adaptive Server guarantees that every user connection can log in at the default packet size.

If you increase max network packet size but do not increase additional network memory, Adaptive Server does not guarantee that clients who request network packet sizes larger than the default size can login at the requested packet size.

Increasing additional network memory may improve performance for applications that transfer large amounts of data. To determine the value for additional network memory when your applications use larger packet sizes:

1. Estimate the number of simultaneous users who will request the large packet sizes, and the sizes their applications will request,
2. Multiply this sum by three, since each connection needs three buffers,
3. Add two percent for overhead for 32-bit servers, or four percent for 64-bit servers, and
4. Round the value to the next highest multiple of 2048.

For example, if you estimate these simultaneous needs for larger packet sizes:

<table>
<thead>
<tr>
<th>Application</th>
<th>Packet size</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcp</td>
<td>8192</td>
<td></td>
</tr>
<tr>
<td>Client-Library</td>
<td>8192</td>
<td></td>
</tr>
<tr>
<td>Client-Library</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>Client-Library</td>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24576</td>
<td></td>
</tr>
</tbody>
</table>
Set additional network memory to 75,776 bytes.

allocate max shared memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

determine whether Adaptive Server allocates all the memory specified by max memory at start-up or only the amount of memory the configuration parameter requires.

By setting allocate max shared memory to 0, you ensure that Adaptive Server uses only the amount of shared memory required by the current configuration, and allocates only the amount of memory required by the configuration parameters at start-up, which is a smaller value than max memory.

If you set allocate max shared memory to 1, Adaptive Server allocates all the memory specified by max memory at start-up. If you set allocate max shared memory to 1, and if you increase max memory, Adaptive Server attempts to allocate the memory immediately. If the memory allocation fails, Adaptive Server writes messages to the error log. Check the error log to verify that no errors have occurred.

A successful memory allocation means that Adaptive Server always has the memory required for any memory configuration changes you make and there is no performance degradation while the server readjusts for additional memory. However, if you do not predict memory growth accurately, and max memory is set to a large value, you may waste total physical memory.
Configuration parameters

allow backward scans

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

allow backward scans controls how the optimizer performs select queries that contain the order by...desc command:

- When the value is set to 1, the optimizer can access the index or table rows by following the page chain in descending index order.
- When the value is set to 0, the optimizer selects the rows into a worktable by following the index page pointers in ascending order, and then sorts the worktable in descending order.

The first method—performing backward scans—can speed access to tables that need results ordered by descending column values. Some applications, however, may experience deadlocks due to backward scans. In particular, look for increased deadlocking if you have delete or update queries that scan forward using the same index. There may also be deadlocks due to page splits in the index.

Use print deadlock information to send messages about deadlocks to the error log. See “print deadlock information” on page 223. Alternatively, you can use sp_sysmon to check for deadlocking. See the Performance and Tuning Series: Locking and Concurrency Control.

allow nested triggers

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
allow nested triggers controls the use of nested triggers. When the value is set to 1, data modifications made by triggers can fire other triggers. Set allow nested triggers to 0 to disable nested triggers. A set option, self_recursion, controls whether the modifications made by a trigger can cause that trigger to fire again.

allow procedure grouping

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

allow procedure grouping controls the ability to group stored procedures of the same name so that they can be dropped with a single drop procedure statement.

allow remote access

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

allow remote access controls logins from remote Adaptive Servers. The default value of 1 allows Adaptive Server to communicate with Backup Server.

Note Setting the value to 0 disables server-to-server RPCs. Since Adaptive Server communicates with Backup Server via RPCs, setting this parameter to 0 makes it impossible to back up a database.

Since other system administration actions are required to enable remote servers other than Backup Server to execute RPCs, leaving this option set to 1 does not constitute a security risk.
Configuration parameters

allow resource limits

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

allow resource limits controls the use of resource limits. When the value is set to 1, the server allocates internal memory for time ranges, resource limits, and internal server alarms. The server also internally assigns applicable ranges and limits to user sessions. The output of showplan and statistics io displays the optimizer’s cost estimate for a query. Set allow resource limits to 0 to disable all resource limits.

allow sendmsg

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

allow sendmsg enables or disables sending messages from Adaptive Server to a User Datagram Protocol (UDP) port. When allow sendmsg is set to 1, any user can send messages using sp_sendmsg or syb_sendmsg. To set the port number used by Adaptive Server, see “syb_sendmsg port number” on page 254.

Note Sending messages to UDP ports is not supported on Windows.

allow sql server async i/o

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>
allow sql server async i/o enables Adaptive Server to run with asynchronous disk I/O. To use asynchronous disk I/O, enable it on both Adaptive Server and your operating system. See your operating system documentation for information on enabling asynchronous I/O at the operating system level.

Disk I/O always runs faster asynchronously than synchronously. This is because when Adaptive Server issues an asynchronous I/O, it does not have to wait for a response before issuing further I/Os.

allow updates to system tables

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

allow updates to system tables enables users with the system administrator role to make changes to the system tables and to create stored procedures that can modify system tables. A database administrator can update system tables in any tables that he or she owns if allow updates to system tables is enabled.

System tables include:

- All Sybase-supplied tables in the master database
Configuration parameters

- All tables in user databases that begin with “sys” and that have an ID value in the sysobjects table of less than or equal to 100

Warning! Incorrect alteration of a system table can result in database corruption and loss of data. To protect against errors that might corrupt your databases, always use begin transaction when modifying a system table. Immediately after finishing your modifications, disable allow updates to system tables.

Stored procedures and triggers you create while allow updates to system tables is set on can update the system tables, even after the parameter has been set off. When you set allow updates to system tables to on, you create a “window of vulnerability,” a period of time during which users can alter system tables or create a stored procedure with which the system tables can be altered in the future.

Because the system tables are so critical, Sybase suggests that you set this parameter to on only in highly controlled situations. To guarantee that no other users can access Adaptive Server while the system tables can be directly updated, restart Adaptive Server in single-user mode. For details, see startserver and dataserver in the *Utility Guide*.

Note The server-wide configuration option allow updates to system tables takes precedence over the stored procedure settings for allow updates to system tables. If you do not enable allow updates to system tables at the server level, individual stored procedure settings determine whether you can modify system catalogs.

average cap size

Summary information

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Reserved for future use.
The in-memory audit queue holds audit records generated by user processes until the records can be processed and written to the audit trail. To change the size of an audit queue, a system security officer can use **audit queue size**. When you configure the queue size, there is a trade-off between performance and risk. If the queue is too large, records can remain in it for some time. As long as records are in the queue, they are at risk of being lost if the system fails. However, if the queue is too small, it can repeatedly become full, which affects overall system performance; user processes that generate audit records sleep if the audit queue is full.

Following are some guidelines for determining how big your audit queue should be. You must also take into account the amount of auditing to be performed at your site.

- The memory requirement for a single audit record is 424 bytes; however, a record can be as small as 22 bytes when it is written to a data page.
- The maximum number of audit records that can be lost in a system failure is the size of the audit queue (in records), plus 20. After records leave the audit queue, they remain on a buffer page until they are written to the current audit table on the disk. The pages are flushed to disk every 20 records, less if the audit process is not constantly busy.
- In the system audit tables, the extrainfo field and fields containing names are of variable length, so audit records that contain complete name information are generally larger.

The number of audit records that can fit on a page varies from 4 to as many as 80 or more. The memory requirement for the default audit queue size of 100 is approximately 42K.
Configuration parameters

auditing

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Auditing enables or disables auditing for Adaptive Server.

automatic cluster takeover

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Setting automatic cluster takeover to 1 allows an instance that is starting to automatically recover from an abrupt total cluster failure. If you set automatic cluster takeover to 0, the cluster may not be able to recover from an abrupt cluster failover unless you include the --cluster_takeover parameter.

The Cluster Edition uses quorum heartbeats and a cluster takeover algorithm to determine when cluster takeover should be performed. This algorithm allows an instance that is starting to distinguish between an inability to join the cluster because the cluster has crashed (in which case takeover is appropriate) and an inability to join the cluster because the instance that is starting does not have network connectivity (in which case takeover is not appropriate).

If you disable automatic cluster takeover (set it to 0), The Cluster Edition writes the results of the algorithm to the error log as an advisory message and then exits.

If you enable automatic cluster takeover (set it to 1), the Cluster Edition starts as the cluster coordinator and recovers the databases. This is guaranteed to be a safe operation in environments that have I/O fencing enabled.
In environments without I/O fencing, a malfunction of the algorithm could introduce data corruption, so you can set the configuration parameter to 0 to disable this algorithm. However, environments without I/O fencing have a risk of data corruption, and disabling automatic cluster takeover does not mitigate all of those risks.

builtin date strings

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

If a string is given as an argument in place of the chronological value the server interprets it as a datetime value regardless of its apparent precision. This default behavior may be changed by setting the configuration parameter builtin date strings or the set option builtin_date_strings. When these options are set the server will interpret strings given to chronological builtins as bigdatetimes.

caps per ccb

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Reserved for future use.

check password for digit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>
The system security officer can tell the server to check for at least one character or digit in a password using the server-wide configuration parameter `check password for digit`. If set, this parameter does not affect existing passwords.

CIPC large message pool size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

CIPC large message pool size specifies the number of large message buffers allocated by CIPC at start-up time.

CIPC regular message pool size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

CIPC regular message pool size specifies the number of regular message buffer allocated by CIPC at start-up time.
cis bulk insert array size

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Range of values</th>
<th>Status</th>
<th>Display level</th>
<th>Required role</th>
<th>Configuration group</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis bulk insert array size</td>
<td>50</td>
<td>0 – 2147483647</td>
<td>Dynamic</td>
<td>Comprehensive</td>
<td>System administrator</td>
<td>Component Integration Services</td>
</tr>
</tbody>
</table>

When performing a bulk transfer of data from one Adaptive Server to another Adaptive Server, CIS internally buffers rows, and asks the Open Client bulk library to transfer them as a block. The size of the array is controlled by cis bulk insert array size.

cis bulk insert batch size

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Range of values</th>
<th>Status</th>
<th>Display level</th>
<th>Required role</th>
<th>Configuration group</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis bulk insert batch size</td>
<td>0</td>
<td>0 – 2147483647</td>
<td>Dynamic</td>
<td>Comprehensive</td>
<td>System administrator</td>
<td>Component Integration Services</td>
</tr>
</tbody>
</table>

cis bulk insert batch size determines how many rows from the source tables are to be bulk copied into the target table as a single batch using select into.

If you leave cis bulk insert batch size at 0, all rows are copied as a single batch. Otherwise, after the count of rows specified by this parameter has been copied to the target table, the server issues a bulk commit to the target server, causing the batch to be committed.

If a normal client-generated bulk copy operation (such as that produced by the bcp utility) is received, the client is expected to control the size of the bulk batch, and the server ignores the value of this configuration parameter.
Configuration parameters

cis connect timeout

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cis connect timeout determines the wait time, in seconds, for a successful Client-Library connection.

cis cursor rows

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cis cursor rows specifies the cursor row count for cursor open and cursor fetch operations. Increasing this value means more rows are fetched in one operation. This increases speed but requires more memory.

cis idle connection timeout

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
cis idle connection timeout configures Adaptive Server to check for CIS connections to any remote server that have been unused longer than the specified number of seconds. Adaptive Server deletes the unused connections and reallocates their resources.

Although the number you specify is in seconds, the housekeeper task wakes up, at most, once a minute, so idle connections may be idle for much longer than the configured value. Adaptive Server does not drop idle connections if a transaction is active on the connection, and reestablishes the connection automatically if the user executes any command that accesses the connection.

cis packet size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cis packet size specifies the size of Tabular Data Stream™ (TDS) packets that are exchanged between the server and a remote server when a connection is initiated.

The default packet size on most systems is 512 bytes, and this may be adequate for most applications. However, larger packet sizes may result in significantly improved query performance, especially when text, unitext, and image or bulk data is involved.

If you specify a packet size larger than the default, then the target server must be configured to allow variable-length packet sizes, using:

- additional netmem
- maximum network packet size

cis rpc handling

<table>
<thead>
<tr>
<th>Summary Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
</tbody>
</table>

cis rpc handling
cis rpc handling specifies the default method for remote procedural call (RPC) handling. Setting cis rpc handling to 0 sets the Adaptive Server site handler as the default RPC handling mechanism. Setting the parameter to 1 forces RPC handling to use Component Integration Service access methods. See set cis rpc handling in the *Component Integration Services Users Guide*.

cluster heartbeat interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cluster heartbeat interval controls the interval that cluster instances use to send and check the heartbeat status.

Using a lower value for cluster heartbeat interval reduces the failure detection time but increases the risk of a false failure because of a transient problem (such as an overloaded CPU). Tuning cluster heartbeat interval to a larger value reduces the risk of a false failure but increases the time needed to detect a failure.

cluster heartbeat retries

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
</tbody>
</table>
cluster heartbeat retries controls the number of times an instance retries a failed cluster heartbeat before entering failure mode.

Tuning cluster heartbeat retries to a lower value reduces the time to detect failure but increases the risk of a false failure because of a transient problem (such as an overloaded CPU). Tuning cluster heartbeat retries to a larger value reduces the risk of a false failure but increases the time needed to detect a failure.

cluster vote timeout

cluster vote timeout controls the maximum amount of time an instance waits for other instances to vote during the voting period. An instance waits only for those instances which it believes are running.

Tuning cluster vote timeout to a lower value can reduce failover time, but increases the risk that an instance that is running is excluded from the new cluster view. Tuning cluster vote timeout to a larger value reduces the risk that an running instance is excluded from the new cluster view, but may increase failover time.

compression memory size

compression memory size
Configuration parameters

Summary information

Configuration group	**Physical Memory**

Used while loading a compressed dump into an archive database. `compression memory size` determines the size (in 2KB pages) of the memory pool Adaptive Server uses to decompress a compressed dump. When you set `compression memory size` to 0, no pool is created and a compressed dump cannot be loaded.

configuration file

Summary information

- **Default value**: 0 (off)
- **Range of values**: One of: 0, verify, read, write, or restore
- **Status**: Dynamic
- **Display level**: Comprehensive
- **Required role**: System administrator
- **Configuration group**: General Information

`configuration file` specifies the location of the configuration file currently in use. See “Using `sp_configure` with a configuration file” on page 69 for a complete description of configuration files.

In `sp_configure` output, the “Run Value” column displays only 10 characters, so the output may not display the entire path and name of your configuration file.

cost of a logical io

Summary information

- **Default value**: 2
- **Range of values**: 0 – 254
- **Status**: Dynamic
- **Display level**: Comprehensive
- **Required role**: System administrator
- **Configuration group**: Query Tuning

`cost of a logical io` specifies the cost of a single logical I/O.
CHAPTER 5 Setting Configuration Parameters

cost of a physical io

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cost of a physical io specifies the cost of a single physical I/O.

cost of a cpu unit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cost of a cpu unit specifies the cost of a single CPU operation.

The cost of a serial plan in the optimizer is described by this formula:

\[
\text{Cost} = \text{PIO} \times \text{estimated_pio} + \text{LIO} \times \text{estimated_lio} + 100 \times \text{estimated_cpu} / \text{CPU}
\]

Where the default values are:

- \(\text{estimated_pio} = 25 \)
- \(\text{estimated_lio} = 2 \)
- \(\text{estimated_cpu} = 1000 \)

If your Adaptive Server has sufficient memory, then all tables exist in memory, and a value of 0 for cost of a physical io is appropriate.

If your CPU is fast enough so the value for cost of a cpu unit is not a issue, use this formula to determine the cost of CPU, which combines 2 LIO and 25 PIO (the default values):

\[
\text{CPU} \times 100 / \text{configuration_value}
\]
The default value for `configuration_value` is 1000.
As you increase the value for `cost of a cpu unit`, this formula reduces the impact of CPU on cost.

cpu accounting flush interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cpu accounting flush interval specifies the amount of time, in machine clock ticks (non-Adaptive Server clock ticks), that Adaptive Server waits before flushing CPU usage statistics for each user from `sysprocesses` to `syslogins`, a procedure used in charge-back accounting.

When a user logs in to Adaptive Server, the server begins accumulating figures for CPU usage for that user process in `sysprocesses`. When a user logs off Adaptive Server, or when the value of `cpu accounting flush interval` is exceeded, the accumulated CPU usage statistics are flushed from `sysprocesses` to `syslogins`. These statistics continue accumulating in `syslogins` until you clear the totals. Display the current totals from `syslogins` using `sp_reportstats`.

The value to which you set `cpu accounting flush interval` depends on the type of reporting you intend to do. If you run reports on a monthly basis, set `cpu accounting flush interval` to a relatively high value. With infrequent reporting, it is less critical that the data in `syslogins` be updated frequently.

However, if you perform periodic ad hoc selects on the `totcpu` column in `syslogins` to determine CPU usage by process, set `cpu accounting flush interval` to a lower value to increase the likelihood of the data in `syslogins` being up-to-date when you execute your selects.
Setting cpu accounting flush interval to a low value may cause the lock manager to mistakenly identify processes as potential deadlock victims. When the lock manager detects a deadlock, it checks the amount of CPU time accumulated by each competing processes. The process with the lesser amount is chosen as the deadlock victim and is terminated by the lock manager. Additionally, when cpu accounting flush interval is set to a low value, the task handlers that store CPU usage information for processes are initialized more frequently, thus making processes appear as if they have accumulated less CPU time than they actually have. Because of this, the lock manager may select a process as the deadlock victim when, in fact, that process has more accumulated CPU time than the competing process.

If you do not intend to report on CPU usage at all, set cpu accounting flush interval to its maximum value. This reduces the number of times syslogins is updated, and reduces the number of times its pages must be written to disk.

cpu grace time

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cpu grace time, together with time slice, specifies the maximum amount of time that a user process can run without yielding the CPU before Adaptive Server preempts it and terminates it with a timeslice error. The units for cpu grace time are time ticks, as defined by sql server clock tick length. See “sql server clock tick length” on page 244.

When a process exceeds cpu grace time Adaptive Server “infects” it by removing the process from the internal queues. The process is killed, but Adaptive Server is not affected. This prevents runaway processes from monopolizing the CPU. If any of your user processes become infected, you may be able to temporarily fix the problem by increasing the value of cpu grace time. However, be sure that the problem really is a process that takes more than the current value of cpu grace time to complete, rather than a runaway process.
Temporarily increasing the cpu grace time value is a workaround, not a permanent fix, since it may cause other complications; see “time slice” on page 258. Also, see Chapter 4, “Using Engines and CPUs” in the Performance and Tuning Series: Basics for a more detailed discussion of task scheduling.

current audit table

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

current audit table establishes the table where Adaptive Server writes audit rows. A system security officer can change the current audit table, using:

```
sp_configure "current audit table", n
[, "with truncate"]
```

where n is an integer that determines the new current audit table, as follows:

- 1 means sysaudits_01, 2 means sysaudits_02, and so forth, up to 8.
- 0 tells Adaptive Server to set the current audit table to the next table. For example, if your installation has three audit tables, sysaudits_01, sysaudits_02, and sysaudits_03, Adaptive Server sets the current audit table to:
 - 2 if the current audit table is sysaudits_01
 - 3 if the current audit table is sysaudits_02
 - 1 if the current audit table is sysaudits_03

"with truncate" specifies that Adaptive Server should truncate the new table if it is not already empty. sp_configure fails if this option is not specified and the table is not empty.

Note If Adaptive Server truncates the current audit table, and you have not archived the data, the table’s audit records are lost. Be sure that the audit data is archived before using the with truncate option.
To execute `sp_configure` to change the current audit table, you must have the `sso_role` active. You can write a threshold procedure to change the current audit table automatically.

deadlock checking period

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>500</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–2147483</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Lock Manager</td>
</tr>
</tbody>
</table>

deadlock checking period specifies the minimum amount of time (in milliseconds) before Adaptive Server initiates a deadlock check for a process that is waiting on a lock to be released. Deadlock checking is time-consuming overhead for applications that experience no or very few deadlocks, and the overhead grows as the percentage of lock requests that must wait for a lock also increases.

If you set `deadlock checking period` to a nonzero value \(n \), Adaptive Server initiates a deadlock check after a process waits at least \(n \) milliseconds. For example, you can make a process wait at least 700 milliseconds for a lock before each deadlock check by entering:

```
sp_configure "deadlock checking period", 700
```

If you set `deadlock checking period` to 0, Adaptive Server initiates deadlock checking when each process begins to wait for a lock. Any value less than the number of milliseconds in a clock tick is treated as 0. See “sql server clock tick length” on page 244.

Configuring `deadlock checking period` to a higher value produces longer delays before deadlocks are detected. However, since Adaptive Server grants most lock requests before this time elapses, the deadlock checking overhead is avoided for those lock requests. If your applications deadlock infrequently, set `deadlock checking period` to a higher value. Otherwise, the default value of 500 should suffice.

Use `sp_sysmon` to determine the frequency of deadlocks in your system and the best setting for `deadlock checking period`. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.
Configuration parameters

deadlock pipe active

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

deadlock pipe active controls whether Adaptive Server collects deadlock messages. If both deadlock pipe active and deadlock pipe max messages are enabled, Adaptive Server collects the text for each deadlock. Use `monDeadLock` to retrieve these deadlock messages.

deadlock pipe max messages

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

deadlock pipe max messages determines the number of deadlock messages Adaptive Server stores per engine. The total number of messages in the `monSQLText` table is the value of `sql text pipe max messages` times the number of engines running.

deadlock retries

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
deadlock retries specifies the number of times a transaction can attempt to acquire a lock when deadlocking occurs during an index page split or shrink.

For example, Figure 5-1 illustrates the following scenario:

- Transaction A locks page 1007 and needs to acquire a lock on page 1009 to update the page pointers for a page split.
- Transaction B is also inserting an index row that causes a page split, holds a lock on page 1009, and needs to acquire a lock on page 1007.

In this situation, rather than immediately choosing a process as a deadlock victim, Adaptive Server relinquishes the index locks for one of the transactions. This often allows the other transaction to complete and release its locks.

For the transaction that surrendered its locking attempt, the index is rescanned from the root page, and the page split operation is attempted again, up to the number of times specified by deadlock retries.
Configuration parameters

Figure 5-1: Deadlocks during page splitting in a clustered index

Transaction A: Splitting index page 1007; holds lock on 1007; needs to acquire a lock on 1009 to update its previous-page pointer

Transaction B: Splitting index page 1009; holds lock on 1009; needs to acquire a lock on 1007 to update its next-page pointer

sp_sysmon reports on deadlocks and retries. See the *Performance and Tuning Series: Locking and Concurrency Control*.

default character set id

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
default character set id specifies the number of the default character set used by the server. The default is set at installation, and can be changed later with the Sybase installation utilities. See Chapter 9, “Configuring Character Sets, Sort Orders, and Languages.”

default database size

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>3MB</td>
</tr>
</tbody>
</table>
| Range of values | $2^a - 10000$
 | a. Minimum determined by server’s logical page size. |
| Status | Dynamic |
| Display level | Intermediate |
| Required role | System administrator |
| Configuration group | SQL Server Administration |

default database size sets the default number of megabytes allocated to a new user database if `create database` is issued without any size parameters. A database size given in a `create database` statement takes precedence over the value set by this configuration parameter.

If most of the new databases on your Adaptive Server require more than one logical page size, you may want to increase the default.

Note If you alter the `model` database, you must also increase the default database size, because the `create database` command copies `model` to create a new user database.

default exp_row_size percent

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>5</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–100</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>
default `exp_row_size percent` reserves space for expanding updates in data-only-locked tables, to reduce row forwarding. An “expanding update” is any update to a data row that increases the length of the row. Data rows that allow null values or that have variable-length columns may be subject to expanding updates. In data-only-locked tables, expanding updates can require row forwarding if the data row increases in size so that it no longer fits on the page.

The default value sets aside 5 percent of the available data page size for use by expanding updates. Since 2002 bytes are available for data storage on pages in data-only-locked tables, this leaves 100 bytes for expansion. This value is applied only to pages for tables that have variable-length columns.

Setting `default exp_row_size percent` to 0 means that all pages are completely filled and no space is left for expanding updates.

default `exp_row_size percent` is applied to data-only-locked tables with variable-length columns when `exp_row_size` is not explicitly provided with `create table` or set with `sp_chgattribute`. If a value is provided with `create table`, that value takes precedence over the configuration parameter setting. See the *Performance and Tuning Series: Locking and Concurrency Control*.

default `fill factor percent`

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

default `fill factor percent` determines how full Adaptive Server makes each index page when it is creating a new index on existing data, unless the fill factor is specified in the `create index` statement. The fillfactor percentage is relevant only when the index is created. As data changes, pages are not maintained at any particular level of fullness.

default `fill factor percent` affects:

- The amount of storage space used by your data – Adaptive Server redistributes the data as it creates the clustered index.
- Performance – splitting up pages uses Adaptive Server resources.
There is seldom a reason to change default fill factor percent, especially since you can override it in the create index command. See “create index” in the Reference Manual: Commands.

default language id

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

default language id is the number of the language that is used to display system messages unless a user has chosen another language from those available on the server. us_english always has an ID of NULL. Additional languages are assigned unique numbers as they are added.

default network packet size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

default network packet size configures the default packet size for all Adaptive Server users. You can set default network packet size to any multiple of 512 bytes; values that are not even multiples of 512 are rounded down.

Memory for all users who log in with the default packet size is allocated from the Adaptive Server memory pool, as set with total logical memory. This memory is allocated for network packets when Adaptive Server is started. Each Adaptive Server user connection uses:

- One read buffer
Configuration parameters

- One buffer for messages
- One write buffer

Each of these buffers requires `default network packet size` bytes. The total amount of memory allocated for network packets is:

\[(\text{number of user connections} + \text{number of worker processes}) \times 3 \times \text{default network packet size}\]

For example, if you set `default network packet size` to 1024 bytes, and you have 50 user connections and 20 worker processes, the amount of network memory required is:

\[(50 + 20) \times 3 \times 1024 = 215040 \text{ bytes}\]

If you increase `default network packet size`, you must also increase `max network packet size` to at least the same size. If the value of `max network packet size` is greater than the value of `default network packet size`, increase the value of additional network memory. See “additional network memory” on page 83.

Use `sp_sysmon` to see how changing the `default network packet size` parameter affects network I/O management and task switching. For example, try increasing `default network packet size` and then checking `sp_sysmon` output to see how this affects `bcp` for large batches. See the Performance and Tuning Series: Monitoring Adaptive Server with `sp_sysmon`.

Requesting a larger packet size at login

The default packet size for most client programs like `bcp` and `isql` is set to 512 bytes. If you change the default packet size, clients must request the larger packet size when they connect. Use the `-A` flag to Adaptive Server client programs to request a large packet size. For example:

```
isql -A2048
```

default sortorder id

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
default sortorder id is the number of the sort order that is installed as the default on the server. To change the default sort order, see Chapter 9, “Configuring Character Sets, Sort Orders, and Languages.”

default unicode sortorder

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

default unicode sortorder is a string parameter that uniquely defines the default Unicode sort order installed on the server. To change the Unicode default sort order, see Chapter 9, “Configuring Character Sets, Sort Orders, and Languages.”

default XML sortorder

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

default XML sortorder is a string parameter that defines the sort order used by the XML engine. A string parameter is used rather than a numeric parameter to guarantee a unique ID. See Chapter 6, “XML Support for I18N” in XML Services in Adaptive Server Enterprise.

deferred name resolution

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>

default name resolution is a string parameter that defines the sort order used by the XML engine. A string parameter is used rather than a numeric parameter to guarantee a unique ID. See Chapter 6, “XML Support for I18N” in XML Services in Adaptive Server Enterprise.
Configuration parameters

disable character set conversions

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Changing disable character set conversions to 1 turns off character set conversion for data moving between clients and Adaptive Server. By default, Adaptive Server performs conversion on data moving to and from clients that use character sets that are different than the server’s. For example, if some clients use Latin-1 (iso_1) and Adaptive Server uses Roman-8 (roman8) as its default character set, data from the clients is converted to Roman-8 when being loaded into Adaptive Server. For clients using Latin-1, the data is reconverted when it is sent to the client; for clients using the same character set as Adaptive Server, the data is not converted.

By setting disable character set conversions, you can request that no conversion take place. For example, if all clients are using a given character set, and you want Adaptive Server to store all data in that character set, set disable character set conversions to 1, and no conversion takes place.

When deferred name resolution is active (1), deferred name resolution is applied globally to all server connections; all procedures you create in the server are created using deferred name resolution.

Therefore, the stored procedures are created without resolving the objects referenced inside the stored procedure, postponing object resolution processing to the execution time. See Chapter 17, “Using Stored Procedures,” in the Transact-SQL Users Guide.
disable disk mirroring

Summary information
- Default value: 1
- Valid values: 0 (off), 1 (on)
- Status: Static
- Display level: Comprehensive
- Required role: System administrator
- Configuration group: Disk I/O

disable disk mirroring enables or disables disk mirroring for Adaptive Server. This is a global variable; Adaptive Server does not perform any disk mirroring after this configuration parameter is set to 1 and Adaptive Server is restarted. Setting disable disk mirroring to 0 enables disk mirroring.

Note You must disable disk mirroring if your Adaptive Server is configured for failover.

disk i/o structures

Summary information
- Default value: 256
- Range of values: 0–2147483647
- Status: Dynamic
- Display level: Comprehensive
- Required role: System administrator
- Configuration group: Disk I/O, Memory Use

disk i/o structures specifies the initial number of disk I/O control blocks Adaptive Server allocates at start-up.

User processes require a disk I/O control block before Adaptive Server can initiate an I/O request for the process. The memory for disk I/O control blocks is preallocated when Adaptive Server starts. To minimize the chance of running out of disk I/O structures, you should configure disk i/o structures to as high a value as your operating system allows. See your operating system documentation for information on concurrent disk I/Os.
Configuration parameters

Use `sp_sysmon` to determine whether to allocate more disk I/O structures. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*. You can set the `max async i/o per server` configuration parameter to the same value as disk I/O structures. See “max async i/o per server” on page 159.

DMA object pool size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

DMA object pool size specifies the number of DMA (direct memory access) objects allocated by CIPC at start-up time.

dtm detach timeout period

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

dtm detach timeout period sets the amount of time, in minutes, that a distributed transaction branch can remain in the detached state. In some X/Open XA environments, a transaction may become detached from its thread of control (usually to become attached to a different thread of control). Adaptive Server permits transactions to remain in a detached state for the length of time specified by dtm detach timeout period. After this time has passed, Adaptive Server rolls back the detached transaction.
dtm lock timeout period

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

dtm lock timeout period sets the maximum amount of time, in seconds, that a distributed transaction branch waits for lock resources to become available. After this time has passed, Adaptive Server considers the transaction to be in a deadlock situation, and rolls back the transaction branch that triggered the deadlock. This ultimately rolls back the entire distributed transaction.

Distributed transactions may potentially deadlock themselves if they propagate a transaction to a remote server, and in turn, the remote server propagates a transaction back to the originating server. This situation is shown in Figure 5-2. The work of distributed transaction “dxact1” is propagated to Adaptive Server 2 via “rpc1.” Adaptive Server 2 then propagates the transaction back to the coordinating server via “rpc2.” “rpc2” and “dxact1” share the same _gtrid_ but have different branch qualifiers, so they cannot share the same transaction resources. If “rpc2” is awaiting a lock held by “dxact1,” a deadlock situation exists.

Figure 5-2: Distributed transaction deadlock

Adaptive Server cannot detect interserver deadlocks. Instead, it relies on _dtm lock timeout period_. In Figure 5-2, after _dtm lock timeout period_ has expired, the transaction created for “rpc2” is aborted. This causes Adaptive Server 2 to report a failure in its work, and “dxact1” is ultimately aborted as well.
The value of `dtm lock timeout period` applies only to distributed transactions. Local transactions may use a lock timeout period with the server-wide `lock wait period` parameter.

Note Adaptive Server does not use `dtm lock timeout period` to detect deadlocks on system tables.

dump on conditions

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Group Diagnostics</td>
</tr>
</tbody>
</table>

dump on conditions determines whether Adaptive Server generates a dump of data in shared memory when it encounters the conditions specified in maximum dump conditions.

Note The `dump on conditions` parameter is included for use only by Sybase Technical Support. Do not modify it unless you are instructed to do so by Sybase Technical Support.

dynamic allocation on demand

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>1 (on)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Physical Memory</td>
</tr>
</tbody>
</table>

dynamic allocation on demand determines when memory is allocated for changes to dynamic memory configuration parameters.
If you set dynamic allocation on demand to 1, memory is allocated only as it is needed. That is, if you change the configuration for number of user connections from 100 to 200, the memory for each user is added only when the user connects to the server. Adaptive Server continues to add memory until it reaches the new maximum for user connections.

If dynamic allocation on demand is set to 0, all the memory required for any dynamic configuration changes is allocated immediately. That is, when you change the number of user connections from 100 to 200, the memory required for the extra 100 user connections is immediately allocated.

enable backupserver HA

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Setting enable backupserver HA to 1 starts the high availability Backup Server for the cluster. Setting enable backupserver HA to 0 disables the high availability Backup Server on the cluster.

enable cis

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

enable cis enables or disables Component Integration Service.
enable DTM

Summary information

- **Default value**: 0 (off)
- **Valid values**: 0 (off), 1(on)
- **Status**: Static
- **Display level**: 10
- **Required role**: System administrator
- **Configuration groups**: DTM Administration, SQL Server Administration

enable DTM enables or disables the Adaptive Server distributed transaction management (DTM) feature. When DTM is enabled, you can use Adaptive Server as a resource manager in X/Open XA and MSDTC systems. You must restart the server for this parameter to take effect. See the *XA Interface Integration Guide for CICS, Encina, and TUXEDO* for more information about using Adaptive Server in an X/Open XA environment. See *Using Adaptive Server Distributed Transaction Management Features* for information about transactions in MSDTC environments, and for information about Adaptive Server native transaction coordination services.

Note The license information and the run value for enable DTM are independent of each other. Whether or not you have a license for DTM, the run value and the configuration value are set to 1 after you restart Adaptive Server.

You cannot run DTM until you install a valid license. If you have not installed a valid license, Adaptive Server logs an error message and does not activate the feature. See the installation guide for your platform for information about installing license keys.

enable encrypted columns

Summary information

- **Default value**: 0 (off)
- **Range of values**: 0 (off), 1(on)
- **Status**: Dynamic
- **Display level**: Comprehensive
- **Required role**: System administrator
- **Configuration group**: Security Related

enable encrypted columns enables encrypted columns.
You cannot set `enable encrypted columns` unless you have purchased, installed, and registered the ASE_ENCRYPTION license on your server. Any attempt to set it without such licensing results in Msg. 10834:

```
Configuration parameter 'enable encrypted columns'
cannot be enabled without license 'ASE_ENCRYPTION'
```

Note Using encrypted columns increases the logical memory used by 8198 kilobytes.

enable enterprise java beans

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`enable enterprise java beans` enables and disables EJB Server in the Adaptive Server database. You cannot use EJB Server until the Adaptive Server is enabled for EJB Server.

Note The license information and the run value for `enable java beans` are independent of each other. Whether or not you have a license for Java, the run value and the config value are set to 1 after you restart Adaptive Server. You cannot run EJB Server until you have a license. If you have not installed a valid license, Adaptive Server logs an error message and does not activate the feature. See the installation guide for your platform for information about installing license keys.

enable file access

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
Configuration parameters

Summary information

<table>
<thead>
<tr>
<th>Display level</th>
<th>Comprehensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Component Integration Services</td>
</tr>
</tbody>
</table>

enable file access enables access through proxy tables to the external file system. Requires a license for ASE_XFS.

enable full-text search

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Component Integration Services</td>
</tr>
</tbody>
</table>

enable full-text search enables Enhanced Full-Text Search services. Requires a license for ASE_EFTS.

enable HA

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 – 2</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

Set enable HA to 1 to configure Adaptive Server as a companion server in an active-active high availability subsystem. Set enable HA to 2 to configure Adaptive Server as a companion server in an active-passive high availability subsystem.
Adaptive Server uses Sybase Failover to interact with the high availability subsystem. You must set `enable HA` to 1 before you run the `installhasvss` script (`insthasv` on Windows), which installs the system procedures for Sybase Failover.

Note The license information and the run value for `enable HA` are independent of each other. Whether or not you have a license for Sybase Failover, the run value and the config value are set to 1 when you restart Adaptive Server. Until you have a license, you cannot run Sybase Failover. If you have not installed a valid license, Adaptive Server logs an error message and does not activate the feature. See the installation guide for your platform for information about installing license keys.

Setting `enable HA` to 1 or 2 does not mean that Adaptive Server is configured to work in a high availability system. You must perform the steps described in *Using Sybase Failover in a High Availability System* to configure Adaptive Server to be a companion server in a high availability system.

When `enable HA` is set to 0, you cannot configure for Sybase Failover, and you cannot run `installhasvss` (`insthasv` on Windows).

enable housekeeper GC

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

The housekeeper garbage collection task performs space reclamation on data-only-locked tables. When a user task deletes a row from a data-only-locked table, a task is queued to the housekeeper to check the data and index pages for committed deletes.

The housekeeper garbage collection task is controlled by `enable housekeeper GC`. See Chapter 3, “Using Engines and CPUs” in the *Performance and Tuning Series: Basics*.

These are valid values for `enable housekeeper GC`:
Configuration parameters

- **0** – disables the housekeeper garbage collection task, but enables the `delete` command’s lazy garbage collection. You must use `reorg reclaim_space` to deallocate empty pages. This is the cheapest option with the lowest performance impact, but it may cause performance problems if many empty pages accumulate. Sybase recommends that you do not use this value.

- **1** – enables lazy garbage collection for the housekeeper garbage collection task and the `delete` command. If more empty pages accumulate than your application allows, consider options 4 or 5. You can use the `optdiag` utility to obtain statistics of empty pages.

- **2** – reserved for future.

- **3** – reserved for future.

- **4** – enables aggressive garbage collection for the housekeeper garbage collection task and the `delete` command. This option is the most effective, but the `delete` command is expensive. This option is ideal if the deletes on your DOL tables are in a batch.

- **5** – enables aggressive garbage collection for the housekeeper, and lazy garbage collection for the `delete` command. This option is less expensive for deletes than option 4. This option is suitable when deletes are caused by concurrent transactions.

`sp_sysmon` reports on how often the housekeeper garbage collection task performed space reclamation and how many pages were reclaimed. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

enable i/o fencing

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Setting `enable i/o fencing` to 1 enables I/O fencing for each database device that supports the SCSI-3 Persistent Group Reservation (PGR) standard.
enable java

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (disabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (disabled), 1 (enabled)</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Java Services</td>
</tr>
</tbody>
</table>

`enable java` enables and disables Java in the Adaptive Server database. You cannot install Java classes or perform any Java operations until the server is enabled for Java.

Note The license information and the run value for `enable java` are independent of each other. Whether or not you have a license for java, the run value and the config value are set to 1 after you restart Adaptive Server. You cannot run Java until you have a license. If you have not installed a valid license, Adaptive Server logs an error message and does not activate the feature. See the installation guide for your platform for information about installing license keys.

enable job scheduler

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

`enable job scheduler` determines whether Job Scheduler starts when Adaptive Server starts.
Configuration parameters

enable ldap user auth

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid values</td>
<td>0 (off) – allows only syslogins authentication. 1 (on) – allows both LDAP and syslogins authentication. 2 (on) – allows only LDAP authentication.</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System security officer</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Security Related</td>
</tr>
</tbody>
</table>

When `enable ldap user auth` is 1, Adaptive Server searches the LDAP server to authenticate each user. If the LDAP authentication fails, Adaptive Server searches syslogins to authenticate the user. Use level 1 when you are migrating users from Adaptive Server authentication to LDAP authentication.

enable literal autoparam

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>1 (enabled), 0 (disabled)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Query Tuning</td>
</tr>
</tbody>
</table>

`enable literal autoparam` enables and disables literal server-wide parameterization.

enable logins during recovery

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (enabled), 1 (disabled)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
</tbody>
</table>
enable logins during recovery determines whether non-system administrator logins are allowed during database recovery. A value of 1 indicates that logins are allowed during recovery, and a value of 0 indicates that logins are not allowed during recovery, that is, only the system administrator can log in to Adaptive Server.

enable merge join

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

enable merge join enables or disables merge join at the server level.

The default value for merge join depends on current value of the optimization goal configuration parameter:

<table>
<thead>
<tr>
<th>Value for optimization goal</th>
<th>Default value for merge join</th>
</tr>
</thead>
<tbody>
<tr>
<td>allrows_mix</td>
<td>on</td>
</tr>
<tr>
<td>allrows_dss</td>
<td>on</td>
</tr>
<tr>
<td>allrows_oltp</td>
<td>off</td>
</tr>
</tbody>
</table>

enable metrics capture

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
</tbody>
</table>
enable metrics capture enables Adaptive Server to capture metrics at the server level. Metrics for ad hoc statements are captured in the system catalogs; metrics for statements in a stored procedure are saved in the procedure cache.

enable monitoring

enable monitoring controls whether Adaptive Server collects the monitoring table data. enable monitoring acts as a master switch that determines whether any Monitoring configuration parameters are enabled.

enable pam user auth

enable pam user auth controls the ability to authenticate users using pluggable authentication modules (PAM).
When `enable pam user auth` is set to 1, Adaptive Server uses the PAM provider to authenticate each user. If the PAM authentication fails, Adaptive Server searches `syslogins` to authenticate the user. Use level 1 when you are migrating users from Adaptive Server authentication to PAM authentication.

enable pci

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`enable pci` enables or disables the Java PCI Bridge for Adaptive Server.

Note Do not use setting “2” (on with operating system override) unless instructed to do so by Sybase Technical Support. This setting enables the PCI Bridge on operating system versions that may not fully or correctly support PCI functionality.

enable query tuning mem limit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`enable query tuning mem limit` enables the query tuning memory limit.
Configuration parameters

enable query tuning time limit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

enable query tuning time limit enables the query tuning time limit.

enable real time messaging

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

enable real time messaging enables the real time messaging services.

enable rep agent threads

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

enable rep agent threads enables the RepAgent thread within Adaptive Server. Other steps are also required to enable replication. For more information, see the Replication Server documentation.
enable row level access control

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0 (off)</td>
</tr>
<tr>
<td>Valid values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System security officer</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Security Related</td>
</tr>
</tbody>
</table>

Enable row level access control enables row level access control. You must have the security services license key enabled before you can configure enable row level access control.

enable semantic partitioning

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Range of values</td>
<td>1 (enabled), 0 (disabled)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

Enable semantic partitioning enables partitioning other than round-robin (for example list, hash, and range partitioning) in Adaptive Server. Before you use any of these partitioning schemes, you must first have the appropriate license.

enable sort-merge join and JTC

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0 (off)</td>
</tr>
<tr>
<td>Valid values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Query Tuning</td>
</tr>
</tbody>
</table>
Configuration parameters

Used when Adaptive Server is in compatibility mode. Once enabled, when Adaptive Server compiles a query in compatibility mode, enable sort-merge join and JTC allows the query processor to select a sort merge or a nested loop join. enable sort-merge join and JTC enables join transitive closure (JTC), which allows the query processor for releases earlier than 15.0 to use additional join clauses.

For more information about compatibility mode, see the Migration Technology Guide.

enable sql debugger

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Enables and disables the Adaptive Server SQL debugger, which allows you to step through your T-SQL code.

enable ssl

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

enable ssl enables or disables Secure Sockets Layer session-based security.

enable stmt cache monitoring

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>
enable stmt cache monitoring

Enables or disables Adaptive Server to collect monitoring information about the statement cache. Once enabled, `monStatementCache` and `monCachedStatement` display valid data.

enable surrogate processing

Activates the processing and maintains the integrity of surrogate pairs in Unicode data. If `enable surrogate processing` is disabled, the server ignores the presence of surrogate pairs in the Unicode data, and all code that maintains the integrity of surrogate pairs is skipped. This enhances performance, but restricts the range of Unicode characters that can appear in the data.

enable unicode conversion

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Activates the processing and maintains the integrity of surrogate pairs in Unicode data. If `enable surrogate processing` is disabled, the server ignores the presence of surrogate pairs in the Unicode data, and all code that maintains the integrity of surrogate pairs is skipped. This enhances performance, but restricts the range of Unicode characters that can appear in the data.
enable unicode conversion activates character conversion using Unilib for the char, varchar, and text datatypes.

enable unicode normalization

Activates Unilib character normalization. The normalization process modifies the data so there is only a single representation in the database for a given sequence of abstract characters. Often, characters followed by combined diacritics are replaced by precombined forms.

Set `enable unicode normalization` to 1 to use the built-in process that enforces normalization on all incoming Unicode data. If this parameter is disabled (set to 0), the normalization step is bypassed and the client code is responsible for normalization rather than the server. If normalization is disabled, performance is improved—but only if all clients present Unicode data to the server using the same representation.

Note Once disabled, you can turn normalization on again. This prevents non-normalized data from entering the database.

enable webservice s

Default value 1 (on)

Range of values 0 (off), 1 (on)

Status Dynamic

Display level Comprehensive

Required role System administrator

Configuration group Unicode

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1 (on)</td>
</tr>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Unicode</td>
</tr>
</tbody>
</table>
CHAPTER 5 Setting Configuration Parameters

enable xact coordination

Enable xact coordination enables or disables Adaptive Server transaction coordination services. When this parameter is set to 1 (on), coordination services are enabled, and the server can propagate transactions to other Adaptive Servers. This may occur when a transaction executes a remote procedure call (RPC) to update data in another server, or updates data in another server using Component Integration Services (CIS). Transaction coordination services ensure that updates to remote Adaptive Server data commit or roll back with the original transaction.

If this parameter is set to 0 (off), Adaptive Server does not coordinate the work of remote servers. Transactions can still execute RPCs and update data using CIS, but Adaptive Server cannot ensure that remote transactions are rolled back with the original transaction or that remote work is committed along with an original transaction, if remote servers experience a system failure. This corresponds to the behavior of Adaptive Server versions earlier than version 12.x.

enable xml

Summary information

Default value	0
Range of values	1 (enabled), 0 (disabled)
Status	Dynamic
Configuration parameters

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

Enables XML services.

engine memory log size

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Range of values</td>
<td>0 – 2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td></td>
</tr>
<tr>
<td>Required role</td>
<td></td>
</tr>
<tr>
<td>Configuration group</td>
<td>Physical Memory</td>
</tr>
</tbody>
</table>

engine memory log size is for diagnostic use only and has no relevance in a production environment. It should be left at the default setting unless otherwise requested by Sybase Tech Support.

errorlog pipe active

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–1</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Monitoring</td>
</tr>
</tbody>
</table>

errorlog pipe active controls whether Adaptive Server collects error log messages. If both errorlog pipe active and errorlog pipe max messages are enabled, Adaptive Server collects all the messages sent to the error log. Use monErrorLog to retrieve these error log messages.
errorlog pipe max messages

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Monitoring</td>
</tr>
</tbody>
</table>

Errorlog pipe max messages determines the number of error log messages Adaptive Server stores per engine. The total number of messages in the monSQLText table is the value of sql text pipe max messages times the number of engines running.

esp execution priority

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>8</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–15</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Extended Stored Procedure</td>
</tr>
</tbody>
</table>

Esp execution priority sets the priority of the XP Server thread for ESP execution. Over long periods of time ESPs can be CPU-intensive. Also, since XP Server resides on the same machine as Adaptive Server, XP Server can impact Adaptive Server performance.

esp execution stacksize

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>34816</td>
</tr>
<tr>
<td>Range of values</td>
<td>34816–2^14</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
</tbody>
</table>

errorlog pipe max messages

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Monitoring</td>
</tr>
</tbody>
</table>

Errorlog pipe max messages determines the number of error log messages Adaptive Server stores per engine. The total number of messages in the monSQLText table is the value of sql text pipe max messages times the number of engines running.
Configuration parameters

Summary information

<table>
<thead>
<tr>
<th>Display level</th>
<th>Comprehensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Extended Stored Procedure</td>
</tr>
</tbody>
</table>

esp execution stacksize sets the size of the stack, in bytes, to be allocated for ESP execution.

Use this parameter if you have your own ESP functions that require a larger stack size than the default, 34816.

esp unload dll

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Extended Stored Procedure</td>
</tr>
</tbody>
</table>

esp unload dll specifies whether DLLs that support ESPs should be automatically unloaded from XP Server memory after the ESP call has completed.

If **esp unload dll** is set to 0, DLLs are not automatically unloaded. If it is set to 1, they are automatically unloaded.

If **esp unload dll** is set to 0, you can still unload individual DLLs explicitly at runtime, using `sp_freedll`.

event buffers per engine

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>1–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, SQL Server Administration</td>
</tr>
</tbody>
</table>
event buffers per engine specifies the number of events per Adaptive Server engine that can be monitored simultaneously by Adaptive Server Monitor. Events are used by Adaptive Server Monitor for observing Adaptive Server performance; if you are not using Adaptive Server Monitor, set this parameter to 1.

The value to which you set event buffers per engine depends on the number of engines in your configuration, the level of activity on your Adaptive Server, and the types of applications you are running.

Setting event buffers per engine to a low value may result in the loss of event information. The default value is likely to be too low for most sites. Values of 2000 and greater may be more reasonable for general monitoring. However, experiment to determine the appropriate value for your site.

In general, setting event buffers per engine to a high value may reduce the amount of performance degradation that Adaptive Server Monitor causes Adaptive Server.

Each event buffer uses 100 bytes of memory. To determine the total amount of memory used by a particular value for event buffers per engine, multiply the value by the number of Adaptive Server engines in your configuration.

event log computer name (Windows only)

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

event log computer name specifies the name of the Windows PC that logs Adaptive Server messages in its Windows Event Log. This feature is available on Windows servers only.

A value of LocalSystem or NULL specifies the default local system.

You can also use the Server Config utility to set the event log computer name parameter by specifying the Event Log Computer Name under Event Logging.

Setting the event log computer name parameter with sp_configure or specifying the Event Log Computer Name under Event Logging overwrites the effects of the command line -G option, if it was specified. If Adaptive Server was started with the -G option, you can change the destination remote machine by setting event log computer name.

For more information about logging Adaptive Server messages to a remote site, see the Configuration Guide for Windows.

event logging (Windows only)

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

event logging enables and disables the logging of Adaptive Server messages in the Windows Event Log.

The default value of 1 enables Adaptive Server message logging in the Windows Event Log; a value of 0 disables it.

Use the Server Config utility to set the event logging parameter by selecting Use Windows Event Logging under Event Logging.

Setting the event logging parameter or selecting Use Windows Event Logging overwrites the effects of the command line -G option, if it was specified.

executable codesize + overhead

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise
executable codesize + overhead reports the combined size, in kilobytes, of the Adaptive Server executable and overhead. This a calculated value that is not user-configurable.

extended cache size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

FIPS login password encryption

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Enabling FIPS login password encryption requires a Security and Directory Services license. This parameter provides FIPS 140-2 cryptographic module support for encrypting passwords in transmission, in memory, and on disk.

Adaptive Server uses the FIPS 140-2 certified Certicom security provider for login encryption. If this configuration is not enabled, Adaptive Server uses the OpenSSL security provider to perform login password encryption.

global async prefetch limit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
</tbody>
</table>
Configuration parameters

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

global async prefetch limit specifies the percentage of a buffer pool that can hold the pages brought in by asynchronous prefetch that have not yet been read. This parameter sets the limit for all pools in all caches for which the limit has not been set explicitly with `sp_poolconfig`.

If the limit for a pool is exceeded, asynchronous prefetch is temporarily disabled until the percentage of unread pages falls below the limit. See Chapter 6, “Tuning Asynchronous Prefetch” in the *Performance and Tuning Series: Basics*.

global cache partition number

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

global cache partition number sets the default number of cache partitions for all data caches. The number of partitions for a particular cache can be set using `sp_cacheconfig`; the local value takes precedence over the global value.

Use cache partitioning to reduce cache spinlock contention; in general, if spinlock contention exceeds 10 percent, partitioning the cache should improve performance. Doubling the number of partitions cuts spinlock contention by about one-half.

See Chapter 4, “Configuring Data Caches,” in the *System Administration Guide: Volume 2* for information on configuring cache partitions. Also see Chapter 6, “Tuning Asynchronous Prefetch” in the *Performance and Tuning Series: Basics*.
heap memory per user

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

heap memory per user configures the amount of heap memory per user. A heap memory pool is an internal memory created at start-up that tasks use to dynamically allocate memory as needed. This memory pool is important if you are running tasks that use wide columns, which require a lot of memory from the stack. The heap memory allocates a temporary buffer that enables these wide column tasks to finish. The heap memory the task uses is returned to the heap memory pool when the task is finished.

The size of the memory pool depends on the number of user connections. Sybase recommends that you set heap memory per user to three times the size of your logical page.

histogram tuning factor

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

histogram tuning factor controls the number of steps Adaptive Server analyzes per histogram for update statistics, update index statistics, update all statistics, and create index. A value of 1 disables the parameter.

Note For Adaptive Server versions 15.0.2 ESD #2 and later, if you set histogram tuning factor to the default value of 20 and a large number of steps are requested for the histogram, the actual step count used for the histogram is limited to the value that reduces the procedure cache usage:
Configuration parameters

\[
\min (\max (400, \text{requested_steps}), \\
\text{histogram_tuning_factor} \times \text{requested_steps})
\]

In the following example, Adaptive Server generates an intermediate 20-step histogram with 30 values:

\[
\text{sp_configure 'histogram_tuning_factor',20} \\
\text{update statistics tab using 30 values}
\]

Adaptive Server analyzes the histogram and compresses it into the resulting histogram according to the following parameters:

- The first step is copied unchanged.
- The high-frequency steps are copied unchanged.
- The consecutive range steps are collapsed into the resulting step, so the total weight of the collapsed step is no bigger than one-thirtieth of the value.

The final histogram in sysstatistics:

- Has range steps generated in a way similar for a 30-step update statistics, and high frequency ranges are isolated as if the histogram were created with 600 steps.
- The total number of steps in the resulting histogram may differ between 30 and 600 values.
- For equally distributed data, the value should be very close to 30.
- More “frequent” values in the table means more steps in the histogram.
- If a column has few different values, all those values may appear as high-frequency cells.

You can achieve the same result by increasing the number of histogram steps to 600, but this uses more resources in the buffer and procedure cache.

histogram tuning factor minimizes the resources histograms consume, and increases resource usage only when it is in the best interest for optimization, for example, when there is uneven distribution of data in a column, or highly duplicated values within a column. In this situation, up to 600 histogram steps are used. However, in most cases, histogram tuning factor uses the default value (30 in the example above).
housekeeper free write percent

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`housekeeper free write percent` specifies the maximum percentage by which the housekeeper wash task can increase database writes.

For example, to stop the housekeeper task from working when the frequency of database writes reaches 5 percent above normal, set `housekeeper free write percent` to 5.

When Adaptive Server has no user tasks to process, the housekeeper wash task automatically begins writing changed pages from cache to disk. These writes result in improved CPU utilization, decreased need for buffer washing during transaction processing, and shorter checkpoints.

In applications that repeatedly update the same database page, the housekeeper wash may initiate some unnecessary database writes. Although these writes occur only during the server’s idle cycles, they may be unacceptable on systems with overloaded disks.

The table and index statistics that are used to optimize queries are maintained in memory structures during query processing. When these statistics change, the changes are not written to the `systabstats` table immediately, to reduce I/O contention and improve performance. Instead, the housekeeper chores task periodically flushes statistics to disk.

The default value allows the housekeeper wash task to increase disk I/O by a maximum of 1 percent. This results in improved performance and recovery speed on most systems.

To disable the housekeeper wash task, set the value of `housekeeper free write percent` to 0.

Set this value to 0 only if disk contention on your system is high, and it cannot tolerate the extra I/O generated by the housekeeper wash task.

If you disable the housekeeper tasks, keep statistics current. Commands that write statistics to disk are:
Configuration parameters

- **update statistics**
- **dbcc checkdb** (for all tables in a database) or **dbcc checktable** (for a single table)
- **sp_flushstats**

Run one of these commands on any tables that have been updated since the last time statistics were written to disk, at the following times:

- Before dumping a database
- Before an orderly shutdown
- After restarting, following a failure or orderly shutdown; in these cases, you cannot use **sp_flushstats**—you must use **update statistics** or **dbcc** commands
- After any significant changes to a table, such as a large bulk copy operation, altering the locking scheme, deleting or inserting large numbers of rows, or performing a **truncate table** command

To allow the housekeeper wash task to work continuously, regardless of the percentage of additional database writes, set **housekeeper free write percent** to 100.

Use **sp_sysmon** to monitor housekeeper performance. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

You might also want to look at the number of free checkpoints initiated by the housekeeper task. The *Performance and Tuning Series: Basics* describes this output.

i/o accounting flush interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

i/o accounting flush interval specifies the amount of time, in machine clock ticks, that Adaptive Server waits before flushing I/O statistics for each user from sysprocesses to syslogins. This is used for charge-back accounting.
When a user logs in to Adaptive Server, the server begins accumulating I/O statistics for that user process in `sysprocesses`. When the value of `i/o accounting statistics interval` is exceeded, or a user logs off Adaptive Server, the accumulated I/O statistics for that user are flushed from `sysprocesses` to `syslogins`. These statistics continue accumulating in `syslogins` until you clear the totals by using `sp_clearstats`. You can display the current totals from `syslogins` by using `sp_reportstats`.

The value to which you set `i/o accounting flush interval` depends on the type of reporting you intend to do. If you run reports on a monthly basis, set `i/o accounting flush interval` to a relatively high value. With infrequent reporting, it is less critical that the data in `syslogins` be updated frequently.

If you perform periodic ad hoc selects on the `totio` column in `syslogins` to determine I/O volume by process, set `i/o accounting flush interval` to a lower value. Doing so increases the likelihood of the data in `syslogins` being current when you execute your selects.

If you do not report on I/O statistics at all, set `i/o accounting flush interval` to its maximum value. This reduces the number of times `syslogins` is updated and the number of times its pages must be written to disk.

i/o batch size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`i/o batch size` sets the number of writes issued in a batch before the task goes to sleep. Once this batch is completed, the task is woken up, and the next batch of writes are issued, ensuring that the I/O subsystem is not flooded with many simultaneous writes. Setting `i/o batch size` to the appropriate value can improve the performance of operations like `checkpoint`, `dump database`, `select into`, and so on.
Configuration parameters

i/o polling process count

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

i/o polling process count specifies the maximum number of processes that Adaptive Server can run before the scheduler checks for disk and network I/O completions. Tuning i/o polling process count affects both the response time and throughput of Adaptive Server.

Adaptive Server checks for disk or network I/O completions:

- If the number of tasks run since the last time Adaptive Server checked for I/O completions equals the value for i/o polling process count, and

- At every Adaptive Server clock tick.

As a general rule, increasing the value of i/o polling process count increases throughput for applications that generate a lot of disk and network I/O. Conversely, decreasing the value improves process response time in these applications, possibly at the risk of lowering throughput.

If your applications create both I/O and CPU-bound tasks, tuning i/o polling process count to a low value (1 – 2) ensures that I/O-bound tasks get access to CPU cycles.

For OLTP applications (or any I/O-bound application with user connections and short transactions), tuning i/o polling process count to a value in the range of 20 – 30 may increase throughput, but may also increase response time.

When tuning i/o polling process count, consider three other parameters:

- sql server clock tick length, which specifies the duration of the Adaptive Server clock tick in microseconds. See “sql server clock tick length” on page 244.

- time slice, which specifies the number of clock ticks the the Adaptive Server scheduler allows a user process to run. See “time slice” on page 258.
• cpu grace time, which specifies the maximum amount of time, in clock
ticks, a user process can run without yielding the CPU before Adaptive
Server preempts it and terminates it with a timeslice error. See “cpu grace
time” on page 103.

Use sp_sysmon to determine the effect of changing i/o polling process count.
See the Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

identity burning set factor

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

IDENTITY columns are of type numeric and scale zero whose values are
generated by Adaptive Server. Column values can range from a low of 1 to a
high determined by the column precision.

For each table with an IDENTITY column, Adaptive Server divides the set of
possible column values into blocks of consecutive numbers, and makes one
block at a time available in memory. Each time you insert a row into a table,
Adaptive Server assigns the IDENTITY column the next available value from
the block. When all the numbers in a block have been used, the next block
becomes available.

This method of choosing IDENTITY column values improves server
performance. When Adaptive Server assigns a new column value, it reads the
current maximum value from memory and adds 1. Disk access becomes
necessary only after all values within the block have been used. Because all
remaining numbers in a block are discarded in the event of server failure (or
shutdown with nowait), this method can lead to gaps in IDENTITY column
values.

Use identity burning set factor to change the percentage of potential column
values that is made available in each block. This number should be high
enough for good performance, but not so high that gaps in column values are
unacceptably large. The default value, 5000, releases .05 percent of the
potential IDENTITY column values for use at one time.
To get the correct value for \texttt{sp_configure}, express the percentage in decimal form, and then multiply it by 10^7 (10,000,000). For example, to release 15 percent (.15) of the potential IDENTITY column values at a time, specify a value of .15 times 10^7 (or 1,500,000) in \texttt{sp_configure}.

\textit{identity grab size}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Summary information} & \\
\hline
Default value & 1 \\
\hline
Range of values & 1–2147483647 \\
\hline
Status & Dynamic \\
\hline
Display level & Intermediate \\
\hline
Required role & System administrator \\
\hline
Configuration group & SQL Server Administration \\
\hline
\end{tabular}
\end{table}

\textit{identity grab size} allows each Adaptive Server process to reserve a block of IDENTITY column values for inserts into tables that have an IDENTITY column.

This is useful if you are performing inserts, and you want all the inserted data to have contiguous IDENTITY numbers. For instance, if you are entering payroll data, and you want all records associated with a particular department to be located within the same block of rows, set \textit{identity grab size} to the number of records for that department.

\textit{identity grab size} applies to all users on Adaptive Server. Large \textit{identity grab size} values result in large gaps in the IDENTITY column when many users insert data into tables with IDENTITY columns.

Sybase recommends that you set \textit{identity grab size} to a value large enough to accommodate the largest group of records you want to insert into contiguous rows.

\textit{identity reservation size}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Summary information} & \\
\hline
Default value & 1 \\
\hline
Range of values & 1–2147483647 \\
\hline
Status & Dynamic \\
\hline
Display level & Comprehensive \\
\hline
Required role & System administrator \\
\hline
\end{tabular}
\end{table}
identity reservation size sets a limit for the number of identity values.

idle migration timeout

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

idle migration timeout specifies the amount of time after which an idle connection is closed without invalidating the migration request sent to the client, allowing you to stop an instance after a specified period of time without waiting for idle client connections to migrate.

Setting idle migration timeout to a high value slows down a graceful shutdown because the instance must wait the specified period of time for all idle connections that issued a migration request without the client having initiated migration.

job scheduler interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

job scheduler interval sets the interval when the Job Scheduler checks which scheduled jobs are due to be executed.
job scheduler tasks

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>1 – 640</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

job scheduler tasks sets the maximum number of jobs that can run simultaneously through Job Scheduler.

license information

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid values</td>
<td>0–2^{31}</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

license information allows Sybase system administrators to monitor the number of user licenses used in Adaptive Server. Enabling this parameter only monitors the number of licenses issued; it does not enforce the license agreement.

If license information is set to 0, Adaptive Server does not monitor license use. If license information is set to a number greater than 0, the housekeeper chores task monitors the number of licenses used during the idle cycles in Adaptive Server. Set license information to the number of licenses specified in your license agreement.

If the number of licenses used is greater than the number to which license information is set, Adaptive Server writes this message to the error log:

WARNING: Exceeded configured number of user licenses

At the end of each 24-hour period, the maximum number of licenses used during that time is added to the syblicenseslog table. The 24-hour period restarts if Adaptive Server is restarted.
See “Monitoring license use” on page 473.

lock address spinlock ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

For Adaptive Servers running with multiple engines, the address lock spinlock ratio sets the number of rows in the internal address locks hash table that are protected by one spinlock.

Adaptive Server manages the acquiring and releasing of address locks using an internal hash table with 1031 rows (known as hash buckets). This table can use one or more spinlocks to serialize access between processes running on different engines.

The default value for address lock spinlock ratio defines 11 spinlocks for the address locks hash table. The first 10 spinlocks protect 100 rows each, and the eleventh spinlock protects the remaining 31 rows. If you specify a value of 1031 or greater for address lock spinlock ratio, Adaptive Server uses only 1 spinlock for the entire table.

lock hashtable size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
lock hashtable size specifies the number of hash buckets in the lock hash table. This table manages all row, page, and table locks, and all lock requests. Each time a task acquires a lock, the lock is assigned to a hash bucket, and each lock request for that lock checks the same hash bucket. Setting this value too low results in large numbers of locks in each hash bucket and slows the searches. On Adaptive Servers with multiple engines, setting this value too low can also lead to increased spinlock contention. Do not set the value to less than the default value, 2048.

lock hashtable size must be a power of 2. If the value you specify is not a power of 2, sp_configure rounds the value to the next highest power of 2 and prints an informational message.

The optimal hash table size is a function of the number of distinct objects (pages, tables, and rows) that can be locked concurrently. The optimal hash table size is at least 20 percent of the number of distinct objects that need to be locked concurrently. See the Performance and Tuning Series: Locking and Concurrency Control.

lock scheme

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

lock scheme sets the default locking scheme to be used by create table and select into commands when a lock scheme is not specified in the command.

The values for lock scheme are character data, so you must use 0 as a placeholder for the second parameter, which must be numeric, and specify allpages, datapages, or datarows as the third parameter:

```
sp_configure "lock scheme", 0, datapages
```

lock shared memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise
lock shared memory disallows swapping of Adaptive Server pages to disk and allows the operating system kernel to avoid the server’s internal page locking code. This can reduce disk reads, which are expensive.

Not all platforms support shared memory locking. Even if your platform does, lock shared memory may fail due to incorrectly set permissions, insufficient physical memory, or for other reasons. See operating system documentation for your platform for information on shared memory locking.

lock spinlock ratio

Adaptive Server manages the acquiring and releasing of locks using an internal hash table with a configurable number of hash buckets. On SMP systems, this hash table can use one or more spinlocks to serialize access between processes running on different engines. To set the number of hash buckets, use lock hashtable size.

For Adaptive Servers running with multiple engines, lock spinlock ratio sets a ratio that determines the number of lock hash buckets that are protected by one spinlock. If you increase lock hashtable size, the number of spinlocks increases, so the number of hash buckets protected by one spinlock remains the same.

The Adaptive Server default value for lock spinlock ratio is 85. With lock hashtable size set to the default value of 2048, the default spinlock ratio defines 26 spinlocks for the lock hash table. See Chapter 5, Managing Multiprocessor Servers,” in *System Administration Guide: Volume 2*.

Summary information

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Physical Memory</td>
</tr>
</tbody>
</table>

Valid values: 0 (off), 1 (on)
Status: Static
Display level: Comprehensive
Required role: System administrator
Configuration groups: Lock Manager, Memory Use
Configuration parameters

sp_sysmon reports on the average length of the hash chains in the lock hash table. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

lock table spinlock ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

For Adaptive Servers running with multiple engines, **table lock spinlock ratio** sets the number of rows in the internal table locks hash table that are protected by one spinlock.

Adaptive Server manages the acquiring and releasing of table locks using an internal hash table with 101 rows (known as hash buckets). This table can use one or more spinlocks to serialize access between processes running on different engines.

The Adaptive Server default value for **table lock spinlock ratio** is 20, which defines 6 spinlocks for the table locks hash table. The first 5 spinlocks protect 20 rows each; the sixth spinlock protects the last row. If you specify a value of 101 or greater for **table lock spinlock ratio**, Adaptive Server uses only 1 spinlock for the entire table.

lock wait period

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
lock wait period limits the number of seconds that tasks wait to acquire a lock on a table, data page, or data row. If the task does not acquire the lock within the specified time period, Adaptive Server returns error message 12205 to the user and rolls back the transaction.

The `lock wait` option of the `set` command sets a session-level number of seconds that a task waits for a lock. It overrides the server-level setting for the session.

`lock wait period`, used with the session-level setting `set lock wait nnn`, is applicable only to user-defined tables. These settings have no influence on system tables.

At the default value, all processes wait indefinitely for locks. To restore the default value, reset the value to 2147483647 or enter:

```
  sp_configure "lock wait period", 0, "default"
```

log audit logon failure

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`log audit logon failure` specifies whether to log unsuccessful Adaptive Server logins to the Adaptive Server error log and, on Windows servers, to the Windows Event Log, if event logging is enabled.

log audit logon success

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
Configuration parameters

log audit logon success specifies whether to log successful Adaptive Server logins to the Adaptive Server error log and, on Windows servers, to the Windows Event Log, if event logging is enabled.

max async i/os per engine

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

max async i/os per engine specifies the maximum number of outstanding asynchronous disk I/O requests for a single engine at one time.

On the Linux platform

On the Linux platform, max async i/os per engine controls the number of asynchronous I/Os each engine reserves from the operating system when the machine starts. Your system may benefit from using a number greater than the default value.

You can use `sp_sysmon` to help tune max async i/os per engine. `sp_sysmon`’s disk i/o section contains information about the maximum number of outstanding I/Os for each engine during the sample period and the number of I/Os that were delayed because of engine or operating system limits. Generally, any I/Os delayed by engine limits indicate that you should increase the value of max async i/os per engine.

Whether Adaptive Server can perform asynchronous IO on a device depends on whether or not this device support kernel asynchronous I/O (KAIO). The Linux kernel requires that you implement kernel asynchronous I/O support at the file system level. Most major file systems provide support for kernel asynchronous I/O, including ext3, xfs, jfs, and raw devices. The tmpfs file system does not support kernel asynchronous I/O. If the device does not support kernel asynchronous I/O, Adaptive Server cannot perform asynchronous IO on that device, and instead reverts to standard synchronous IO for all reads and writes to that device. Adaptive Server prints a message similar to the following in the error log indicating that the device has switched to synchronous IO:
00:0000:00001:2006/12/15 11:47:17.98 kernel Virtual device '/dev/shm/tempdb.dat' does not support kernel asynchronous i/o. Synchronous i/o will be used for this device.

max async i/os per server

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>Platform dependent</td>
</tr>
<tr>
<td>Range of values</td>
<td>1–platform dependent value</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>O/S Resources</td>
</tr>
</tbody>
</table>

max async i/os per server specifies the maximum number of asynchronous disk I/O requests that can be outstanding for Adaptive Server at one time. This limit is not affected by the number of online engines per Adaptive Server. max async i/os per engine limits the number of outstanding I/Os per engine.

Most operating systems limit the number of asynchronous disk I/Os that can be processed at any one time; some operating systems limit the number per operating system process, some limit the number per system, and some do both. If an application exceeds these limits, the operating system returns an error message. Because operating system calls are relatively expensive, it is inefficient for Adaptive Server to attempt to perform asynchronous I/Os that get rejected by the operating system.

To avoid this, Adaptive Server maintains a count of the outstanding asynchronous I/Os per engine and per server; if an engine issues an asynchronous I/O that would exceed either max async i/os per engine or max async i/os per server, Adaptive Server delays the I/O until enough outstanding I/Os have completed to fall below the exceeded limit.

For example, assume an operating system limit of 200 asynchronous I/Os per system and 75 per process and an Adaptive Server with three online engines. The engines currently have a total of 200 asynchronous I/Os pending, distributed according to the following table:

<table>
<thead>
<tr>
<th>Engine</th>
<th>Number of I/Os pending</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
<td>Engine 0 delays any further asynchronous I/Os until the total for the server is under the operating system per-system limit and then continues issuing asynchronous I/Os.</td>
</tr>
</tbody>
</table>
Configuration parameters

<table>
<thead>
<tr>
<th>Engine</th>
<th>Number of I/Os pending</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>Engine 1 delays any further asynchronous I/Os until the per-engine total is under the operating system per-process limit and then continues issuing asynchronous I/Os.</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>Engine 2 delays any further asynchronous I/Os until the total for server is under the operating system per-system limit and then continues issuing asynchronous I/Os.</td>
</tr>
</tbody>
</table>

All I/Os (both asynchronous and synchronous) require a disk I/O structure, so the total number of outstanding disk I/Os is limited by the value of `disk i/o structures`. It is slightly more efficient for Adaptive Server to delay the I/O because it cannot get a disk I/O structure than because the I/O request exceeds `max i/os per server`. Set `max async i/os per server` equal to the value of `disk i/o structures`. See “disk i/o structures” on page 115.

If the limits for asynchronous I/O can be tuned on your operating system, make sure they are set high enough for Adaptive Server. There is no penalty for setting them as high as needed.

Use `sp_sysmon` to see if the per server or per engine limits are delaying I/O on your system. If `sp_sysmon` shows that Adaptive Server exceeded the limit for outstanding requests per engine or per server, raise the value of the corresponding parameter. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

max cis remote connections

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`max cis remote connections` specifies the maximum number of concurrent Client-Library connections that can be made to remote servers by Component Integration Services.

By default, Component Integration Services allows up to four connections per user to be made simultaneously to remote servers. If you set the maximum number of users to 25, as many as 100 simultaneous Client-Library connections are allowed by Component Integration Services.
If this number does not meet the needs of your installation, you can override the setting by specifying exactly how many outgoing Client-Library connections you want the server to be able to make at one time.

max concurrently recovered db

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

max concurrently recovered db determines the degree of parallelism. The minimum value is 1, which uses serial recovery, but you can also use the default value of 0, to use a self-tuning approach. The maximum value is the number of engines at start-up minus 1. *max concurrently recovered db* is also limited by the value of the configuration parameter number of open databases.

max memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

max memory specifies the maximum amount of total physical memory that you can configure Adaptive Server to allocate. *max memory* must be greater than the total logical memory consumed by the current configuration of Adaptive Server.

There is no performance penalty for configuring Adaptive Server to use the maximum memory available to it on your computer. However, assess the other memory needs on your system, or Adaptive Server may not be able to acquire enough memory to start.
Configuration parameters

If Adaptive Server cannot start

When allocate max shared memory is set to 1, Adaptive Server must have the amount of memory available that is specified by max memory. If the memory is not available, Adaptive Server does not start. If this occurs, reduce the memory requirements for Adaptive Server by manually changing the value of max memory in the server’s configuration file. You can also change the value of allocate max shared memory to 0 so that not all memory required by max memory is required at start-up.

You may also want to reduce the values for other configuration parameters that require large amounts of memory. Then restart Adaptive Server to use the memory specified by the new values. If Adaptive Server fails to start because the total of other configuration parameter values is higher than the max memory value, see Chapter 3, “Configuring Memory,” in System Administration Guide: Volume 2 for information about configuration parameters that use memory.

max native threads per engine

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Maximum values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

max native threads per engine defines the maximum number of native threads the server spawns per engine. When the limit for the native threads is reached, Adaptive Server sessions that require a native thread sleep until another session releases a native thread.

max nesting level

In Adaptive Server 15.0.3 and later, the maximum nesting level has been increased to 100, and the default value to 50.

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>
maximum nesting level sets the maximum nesting level for stored procedures and triggers. Each increased nesting level requires about 160 bytes of additional memory. For example, if you increase the nesting level from 16 to 26, Adaptive Server requires an additional 1600 bytes of memory.

max network packet size

max network packet size specifies the maximum network packet size that can be requested by clients communicating with Adaptive Server.

If some of your applications send or receive large amounts of data across the network, these applications can achieve significant performance improvement by using larger packet sizes. Two examples are large bulk copy operations and applications that read or write large text, unitext, and image values.

Generally, you want:

- default network packet size to be small for users who perform short queries, and
- max network packet size to be large enough to allow users who send or receive large volumes of data to request larger packet sizes.

max network packet size must always be as large as, or larger than, the default network packet size. Values that are not even multiples of 512 are rounded down.
Configuration parameters

For client applications that explicitly request a larger network packet size to receive, you must also configure additional network memory. See “additional network memory” on page 83.

Open Client Server cannot accept a network packet size greater than 64K.

See bcp and isql in the Utility Guide for information on using larger packet sizes from these programs. Open Client Client-Library documentation includes information on using variable packet sizes.

Choosing packet sizes

For best performance, choose a server packet size that works efficiently with the underlying packet size on your network. The goals are:

- Reducing the number of server reads and writes to the network
- Reducing unused space in network packets (increasing network throughput)

For example, if your network packet size carries 1500 bytes of data, setting the Adaptive Server packet size to 1024 (512*2) will probably achieve better performance than setting it to 1536 (512*3). Figure 5-3 shows how four different packet size configurations would perform in such a scenario.
After you determine the available data space of the underlying packets on your network, perform your own benchmark tests to determine the optimum size for your configuration.
Use `sp_sysmon` to see how changing `max network packet size` affects network I/O management and task switching. For example, try increasing `max network packet size` and then checking `sp_sysmon` output to see how this affects `bcp` for large batches. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

max number network listeners

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

`max number network listeners` specifies the maximum number of network listeners allowed by Adaptive Server at one time.

Each master port has one network listener. Generally, there is no need to have multiple master ports, unless your Adaptive Server must communicate over more than one network type. Some platforms support both socket and TLI (Transport Layer Interface) network interfaces. See the *Configuration Guide* for your platform for information on supported network types.

max online engines

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

The role of `max online engines` is to set a high value of engines to be taken online at any one time in an SMP environment. It does not take the number of CPUs available at start-up into account, and allows users to add CPUs at a later date.
max engines online specifies the maximum number of Adaptive Server engines that can be online at any one time in an SMP environment. See Chapter 5, "Managing Multiprocessor Servers," in System Administration Guide: Volume 2 for a detailed discussion of how to set this parameter for your SMP environment.

At start-up, Adaptive Server starts with a single engine and completes its initialization, including recovery of all databases. Its final task is to allocate additional server engines. Each engine accesses common data structures in shared memory.

When tuning the max engines online parameter:

- Never have more online engines than there are CPUs.
- Depending on overall system load (including applications other than Adaptive Server), you may achieve optimal throughput by leaving some CPUs free to run non-Adaptive Server processes.
- You can achieve better throughput by running fewer engines with high CPU use, rather than by running more engines with low CPU use.
- Scalability is application-dependent. Conduct extensive benchmarks on your application to determine the best configuration of online engines.
- You can use sp_engine to take engines offline or to bring them online. You can take all engines offline except engine zero.

max online Q engines

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
</tbody>
</table>

max online Q engines required for MQ. Specifies the maximum number of Q engines you can have online. You may need to increase max online engines to accommodate the number of max online Q engines.
Configuration parameters

max parallel degree

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`max parallel degree` specifies the server-wide maximum number of worker processes allowed per query. This is called the “maximum degree of parallelism.”

If `max parallel degree` is too low, the performance gain for a given query may not be as significant as possible; if `max parallel degree` is too high, the server may compile plans that require more processes than are actually available at execution time, or the system may become saturated, resulting in decreased throughput. To enable parallel partition scans, set this parameter to be equal to or greater than the number of partitions in the table you are querying.

The value of this parameter must be less than or equal to the current value of `number of worker processes`.

If you set `max parallel degree` to 1:

- Adaptive Server scans all tables or indexes serially.
- Adaptive Server forces serial query execution and the optimizer may select plans with a higher parallel degree than if it is disabled.

Changing `max parallel degree` causes all query plans in the procedure cache to be invalidated, and new plans are compiled the next time you execute a stored procedure or trigger.

See Chapter 9, “Parallel Sorting” in the *Performance and Tuning Series: Query Processing and Abstract Plans.*

max pci slots

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
Sets the maximum number of PCI slots Adaptive Server allows. The values are:

- 0, 1 – default bridge with one PCA.

Note JVM support requires a single slot. Do not increase the number of slots.

For more information about PCI slots, see *Java in Adaptive Server Enterprise*.

max query parallel degree

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Used when Adaptive Server is in compatibility mode. Defines the number of worker processes to use for a given query. This parameter is relevant only if you do not want to enable parallelism globally. The value for number of worker process cannot be less than the value for max query parallel degree.

See Chapter 5, “Parallel Query Processing,” in the *Performance and Tuning Series: Query Processing and Abstract Plans*.

For more information about compatibility mode, see the *Migration Technology Guide*.
Configuration parameters

max repartition degree

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Max repartition degree configures the amount of dynamic repartitioning Adaptive Server requires, which enables Adaptive Server to use horizontal parallelism. However, if the number of partitions is too large, the system is flooded with worker processes that compete for resources, which degrades performance. The value for max repartition degree enforces the maximum number of partitions created for these resources. If all of the tables and indexes are unpartitioned, Adaptive Server uses the value for max repartition degree to provide the number of partitions to create as a result of repartitioning the data.

max resource granularity

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Max resource granularity indicates the maximum percentage of the system’s resources a query can use. This parameter is not enforced at execution time, but is only a guide for the query optimizer, and does not prevent the query processor from running queries in parallel. The query engine can avoid some memory-intensive strategies by using max resource granularity as a guide.

max scan parallel degree

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>
max scan parallel degree specifies the server-wide maximum degree of parallelism for hash-based scans which may be used for the following access methods:

- Parallel index scans for partitioned and nonpartitioned tables
- Parallel table scans for nonpartitioned tables

max scan parallel degree applies per table or index; that is, if max scan parallel degree is 3, and one table in a join query is scanned using a hash-based table scan and the second can best be accessed by a hash-based index scan, the query can use 9 worker processes (as long as max scan parallel degree is set to 9 or higher.

The optimizer uses max scan parallel degree as a guideline when it selects the number of processes to use for parallel, nonpartition-based scan operations. It does not apply to parallel sort. Because there is no partitioning to spread the data across devices, parallel processes can be accessing the same device during the scan. This can cause additional disk contention and head movement, which may degrade performance. To prevent multiple disk accesses from becoming a problem, use max scan parallel degree to reduce the maximum number of processes that can access the table in parallel.

If this number is too low, the performance gain for a given query is not as significant as possible; if the number is too large, the server may compile plans that use enough processes to make disk access less efficient. A general rule is to set this parameter to no more than 2 or 3, because it takes only 2 to 3 worker processes to fully utilize the I/O of a given physical device.

Set the value of max scan parallel degree to less than or equal to the current value of max parallel degree. Adaptive Server returns an error if you specify a number larger than the max parallel degree value.

If you set max scan parallel degree to 1, Adaptive Server does not perform hash-based scans.

Changing max scan parallel degree causes all query plans in the procedure cache to be invalidated, and new plans are compiled the next time you execute a stored procedure or trigger.
Configuration parameters

max SQL text monitored

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

max SQL text monitored specifies the amount of memory allocated per user connection for saving SQL text to memory shared by Adaptive Server Monitor.

If you do not allocate enough memory for the batch statements, the text you want to view may be truncated. Sybase recommends that you use an initial value of 1024 bytes of memory per user connection.

The total memory allocated from shared memory for the SQL text is the product of *max SQL text monitored* multiplied by the currently configured number of user connections.

See “Configuring Adaptive Server to save SQL batch text” on page 373.

max transfer history

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

max transfer history controls how many transfer history entries Adaptive Server retains in the `spt_TableTransfer` table in each database. For each table tracked, `spt_TableTransfer` retains:

\[(N \text{ successful entries}) + (N \text{ unsuccessful entries})\]

Where *N* is the value for *max transfer history*.
Lowering this parameter does not automatically remove any entries from spt_TableTransfer. Entries are removed for a given transferred table the next time you initiate a transfer for that table. The table’s successful transfer entries are cleared if the transfer succeeds. If the transfer is unsuccessful, its failed transfer entries are cleared.

For example, if a table has 12 successful and 9 unsuccessful history entries in spt_configure, and you change max transfer history to 5, the next successful transfer of that table places 5 successful entries in spt_configure, but spt_configure retains the previous 9 failed entries.

maximum dump conditions

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

maximum dump conditions sets the maximum number of conditions you can specify under which Adaptive Server generates a dump of data in shared memory.

Note This parameter is included for use only by Sybase Technical Support. Do not modify it unless you are instructed to do so by Sybase Technical Support.

max buffers per lava operator

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
Configuration parameters

maximum buffers per lava operator sets an upper limit for the number of buffers used by Lava operators that perform sorting or hashing (which are “expensive” in terms of processing). Lava operators use buffers from the session’s tempdb data cache pool as a work area for processing rows.

Lava operators often recurse through their input streams. Sorting requires subsequent merge passes until there are enough buffers available to merge all of the remaining runs. Hashing requires subsequent passes to build hash tables on any spilled sets until all of the remaining data can fit into an in-memory hash table. Some queries require less I/O if you increase max buffers per lava operator. This is particularly true for queries that use the HASH DISTINCT, HASH VECTOR AGGREGATE, and HASH UNION operators.

Be careful when you increase the default value of maximum buffers per lava operator for servers with many concurrent users: Adaptive Server may allocate more buffers solely for expensive operators, reducing the number of buffers available for caching user’s tables and other session’s worktables. Use sp_sysmon to analyze tempdb’s data caching effectiveness.

maximum buffers per lava operator works with max resource granularity to limit the number of buffers used. The limit is set to the minimum of:

- The value of maximum buffers per lava operator, or,
- \((\text{max resource granularity}) \times (\text{the number of data buffers in tempdb’s pagesize pool})\)

See “number of sort buffers” on page 206 for information about setting the amount of memory allocated for sort buffers.

maximum failed logins

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

maximum failed logins allows you to set the server-wide maximum number of failed login attempts for logins and roles.
A value of -1 indicates that the failed login count in the syslogins column logincount is updated whenever an authentication failure occurs, but that the account is not locked. Compare with a 0 (zero) value, which avoids incrementing the column for every failed authentication and avoids locking the account due to authentication failures.

See the Reference Manual: Procedures for information about using sp_modifylogin to change the maximum failed logins for a specific role. See the Reference Manual: Commands for information about using alter role to change the maximum failed logins.

maximum job output

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

maximum job output sets limit, in bytes, on the maximum output a single job can produce. If a job produces more output than specified in maximum job output, all the data returned above the value you enter is discarded.

memory alignment boundary

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>a. Minimum determined by server’s logical page size</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

memory alignment boundary determines the memory address boundary on which data caches are aligned.
Some machines perform I/O more efficiently when structures are aligned on a particular memory address boundary. To preserve this alignment, values for memory alignment boundary should always be powers of two between the logical page size and 2048K.

Note The memory alignment boundary parameter is included for support of certain hardware platforms. Do not modify it unless you are instructed to do so by Sybase Technical Support.

memory per worker process

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

memory per worker process specifies the amount of memory, in bytes, used by worker processes. Each worker process requires memory for messaging during query processing. This memory is allocated from a shared memory pool; the size of this pool is memory per worker process multiplied by number of worker processes. For most query processing, the default size is more than adequate. If you use `dbcc checkstorage`, and have set number of worker processes to 1, you may need to increase memory per worker process to 1792 bytes.

messaging memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

176 Adaptive Server Enterprise
Configures the amount of memory available for Sybase messaging.

metrics elap max

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
</tr>
<tr>
<td>Range of values: 0 – 2147483647</td>
</tr>
<tr>
<td>Status: Dynamic</td>
</tr>
<tr>
<td>Display level: Comprehensive</td>
</tr>
<tr>
<td>Required role: System administrator</td>
</tr>
<tr>
<td>Configuration group: Query Tuning</td>
</tr>
</tbody>
</table>

metrics elap max configures maximum elapsed time and thresholds for QP metrics.

metrics exec max

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
</tr>
<tr>
<td>Range of values: 0 – 2147483647</td>
</tr>
<tr>
<td>Status: dynamic</td>
</tr>
<tr>
<td>Display level: Comprehensive</td>
</tr>
<tr>
<td>Required role: System administrator</td>
</tr>
<tr>
<td>Configuration group: Query Tuning</td>
</tr>
</tbody>
</table>

metrics exec max configures maximum execution time and thresholds for QP metrics.

metrics lio max

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
</tr>
<tr>
<td>Range of values: 0 – 2147483647</td>
</tr>
<tr>
<td>Status: Dynamic</td>
</tr>
<tr>
<td>Display level: Comprehensive</td>
</tr>
<tr>
<td>Required role: System administrator</td>
</tr>
<tr>
<td>Configuration group: Query Tuning</td>
</tr>
</tbody>
</table>

metrics lio max configures maximum elapsed time and thresholds for QP metrics.
Configuration parameters

metrics lio max configures maximum logical I/O and thresholds for QP metrics.

metrics pio max

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

metrics pio max configures maximum physical I/O and thresholds for QP metrics.

min pages for parallel scan

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

min pages for parallel scan controls the number of tables and indexes that Adaptive Server can access in parallel. If the number of pages in a table is below the value you set, the table is accessed serially. min pages for parallel scan does not consider page size. If Adaptive Server accesses the indexes and tables, Adaptive Server attempts to repartition the data, if that is appropriate, and to use parallelism above the scans, if that is appropriate.

minimum password length

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise
minimum password length allows you to customize the length of server-wide password values or per-login or per-role password values. The per-login or per-role minimum password length value overrides the server-wide value. Setting minimum password length affects only the passwords you create after you have set the value; existing password lengths are not changed.

Use minimum password length to specify a server-wide value for minimum password length for both logins and roles. For example, to set the minimum password length for all logins and roles to 4 characters, enter:

```
sp_configure "minimum password length", 4
```

To set minimum password length for a specific login at creation, use `sp_addlogin`. For example, to create the new login “joe” with the password “Djdiek3”, and set minimum password length for “joe” to 4, enter:

```
sp_addlogin joe, "Djdiek3", minimum password length=4
```

To set minimum password length for a specific role at creation, use `create role`. To create the new role “intern_role” with the password “temp244” and set the minimum password length for “intern_role” to 0, enter:

```
create role intern_role with passwd "temp244", minimum password length 0
```

The original password is seven characters, but the password can be changed to one of any length because the minimum password length is set to 0.

Use `sp_modifylogin` to set or change minimum password length for an existing login. `sp_modifylogin` only affects user roles, not system roles. For example, to change minimum password length for the login “joe” to 8 characters, enter:

```
sp_modifylogin "joe", @option="minimum password length", @value="8"
```

Note The `value` parameter is a character datatype; therefore, quotes are required for numeric values.

To change the value of the overrides for minimum password length for all logins to 2 characters, enter:

```
sp_modifylogin "all overrides", "minimum password length", @value="2"
```

To remove the overrides for minimum password length for all logins, enter:
Configuration parameters

`sp_modifylogin "all overrides", @option="minimum password length", @value="-1"

Use alter role to set or change the minimum password length for an existing role. For example, to set the minimum password length for "physician_role", an existing role, to 5 characters, enter:

```sql
alter role physician_role set minimum password length 5
```

To override the minimum password length for all roles, enter:

```sql
alter role "all overrides" set minimum password length -1
```

mnc_full_index_filter

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required roles</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

mnc_full_index_filter prevents Adaptive Server from considering noncovered indexes that do not have a limiting search argument at the server level, if there is:

- A column in the index
- A predicate that does not have a histogram

You can use *mnc_full_index_filter* on data-only-locked (DOL) tables in which you have the intelligent index scan, even though the intelligent index scan manufactures search arguments.

Changing the value of *mnc_full_index_filter* does not increase the amount of memory Adaptive Server uses.

mnc_full_index_filter is not enabled for any specific optional goal; the only way to obtain the behavior is to explicitly enable it.
msg confidentiality reqd

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

msg confidentiality reqd requires that all messages into and out of Adaptive Server be encrypted. The use security services parameter must be 1 for messages to be encrypted.

msg integrity reqd

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

msg integrity reqd requires that all messages be checked for data integrity. use security services must be 1 for message integrity checks to occur. If msg integrity reqd is set to 1, Adaptive Server allows the client connection to succeed unless the client is using one of the following security services: message integrity, replay detection, origin checks, or out-of-seq checks.

net password encryption required

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
Configuration parameters

net password encryption reqd restricts login authentication to use only RSA encryption algorithm or the Sybase proprietary algorithm. Table 5-3 describes valid values for net password encryption reqd.

Table 5-3: Values and descriptions for net password encryption reqd

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Allows the client to choose the encryption algorithm used for login passwords on the network, including no password encryption.</td>
</tr>
<tr>
<td>1</td>
<td>Restricts clients to use either RSA or Sybase proprietary encryption algorithms to encrypt login passwords on the network. This provides an incrementally restrictive setting that allows clients who have previously connect to reconnect with the Sybase proprietary algorithm and new clients to connect with the stronger RSA algorithm. A client that attempts to connect without using password encryption fails.</td>
</tr>
<tr>
<td>2</td>
<td>Restricts clients to use only the RSA encryption algorithms to encrypt login passwords on the network. This provides strong RSA encryption of passwords. Clients that attempt to connect without using the RSA encryption fail.</td>
</tr>
</tbody>
</table>

When a connection is refused because network password encryption is required, the client receives:

Msg 1640, Level 16, State 2:
Adaptive Server requires encryption of the login password on the network.

number of alarms

Summary information

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

number of alarms specifies the number of alarm structures allocated by Adaptive Server.

The Transact-SQL command waitfor defines a specific time, time interval, or event for the execution of a statement block, stored procedure, or transaction. Adaptive Server uses alarms to correctly execute waitfor commands. Other internal processes require alarms.
When Adaptive Server needs more alarms than are currently allocated, this message is written to the error log:

`uasetalarm: no more alarms available`

The number of bytes of memory required for each alarm structure is small. If you raise the number of alarms value significantly, adjust max memory accordingly.

number of aux scan descriptors

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

number of aux scan descriptors sets the number of auxiliary scan descriptors available in a pool shared by all users on a server.

Each user connection and each worker process has 48 scan descriptors exclusively allocated to it. Of these, 16 are reserved for user tables, 12 are reserved for worktables, and 20 are reserved for system tables (with 4 of these set aside for rollback conditions). A descriptor is needed for each table referenced, directly or indirectly, by a query. For user tables, a table reference includes:

- All tables referenced in the from clause of the query
- All tables referenced in a view named in the query (the view itself is not counted)
- All tables referenced in a subquery
- All tables that need to be checked for referential integrity (these are used only for inserts, updates, and deletes)
- A table created with `select...into`
- All worktables created for the query
If a table is referenced more than once (for example, in a self-join, in more than one view, or in more than one subquery) the table is counted each time. If the query includes a union, each select statement in the union query is a separate scan. If a query runs in parallel, the coordinating process and each worker process needs a scan descriptor for each table reference.

When the number of user tables referenced by a query scan exceeds 16, or the number of worktables exceeds 12, scan descriptors from the shared pool are allocated. Data-only-locked tables also require a system table descriptor for each data-only-locked table accessed with a table scan (but not those accessed with an index scan). If more than 16 data-only-locked tables are scanned using table scans in a query, auxiliary scan descriptors are allocated for them.

If a scan needs auxiliary scan descriptors after it has used its allotted number, and there are no descriptors available in the shared pool, Adaptive Server displays an error message and rolls back the user transaction.

If none of your queries need additional scan descriptors, you may still want to leave number of aux scan descriptors set to the default value in case your system requirements grow. Set it to 0 only if you are sure that users on your system will never run queries on more than 16 tables and that your tables will always have few or no referential integrity constraints. See “Monitoring scan descriptor usage” on page 185.

If your queries need more scan descriptors, use one of these methods to remedy the problem:

- Rewrite the query, or break it into steps using temporary tables. For data-only-locked tables, consider adding indexes if there are many table scans.
- Redesign the table’s schema so that it uses fewer scan descriptors, if it uses a large number of referential integrity constraints. You can find how many scan descriptors a query would use by enabling set showplan, noexec on before running the query.
- Increase the number of aux scan descriptors setting.

The following sections describe how to use sp_monitorconfig to monitor the current and high-water-mark usage to avoid running out of descriptors, and how to estimate the number of scan descriptors you need.
CHAPTER 5 Setting Configuration Parameters

Monitoring scan descriptor usage

sp_monitorconfig reports the number of unused (free) scan descriptors, the number of auxiliary scan descriptors currently being used, the percentage that is active, and the maximum number of scan descriptors used since the server was last started. Run it periodically, at peak periods, to monitor scan descriptor use.

This example shows scan descriptor use with 500 descriptors configured:

```
sp_monitorconfig "aux scan descriptors"
```

Usage information at date and time: Apr 22 2002 2:49PM.

<table>
<thead>
<tr>
<th>Name</th>
<th>num_free</th>
<th>num_active</th>
<th>pct_act</th>
<th>Max_Used</th>
<th>Reused</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of aux</td>
<td>260</td>
<td>240</td>
<td>48.00</td>
<td>427</td>
<td>NA</td>
</tr>
</tbody>
</table>

Only 240 auxiliary scan descriptors are being used, leaving 260 free. However, the maximum number of scan descriptors used at any one time since the last time Adaptive Server was started is 427, leaving about 20 percent for growth in use and exceptionally heavy use periods. “Re-used” does not apply to scan descriptors.

Estimating and configuring auxiliary scan descriptors

To get an estimate of scan descriptor use:

1. Determine the number of table references for any query that references more than 16 user tables, or for those that have a large number of referential constraints, by running the query with `set showplan` and `set noexec` enabled. If auxiliary scan descriptors are required, `showplan` reports the number needed:

 Auxiliary scan descriptors required: 17

 The reported number includes all auxiliary scan descriptors that are required for the query, including those for all worker processes. If your queries involve only referential constraints, you can also use `sp_helpconstraint`, which displays a count of the number of referential constraints per table.

2. For each query that uses auxiliary scan descriptors, estimate the number of users who would run the query simultaneously and multiply. If 10 users are expected to run a query that requires 8 auxiliary descriptors, a total of 80 will be needed at any one time.

3. Add the per-query results to calculate the number of needed auxiliary scan descriptors.
number of backup connections

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

number of backup connections sets the maximum number of user connections Backup Server establishes to dump or load in-memory databases. The value of number of backup connections restricts the maximum number of stripes for an archived database because Backup Server requires one user connection per stripe when you run dump or load database, and requires an extra connection to run the dump database command.

number of backup connections is a limit, and does not consume any resources. Setting number of backup connections to 0 means that Backup Server can use the maximum number of user connections.

number of ccbs

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Reserved for future use.

number of checkpoint tasks

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>

Reserved for future use.
number of checkpoint tasks configures parallel checkpoints. The value of number of checkpoint tasks must be less than or equal to the value of number of engines at start-up. The maximum value is limited by the value of the configuration parameters number of engines online at startup and number of open databases, with a maximum of 8.

The default value sets serial checkpoints as the default behavior.

number of devices

number of devices controls the number of database devices Adaptive Server can use. It does not include devices used for database or transaction log dumps.

When you execute disk init, you can also assign the virtual device number (the vdevno), although this value is optional. If you do not assign the vdevno, Adaptive Server assigns the next available virtual device number.

If you do assign the virtual device number, each device number must be unique among the device numbers used by Adaptive Server. The number 0 is reserved for the master device. You can enter any unused device number that falls in the valid range of values.

To determine which numbers are currently in use, enter:

```
select vdevno from master..sysdevices
where status & 2 = 2
```
Here, “status 2” specifies physical disk.

Note On UNIX platforms: If you are using a large number of devices, Sybase recommends that you set the appropriate number of devices and user connections in the configuration file and then restart Adaptive Server. Attempting to configure a large number of devices dynamically using `sp_configure` may fail.

number of dtx participants

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

`number of dtx participants` sets the total number of remote transactions that the Adaptive Server transaction coordination service can propagate and coordinate simultaneously. A DTX participant is an internal memory structure that the coordination service uses to manage a remote transaction branch. As transactions are propagated to remote servers, the coordination service must obtain new DTX participants to manage those branches.

Setting `number of dtx participants` to a number smaller than the default reduces the number of remote transactions that the server can manage. If no DTX participants are available, new distributed transactions cannot start. In-progress distributed transactions may abort if no DTX participants are available to propagate a new remote transaction.

Setting `number of dtx participants` to a number larger than the default increases the number of remote transaction branches that Adaptive Server can handle, but also consumes more memory.

Optimizing the number of DTX participants for your system

During a peak period, use `sp_monitorconfig` to examine the use of DTX participants:

```
sp_monitorconfig "number of dtx participants"
```
If the `num_free` value is zero or very low, new distributed transactions may be unable to start due to a lack of DTX participants. Consider increasing the number of dtx participants value.

A low Max_used value may indicate that unused DTX participants are consuming memory that could be used by other server functions. Consider reducing the value of number of dtx participants.

number of dump threads

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`number of dump threads` controls the number of threads that Adaptive Server spawns to perform a memory dump. Using the appropriate value for number of dump threads can reduce the amount of time the engines are halted during the memory dump.

When you are determining the number of threads for memory:

- Use a value of 8 if the machine has enough free memory for the file system cache to hold the entire memory dump.
- If you do not know whether the machine has enough free memory, the value for number of dump threads depends on many factors, including the speed of the I/O system, the speed of the disks, the controller’s cache, whether the dump file lives in a logical volume manager created on several disks, and so on.
- Disable parallel processing (by assigning a value of 1) if you do not halt the engines when performing memory dumps, described below.
Configuration parameters

When Adaptive Server performs a memory dump, the number of files it creates is the sum of the number of memory segments that it has allocated multiplied by the number of threads configured. Adaptive Server uses separate threads to write on separate files. When this job completes, the engines are restarted, and the files are merged into the target dump file. Because of this, the time to dump the shared memory in parallel is greater than doing it serially.

- If you halt the engines during the memory dump, using a value other than 1 may reduce the amount of time the engines spend stopped while dumping the memory.

number of engines at startup

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

Adaptive Server allows users to take all engines offline, except engine zero. number of engines at startup is used exclusively during start-up to set the number of engines brought online. It allows great flexibility in the number of engines brought online, subject to the restriction that you cannot set the value of number of engines at startup to a value greater than the number of CPUs on your machine, or to a value greater than the configuration of max online engines. Users who do not intend to bring engines online after start-up should set max online engines and number of engines at startup to the same value. A difference between number of engines at startup and max online engines wastes approximately 1.8 MB of memory per engine.

number of histogram steps

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
</tbody>
</table>
number of histogram steps specifies the number of steps in a histogram.

number of index trips

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

number of index trips specifies the number of times an aged index page traverses the most recently used/least recently used (MRU/LRU) chain before it is considered for swapping out. As you increase the value of number of index trips, index pages stay in cache for longer periods of time.

A data cache is implemented as an MRU/LRU chain. As the user threads access data and index pages, these pages are placed on the MRU end of the cache’s MRU/LRU chain. In some high transaction environments (and in some benchmarks), you may want to keep index pages in cache, since they will probably be needed again soon. Setting number of index trips higher keeps index pages in cache longer; setting it lower allows index pages to be swapped out of cache sooner.

Note If the cache used by an index is relatively small (especially if it shares space with other objects) and you have a high transaction volume, do not set number of index trips too high. The cache can flood with pages that do not age out, and this may lead to the timing out of processes that are waiting for cache space.

Before changing the value of number of index trips to a number other than 0, make sure the application has sufficient cache to store all index, OAM, and data pages. Consult Sybase Technical Support before changing the value of number of index trips.

number of java sockets

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid values</td>
<td>0 – 32767</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Java Services, Memory Use</td>
</tr>
</tbody>
</table>

number of java sockets enables the Java VM and the java.net classes Sybase supports.

number of large i/o buffers

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid values</td>
<td>1–256</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Disk I/O, Memory Use, SQL Server Administration</td>
</tr>
</tbody>
</table>
number of large I/O buffers sets the number of allocation unit-sized buffers reserved for performing large I/O for certain Adaptive Server utilities. These large I/O buffers are used primarily by the `load database` command, which uses one buffer to load the database, regardless of the number of stripes it specifies. `load database` then uses as many as 32 buffers to clear the pages for the database it is loading. These buffers are not used by `load transaction`. To perform more than six `load database` commands concurrently, configure one large I/O buffer for each `load database` command.

`create database` and `alter database` use these buffers for large I/O while clearing database pages. Each instance of `create database` or `load database` can use as many as 32 large I/O buffers.

These buffers are also used by disk mirroring and by some `dbcc` commands.

Note In Adaptive Server version 12.5.0.3 and later, the size of the large I/O buffers is one allocation (256 pages), not one extent (8 pages). The server thus requires more memory allocation for large buffers. For example, a disk buffer that required memory for 8 pages in earlier versions now requires memory for 256 pages.

number of locks

Summary information

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>5000</td>
</tr>
<tr>
<td>Range of values</td>
<td>1000–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Lock Manager, Memory Use</td>
</tr>
</tbody>
</table>

number of locks sets the total number of available locks for all users on Adaptive Server.

The total number of locks needed by Adaptive Server depends on the number of concurrent and parallel processes, and the types of actions performed by the transactions. To see how many locks are in use at a particular time, use `sp_lock`.

For serial operation, Sybase suggests that you start by assigning 20 locks for each active, concurrent connection.
Parallel execution requires more locks than serial execution. For example, if you find that queries use an average of five worker processes, try increasing by one-third the number of locks configured for serial operation.

If the system runs out of locks, Adaptive Server displays a server-level error message. If users report lock errors, you may need to increase number of locks; but remember that locks use memory. See Chapter 3, “Configuring Memory,” in the *System Administration Guide Volume 2*.

Note Datarows locking may require that you change the value for number of locks. See the *Performance and Tuning Series: Locking and Concurrency Control*.

number of mailboxes

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

number of mailboxes specifies the number of mailbox structures allocated by Adaptive Server. Mailboxes, which are used with messages, are used internally by Adaptive Server for communication and synchronization between kernel service processes. Mailboxes are not used by user processes. Do not modify this parameter unless instructed to do so by Sybase Technical Support.

number of messages

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

number of messages
number of messages specifies the number of message structures allocated by Adaptive Server. Messages, which are used with mailboxes, are used internally by Adaptive Server for communication and synchronization between kernel service processes. Messages are also used to coordinate between a family of processes in parallel processing. Do not modify this parameter unless instructed to do so by Sybase Technical Support.

number of oam trips

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
</tbody>
</table>

number of oam trips specifies the number of times an object allocation map (OAM) page traverses the MRU/LRU chain before it is considered for swapping out. The higher the value of number of oam trips, the longer aged OAM pages stay in cache.

Each table, and each index on a table, has an OAM page, which holds information on pages allocated to the table or index and is checked when a new page is needed for the index or table. (See “page utilization percent” on page 216.) A single OAM page can hold allocation mapping for between 2,000 and 63,750 data or index pages.

The OAM pages point to the allocation page for each allocation unit where the object uses space. The allocation pages, in turn, track the information about extent and page usage within the allocation unit.
In some environments and benchmarks that involve significant allocations of space (that is, massive bulk copy operations), keeping OAM pages in cache longer improves performance. Setting `number of oam trips` to a higher value keeps OAM pages in cache.

Note If the cache is relatively small and used by a large number of objects, do not set `number of oam trips` too high. This may result in the cache being flooded with OAM pages that do not age out, and user threads may begin to time out.

Before changing the value of `number of oam trips` to a number other than 0, make sure the application has sufficient cache to store all index, OAM, and data pages. Consult Sybase Technical Support before changing the value of `number of oam trips`.

number of open databases

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>12</td>
</tr>
<tr>
<td>Range of values</td>
<td>6 – 2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Meta-Data Caches, SQL Server Administration</td>
</tr>
</tbody>
</table>

`number of open databases` sets the maximum number of databases that can be open simultaneously on Adaptive Server.

When you calculate a value, include the system databases `master`, `model`, `sybsystemprocs`, and `tempdb`. If you have installed auditing, include the `sybsecurity` database. Also, count the sample databases `pubs2` and `pubs3`, the `syntax` database `sybsyntax`, and the `dbcc` database `dbccdb` if they are installed.

If you are planning to make a substantial change, such as loading a large database from another server, use `sp_helpconfig` to calculate an estimated metadata cache size by using `sp_helpconfig`. `sp_helpconfig` displays the amount of memory required for a given number of metadata descriptors, as well as the number of descriptors that can be accommodated by a given amount of memory. A database metadata descriptor represents the state of the database while it is in use or cached between uses.
Optimizing the number of open databases

If Adaptive Server displays a message saying that you have exceeded the allowable number of open databases, adjust the value.

1. Use `sp_countmetadata` to find the total number of database metadata descriptors:

   ```
   sp_countmetadata "open databases"
   ```

 The best time to run `sp_countmetadata` is when there is little activity on the server. Running `sp_countmetadata` during a peak time can cause contention with other processes.

 Suppose Adaptive Server reports the following information:

 There are 50 databases, requiring 1719 Kbytes of memory. The 'open databases' configuration parameter is currently set to 500.

2. Configure number of open databases with the value of 50:

   ```
   sp_configure "number of open databases", 50
   ```

 This new configuration number is only a starting point; base the ideal size on the number of active metadata database cache descriptors, not the total number of databases.

3. During a peak period, find the number of active metadata descriptors:

   ```
   sp_monitorconfig "open databases"
   ```

 Usage information at date and time: Apr 22 2002 2:49PM.

<table>
<thead>
<tr>
<th>Name</th>
<th>num_free</th>
<th>num_active</th>
<th>pct_act</th>
<th>Max_Used</th>
<th>Reused</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of open</td>
<td>50</td>
<td>20</td>
<td>40.00</td>
<td>26</td>
<td>No</td>
</tr>
</tbody>
</table>

 In this example, 20 metadata database descriptors are active; the maximum number of descriptors that have been active since the server was last started is 26.

4. Configure number of open databases to 26, plus additional space for 10 percent more (about 3), for a total of 29:

   ```
   sp_configure "number of open databases", 29
   ```
Configuration parameters

If there is a lot of activity on the server, for example, if databases are being added or dropped, periodically run `sp_monitorconfig`. Reset the cache size as the number of active descriptors changes.

number of open indexes

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

`number of open indexes` sets the maximum number of indexes that can be used simultaneously on Adaptive Server.

If you are planning to make a substantial change, such as loading databases with a large number of indexes from another server, use `sp_helpconfig` to calculate an estimated metadata cache size. `sp_helpconfig` displays the amount of memory required for a given number of metadata descriptors, as well as the number of descriptors that can be accommodated by a given amount of memory. An index metadata descriptor represents the state of an index while it is in use or cached between uses.

❖ **Optimizing number of open indexes**

If the default value of `number of open indexes` is insufficient, Adaptive Server displays a message after trying to reuse active index descriptors, and you must adjust this value.

1. Use `sp_countmetadata` to find the total number of index metadata descriptors:

   ```sql
   sp_countmetadata "open indexes"
   ```

The best time to run `sp_countmetadata` is when there is little activity in the server. Running `sp_countmetadata` during a peak time can cause contention with other processes.

Suppose Adaptive Server reports the following information:

There are 698 user indexes in all database(s), requiring 286.289 Kbytes of memory. The 'open
indexes' configuration parameter is currently set to 500.

2 Configure the number of open indexes parameter to 698:

```
sp_configure "number of open indexes", 698
```

This new configuration is only a starting point; base the ideal size on the number of active index metadata cache descriptors, not the total number of indexes.

3 During a peak period, find the number of active index metadata descriptors:

```
sp_monitorconfig "open indexes"
```

Usage information at date and time: Apr 22 2002 2:49PM.

```
Name   num_free num_active pct_act Max_Used Reused
------- -------- --------- -------- -------- -----
number of open 182 516 73.92 590 No
```

In this example, 590 is the maximum number of index descriptors that have been used since the server was last started.

4 Configure the number of open indexes configuration parameter to 590, plus additional space for 10 percent more (59), for a total of 649:

```
sp_configure "number of open indexes", 649
```

If there is a lot of activity on the server, for example, if tables are being added or dropped, periodically run `sp_monitorconfig`. Reset the cache size as the number of active descriptors changes.

number of open objects

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
number of open objects sets the maximum number of objects that can be open simultaneously on Adaptive Server.

If you are planning to make a substantial change, such as loading databases with a large number of objects from another server, use `sp_helpconfig` to recalculate an estimated metadata cache size. `sp_helpconfig` displays the amount of memory required for a given number of metadata descriptors, as well as the number of descriptors that can be accommodated by a given amount of memory. An object metadata descriptor represents the state of an object while it is in use, or cached between uses.

❖ **Optimizing number of open objects**

If the default number of open objects is insufficient, Adaptive Server displays a message after trying to reuse active object descriptors.

1. Use `sp_countmetadata` to find the total number of object metadata cache descriptors:

   ```
   sp_countmetadata "open objects"
   ```

 The best time to run `sp_countmetadata` is when there is little activity in the server. Running `sp_countmetadata` during a peak time can cause contention with other processes.

 Suppose Adaptive Server reports this information:

   ```
   There are 1340 user objects in all database(s), requiring 1443 Kbytes of memory. The 'open objects' configuration parameter is currently set to 500.
   ```

2. Configure number of open objects to account for the number of open objects:

   ```
   sp_configure "number of open objects", 1407
   ```

 1407 covers the 1340 user objects, plus 5 percent to accommodate temporary tables.

 This new configuration is only a starting point; base the ideal number on the active object metadata cache descriptors, not the total number of objects.

3. During a peak period, find the number of active metadata cache descriptors:

   ```
   sp_monitorconfig "open objects"
   ```

 Usage information at date and time: Aug 20 2007 1:32PM..

 Name Num_free Num_active Pct_act Max_Used Num_reuse
In this example, 1497 is the maximum number of object descriptors that have been used since the server was last started.

4 Configure the number of open objects to 1397, plus 10 percent (140), for a total of 1537:

 sp_configure "number of open objects", 1537

If there is a lot of activity on the server, for example, if tables are being added or dropped, periodically run sp_monitorconfig. Reset the cache size as the number of active descriptors changes. See sp_monitorconfig in the Reference Manual: Procedures.

number of open partitions

<table>
<thead>
<tr>
<th>Summary Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

Specifies the number of partitions that Adaptive Server can access at one time.

If the default value of number of open partitions is insufficient, Adaptive Server displays a message after trying to reuse active partition descriptors. You must adjust this value.

1 Use sp_countmetadata to find the total number of open partitions. For example:

 sp_countmetadata "open partitions"

The best time to run sp_countmetadata is when there is little activity in the server. Running sp_countmetadata during a peak time can cause contention with other processes.

Suppose Adaptive Server reports the following information:

There are 42 user partitions in all database(s), requiring 109 Kbytes of memory. The 'open
Configuration parameters

202

Adaptive Server Enterprise

partitions' configuration parameter is currently set to 110.

2 Configure number of open partitions to 110, as reported by
sp_countmetadata:

sp_configure "number of open partitions", 110

3 During a peak period, find the number of active metadata cache
descriptors, for example:

sp_monitorconfig "open partitions"
Usage information at date and time: Jun 30 2008 3:15PM.

<table>
<thead>
<tr>
<th>Name</th>
<th>Num_free</th>
<th>Num_active</th>
<th>Pct_act</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of open partitions</td>
<td>27</td>
<td>57</td>
<td>51.8</td>
</tr>
</tbody>
</table>

In this example, 83 is the maximum number of partition descriptors that
have been used since the server was last started.

4 Configure the number of open partitions to 83, plus 10 percent (8), for a
total of 91:

sp_configure "number of open partitions", 91

If there is a lot of activity on the server, for example, if tables are being added
or dropped, periodically run sp_monitorconfig. Reset the cache size as the
number of active descriptors changes. See sp_monitorconfig in the Reference

number of pre-allocated extents

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>2</td>
</tr>
<tr>
<td>Range of values</td>
<td>1–32</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>
number of pre-allocated extents specifies the number of extents (eight pages) allocated in a single trip to the page manager. Currently, this parameter is used only by \texttt{bcp} to improve performance when copying in large amounts of data. By default, \texttt{bcp} allocates two extents at a time and writes an allocation record to the log each time.

Setting \texttt{number of pre-allocated extents} means that \texttt{bcp} allocates the specified number of extents each time it requires more space, and writes a single log record for the event.

An object may be allocated more pages than actually needed, so the value of \texttt{number of pre-allocated extents} should be low if you are using \texttt{bcp} for small batches. If you are using \texttt{bcp} for large batches, increase the value of \texttt{number of pre-allocated extents} to reduce the amount of overhead required to allocate pages and to reduce the number of log records.

Using a value of 32 for the number of pre-allocated extents

Using a value of 32 for \texttt{number of pre-allocated extents} has a special significance for configuration and impacts the space allocations \texttt{Adaptive Server} performs internally. If you set \texttt{number of pre-allocated extents} to 32, \texttt{Adaptive Server} reserves an entire allocation unit worth of extents for utility operations like \texttt{bcp-in} and \texttt{select into}, both of which use the large-scale allocation scheme of space reservation. This greatly improves the performance of these utilities, particularly when you run them concurrently on multiple nodes. Consequently, using a value of 32 guarantees that each node of a cluster is able to work independently on its own allocation unit without interference from the other nodes.

In earlier versions of \texttt{Adaptive Server}, the \texttt{number of pre-allocated extents} parameter specified the number of extents reserved in a single allocation call for tables of all sizes.

With this version of \texttt{Adaptive Server}, the value of \texttt{number of pre-allocated extents} is ignored for large tables with 240 or more pages for these commands only:

- alter table \texttt{table_name} add \texttt{column_name} . . .
- alter table \texttt{table_name} modify \texttt{column_name} . . .
- alter table \texttt{table_name} drop \texttt{column_name} . . .
- alter table \texttt{table_name} lock . . .
- reorg rebuild
When you run these command on tables larger than 240 pages, Adaptive Server reserves an entire allocation unit (32 extents), which greatly improves performance, particularly when you run them concurrently on multiple nodes.

The value of number of pre-allocated extents continues to be observed for the above commands for tables with fewer than 240 pages, and for all commands (such as select into, bcp, alter table partition) for tables of all sizes.

number of Q engines at startup

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

number of Q engines at startup, which specifies the number of Q engines that are online when the server starts, is required for MQ. You may need to increase max online engines to accommodate the number of max online Q engines.

number of remote connections

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

number of remote connections specifies the number of logical connections that can simultaneously be open to and from an Adaptive Server. Each simultaneous connection to XP Server for ESP execution uses up to one remote connection each. See Chapter 15, “Managing Remote Servers.”
number of remote logins

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>0–32767</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
<tr>
<td>Memory Use, Network Communication</td>
</tr>
</tbody>
</table>

number of remote login controls the number of active user connections from Adaptive Server to remote servers. Each simultaneous connection to XP Server for ESP execution uses up to one remote login each. Set this parameter to the same (or a lower) value as *number of remote connections*. See Chapter 15, “Managing Remote Servers.”

number of remote sites

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>0–32767</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
<tr>
<td>Memory Use, Network Communication</td>
</tr>
</tbody>
</table>

number of remote sites determines the maximum number of remote sites that can simultaneously access Adaptive Server. Each Adaptive Server-to-XP Server connection uses one remote site connection.

Internally, *number of remote sites* determines the number of site handlers that can be active at any one time; all server accesses from a single site are managed with a single site handler. For example, if you set *number of remote sites* to 5, and each site initiates three remote procedure calls, *sp_who* shows 5 site handler processes for the 15 processes. See Chapter 15, “Managing Remote Servers.”
number of sort buffers

Summary information

- Default value: 500
- Range of values: 0–32767
- Status: Dynamic
- Display level: Comprehensive
- Required role: System administrator
- Configuration group: SQL Server Administration

number of sort buffers specifies the amount of memory allocated for buffers used to hold pages read from input tables and perform index merges during sorts. number of sort buffers is used only for parallel sorting. Parallel sorts are used when you:

- Run updates statistics
- Create indexes

The value you use for number of sort buffers depends on the page size of the server.

Sybase recommends that you leave this parameter set to the default except when you are creating indexes in parallel.

Setting the value too high can rob nonsorting processes of access to the buffer pool in caches being used to perform sorts.

If you configure a high number of sort buffers, a sort on a large table may require more procedure cache. The effect is more pronounced with tables that have smaller row sizes, because the number of rows per page is higher.

This equation estimates the amount of procedure cache required (in bytes):

\[(\text{Number of sort buffers}) \times (\text{rows per page}) \times 100\]

If you do not configure enough procedure cache for the number of sort buffers, the sort may fail with error message 701. If this occurs, reconfigure Adaptive Server with a lower number of sort buffers and retry the sort.

See “max buffers per lava operator” on page 173 for information about setting an upper limit for the number of buffers used by an operator.
number of user connections

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>5–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, User Environment</td>
</tr>
</tbody>
</table>

number of user connections sets the maximum number of user connections that can simultaneously be connected to Adaptive Server. It does not refer to the maximum number of processes; that number depends not only on the value of this parameter but also on other system activity.

The maximum allowable number of file descriptors per process is operating-system-dependent; see the configuration documentation for your platform.

The number of file descriptors available for Adaptive Server connections is stored in the global variable `@@max_connections`. You can report the maximum number of file descriptors your system can use with:

```sql
select @@max_connections
```

The return value represents the maximum number of file descriptors allowed by the system for your processes, minus overhead. Overhead increases with the number of engines. For more information on how multiprocessing affects the number file descriptors available for Adaptive Server connections, see Chapter 5, Managing Multiprocessor Servers,” in System Administration Guide: Volume 2.

In addition, you must reserve a number of connections for the following items, which you also set with configuration parameters:

- The database devices, including mirror devices
- Site handlers
- Network listeners

The number of user connections + (number of devices * max online engines * 2) + number of remote sites + max number network listeners cannot be greater than the value of `@@max_connections`.
Configuration parameters

Reserved connections

One connection from the configured number of connections is reserved for temporary administrative tasks to make sure that database administrators can connect to Adaptive Server. A reserved connection has a total login time of 15 minutes, and can be allocated only to a user who has the sa_role. Adaptive Server terminates the connection after 15 minutes to ensure the availability of the reserved connection at an installation with multiple database administrators.

Adaptive Server also automatically uses this reserved connection when a client uses the last resource for connecting to Adaptive Server.

If Adaptive Server is using a reserved connection, the following informational message appears when the user logs in to Adaptive Server:

There are not enough user connections available; you are being connected using a temporary administrative connection which will time out after 15 minutes. Increase the value of the 'number of user connections' parameter

Adaptive Server also prints a message similar to the following to the error log when the final connection to Adaptive Server terminates due to a timeout:

00:0000:0008:2003/03/14 11:25:31.36 server Process '16' has been terminated as it exceeded the maximum login time allowed for such processes. This process used a connection reserved for system administrators and has a maximum login period of 15 minutes

Optimizing max number of user connections

There is no formula to determine how many connections to allow for each user. You must estimate this number, based on the system and user requirements. You must also take into account that on a system with many users, connections needed only occasionally or transiently can generally be shared among users.

The following processes require user connections:

- One connection is needed for each user running isql.
- Application developers use one connection for each editing session.
The number of connections required by users running an application depends on how the application has been programmed. Users executing Open Client programs need one connection for each open DB-Library dbprocess or Client-Library™ cs_connection.

Note Sybase suggests that you estimate the maximum number of connections used by Adaptive Server and update number of user connections as you add physical devices or users to the system. Periodically use sp_who to determine the number of active user connections on your Adaptive Server.

Certain other configuration parameters, including stack size and default network packet size, affect the amount of memory for each user connection.

Adaptive Server uses the value of number of user connections to establish the number of shared-memory connections for EJB Server. Thus, if number of user connections is 30, Adaptive Server establishes 10 shared-memory connections for EJB Server. Shared-memory connections are not a subset of user connections, and are not subtracted from the number of user connections.

To increase the number of user connections for shared memory, you must:

1. Increase number of user connections to a number one-third of which is the number of desired shared-memory connections.
2. Restart Adaptive Server.

Although number of user connections is a dynamic configuration parameter, you must restart the server to change the number of user connections for shared memory. See the EJB Server Users Guide.

With Adaptive Server version 12.5.3 ESD #2, no sockets are automatically reserved for EJB. However, you can enable trace flag 1642 to revert to the functionality of earlier version, reserving one-third of the sockets for EJB. Enable traceflag 1642 to set up the EJB server. For this version of Adaptive Server, you can ignore this message, "hbc_ninit: No sockets available for HBC", in the error log if the EJB server is not configured.

In Adaptive Server version 12.5.3 and later, if the EJB server is enabled and HBC sockets are not available, "hbc_ninit: No sockets available for HBC" is reported. If traceflag 1642 is not enabled, set the flag, and restart Adaptive Server. If the EJB server is not enabled, then no message is reported and Adaptive Server automatically disables the sockets reserved for EJB server.
Configuration parameters

number of worker processes

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

The **number of worker processes** specifies the maximum number of worker processes that Adaptive Server can use at any one time for all simultaneously running parallel queries.

Adaptive Server issues a warning message at start-up if there is insufficient memory to create the specified number of worker processes. **Memory per worker process** controls the memory allocated to each worker process.

If you have not configured **number of worker processes** for a sufficient number of threads from the worker thread pool, Adaptive Server adjusts query plans at runtime to use fewer worker threads. If Adaptive Server cannot adjust the queries at runtime, they recompile serially. However, **alter table** and **execute immediate** commands are aborted if they do not have sufficient worker threads.

o/s file descriptors

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

The **o/s file descriptors** indicates the maximum per-process number of file descriptors configured for your operating system. This parameter is read-only and cannot be configured through Adaptive Server.

Many operating systems allow you to configure the number of file descriptors available per process. See your operating system documentation.
The number of file descriptors available for Adaptive Server connections, which is less than the value of o/s file descriptors, is stored in the variable `@@max_connections`. See “Upper limit to the maximum number of user connections” on page 207.

object lockwait timing

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

object lockwait timing controls whether Adaptive Server collects timing statistics for requests of locks on objects.

open index hash spinlock ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

open index hash spinlock ratio sets the number of index metadata descriptor hash tables that are protected by one spinlock. This parameter is used only in multiprocessing systems only.

All the index descriptors belonging to a table are accessible through a hash table. When you run a query on the table, Adaptive Server uses hash tables to look up the necessary index information in its sysindexes rows. A hash table is an internal mechanism used by Adaptive Server to retrieve information quickly.
Usually, you do not need to change this parameter. In rare instances, however, you may need to reset it if Adaptive Server demonstrates contention from hash spinlocks. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

For more information about configuring spinlock ratios, see Chapter 5, “Managing Multiprocessor Servers,” in the *System Administration Guide: Volume 2*.

open index spinlock ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

open index spinlock ratio specifies the number of index metadata descriptors that are protected by one spinlock.

Adaptive Server uses a spinlock to protect an index descriptor, since more than one process can access the contents of the index descriptor. open index spinlock ratio is used only in multiprocessing systems.

The value specified for this parameter defines the ratio of index descriptors per spinlock.

If one spinlock is shared by too many index descriptors, it can cause spinlock contention. Use sp_sysmon to get a report on spinlock contention. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

If sp_sysmon output indicates an index descriptor spinlock contention of more than 3 percent, try decreasing the value of open index spinlock ratio.

See Chapter 5, Managing Multiprocessor Servers,” in *System Administration Guide: Volume 2*.

open object spinlock ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>
open object spinlock ratio specifies the number of object descriptors that are protected by one spinlock. Adaptive Server uses a spinlock to protect an object descriptor, since more than one process can access the contents of the object descriptor. open object spinlock ratio is used only in multiprocessing systems.

The default value for this parameter is 100; 1 spinlock for each 100 object descriptors configured for your server. If your server is configured with only one engine, Adaptive Server sets only 1 object descriptor spinlock, regardless of the number of object descriptors.

If one spinlock is shared by too many object descriptors, it causes spinlock contention. Use sp_sysmon to get a report on spinlock contention. See the Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

If sp_sysmon output indicates an object descriptor spinlock contention of more than 3 percent, try decreasing the value of the open object spinlock ratio parameter.

optimization goal

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>allrows_mix</td>
</tr>
<tr>
<td>Range of values</td>
<td>allrows_oltp, allrows_dss</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Query Tuning</td>
</tr>
</tbody>
</table>
Configuration parameters

Optimization goals are a convenient way to match user query demands with the best optimization techniques, ensuring optimal use of the optimizer’s time and resources. Adaptive Server allows users to configure for two optimization goals, which you can specify at three tiers: server level, session level, and query level.

The server-level optimization goal is overridden at the session level, which is overridden at the query level.

These optimization goals allow you to choose an optimization strategy that best fits your query environment:

- allrows_oltp – the most useful goal for purely OLTP queries.
- allrows_dss – the most useful goal for operational DSS queries of medium-to-high complexity.

optimization timeout limit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Optimization timeout limit specifies the amount of time, as a fraction of the estimated execution time of the query, that Adaptive Server can spend optimizing a query.

A value of 0 indicates there is no optimization timeout.

page lock promotion HWM

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
page lock promotion HWM (high-water mark), with page lock promotion LWM (low-water mark) and page lock promotion PCT (percentage), specifies the number of page locks permitted during a single scan session of a page-locked table or index before Adaptive Server attempts to escalate from page locks to a table lock.

When the number of page locks acquired during a scan session exceeds page lock promotion HWM, Adaptive Server attempts to acquire a table lock. page lock promotion HWM value cannot be higher than number of locks.

For more detailed information on scan sessions and setting up page lock promotion limits, see Chapter 2, “Locking Configuration and Tuning,” in the Performance and Tuning Series: Locking and Concurrency Control.

The default value for page lock promotion HWM is appropriate for most applications. To avoid table locking, you may want to increase the value. For example, if you know that there are regular updates to 500 pages of an allpages-locked or datapages-locked table containing thousands of pages, increase concurrency for the tables by setting page lock promotion HWM to 500.

You can also configure lock promotion of page-locked tables and views at the object level. See sp_setrowlockpromote in the Reference Manual: Procedures.

Use sp_sysmon to see how changing page lock promotion HWM affects the number of lock promotions. sp_sysmon reports the ratio of exclusive page to exclusive table lock promotions and the ratio of shared page to shared table lock promotions. See the Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

page lock promotion LWM

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

page lock promotion LWM (low-water mark), with page lock promotion HWM (high-water mark) and the page lock promotion PCT, specify the number of page locks permitted during a single scan session of a page locked table or an index before Adaptive Server attempts to promote from page locks to a table lock.
The page lock promotion LWM sets the number of page locks below which Adaptive Server does not attempt to issue a table lock on an object. page lock promotion LWM must be less than or equal to page lock promotion HWM.

The default value for page lock promotion LWM is sufficient for most applications. If Adaptive Server runs out of locks (except for an isolated incident), increase number of locks.

See the Performance and Tuning Series: Locking and Concurrency Control.

You can also configure page lock promotion at the object level. See sp_setpglockpromote in the Reference Manual: Procedures.

page lock promotion PCT

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

If the number of locks held on an object is between page lock promotion LWM (low-water mark) and page lock promotion HWM (high-water mark), page lock promotion PCT sets the percentage of page locks (based on the table size) above which Adaptive Server attempts to acquire a table lock.

The default value for page lock promotion PCT is appropriate for most applications.

You can also configure lock promotion at the object level for page locked objects. See sp_setpglockpromote in the Reference Manual: Procedures.

page utilization percent

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
page utilization percent is used during page allocations to control whether Adaptive Server scans a table’s object allocation map (OAM) to find unused pages or simply allocates a new extent to the table. See “number of oam trips” on page 195 for more information on the OAM. The page utilization percent parameter is a performance optimization for servers with very large tables; it reduces the time needed to add new space.

If you set page utilization percent to 100, Adaptive Server scans through all OAM pages to find unused pages allocated to the object before allocating a new extent. When this parameter is set lower than 100, Adaptive Server compares the page utilization percent setting to the ratio of used and unused pages allocated to the table, as follows:

\[
100 \times \frac{\text{used pages}}{\text{used pages} + \text{unused pages}}
\]

If page utilization percent is lower than the ratio, Adaptive Server allocates a new extent instead of searching for the unused pages.

For example, when inserting data into a 10GB table that has 120 OAM pages and only 1 unused data page:

- A page utilization percent of 100 tells Adaptive Server to scan through all 120 OAM pages to locate an unused data page.
- A page utilization percent of 95 allows Adaptive Server to allocate a new extent to the object, because 95 is lower than the ratio of used pages to used and unused pages.

A low page utilization percent value results in more unused pages. A high page utilization percent value slows page allocations in very large tables, as Adaptive Server performs an OAM scan to locate each unused page before allocating a new extent. This increases logical and physical I/O.

If page allocations (especially in the case of large inserts) seem to be slow, lower the value of page utilization percent, but reset it after inserting the data. A lower setting affects all tables on the server and results in unused pages in all tables.

Fast bulk copy ignores the page utilization percent setting and always allocates new extents until there are no more extents available in the database.
partition groups

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>1–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Meta-Data Cache</td>
</tr>
</tbody>
</table>

Partition groups specifies the maximum number of partition groups that can be allocated by Adaptive Server. Partition groups are internal structures used by Adaptive Server to control access to individual partitions of a table. Partition groups are used while upgrading or during a load database upgrade to unpartition Adaptive Server 12.5.x and earlier partitions.

The default value allows a maximum 1024 open partition groups and a maximum of 2147483647 open partitions. The actual number of partitions may be slightly less, due to the grouping of partitions.

partition spinlock ratio

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>1–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Meta-Data Cache</td>
</tr>
</tbody>
</table>

For Adaptive Servers running with multiple engines, partition spinlock ratio sets the number of rows in the partition descriptors that are protected by one spinlock.

Adaptive Server manages access to table partitions using partition descriptors. Each partition descriptor stores information about a partition (for example, the last page of the partition) that processes must use when accessing that partition. Configure partition descriptors using number of open partitions.
The default value of partition spinlock ratio sets 1 spinlock for every 10 partition caches. Decreasing the value of partition spinlock ratio may have little impact on the performance of Adaptive Server. The default setting is correct for most servers.

pci memory size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

pci memory size sets the size of the pluggable component interface (PCI) memory pool. All pluggable component adapter (PCA) and JVM plug-ins running under the PCI Bridge share a single dedicated PCI memory pool. If you set pci memory size to less than the default, Adaptive Server uses the default size.

This memory pool is fully dedicated to the PCI bridge and any running pluggable component. Like all other memory pools, Adaptive Server controls this memory pool. However, unlike other memory pools, the PCI memory pool is allocated when you initialize the PCI Bridge and does not grow after that time.

per object statistics active

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
Configuration parameters

per object statistic active controls whether Adaptive Server collects statistics for each object.

percent database for history

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

percent database for history specifies the percentage of the total space available in sybmgmtdb that is reserved for the js_history table. Increase percent database for history if there are more jobs running, or to store historical records about executed jobs for future queries.

percent database for output

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

percent database for output specifies the percentage of the total space available in sybmgmtdb that is reserved for job output. Increase the default value if there are more jobs running or jobs that produce lot of output that must be stored for querying.

percent history free

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
</tbody>
</table>
percent history free specifies the percentage of reserved space in sybmgmtdb to be kept free. For example, if you use the default value, Adaptive Server starts purging the oldest history records to make room for new records when 70 percent of sybmgmtdb is filled.

percent output free

Specifies the percentage of reserved space kept free in sybmgmtdb that is reserved for Job Scheduler output. For example, if you use the default value, Adaptive Server starts purging the oldest history records to make room for new records when 50 percent of sybmgmtdb is filled.

performance monitoring option

performance monitoring option enables the license for the BMC DBXray graphical performance monitoring and diagnostic tool.
permission cache entries

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

(permission cache entries) determines the number of cache protectors per task, increasing the amount of memory for each user connection and worker process.

Information about user permissions is held in the permission cache. When Adaptive Server checks permissions, it looks first in the permission cache; if it does not find what it needs, it looks in the sysprotects table. This process is significantly faster if Adaptive Server finds the information it needs in the permission cache and does not have to read sysprotects.

However, Adaptive Server looks in the permission cache only when it is checking user permissions, not when permissions are being granted or revoked. When a permission is granted or revoked, the entire permission cache is flushed. This is because existing permissions have timestamps that become outdated when new permissions are granted or revoked.

If users on your Adaptive Server frequently perform operations that require their permissions to be checked, you may see a small performance gain by increasing the value of permission cache entries. This effect is not likely to be significant enough to warrant extensive tuning.

If users on your Adaptive Server frequently grant or revoke permissions, avoid setting permission cache entries to a large value. The space used for the permission cache would be wasted, since the cache is flushed with each grant and revoke command.

plan text pipe active

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
</tbody>
</table>
CHAPTER 5 Setting Configuration Parameters

Summary information

<table>
<thead>
<tr>
<th>Required role</th>
<th>System administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
<td>Monitoring</td>
</tr>
</tbody>
</table>

plan text pipe active determines whether Adaptive Server collects query plan text. If both plan text pipe active and plan text pipe max messages are enabled, Adaptive Server collects the plan text for each query. You can use monSysPlanText to retrieve the query plan text for all user tasks.

plan text pipe max messages

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

plan text pipe max messages determines the number of query plan text messages Adaptive Server stores per engine. The total number of messages in the monSQLText table is the value of sql text pipe max messages multiplied by the number of engines running.

print deadlock information

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

print deadlock information prints deadlock information to the error log.
If you are experiencing recurring deadlocks, setting print deadlock information to 1 provides you with detailed information in the error log that can be useful in tracing the cause of the deadlocks. However, setting print deadlock information to 1 can degrade Adaptive Server performance. For this reason, set print deadlock information on only when you are trying to determine the cause of deadlocks.

Use sp_sysmon output to determine whether deadlocks are occurring in your application. If they are, set print deadlock information to 1 to learn more about why they are occurring. See the Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

A value of 2 allows you to print a summary of deadlock information to the error log (as opposed to the detailed information a value of 1 provides). For example:

Deadlock Id 34: Process (Familyid 0, Spid 70) was waiting for a 'exclusive page' lock on page 10858346 of the 'equineline_job' table in database 18 but process (Familyid 0, Spid 88) already held a 'exclusive page' lock on it.

Deadlock Id 34: Process (Familyid 0, Spid 88) was waiting for a 'exclusive page' lock on page 11540986 of the 'equineline_job' table in database 18 but process (Familyid 0, Spid 70) already held a 'update page' lock on it.

print recovery information

<table>
<thead>
<tr>
<th>Summary information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0 (off)</td>
</tr>
<tr>
<td>Valid values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Backup/Recovery</td>
</tr>
</tbody>
</table>

print recovery information determines what information Adaptive Server displays on the console during recovery. (Recovery is performed on each database at Adaptive Server start-up and when a database dump is loaded.) The default value means that Adaptive Server displays only the database name and a message saying that recovery is in progress. A value of 1 indicates that Adaptive Server displays information about each individual transaction processed during recovery, including whether it was aborted or committed.
procedure cache size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

Specifies the size of the procedure cache, in 2K pages. Adaptive Server uses the procedure cache while running stored procedures. If the server finds a copy of a procedure already in the cache, it does not need to read it from the disk. Adaptive Server also uses space in the procedure cache to compile queries while creating stored procedures.

Since the optimum value for procedure cache size differs from application to application, resetting it may improve Adaptive Server performance. For example, if you run many different procedures or ad hoc queries, your application uses the procedure cache more heavily, so you may want to increase this value.

Warning! If procedure cache size is too small, Adaptive Server performance degrades.

If you are upgrading, procedure cache size is set to the size of the original procedure cache at the time of upgrade.

procedure deferred compilation

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
Configuration parameters

When this parameter is enabled, compiling of statements that reference local variables or temporary tables inside a stored procedure is postponed to execution time, so that the optimization of those statements can use runtime values, instead of estimations or magic numbers.

process wait events

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

process wait events controls whether Adaptive Server collect statistics for each wait event for every task. You can get wait information for a specific task using monProcessWaits.

prod-consumer overlap factor

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

prod-consumer overlap factor affects optimization. Adaptive Server changes the group by algorithm, and you cannot use set statistics I/O with parallel plans.

quorum heartbeat interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
</tbody>
</table>
quorum heartbeat interval specifies the number of seconds between quorum heartbeats. Setting quorum heartbeat interval to a lower number increases the heartbeat overhead but speeds the detection of a lost disk link, resulting in a quicker termination of an instance for which you have set I/O fencing or that has lost its SAN link. Setting quorum heartbeat interval to a high number reduces heartbeat overhead, but delays the detection of a lost disk link.

quorum heartbeat retries

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

read committed with lock

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

read committed with lock determines whether an Adaptive Server using transaction isolation level 1 (read committed) holds shared locks on rows or pages of data-only-locked tables during select queries. For cursors, read committed with lock applies only to read-only cursors declared.
Configuration parameters

For transaction isolation level 1, select queries on allpages-locked tables continue to hold locks on the page at the current position. Any updatable cursor on a data-only-locked table also holds locks on the current page or row. See the Performance and Tuning Series: Basics.

recovery interval in minutes

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

recovery interval in minutes sets the maximum number of minutes per database that Adaptive Server uses to complete its recovery procedures in case of a system failure. The recovery procedure rolls transactions backward or forward, starting from the transaction that the checkpoint process indicates as the oldest active transaction. The recovery process has more or less work to do, depending on the value of recovery interval in minutes.

Adaptive Server estimates that 6000 rows in the transaction log require 1 minute of recovery time. However, different types of log records can take more or less time to recover. If you set recovery interval in minutes to 3, the checkpoint process writes changed pages to disk only when syslogs contains more than 18,000 rows since the last checkpoint.

Note The recovery interval has no effect on long-running, minimally logged transactions (such as create index) that are active when Adaptive Server fails. It may take as much time to reverse these transactions as it took to run them. To avoid lengthy delays, dump each database after index maintenance operations.
Adaptive Server uses the recovery interval in minutes setting and the amount of activity on each database to decide when to checkpoint each database. When Adaptive Server checkpoints a database, it writes all dirty pages (data pages in cache that have been modified) to disk. This may create a brief period of high I/O, called a checkpoint spike. The checkpoint also performs other maintenance tasks, including truncating the transaction log for each database for which the truncate log on chkpt option has been set. About once per minute, the sleeping checkpoint process “wakes up,” checks the truncate log on chkpt setting, and checks the recovery interval to determine if a checkpoint is needed. Figure 5-4 shows the logic used by Adaptive Server during this process.
You may want to change the recovery interval if your application and its use change. For example, you may want to shorten the recovery interval when there is an increase in update activity on Adaptive Server. Shortening the recovery interval causes more frequent checkpoints, with smaller, more frequent checkpoint spikes, and slows the system slightly. However, setting the recovery interval too high may cause the recovery time to be unacceptably long. You can reduce the spikes caused by checkpointing by reconfiguring the housekeeper freewrite percent parameter. See “housekeeper free write percent” on page 145. For more information on the performance implications of recovery interval in minutes, see Chapter 5, “Memory Use and Performance,” in the Performance and Tuning Series: Basics.

Use sp_sysmon to determine how a particular recovery interval affects the system. See the Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.
remote server pre-read packets

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>3–255</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Network Communication</td>
</tr>
</tbody>
</table>

remote server pre-read packets determines the number of packets that are “pre-read” by a site handler during connections with remote servers.

To reduce the required number of connections, communication between two servers is managed through a single site handler. The site handler can pre-read and keep track of data packets for each user process before the receiving process is ready to accept them.

The default value for remote server pre-read packets is appropriate for most servers. Increasing the value uses more memory; decreasing the value can slow network traffic between servers. See Chapter 15, “Managing Remote Servers.”

restricted decrypt permission

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System security officer</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Security Related</td>
</tr>
</tbody>
</table>

restricted decrypt permission enables or disables restricted decrypt permission in all databases. You must have the sso_role to set this parameter.

When restricted decrypt permission is set to 0 (off), decrypt permission on encrypted columns acts the same as in versions earlier than 15.0.2:

- The table owner or the SSO explicitly grants decrypt permission. However, with grant option on decrypt permission is supported.
Encrypt permission is granted implicitly to table owners and the SSO, as well as to any user through a chain of ownership. For example, if user Fred owns the proc1 stored procedure, which selects data from the encrypted column fred.table1.col1, and if Fred grants exec permission on proc1 to Harry, then Harry has implicit decrypt permission on fred.table1.col1.

Encrypt permission is not needed for alter table decrypt because the table owner has implicit decrypt permission on encrypted columns.

When restricted encrypt permission is set to 1 (on):

- Encrypt permission is granted implicitly only to the SSO.
- The SSO can grant encrypt permission using the with grant option parameter. This allows the SSO to decide who can grant decrypt permission in the system. For example, if the SSO wants user1 to be able to grant decrypt permission on user3.user3_tab, the SSO issues:

  ```sql
  grant decrypt on user3.user3_tab to user1
  with grant option
  ```

 If you use a system encryption password, Sybase recommends that, to protect data privacy, you do not grant decrypt permission to the DBO to. Access to keys through user passwords prevents the DBO and other parties from accessing the data unless they have a key’s password; however, you may find it convenient for the DBO to decide which users should see the decrypted data. If you are not protecting keys and data with user-specified passwords, the SSO should retain the sole responsibility to grant decrypt permission.

- Table ownership does not give a user implicit decrypt permission. That is, if you create a table with encrypted columns, you do not have decrypt permission on them unless it is explicitly granted to you.

- No user is implicitly granted decrypt permission through an ownership chain. For example, if Fred owns the proc1 stored procedure, which selects data from the encrypted column fred.table1.col1, and if Fred grants exec permission on proc1 to Harry, then Harry must also have explicit decrypt permission on fred.table1.col1 to see the data.

- Aliased users assume the permissions of the user to whom they are aliased. Similarly, a user with sa_role, who is implicitly aliased to the DBO in any database, inherits any decrypt permissions that have been explicitly granted to the DBO.

- Decrypt permission is required for alter table decrypt statement because the table owner does not have implicit decrypt permission on the table.
If you change restricted decrypt permission from 0 to 1, currently executing statements that use implicit decrypt permission finish; however any subsequent statements that use implicit decrypt permission fail with this error until the SSO grants the user decrypt permission on the necessary columns:

Msg 10330 "DECRYPT permission denied on object object_name, database database_name, owner owner_name."

If you change restricted decrypt permission from 1 to 0, the rows that reflect explicit grants remain in the sysprotects system table. However, these rows have no effect on implicitly granted decrypt permissions because Adaptive Server does not check sysprotects to make sure decrypt permission can be implicitly granted. sp_helprotect displays misleading information for only those users who were granted or revoked explicit decrypt permission before you reconfigure the system, and who now have implicit decrypt permission.

Sybase recommends that, to keep the system consistent, you revoke any explicit decrypt permissions granted to users before you switch between enabling or disabling restricted decrypt permission to keep the system consistent.

See the Encrypted Columns Users Guide for more information about decrypt permissions.

row lock promotion HWM

<table>
<thead>
<tr>
<th>Summary Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

row lock promotion HWM (high-water mark), with row lock promotion LWM (low-water mark) and row lock promotion PCT specifies the maximum number of row locks permitted during a single scan session of a table or an index before Adaptive Server attempts to escalate from row locks to a table lock.

When the number of locks acquired during a scan session exceeds row lock promotion HWM, Adaptive Server attempts to acquire a table lock. The lock promotion HWM value cannot be higher than the number of locks value.
Configuration parameters

The default value for row lock promotion HWM is appropriate for most applications. To avoid table locking, you may want to increase the value of row lock promotion HWM. For example, if you know that there are regular updates to 500 rows on a table that has thousands of rows, you can increase concurrency for the tables by setting row lock promotion HWM to around 500.

You can also configure row lock promotion at the object level. See *sp_setpglockpromote* in the *Reference Manual: Procedures*.

row lock promotion LWM

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

Row lock promotion LWM (low-water mark), with row lock promotion HWM (high-water mark) and row lock promotion PCT specifies the number of row locks permitted during a single scan session of a table or an index before Adaptive Server attempts to promote from row locks to a table lock.

Row lock promotion LWM sets the number of locks below which Adaptive Server does not attempt to acquire a table lock on the object. The row lock promotion LWM must be less than or equal to row lock promotion HWM.

The default value for row lock promotion LWM is sufficient for most applications. If Adaptive Server runs out of locks (except for an isolated incident), increase number of locks.

See the *Performance and Tuning Series: Locking and Concurrency Control*.

You can also configure lock promotion at the object level. See *sp_setpglockpromote* in the *Reference Manual: Procedures*.
row lock promotion PCT

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

If the number of locks held on an object is between row lock promotion LWM (low-water mark) and row lock promotion HWM (high-water mark), row lock promotion PCT sets the percentage of row locks (based on the number of rows in the table) above which Adaptive Server attempts to acquire a table lock.

The default value for row lock promotion PCT is appropriate for most applications.

For more information on setting up lock promotion limits, see Chapter 2, “Locking Configuration and Tuning,” in Performance and Tuning Series: Locking and Concurrency Control.

You can also configure row lock promotion at the per-object level. See sp_seterowlockpromote in the Reference Manual: Procedures.

rtm thread idle wait period

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

rtm thread idle wait period defines the time, in seconds, a native thread used by Adaptive Server waits when it has no work to do. When the time set for a native thread is reached, the thread automatically fades out.
Configuration parameters

runnable process search count

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

runnable process search count specifies the number of times an engine loops while looking for a runnable task before relinquishing the CPU to the operating system.

Adaptive Server engines check the run queue for runnable tasks whenever a task completes or exceeds its allotted time on the engine. At times, there are no tasks in the run queues. An engine can either relinquish the CPU to the operating system or continue to check for a task to run. Setting **runnable process search count** higher causes the engine to loop more times, thus holding the CPU for a longer time. Setting the **runnable process search count** lower causes the engine to release the CPU sooner.

If your machine is a uniprocessor that depends on helper threads to perform I/O, you may see some performance benefit from setting **runnable process search count** to perform network I/O, disk I/O, or other operating system tasks. If a client, such as a bulk-copy operation, is running on the same machine as a single CPU server that uses helper threads, you may need to allow both the server and the client access to the CPU.

Note If you are having performance problems, try setting **runnable process search count** to 3.

For Adaptive Servers running on uniprocessor machines that do not use helper threads, and for multiprocessor machines, the default value provides good performance.

With a **runnable process search count** value of 3, the Cluster Edition can better share the system CPU with other processes running on the same machine. However, if **runnable process search count** is 3 and Adaptive Server is running as a stand-alone process, users may experience delays in server response times. In this case, reset **runnable process search count** to 2000.
Use `sp_sysmon` to determine how the runnable process search count parameter affects the Adaptive Server use of CPU cycles, engine yields to the operating system, and blocking network checks. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

sampling percent

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

sampling percent

The numeric value of the sampling percentage, such as 5 for 5%, 10 for 10%, and so on.

To reduce I/O contention and resources, run `update statistics` using a sampling method, which can reduce the I/O and time when your maintenance window is small and the data set is large. If you are updating a large data set or table that is in constant use, being truncated and repopulated, you may want to perform a statistical sampling to reduce the time and the size of the I/O.

Use caution with sampling, since the results are not fully accurate. Balance changes to histogram values against the savings in I/O.

Although a sampling of the data set may not be completely accurate, usually the histograms and density values are reasonable within an acceptable range.

When you are deciding whether or not to use sampling, consider the size of the data set, the time constraints you are working with, and if the histogram produced is as accurate as needed.

The percentage to use when sampling depends on your needs. Test various percentages until you receive a result that reflects the most accurate information on a particular data set.

Statistics are stored in the system tables `systabstats` and `sysstatistics`.
secure default login

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

secure default login specifies a default login for all users who are preauthenticated but who do not have a login in master..syslogins.

Establish the secure default login with:

```
sp_configure "secure default login", 0, default_login_name
```

where:

- `secure default login` – is the name of the parameter.
- `0` – is a required parameter because the second parameter of `sp_configure` must be a numeric value.
- `default_login_name` – is the name of the default login for a user who is unknown to Adaptive Server, but who has already been authenticated by a security mechanism. The login name must be a valid login in master..syslogins.

select on syscomments.text

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
select on syscomments.text enables protection of the text of database objects through restriction of the select permission on the text column of the syscomments table. The default value sets select permission to “public.” Set the value to 0 to restrict select permission to the object owner and the system administrator.

send doneinproc tokens

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

send doneinproc tokens enables or disables Adaptive Server for sending doneinproc packets (TDS messages that are sent after each select statement performed in a stored procedure). send doneinproc tokens replaces dbcc tune 'doneinproc' and trace flag 292. Currently running queries immediately take note of any change in the option.

Setting send doneinproc tokens to 1 is safe in most cases. However some stored procedures are executed using asynchronous commands from CT-Lib, and using a value of 0 may cause state-machine errors in some CT-Lib applications.

session migration timeout

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

session migration timeout specifies the amount of time available for a client to complete a migration by connecting to the target instance. If the client does not migrate to the target instance in the time allotted, Adaptive Server fails the connection.
session tempdb log cache size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

session tempdb log cache size configures the size of the user log cache (ULC), helping to determine how often it needs flushing.

shared memory starting address

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

shared memory starting address determines the virtual address where Adaptive Server starts its shared memory region.

It is unlikely that you will ever have to reconfigure shared memory starting address. Do so only after consulting with Sybase Technical Support.

number of worker processes, max parallel degree, and max scan parallel degree control parallel query processing at the server level. Using the parallel_degree, process_limit_action, and scan_parallel_degree options to the set command can limit parallel optimization at the session level, and using the parallel keyword of the select command can limit parallel optimization of specific queries.

size of auto identity column

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
</tbody>
</table>
size of auto identity column sets the precision of IDENTITY columns that are automatically created with the `sp_dboption` `auto identity` and `unique auto_identity index` options.

The maximum value that can be inserted into an IDENTITY column is \(10^{\text{precision}} - 1\). After an IDENTITY column reaches its maximum value, all further `insert` statements return an error that aborts the current transaction.

If you reach the maximum value of an IDENTITY column, you can increase it with a modify operation in the `alter table` command. See the `Transact-SQL Users Guide` for examples.

You can also use the `create table` command to create a table that is identical to the old one, but with a larger precision for the IDENTITY column. After you have created the new table, use the `insert` command or `bcp` to copy data from the old table to the new one.

size of global fixed heap

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Minimum values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

size of global fixed heap specifies the memory space for internal data structures and other needs.

If you change size of the global fixed heap, change the total logical memory by the same amount.
Configuration parameters

size of process object heap

Summary information

<table>
<thead>
<tr>
<th>Default values</th>
<th>1500 pages (32-bit version)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000 pages (64-bit version)</td>
</tr>
<tr>
<td>Minimum values</td>
<td>45 pages (32-bit version)</td>
</tr>
<tr>
<td></td>
<td>90 pages (64-bit version)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Java Services, Memory Use</td>
</tr>
</tbody>
</table>

Size of process object fixed heap specifies the total memory space for all processes using the Java VM.

If you change size of process object fixed heap, change the total logical memory by the same amount.

size of shared class heap

Summary information

<table>
<thead>
<tr>
<th>Default values</th>
<th>1536 pages (32-bit version)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3072 pages (64-bit version)</td>
</tr>
<tr>
<td>Minimum values</td>
<td>650 pages (32-bit version)</td>
</tr>
<tr>
<td></td>
<td>1300 pages (64-bit version)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Basic</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Java Services, Memory Use</td>
</tr>
</tbody>
</table>

Size of shared class heap specifies the shared memory space for all Java classes called into the Java VM. Adaptive Server maintains the shared class heap server-wide for both user-defined and system-provided Java classes.

If you change the size of shared class heap, change the total logical memory by the same amount.
size of unilib cache

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

Size of unilib cache specifies the memory used in bytes rounded up to the nearest 1K in addition to the minimum overhead size, which provides enough memory to load a single copy of the largest Unilib conversion table plus the largest Unilib sort table. Asian clients may need to increase size of unilib cache by an extra 100K for every additional character set they want to support via Unicode-based conversion.

sproc optimize timeout limit

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Sproc optimize timeout limit specifies the amount of time Adaptive Server can spend optimizing a stored procedure as a fraction of the estimated execution time.

SQL batch capture

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
</tbody>
</table>
Configuration parameters

Summary information
- **Configuration group**: Monitoring

SQL batch capture controls whether Adaptive Server collects SQL text. If both SQL batch capture and max SQL text monitored are enabled, Adaptive Server collects the SQL text for each batch for each user task.

SQL Perfmon Integration (Windows only)

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

SQL Perfmon Integration enables and disables the ability to monitor Adaptive Server statistics from the Windows Performance Monitor.

Adaptive Server must be registered as a Windows Service to support monitor integration. This occurs automatically when:

- You start Adaptive Server using the Services Manager in the Sybase for the Windows program group.
- You use the Services option in the Control Panel.
- You have configured Windows to start Adaptive Server as an automatic service.

See *Configuring Guide for Windows* for a list of the Adaptive Server counters you can monitor.

sql server clock tick length

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
</tbody>
</table>
sql server clock tick length specifies the duration of the server’s clock tick, in microseconds. Both the default value and the minimum value are platform-specific. Adaptive Server rounds values up to an even multiple of n, where n is the platform-specific clock-tick default value. Use `sp_helpconfig` or `sp_configure` to find the current values for sql server clock tick length.

In mixed-use applications with some CPU-bound tasks, decrease the value of sql server clock tick length to:

- **Help I/O-bound tasks** – a value of 20,000 is reasonable for this. Shortening the clock-tick length means that CPU-bound tasks exceed the allotted time on the engine more frequently per unit of time, which allows other tasks greater access to the CPU.

- **Marginally increase response times** – Adaptive Server runs its service tasks once per clock tick. Decreasing the clock-tick length means that the service tasks are run more frequently per unit of time.

Increasing sql server clock tick length favors CPU-bound tasks, because they execute longer between context switches. The maximum value of 1,000,000 may be appropriate for primarily CPU-bound applications. However, any I/O-bound tasks may suffer as a result. You can mitigate this somewhat by tuning cpu grace time (see “cpu grace time” on page 103) and time slice (see “time slice” on page 258).

Note Changing the value of sql server clock tick length can have serious effects on Adaptive Server performance. Consult with Sybase Technical Support before resetting this value.

Summary information

<table>
<thead>
<tr>
<th>Required role</th>
<th>System administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
<td>SQL Server Administration</td>
</tr>
</tbody>
</table>

sql text pipe active

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0–1</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
</tbody>
</table>
Configuration parameters

sql text pipe active

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

sql text pipe active controls whether Adaptive Server collects SQL text. If this option is enabled and sql text pipe max messages is set, Adaptive Server collects the SQL text for each query. Use monSysSQLText to retrieve the SQL text for all user tasks.

sql text pipe max messages

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

sql text pipe max messages specifies the number of SQL text messages Adaptive Server stores per engine. The total number of messages in the monSQLText table is the value of sql text pipe max messages multiplied by the number of engines running.

stack guard size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
stack guard size sets the size, in bytes, of the stack guard area, which is an overflow stack of configurable size at the end of each stack. Adaptive Server allocates one stack for each user connection and worker process when it starts. These stacks are located contiguously in the same area of memory, with a guard area at the end of each stack. At the end of each stack guard area is a guardword, which is a 4-byte structure with a known pattern. Figure 5-5 illustrates how a process can corrupt a stack guardword.

Adaptive Server periodically checks to see whether the stack pointer for a user connection has entered the stack guard area associated with that user connection’s stack. If it has, Adaptive Server aborts the transaction, returns control to the application that generated the transaction, and generates error 3626:

The transaction was aborted because it used too much...
Configuration parameters

stack space. Either use sp_configure to increase the stack size, or break the query into smaller pieces.

Adaptive Server also periodically checks the guardword pattern to see if it has changed, thus indicating that a process has overflowed the stack boundary. When this occurs, Adaptive Server prints these messages to the error log and shuts down:

```
kernel: *** Stack overflow detected: limit: 0x%lx sp: 0x%lx
kernel: *** Stack Guardword corrupted
kernel: *** Stack corrupted, server aborting
```

In the first message, “limit” is the address of the end of the stack guard area, and “sp” is the current value of the stack pointer.

In addition, Adaptive Server periodically checks the stack pointer to see whether it is completely outside both the stack and the stack guard area for the pointer’s process. If it is, Adaptive Server shuts down, even if the guardword is not corrupted. When this happens, Adaptive Server prints the following messages to the error log:

```
kernel: *** Stack overflow detected: limit: 0x%lx sp: 0x%lx
kernel: *** Stack corrupted, server aborting
```

The default value for stack guard size is appropriate for most applications. However, if you experience server shutdown from either stack guardword corruption or stack overflow, increase stack guard size by a 2K increment. Each configured user connection and worker process has a stack guard area; thus, when you increase stack guard size, you use up that amount of memory, multiplied by the number of user connections and worker processes you have configured.

Rather than increasing stack guard size to avoid stack overflow problems, consider increasing stack size (see “stack size” on page 249). The stack guard area is intended as an overflow area, not as an extension to the regular stack.

Adaptive Server allocates stack space for each task by adding the values of the stack size and stack guard size parameters. stack guard size must be configured in multiples of 2K. If the value you specify is not a multiple of 2K, sp_configure verification routines round the value up to the next highest multiple.
stack size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

stack size specifies the size, in bytes, of the execution stacks used by each user process on Adaptive Server. To find the stack size values for your platform, use `sp_helpconfig` or `sp_configure`. stack size must be configured in multiples of 2K. If the value you specify is not a multiple of 2K, `sp_configure` verification routines round the value up to the next highest multiple.

An execution stack is an area of Adaptive Server memory where user processes keep track of their process context and store local data.

Certain queries can contribute to the probability of a stack overflow. Examples include queries with extremely long `where` clauses, long select lists, deeply nested stored procedures, and multiple selects and updates that hold lock. When a stack overflow occurs, Adaptive Server prints an error message and rolls back the transaction. See “stack guard size” on page 246, and see the Troubleshooting and Error Messages Guide for more information on specific error messages.

The two options for remedying stack overflows are to break the large queries into smaller queries and to increase stack size. Changing stack size affects the amount of memory required for each configured user connection and worker process. See “total logical memory” on page 260.

If you have queries that exceed the size of the execution stack, you may want to rewrite them as a series of smaller queries, especially if there are only a small number of such queries, or if you run them infrequently.

There is no way to determine how much stack space a query requires without actually running the query. Stack space for each user connection and worker process is preallocated at start-up.
Therefore, determining the appropriate value for stack size is an empirical process. Test your largest and most complex queries using the default value for stack size. If they run without generating error messages, the default is probably sufficient. If they generate error messages, begin by increasing stack size by a small amount (2K). Re-run your queries and see if the amount you have added is sufficient. If it is not, continue to increase stack size until queries run without generating error messages.

If you are using CIS, or if Java is enabled in the database and you want to use methods that call JDBC, Sybase recommends that you increase the default by 50 percent. If you are not using JDBC or CIS, the standard default value is usually sufficient.

start mail session *(Windows only)*

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

start mail session enables and disables the automatic initiation of an Adaptive Server mail session when you start Adaptive Server.

A value of 1 configures Adaptive Server to start a mail session the next time Adaptive Server is started. A value of 0 configures Adaptive Server not to start a mail session at the next restart.

If start mail session is 0, you can start an Adaptive Server mail session explicitly, using the xp_startmail system ESP.

Before setting start mail session, you must prepare your Windows system by creating a mailbox and mail profile for Adaptive Server. Then, create an Adaptive Server account for Sybmail. See the *Configuration Guide for Windows*.

start xp server during boot

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
</tbody>
</table>

250 Adaptive Server Enterprise
CHAPTER 5 Setting Configuration Parameters

Summary information

<table>
<thead>
<tr>
<th>Range of values</th>
<th>0 (off), 1 (on)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td></td>
</tr>
<tr>
<td>Required role</td>
<td></td>
</tr>
<tr>
<td>Configuration group</td>
<td>Extended Stored Procedures</td>
</tr>
</tbody>
</table>

start xp server during boot determines whether XP Server starts when Adaptive Server starts.

When set to 1, XP Server starts when Adaptive Server starts. If you set start xp server during boot to 0, XP Server does not start until you run xp_cmdshell.

startup delay

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Query Tuning</td>
</tr>
</tbody>
</table>

startup delay controls when RepAgent is started during the server start. By default, RepAgent starts at the same time as Adaptive Server. Adaptive Server writes a message to the error log stating the wait time.

statement cache size

Summary information

<table>
<thead>
<tr>
<th>Valid values</th>
<th>Size of cache in 2K pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, SQL Server Administration</td>
</tr>
</tbody>
</table>
statement cache size increases the server allocation of procedure cache memory and limits the amount of memory from the procedure cache pool used for cached statements.

Note If you enable the statement cache, you must configure `set chained on/off` in its own batch.

Because cached statements are transformed into lightweight stored procedures, statement caching requires additional open object descriptors.

statement pipe active

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0 (off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Monitoring</td>
</tr>
</tbody>
</table>

statement pipe active controls whether Adaptive Server collects statement-level statistics. If both `statement pipe active` and `statement pipe max messages` are enabled, Adaptive Server collects the statement statistics for each query. Use `monSysStatement` to retrieve the statistics for all executed statements.

statement pipe max messages

Summary information

<table>
<thead>
<tr>
<th>Default value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of values</td>
<td>0–2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Memory Use, Monitoring</td>
</tr>
</tbody>
</table>

statement pipe max messages determines the number of statement statistics messages Adaptive Server stores per engine. The total number of messages in the `monSQLText` table is the value of `sql text pipe max messages` multiplied by the number of engines running.

statement statistics active

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

strict dtm enforcement

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

strict dtm enforcement determines whether or not Adaptive Server transaction coordination services strictly enforce the ACID properties of distributed transactions.

In environments where Adaptive Server should propagate and coordinate transactions only to other Adaptive Servers that support transaction coordination, set strict dtm enforcement on. If a transaction attempts to update data in a server that does not support transaction coordination services, Adaptive Server aborts the transaction.

In heterogeneous environments, you may want to make use of servers that do not support transaction coordination. This includes earlier versions of Adaptive Server and non-Sybase database stores configured using CIS. Under these circumstances, set strict dtm enforcement off to allow Adaptive Server to propagate transactions to legacy Adaptive Servers and other data stores. This does not, however, ensure that the remote work of these servers is rolled back or committed with the original transaction.
suspend audit when device full

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0 (off)</td>
</tr>
<tr>
<td>Range of values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System security officer</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Security Related</td>
</tr>
</tbody>
</table>

`suspend audit when device full` determines what Adaptive Server does when an audit device becomes completely full.

Note If you have two or more audit tables, each on a separate device other than the master device, and you have a threshold procedure for each audit table segment, the audit devices should never become full. Only if a threshold procedure is not functioning properly does the “full” condition occur.

Choose one of these values:

- **0** – truncates the next audit table and starts using it as the current audit table when the current audit table becomes full. If you set `suspend audit when device full` to 0, you ensure that the audit process is never suspended. However, you incur the risk that older audit records are lost if they have not been archived.

- **1** – suspends the audit process and all user processes that cause an auditable event. To resume normal operation, the system security officer must log in and set up an empty table as the current audit table. During this period, the system security officer is exempt from normal auditing. If the system security officer’s actions would generate audit records under normal operation, Adaptive Server sends an error message and information about the event to the error log.

syb_sendmsg port number

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Valid values</td>
<td>0, or 1024–65535, or system limit</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
</tbody>
</table>
CHAPTER 5 Setting Configuration Parameters

Summary information

<table>
<thead>
<tr>
<th>Required role</th>
<th>System administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
<td>Network Communication</td>
</tr>
</tbody>
</table>

syb_sendmsg port number specifies the port number that Adaptive Server uses to send messages to a UDP (User Datagram Protocol) port with sp_sendmsg or syb_sendmsg.

If more than one engine is configured, a port is used for each engine, numbered consecutively from the port number specified. If the port number is set to the default value, 0 Adaptive Server assigns port numbers.

Note Sending messages to UDP ports is not supported on Windows.

A system security officer must set the allow sendmsg configuration parameter to 1 to enable sending messages to UDP ports. To enable UDP messaging, a system administrator must set allow sendmsg to 1. See “allow sendmsg” on page 88. For more information on UDP messaging, see sp_sendmsg in the Reference Manual: Procedures.

sysstatistics flush interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

sysstatistics flush interval determines the length of the interval, in minutes, between flushes of sysstatistics.

Adaptive Server dynamically maintains the statistics for the number of rows and columns modified in a table as part of any DML statement and flushes them according to the value of sysstatistics flush interval.

Adaptive Server uses these statistics for query optimization since they are more accurate. The datachange function determines the amount of data that is changed at the table, column, or partition level since the last update statistics, and initiates updating statistics on the object.
The in-memory statistics are always flushed to disk during a polite shutdown of the server. You can configure `sysstatistics flush interval` to flush these in-memory statistics to disk by the house keeper task at regular intervals. Set `sysstatistics flush interval` to 0 to disable this housekeeper task.

systemwide password expiration

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`systemwide password expiration` sets the number of days that passwords remain in effect after they are changed. If `systemwide password expiration` is set to 0, passwords do not expire.

The password expires when the number of specified days passes. For example, if you create a new login on August 1, 2007 at 10:30 a.m., with a password expiration interval of 30 days, the password expires on August 31, 2007 at 10:30 a.m.

An account’s password is considered expired if an interval greater than `number_of_days` has passed since the last time the password for that account was changed.

When the number of days remaining before expiration is less than 25 percent of the value of `systemwide password expiration` or 7 days, whichever is greater, each time the user logs in, a message displays, giving the number of days remaining before expiration. Users can change their passwords anytime before expiration.

When an account’s password has expired, the user can still log in to Adaptive Server but cannot execute any commands until he or she has used `sp_password` to change his or her password. If the system security officer changes the user’s password while the account is in `sp_password-only` mode, the account returns to normal after the new password is assigned.

This restriction applies only to login sessions established after the password has expired. Users who are logged in when their passwords expire are not affected until the next time they log in.
tape retention in days

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Range of values</td>
<td>0–365</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Backup/Recovery</td>
</tr>
</tbody>
</table>

Tape retention in days specifies the number of days you intend to retain each tape after it has been used for either a database or a transaction log dump. This parameter can keep you from accidentally overwriting a dump tape.

For example, if you have set tape retention in days to 7 days, and you attempt to use the tape before 7 days have elapsed since the last time you dumped to that tape, Backup Server issues a warning message.

You can override the warning using the with init option when executing the dump command. Doing this causes the tape to be overwritten and all data on the tape to be lost.

Both the dump database and dump transaction commands provide a retaindays option, which overrides the tape retention in days value for a particular dump. See Chapter 12, “Backing Upa and Restoring User Databases,” in *System Administration Guide: Volume 2*.

tcp no delay

Summary information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1 (on)</td>
</tr>
<tr>
<td>Valid values</td>
<td>0 (off), 1 (on)</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration groups</td>
<td>Network Communication, O/S Resources</td>
</tr>
</tbody>
</table>

Tcp no delay controls TCP (Transmission Control Protocol) packet batching. The default value means that TCP packets are not batched.
Configuration parameters

TCP normally batches small logical packets into single, larger, physical packets, and fills physical network frames with as much data as possible, which improves network throughput in terminal emulation environments where users mostly send keystrokes across the network.

However, applications that use small TDS (Tabular Data Stream) packets may benefit from disabling TCP packet batching.

Note Disabling TCP packet batching means that packets are sent, regardless of size; this increases the volume of network traffic.

text prefetch size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration Group</td>
</tr>
</tbody>
</table>

text prefetch size limits the number of pages of text, unitext, and image data that can be prefetched into an existing buffer pool. Adaptive Server prefetches only text, unitext, and image data that was created with Adaptive Server 12.x or was upgraded using dbcc rebuild_text.

time slice

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
time slice sets the number of milliseconds that the Adaptive Server scheduler allows a task to run. If time slice is set too low, Adaptive Server may spend too much time switching between tasks, which increases response time. If it is set too high, CPU-intensive tasks may monopolize engines, which also increases response time. The default value allows each task to run for 1/10 of a second before relinquishing the CPU to another task.

Use sp_sysmon to determine how time slice affects voluntary yields by Adaptive Server engines. See the Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

total data cache size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

total data cache size reports the amount of memory, in kilobytes, that is currently available for data, index, and log pages. This parameter is a calculated value that is not directly user-configurable.

The amount of memory available for the data cache can be affected by a number of factors, including:

- The amount of physical memory available on your machine
- The values to which the following parameters are set:
 - total logical memory
 - number of user connections
 - total procedure cache percent
 - number of open databases
 - number of open objects
 - number of open indexes
Configuration parameters

- number of devices

A number of other parameters also affect the amount of available memory, but to a lesser extent.

For information on how Adaptive Server allocates memory and for information on data caches, see “Configuration parameters” on page 81.

total logical memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>

Total logical memory displays the total logical memory for the current configuration of Adaptive Server. The total logical memory is the amount of memory that the Adaptive Server current configuration uses. Total logical memory displays the memory that is required to be available, but which may or may not be in use at any given moment. For information about the amount of memory in use at a given moment, see total physical memory. You cannot use total logical memory to set any of the memory configuration parameters.

total physical memory

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Summary information
total physical memory is a read-only configuration parameter that displays the total physical memory for the current configuration of Adaptive Server. The total physical memory is the amount of memory that Adaptive Server is using at a given moment in time. Configure Adaptive Server so that the value for max memory is larger than the value for total logical memory, and the value for total logical memory is larger than the value for total physical memory.

transfer utility memory size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Adaptive Server maintains a memory pool for the `transfer table` command and for tables marked for incremental transfer. This pool provides memory for maintaining state information about current and past transfers, and for memory used to write to and read from transfer files. `transfer utility memory size` determines the size of this memory pool.

The units for this pool are in memory pages, which are blocks of 2048 bytes. The default size is large enough to accommodate over 100 tables marked for incremental transfer, all transferring simultaneously.

If your installation does not include tables marked for incremental transfer, and does not use the `transfer table` command, you may set the size of this memory pool to zero to reclaim this memory.

txn to pss ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
Adaptive Server manages transactions as configurable server resources. Each time a new transaction begins, Adaptive Server must obtain a free transaction descriptor from a global pool that is created when the server is started. Transaction descriptors are internal memory structures that Adaptive Server uses to represent active transactions.

Adaptive Server requires one free transaction descriptor for:

- The outer block of each server transaction. The outer block of a transaction may be created explicitly when a client executes a new `begin transaction` command. Adaptive Server may also implicitly create an outer transaction block when clients use Transact-SQL to modify data without using `begin transaction` to define the transaction.

 Note Subsequent, nested transaction blocks, created with additional `begin transaction` commands, do not require additional transaction descriptors.

- Each database accessed in a *multidatabase transaction*. Adaptive Server must obtain a new transaction descriptor each time a transaction uses or modifies data in a new database.

 `txn to pss ratio` determines the total number of transaction descriptors available to the server. At start-up, this ratio is multiplied by the number of PSS structures to create the transaction descriptor pool:

 \[
 \text{# of transaction descriptors} = \text{PSS structures} \times \text{txn to pss ratio}
 \]

 The default value, 16, ensures compatibility with versions of Adaptive Server earlier than 12.x which also allocated 16 transaction descriptors for each user connection. In version 12.x and later, the number of simultaneous transactions is limited only by the number of transaction descriptors available in the server.

 Note You can have as many databases in a user transaction as there are in your Adaptive Server installation. For example, if your Adaptive Server has 25 databases, you can include 25 databases in your user transactions.

Optimizing the txn to pss ratio for your system

During a peak period, use `sp_monitorconfig` to examine the use of transaction descriptors:

```
sp_monitorconfig "txn to pss ratio"
```

Usage information at date and time: Apr 22 2002 2:49PM.

<table>
<thead>
<tr>
<th>Name</th>
<th>num_free</th>
<th>num_active</th>
<th>pct_act</th>
<th>Max_Used</th>
<th>Reused</th>
</tr>
</thead>
</table>

262 Adaptive Server Enterprise
If the `num_used` value is zero or very low, transactions may be delayed as Adaptive Server waits for transaction descriptors to become free in the server. In this case, consider increasing the value of `txn to pss ratio`.

If the `Max_Used` value is too low, unused transaction descriptors may be consuming memory that can be used by other server functions. Consider reducing the value of `txn to pss ratio`.

unified login required

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

`unified login required` requires that all users who log in to Adaptive Server be authenticated by a security mechanism. The `use security services` parameter must be 1 to use the `unified login` security service.

upgrade version

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
Configuration parameters

upgrade version reports the version of the upgrade utility that upgraded your master device. The upgrade utility checks and modifies this parameter during an upgrade.

Warning! Do not reset upgrade version. Doing so may cause serious problems with Adaptive Server.

You can determine whether an upgrade has been done on your master device by using `upgrade version` without specifying a value:

```
sp_configure "upgrade version"
```

use security services

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

use security services specifies that Adaptive Server uses network-based security services. If the parameter is set to 0, none of the network-based security services can be used.

user log cache size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration groups</td>
</tr>
</tbody>
</table>
user log cache size specifies the size, in bytes, for each user’s log cache. Its size is determined by the server’s logical page size. There is one user log cache for each configured user connection and worker process. Adaptive Server uses these caches to buffer the user transaction log records, which reduces the contention at the end of the transaction log.

When a user log cache becomes full or another event occurs (such as when the transaction completes), Adaptive Server “flushes” all log records from the user log cache to the database transaction log. By first consolidating the log records in each user’s log cache, rather than immediately adding each record to the database’s transaction log, Adaptive Server reduces contention of processes writing to the log, especially for SMP systems that are configured with more than one engine.

Note For transactions using a database with mixed data and log segments, the user log cache is flushed to the transaction log after each log record. No buffering takes place. If your databases do not have dedicated log segments, do not increase the user log cache size.

Do not configure user log cache size to be larger than the maximum amount of log information written by an application’s transaction. Since Adaptive Server flushes the user log cache when the transaction completes, any additional memory allocated to the user log cache is wasted. If no transaction in your server generates more than 4000 bytes of transaction log records, set user log cache size no higher than that value. For example:

```
sp_configure "user log cache size", 4000
```

Setting user log cache size too high wastes memory. Setting it too low can cause the user log cache to fill up and flush more than once per transaction, increasing the contention for the transaction log. If the volume of transactions is low, the amount of contention for the transaction log may not be significant.

Use `sp_sysmon` to understand how this parameter affects cache behavior. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

user log cache spinlock ratio

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Range of values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
Configuration parameters

Summary information

Display level	Intermediate
Required role	System administrator
Configuration groups	Memory Use, User Environment

For Adaptive Servers running with multiple engines, user log cache spinlock ratio specifies the ratio of user log caches per user log cache spinlock. There is one user log cache for each configured user connection.

The default specifies 1 spinlock for each 20 user connections configured for your server.

Use sp_sysmon to understand how this parameter affects cache behavior. See the *Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon*.

wait event timing

Summary information

Default value	0
Range of values	0–1
Status	Dynamic
Display level	Comprehensive
Required role	System administrator
Configuration groups	Memory Use, Monitoring

wait event timing controls whether Adaptive Server collects statistics for individual wait events. A task may have to wait for a variety of reasons (for example, waiting for a buffer read to complete). The monSysWaits table contains the statistics for each wait event. The monWaitEventInfo table contains a complete list of wait events.

workload manager cache size

Summary information

Default value	80
Valid values	80 – 2147483647
Status	Dynamic
Display level	Comprehensive
Required role	System administrator
workload manager cache size specifies the maximum amount of memory, in 2K pages, that the workload manager can use. See Chapter 6, “Managing the Workload,” in the Cluster Users Guide.

xact coordination interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

xact coordination interval defines the length of time between attempts to resolve transaction branches have been propagated to remote servers.

The coordinating Adaptive Server makes regular attempts to resolve the work of remote servers participating in a distributed transaction. The coordinating server contacts each remote server participating in the distributed transaction in a serial manner, as shown in Figure 5-6. The coordination service may be unable to resolve a transaction branch for a variety of reasons. For example, if the remote server is not reachable due to network problems, the coordinating server reattempts the connection after the time specified by xact coordination level.
Figure 5-6: Resolving remote transaction branches

With the default value of xact coordination interval, 60, Adaptive Server attempts to resolve remote transactions once every minute. Decreasing the value may speed the completion of distributed transactions, but only if the transactions are themselves resolved in less than a minute. Under normal circumstances, there is no performance penalty to decreasing the value of xact coordination interval.

Setting xact coordination interval to a higher number can slow the completion of distributed transactions, and cause transaction branches to hold resources longer than they normally would. Under normal circumstances, do not increase the value of xact coordination interval beyond its default.

xp_cmdshell context

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

xp_cmdshell context sets the security context for the operating system command to be executed using the xp_cmdshell system ESP. The values for the context determine under which account the command runs:

- 0 – command runs under XP Server’s account.
- 1 – command runs under user’s account.
CHAPTER 5 Setting Configuration Parameters

• 2 – command runs under XP Server’s account only if the user has administrator privileges.

Setting xp_cmdshell context to 1 restricts the xp_cmdshell security context to users who have accounts at the operating system level. Its behavior is platform-specific. If xp_cmdshell context is set to 1, to use an xp_cmdshell ESP, an operating system user account must exist for the Adaptive Server user name. For example, an Adaptive Server user named “sa” cannot use xp_cmdshell unless he or she has an operating-system-level user account named “sa”.

On Windows, when xp_cmdshell context is set to 1, xp_cmdshell succeeds only if the user name of the user logging in to Adaptive Server is a valid Windows user name with Windows system administration privileges on the system on which Adaptive Server is running.

On other platforms, when xp_cmdshell context is set to 1, xp_cmdshell succeeds only if Adaptive Server was started by a user with “superuser” privileges at the operating system level. When Adaptive Server gets a request to execute xp_cmdshell, it checks the uid of the user name of the ESP requestor and runs the operating system command with the permissions of that uid.

If xp_cmdshell context is 0, the permissions of the operating system account under which Adaptive Server is running are the permissions used to execute an operating system command from xp_cmdshell. This allows users to execute operating commands that they would not ordinarily be able to execute under the security context of their own operating system accounts.
Configuration parameters
CHAPTER 6
Overview of Disk Resource Issues

Many Adaptive Server defaults are set to reasonable values for aspects of storage management, such as database, table, and index location, and how much space is allocated for each one. Responsibility for storage allocation and management is often centralized, and usually, the system administrator has ultimate control over the allocation of disk resources to Adaptive Server and the physical placement of databases, tables, and indexes on those resources.

Device allocation and object placement

When configuring a new system, the system administrator must consider several issues that have a direct impact on the number and size of disk resources required. These device allocation issues refer to commands and procedures that add disk resources to Adaptive Server.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device allocation and object placement</td>
<td>271</td>
</tr>
<tr>
<td>Commands for managing disk resources</td>
<td>272</td>
</tr>
<tr>
<td>Considerations in storage management decisions</td>
<td>274</td>
</tr>
<tr>
<td>Status and defaults at installation time</td>
<td>275</td>
</tr>
<tr>
<td>System tables that manage storage</td>
<td>276</td>
</tr>
</tbody>
</table>

Many Adaptive Server defaults are set to reasonable values for aspects of storage management, such as database, table, and index location, and how much space is allocated for each one. Responsibility for storage allocation and management is often centralized, and usually, the system administrator has ultimate control over the allocation of disk resources to Adaptive Server and the physical placement of databases, tables, and indexes on those resources.

Device allocation and object placement

When configuring a new system, the system administrator must consider several issues that have a direct impact on the number and size of disk resources required. These device allocation issues refer to commands and procedures that add disk resources to Adaptive Server.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device allocation and object placement</td>
<td>271</td>
</tr>
<tr>
<td>Commands for managing disk resources</td>
<td>272</td>
</tr>
<tr>
<td>Considerations in storage management decisions</td>
<td>274</td>
</tr>
<tr>
<td>Status and defaults at installation time</td>
<td>275</td>
</tr>
<tr>
<td>System tables that manage storage</td>
<td>276</td>
</tr>
</tbody>
</table>

Many Adaptive Server defaults are set to reasonable values for aspects of storage management, such as database, table, and index location, and how much space is allocated for each one. Responsibility for storage allocation and management is often centralized, and usually, the system administrator has ultimate control over the allocation of disk resources to Adaptive Server and the physical placement of databases, tables, and indexes on those resources.

Device allocation and object placement

When configuring a new system, the system administrator must consider several issues that have a direct impact on the number and size of disk resources required. These device allocation issues refer to commands and procedures that add disk resources to Adaptive Server.

<table>
<thead>
<tr>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize and allocate a default pool of database devices</td>
<td>Chapter 7, “Initializing Database Devices”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize and allocate a default pool of database devices</td>
<td>Chapter 7, “Initializing Database Devices”</td>
</tr>
</tbody>
</table>
After the initial disk resources have been allocated to Adaptive Server, the system administrator, database owner, and object owners should consider how to place databases and database objects on specific database devices. These object placement issues determine where database objects reside on your system and whether or not the objects share devices. Object placement tasks are discussed throughout this manual, including the chapters shown in Table 6-2.

Table 6-2: Object placement topics

<table>
<thead>
<tr>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place databases on specific database devices</td>
<td>Chapter 6, “Creating and Managing User Databases,” in System Administration Guide: Volume 2</td>
</tr>
<tr>
<td>Place tables and indexes on specific database devices</td>
<td>Chapter 6, “Creating and Managing User Databases,” in System Administration Guide: Volume 2</td>
</tr>
</tbody>
</table>

Do not consider allocating devices separately from object placement. For example, if you decide that a particular table must reside on a dedicated pair of devices, first allocate those devices to Adaptive Server. The remaining sections in this chapter provide an overview that spans both device allocation and object placement issues, providing pointers to chapters where appropriate.

Commands for managing disk resources

Table 6-3 lists the major commands a system administrator uses to allocate disk resources to Adaptive Server, and provides references to the chapters that discuss those commands.

Table 6-3: Commands for allocating disk resources

<table>
<thead>
<tr>
<th>Command</th>
<th>Task</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk init name = "dev_name" physname = "phys_name"...</td>
<td>Makes a physical device available to a particular Adaptive Server. Assigns a database device name (dev_name) that is used to identify the device in other Adaptive Server commands.</td>
<td>Chapter 7, “Initializing Database Devices”</td>
</tr>
<tr>
<td>sp_deviceattr logicalname, optname, optvalue</td>
<td>Changes the dsync setting of an existing database device file.</td>
<td>Chapter 7, “Initializing Database Devices”</td>
</tr>
<tr>
<td>sp_diskdefault "dev_name"...</td>
<td>Adds dev_name to the general pool of default database space.</td>
<td>Chapter 7, “Initializing Database Devices”</td>
</tr>
</tbody>
</table>
Table 6-4 lists the commands used in object placement. For information about how object placement affects performance, see Chapter 1, “Controlling Physical Data Placement,” in the Performance and Tuning Series: Physical Database Tuning.

Table 6-4: Commands for placing objects on disk resources

<table>
<thead>
<tr>
<th>Command</th>
<th>Task</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk resize</code> name = "device_name", size = additional_space</td>
<td>Dynamically increases the size of database devices.</td>
<td>Chapter 7, “Initializing Database Devices”</td>
</tr>
<tr>
<td><code>disk mirror</code> name = "dev_name" mirror = "phys_name"</td>
<td>Mirrors a database device on a specific physical device.</td>
<td>Chapter 2, “Mirroring Database Devices,” in System Administration Guide: Volume 2</td>
</tr>
<tr>
<td><code>create database...on dev_name</code> or <code>alter database...on dev_name</code></td>
<td>Makes database devices available to a particular Adaptive Server database. The log on clause to <code>create database</code> places the database’s logs on a particular database device.</td>
<td>Chapter 6, “Creating and Managing User Databases,” in System Administration Guide: Volume 2</td>
</tr>
<tr>
<td><code>create database...</code> or <code>alter database...</code></td>
<td>When used without the <code>on dev_name</code> clause, these commands allocate space on the default database devices.</td>
<td>Chapter 6, “Creating and Managing User Databases,” in System Administration Guide: Volume 2</td>
</tr>
<tr>
<td><code>sp_addsegment seg_name, dbname, devname</code> and <code>sp_extendsegment seg_name, dbname, devname</code></td>
<td>Creates a segment—a named collection of space—from the devices available to a particular database.</td>
<td>Chapter 8, “Creating and Using Segments in System Administration Guide: Volume 2</td>
</tr>
<tr>
<td><code>create table...on seg_name</code> or <code>create index...on seg_name</code></td>
<td>Creates database objects, placing them on a specific segment of the database’s assigned disk space.</td>
<td>Chapter 8, “Creating and Using Segments in System Administration Guide: Volume 2</td>
</tr>
</tbody>
</table>
Considerations in storage management decisions

<table>
<thead>
<tr>
<th>Command</th>
<th>Task</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>create table...</td>
<td>When used without on <code>seg_name</code>, tables and indexes occupy the general pool of space allocated to the database (the default devices).</td>
<td>Chapter 8, “Creating and Using Segments in System Administration Guide: Volume 2</td>
</tr>
<tr>
<td>or create index...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations in storage management decisions

The system administrator must make many decisions regarding the physical allocation of space to Adaptive Server databases. The major considerations in these choices are:

- Recovery – disk mirroring and maintaining logs on a separate physical device provide two mechanisms for full recovery in the event of physical disk failures.

- Performance – for tables or databases where speed of disk reads and writes is crucial, properly placing database objects on physical devices yields performance improvements. Disk mirroring slows the speed of disk writes.

Recovery

Recovery is the key motivation for using several disk devices. You can mirror database devices to achieve nonstop recovery. You can also ensure full recovery by storing a database’s log on a separate physical device.

Keeping logs on a separate device

Unless a database device is mirrored, full recovery requires that a database’s transaction log be stored on a different device from the actual data (including indexes) of a database. In the event of a hard disk failure, you can create an up-to-date database by loading a dump of the database and then applying the log records that were safely stored on another device. See Chapter 6, “Creating and Managing User Databases,” in System Administration Guide: Volume 2 for information about the log on clause of `create database`.
CHAPTER 6 Overview of Disk Resource Issues

Mirroring

Nonstop recovery in the event of a hard disk failure is guaranteed by mirroring all Adaptive Server devices to a separate physical disk. See Chapter 2, “Mirroring Database Devices,” in *System Administration Guide: Volume 2*.

Performance

You can improve system performance by placing logs and database objects on separate devices:

- Placing a table on one hard disk and nonclustered indexes on another ensures that physical reads and writes are faster, since the work is split between two disk drives.
- Splitting large tables across two disks can improve performance, particularly for multiuser applications.
- When log and data share devices, user log cache buffering of transaction log records is disabled.
- Partitioning provides multiple insertion points for a heap table, adds a degree of parallelism to systems configured to perform parallel query processing, and makes it possible to distribute a table’s I/O across multiple database devices.

Status and defaults at installation time

The installation program and scripts initialize the master device and set up the master, model, sybsystemprocs, syssecurity, and temporary databases for you.

When you install Adaptive Server, the system databases, system-defined segments, and database devices are organized as follows:

- The master, model, and tempdb databases are installed on the master device.
- The sybsystemprocs database is installed on a device that you specified.
Three segments are created in each database: system, default, and logsegment.

The master device is the default storage device for all user-created databases.

Note After initializing new devices for default storage, remove the master device from the default storage area with `sp_diskdefault`. Do not store user databases and objects on the master device. See “Designating default devices” on page 290.

If you install the audit database, `sybsecurity`, it is located on its own device.

System tables that manage storage

Two system tables in the master database, `sysusages` and `sysdevices`, and three more in each user database (`syssegments`, `sysindexes`, and `syspartitions`) track the placement of databases, tables (including the transaction log table, `syslogs`), and indexes. The relationship between the tables is illustrated in Figure 6-1.
The *sysdevices* table

The *sysdevices* table in the master database contains one row for each *database device* and may contain a row for each dump device (tape, disk, or operating system file) available to Adaptive Server.

sysdevices stores two names for each device:

- A **logical name** or **device name**, used in all subsequent storage-management commands, is stored in the name column of sysdevices. This is usually a user-friendly name, perhaps indicating the planned use for the device, for example, “logdev” or “userdbdev.”

- The **physical name** is the actual operating system name of the device. Use this name only in the disk init command; after that, all Adaptive Server data storage commands use the logical name.

Place a database or transaction log on one or more devices by specifying the logical name of the device in the create database or alter database statement. The log on clause to create database places a database’s transaction log on a separate device to ensure full recoverability. The log device must also have an entry in sysdevices before you can use log on.

A database can reside on one or more devices, and a device can store one or more databases. See Chapter 6, “Creating and Managing User Databases,” in System Administration Guide: Volume 2 for information about creating databases on specific database devices.

The **sysusages table**

The sysusages table in the master database keeps track of the space you assign to all Adaptive Server databases.

create database and alter database allocate new space to the database by adding a row to sysusages for each database device or device fragment. When you allocate only a portion of the space on a device with create or alter database, that portion is called a **fragment**.

sp_addsegment, sp_droppsegment, and sp_extendsegment change the segmap column in sysusages for the device that is mapped or unmapped to a segment. See Chapter 8, “Creating and Using Segments in System Administration Guide: Volume 2.”
The **syssegments** table

The syssegments table, one in each database, lists the segments in a database. A segment is a collection of the database devices and fragments available to a particular database. Tables and indexes can be assigned to a particular segment—and therefore to a particular physical device—or can span a set of physical devices.

`create database` makes default entries in `syssegments`. `sp_addsegment` and `sp_dropsegment` to add and remove entries from `syssegments`.

The **sysindexes** table

The sysindexes table lists each table and index and the segment where each table, clustered index, nonclustered index, and chain of text pages is stored. It also lists other information such as the `max_rows_per_page` setting for the table or index.

The `create table`, `create index`, and `alter table` commands create new rows in `sysindexes`. Partitioning a table changes the function of `sysindexes` entries for the table.

The **syspartitions** table

The syspartitions table lists each table and index partition and the segment where the partition is stored. `syspartitions` maintains key storage management information such as the first page of a data or index page chain, the last page of a heap, the root page of an index partition, and so on.

Use `create table`, `create index` and `alter table` to create new rows in `syspartitions`.
System tables that manage storage
CHAPTER 7

Initializing Database Devices

Database devices

A database device stores the objects that make up databases. The term device does not necessarily refer to a distinct physical device: it can refer to any piece of a disk (such as a disk partition) or a file in the file system that is used to store databases and their objects.

Each database device or file must be prepared and made known to Adaptive Server before it can be used for database storage. This process is called initialization.

After a database device has been initialized, it can be:

- Allocated to the default pool of devices for the create and alter database commands
- Assigned to the pool of space available to a user database
- Assigned to a user database and used to store one or more database objects
- Assigned to store a database’s transaction logs
Using the disk init command

Using the **disk init** command

A system administrator initializes new database devices with the `disk init` command, which:

- Maps the specified physical disk device or operating system file to a database device name
- Lists the new device in `master..sysdevices`
- Prepares the device for database storage

Note Before you run `disk init`, see the installation documentation for your platform for information about choosing a database device and preparing it for use with Adaptive Server. You may want to repartition the disks on your computer to provide maximum performance for your Sybase databases.

disk init divides the database devices into **allocation units**, groups of 256 logical pages. The size of the allocation unit depends on which logical page size your server is configured for (2, 4, 8, or 16K). In each allocation unit, the `disk init` command initializes the first page as the allocation page, which contains information about the database (if any) that resides on the allocation unit.

Warning! After you run the `disk init` command, dump the `master` database. This makes recovery easier and safer in case `master` is damaged. See Chapter 13, “Restoring the System Databases,” in *System Administration Guide: Volume 2*.

disk init syntax

See the *Reference Manual: Commands* for the `disk init` syntax.

Specifying a logical device name

The `device_name` must be a valid identifier. This name is used in the `create database` and `alter database` commands, and in the system procedures that manage segments. The logical device name is known only to Adaptive Server, not to the operating system on which the server runs.
CHAPTER 7 Initializing Database Devices

Specifying a physical device name

The *physname* of the database device gives the name of a raw disk partition (UNIX), foreign device, or the name of an operating system file. On PC platforms, you typically use operating system file names for *physname*.

Choosing a device number

Adaptive Server accepts, but does not require, the disk init *vdevno* parameter. If you specify a *vdevno*, you may choose any currently unused identifier from 1 to 2,147,483,647 (virtual device ID 0 is used by the master device). For example, specifying *vdevno* = 33 assigns virtual device ID 33 to a device. If you do not specify a *vdevno*, Adaptive Server chooses a number higher than the highest *vdevno* currently listed in *sysdevices*.

The number of database devices you can create is limited by the number of devices configuration parameter. Adaptive Server is initially configured for 10 devices. Use *sp_configure* to change the value for number of devices.

Your operating system may also limit the number of devices your installation can use concurrently. To the operating system, each Sybase device counts as one open file.

Adaptive Server automatically specifies the next available identifying number for the database device. This is the virtual device number (*vdevno*). You need not specify this number when you issue the disk init command.

If you manually select the *vdevno*, it must be unique among the devices used by Adaptive Server. Device number 0 represents the master device. Legal numbers are 1 – 2,147,483,647. You can choose any unused *vdevno* within that range.

To see the numbers already in use for *vdevno*, look in the *vdevno* column of the report from *sp_helpdevice*, or use the following query to list all the device numbers currently in use:

```sql
select vdevno from master..sysdevices
where status & 2=2
```

Here, *status & 2=2* specifies physical disk.
Specifying the device size

To indicate the size of the device, use ‘k’ or ‘K’ for kilobytes, ‘m’ or ‘M’ for megabytes, ‘g’ or ‘G’ for gigabytes, and ‘t’ or ‘T’ for terabytes. Sybase recommends that, to avoid confusion in the actual number of pages allocated, you always include the unit specifier in both the disk init and create database commands. Enclose the unit specifier in single or double quotes or in brackets.

Theoretically, you can create as many as 2,147,483,647 disk devices, each of which can be as large as 2,147,483,648 2K-blocks. The maximum installation size becomes a function of database size, hardware, and operating system limits.

The following guidelines apply to the syntax for disk init:

- If you do not include a unit specifier for the size argument of disk init or disk reinit, size is measured, by default, in number of virtual pages. Thus, if you enter size = 15000, Adaptive Server assumes 15,000 virtual pages. A virtual page is 2048 bytes.
- You can increase, but not decrease, the size of an existing database device using the disk resize command.
- If you are planning to use the new device for the creation of a new database, the minimum size depends on the logical page size used by the server, described in Table 7-1:

<table>
<thead>
<tr>
<th>Logical page size</th>
<th>Minimum database size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>3MB</td>
</tr>
<tr>
<td>4K</td>
<td>6MB</td>
</tr>
<tr>
<td>8K</td>
<td>12MB</td>
</tr>
<tr>
<td>16K</td>
<td>24MB</td>
</tr>
</tbody>
</table>

You cannot have a database smaller than the model database. A model database larger than the minimums listed above, determines the minimum database size.

Adaptive Server allocates and manages database space in allocation units, which are groups of 256 logical pages. The smallest database you can create (using create database) is 1MB; therefore, the size of the smallest usable database device is the larger of 1MB or 256 logical pages (for a 2K or 4K logical page size, this is 1MB; for a 8K logical page size, this is 2MB; for a 16K logical page size, this is 4MB).
Keep this grouping of 256 pages in mind when you decide how large to make a device to avoid wasting space. For example, if your installation uses a 16k logical page size, specifying a device as `size = '31M'` leaves 3MB wasted at the end of the device, since an allocation unit is 4MB.

If you are initializing a raw device, determine the size of the device from your operating system, as described in the installation guide for your platform. Use the total size available, up to the maximum for your platform. After you have initialized the disk for use by Adaptive Server, you cannot use any space on that raw device for any other purpose.

disk init uses `size` to compute the value for the high virtual page number in `sysdevices.high`. The values for `sysdevices.high` and `sysdevices.low` are virtual page numbers in 2K-byte blocks, which is the Adaptive Server unit of physical disk management. This may not be the same as your installation's logical page size.

Note If the physical device does not contain the number of blocks specified by the size parameter, disk init fails. If you use the optional `vstart` parameter, the physical device must contain the sum of the blocks specified by both the `vstart` and `size` parameters, or the command fails.

Specifying the `dsync` setting (optional)

For devices initialized on UNIX operating system files, the `dsync` setting controls whether or not writes to those files are buffered. When the `dsync` setting is on, Adaptive Server opens a database device file using the UNIX `dsync` flag, which ensures that writes to the device file occur directly to the physical storage media, and that Adaptive Server can recover data on the device in the event of a system failure.

When `dsync` is off, writes to the device file may be buffered by the UNIX file system, and the recovery of data on the device cannot be ensured. Turn off `dsync` only when data integrity is not required.

Note The `dsync` setting is ignored for devices initialized on raw partitions. Instead, writes to the database device take place directly to the physical media.
Performance implications of \textit{dsync}

Using the \textit{dsync} setting with database device files incurs several performance trade-offs:

- Adaptive Server does not support asynchronous I/O on operating system files for HP-UX.
- If database device files use the \textit{dsync} option, the Adaptive Server engine that is writing to the device file waits until the write operation completes. This may cause poor performance during update operations.
- When \textit{dsync} is on, write operations to database device files may be slower compared to earlier versions of Adaptive Server (where \textit{dsync} is not supported). This is because Adaptive Server must write data to disk instead of simply copying cached data to the UNIX file system buffer.

In cases where highest write performance is required (but data integrity after a system failure is not required) turning \textit{dsync} off yields device file performance similar to earlier Adaptive Server versions. For example, you may consider storing \textit{tmpdb} on a dedicated device file with \textit{dsync} disabled, if performance is not acceptable while using \textit{dsync}.

- Response time for read operations is generally better for devices stored on UNIX operating system files as compared to devices stored on raw partitions. Data from device files can benefit from the UNIX file system cache as well as the Adaptive Server cache, and more reads may take place without requiring physical disk access.

Limitations and restrictions of \textit{dsync}

The following limitations and restrictions apply to using \textit{dsync}:

- For the master device, \textit{dsync} is always set to true and you cannot change the setting.
- If you change a device file’s \textit{dsync} setting using the \texttt{sp_deviceattr} procedure, restart Adaptive Server for the change to take effect.
- When you upgrade from an Adaptive Server earlier than version 12.x, \textit{dsync} is set to true only for the master device file. Use \texttt{sp_deviceattr} to change the \textit{dsync} setting for any other device files.
- Adaptive Server ignores the \textit{dsync} setting for database devices stored on raw partitions. Writes to devices stored on raw partitions are always directly to the physical media.
The directio and dsync parameters are mutually exclusive. If a device has dsync set to true, you cannot set directio to true for the same device. To enable directio for a device, you must first reset dsync to false.

Using `directio` to bypass operating system buffer

The `directio` parameter for `disk init`, `disk reinit`, and `sp_deviceattr` allows you to configure Adaptive Server to transfer data directly to disk, bypassing the operating system buffer cache. `directio` performs I/O in the same manner as raw devices and provides the same performance benefit as raw devices, but has the ease of use and manageability of file system devices. You cannot set `directio` for the master device. `directio` is a static parameter; restart Adaptive Server for it to take effect.

Note `directio` is not available on all platforms. If you issue `disk init` with the `directio` parameter on a platform on which it is not supported, Adaptive Server issues the message `No such parameter: 'directio'`.

By default, the `directio` option is set to false (off) for all platforms.

Note Devices used for databases for which recovery is not important (for example, `tempdb`), may, by default, have dsync set to false. For these devices, enabling `directio` may have an adverse performance effect, so carefully review device use before you enable `directio`.

This example creates a device named “user_disk” that uses `directio` to write data directly to disk:

```
disk init
name = "user_disk",
physname = "/usr/u/sybase/data/userfile1.dat",
size = 5120, directio = true
```

To initializes 10MB of a disk on a UNIX operating system file, enter:

```
disk reinit
name = "user_disk",
physname = "/usr/u/sybase/data/userfile1.dat",
size = 5120, directio = true
```

By default, `directio` is disabled for all existing devices; enable it using `sp_deviceattr`:

```
sp_deviceattr
```
Getting information about devices

`sp_deviceattr device_name, directio, [true | false]`

For example, the following enables `directio` disk writes for the “user_disk” device:

```
sp_deviceattr user_disk, directio, true
```

Other optional parameters for `disk init`

`vstart` is the starting virtual address, or the offset, for Adaptive Server to begin using the database device. `vstart` accepts the following optional unit specifiers: k or K (kilobytes), m or M (megabytes), g or G (gigabytes) and t or T (terabytes). The size of the offset depends on how you enter the value for `vstart`:

- If you do not specify a unit size, `vstart` uses 2K pages for its starting address. For example, if you specify `vstart = 13`, Adaptive Server uses `13 * 2K` pages as the offset for the starting address.
- If you specify a unit value, `vstart` uses the value you enter as the starting address. For example, if you specify `vstart = "13M"`, Adaptive Server sets the starting address offset at 13MB.

The default, and usually preferred value, of `vstart` is 0. If the specified device does not have the sum of `vstart + size` blocks available, the `disk init` command fails.

The optional `cntrltype` keyword specifies the disk controller. Its default value is 0. Reset it only if instructed to do so by your system administrator.

Note To perform disk initialization, the user who started Adaptive Server must have the appropriate operating system permissions on the device that is being initialized.

Getting information about devices

`sp_helpdevice` provides information about the devices in the `sysdevices` table.

When used without a device name, `sp_helpdevice` lists all the devices available on Adaptive Server. When used with a device name, it lists information about that device. Here, `sp_helpdevice` is used to report information about the master device:
Each row in `master.sysdevices` describes:

- A dump device (tape, disk, or file) to be used for backing up databases, or
- A database device to be used for database storage.

The initial contents of `sysdevices` are operating-system-dependent. `sysdevices` entries usually include:

- One for the master device
- One for the `sybsystemprocs` database, which you can use to store additional databases such as `pubs2` and `sybsyntax`, or for user databases and logs
- Two for tape dump devices

If you installed auditing, there is a separate device for `sybsecurity`.

The `vpn_low` and `vpn_high` columns represent the page numbers that have been assigned to the device. For dump devices, these columns represent the media capacity of the device.

The `status` field indicates the type of device, whether a disk device is used as a default storage device when users issue a `create` or `alter database` command without specifying a database device, disk mirroring information, and `dsync` settings.

Table 7-2: Status bits in `sysdevices`

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Default disk (may be used by any <code>create</code> or <code>alter database</code> command that does not specify a location)</td>
</tr>
<tr>
<td>2</td>
<td>Physical disk</td>
</tr>
<tr>
<td>4</td>
<td>Logical disk (not used)</td>
</tr>
<tr>
<td>8</td>
<td>Skip header (used with tape dump devices)</td>
</tr>
<tr>
<td>16</td>
<td>Dump device</td>
</tr>
<tr>
<td>32</td>
<td>Serial writes</td>
</tr>
</tbody>
</table>
Dropping devices

To drop database and dump devices, use `sp_dropdevice`:

```
sp_dropdevice logicalname
```

You cannot drop a device that is in use by a database. You must drop the
database first.

`sp_dropdevice` removes the device name from `sysdevices`. `sp_dropdevice` does
not remove an operating system file; it only makes the file inaccessible to
Adaptive Server. Use operating system commands to delete a file after using
`sp_dropdevice`.

Designating default devices

To create a pool of default database devices to be used by all Adaptive Server
users for creating databases, use `sp_diskdefault` after the devices are initialized.
`sp_diskdefault` marks these devices in `sysdevices` as default devices. Whenever
users create (or alter) databases without specifying a database device, new disk
space is allocated from the pool of default disk space.

The syntax for `sp_diskdefault` is:
sp_diskdefault logicalname, {defaulton | defaultoff}

After adding user devices, use the defaultoff option to remove the master device from the pool of default space:

```
sp_diskdefault master, defaultoff
```

The following designates sprocdev, the device that holds the sybsystemprocs database, a default device:

```
sp_diskdefault sprocdev, defaulton
```

Adaptive Server can have multiple default devices. They are used in the order in which they appear in the sysdevices table (that is, alphabetical order). When the first default device is filled, the second default device is used, and so on.

Note After initializing a set of database devices, you may want to assign them to specific databases or database objects rather than adding them to the default pool of devices. For example, you may want to make sure a table never grows beyond the size of a particular device.

Choosing default and nondefault devices

sp_diskdefault lets you plan space usage for performance and recovery, while allowing users to create or alter databases.

Do not use these devices as default devices:

- The master device
- The device used for sybsecurity
- Any device intended solely for logs
- Devices where high-performance databases reside

You can use the device that holds sybsystemprocs for other user databases.

Note If you are using disk mirroring or segments, exercise caution in deciding which devices you add to the default list. In most cases, devices that are to be mirrored, or databases that contain objects placed on segments should specifically allocate devices, rather than being made part of default storage.
Increasing the size of devices with \textit{disk resize}

The \textit{disk resize} command allows you to increase the size of your database devices dynamically, rather than initializing a new device. For example, if /sybase/testdev.dat requires an additional 10MB of space, you can run \textit{disk resize} and allocate this amount of space to the device. The \textit{create} and \textit{alter database} commands can use this added space.

Use \textit{disk resize} to increase the size for both devices on raw partitions and for file systems. The minimum amount of space by which you can increase a device is 1MB or an allocation unit, whichever is greater.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Page size & Allocation unit size & Minimum incremental size \\
\hline
2K & 0.5MB & 1MB \\
4K & 1MB & 1MB \\
8K & 2MB & 2MB \\
16K & 4MB & 4MB \\
\hline
\end{tabular}
\end{table}

You cannot use \textit{disk resize} on dump or load devices.

Any properties that are set on the device continue to be set after you increase its size. That is, if a device has \texttt{dsync} set before you increase its size, it has \texttt{dsync} set afterwards. Also, any access rights that were set before you increased the size of the device remain set.

A user with the \texttt{sa_role} can execute the \textit{disk resize} command, which:
\begin{itemize}
\item Updates the high value in \texttt{master....sysdevices}, and
\item Prepares the additional space for database storage.
\end{itemize}

Use audit trails on \textit{disk resize} to track the number of times a device is resized. The device being resized is always online and available for users during the resize operation.

Resizing a disk requires that:
\begin{itemize}
\item You have already initialized the device with \textit{disk init}.
\item \texttt{device_name} must refer to a valid logical device name.
\item You disable mirroring while the resize operation is in progress. You can reestablish mirroring when the resize operation is complete.
\end{itemize}

In this example, the configuration of the device testdev is:

\begin{verbatim}
sp_helpdevice testdev
device_name physical_name description
status cntrltype vdevno vpn_low vpn_high
\end{verbatim}
To increase the size of testdev by 4MB using disk resize, enter:

```
disk resize
name = "test_dev",
size = "4M"
```

testdev.dat is now 14MB:

```
sp_helpdevice testdev
device_name physical_name description
 status cntrltype vdevno vpn_low vpn_high
-------- ------------------- ---------------
 testdev /sybase/dev/testdev.dat special, dsync on, directio off,
 physical disk, 14.00MB
 16386 0 1 0 7167
```

See the Reference Manual: Commands for disk resize syntax.

Insufficient disk space

During the physical initialization of the disk, if an error occurs due to insufficient disk space, disk resize extends the database device to the largest size possible before the error occurs.

For example, on a server that uses 4K logical pages, if you try to increase the size of the device by 40MB, but only 39.5MB is available, the device is extended only by 39.5MB.

You cannot decrease the size of a device with disk resize.
Increasing the size of devices with disk resize
CHAPTER 8

Setting Database Options

Database options control:
- Transaction behavior
- Table-column defaults
- User access restrictions
- Performance of recovery and bcp operations
- Log behavior

The system administrator and the database owner can use database options to configure settings for an entire database. Database options differ from sp_configure parameters, which affect the entire server, and set options, which affect only the current session or stored procedure.

Using the sp_dboption procedure

Use sp_dboption to change settings for an entire database. The options remain in effect until they are changed. sp_dboption:
- Displays a complete list of the database options when it is used without a parameter
- Changes a database option when used with parameters

You can change options only for user databases. You cannot change options for the master database. To change a database option in a user database (or to display a list of the database options), execute sp_dboption while using the master database.
Database option descriptions

The syntax is:

```
sp_dboption [dbname, optname, {true | false}]
```

Note Changes to model’s database options do not affect tempdb or current user-defined multiple temporary databases when you restart Adaptive Server. These changes appear only in databases that you create after you change the model database. Restarting Adaptive Server clears objects and data contained in the temporary databases, but does not reset database options.

Database option descriptions

All users with access to the master database can execute `sp_dboption` with no parameters to display a list of the database options. The report from `sp_dboption` looks like this:

```
sp_dboption
Settable database options.
--------------------------
abort tran on log full
allow nulls by default
async log service
auto identity
dbo use only
ddl in tran
delayed commit
identity in nonunique index
no chkpt on recovery
no free space acctg
read only
select into/bulkcopy/pllsort
single user
trunc log on chkpt
trunc. log on chkpt.
unique auto_identity index
```

For a report on which options have been set in a particular database, execute `sp_helpdb` in that database.

See the *Commands Reference: Procedures* for information about each database option in detail.
Viewing the options on a database

Use sp_helpdb to determine the options that are set for a particular database. sp_helpdb lists each active option in the "status" column of its output.

The following example shows that the read only option is turned on in mydb:

```
sp_helpdb mydb
name  db_size owner dbid created       status
-----  ------- ----- ---- ------------ -------------------
mydb   20.0 MB  sa  5  Mar 05, 2005   read only
```

To display a summary of the options for all databases, use sp_helpdb without specifying a database:

```
sp_helpdb
name  db_size owner dbid created        status
------------- -------- ----- ---- ------------ -------------------
master 48.0 MB  sa  1  Apr 12, 2005   mixed log and data
model  8.0 MB  sa  3  Apr 12, 2005   mixed log and data
pubs2 20.0 MB  sa  6  Apr 12, 2005   select into/bulkcopy/pllsort, trunc log on chkpt, mixed log and data
sybsystemdb 8.0 MB  sa  5  Apr 12, 2005   mixed log and data
sybsystemprocs 112.0 MB  sa  4  Apr 12, 2005   trunc log on chkpt, mixed log and data
tempdb 8.0 MB  sa  2  Apr 12, 2005   select into/bulkcopy/pllsort, trunc log on chkpt, mixed log and data
```
Viewing the options on a database
This chapter discusses Adaptive Server internationalization and localization support issues.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding internationalization and localization</td>
<td>299</td>
</tr>
<tr>
<td>Advantages of internationalized systems</td>
<td>300</td>
</tr>
<tr>
<td>A sample internationalized system</td>
<td>301</td>
</tr>
<tr>
<td>Elements of an internationalized system</td>
<td>303</td>
</tr>
<tr>
<td>Selecting the character set for your server</td>
<td>303</td>
</tr>
<tr>
<td>Selecting the sort order</td>
<td>313</td>
</tr>
<tr>
<td>Selecting a language for system messages</td>
<td>321</td>
</tr>
<tr>
<td>Setting up your server: examples</td>
<td>323</td>
</tr>
<tr>
<td>Changing the character set, sort order, or message language</td>
<td>325</td>
</tr>
<tr>
<td>Installing date strings for unsupported languages</td>
<td>335</td>
</tr>
<tr>
<td>Internationalization and localization files</td>
<td>337</td>
</tr>
</tbody>
</table>

Understanding internationalization and localization

Internationalization is the process of enabling an application to support multiple languages and cultural conventions.

An internationalized application uses external files to provide language-specific information at execution time. Because it contains no language-specific code, an internationalized application can be deployed in any native language environment without code changes. A single version of a software product can be adapted to different languages or regions, conforming to local requirements and customs without engineering changes. This approach to software development saves significant time and money over the lifetime of an application.
Localization is the process of adapting an internationalized product to meet the requirements of one particular language or region, for example Spanish, including providing translated system messages; translations for the user interface; and the correct formats for date, time, and currency. One version of a software product may have many localized versions.

Sybase provides both internationalization and localization support. Adaptive Server includes the character set definition files and sort order definition files required for data processing support for the major business languages in Western Europe, Eastern Europe, the Middle East, Latin America, and Asia.

Sybase Language Modules provide translated system messages and formats for Chinese (Simplified), French, German, Japanese, Korean, Brazilian Portuguese, and Spanish. By default, Adaptive Server comes with U.S. English message files.

This chapter describes the available character sets and language modules and summarizes the steps necessary to change the default character set, sort order, or message language for Adaptive Server.

Advantages of internationalized systems

The task of designing an application to work outside its country of origin can seem daunting. Often, programmers think that internationalizing means hard-coding dependencies based on cultural and linguistic conventions for just one country.

A better approach is to write an internationalized application: that is, one that examines the local computing environment to determine what language to use and loads files containing language-specific information at runtime.

When you use an internationalized application, a single application can be deployed in all countries. This has several advantages:

- You write and maintain one application.
- The application can be deployed, without change, in new countries as needed. You need only supply the correct localization files.
- All sites can expect standard features and behavior.
A sample internationalized system

An internationalized system may include internationalized client applications, gateways, and servers running on different platforms in different native language environments.

For example, an international system might include the following components:

- Order processing applications in New York City, Mexico City, and Paris (Client-Library applications)
- An inventory control server in Germany (Adaptive Server)
- An order fulfillment server in France (Adaptive Server)
- A central accounting application in Japan (an Open Server application working with an Adaptive Server)

In this system, the order processing applications:

- Query the inventory control server to determine if requested items are in stock
- Place orders with the order fulfillment server
- Send financial information to the accounting application

The inventory control server and the order fulfillment server respond to queries, and the accounting application collects financial data and generates reports.

The system looks like this:
A sample internationalized system

Figure 9-1: Example of an international system

In this example, all applications and servers use local languages and character sets to accept input and output messages.
Elements of an internationalized system

There are three elements that you can manipulate to configure your server language in an internationalized environment. Sybase suggests that you review these three elements and carefully plan the client/server network you want to create.

- Character set – the language in which the server sends and receives data to and from the client servers. Select the character set after carefully planning and analyzing the language needs of all client servers.
- Sort order – sort order options are dependent on the language and character set you select.
- System messages – messages display in one of several languages provided by Sybase. If your server language is not one of the languages provided, your system messages display in English, the default.

The following sections provide details about each of these elements.

Selecting the character set for your server

All data is encoded in your server in a special code. For example, the letter “a” is encoded as “97” in decimal. A **character set** is a specific collection of characters (including alphabetic and numeric characters, symbols, and nonprinting control characters) and their assigned numerical values, or codes. A character set generally contains the characters for an alphabet, for example, the Latin alphabet used in the English language, or a script such as Cyrillic used with languages such as Russian, Serbian, and Bulgarian. Character sets that are platform-specific and support a subset of languages, for example, the Western European languages, are called **native** or **national character sets**. All character sets that come with Adaptive Server, except for Unicode UTF-8, are native character sets.
A **script** is a writing system, a collection of all the elements that characterize the written form of a human language—for example, Latin, Japanese, or Arabic. Depending on the languages supported by an alphabet or script, a character set can support one or more languages. For example, the Latin alphabet supports the languages of Western Europe (see Group 1 in Table 9-1 on page 305). On the other hand, the Japanese script supports only one language, Japanese. Therefore, the Group 1 character sets support multiple languages, while many character sets, such as those in Group 101, support only one language.

The language or languages that are covered by a character set is called a **language group**. A language group can contain many languages or only one language; a native character set is the platform-specific encoding of the characters for the language or languages of a particular language group.

Within a client/server network, you can support data processing in multiple languages if all the languages belong to the same language group (see Table 9-1 on page 305). For example, if data in the server is encoded in a Group 1 character set, you could have French, German, and Italian data and any of the other Group 1 languages in the same database. However, you cannot store data from another language group in the same database. For example, you cannot store Japanese data with French or German data.

Unlike the native character sets just described, **Unicode** is an international character set that supports over 650 of the world’s languages, such as Japanese, Chinese, Russian, French, and German. Unicode allows you to mix different languages from different language groups in the same server, no matter what the platform. See “Unicode” on page 306 for more information.

Since all character sets support the Latin script, and therefore English, a character set always supports at least two languages—English and one other language.

Many languages are supported by more than one character set. The character set you install for a language depends on the client’s platform and operating system.

Adaptive Server supports the following languages and character sets:
Table 9-1: Supported languages and character sets

<table>
<thead>
<tr>
<th>Language group</th>
<th>Languages</th>
<th>Character sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Western European: Albanian, Catalan, Danish, Dutch, English, Faeroese, Finnish, French, Galician, German, Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish, Swedish</td>
<td>ASCII 8, CP 437, CP 850, CP 860, CP 863, CP 1252a, ISO 8859-1, ISO 8859-15, Macintosh Roman, ROMAN8, ROMAN9, ISO-15, CP 858</td>
</tr>
<tr>
<td>Group 2</td>
<td>Eastern European: Croatian, Czech, Estonian, Hungarian, Latvian, Lithuanian, Polish, Romanian, Slovak, Slovene (and English)</td>
<td>CP 852, CP 1250, ISO 8859-2, Macintosh Central European</td>
</tr>
<tr>
<td>Group 4</td>
<td>Baltic (and English)</td>
<td>CP 1257</td>
</tr>
<tr>
<td>Group 5</td>
<td>Cyrillic: Bulgarian, Byelorussian, Macedonian, Russian, Serbian, Ukrainian (and English)</td>
<td>CP 855, CP 866, CP 1251, ISO 8859-5, Koi8, Macintosh Cyrillic</td>
</tr>
<tr>
<td>Group 6</td>
<td>Arabic (and English)</td>
<td>CP 864, CP 1256, ISO 8859-6</td>
</tr>
<tr>
<td>Group 7</td>
<td>Greek (and English)</td>
<td>CP 869, CP 1253, GREEK8, ISO 8859-7, Macintosh Greek</td>
</tr>
<tr>
<td>Group 8</td>
<td>Hebrew (and English)</td>
<td>CP 1255, ISO 8859-8</td>
</tr>
<tr>
<td>Group 9</td>
<td>Turkish (and English)</td>
<td>CP 857, CP 1254, ISO 8859-9, Macintosh Turkish, TURKISH8</td>
</tr>
<tr>
<td>Group 101</td>
<td>Japanese (and English)</td>
<td>CP 932 DEC Kanji, EUC-JIS, Shift-JIS</td>
</tr>
<tr>
<td>Group 102</td>
<td>Simplified Chinese (PRC) (and English)</td>
<td>CP 936, EUC-GB, GB18030</td>
</tr>
<tr>
<td>Group 103</td>
<td>Traditional Chinese (ROC) (and English)</td>
<td>Big 5, CP 950b, EUC-CNS, Big 5 HKSCS</td>
</tr>
<tr>
<td>Group 104</td>
<td>Korean (and English)</td>
<td>EUC-KSC, cp949</td>
</tr>
<tr>
<td>Group 105</td>
<td>Thai (and English)</td>
<td>CP 874, TIS 620</td>
</tr>
<tr>
<td>Group 106</td>
<td>Vietnamese (and English)</td>
<td>CP 1258</td>
</tr>
<tr>
<td>Unicode</td>
<td>Over 650 languages</td>
<td>UTF-8</td>
</tr>
</tbody>
</table>

*a. CP 1252 is identical to ISO 8859-1 except for the 0x80–0x9F code points which are mapped to characters in CP 1252.
b. CP 950 is identical to Big 5.*

Note The English language is supported by all character sets because the first 128 (decimal) characters of any character set include the Latin alphabet (defined as “ASCII-7”). The characters beyond the first 128 differ between character sets and are used to support the characters in different native languages. For example, code points 0-127 of CP 932 and CP 874 both support English and the Latin alphabet. However, code points 128-255 support Japanese characters in CP 932 and code points 128-255 support Thai characters in CP 874.
Selecting the character set for your server

The following character sets support the European currency symbol, the “euro”: CP 1252 (Western Europe); CP 1250 (Eastern Europe); CP 1251 (Cyrillic); CP 1256 (Arabic); CP 1253 (Greek); CP 1255 (Hebrew); CP 1254 (Turkish); CP 874 (Thai); iso15, roman9 and CP858. Unicode UTF-8 also supports:

- Traditional Chinese on the Windows and Solaris platforms
- Arabic, Hebrew, Thai, and Russian on the Linux platform

Note iso_1 and ISO 8859-1 are different names for the same character set.

To mix languages from different language groups you *must* use Unicode. If your server character set is Unicode, you can support more than 650 languages in a single server and mix languages from any language group.

Unicode

Unicode is the first character set that enables all the world’s languages to be encoded in the same data set. Prior to the introduction of Unicode, if you wanted to store data in, for example, Chinese, you had to choose a character set appropriate for that language—to the exclusion of most other languages. It was either impossible or impractical to mix character sets, and thus diverse languages, in the same data set.

Sybase supported Unicode in the form of three datatypes: unichar, univarchar, and unitext. These datatypes store data in the UTF-16 encoding of Unicode.

UTF-16 is an encoding wherein Unicode scalar values are represented by a single 16-bit value (or, in rare cases, as a pair of 16-bit values). The three encodings are equivalent insofar as either encoding can be used to represent any Unicode character. The choice of UTF-16 datatypes, rather than a UTF-16 server default character set, promotes easy, step-wise migration for existing database applications.

Adaptive Server supports Unicode literals in SQL queries and a wide range of sort orders for UTF-8.
The character set model used by Adaptive Server is based on a single, configurable, server-wide character set. All data stored in Adaptive Server, using any of the “character” datatypes (char, varchar, nchar, nvarchar, and text), is interpreted as being in this character set. Sort orders are defined using this character set, as are language modules—collections of server messages translated into local languages.

During the connection dialog, a client application declares its native character set and language. If properly configured, the server thereafter attempts to convert any character data between its own character set and that of the client (character data includes any data stored in the database, as well as server messages in the client’s native language). This works well as long as the server’s and client’s character sets are compatible. It does not work well when characters are not defined in the other character set, as is the case for the character sets SJIS, used for Japanese, and KOI8, used for Russian and other Cyrillic languages. Such incompatibilities are the reason for Unicode, which can be thought of as a character superset, including definitions for characters in all other character sets.

The Unicode datatypes unichar, univarchar, and unitext are completely independent of the traditional character set model. Clients send and receive Unicode data independently of whatever other character data they send and receive.

Character set installation

Adaptive Server version 12.5.1 and later supports the 4-byte form of UTF-8. This form is used to represent the same rare Unicode characters that are represented in UTF-16 by pairs of 16-bit values (“surrogate pairs”). Prior to Adaptive Server version 12.5.1, only the 3-byte forms of UTF-8 were supported. If you have installed the UTF-8 character set in an Adaptive Server server earlier than version 12.5.1, you should reinstall it to enable the use of the 4-byte form of UTF-8.

Configuration parameters

The UTF-16 encoding of Unicode includes “surrogate pairs,” which are pairs of 16-bit values that represent infrequently used characters. Additional checking is built in to Adaptive Server to ensure the integrity of surrogate pairs. You can switch this checking off by setting the configuration parameter “enable surrogate processing” to 0. This yields slightly higher performance, although the integrity of surrogate pairs is no longer guaranteed.
Unicode also defines “normalization,” which is the process by which all possible representations of a single character are transformed into a single representation. Many base characters followed by combining diacritical marks are equivalent to precomposed characters, although their bit patterns are different. For example, the following two sequences are equivalent:

- 0x00E9 -- é (LATIN SMALL LETTER E WITH ACUTE)
- 0x00650301 -- e (LATIN SMALL LETTER E), ´ (COMBINING ACUTE ACCENT)

The `enable unicode normalization` configuration parameter controls whether or not Adaptive Server normalizes incoming Unicode data.

Significant performance increases are possible when the default Unicode sortorder is set to “binary” and the `enable Unicode normalization` configuration parameter is set to 1. This combination allows Adaptive Server to make several assumptions about the nature of the Unicode data, and code has been implemented to take advantage of these assumptions.

Functions

All functions taking `char` parameters have been overloaded to accept `unichar` as well. Functions with more than one parameter, when called with at least one `unichar` parameter, results in implicit conversion of any non-`unichar` parameters to `unichar`.

To guarantee the integrity of surrogate pairs when `enable surrogate processing` is set to 1 (the default), the string functions do not allow surrogate pairs to be split. Positions are modified to fall at the beginning of a surrogate pair.

Several functions have been added to round out the `unichar` support. Included are the functions `to_unichar()` and `uscalar()`, which are analogous to `char()` and `ascii()`. The functions `uhighsurr()` and `ulowsurr()` allow the explicit handling of surrogate pairs in user code.

There are restrictions when using `unitext` with functions. For information, see the restriction description under the “Usage” section for each function.

Using `unichar` columns

When using the `isql` or `bcp` utilities, Unicode values display in hexadecimal form unless the `-Jutf8` flag is used, indicating the client’s character set is UTF-8. In this case, the utility converts any Unicode data it receives from the server into UTF-8. For example:

```
% isql -Usa -P -Jiso_1
```

308 Adaptive Server Enterprise
1> select unicode_name from people where unicode_name = 'Jones'
2> go

<table>
<thead>
<tr>
<th>unicode_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x004a006f006e00650073</td>
</tr>
</tbody>
</table>

(1 row affected)

whereas:

% isql -Usa -P -Jutf8
1> select unicode_name from people where unicode_name = 'Jones'
2> go

<table>
<thead>
<tr>
<th>unicode_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
</tr>
</tbody>
</table>

(1 row affected)

This facilitates ad hoc queries. Not all terminal windows are capable of
displaying the full repertoire of Unicode characters, but simple tests involving
ASCII characters are greatly simplified.

Using unitext

The variable-length `unitext` datatype can hold up to 1,073,741,823 Unicode
characters (2,147,483,646 bytes). You can use `unitext` anywhere you use the `text`
datatype, with the same semantics. `unitext` columns are stored in UTF-16
encoding, regardless of the Adaptive Server default character set.

Open Client interoperability

The Open Client libraries support the datatype `cs_unichar`, which can be bound
to user variables declared as an array of short integers. This Open Client
datatype interfaces directly with the server’s `unichar`, `unitext`, and `univarchar`.

Java interoperability

The internal JDBC driver efficiently transfers `unichar` data between SQL and
Java contexts.

Going from SQL to Java, the class `java.sql.ResultSet` provides a number of
“get” methods to retrieve data from the columns of a result set. Any of these
get methods work with columns defined as `unichar`, `unitext`, or `univarchar`. The
method `getString()` is particularly efficient since no conversion needs to be
performed.
Use the `setString()` method of the class `java.sql.PreparedStatement` to go from Java to SQL. The internal JDBC driver copies Java string data directly into the SQL parameter defined as unichar, unitext, or univarchar.

The external JDBC driver (jConnect) has been modified to support the same seamless interface as the internal driver.

Limitations

Because the earlier releases of Adaptive Server did not include a Unicode-based language parser, a restriction was imposed on the use of the new Unicode datatypes. To use the new datatypes, the server required its default character set to be configured as UTF-8. This restriction has been removed in Adaptive Server release 12.5.1 and later. Unicode datatypes can be used regardless of the server’s default character set.

Selecting the server default character set

When you configure your server, you must specify a default character set for the server. The default character set is the character set in which the server stores and manipulates data. Each server can have only one default character set.

By default, the installation tool assumes that the native character set of the platform operating system is the server’s default character set. However, you can select any character set supported by Adaptive Server as the default on your server (see Table 9-1 on page 305).

For example, if you are installing the server on IBM RS/6000 running AIX, and you select one of the Western European languages to install, the installation tool assumes the default character set to be ISO 8859-1.

If you are installing a Unicode server, select UTF–8 as your default character set.

For non-Unicode servers, determine what platform most of your client systems use and use the character set for this platform as the default character set on the server.

This has two advantages:

- The number of unmappable characters between character sets is minimized.
Since there is usually not a complete one-to-one mapping between the characters in two character sets, there is a potential for some data loss. This is usually minor because most unconverted characters are special symbols that are not commonly used or are specific to a platform.

- This minimizes the character set conversion that is required.

When the character set on the client system differs from the default character set on the server, data must be converted in order to ensure data integrity. Although the measured performance decrease that results from character set conversion is insignificant, it is good practice to select the default character set that results in the fewest conversions.

For example, if most of your clients use CP 850, specify CP 850 on your server. You can do this even if your server is on an HP-UX system (where its native character set for the Group 1 languages is ROMAN8).

Note Sybase strongly recommends that you decide which character set to use as your default before you create any databases or make any changes to the Sybase-supplied databases.

In the example below (Figure 9-2), 175 clients all access the same Adaptive Server. The clients are on different platforms and use different character sets. The critical factor that allows these clients to function together is that all of the character sets in the client/server system belong to the same language group (see Table 9-1 on page 305). The default language for the Adaptive Server is CP 850, which is the character set used by the largest number of clients. This allows the server to operate most efficiently, with the least amount of character set conversion.
To help you choose the default character set for your server, the following tables list the most commonly used character sets by platform and language.
Selecting the sort order

Different languages sort the same characters differently. For example, in English, *Cho* would be sorted before *Co*, whereas in Spanish, the opposite is true. In German, β is a single character, however in dictionaries it is treated as the double character ss and sorted accordingly. Accented characters are sorted in a particular order so that *aménité* comes before *amène*, whereas if you ignored the accents, the reverse would be true. Therefore, language-specific sort orders are required so that characters are sorted correctly.
Selecting the sort order

Each character set comes with one or more sort orders that Adaptive Server uses to collate data. A sort order is tied to a particular language or set of languages and to a specific character set. The same sort orders can be used for English, French, and German because they sort the same characters identically, for example, A, a, B, b, and so on. Or the characters are specific to one of the languages—for example, the accented characters, é, à, and á, are used in French but not in English or German—and therefore, there is no conflict in how those characters are sorted. The same is not true for Spanish however, where the double letters ch and ll are sorted differently. Therefore, although the same character sets support all four languages, there is one set of sort orders for English, French and German, and a different set of sort orders for Spanish.

In addition, a sort order is tied to a particular character set. Therefore, there is one set of sort orders for English, French, and German in the ISO 8859-1 character set, another set in the CP 850 character set, and so on. The sort orders available for a particular character set are located in sort order definition files (*.srt files) in the character set directory. For a list of character sets and their available sort orders, see Table 9-5 on page 316.

Using sort orders

Sort orders are used to:

- Create indexes
- Store data into indexed tables
- Specify an order by clause

Different types of sort orders

All character sets are offered with a binary sort order at a minimum, which blindly sorts all data based only on the arithmetic value of the code assigned to represent each letter (the “binary” code) in the character set. Binary sort order works well for the first 128 characters of each character set (ASCII English) and for Asian languages. When a character set supports more than one language (for example, Group 1 or Unicode) the binary sort order most likely give incorrect results, and you should select another sort order.

Character sets may also have one or more of the following dictionary sort orders:
- **Dictionary order, case-sensitive, accent-sensitive** – sorts uppercase and lowercase letters separately. Dictionary order recognizes the various accented forms of a letter and sorts them after the associated unaccented letter.

- **Dictionary order, case-insensitive, accent-sensitive** – sorts data in dictionary order but does not recognize case differences. Uppercase letters are equivalent to their lowercase counterparts and are intermingled in sorting results. Useful for avoiding duplicate entries in tables of names.

- **Dictionary order, case-insensitive, accent-sensitive, order with preference** – does not recognize case difference in determining equivalency of items. A word in uppercase is equivalent to the same word in lowercase. Preference is given to uppercase letters (they appear first) if all other conditions are equal.

 Using case-insensitive with preference may cause poor performance in large tables when the columns specified in an `order by` clause match the key of the table’s clustered index. Do not select case-insensitive order with preference unless your installation requires that uppercase letters be sorted before lowercase letters in otherwise equivalent strings for `order by` clauses.

- **Dictionary order, case-insensitive, accent-insensitive** – treats accented forms of a letter as equivalent to the associated unaccented letter. It intermingles accented letters in sorting results.

Selecting the default sort order

Sybase servers can support only one default sort order at a time. If your users are using the same language or their languages use the same sort order, then select the desired sort order. For example, if your users are using French data and expect French sorting, then you can pick one of the French dictionary sort orders. Or if your users are using data in multiple languages and the languages use the same sort order, for example English, French, and German, you can pick one sort order and it works for all your users in all languages.

However, if you have users using different languages that require different sort orders, for example French and Spanish, then you must select one of the sort orders as the default. If you pick, for example, a French sort order, your Spanish users will not see the `ch` and `ll` double characters sorted as they would expect. The installation procedure, by default, configures the server with the binary sort order.
Selecting the sort order

You can use the sortkey function to setup customized alternative sort orders for your data—one for each language. These sort orders can be selected dynamically to meet the needs of different users. The sortkey function is separate from the default sort order, but can coexist in the same server. The range and depth of sort orders provided by the sortkey function is better than those provided by the default sort order mechanism. For more information, see sortkey and compare in the Reference Manual: Building Blocks.

Table 9-5: Available sort orders

<table>
<thead>
<tr>
<th>Language or script</th>
<th>Character sets</th>
<th>Sort orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>All languages</td>
<td>UTF-8</td>
<td>Multiple sort orders, see Table 9-7 for list</td>
</tr>
<tr>
<td>Cyrillic: Bulgarian,</td>
<td>CP 855, CP 866, CP 1251, ISO 8859-5, Koi8, Macintosh Cyrillic</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td>Byelorussian, Macedonian,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian, Serbian, Ukrainian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern European: Czech,</td>
<td>CP 852, ISO 8859-2, CP 1250</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td>Slovak</td>
<td></td>
<td>Dictionary order, case insensitive, accent sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case sensitive, accent sensitive, with preference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case insensitive, accent insensitive</td>
</tr>
<tr>
<td>English, French, German</td>
<td>ASCII 8, CP 437, CP 850, CP 860, CP 863, CP 1252a, ISO 8859-1, ISO 8859-15, Macintosh Roman, ROMAN8, ROMAN9, ISO 15</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case insensitive, accent sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case sensitive, accent sensitive, with preference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case insensitive, accent insensitive</td>
</tr>
<tr>
<td>English, French, German</td>
<td>CP 850, CP 858</td>
<td>Alternate dictionary order, case sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternate dictionary order, case sensitive, accent insensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternate dictionary order, case sensitive, with preference</td>
</tr>
<tr>
<td>Greek</td>
<td>ISO 8859-7</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td>Hungarian</td>
<td>ISO 8859-2</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td>Japanese</td>
<td>EUCIS, SJIS, DECKANJI</td>
<td>General purpose case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>Kazakh</td>
<td>87</td>
<td>50</td>
</tr>
<tr>
<td>Russian</td>
<td>CP 866, CP 1251, ISO 8859-5, Koi8, Macintosh Cyrillic</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case insensitive, accent sensitive</td>
</tr>
<tr>
<td>Scandinavian</td>
<td>CP 850</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dictionary order, case insensitive, with preference</td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise
If your language does not appear here, there is no language-specific sort order for your language. Select a binary sort order and then investigate whether the sortkey function meets your needs. As this table illustrates, many languages have more than one sort order.

Chinese Pinyin sort order

Pinyin, more formally known as “Hanyu Pinyin,” uses the Roman alphabet to represent the standard Chinese pronunciation system. Pinyin consists of a system of transliteration to Roman alphabets for reading and writing Mandarin without Chinese characters. Pinyin uses accents to represent the four tones of Mandarin.

Earlier versions of Adaptive Server used the Simplified Chinese (GB) sort orders, `gbpinyin` and `gbpinyinocs`, using the Unilib character set, significantly impacting the performance of databases using the GB character sets.

Adaptive Server version 15.0.3 automatically uses the `gbpinyin` and `gbpinyinocs` sort orders, eliminating a processing step and significantly improving performance.

In earlier versions, the default size of `unilib cache` configuration parameter was 268 KB. In version 15.0.3, the default has been increased to 302 KB.

Improved performance occurs in queries that access ASCII and `gbpinyin` data. However, if the data set has a mixture of other characters, you may not see any performance improvement.

<table>
<thead>
<tr>
<th>Language or script</th>
<th>Character sets</th>
<th>Sort orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified Chinese</td>
<td>EUC-GB, GB-18030, CP936</td>
<td>General purpose case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>Spanish</td>
<td>ASCII 8, CP 437, CP850, CP 860, CP 863, CP 1252, ISO 8859-1, ISO 8859-15, Macintosh Roman, ROMAN8</td>
<td>Dictionary order, case sensitive, accent sensitive Dictionary order, case insensitive, accent sensitive Dictionary order, case insensitive, accent insensitive</td>
</tr>
<tr>
<td>Thai</td>
<td>CP 874, TIS 620</td>
<td>Dictionary order</td>
</tr>
<tr>
<td>Turkish</td>
<td>ISO 8859-9</td>
<td>Dictionary order, case sensitive, accent sensitive Dictionary order, case insensitive, accent insensitive Dictionary order, case insensitive, accent sensitive</td>
</tr>
<tr>
<td>Western European</td>
<td>CP 1252</td>
<td>Dictionary order, case insensitive, case sensitive, with preference, accent insensitive, Spanish dictionary, Spanish case insensitive, Spanish accent insensitive</td>
</tr>
</tbody>
</table>
Selecting the sort order

See Chapter 9, “Configuring Character Sets, Sort Orders, and Languages” in the System Administration Guide for information about configuring Adaptive Server to use the gbpinyin and gbpinyinocs sort orders.

Selecting case-insensitive sort orders for Chinese and Japanese character sets

Use two stored procedures to select case-insensitive sort orders:

- `sp_helpsort`
- `sp_configure`

sp_helpsort

`sp_helpsort` lists the available case-insensitive sort orders.

```
sp_helpsort
----------
Name           ID
------------
nocase_eucgb   52
nocase_cp936   52
nocase_gb18030 52
nocase_eucjis  52
nocase_sjis    52
nocase_deckanji 52
```

sp_configure

To switch to a case-insensitive sort order, enter:

```
sp_configure 'default sortorder id', 52
```

Selecting the default Unicode sort order

The default Unicode sort order is distinctly different from the sort order for the server’s default character set. This separate configuration parameter is a static parameter that requires that you restart your server and reindex the unichar data if it is changed. This sort order is identified using a string parameter, rather than a numeric parameter, to guarantee that the sort order is unique.

Table 9-6 lists the available default Unicode sort orders.
Table 9-6: Default Unicode sort orders

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>defaultml</td>
<td>20</td>
<td>Default Unicode multi-lingual ordering</td>
</tr>
<tr>
<td>thaidict</td>
<td>21</td>
<td>Thai dictionary ordering</td>
</tr>
<tr>
<td>iso14651</td>
<td>22</td>
<td>Ordering as per ISO14651 standard</td>
</tr>
<tr>
<td>utf8bin</td>
<td>24</td>
<td>Ordering for UTF-16 that matches the UTF-8 binary</td>
</tr>
<tr>
<td>binary</td>
<td>25</td>
<td>Binary sort</td>
</tr>
<tr>
<td>altnoacc</td>
<td>39</td>
<td>Alternate accent-insensitive</td>
</tr>
<tr>
<td>altdict</td>
<td>45</td>
<td>Alternate dictionary ordering</td>
</tr>
<tr>
<td>altnocsp</td>
<td>46</td>
<td>Alternate case-insensitive with preference</td>
</tr>
<tr>
<td>scandict</td>
<td>47</td>
<td>Scandinavian dictionary ordering</td>
</tr>
<tr>
<td>scannocp</td>
<td>48</td>
<td>Scandinavian case-insensitive with preference</td>
</tr>
<tr>
<td>bin_utf8</td>
<td>50</td>
<td>UTF-8 binary sort order</td>
</tr>
<tr>
<td>dict</td>
<td>51</td>
<td>General-purpose dictionary ordering</td>
</tr>
<tr>
<td>nocase</td>
<td>52</td>
<td>General-purpose case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>nocasep</td>
<td>53</td>
<td>General-purpose case-insensitive with preference</td>
</tr>
<tr>
<td>noaccent</td>
<td>54</td>
<td>General-purpose accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>espdict</td>
<td>55</td>
<td>Spanish dictionary ordering</td>
</tr>
<tr>
<td>espnocs</td>
<td>56</td>
<td>Spanish case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>espnoac</td>
<td>57</td>
<td>Spanish accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>rusnocs</td>
<td>59</td>
<td>Russian case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>cyrnocs</td>
<td>64</td>
<td>Cyrillic case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>elldict</td>
<td>65</td>
<td>Greek dictionary ordering</td>
</tr>
<tr>
<td>hundict</td>
<td>69</td>
<td>Hungarian dictionary ordering</td>
</tr>
<tr>
<td>hunnoac</td>
<td>70</td>
<td>Hungarian accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>hunnocs</td>
<td>71</td>
<td>Hungarian case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>turknoac</td>
<td>73</td>
<td>Turkish accent-insensitive dictionary ordering</td>
</tr>
</tbody>
</table>
Selecting the sort order

Table 9-7 lists the loadable sort orders.

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp932bin</td>
<td>129</td>
<td>Ordering that matches the binary ordering of CP932</td>
</tr>
<tr>
<td>dynix</td>
<td>130</td>
<td>Chinese phonetic ordering</td>
</tr>
<tr>
<td>gb3213bn</td>
<td>137</td>
<td>Ordering that matches the binary ordering of GB2312</td>
</tr>
<tr>
<td>cyrdict</td>
<td>140</td>
<td>Common cyrillic dictionary ordering</td>
</tr>
<tr>
<td>turdict</td>
<td>155</td>
<td>Turkish Dictionary ordering</td>
</tr>
<tr>
<td>euckscbn</td>
<td>161</td>
<td>Ordering that matches the binary ordering of EUCKSC</td>
</tr>
<tr>
<td>gbpinyin</td>
<td>163</td>
<td>Chinese phonetic ordering</td>
</tr>
<tr>
<td>rusdict</td>
<td>165</td>
<td>Russian dictionary ordering</td>
</tr>
<tr>
<td>sjisbin</td>
<td>179</td>
<td>Ordering that matches the binary ordering of SJIS</td>
</tr>
<tr>
<td>eucjisbn</td>
<td>192</td>
<td>Ordering that matches the binary ordering of EUCJIS</td>
</tr>
<tr>
<td>big5bin</td>
<td>194</td>
<td>Ordering that matches the binary ordering of BIG5</td>
</tr>
</tbody>
</table>

To view this sort order list in Adaptive Server, use `sp_helpsort`. See the Reference Manual: Procedures.

You can add sort orders using external files in the $SYBASE/collate/Unicode directory. The names and collation IDs are stored in `syscharsets`. The names of external Unicode sort orders do not have to be in `syscharsets` before you can set the default Unicode sort order.

Note External Unicode sort orders are provided by Sybase. Do not attempt to create external Unicode sort orders.

Sort order associated with Unicode data is completely independent of the sort order associated with traditional character data. All relational expressions involving the Unicode datatypes are performed using the Unicode sort order. This includes mixed-mode expressions involving Unicode and non-Unicode data. For example, in the following query the `varchar` character constant ‘Mü’ is implicitly cast to `unichar` and the comparison is performed according to the Unicode sort order:

```sql
select * from authors where unicode_name > 'Mü'
```
The same holds true for all other comparison operators, as well as the concatenation operator “+”, the operator “in”, and the operator “between.” Once again, the goal is to retain compatibility with existing database applications.

Tables joins based on equality (equijoins) deserve special mention. These are generally optimized by the server to take advantage of indexes that defined on the participating columns. When a unichar column is joined with a char column, the latter requires a conversion, and since the character sort order and the Unicode sort order are distinct, the optimizer will ignore the index on the char column.

In Adaptive Server version 12.5.1 and later, when the server’s default character set is configured to UTF-8, you can configure the server’s default sort order (for char data) to be any of the above sort orders. Prior to this version, the binary sort order “bin_utf8” (ID=50) was the only well-behaved sort order for UTF-8. Although not required, the sort order for char data in UTF-8 can be selected so that it corresponds with the sort order for unichar.

There is a potential confusion regarding choice of binary sort orders for Unicode. The sort order named “binary” is the most efficient one for unichar data (UTF-16), and is thus the default. This order is based on the Unicode scalar value, meaning that all 32-bit surrogate pairs are placed after all 16-bit Unicode values. The sort order named “utf8bin” is designed to match the order of the default (most efficient) binary order for UTF-8 char data, namely “bin_utf8”. The recommended matching combinations are thus “binary” for unichar and “binary” for UTF-8 char, or “utf8bin” for unichar and “bin_utf8” for UTF-8 char. The former favors unichar efficiency, while the latter favors char efficiency. Avoid using “utf8bin” for UTF-8 char, since it is equivalent to “bin_utf8” but less efficient.

Selecting a language for system messages

Any installation of Adaptive Server can use Language Modules containing files of messages in different languages. Adaptive Server provides Language Modules for messages in the following languages: English, Chinese (Simplified), French, German, Japanese, Korean, Brazilian Portuguese, and Spanish. If your client language is not one of these languages, you see system messages in English, the default language.
Each client can choose to view messages in their own language at the same time, from the same server; for example, one client views system messages in French, another in Spanish, and another in German. To do this, however, all selected languages must be part of the same language group. For example, French, Spanish and German are all part of language group 1. Japanese, on the other hand, is part of language group 101, which contains no other languages. Therefore, if Japanese is your server language, you can display system messages only in Japanese or English. Remember that all language groups can display messages in English. There is also a server-wide default language, used if the user has not selected a specific language. If you use Unicode, you can view system messages in any of the supported languages.

You can select the language for your system messages in one of two ways:

- Select a language as part of your user profile
- Enter a language in the locales.dat file

Table 9-8 displays the supported system message languages and their language groups. Each user can select only one language per session for system messages.

Table 9-8: Supported system messages

<table>
<thead>
<tr>
<th>Language group</th>
<th>System message languages</th>
<th>Character sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>French, German, Spanish, Brazilian Portuguese</td>
<td>ASCII 8, CP 437, CP 850, CP 860, CP 863, CP 1252, ISO 8859-1, ISO 8859-15, Macintosh Roman, ROMAN8</td>
</tr>
<tr>
<td>Group 2</td>
<td>Polish</td>
<td>Cp 1250, CP 852, ISO 8859-2</td>
</tr>
<tr>
<td>Group 101</td>
<td>Japanese</td>
<td>CP 932, DEC Kanji, EUC-JIS, Shift-JIS</td>
</tr>
<tr>
<td>Group 102</td>
<td>Simplified Chinese (PRC)</td>
<td>CP 936, EUC-GB, GB18030</td>
</tr>
<tr>
<td>Group 104</td>
<td>Korean</td>
<td>EUC-KSC, CP 949</td>
</tr>
<tr>
<td>Group 105</td>
<td>Thai</td>
<td>CP 874, TIS 620</td>
</tr>
<tr>
<td>Unicode</td>
<td>French, German, Spanish, Brazilian Portuguese, Japanese, Simplified Chinese, Korean</td>
<td>UTF-8</td>
</tr>
<tr>
<td>All Other Language Groups</td>
<td>English</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 9 Configuring Character Sets, Sort Orders, and Languages

Setting up your server: examples

This section discusses setup options and the steps necessary to implement them. This is only a sample, and is meant to suggest ideas and methods for your own setup process.

A Spanish-version server

This examples shows how to set up a new server with all clients using the same language. To do this:

1. Select the server language, in this case, Spanish. By reviewing Table 9-1 on page 305, you see that Spanish is part of language group 1. Based on your platform, select a character set from language group 1. Sybase recommends that you select the character set used by the greatest number of clients. Or, if you think your company might someday expand into other countries and languages, you might consider installing Unicode (see “Selecting the character set for your server” on page 303).

2. Install the Spanish Language Module in the server. This allows clients to view system messages in Spanish.

3. Select the default sort order. By referring to Table 9-5 on page 316, you see that Spanish has three possible sort orders, in addition to binary sort order. Select a sort order.

4. Restart the server.

A U.S.-based company in Japan

This example involves clients in Japan, who want to enter data, sort data, and receive system messages in Japanese, while submitting data to a server that is accessed by English-only users:

1. Select the default character set for your server. If you install a character set from language group 101 (Japanese), you can support both Japanese and English data in the same server.

2. Install the Japanese Language Module so that system messages are available in Japanese.
3 Select the sort order. By referring to Table 9-5 on page 316, you can see that a binary sort order is the only sort order available for Japanese. Therefore, both the English and Japanese clients have a default binary sort order. Consider using the sortkey function to provide solutions for both audiences.

4 Make sure that each Japanese user requests Japanese messages by default. Since you are using a character set from language group 101, and you have already installed the Japanese Language Module, your client in Japan sees messages in Japanese, while clients in the U.S. can choose to see messages in either English or Japanese.

A Japan-based company with multinational clients

This company is located in Japan, and has clients in France, Germany, and Spain. You need to mix European and Asian languages in the same server.

1 Select the default server language and character set. Since your company is based in Japan and most of your clients are located in Japan, the default server language should be Japanese. But you also want your clients in France, Germany, and Spain to be able to send and receive data in their native languages. By reviewing Table 9-1 on page 305, you can see that Japanese is part of language group 101, while French, German, and Spanish are part of language group 1. Since the languages you need are not part of the same language group, the only way you can have all of these languages on the same server is to select Unicode as your default character set.

2 Install the Language Modules for Japanese, French, German, and Spanish.

3 Select the binary sort order, since this is the only sort order available for the Unicode character set. (You can, however, consider using the sortkey function inside your application code to supply data sorted according to each user’s preference.)

4 Select Japanese as the default language for system messages. Clients in other countries can select their own native language for messages.
Changing the character set, sort order, or message language

Even after you have configured your server, a system administrator can change the default character set, sort order, or message language used by Adaptive Server. Because a sort order is built on a specific character set, changing character sets always involves a change in sort order. However, you can change the sort order without changing character sets, because more than one sort order may be available for a character set.

To display Adaptive Server’s default sort order, character set, and a table of its primary sort orders, enter:

```
sp_helpsort
```

Changing the default character set

Adaptive Server can have only one default character set, the character set in which data is stored in its databases. When you install Adaptive Server, you specify a default character set.

Warning! Read the following carefully, and exercise caution when changing the default character set in Adaptive Server. Sybase strongly recommends that you perform backups before you change a default character set.

When you change the default character set in Adaptive Server, you must convert any existing data to the new default character set. Conversion is unnecessary only if:

- There is no user data in the server.
- It is acceptable to destroy user data in the server.
- You are absolutely certain that data in the server uses only ASCII-7. In this case, you can change the default without first copying your data out of the server.

In all other cases, you must convert the existing data as follows:

1. Copy the data out using `bcp`.
2. Change the default character set.
3. Use `bcp` with the appropriate flags for data conversion to copy the data back into the server.
See the *Utility Guide* for more information about using `bcp` to copy data.

Warning! After converting data to a different character set (particularly to UTF-8), the data may be too large for the allocated column size. Re-create the columns affected with a larger size.

Code conversion between the character set of the existing data and the new default character set must be supported. If it is not, conversion errors will occur and the data is not converted correctly. See Chapter 10, “Configuring Client/Server Character Set Conversions,” for more information about supported character set conversions.

Even if conversions are supported between the character sets, some errors may occur due to minor differences between the character sets, or because some characters do not have equivalents in other character sets. Rows containing problematic data may not get copied back into the database, or data may contain partial or invalid characters.

Changing the sort order with a resources file

Adaptive Server character sets can be changed using the resource file. The sample resource file `sqlloc.rs` is located in `$SYBASE/ASE-12_5/init/sample_resource_files/`.

The resource file from the Adaptive Server 12.5.1 installation looks similar to the following:

```plaintext
sybinit.release_directory: USE_DEFAULT
sqlsrv.server_name: PUT_YOUR_SERVER_NAME_HERE
sqlsrv.sa_login: sa
sqlsrv.sa_password:
sqlsrv.default_language: USE_DEFAULT
sqlsrv.language_install_list: USE_DEFAULT
sqlsrv.language_remove_list: USE_DEFAULT
sqlsrv.default_characterset: USE_DEFAULT
sqlsrv.characterset_install_list: USE_DEFAULT
sqlsrv.characterset_remove_list: USE_DEFAULT
sqlsrv.sort_order: USE_DEFAULT
# An example sqlloc resource file...
# sybinit.release_directory: USE_DEFAULT
# sqlsrv.server_name: PUT_YOUR_SERVER_NAME_HERE
# sqlsrv.sa_login: sa
# sqlsrv.sa_password:
```
Changing the default sort order

Adaptive Server can have only one default sort order, the collating sequence it uses to order data. When you consider changing the sort order for character data on a particular Adaptive Server, keep this in mind: all of your organization’s Adaptive Servers should have the same sort order. A single sort order enforces consistency and makes distributed processing easier to administer.

You may have to rebuild your indexes after changing the default sort order. For more information, see “Reconfiguring the character set, sort order, or message language” on page 327.

Reconfiguring the character set, sort order, or message language

This section summarizes the steps to take before and after changing Adaptive Server’s default character set, sort order, or message language. For procedures on how to configure the character set, sort order, or message language for a new server, see the configuration documentation for your platform.

Back up all databases in Adaptive Server before and after you change character sets or sort orders. After you back up your databases, use bcp to copy the data in and out of your databases if:

- A database contains character data and you want to convert the data to a new character set. Do not load a database dump of the data into a server that uses the new default character set. Adaptive Server assumes the loaded data is in the new character set, and corrupts the data.
- You are changing the default sort order only and not the default character set. You cannot load a database from a dump performed prior to changing the sort order—if you attempt to, an error message appears, and Adaptive Server aborts the load.

sqlsrv.default_language: french
sqlsrv.language_install_list: spanish,german
sqlsrv.language_remove_list: USE_DEFAULT
sqlsrv.default_characterset: cp437
sqlsrv.charset_install_list: mac,cp850
sqlsrv.charset_remove_list: USE_DEFAULT
sqlsrv.sort_order: dictionary
Changing the character set, sort order, or message language

- You change the default character set, and either the old or the new sort order is not binary. You cannot load a database dump that was made before you changed the character set.

You cannot reload your data from a database dump once you have reconfigured the default character set and sort order (unless both old and new character sets use a binary sort order and no conversion is required between the old and new character sets). See “Changing the default character set” on page 325 for more information.

Unicode examples

In the following example, a fictitious database named xpubs is modified to use univarchar columns.

Schema

Assume a database was created using the following script on a server that has all the installation defaults, namely character set “iso_1” and default sort order ID 50, “binary_iso_1”.

```sql
> create database xpubs
> go
> use xpubs
> go
> create table authors (au_id int, au_lname varchar(255), au_fname varchar(255))
> go
> create index au_idx on authors(au_lname, au_fname)
> go
```

Then the data was loaded into the server using a series of inserts and updates.

Converting to UTF-8

The first step towards using Unicode is to extract the data and convert it to UTF-8 form.

```bash
% bcp xpubs..authors out authors.utf8.bcp -c -Jutf8 -Usa -P
```

The next step to install UTF-8 as the default character set in the server:

```bash
% charset -Usa -P binary.srt utf8
% isql -Usa -P
> sp_configure 'default sortorder id', 50, 'utf8'
```
> go
> shutdown
> go

Restart the server to modify the default character set and re-create indexes on the system tables. Restart the server a second time, then reload the data:

```
% isql -Usa -P
> sp_dboption xpubs, 'select into', true
> go
> use xpubs
> go
> checkpoint
> go
> delete from authors
> go
> quit
% bcp xpubs..authors in authors.utf8.bcp -c -Jutf8 -Usa -P
```

Migrating selected columns to unichar

With a working database running with UTF-8 as the default character set, it becomes a simple matter to convert select columns to univarchar:

```
% isql -Usa -P
> use xpubs
> go
> alter table authors modify au_lname univarchar(255),
au_fname univarchar(255)
> go
```

The columns are modified to the new datatypes, the data is converted in place, and the index is re-created.

Migrating to or from unitext

Currently, the alter table modify command does not support text, image, or unitext columns. To migrate from a text to a unitext column, you must first use bcp, create a table with unitext columns, and then use bcp again to place data into the new table. This migration path only works when you invoke bcp with -Jutf8 option.
Changing the character set, sort order, or message language

Preliminary steps

Before you run the installation program to reconfigure Adaptive Server:

1. Dump all user databases and the master database. If you have made changes to model or sybsystemprocs, dump them also.

2. Load the Language Module if it is not already loaded (see the configuration documentation for your platform for complete instructions).

3. If you are changing the Adaptive Server default character set, and your current databases contain non ASCII-7 data, use bcp to copy the existing data out of your databases.

Once you have loaded the Language Module, you can run the Adaptive Server installation program, which allows you to:

- Install or remove message languages and character sets included with Adaptive Server
- Change the default message language or character set
- Select a different sort order

See the configuration documentation for your platform for instructions on using the installation program

Note Before you change the character set or sort order, Adaptive Server must have as many open databases as there are databases managed by the server. If Adaptive Server does not have a sufficient number of open databases when it is re-started after a change in sort order, Adaptive Server prints this message to the error log and the server will revert to the former sort order:

The configuration parameter 'number of open databases' must be at least as large as the number of databases, in order to change the character set or sort order." Re-start Adaptive Server, use sp_configure to increase 'number of open databases' to at least %d, then re-configure the character set or sort order

To reconfigure the language, character set, or sort order, use the sqlloc utility, described in Utility Guide. If you are using Windows, use the Server Config utility, described in Chapter 3, “Default Adaptive Server Configuration,” in the Configuration Guide.

If you installed additional languages but did not change the Adaptive Server character set or sort order, you have completed the reconfiguration process.
CHAPTER 9 Configuring Character Sets, Sort Orders, and Languages

If you changed the Adaptive Server default character set, and your current databases contain non ASCII-7 data, copy your data back into your databases, using bcp with the necessary flags to enable conversion.

If you changed the Adaptive Server default sort order or character set, see “Reconfiguring the character set, sort order, or message language” on page 327.

Setting the user’s default language

If you install an additional language, users running client programs can run sp_modifylogin to set that language as their default language, or set the LANG variable on the client machine, with the appropriate entries in locales.dat.

Recovery after reconfiguration

Every time Adaptive Server is stopped and restarted, recovery is performed automatically on each database. Automatic recovery is discussed in detail in Chapter 11, “Developing a Backup and Recovery Plan,” in the System Administration Guide: Volume 2.

After recovery is complete, the new sort order and character set definitions are loaded.

If you have changed the sort order, Adaptive Server switches to single-user mode to allow the necessary updates to system tables and to prevent other users from using the server. Each table with a character-based index is automatically checked to see if any indexes have been corrupted by the sort order change. Character-based indexes in tables are automatically rebuilt, if necessary, using the new sort order definition.

After the system indexes are rebuilt, character-based user indexes are marked “suspect” in the sysindexes system table. User tables with suspect indexes are marked “read-only” in sysobjects to prevent updates to these tables and use of the “suspect” indexes until they have been checked and, if necessary, rebuilt.

Range-partitioned user tables are checked for character-based partition keys, and are marked “suspect” if the sort order change or character set change might cause partition corruption.
Next, the new sort order information replaces the old information in the area of the disk that holds configuration information. Adaptive Server then shuts down so that it starts for the next session with a complete and accurate set of system information.

Using `sp_indsuspect` to find corrupt indexes

After Adaptive Server shuts down, restart it, and use `sp_indsuspect` to find the user tables that need to be reindexed.

```sql
sp_indsuspect [tab_name]
```

where `tab_name` is the name of the table you are investigating. If `tab_name` is missing, `sp_indsuspect` creates a list of all tables in the current database that has indexes marked “suspect” when the sort order changes.

This example shows that running `sp_indsuspect` in `mydb` database yields one suspect index:

```sql
sp_indsuspect

Suspect indexes in database mydb
Own.Tab.Ind (Obj_ID, Ind_ID) =
  dbo.holdings.h_name_ix(160048003, 2)
```

Rebuilding indexes after changing the sort order

`dbcc reindex` checks the integrity of indexes on user tables by running a “fast” version of `dbcc checktable`. For details, see Chapter 10, “Checking Database Consistency,” in the *System Administration Guide: Volume 2*. `dbcc reindex` drops and rebuilds the indexes where the sort order used is not consistent with the new sort order. When `dbcc reindex` discovers the first index-related error, it displays a message, then rebuilds the inconsistent indexes. The system administrator or table owner should run `dbcc reindex` after changing the sort order in Adaptive Server.

```sql
dbcc reindex (table_name | table_id)
```

Run this command on all tables listed by `sp_indsuspect` as containing suspect indexes. For example:

```sql
dbcc reindex(titles)

One or more indexes are corrupt. They will be rebuilt.
```

In the preceding example, `dbcc reindex` discovers one or more suspect indexes in the table `titles`; it drops and re-creates the appropriate indexes.
If the indexes for a table are already correct, or if there are no indexes for the table, `dbcc reindex` does not rebuild any indexes. It displays a message instead. If a table is suspected of containing corrupt data, the command is aborted. If that happens, an error message instructs the user to run `dbcc checktable`.

When `dbcc reindex` finishes successfully, all “suspect” marks on the table’s indexes are removed. The “read-only” mark on the table is also removed, and the table can be updated. These marks are removed whether or not any indexes have to be rebuilt.

`dbcc reindex` does not reindex system tables. System indexes are checked and rebuilt, if necessary, as an automatic part of recovery after Adaptive Server is restarted following a sort order change.

Upgrading text data after changing character sets

If you have changed an Adaptive Server character set to a multibyte character set, use `dbcc fix_text` to upgrade text values.

A text value can be large enough to cover several pages; therefore, Adaptive Server must be able to handle characters that span page boundaries. To do so, Adaptive Server requires additional information on each of the text pages. The system administrator or table owner must run `dbcc fix_text` on each table that has text data to calculate the new values needed.

To see the names of all tables that contain text data, use:

```sql
select sysobjects.name
from sysobjects, syscolumns
where syscolumns.type = 35
and sysobjects.id = syscolumns.id
```

The system administrator or table owner must run `dbcc fix_text` to calculate the new values needed.

The syntax of `dbcc fix_text` is:

```
dbcc fix_text (table_name | table_id)
```

The table named must be in the current database.

`dbcc fix_text` opens the specified table, calculates the character statistics required for each text value, and adds the statistics to the appropriate page header fields. This process can take a long time, depending on the number and size of the text values in a table. `dbcc fix_text` can generate a large number of log records, which may fill up the transaction log. `dbcc fix_text` performs updates in a series of small transactions so that if a log becomes full, only a small amount of work is lost.
Changing the character set, sort order, or message language

If you run out of log space, clear out your log (see Chapter 12, “Backing Up and Restoring User Databases,” in System Administration Guide: Volume 2). Then restart dbcc fix_text, using the same table that was being upgraded when the original dbcc fix_text halted. Each multibyte text value contains information that indicates whether it has been upgraded, so dbcc fix_text upgrades only the text values that were not processed in earlier passes.

If your database stores its log on a separate segment, you can use thresholds to manage clearing the log. See Chapter 16, “Managing Free Space with Thresholds,” in System Administration Guide: Volume 2.

If dbcc fix_text cannot acquire a needed lock on a text page, it reports the problem and continues with the work, like this:

Unable to acquire an exclusive lock on text page 408. This text value has not been recalculated. In order to recalculate those TEXT pages you must release the lock and reissue the dbcc fix_text command.

Retrieving text values after changing character sets

If you attempt to retrieve text values after changing to a multibyte character set, and you have not run dbcc fix_text, the command fails with this error message:

Adaptive Server is now running a multi-byte character set, and this TEXT column’s character counts have not been recalculated using this character set. Use dbcc fix_text before running this query again.

If you have changed the sort order or character set and errors occurred, see “How to Manually Change Sort Order or Default Character Set” in the Adaptive Server Enterprise Troubleshooting and Error Messages Guide.

Handling suspect partitions

Partitions are marked suspect for two reasons:

- A sort order or character set change on a range-partitioned table
- A cross-platform dump and load with a hash-partitioned table

If the table is marked with suspect partitions:

- All updates and cursor activities are suspended on this table.
- No alter table commands, except partition by, are allowed. create index and drop index are not allowed on a table with suspect partitions.
• The `select` command is allowed on tables containing suspect partitions. However, the optimizer treats such tables as round-robin partitioned tables, to avoid using the possibly corrupt partition condition.

Fixing tables with suspect partitions
• If the partition condition needs fixing after a sort-order change, you can use `alter table` with the partition by option to repartition a table that has suspect partitions.
• If the partition condition does not need fixing, you can use the `reorg rebuild table` command to rebuild the table, redistributing only the data rows among the partitions.
• If the indexes as well as the partitions on a table are marked suspect, use partition by or reorg rebuild to fix both the suspect index and suspect partitions.

Handling suspect partitions in cross-platform dump and load operations
• During the first online database command, after you execute `load database` across two platforms with different endian types, the hash partition is marked suspect.
• Any global clustered index on a round-robin partition, which has an internally generated partition condition with a `unichar` or `varchar` partition key, is marked suspect.
• After the database is online, use `sp_post_xupload` to fix the suspect partitions and indexes.

Installing date strings for unsupported languages
Use `sp_addlanguage` to install names for the days of the week and months of the year for languages that do not have language modules. With `sp_addlanguage`, lets you define:
• A language name and (optionally) an alias for the name
• A list of the full names of months and a list of abbreviations for the month names
• A list of the full names of the days of the week
Installing date strings for unsupported languages

- The date format for entering dates (such as month/day/year)
- The number of the first day of the week

For example to add the information for Italian:

```
sp_addlanguage italian, italiano,
"gennaio,febbraio,marzo,aprile,maggio,giugno,luglio,agosto,settembre,ottobre,
novembre,dicembre",
"genn,feb,mar,apr,mag,giu,lug,ago,sett,ott,nov,dic",
"lunedi,martedi,mercoledi,giovedi,venerdi,sabato,domenica",
dmy, 1
```

sp_addlanguage enforces strict data entry rules. The lists of month names, month abbreviations, and days of the week must be comma-separated lists with no spaces or line feeds (returns). Also, they must contain the correct number of elements (12 for month strings, 7 for day-of-the-week strings.)

Valid values for the date formats are: mdy, dmy, ymd, ydm, myd, and dym. The dmy value indicates that the dates are in day/month/year order. This format affects only data entry; to change output format, you must use the convert function.

Server versus client date interpretation

Generally, date values are resolved on the client. When a user selects date values, Adaptive Server sends them to the client in an internal format. The client uses the common.loc file and other localization files in the default language subdirectory of the locales directory on the client to convert the internal format to character data. For example, if the user’s default language is Spanish, Adaptive Server looks for the common.loc file in /locales/spanish/char_set. It uses the information in the file to display, for example, 12 febrero 2007.

Assume that the user’s default language is set to Italian, a language for which Adaptive Server does not provide a language module, and that the date values in Italian have been added. When the client connects to the server and looks for the common.loc file for Italian, it does not find the file. The client prints an error message and connects to the server. If the user then selects date values, the dates are displayed in U.S. English format. To display the date values added with sp_addlanguage, use the convert function to force the dates to be converted to character data at the server.

The following query generates a result set with the dates in U.S. English format:
select pubdate from titles
The query below, however, returns the date with the month names in Italian:

select convert(char(19), pubdate) from titles

Internationalization and localization files

Types of internationalization files

The files that support data processing in a particular language are called internationalization files. Several types of internationalization files come with Adaptive Server.

<table>
<thead>
<tr>
<th>File</th>
<th>Location</th>
<th>Purpose and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>charset.loc</td>
<td>In each character set subdirectory of the charsets directory</td>
<td>Character set definition files that define the lexical properties of each character, such as alphanumeric, punctuation, operand, and uppercase or lowercase. Used by Adaptive Server to correctly process data.</td>
</tr>
<tr>
<td>*.srt</td>
<td>In each character set subdirectory of the charsets directory</td>
<td>Defines the sort order for alphanumeric and special characters, including ligatures, diacritics, and other language-specific considerations.</td>
</tr>
<tr>
<td>*.xlt</td>
<td>In each character set subdirectory of the charsets directory</td>
<td>Terminal-specific character translation files for use with utilities such as bcp and isql. For more information about how the.xlt files are used, see Chapter 10, “Configuring Client/Server Character Set Conversions,” and the Utility Guide.</td>
</tr>
</tbody>
</table>

Warning! Do not alter any of the internationalization files. If you need to install a new terminal definition or sort order, contact your local Sybase office or distributor.
Character sets directory structure

Figure 9-3 shows the directory structure for the Western European character sets that come with Adaptive Server. There is a separate subdirectory for each character set in the charsets directory. Within the subdirectory for each character set (for example, cp850) are the character set and sort order definition files and terminal-specific files.

If you load additional character sets, they also appear in the charsets directory:

![Figure 9-3: Structure of the charsets directory](image)

The following global variables contain information about character sets:

<table>
<thead>
<tr>
<th>Global variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@@char_convert</td>
<td>Contains 0 if character set conversion is not in effect. Contains 1 if character set conversion is in effect.</td>
</tr>
<tr>
<td>@@client_csname</td>
<td>The client’s character set name. Set to NULL if client character set has never been initialized; otherwise, contains the name of the character set for the connection.</td>
</tr>
<tr>
<td>@@client_cs_id</td>
<td>The client’s character set ID. Set to -1 if client character set has never been initialized; otherwise, contains the client character set ID from syscharsets for the connection.</td>
</tr>
<tr>
<td>@@client_csexpansion</td>
<td>Returns the expansion factor used when converting from server’s character set to client’s character set.</td>
</tr>
<tr>
<td>@@maxcharlen</td>
<td>The maximum length, in bytes, of a character in the Adaptive Server default character set.</td>
</tr>
<tr>
<td>@@ncharsize</td>
<td>The maximum length, in bytes, of a character set in the current server default character set.</td>
</tr>
<tr>
<td>@@unicharsize</td>
<td>Equals 2.</td>
</tr>
</tbody>
</table>

Types of localization files

Adaptive Server includes several localization files for each Language Module, as shown in Table 9-11.
Table 9-11: Localization files

<table>
<thead>
<tr>
<th>File</th>
<th>Location</th>
<th>Purpose and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>locales.dat</td>
<td>In the locales directory</td>
<td>Used by client applications to identify the default message language and character set.</td>
</tr>
<tr>
<td>server.loc</td>
<td>In the character set subdirectories under each language subdirectory in the SYBASE/SSYBASE_ASE/locales directory</td>
<td>Software messages translated into the local language. Sybase products have product-specific *.loc files. If an entry is not translated, the software message or string appears in U.S. English instead of the local language.</td>
</tr>
<tr>
<td>common.loc</td>
<td>In each language and character set directory of the locales directory</td>
<td>Contains the local names of the months of the year and their abbreviations, and information about the local date, time, and money formats.</td>
</tr>
</tbody>
</table>

All Adaptive Server-related locales files (used by dataserver, sqlloc, syconfig, and so on) are in $SYBASE/SSYBASE_ASE/locales. All Open Client/Server-related locales files (ctlib, ctsql, ctbcp, optdiag, installjava, and so on) are located in $SYBASE/locales.

Warning! Do not alter any of the localization files. If you need to alter any information in those files, contact your local Sybase office or distributor.

Software messages directory structure

Figure 9-4 shows how localization files are arranged. Within the locales directory is a subdirectory for each language installed. There is always a us_english subdirectory. (On PC platforms, this directory is called english.) During installation, when you are prompted to select the languages you want installed on Adaptive Server, the installation program lists the supported software message languages. If you install language modules for additional languages, you see subdirectories for those languages. Within each language subdirectory are subdirectories for the supported character sets; for example, cp850 is a supported character set for us_english. Software message files for each Sybase product reside in the character set subdirectories.
Message languages and global variables

The following global variables contain information about languages:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@@langid</td>
<td>Contains the local language ID of the language currently in use (specified in syslanguages.langid)</td>
</tr>
<tr>
<td>@@language</td>
<td>Contains the name of the language currently in use (specified in syslanguages.name)</td>
</tr>
</tbody>
</table>
Character set conversion

In a heterogeneous environment, Adaptive Server may need to communicate with clients running on different platforms using different character sets. Although different character sets may support the same language group (for example, ISO 8858-1 and CP 850 support the group 1 languages), they may encode the same characters differently. For example, in ISO 8859-1, the character à is encoded as \(0xE0\) in hexadecimal. However, in CP 850 the same character is encoded as \(0x85\) in hexadecimal.

To maintain data integrity between your clients and servers, data must be converted between the character sets. The goal is to ensure that an “a” remains an “a” even when crossing between machine and character set boundaries. This process is known as **character set conversion**.
Supported character set conversions

Character set conversion occurs between a pair of character sets. The supported conversions in any particular client/server system depend on the character sets used by the server and its clients. One type of character set conversion occurs if the server uses a native character set as the default; a different type of conversion is used if the server default is Unicode UTF-8.

Conversion for native character sets

Adaptive Server supports character set conversion between native character sets belonging to the same language group. If the server has a native character set as its default, the clients’ character sets must belong to the same language group. Figure 10-1 is an example of a Western European client/server system. In this example, the clients’ character sets and the Adaptive Server default character set all belong to language group 1. Data is correctly converted between the client character sets and the server default character set. Since they all belong to the same language group, the clients can view all data on the server, no matter which client submitted the data.

Figure 10-1: Character set conversion when server and client character sets belong to the same language group

For a list of the language groups and supported character sets, see Table 9-1 on page 305.
Conversion in a Unicode system

Adaptive Server also supports character set conversion between UTF-8 and any native character set that Sybase supports. In a Unicode system, since the server default character set is UTF-8, the client character set may be a native character set from any language group. Therefore, a Japanese client (group 101), a French client (group 1), and an Arabic client (group 6) can all send and receive data from the same server. Data from each client is correctly converted as it passes between each client and the server.

Figure 10-2: Character set conversion in a Unicode system

Each client can view data only in the language supported by its character set. Therefore, the Japanese client can view any Japanese data on the server, but it cannot view Arabic or French data. Likewise, the French client can view French or any other Western European language supported by its character set, but not Japanese or Arabic.

Figure 10-3: Viewing Unicode data

An additional character set, ASCII-7, is a subset of every character set, including Unicode, and is therefore compatible with all character sets in all language groups. If either the Adaptive Server or the client’s character set is ASCII-7, any 7-bit ASCII character can pass between the client and server unaltered and without conversion.
Sybase recommends that you do not configure a server for ASCII-7. You can achieve the same benefits of compatibility by restricting each client to use only the first 128 characters of each native character set.

Adaptive Server direct conversions

Adaptive Server direct conversions are between two native character sets of the same language group. For example, Adaptive Server supports conversion between CP 437 and CP 850, because both belong to language group 1. Adaptive Server direct conversions exist between many, but not all, native character sets of a language group (see Table 10-1 on page 345).

Unicode conversions

Unicode conversions exists for all native character sets. When converting between two native character sets, Unicode conversion uses Unicode as an intermediate character set. For example, to convert between the server default character set (CP 437), and the client character set (CP 860), CP 437 is first converted to Unicode; Unicode is then converted to CP 860.

Unicode conversions may be used either when the default character set of the server is UTF-8, or a native character set. You must specifically configure your server to use Unicode conversions (unless the server’s default character set is UTF-8).

Earlier versions of Adaptive Server used direct conversions, and it is the default method for character set conversions. However, Unicode conversions allow easier and less complex character set conversion. While Adaptive Server direct conversions are still supported, Sybase now also uses Unicode conversions to provide complete conversion support for all character sets and has no plans to add new direct conversions.

Choosing a conversion type

To determine the conversion options that are available for your client/server system, see Table 10-1 on page 345.
Non-Unicode client/server systems

In a non-Unicode system, the character sets of the server and clients are native character sets; therefore, you can use the Adaptive Server direct conversions. However, there are some character sets for which there is no Adaptive Server direct conversion; in this situation, you must use Unicode conversions.

- If all character sets in your client/server system are column 1 of Table 10-1, use the Adaptive Server direct conversions. The character sets must all belong to the same language group.
- If the character sets in your client/server system are in column 2 of Table 10-1, or some combination of columns 1 and 2, configure your server to use Unicode conversions. Again, the character sets must all belong to the same language group.

For example, assume the server default character set is CP 850 and the clients’ character sets are either ISO 8859-1 or ROMAN 8. Table 10-1 shows that direct conversions exist between CP 850 and the client character sets. Now, suppose you add a client using CP 1252. Since there is no direct conversion between CP 1252 and CP 850, (the default server character set), you must use Unicode conversions to convert between CP 1252 and CP 850. When you have a mixture of character sets—some where you can use Adaptive Server direct conversions and others where you must use Unicode conversions—you can specify that a combination of Adaptive Server direct conversion and Unicode conversion be used.

Unicode client/server systems

If your server default is Unicode UTF-8, then all conversions are between UTF-8 and the native character set being used on the client systems. In a Unicode system, Unicode conversions are used exclusively.

Table 10-1: Conversion methods for character sets

<table>
<thead>
<tr>
<th>Language group</th>
<th>Column 1 – Adaptive Server direct conversions and Unicode conversions</th>
<th>Column 2 – Unicode conversions only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>CP 437, CP 850, ISO 8859-1, Macintosh Roman</td>
<td>CP 860, CP 1252, ISO 8859-15, CP 863</td>
</tr>
<tr>
<td>Group 2</td>
<td>CP 852, CP 1250, CP 8859-1, Macintosh Central European</td>
<td>ISO 8859-2</td>
</tr>
<tr>
<td>Group 4</td>
<td>No conversions needed (only one character set supported)</td>
<td></td>
</tr>
<tr>
<td>Group 5</td>
<td>CP 855, CP 866, CP 1251, ISO 8859-5, Koi8, Macintosh Cyrillic</td>
<td></td>
</tr>
<tr>
<td>Group 6</td>
<td>CP 864, CP 1256, ISO 8859-6</td>
<td></td>
</tr>
</tbody>
</table>
Choosing a conversion type

<table>
<thead>
<tr>
<th>Language group</th>
<th>Column 1 – Adaptive Server direct conversions and Unicode conversions</th>
<th>Column 2 – Unicode conversions only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 7</td>
<td>CP 869, CP 1253, GREEK8, ISO 8859-7, Macintosh Greek</td>
<td></td>
</tr>
<tr>
<td>Group 8</td>
<td></td>
<td>CP 1255, ISO 8859-8</td>
</tr>
<tr>
<td>Group 9</td>
<td>CP 857, CP 1254, ISO 8859-9, Macintosh Turkish, TURKISH8</td>
<td></td>
</tr>
<tr>
<td>Group 101</td>
<td>DEC Kanji, EUC-JIS, Shift-JIS</td>
<td>CP 932</td>
</tr>
<tr>
<td>Group 102</td>
<td></td>
<td>CP 936, EUG-GB, GB18303</td>
</tr>
<tr>
<td>Group 103</td>
<td></td>
<td>Big 5, CP 950, EUC-CNS</td>
</tr>
<tr>
<td>Group 104</td>
<td></td>
<td>EUCKSC, CP 949</td>
</tr>
<tr>
<td>Group 105</td>
<td></td>
<td>CP 874, TIS 620</td>
</tr>
<tr>
<td>Group 106</td>
<td>No conversions needed (only one character set supported)</td>
<td></td>
</tr>
<tr>
<td>Unicode</td>
<td>No conversions needed (only one character set supported)</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the server

By default, Adaptive Server uses direct conversions to convert data between different character sets. To use the Unicode conversions, use `sp_configure` to set the enable unicode conversions option to either 1 or 2.

- If you set `sp_configure “enable unicode conversions”` to 1:

 This setting uses Adaptive Server direct conversions or Unicode conversions. Adaptive Server first checks to see if an Adaptive Server direct conversion exists for the server and client character set. If a direct conversion is used; if no direct conversion exists, the Unicode conversion is used.

 Use this setting if the character sets in your client/server system fall into both columns 1 and 2 in Table 10-1.

- If you set `sp_configure “enable unicode conversions”` to 2:

 This setting uses Unicode conversions only. Adaptive Server uses Unicode conversions, without attempting to find an Adaptive Server direct conversion.

 Use this setting if the client/server conversions result in a change in the data length (see “Conversions and changes to data lengths” on page 349)

If all character sets fall into column 2 in Table 10-1, set `enable unicode conversions` to 2 to always use Unicode conversions.

For Adaptive Server version 15.0 and later, the default value for `enable unicode conversions` is 1.
If the server default is UTF-8, the server automatically uses Unicode conversions only.

Enabling and disabling character set conversion

A client that is requesting a connection identifies its character set to Adaptive Server. Adaptive Server compares the client character set with its default character set, and if the two names are identical, no conversion is required. If the names differ, Adaptive Server determines whether it supports conversion between its default and the client’s character set. If it does not, it sends an error message to the client and continues with the login process. If it does, character set conversion is automatically enabled. If the default character set of the server is UTF-8, Unicode conversions are automatically used. If the default is a native character set, the server uses Adaptive Server direct conversions, unless the user requests Unicode conversions.

You can disable character set conversion at the server level. You may want to do this if:

- All of your clients are using the same character set as the server default, and therefore, no conversion is required.
- Conversion between the client character set and the server default is not supported.
- You want to store data in the server without changing the encoding.

To disable character set conversion at the server level, set the `disable character set conversion` parameter to 1.

You can control character set conversion at the connection level using the `set char_convert` command from within a client session. `set char_convert off` turns conversion off between a particular client and the server. You may want to `set char_convert off` if the client and the server use the same character set, which makes conversion unnecessary. `set char_convert on` turns conversion back on.

Characters that cannot be converted

Some characters may not be converted, if:
Error handling in character set conversion

- The character exists (is encoded) in the source character set, but does not exist in the target character set. For example, the OE ligature is part of the Macintosh character set (code point 0xCE). This character does not exist in the ISO 8859-1 character set. If the OE ligature exists in data that is being converted from the Macintosh to the ISO 8859-1 character set, it causes a conversion error.

- The character exists in both the source and the target character set, but in the target character set, the character is represented by a different number of bytes than in the source character set.

For example, 1-byte accented characters (such as á, è) are 2-byte characters in UTF-8; 2-byte Thai characters are 3-byte characters in UTF-8. Avoid this limitation by configuring the enable unicode conversion option to 1 or 2.

Error handling in character set conversion

The Adaptive Server character set conversion reports errors when a character exists in the client’s character set but not in the server’s character set, or vice versa. Adaptive Server must guarantee that data successfully converted on input to the server can be successfully converted back to the client’s character set when the client retrieves that data. To do this effectively, Adaptive Server must avoid putting suspect data into the database.

When Adaptive Server encounters a conversion error in the data being entered, it generates this message:

```
Msg 2402, Severity 16 (EX_USER):
Error converting client characters into server’s character set. Some character(s) could not be converted.
```

A conversion error prevents query execution on insert and update statements. If this occurs, review your data for problem characters and replace them.

When Adaptive Server encounters a conversion error while sending data to the client, it replaces the bytes of the suspect characters with ASCII question marks (?). The query batch continues to completion. When the statement is complete, Adaptive Server sends the following message:

```
Msg 2403, Severity 16 (EX_INFO):
WARNING! Some character(s) could not be converted into client’s character set. Unconverted bytes were changed to question marks ('?').
```
Conversions and changes to data lengths

In some cases, converting data between the server’s character set and the client’s character set results in a change to the length of the data, for example, when the character set on one system uses one byte to represent each character and the character set on the other system requires two bytes per character.

When character set conversion results in a change in data length, there are two possibilities:

- The data length decreases, as in the following examples:
 - Greek or Russian in multibyte UTF-8 to a single-byte Greek or Russian character set
 - Japanese two-byte Hankaku Katakana characters in EUC-JIS to single-byte characters in Shift-JIS

- The data length increases, as in the following examples:
 - Single-byte Thai to multibyte Thai in UTF-8
 - Single-byte Japanese characters in Shift-JIS to two-byte Hankaku Katakana in EUC-JIS

Configuring your system and application

If you are using UTF-8 anywhere in your client/server system, or using a Japanese character set, you are likely to encounter changes in data length as a result of character set conversion. You must configure your server to handle changes in data length. You may also need to set up your client to handle changes in data length.

1. Configure the server to use Unicode conversions. See “Configuring the server” on page 346. If the data length increases between the server and the client, you must also complete steps 2 and 3.

2. The client must be using Open Client 11.1 or later. It must inform the server that it can handle CS_LONGCHAR data at connection time, using the Open Client ct_capability function.

 The capability parameter must be set to CS_DATA_LCHAR and the value parameter must be set to CS_TRUE, where connection is a pointer to a CS_CONNECTION structure:

   ```c
   CS_INT capval = CS_TRUE
   ct_capability(connection, CS_SET, CS_CAP_RESPONS,
   ```
Specifying the character set for utility programs

The Sybase utility programs assume that the default character set of the client platform is the same character set the client is using. However, sometimes the client character set differs from the character set for the platform. For this reason, you may need to specify the client character set at the command line. A command line option for the isql, bcp, and defncopy utilities specifies the client’s character set, and temporarily overrides settings of the LANG variable or settings in locales.dat.

-J charset_name (UNIX and PC) sets the client’s character set to the charset_name.

If you omit the client character set’s command line flag, the platform’s default character set is used. See the Utility Guide.

Display and file character set command line options

Although the focus of this chapter is on character set conversion between clients and Adaptive Server, there are two other places where you may need character set conversion:

- Between the client and a terminal
- Between the client and a file system

Figure 10-4 illustrates the paths and command line options that are available in the standalone utilities isql, bcp, and defncopy.
Figure 10-4: Where character set conversion may be needed

The -J or /clientcharset command line option specifies the character set used by the client when it sends and receives character data to and from Adaptive Server.

Setting the display character set

Use the -a command line option if you are running the client from a terminal with a character set that differs from the client character set. In Figure 10-4, the -a option and the -J option are used together to identify the character set translation file (.xlt file) needed for the conversion.

Use -a without -J only if the client character set is the same as the default character set.

Setting the file character set

Use the -q command line option if you are running bcp to copy character data to or from a file system that uses a character set that differs from the client character set. In Figure 10-4, use the -q or /filecharset option and the -J or /clientcharset option together to identify the character set translation file (.xlt file) needed for the conversion.
Specifying the character set for utility programs
CHAPTER 11

Diagnosing System Problems

This chapter discusses diagnosing and fixing system problems.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Adaptive Server uses error messages</td>
<td>353</td>
</tr>
<tr>
<td>Adaptive Server error logging</td>
<td>356</td>
</tr>
<tr>
<td>Backup Server error logging</td>
<td>365</td>
</tr>
<tr>
<td>Killing processes</td>
<td>366</td>
</tr>
<tr>
<td>Housekeeper functionality</td>
<td>370</td>
</tr>
<tr>
<td>Configuring Adaptive Server to save SQL batch text</td>
<td>373</td>
</tr>
<tr>
<td>Shutting down servers</td>
<td>378</td>
</tr>
<tr>
<td>Learning about known problems</td>
<td>380</td>
</tr>
</tbody>
</table>

How Adaptive Server uses error messages

When Adaptive Server encounters a problem, it displays an error message that includes:

- A message number, which uniquely identifies the error message
- A severity level number between 10 and 24, which indicates the type and severity of the problem
- An error state number, which allows unique identification of the line of Adaptive Server code at which the error was raised
- An error message, which tells you what the problem is, and may suggest how to fix it

For example, if you try to access a table that does not exist, you see:

```
select * from publisher
Msg 208, Level 16, State 1:
publisher not found. Specify owner.objectname or use sp_help to check whether the object exists (sp_help may produce lots of output).
```
How Adaptive Server uses error messages

There may be more than one error message for a single query. If there is more than one error in a batch or query, Adaptive Server usually reports only the first one. Subsequent errors are reported the next time you execute the batch or query.

Error messages are stored in `master..sysmessages`, which is updated with each new version of Adaptive Server. Here are the first few rows (from an Adaptive Server that uses us_english as the default language):

```sql
select error, severity, description
from sysmessages
where error >=101 and error <=106
and langid is null
```

<table>
<thead>
<tr>
<th>error</th>
<th>severity</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>15</td>
<td>Line %d: SQL syntax error.</td>
</tr>
<tr>
<td>102</td>
<td>15</td>
<td>Incorrect syntax near '%.*s'.</td>
</tr>
<tr>
<td>103</td>
<td>15</td>
<td>The %S_MSG that starts with '%.*s' is too long. Maximum length is %d.</td>
</tr>
<tr>
<td>104</td>
<td>15</td>
<td>Order-by items must appear in the select-list if the statement contains set operators.</td>
</tr>
<tr>
<td>105</td>
<td>15</td>
<td>Unclosed quote before the character string '%.*s'.</td>
</tr>
<tr>
<td>106</td>
<td>16</td>
<td>Too many table names in the query. The maximum allowable is %d.</td>
</tr>
</tbody>
</table>

(6 rows affected)

You can query `sysmessages` to generate a custom list of error messages:

- If your server supports more than one language, `sysmessages` stores each message in each language. The column `langid` is NULL for us_english and matches the `syslanguages.langid` for other languages installed on the server.
- The `dlevel` column in `sysmessages` is currently unused.
- The `sqlstate` column stores the SQLSTATE value for error conditions and exceptions defined in ANSI SQL92.
- Message numbers 17000 and higher are system procedure error messages and message strings.
CHAPTER 11 Diagnosing System Problems

Error messages and message numbers

The combination of message number (error) and language ID (langid) uniquely identifies each error message. Messages that share the same message number but have different language IDs indicate translations.

```
select error, description, langid
from sysmessages
where error = 101

<table>
<thead>
<tr>
<th>error</th>
<th>description</th>
<th>langid</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Line %d: SQL syntax error.</td>
<td>NULL</td>
</tr>
<tr>
<td>101</td>
<td>Ligne %1!: erreur de syntaxe SQL.</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>Zeile %1!: SQL Syntaxfehler.</td>
<td>2</td>
</tr>
</tbody>
</table>
```

(3 rows affected)

The error message text describes the problem. The descriptions often include a line number, a reference to a type of database object (a table, column, stored procedure, and so forth), or the name of a particular database object.

In the description field of sysmessages, a percent sign (%) followed by a character or character string serves as a placeholder for these pieces of data, which Adaptive Server supplies when it encounters the problem and generates the error message. “%d” is a placeholder for a number; “%S_MSG” is a placeholder for a type of database object; “%.*s”—all within quotes—is a placeholder for the name of a particular database object. Table 11-1 on page 356 lists placeholders and what they represent.

For example, the description field for message number 103 is:

```
The %S_MSG that starts with '%.*s' is too long. Maximum length is %d.
```

The actual error message that appears to a user might be:

```
The column that starts with 'title' is too long. Maximum length is 80.
```

For errors that you report to Technical Support, include the numbers, object types, and object names. (See “Reporting errors” on page 364.)

Variables in error message text

Table 11-1 explains the symbols that appear in the text provided with each error message explanation:
Adaptive Server error logging

Table 11-1: Error text symbols key

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Stands for</th>
</tr>
</thead>
<tbody>
<tr>
<td>%d, %D</td>
<td>Decimal number</td>
</tr>
<tr>
<td>%x, %X, %x, %lx, %04x, %08lx</td>
<td>Hexadecimal number</td>
</tr>
<tr>
<td>%s</td>
<td>Null-terminated string</td>
</tr>
<tr>
<td>%*s, %*s, %*s</td>
<td>String, usually the name of a particular database object</td>
</tr>
<tr>
<td>%S_type</td>
<td>Adaptive Server-defined structure</td>
</tr>
<tr>
<td>%c</td>
<td>Single character</td>
</tr>
<tr>
<td>%f</td>
<td>Floating-point number</td>
</tr>
<tr>
<td>%ld</td>
<td>Long decimal</td>
</tr>
<tr>
<td>%f</td>
<td>Double floating-point number</td>
</tr>
</tbody>
</table>

Adaptive Server error logging

Error messages from Adaptive Server are sent only to the user’s screen.

The stack trace from fatal error messages (severity levels 19 and higher) and error messages from the kernel are sent to an error log file. The name of this file varies; see the configuration documentation for your platform or the Utility Guide.

Note The error log file is owned by the user who installed Adaptive Server (or the person who started Adaptive Server after an error log was removed). Permissions or ownership problems with the error log at the operating system level can block successful start-up of Adaptive Server.

Adaptive Server creates an error log for you if one does not already exist. Specify the location of the error log at start-up with the errorlogfile parameter in the runserver file or at the command line. The Sybase installer utility configures the runserver file with $SYBASE/install as the location of the error log if you do not choose an alternate location. If you do not specify the location in the runserver file or at the command line, the location of the error log is the directory from which you start Adaptive Server. For more information about specifying the location of the error log, see dataserver in the Utility Guide.

Note Always start Adaptive Server from the same directory, or with the runserver file or the error log flag, so that you can locate your error log.
Each time you start a server, messages in the error log provide information on the success (or failure) of the start and the recovery of each database on the server. Subsequent fatal error messages and all kernel error messages are appended to the error log file. To reduce the size of the error log by deleting old or unneeded messages, “prune” the log while Adaptive Server is shut down.

Error log format

Entries in the error log include:

- The engine involved for each log entry. The engine number is indicated by a 2-digit number. If only 1 engine is online, the display is “00.”
- The family ID of the originating thread:
 - In serial processing, the display is “00000.”
 - In parallel processing, the display is the server process ID number of the parent of the originating thread.
- The server process ID of the originating thread:
 - In serial processing, this is the server process ID number of the thread that generated the message. If the thread is a system task, then the display is “00000.”
 - In parallel processing, this is the server process ID number of the originating thread.
- The date, displayed in the format \(yyyy/mm/dd\), which allows you to sort error messages by date.
- The time, displayed in 24-hour format, which includes seconds and hundredths of a second.
- The word “server” or “kernel.” This entry is for Sybase Technical Support use only.
- The error message itself.

Figure 11-1 shows two examples of a line from an error log:
Adaptive Server error logging

Figure 11-1: Error log format

Single-engine server

00:00000:00008:1997/05/16 15:11:46.58 server Process id 9 killed by Hostname danish, Host process id 3507.

Multiengine server

Server process ID Date and time

Family ID

Engine number

00:00345:00023:1997/04/16 12:48:58.76 server The configuration option 'allow updates to system tables' has been changed by 'sa' from '1' to '0'.

Severity levels

The severity level of a message indicates the type and severity of the problem that Adaptive Server has encountered. For maximum integrity, when Adaptive Server responds to error conditions, it displays messages from `sysmessages`, but takes action according to an internal table. A few corresponding messages differ in severity levels, so you may occasionally notice a difference in expected behavior if you are developing applications or procedures that refer to Adaptive Server messages and severity levels.

Warning! You can create your own error numbers and messages based on Adaptive Server error numbers (for example, by adding 20,000 to the Adaptive Server value). However, you cannot alter the Adaptive Server-supplied system messages in the `sysmessages` system table.

You can add user-defined error messages to `sysusermessages` with `sp_addmessage`. See the *Reference Manual: Procedures*.

Users should inform the system administrator whenever problems that generate severity levels of 17 and higher occur. The system administrator is responsible for resolving them and tracking their frequency.

If the problem has affected an entire database, the system administrator may have to use the database consistency checker (`dbcc`) to determine the extent of the damage. The `dbcc` may identify some objects that have to be removed. It can repair some damage, but you may have to reload the database.
For more information, see the following chapters in System Administration Guide: Volume 2:

Severity levels 10 – 18

Error messages with severity levels 10–16 are generated by problems that are caused by user errors. These problems can be corrected by the user. Severity levels 17 and 18 do not terminate the user’s session.

Error messages with severity levels 17 and higher should be reported to the system administrator or database owner.

Level 10: Status information

Messages with severity level 10 are not errors at all. They provide additional information after certain commands have been executed and, typically, do not display the message number or severity level. For example, after a create database command, Adaptive Server displays a message telling the user how much of the requested space has been allocated for the new database.

Level 11: Specified database object not found

Messages with severity level 11 indicate that Adaptive Server cannot find an object that is referenced in a command.

This is often because the user has made a mistake in typing the name of a database object, because the user did not specify the object owner’s name, or because of confusion about which database is current. Check the spelling of object names, use the owner names if the object is not owned by the user or “dbo,” and make sure you are in the correct database.
Level 12: Wrong datatype encountered

Messages with severity level 12 indicate a problem with datatypes. For example, the user may have tried to enter a value of the wrong datatype in a column or to compare columns of different and incompatible datatypes.

To correct comparison problems, use the `convert` function with `select`. See the *Reference Manual: Building Blocks* or the *Transact-SQL Users Guide*.

Level 13: User transaction syntax error

Messages with severity level 13 indicate that something is wrong with the current user-defined transaction. For example, the user may have issued a `commit transaction` command without having issued a `begin transaction`, or they may have tried to roll back a transaction to a savepoint that has not been defined (sometimes there may be a typing or spelling mistake in the name of the savepoint).

Severity level 13 can also indicate a deadlock, in which case the deadlock victim’s process is rolled back. The user must restart his or her command.

Level 14: Insufficient permission to execute command

Messages with severity level 14 mean that the user does not have the necessary permission to execute the command or access the database object. They can ask the owner of the database object, the owner of the database, or the system administrator to grant them permission to use the command or object in question.

Level 15: Syntax error in SQL statement

Messages with severity level 15 indicate that the user has made a mistake in the syntax of the command. The text of these error messages includes the line numbers on which the mistake occurs and the specific word near which it occurs.

Level 16: Miscellaneous user error

Most error messages with severity level 16 reflect that the user has made a nonfatal mistake that does not fall into any of the other categories. Severity level 16 and higher can also indicate software or hardware errors.
For example, the user may have tried to update a view in a way that violates the restrictions. Another error that falls into this category is unqualified column names in a command that includes more than one table with that column name. Adaptive Server has no way to determine which one the user intends. Check the command syntax and working database context.

Messages that ordinarily have severities greater than 16 show severity 16 when they are raised by dbcc checktable or dbcc checkalloc so that checks can continue to the next object. When you are running the dbcc utility, check the Error Messages and Troubleshooting Guide for information about error messages between 2500 and 2599 with a severity level of 16.

Note Levels 17 and 18 are usually not reported in the error log. Users should be instructed to notify the system administrator when level 17 and 18 errors occur.

Level 17: Insufficient resources

Error messages with severity level 17 mean that the command has caused Adaptive Server to run out of resources or to exceed some limit set by the system administrator. The user can continue with their work, although they may not be able to execute a particular command.

These system limits include the number of databases that can be open at the same time and the number of connections allowed to Adaptive Server. They are stored in system tables and can be checked with `sp_configure`. See Chapter 5, “Setting Configuration Parameters,” for more information on changing configuration variables.

The database owner can correct the level 17 error messages indicating that the user has run out of space. Other level 17 error messages should be corrected by the system administrator.

Level 18: Nonfatal internal error detected

Error messages with severity level 18 indicate an internal software bug. However, the command runs to completion, and the connection to Adaptive Server is maintained. The user can continue with the work they are doing, although they may not be able to execute a particular command. An example of a situation that generates severity level 18 is Adaptive Server detecting that a decision about the access path for a particular query has been made without a valid reason.
Since problems that generate such messages do not keep users from their work, users tend not to report them. However, users should be instructed to inform the system administrator every time an error message with this severity level (or higher) occurs so that the system administrator can report them.

Severity levels 19 – 26

Fatal problems generate error messages with severity levels 19 and higher. They break the user’s connection to Adaptive Server (some of the higher severity levels shut down Adaptive Server). To continue working, the user must restart the client program.

When a fatal error occurs, the process freezes its state before it stops, recording information about what has happened. The process is then killed and disappears.

When the user’s connection is broken, he or she may or may not be able to reconnect and resume working. Some problems with severity levels in this range affect only one user and one process. Others affect all the processes in the database. In some cases, the system administrator must restart Adaptive Server. These problems do not necessarily damage a database or its objects, but they can. They may also result from earlier damage to a database or its objects. Other problems are caused by hardware malfunctions.

Error messages from the kernel are directed to the error log file.

Level 19: Adaptive Server fatal error in resource

Error messages with severity level 19 indicate that some nonconfigurable internal limit has been exceeded and that Adaptive Server cannot recover gracefully. You must reconnect to Adaptive Server.

Level 20: Adaptive Server fatal error in current process

Error messages with severity level 20 indicate that Adaptive Server has encountered a bug in a command. The problem has affected only the current process, and the database is unlikely to have been damaged. Run dbcc diagnostics. The user must reconnect to Adaptive Server.
Level 21: Adaptive Server fatal error in database processes

Error messages with severity level 21 indicate that Adaptive Server has encountered a bug that affects all the processes in the current database. However, it is unlikely that the database itself has been damaged. Restart Adaptive Server and run dbcc diagnostics. The user must reconnect to Adaptive Server.

Level 22: Adaptive Server fatal error: Table integrity suspect

Error messages with severity level 22 indicate that the table or index specified in the message has been previously damaged by a software or hardware problem.

The first step is to restart Adaptive Server and run dbcc to determine whether other objects in the database are also damaged. Whatever the report from dbcc may be, The problem may be only in the cache, and not on the disk itself. If so, restarting Adaptive Server fixes the problem.

If restarting does not help, then the problem is on the disk as well. Sometimes, the problem can be solved by dropping the object specified in the error message. For example, if the message tells you that Adaptive Server has found a row with length 0 in a nonclustered index, the table owner can drop the index and re-create it.

Adaptive Server takes any pages or indexes offline that it finds to be suspect during recovery. Use sp_setsuspect_granularity to determine whether recovery marks an entire database or only individual pages as suspect. See sp_setsuspect_granularity in the Reference Manual: Procedures.

The user must reconnect to Adaptive Server.

Level 23: Fatal error: Database integrity suspect

Error messages with severity level 23 indicate that the integrity of the entire database is suspect due to previous damage caused by a software or hardware problem. Restart Adaptive Server and run dbcc diagnostics.

Even when a level 23 error indicates that the entire database is suspect, the damage may be confined to the cache, and the disk itself may be fine. If so, restarting Adaptive Server with startserver fixes the problem.
Adaptive Server error logging

Level 24: Hardware error or system table corruption

Error messages with severity level 24 reflect a media failure or (in rare cases) the corruption of `sysusages`. The system administrator may have to reload the database. You may need to call your hardware vendor.

Level 25: Adaptive Server internal error

Users do not see level 25 errors; this level is used only for Adaptive Server internal errors.

Level 26: Rule error

Error messages with severity level 26 reflect that an internal locking or synchronization rule has been broken. You must shut down and restart Adaptive Server.

Reporting errors

When you report an error to Sybase Technical Support, include:

- The message number, level number, and state number.
- Any numbers, database object types, or database object names that are included in the error message.
- The context in which the message was generated, that is, the command that was running at the time. You can help by providing a hard copy of the error log.
Backup Server error logging

Like Adaptive Server, Backup Server creates an error log if one does not already exist. Specify the location of the error log at start-up with the error_log_file parameter in the runserver file or at the command line. The Sybase installer configures the runserver file with $SYBASE/Install as the location of the error log if you do not choose an alternate location during installation. If you do not specify the location in the runserver file or at the command line, the location of the error log is the directory from which you start Backup Server. Use the backupsrver -V option (bcksvr -V on Windows NT) to limit the messages printed to the error log. See the sections describing Backup Server in the Utility Guide.

Backup Server error messages are in this form:

MMM DD YYY: Backup Server:N.N.N.N: Message Text

Backup Server message numbers consist of four integers separated by periods, in the form N.N.N.N. Messages in the form N.N.N are sent by Open Server.

The four components of a Backup Server error message are major.minor.severity.state:

- The major component generally indicates the functional area of the Backup Server code where the error occurred:
 - 1 – system errors.
 - 2 – Open Server event errors.
 - 3 – Backup Server remote procedure call errors.
 - 4 – I/O service layer errors.
 - 5 – network data transfer errors.
 - 6 – volume-handling errors.
 - 7 – option-parsing errors.

Major error categories 1–6 may result from Backup Server internal errors or a variety of system problems. Major errors in category 7 are almost always due to problems in the options you specified in your dump or load command.

- minor numbers are assigned in order within a major category.
- severity is:
 - 1 – informational, no user action necessary.
Killing processes

- 2, 3 – an unexpected condition, possibly fatal to the session, has occurred. The error may have occurred with usage, environment, or internal logic, or any combination of these factors.
- 4 – an unexpected condition, fatal to the execution of the Backup Server, has occurred. The Backup Server must exit immediately.
- States codes have a one-to-one mapping to instances of the error report within the code. If you need to contact Technical Support about Backup Server errors, the state code helps determine the exact cause of the error.

Killing processes

A process is a unit of execution carried out by Adaptive Server. Each process is assigned a unique process identification number when it starts. This number is called a spid. These numbers are stored, along with other information about each process, in master.sysprocesses. Processes running in a parallel-processes environment create child processes, each of which has its own spids. Several processes create and assign spids: starting Adaptive Server, login tasks, checkpoints, the housekeeper tasks, and so on. You can see most of the information by running sp_who.

Running sp_who on a single-engine server shows the sp_who process running and all other processes that are “runnable” or in one of the sleep states. In multi-engine servers, there can be a process running for each engine.

The kill command gets rid of an ongoing process. The most frequent reason for killing a process is that it interferes with other users, and the person responsible for running it is not available. The process may hold locks that block access to database objects, or there may be many sleeping processes occupying the available user connections. A system administrator can kill most running or “runnable” processes, including those that are waiting for:

- An alarm, such as a waitfor command
- Network sends or receives
- A lock
- Synchronization messages from another process in a family
Adaptive Server allows you to kill processes only if it can cleanly roll back any uncompleted transactions and release all system resources that are used by the process. For processes that are part of a family, killing any of the child processes also kills all other processes in the family. However, it is easiest to kill the parent process. For a family of processes, the kill command is detected more quickly if the status of the child processes is `sync sleep`.

Table 11-2 shows the status values that `sp_who` reports and when the kill command takes effect.

<table>
<thead>
<tr>
<th>Status</th>
<th>Indicates</th>
<th>Effects of kill command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>recv sleep</code></td>
<td>Waiting on a network read.</td>
<td>Immediate.</td>
</tr>
<tr>
<td><code>send sleep</code></td>
<td>Waiting on a network send.</td>
<td>Immediate.</td>
</tr>
<tr>
<td><code>alarm sleep</code></td>
<td>Waiting on an alarm such as:</td>
<td>Immediate.</td>
</tr>
<tr>
<td><code>lock sleep</code></td>
<td>Waiting on a lock acquisition.</td>
<td>Immediate.</td>
</tr>
<tr>
<td><code>sync sleep</code></td>
<td>Waiting on a synchronization message from another process in the family.</td>
<td>Immediate. Other processes in the family must also be brought to state in which they can be killed.</td>
</tr>
<tr>
<td><code>sleeping</code></td>
<td>Waiting on a disk I/O, or some other resource. Probably indicates a process that is running, but doing extensive disk I/O</td>
<td>Killed when it “wakes up,” usually immediate; a few sleeping processes do not wake up and require a server restart to clear.</td>
</tr>
<tr>
<td><code>runnable</code></td>
<td>In the queue of runnable processes.</td>
<td>Immediate.</td>
</tr>
<tr>
<td><code>running</code></td>
<td>Actively running on one of the server engines.</td>
<td>Immediate.</td>
</tr>
<tr>
<td><code>infected</code></td>
<td>Server has detected serious error condition; extremely rare.</td>
<td>Kill command not recommended. Server restart probably required to clear process.</td>
</tr>
<tr>
<td><code>background</code></td>
<td>A process, such as a threshold procedure, run by Adaptive Server rather than by a user process.</td>
<td>Immediate; use <code>kill</code> with extreme care. Recommend a careful check of <code>sysprocesses</code> before killing a background process.</td>
</tr>
<tr>
<td><code>log suspend</code></td>
<td>Processes suspended by reaching the last-chance threshold on the log.</td>
<td>Immediate.</td>
</tr>
</tbody>
</table>

Only system administrators can issue the kill command; permission to use it cannot be transferred.

The syntax is:

```
kil spid
```

You can kill only one process at a time, but you can perform a series of kill commands in a batch. For example:

```
1> kill 7
```
Killing processes

2> kill 8
3> kill 9
4> go

A kill command is irreversible and cannot be included in a user-defined transaction. spid must be a numeric constant; you cannot use a variable. Here is some sample output from sp_who:

<table>
<thead>
<tr>
<th>fid</th>
<th>spid</th>
<th>status</th>
<th>loginame</th>
<th>origname</th>
<th>hostname</th>
<th>blk</th>
<th>dbname</th>
<th>cmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>recv</td>
<td>howard</td>
<td>howard</td>
<td>svr30eng</td>
<td>0</td>
<td>master</td>
<td>AWAITING COMMAND</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>svr30eng</td>
<td>0</td>
<td>master</td>
<td>NETWORK HANDLER</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>svr30eng</td>
<td>0</td>
<td>master</td>
<td>DEADLOCK TUNE</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>svr30eng</td>
<td>0</td>
<td>master</td>
<td>MIRROR HANDLER</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>svr30eng</td>
<td>0</td>
<td>master</td>
<td>CHECKPOINT SLEEP</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>svr30eng</td>
<td>0</td>
<td>master</td>
<td>HOUSEKEEPER</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>recv</td>
<td>bill</td>
<td>bill</td>
<td>bigblue</td>
<td>0</td>
<td>master</td>
<td>AWAITING COMMAND</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>recv</td>
<td>wilbur</td>
<td>wilbur</td>
<td>hazel</td>
<td>0</td>
<td>master</td>
<td>AWAITING COMMAND</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>recv</td>
<td>joan</td>
<td>joan</td>
<td>luv2work</td>
<td>0</td>
<td>master</td>
<td>AWAITING COMMAND</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>running</td>
<td>foote</td>
<td>foote</td>
<td>svr47hum</td>
<td>0</td>
<td>master</td>
<td>SELECT</td>
</tr>
</tbody>
</table>

(10 rows affected, return status = 0)

In the example above, processes 2–6 cannot be killed: they are system processes. The login name NULL and the lack of a host name identify processes them as system processes. NETWORK HANDLER, MIRROR HANDLER, HOUSEKEEPER, and CHECKPOINT SLEEP (or, rarely, CHECKPOINT) always appear in sp_who output. AUDIT PROCESS appears if auditing is available.

Processes 1, 8, 9, and 10 can be killed, since they have the status values “recv sleep,” “send sleep,” “alarm sleep,” and “lock sleep.”

In sp_who output, you cannot tell whether a is “recv sleep” belongs to a user who is using Adaptive Server and may be pausing to examine the results of a command, or whether a user has restarted a PC or other terminal, and left a stranded process. Query the sysprocesses table to learn more about questionable processes. For example, this query shows the host process ID and client software used by process 8:

```sql
select hostprocess, program_name
from sysprocesses
where spid = 8

hostprocess program_name
--------- ---------------
3993       isql
```

Adaptive Server Enterprise
This query, plus the information about the user and host from the sp_who results, provides additional information for tracking down the process from the operating system level.

Using kill with statusonly

The kill ...statusonly command reports on the progress of a server process ID (spid) in rollback status. It does not terminate the spid. The statusonly report displays the percent of rollback completed and the estimated length of time in seconds before the rollback completes. To track the progress of a rollback, you must run kill...with statusonly multiple times:

```
kill spid with statusonly
```

Where \textit{spid} is the number of the process you are terminating.

For example, the following reports on the process of the rollback of spid number 13:

```
kill 13 with statusonly
spid: 13 Transaction rollback in progress. Estimated rollback completion: 17%
Estimated time left: 13 seconds
```

If the rollback of the spid has completed when you issue kill...statusonly or if Adaptive Server cannot roll back the specified spid, kill...statusonly returns the following message:

```
Status report cannot be obtained. KILL spid:nn is not in progress.
```

Using \textit{sp_lock} to examine blocking processes

In addition to \textit{sp_who}, \textit{sp_lock} can help identify processes that are blocking other processes. If the blk_spid column in the \textit{sp_who} report indicates that another process has been blocked while waiting to acquire locks, \textit{sp_lock} can display information about the blocking process. For example, process 10 in the \textit{sp_who} output above is blocked by process 7. To see information about process 7, execute:

```
sp_lock 7
```

For more information about locking in Adaptive Server, see the \textit{Performance and Tuning Series: Locking and Concurrency Control}.

Housekeeper functionality

The housekeeper task provides important functionalities:

- The housekeeper consists of three tasks: housekeeper wash, housekeeper garbage collection, and housekeeper chores. sp_who recognizes all three tasks, as the following output shows:

<table>
<thead>
<tr>
<th>fid</th>
<th>spid</th>
<th>status</th>
<th>loginame</th>
<th>origname</th>
<th>hostname</th>
<th>blk_sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>sleeping</td>
<td>henry</td>
<td>NULL</td>
<td>luv2work</td>
<td>0</td>
</tr>
<tr>
<td>master</td>
<td>tempdb</td>
<td>select</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>sleeping</td>
<td>joe</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
</tr>
<tr>
<td>master</td>
<td>tempdb</td>
<td>HK GC</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
</tr>
<tr>
<td>master</td>
<td>tempdb</td>
<td>HK CHORES</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(11 rows affected, return status = 0)

- The general automatic restart of housekeeper-related system tasks: you need not restart the server if these system tasks quit unexpectedly.

- A system administrator can change all housekeeper task priorities. sp_showpsexe, as well as sp_who, recognizes all three housekeeper names.

For more information about sp_who and sp_showpsexe, see the Reference Manual: Procedures.

Housekeeper wash

Washing buffers is an optional task that, if enabled, runs only during idle times. You can turn off this task using the configuration parameter housekeeper free write percent. The housekeeper wash task is the only housekeeper task for which you use this configuration parameter.

Housekeeper chores

The housekeeper chores task runs only at idle times, and does not use a common configuration parameter. It manages miscellaneous chores, such as:
• Flushing table statistics.
• Flushing account statistics.
• Handling timeout of detached transactions. You can turn off this task using the configuration parameter `dtm detach timeout period`.
• Checking licence usage. You can turn off this task using the configuration parameter `license information`.

Housekeeper garbage collection

There are two forms of garbage collection, lazy and aggressive. These terms describe two distinct tests for finding empty pages.

• Lazy garbage collection refers to an inexpensive test to find empty pages. This test may not be effective during long-running transactions, and empty pages may accumulate. Lazy garbage collection is inexpensive to use, but can lower performance, which is affected by the fragmentation of allocated table space, and by the accumulation of empty pages that must be evaluated during queries.

• Aggressive garbage collection refers to a sophisticated test for empty pages. This test is more expensive than the lazy garbage collection test, because it checks each deleted row in a page to determine whether the deleted transactions are committed.

Use the `enable housekeeper GC` configuration parameter to configure the `delete` command and the housekeeper garbage collection task for aggressive or lazy garbage collection.

The aggressive housekeeper garbage collection self-tunes the frequency with which the housekeeper garbage collection task examines the housekeeper list, so that the frequency of examination matches the rate at which the application generates empty pages.

Running at user priority

The housekeeper garbage collection task operates at the priority level of an ordinary user, competing for CPU time with ordinary user tasks. This behavior prevents the list of empty pages from growing faster than the housekeeper can delete them.
Configuring enable housekeeper GC

To configure Adaptive Server for garbage collection task, use:

```
sp_configure "enable housekeeper GC", value
```

For example, enter:

```
sp_configure "enable housekeeper GC", 4
```

The valid values for the `enable housekeeper GC` configuration parameter are:

- 0 – disables the housekeeper garbage collection task, but enables lazy garbage collection by the `delete` command. You must use `reorg reclaim_space` to deallocate empty pages. This is the cheapest option with the lowest performance impact, but it may cause performance problems if many empty pages accumulate. Sybase recommends that you do not use this value.

- 1 – enables lazy garbage collection, by both the housekeeper garbage collection task and the `delete` command. This is the default value. If more empty pages accumulate than your application allows, consider options 4 or 5. You can use the `optdiag` utility to obtain statistics of empty pages.

- 2 – reserved for future use.

- 3 – reserved for future use.

- 4 – enables aggressive garbage collection for both the housekeeper garbage collection task and the `delete` command. This option is the most effective, but the `delete` command is the most expensive. This option is ideal if the deletes on your dataonly locked tables are in a batch.

- 5 – enables aggressive garbage collection for the housekeeper, and lazy garbage collection by `delete`. This option is less expensive for deletes than option 4. This option is suitable when deletes are caused by concurrent transactions.

Using the reorg command

Garbage collection is most effective when you set `enable housekeeper GC` to 4 or 5. Sybase recommends that you set the parameter value to 5. However, if performance considerations prevent setting this parameter to 4 or 5, and you have an accumulation of empty pages, run `reorg` on the affected tables. You can obtain statistics on empty pages through the `optdiag` utility.
When the server is shut down or crashes, requests to deallocate pages that the housekeeper garbage collection task has not yet serviced are lost. These pages, empty but not deallocated by the housekeeper garbage collection task, remain allocated until you remove them by running `reorg`.

Configuring Adaptive Server to save SQL batch text

Occasionally, a query or procedure causes Adaptive Server Monitor to stop responding. Users who have the system administrator role can configure Adaptive Server to grant Adaptive Server Monitor access to the text of the currently executing SQL batch. Viewing the SQL text of long-running batches may help you debug “stuck” processes, or fine-tune long statements that are heavy resource consumers.

You must configure Adaptive Server to collect the SQL batch text and write it to shared memory, where the text can be read by Adaptive Server Monitor Server (the server component of Adaptive Server Monitor). The client requests might come from Monitor Viewer, which is a plug-in to Sybase Central, or other Adaptive Server Monitor Server applications.

Configuring Adaptive Server to save SQL batch text also allows you to view the current query plan in showplan format (as you would see after setting `showplan` on). You can view the current query plan from within Adaptive Server; see “Viewing the query plan of a SQL statement” on page 376. SQL batches are viewable only through Adaptive Server Monitor Server. See the Adaptive Server Monitor Server documentation for more information about displaying the batch text.

Because the query or procedure you are viewing may be nested within a batch of SQL text, the `sysprocesses` table includes columns for the line number, statement number, and `spid` the statement that has stopped responding, so its query plan can be analyzed.

By default, Adaptive Server does not save SQL batch text, so you must configure Adaptive Server to allocate memory for this feature. Adaptive Server Monitor access to SQL has no effect on performance if you have not configured any memory to save SQL batches.
Allocating memory for batch text

Configure the amount of the SQL text batch you want to save. When text saving is enabled, Adaptive Server copies the subsequent SQL text batches to memory shared with SQL Server Monitor. Because each new batch clears the memory for the connection and overwrites the previous batch, you can view only currently executing SQL statements.

❖ Saving SQL text

1. Configure the amount of SQL text retained in memory (see “Configuring the amount of SQL text retained in memory” on page 374).
2. Enable Adaptive Server to start saving SQL text (see “Enabling Adaptive Server to start saving SQL text” on page 375).

Note You must have system administration privileges to configure and save SQL text batches.

Configuring the amount of SQL text retained in memory

After installation, you must decide the maximum amount of SQL text that can be copied to shared memory. To determine how much memory to allocate per user, consider:

- SQL batches that exceed the allocated amount of memory are truncated without warning. If you do not allocate enough memory for the batch statements, the text you are interested in viewing might be the section of the batch that is truncated.
- The more memory you allocate for SQL text from shared memory, the less chance the problem statement will be truncated from the batch copied to shared memory. However, Adaptive Server immediately rejects very large values because they do not leave enough memory for data and procedure caches.

Sybase recommends that you use an initial value of 1024 bytes per user connection.

Use `sp_configure` with the `max SQL text monitored` configuration parameter to allocate shared memory, where `bytes_per_connection` (the maximum number of bytes saved for each client connection) is between 0 (the default) and 2,147,483,647 (the theoretical limit):

```
sp_configure "max SQL text monitored", bytes_per_connection
```
You must restart Adaptive Server for this parameter to take effect.

The total memory allocated for the SQL text from shared memory is the product of $\text{bytes_per_connection}$ multiplied by the number of user connections.

Enabling Adaptive Server to start saving SQL text

After you allocate shared memory for SQL text, Adaptive Server saves a copy of each SQL batch whenever you enable an Adaptive Server Monitor event summary that includes SQL batches.

You may also have to reconfigure the Adaptive Server Monitor event buffer scan interval for SQL text. See the Adaptive Server Monitor documentation.

SQL commands not represented by text

If you use Client-Library functions not represented by text (such as `ct_cursor` or `ct_dynamic`) to issue SQL commands, Client-Library encodes the information for efficiency, and Adaptive Server generally decodes and displays key command information. For example, if you open a cursor with `ct_cursor` and the command is running, the Adaptive Server Monitor event summary displays the cursor name and the cursor declare statement.

Table 11-3 lists the Client-Library functions not represented by text:

<table>
<thead>
<tr>
<th>Client-Library routine</th>
<th>DB-Library routine</th>
<th>Presentation name</th>
<th>Presentation data</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ct_cursor</code></td>
<td>N/A</td>
<td>CLOSE_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td><code>ct_cursor</code></td>
<td>N/A</td>
<td>DECLARE_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td><code>ct_cursor</code></td>
<td>N/A</td>
<td>DELETE_AT_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td><code>ct_cursor</code></td>
<td>N/A</td>
<td>FETCH_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td><code>ct_fetch (when processing the results of ct_cursor)</code></td>
<td>N/A</td>
<td>FETCH_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td><code>ct_cursor CURSOR_ROWS, or ct_cancel when the connection has Client-Library cursors</code></td>
<td>N/A</td>
<td>CURSOR_INFO</td>
<td>Cursor name, statement</td>
</tr>
</tbody>
</table>
Configuring Adaptive Server to save SQL batch text

<table>
<thead>
<tr>
<th>Client-Library routine</th>
<th>DB-Library routine</th>
<th>Presentation name</th>
<th>Presentation data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ct_cursor</td>
<td>N/A</td>
<td>OPEN_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td>ct_cursor</td>
<td>N/A</td>
<td>UPDATE_AT_CURSOR</td>
<td>Cursor name, statement</td>
</tr>
<tr>
<td>ct_command (CS_RPC_CMD) (default behavior)</td>
<td>dbrpcint (only in version 10.0.1 or later)</td>
<td>DBLIB_RPC</td>
<td>RPC name</td>
</tr>
<tr>
<td>ct_dynamic</td>
<td>N/A</td>
<td>DYNAMIC_SQL</td>
<td>Dynamic statement name, statement</td>
</tr>
<tr>
<td>ct_command (CS_MSG_CMD)</td>
<td>N/A</td>
<td>MESSAGE</td>
<td>None</td>
</tr>
<tr>
<td>ct_param</td>
<td>dbrpcparam</td>
<td>PARAM_FORMAT</td>
<td>None</td>
</tr>
<tr>
<td>ct_param</td>
<td>dbrpcparam</td>
<td>PARAMS</td>
<td>None</td>
</tr>
<tr>
<td>ct_command (CS_RPC_CMD) (only when a TDS version earlier than 5.0 is used)</td>
<td>dbrpcparam (in DB-Library versions earlier than 10.0.1)</td>
<td>RPC</td>
<td>RPC name</td>
</tr>
</tbody>
</table>

For more information about SQL commands not represented by text, see your Open Client documentation.

Viewing the query plan of a SQL statement

Use `sp_showplan` and the `spid` of the user connection in question to retrieve the query plan for the statement currently running on the connection. You can also use `sp_showplan` to view the query plan for a previous statement in the same batch.

```sql
declare @batch int
declare @context int
declare @statement int
execute sp_showplan <spid_value>, @batch_id= @batch output,
                 @context_id= @context output, @stmt_num= @statement output
```

where:

- `batch_id` – is the unique number for a batch.
- `context_id` – is a unique number for every procedure (or trigger) executed in the batch.
- `stmt_num` – is the number of the current statement within a batch.

Adaptive Server Enterprise
Adaptive Server uses the unique batch ID to synchronize the query plan with the batch text and other data retrieved by Adaptive Server Monitor.

Note You must be a system administrator to execute `sp_showplan`.

For example, to see the query plan for the current statement for `spid 99`, enter:

```sql
declare @batch int
declare @context int
declare @statement int
exec sp_showplan 99, @batch output, @context output, @statement output
```

You can run the query plan procedure independently of Adaptive Server Monitor, regardless of whether or not Adaptive Server has allocated shared memory for SQL text.

Viewing previous statements

To see the query plan for the previous statement in the same batch, issue `sp_showplan` with the same values as the original query, but subtract one from the statement number. Using this method, you can view all the statements in the statement batch back to query number one.

Viewing a nested procedure

Although `sp_showplan` allows you to view the query plan for the current statement, the actual statement that is running may exist within a procedure (or within a nested chain of procedures) called from the original SQL batch. Table 11-4 shows the columns in `sysprocesses` that contain information about these nested statements.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Specifies</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Integer</td>
<td>The object ID of the running procedure (or 0 if no procedure is running)</td>
</tr>
<tr>
<td>stmtnum</td>
<td>Integer</td>
<td>The current statement number within the running procedure (or the SQL batch statement number if no procedure is running)</td>
</tr>
<tr>
<td>linenum</td>
<td>Integer</td>
<td>The line number of the current statement within the running stored procedure (or the line number of the current SQL batch statement if no procedure is running)</td>
</tr>
</tbody>
</table>

This information is saved in `sysprocesses`, regardless of whether SQL text is enabled or any memory is allocated for SQL text.
Shutting down servers

To display the id, stmtnum, and linenum columns, enter:

```sql
select id, stmtnum, linenum
from sysprocesses
where spid = spid_of_hung_session
```

Note You do not need the sa_role to run this select statement.

Shutting down servers

A system administrator can shut down Adaptive Server or Backup Server using:

```
shutdown [backup_server_name] [with {wait|nowait}]
```

The default for the `shutdown` command is with wait. That is, `shutdown` and `shutdown with wait` do exactly the same thing.

Shutting down Adaptive Server

If you do not provide a server name, `shutdown` shuts down the Adaptive Server you are using. When you issue a `shutdown` command, Adaptive Server:

1. Disables logins, except for system administrators
2. Performs a checkpoint in each database, flushing pages that have changed from memory to disk
3. Waits for currently executing SQL statements or procedures to finish

In this way, `shutdown` minimizes the amount of work that automatic recovery must do when you restart Adaptive Server.

The `with nowait` option shuts down Adaptive Server immediately. User processes are aborted, and recovery may take longer after a `shutdown with nowait`. You can help minimize recovery time by issuing a `checkpoint` command before you issue a `shutdown with nowait` command.
Shutting down a Backup Server

To shut down a Backup Server, include the Backup Server name:

```
shutdown SYB_BACKUP
```

The default is with `wait`, so any dumps or loads in progress complete before the Backup Server process halts. After you issue a `shutdown` command, no new dump or load sessions can be started on the Backup Server.

To see the names of the Backup Servers that are accessible from your Adaptive Server, execute `sp_helpserver`. Use the value in the `name` column in the `shutdown` command. You can shut down a Backup Server only if it is:

- Listed in `sysservers` on your Adaptive Server, and
- Listed in your local `interfaces` file.

Use `sp_addserver` to add a Backup Server to `sysservers`.

Checking for active dumps and loads

To see the activity on your Backup Server before executing a `shutdown` command, run `sp_who` on the Backup Server:

```
SYB_BACKUP...sp_who
```

<table>
<thead>
<tr>
<th>spid</th>
<th>status</th>
<th>loginame</th>
<th>hostname</th>
<th>blk</th>
<th>cmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td>CONNECT HANDLER</td>
</tr>
<tr>
<td>2</td>
<td>sleeping</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td>DEFERRED HANDLER</td>
</tr>
<tr>
<td>3</td>
<td>runnable</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td>SCHEDULER</td>
</tr>
<tr>
<td>4</td>
<td>runnable</td>
<td>NULL</td>
<td>NULL</td>
<td>0</td>
<td>SITE HANDLER</td>
</tr>
<tr>
<td>5</td>
<td>running</td>
<td>sa</td>
<td>heliotrope</td>
<td>0</td>
<td>NULL</td>
</tr>
</tbody>
</table>

Using `nowait` on a Backup Server

The `shutdown backup_server` with `nowait` command shuts down the Backup Server, regardless of current activity. Use it only in severe circumstances. It can leave your dumps or loads in incomplete or inconsistent states.

If you use `shutdown with nowait` during a log or database dump, check for the message indicating that the dump completed. If you did not receive this message, or if you are not sure whether the dump completed, your next dump should be a `dump database`, not a transaction dump. This guarantees that you are not relying on possibly inconsistent dumps.
If you use shutdown with nowait during a load of any kind, and you did not receive the message indicating that the load completed, you may not be able to issue further load transaction commands on the database. Run a full database consistency check (dbcc) on the database before you use it. You may have to reissue the full set of load commands, starting with load database.

Learning about known problems

The release bulletin is a valuable resource for learning about known problems or incompatibilities with Adaptive Server and Backup Server. Reading the release bulletin in advance can save you the time and guesswork of troubleshooting known problems.
The following chapters discuss security administration in Adaptive Server:

- Chapter 15, “Managing Remote Servers,” discusses the steps the system administrator and system security officer of each Adaptive Server must execute to enable remote procedure calls (RPCs).

- Chapter 16, “External Authentication,” describes the network-based security services that enable you to authenticate users and protect data transmitted among machines on a network.

- Chapter 17, “Managing User Permissions,” describes the use and implementation of user permissions.

- Chapter 18, “Auditing,” describes how to set up auditing for your installation.

- Chapter 19, “Confidentiality of Data,” how to configure Adaptive Server to ensure that all data is secure and confidential.
CHAPTER 12

Introduction to Security

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to security</td>
<td>383</td>
</tr>
<tr>
<td>What is “information security?”</td>
<td>383</td>
</tr>
<tr>
<td>Information security standards</td>
<td>384</td>
</tr>
</tbody>
</table>

Introduction to security

Information is possibly your company's greatest asset. Information needs protection just like any other asset. As a system administrator, determine how best to protect the information contained in company databases, and who may access the information. Individual database servers need strong, yet flexible, security support.

Users and the data they access may be located anywhere in the world, connected by untrusted networks. Ensuring the confidentiality and integrity of sensitive data and transactions in this environment is critical.

Information is useful only if it gets to the people who need it, when they need it. With complex and dynamically changing business relationships, it is critical that information gets only to authorized users.

What is “information security?”

These are some general guidelines when considering security for your enterprise:

- Sensitive information should be kept confidential – determine which users should have access to what information.
The system should enforce integrity – the server should enforce rules and constraints to ensure that information remains accurate and complete.

The information should be available – even with all the safeguards in place, anybody who needs access to the information should have it available when the information is needed.

Identify what is it that your organization wants to protect, and what the outside world requires from your organization:

- Identify the information assets and the security risks associated with them if they become vulnerable or compromised.
- Identify and understand any laws, statutes, regulations, and contractual agreements that apply to your organization and the information assets.
- Identify your organization’s business processes and the requirements they impose on information assets, to balance practical considerations with the security risks.

Security requirements change over time. Periodically reassess security requirements to make sure they still reflect your organization’s needs.

Next, set up a series of controls and policies that meet the company’s security objectives, the result of which is an information security policy document that clarifies decisions made for information security.

Adaptive Server contains a set of security features that help you enforce your company’s security policies. For more information about security features in Adaptive Server, see Chapter 13, “Getting Started With Security Administration in Adaptive Server.”

Information security standards

Adaptive Server has been evaluated and validated in accordance with the provisions of the Common Criteria Evaluation and Validation Scheme. Adaptive Server also uses FIPS 140-2 certified modules for implementing encryption functionality.

This section describes these certifications.
Common Criteria configuration evaluation

Common Criteria for Information Technology Security Evaluation is an international standard (ISO/IEC 15408) for computer security certification. Common Criteria is developed by the governments of Canada, France, Germany, Netherland, UK and the United States.

Adaptive Server version 15.0.1 completed Common Criteria validation in September, 2007. The Evaluated configuration consists of Adaptive Server version 15.0.1 with the security and directory services option. The Adaptive Server evaluation for security was carried out in accordance with the Common Criteria Evaluation and Validation Scheme (CCEVS) process and scheme. The criteria against which the Adaptive Server Enterprise was judged are described in the Common Criteria for Information Technology Security Evaluation, Version 2.3 and International Interpretations effective on August, 2005. If you configure Adaptive Server as specified in the Supplement for Installing Adaptive Server for Common Criteria Configuration, Adaptive Server satisfies all of the security functional requirements stated in the Sybase Adaptive Server Enterprise Security Target (Version 1.5).

Adaptive Server supports eight security functions:

- **Cryptographic support** – Adaptive Server supports transparent encryption of data at the column level. SQL statements and extensions provide secure key management.

- **Security audit** – an audit mechanism that checks access, authentication attempts, and administrator functions. The security audit records the date, time, responsible individual, and other details describing the event in the audit trail.

- **User data protection** – Adaptive Server implements the discretionary access control policy over applicable database objects: databases, tables, views, stored procedures, and encryption keys.

- **Identification and authentication** – Adaptive Server provides its own identification and authentication mechanism in addition to the underlying operating system mechanism.

- **Security management** – functions that allow you to manage users and associated privileges, access permissions, and other security functions such as the audit trail. These functions are restricted based on discretionary access control policy rules, including role restrictions.
Information security standards

• Protection of the TOE Security Function (TSF) – Adaptive Server keeps its context separate from that of its users, and uses operating system mechanisms to ensure that memory and files used by Adaptive Server have the appropriate access settings. Adaptive Server interacts with users through well-defined interfaces designed to ensure that its security policies are enforced.

• Resource utilization – Adaptive Server provides resource limits to prevent queries and transactions from monopolizing server resources.

• Target of Evaluation (TOE) access – Adaptive Server allows authorized administrators to construct login triggers that restrict logins to a specific number of sessions and restrict access based on time. Authorized administrators can also restrict access based on user identities.

FIPS 140-2 validated cryptographic module

SSL is the standard for securing the transmission of sensitive information, such as credit card numbers, stock trades, and banking transactions over the Internet. SSL for Adaptive Server uses Certicom Security Builder GSE, a FIPS 140-2 level 1 validated cryptography module. See validation certificate #542, dated June 2, 2005 at NIST Web site at http://csrc.nist.gov.

FIPS 140-2 certified Certicom Security Builder GSE is also used to encrypt login passwords in transmitted login packet, in memory and on disk, if the configuration parameter FIPS login password encryption is enabled.

Note A Security and Directory Services license is required to use SSL and to enable the FIPS login password encryption parameter. If the parameter is not enabled, OpenSSL security provider is used to perform login password encryption.

Adaptive Server encrypted columns feature relies on symmetric-key cryptography, and uses the same FIPS 140-2 validated cryptographic modules as SSL. See the Users Guide for Encrypted Columns.

Note You must have an encrypted columns license to use the Adaptive Server encrypted columns feature.
CHAPTER 13 Getting Started With Security Administration in Adaptive Server

General process of security administration

Table 13-1 describes the major tasks that are required to securely administer Adaptive Server and refers you to the documentation that contains the instructions for performing each task.

Table 13-1: General process for security administration

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General process of security administration</td>
<td>387</td>
</tr>
<tr>
<td>Recommendations for setting up security</td>
<td>388</td>
</tr>
<tr>
<td>An example of setting up security</td>
<td>389</td>
</tr>
<tr>
<td>Discretionary access control</td>
<td>392</td>
</tr>
<tr>
<td>Security features in Adaptive Server</td>
<td>391</td>
</tr>
<tr>
<td>Identification and authentication</td>
<td>391</td>
</tr>
<tr>
<td>External authentication</td>
<td>392</td>
</tr>
<tr>
<td>Managing remote servers</td>
<td>392</td>
</tr>
<tr>
<td>Discretionary access control</td>
<td>392</td>
</tr>
<tr>
<td>Division of roles</td>
<td>393</td>
</tr>
<tr>
<td>Auditing for accountability</td>
<td>394</td>
</tr>
<tr>
<td>Confidentiality of data</td>
<td>395</td>
</tr>
</tbody>
</table>

Task Description See

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install Adaptive Server, including auditing.</td>
<td>This task includes preparing for installation, loading files from your distribution medium, performing the actual installation, and administering required physical resources.</td>
<td>The installation documentation for your platform and Chapter 18, “Auditing”</td>
</tr>
</tbody>
</table>
Recommendations for setting up security

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Set up a secure administrative environment.</td>
<td>This includes enabling auditing, granting roles to individual users to ensure individual accountability, assigning login names to system administrators and system security officers, and establishing password and login policies.</td>
<td>Chapter 14, “Managing Adaptive Server Logins, Database Users, and Client Connections”</td>
</tr>
<tr>
<td>3. Add user logins to the server; add users to databases; establish groups and roles; set proxy authorization.</td>
<td>Add logins, create groups, add users to databases, drop and lock logins, and assign initial passwords. Assign roles to users, create user-defined roles, and define role hierarchies and mutual exclusivity of roles.</td>
<td>Chapter 14, “Managing Adaptive Server Logins, Database Users, and Client Connections”</td>
</tr>
<tr>
<td>4. Administer permissions for users, groups, and roles.</td>
<td>Grant and revoke permissions for certain SQL commands, executing certain system procedures, and accessing databases, tables, particular table columns, and views. Create access rules to enforce fine-grained access control.</td>
<td>Chapter 17, “Managing User Permissions”</td>
</tr>
<tr>
<td>5. Configure encryption in your database to encrypt sensitive data in tables. Encrypt sensitive data.</td>
<td>Configure Adaptive Server to use column-level encryption, decide which columnar data to encrypt, perform a one-time key creation operation, and use alter table to perform initial data encryption.</td>
<td>Users Guide for Encrypted Columns</td>
</tr>
<tr>
<td>7. Set up and maintain auditing.</td>
<td>Determine what is to be audited, audit the use of Adaptive Server, and use the audit trail to detect penetration of the system and misuse of resources.</td>
<td>Chapter 18, “Auditing,” and the Adaptive Server installation and configuration documentation for your platform</td>
</tr>
<tr>
<td>8. Set up your installation for advanced authentication mechanisms and network security.</td>
<td>Configure the server to use services, such as LDAP, PAM, or Kerberos- based user authentication, data confidentiality with encryption, data integrity.</td>
<td>Chapter 16, “External Authentication” and Chapter 19, “Confidentiality of Data”</td>
</tr>
</tbody>
</table>

Recommendations for setting up security

The following describes logins and how they relate to security.

- Using the “sa” login – when you install Adaptive Server, a single login called “sa” is configured with the system administrator and system security officer roles, which means that the “sa” login has unlimited control over what occurs in the database.
Use the “sa” login only during initial setup. Instead of allowing several users to use the “sa” account, establish individual accountability by assigning specific roles to individual administrators.

- Changing the “sa” login password – the “sa” login is configured initially with a “NULL” password. Use `sp_password` to change the password immediately after installation.

Warning! When logging in to Adaptive Server, do not use the `-P` option of `isql` to specify your password because another user may have an opportunity to see it.

- Enabling auditing – enable auditing early in the administration process so that you have a record of privileged commands that are executed by system security officers and system administrators. You might also want to audit commands that are executed by those with other special roles, such as operators when they dump and load databases.

- Assigning login names – assign Adaptive Server login names that are the same as their respective operating system login names. This makes logging in to Adaptive Server easier, simplifies management of server and operating system login accounts, and makes it easier to correlate the audit data generated by Adaptive Server with that of the operating system.

An example of setting up security

This uses special roles assigned to the users listed in Table 13-2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Privilege</th>
<th>Operating system login name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajnish Smith</td>
<td>sso_role</td>
<td>rsmithe</td>
</tr>
<tr>
<td>Catherine Macar-Swan</td>
<td>sa_role</td>
<td>cmacar</td>
</tr>
<tr>
<td>Soshi Ikedo</td>
<td>sa_role</td>
<td>sikedo</td>
</tr>
<tr>
<td>Julio Rozanski</td>
<td>oper_role</td>
<td>jrozan</td>
</tr>
<tr>
<td>Alan Johnson</td>
<td>dbo</td>
<td>ajohnson</td>
</tr>
</tbody>
</table>

Table 13-3 shows the sequence of commands you might use to set up a secure operating environment for Adaptive Server, based on the role assignments shown in Table 13-2. After logging in to the operating system, issue these commands using the initial “sa” account.
An example of setting up security

Table 13-3: Examples of commands used to set up security

<table>
<thead>
<tr>
<th>Commands</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>• isql -Usa</td>
<td>Logs in to Adaptive Server as “sa.” Both sa_role and sso_role are active.</td>
</tr>
<tr>
<td>• sp_audit “security”, “all”, “all”, “on”</td>
<td>Sets auditing options for server-wide, security-relevant events, and the auditing of all actions that have sa_role or sso_role active.</td>
</tr>
<tr>
<td>• sp_audit “all”, “sa_role”, “all”, “on”</td>
<td></td>
</tr>
<tr>
<td>• sp_audit “all”, “sso_role”, “all”, “on”</td>
<td></td>
</tr>
<tr>
<td>• sp_configure “auditing”, 1</td>
<td>Enables auditing.</td>
</tr>
</tbody>
</table>

Note Before you enable auditing, set up a threshold procedure for the audit trail and determine how to handle the transaction log in sybsecurity. See Chapter 18, “Auditing.”

<table>
<thead>
<tr>
<th>Commands</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>• sp_addlogin rsmith, js&2P3d,</td>
<td>Adds logins and passwords for Rajnish, Catherine, Soshi, and Julio.</td>
</tr>
<tr>
<td>@fullname = “Rajnish Smith”</td>
<td></td>
</tr>
<tr>
<td>• sp_addlogin cmacar, Fr3ds#1,</td>
<td>A default database is not specified for any of these users, so their default database is master.</td>
</tr>
<tr>
<td>@fullname = “Catherine Macar-Swan”</td>
<td></td>
</tr>
<tr>
<td>• sp_addlogin sikedo, mi5pd1s,</td>
<td></td>
</tr>
<tr>
<td>@fullname = “Soshi Ikedo”</td>
<td></td>
</tr>
<tr>
<td>• sp_addlogin jrozan, w1seCrkr,</td>
<td></td>
</tr>
<tr>
<td>@fullname = “Julio Rozanski”</td>
<td></td>
</tr>
<tr>
<td>• grant role sso_role to rsmith</td>
<td>Grants the sso_role to Rajnish, the sa_role to Soshi and Catherine, and the oper_role to Julio.</td>
</tr>
<tr>
<td>• grant role sa_role to sikedo</td>
<td></td>
</tr>
<tr>
<td>• grant role sa_role to cmacar</td>
<td></td>
</tr>
<tr>
<td>• grant role oper_role to jrozan</td>
<td></td>
</tr>
<tr>
<td>• use sybsecurity</td>
<td>Grants access to the auditing database, sybsecurity, by making Rajnish, who is the system security officer, the database owner. Alan is not granted any system-defined roles.</td>
</tr>
<tr>
<td>• sp_changedbowner rsmith</td>
<td></td>
</tr>
</tbody>
</table>

use master

sp_addlogin ajohnson, j06n50n, @fullname = “Alan Johnson”
create database sales_summary
use sales_summary
sp_changedbowner ajohnson
sp_modifylogin ajohnson, ‘defdb’, sales_summary

sp_locklogin sa,”lock”

Locks the “sa” login so that no one can log in as “sa.” Individuals can assume only the roles that are configured for them.

Note Do not lock the “sa” login until you have granted individual users the sa_role and sso_role roles and have verified that the roles operate successfully.
Security features in Adaptive Server

Table 13-4 describes the security features in Adaptive Server.

<table>
<thead>
<tr>
<th>Security feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification and authentication</td>
<td>Ensures that only authorized users can log in to the system. In addition to password-based login authentication, Adaptive Server supports external authentication using Kerberos, LDAP, or PAM.</td>
</tr>
<tr>
<td>controls</td>
<td>Provides access controls that give object owners the ability to restrict access to objects, usually with the grant and revoke commands. This type of control is dependent on an object owner’s discretion.</td>
</tr>
<tr>
<td>DAC</td>
<td>Allows an administrator to grant privileged roles to specified users so only designated users can perform certain tasks. Adaptive Server has predefined roles, called “system roles,” such as system administrator and system security officer. In addition, Adaptive Server allows system security officers to define additional roles, called “user-defined roles.”</td>
</tr>
<tr>
<td>Division of roles</td>
<td>Provides the ability to audit events such as logins, logouts, server start operations, remote procedure calls, accesses to database objects, and all actions performed by a specific user or with a particular role active. Adaptive Server also provides a single option to audit a set of server-wide security-relevant events.</td>
</tr>
<tr>
<td>Auditing for accountability</td>
<td>Maintains confidentiality of data using encryption for client/server communication, available with Kerberos or SSL. Column-level encryption preserves confidentiality of data stored in the database. Inactive data is kept confidential with a password-protected database backup.</td>
</tr>
<tr>
<td>Confidentiality of data</td>
<td></td>
</tr>
</tbody>
</table>

Identification and authentication

Adaptive Server uses the server user identity (SUID) to uniquely identify a user with a login account name. This identity is linked to a particular user identity (UID) in each database. Access controls use the identity when determining whether to allow access for the user with this SUID to an object. Authentication verifies that a user is actually the person he or she claims to be. Adaptive Server allows both internal and external mechanisms for authentication.

Identification and authentication controls are discussed in Chapter 14, “Managing Adaptive Server Logins, Database Users, and Client Connections.” In addition, see “Using proxy authorization” on page 587 and Chapter 15, “Managing Remote Servers.”
Security features in Adaptive Server

External authentication

Security is often enhanced in large, heterogeneous applications by authenticating logins with a central repository. Adaptive Server supports a variety of external authentication methods:

- Kerberos – provides a centralized and secure authentication mechanism in enterprise environments that includes the Kerberos infrastructure. Authentication occurs with a trusted, third-party server called a key distribution center to verify both the client and the server.

- LDAP user authentication – Lightweight Directory Access Protocol (LDAP) provides a centralized authentication mechanism based on a user’s login name and password.

- PAM user authentication – Pluggable Authentication Module (PAM) provides a centralized authentication mechanism that uses operating system interfaces for both administration and runtime application operations.

For more information about each of these methods of external authentication, see Chapter 16, “External Authentication.”

Managing remote servers

Internal mechanisms for administering logins and users between Adaptive Servers are described in Chapter 15, “Managing Remote Servers.”

Discretionary access control

Object owners can grant access to the objects they own to other users. Object owners can also grant other users the ability to pass the access permission to other users. With Adaptive Server discretionary access control, you can give various permissions to users, groups, and roles using the grant command. Use the revoke command to rescind these permissions. The grant and revoke commands give users permission to execute specified commands, and to access specified tables, procedures, views, encryption keys, and columns.

Some commands can be used at any time by any user, with no permission required. Others can be used only by users of a certain status, such as a system administrator, and are not transferable.
The ability to assign permissions for the commands that can be granted and revoked is determined by each user’s status (as system administrator, system security officer, database owner, or database object owner), and whether a particular user is granted a permission with the option to grant that permission to other users.

Discretionary access control are discussed in Chapter 17, “Managing User Permissions.”

Row-level access control
Row-level access control provides a powerful and flexible means of protecting data, down to the row level. Administrators define access rules that are based on the value of individual data elements, and the server transparently enforces these rules. Once an administrator defines an access rule, it is automatically invoked whenever the affected data is queried through applications, ad hoc queries, stored procedures, views, and so on.

Using a rule-based access control simplifies both the security administration of an Adaptive Server installation and the application development process because the server, rather than the application, enforces security. These features allow you to implement row-level access control:

- Access rules
- Application context facility
- Login triggers
- Domain integrity rules

See “Using row-level access control” on page 603.

Division of roles
The roles supported by Adaptive Server enable you to enforce and maintain individual accountability. Adaptive Server provides system roles, such as system administrator and system security officer, and user-defined roles, which are created by a system security officer.

Roles provide individual accountability for users performing operational and administrative tasks, and allow you to audit and attribute actions to these users.
Role hierarchy

A system security officer can define role hierarchies such that if a user has one role, the user automatically has roles lower in the hierarchy. For example, the “chief_financial_officer” role might contain both the “financial_analyst” and the “salary_administrator” roles. The chief financial officer can perform all tasks and see all data that can be viewed by salary administrators and financial analysts.

Mutual exclusivity

You can define roles to be mutually exclusive either at the membership level, or at the activation level. For example:

- You may not want to grant both the “payment_requestor” and “payment_approver” roles to the same user.
- A user might be granted both the “senior_auditor” and the “equipment_buyer” roles, but you may not want to permit the user to have both roles enabled at the same time.

You can define system roles, as well as user-defined roles, to be in a role hierarchy or to be mutually exclusive. For example, you might want a “super_user” role to contain the system administrator, operator, and technical support roles. Additionally, you may want to define the system administrator and system security officer roles to be mutually exclusive for membership; that is, a single user cannot be granted both roles.

See “Creating and assigning roles to users” on page 408.

Auditing for accountability

Adaptive Server includes a comprehensive auditing system. The auditing system consists of:

- The syssecurity database
- Configuration parameters for managing auditing
- sp_audit to set all auditing options
- sp_addauditrecord to add user-defined records to the audit trail
When you install auditing, you can specify the number of audit tables that Adaptive Server uses for the audit trail. If you use two or more tables to store the audit trail, you can set up a smoothly running audit system with no manual intervention and no loss of records.

A system security officer manages the audit system and is the only user who can start and stop auditing, set up auditing options, and process the audit data. As a system security officer, you can establish auditing for events such as:

- Server-wide, security-relevant events
- Creating, dropping, and modifying database objects
- All actions by a particular user or all actions by users with a particular role active
- Granting or revoking database access
- Importing or exporting data
- Logins and logouts
- All actions related to encryption keys

Auditing functionality is discussed in Chapter 18, “Auditing.”

Confidentiality of data

Adaptive server allows you to maintain the confidentiality of data by encrypting client-server communications using the Secure Sockets Layer (SSL) standard or using Kerberos. You can protect the confidentiality of data by using column-level encryption in the database and encrypting backups for offline data.

For more information see:

- SSL – Chapter 19, “Confidentiality of Data”
- Kerberos – Chapter 16, “External Authentication”
- Encrypted columns – Encrypted Columns Users Guide
Password-protected database backup

Managing Adaptive Server Logins, Database Users, and Client Connections

The responsibility of adding new logins to Adaptive Server, adding users to databases, and granting them permission to use commands and database objects is divided among the system security officer, system administrator, and database owner.

These steps create login accounts for a particular server using `sp_addlogin`, which stores account information in the `syslogins` table on that server. You can also create and store login accounts on a LDAP server:

1. A system security officer uses `sp_addlogin` to create a server login account for a new user.
Choosing and creating a password

2 A system administrator or database owner uses `sp_adduser` to add a user to a database or assign a user to a group. See “Creating groups” on page 401. You can give a user access to a database using an alias. See “Adding aliases” on page 429.

3 A system security officer grants specific roles to the user.

4 A system administrator, database owner, or object owner grants the user or group specific permissions on specific commands and database objects. Users or groups can also be granted permission to grant specific permissions on objects to other users or groups. See Chapter 17, “Managing User Permissions.”

Table 14-1 summarizes the system procedures and commands used for these tasks.

Table 14-1: Adding users to Adaptive Server and databases

<table>
<thead>
<tr>
<th>Task</th>
<th>Required role</th>
<th>Command or procedure</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create new logins, assign passwords, default databases, default language, and full name</td>
<td>System security officer</td>
<td><code>sp_addlogin</code></td>
<td>Any database</td>
</tr>
<tr>
<td>Create groups</td>
<td>Database owner or system administrator</td>
<td><code>sp_addgroup</code></td>
<td>User database</td>
</tr>
<tr>
<td>Create and assign roles</td>
<td>System security officer</td>
<td><code>create role, grant role</code></td>
<td>Master database</td>
</tr>
<tr>
<td>Add users to database and assign groups</td>
<td>Database owner or system administrator</td>
<td><code>sp_adduser</code></td>
<td>User database</td>
</tr>
<tr>
<td>Alias users to other database users</td>
<td>Database owner or system administrator</td>
<td><code>sp_addalias</code></td>
<td>User database</td>
</tr>
<tr>
<td>Grant groups, users, or roles permission to create or access database objects and run commands</td>
<td>Database owner, system administrator, system security officer, or object owner</td>
<td><code>grant</code></td>
<td>User database</td>
</tr>
</tbody>
</table>

Choosing and creating a password

The system security officer assigns each user a password when adding the user as a login to Adaptive Server. Users can modify their passwords at any time using `sp_password`. See “Changing passwords” on page 424.

When you create your password:

Table 14-1 summarizes the system procedures and commands used for these tasks.
Do not use information such as your birthday, street address, or any other word or number that has anything to do with your personal life.

Do not use names of pets or loved ones.

Do not use words that appear in the dictionary or words spelled backwards.

The most difficult passwords to guess are those that combine uppercase and lowercase letters and numbers. Never give anyone your password, and never write it down where anyone can see it.

Passwords must:

- Be at least 6 characters long.
- Consist of any printable letters, numbers, or symbols.
- Be enclosed in quotation marks in `sp_addlogin` if they:
 - Includes any character other than A – Z, a – z, 0 – 9, _, #, valid single-byte or multibyte alphabetic characters, or accented alphabetic characters
 - Begin with a number 0 – 9

See “Password complexity checks” on page 446.

Adding logins to Adaptive Server

Use `sp_addlogin` to add a new login name to Adaptive Server. (Use `sp_adduser` to give permission to access user databases.) Only the system security officer can execute `sp_addlogin`.

The following statement sets up an account for the user “maryd” with the password “100cents,” the default database (master), the default language, and no full name:

```
sp_addlogin "maryd", "100cents"
```

The password requires quotation marks because it begins with 1.

After this statement is executed, “maryd” can log in to Adaptive Server. She is automatically treated as a “guest” user in master, with limited permissions, unless she has been specifically given access to master.
The following statement sets up a login account ("omar_khayyam") and password ("rubaiyat") and makes pubs2 the default database for this user:

 sp_addlogin omar_khayyam, rubaiyat, pubs2

To specify a full name for a user and use the default database and language, specify null in place of the defdb and deflanguage parameters. For example:

 sp_addlogin omar, rubaiyat, null, null,
 "Omar Khayyam"

Alternatively, you can specify a parameter name, in which case you do not have to specify all the parameters. For example:

 sp_addlogin omar, rubaiyat,
 @fullname = "Omar Khayyam"

When you execute sp_addlogin, Adaptive Server adds a row to master.dbo.syslogins, assigns a unique system user ID (suid) for the new user, and fills in other information. When a user logs in, Adaptive Server looks in syslogins for the name and password provided by the user. The password column is encrypted with a one-way algorithm so it is not readable.

At login creation, the crdate column in syslogins is set to the current time. The suid column in syslogins uniquely identifies each user on Adaptive Server. A user’s suid remains the same, no matter what database he or she is using. The suid 1 is always assigned to the default “sa” account that is created when Adaptive Server is installed. Other users’ server user IDs are integers assigned consecutively by Adaptive Server each time sp_addlogin is executed.

Adaptive Server must successfully authenticate a user before he or she can access data in Adaptive Server. If the authentication attempt fails, Adaptive Server returns the following message and the network connection is terminated:

 isql -U bob -P badpass
 Msg 4002, Level 14, State 1:
 Server 'ACCOUNTING'
 Login failed.
 CT-LIBRARY error:
 ct_connect(): protocol specific layer: external error:
The attempt to connect to the server failed
This message is a generic login failure message that does not tell the connecting user whether the failure resulted from a bad user name or a bad password.

Although the client sees a generic message for a login failure to avoid giving information to a malicious user, the system administrator may find the reason for the failure to be important to help detect intrusion attempts and diagnose user authentication problems.

Adaptive Server provides the reason for the login failure in the Errornumber, Severity, State of the Other Information section of sysaudits.extrainfo column. Login failure audits have event number 45 and eventmod 2.

Set the sp_audit login parameter to on or fail to enable auditing for login failure:

```
sp_audit "login", "all", "all", "fail"
sp_audit "login", "all", "all", "on"
```

See “Auditing login failures.”

Creating groups

Groups let you grant and revoke permissions to more than one user in a single statement, as well as allow you to provide a collective name to a group of users. They are especially useful if you administer an Adaptive Server installation that has a large numbers of users.

Create groups before adding users to a database, since sp_adduser can assign users to groups as well as add them to the database.

You must have the system administrator or system security officer role, or be the database owner to create a group with sp_addgroup. The syntax is:

```
sp_addgroup grpname
```

The group name, a required parameter, must adhere to the rules for identifiers. The system administrator, system security officer, or the database owner can use sp_changegroup to assign or reassign users to groups.

For example, to set up the Senior Engineering group, use this command while using the database to which you want to add the group:

```
sp_addgroup senioreng
```
Adding users to databases

sp_addgroup adds a row to sysusers in the current database. Therefore, each group in a database, as well as each user, has an entry in sysusers.

Adding users to databases

The database owner or a system administrator can use sp_adduser to add a user to a specific database. The user must already have an Adaptive Server login. The syntax is:

```sql
sp_adduser loginame [ , name_in_db [ , grpname ] ]
```

where:

- `loginame` – is the login name of an existing user.
- `name_in_db` – specifies a name that is different from the login name by which the user is to be known inside the database.

Use `name_in_db` to accommodate users’ preferences. For example, if there are five Adaptive Server users named Mary, each must have a different login name. Mary Doe might log in as “maryd”, Mary Jones as “maryj”, and so on. However, if these users do not use the same databases, each might prefer to be known simply as “mary” inside a particular database.

If no `name_in_db` parameter is given, the name inside the database is the same as `loginame`.

Note This capability is different from the alias mechanism described in “Using aliases in databases” on page 429, which maps the identity and permissions of one user to another.

- `grpname` – is the name of an existing group in the database. If you do not specify a group name, the user is made a member of the default group “public.” Users remain in “public” even if they are a member of another group. See “Changing a user’s group membership” on page 427.

sp_adduser adds a row to the sysusers system table in the current database. When a user has an entry in the sysusers table of a database, he or she:

- Can issue `use database_name` to access that database
- Will use that database by default, if the default database parameter was issued as part of sp_addlogin
• Can use \texttt{sp_modifylogin} to make that database the default

This example shows how a database owner can give access permission to “maryh” of the engineering group “eng,” which already exists:

\texttt{sp_adduser maryh, mary, eng}

This example shows how to give “maryd” access to a database, keeping her name in the database the same as her login name:

\texttt{sp_adduser maryd}

This example shows how to add “maryj” to the existing “eng” group, keeping her name in the database the same as her login name by using null in place of a new user name:

\texttt{sp_adduser maryj, null, eng}

Users who have access to a database still need permissions to read data, modify data, and use certain commands. These permissions are granted with the \texttt{grant} and \texttt{revoke} commands, discussed in Chapter 17, “Managing User Permissions.”

Adding a “guest” user to a database

Creating a user named “guest” in a database enables any user with an Adaptive Server account to access the database as a guest user. If a user who has not been added to the database as a user or an aliased user issues the \texttt{use database_name} command, Adaptive Server looks for a guest user. If there is one, the user is allowed to access the database, with the permissions of the guest user.

The database owner can use \texttt{sp_adduser} to add a guest entry to the \texttt{sysusers} table of the database:

\texttt{sp_adduser guest}

The guest user can be removed with \texttt{sp_dropuser}, as discussed in “Dropping users” on page 420.

If you drop the guest user from the \texttt{master} database, server users who have not yet been added to any databases cannot log in to Adaptive Server.

\textbf{Note} Although more than one individual can be a guest user in a database, Adaptive Server can still use the user's server user ID, which is unique within the server, to audit each user’s activity. See Chapter 18, “Auditing.”
“guest” user permissions

“guest” inherits the privileges of “public.” The database owner and the owners of
database objects can use grant and revoke to make the privileges of “guest”
either more or less restrictive than those of “public.” See Chapter 17,
“Managing User Permissions.”

When you install Adaptive Server, master..sysusers contains a guest entry.

“guest” user in user databases

In user databases, the database owner adds a guest user that permits all
Adaptive Server users to use that database, which saves the owner from having
to use sp_adduser to explicitly name each user as a database user.

You can use the guest mechanism to restrict access to database objects while
allowing access to the database.

For example, the owner of the titles table can grant select permission on titles
to all database users except “guest” by executing:

```
grant select on titles to public
sp_adduser guest
revoke all on titles from guest
```

“guest” user in installed system databases

Adaptive Server creates the system tempdb database and user-created
temporary databases with a guest user. Temporary objects and other objects
created in tempdb are automatically owned by user “guest,” sybsystemprocs,
sybsystemdb, and sybsyntax databases automatically include the “guest” user.

“guest” user in pubs2 and pubs3

The “guest” user entry in the sample databases allows new Adaptive Server
users to follow the examples in the Transact-SQL Users Guide. The guest is
given a wide range of privileges, including:

- select permission and data modification permission on all of the user
tables
- execute permission on all of the procedures
- create table, create view, create rule, create default, and create procedure
permissions
Adding a guest user to the server

The system security officer can use `sp_addlogin` to enter a login name and password that visiting users are instructed to use. Typically, such users are granted restricted permissions. A default database may be assigned.

Warning! A visitor user account is not the same as the “guest” user account. All users of the visitor account have the same server user ID; therefore, you cannot audit individual activity. Each “guest” user has a unique server ID, so you can audit individual activity and maintain individual accountability. Sybase recommends that you do not set up a visitor account to be used by more than one user because you cannot maintain individual accountability.

You can use `sp_login` to add a visitor user account named “guest” to `master..syslogins`. This “guest” user account takes precedence over the system “guest” user account. If you add a visitor user named “guest” with `sp_adduser`, this impacts system databases such as `sybsystemprocs` and `sybsystemdb`, which are designed to work with system “guest” user in them.

Adding remote users

You can allow users on another Adaptive Server to execute stored procedures on your server by enabling remote access. Working with the system administrator of the remote server, you can also allow users of your server to execute **remote procedure calls** to the remote server.

To enable remote procedure calls, you must reconfigure both the local and the remote servers. See Chapter 15, “Managing Remote Servers.”

Number of user and login IDs

Adaptive Server supports over 2,000,000,000 logins per server and users per database. Adaptive Server uses negative numbers as well as positive numbers to increase the range of possible numbers available for IDs.

Limits and ranges of ID numbers
Table 14-2 describes the valid ranges for the ID types.

<table>
<thead>
<tr>
<th>ID type</th>
<th>Server limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logins per server (suid)</td>
<td>2 billion plus 32K</td>
</tr>
<tr>
<td>Users per database (uid)</td>
<td>2 billion less 1032193</td>
</tr>
<tr>
<td>Groups or roles per database (gid)</td>
<td>16,384 to 1,048,576</td>
</tr>
</tbody>
</table>

Figure 14-1 illustrates the limits and ranges for logins, users, and groups.

You may use negative values for user IDs (uid).

The server user ID (suid) associated with a group or a role in sysusers is not equal to the negation of their user ID (uid). Every suid associated with a group or a role in sysusers is set to -2 (INVALID_SUID).

Login connection limitations

Although Adaptive Server allows you to define more than two billion logins per server, the actual number of users that can connect to Adaptive Server at one time is limited by the:

- Value of the number of user connections configuration parameter, and
Number of file descriptors available for Adaptive Server. Each login uses one file descriptor for the connection.

Note The maximum number of concurrent tasks running on the server is 32,000.

allowing the maximum number of logins and simultaneous connections

1. Configure the operating system on which Adaptive Server is running for at least 32,000 file descriptors.

2. Set the value of number of user connections to at least 32,000.

Note Before Adaptive Server can have more than 64K logins and simultaneous connections, you must first configure the operating system for more than 64K file descriptors. See your operating system documentation for information about increasing the number of file descriptors.

Table 14-3 lists the global variables for the server limits of logins, users, and groups:

<table>
<thead>
<tr>
<th>Name of variable</th>
<th>What it displays</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>@@invaliduserid</td>
<td>Invalid user ID</td>
<td>-1</td>
</tr>
<tr>
<td>@@minuserid</td>
<td>Lowest user ID</td>
<td>-32768</td>
</tr>
<tr>
<td>@@guestuserid</td>
<td>Guest user ID</td>
<td>2</td>
</tr>
<tr>
<td>@@mingroupid</td>
<td>Lowest group or role user ID</td>
<td>16384</td>
</tr>
<tr>
<td>@@maxgroupid</td>
<td>Highest group or role user ID</td>
<td>1048576</td>
</tr>
<tr>
<td>@@maxuserid</td>
<td>Highest user ID</td>
<td>2147483647</td>
</tr>
<tr>
<td>@@minsuid</td>
<td>Lowest server user ID</td>
<td>-32768</td>
</tr>
<tr>
<td>@@probesuid</td>
<td>Probe server user ID</td>
<td>2</td>
</tr>
<tr>
<td>@@maxsuid</td>
<td>Highest server user ID</td>
<td>2147483647</td>
</tr>
</tbody>
</table>

To issue a global variable, enter:

```
select variable_name
```

For example:

```
select @@minuserid
---------
-32768
```
Creating and assigning roles to users

The final steps in adding database users are assigning them special roles, as required, and granting permissions. For more information on permissions, see Chapter 17, "Managing User Permissions."

The roles supported by Adaptive Server let you enforce individual accountability. Adaptive Server provides system roles, such as system administrator and system security officer, and user-defined roles, which are created and granted to users or other roles by a system security officer. Object owners can grant database access as appropriate to each role.

System-defined roles

Table 14-4 lists the system roles, the value to use for the role_granted option of the grant role or revoke role command, and the tasks usually performed by a person with that role.

<table>
<thead>
<tr>
<th>Role</th>
<th>Value for role_granted</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System administrator</td>
<td>sa_role</td>
<td>Manages and maintains Adaptive Server databases and disk storage</td>
</tr>
<tr>
<td>System security officer</td>
<td>sso_role</td>
<td>Performs security-related tasks</td>
</tr>
<tr>
<td>Operator</td>
<td>oper_role</td>
<td>Backs up and loads databases server-wide</td>
</tr>
<tr>
<td>Sybase Technical Support</td>
<td>sybase_ts_role</td>
<td>Analysis and repair of database structures</td>
</tr>
<tr>
<td>Replication</td>
<td>replication_role</td>
<td>Replicate user data</td>
</tr>
<tr>
<td>Distributed transaction manager</td>
<td>dtm_trn_role</td>
<td>Coordinate transactions across servers</td>
</tr>
<tr>
<td>High availability</td>
<td>ha_role</td>
<td>Administer and execute failover</td>
</tr>
<tr>
<td>Monitor and diagnosis</td>
<td>mon_role</td>
<td>Administer and execute performance and diagnostic monitoring</td>
</tr>
<tr>
<td>Job Scheduler administration</td>
<td>js_admin_role</td>
<td>Administer Job Scheduler</td>
</tr>
<tr>
<td>Job Scheduler user</td>
<td>js_user_role, js_client_role</td>
<td>Create and run jobs through Job Scheduler</td>
</tr>
<tr>
<td>Real-time messaging</td>
<td>messaging_role</td>
<td>Administer and execute real-time messaging</td>
</tr>
<tr>
<td>Web Services</td>
<td>webservices_role</td>
<td>Administer Web services</td>
</tr>
<tr>
<td>Key custodian</td>
<td>keycustodian_role</td>
<td>Create and manage encryption keys</td>
</tr>
</tbody>
</table>
System administrator privileges

System administrators:
- Handle tasks that are not application-specific
- Work outside the Adaptive Server discretionary access control system

The role of system administrator is usually granted to individual Adaptive Server logins. All actions taken by that user can be traced to his or her individual server user ID. If the server administration tasks at your site are performed by a single individual, you may instead choose to use the “sa” account that is installed with Adaptive Server. At installation, the “sa” account user can assume the system administrator, system security officer, and operator roles. Any user who knows the “sa” password can log in to that account and assume any or all of these roles.

Having a system administrator operate outside the protection system serves as a safety precaution. For example, if the database owner accidentally deletes all the entries in the sysusers table, the system administrator can restore the table (as long as backups exist). There are several commands that can be issued only by a system administrator. They include disk init, disk refit, disk reinit, shutdown, kill, disk mirror, mount, unmount and several monitoring commands.

In granting permissions, a system administrator is treated as the object owner. If a system administrator grants permission on another user’s object, the owner’s name appears as the grantor in sysprotects and in sp_helprotect output.

System administrators automatically assume the identity of a database owner when they log in to a database, and assume all database owner privileges. This automatic mapping occurs, regardless of any aliases assigned to the user. The system administrator can perform tasks usually reserved for the database owner such as dbcc commands, diagnostic functions, reading data pages, and recovering data, or indexes.

System security officer privileges

System security officers perform security-sensitive tasks in Adaptive Server, including:
- Granting the system security officer, operator, and key custodian roles
- Administering the audit system
- Changing passwords
- Adding new logins
Creating and assigning roles to users

- Dropping logins
- Locking and unlocking login accounts
- Creating and granting user-defined roles
- Administering network-based security
- Granting permission to use the `set proxy` or `set session authorization` commands

The system security officer can access any database—to enable auditing—but, in general, has no special permissions on database objects (except for encryption keys and decrypt permission on encrypted columns. See the *Users Guide for Encrypted Columns*). An exception is the `sybsecurity` database, where only a system security officer can access the `sysaudits` table. There are also several system procedures that can be executed only by a system security officer.

System security officers can repair any changes inadvertently done to the protection system by a user. For example, if the database owner forgets his or her password, a system security officer can change the password to allow the database owner to log in.

The system security officers share login management responsibilities with system administrators. System security officers are responsible for adding, locking, and unlocking logins.

System security officers can also create and grant user-defined roles to users, other roles, or groups. See “Creating and assigning roles to users” on page 408.

Operator privileges

Users who have been granted the operator role can back up and restore databases on a server-wide basis without having to be the owner of each database. The operator role allows a user to use these commands on any database:

- `dump database`
- `dump transaction`
- `load database`
- `load transaction`
- `checkpoint`
online database

The system security officer grants the operator role.

Sybase Technical Support

A Sybase Technical Support engineer can use the Technical Support role to display internal memory and on-disk data structures using trace output, consistency checking, and patching data structures. This role is used for analyzing problems and manually recovering data. Some actions necessary for resolving these issues may require additional system roles for access. Sybase recommends that the system security officer grant this role to a knowledgeable Sybase engineer only while this analysis or repair is being done.

Replication role

The user maintaining Replication Server and ASE Replicator requires the replication role. See the *Replication Server Administration Guide* and the *ASE Replicator Users Guide* for information about this role.

Distributed Transaction Manager role

The distributed transaction manager (DTM) transaction coordinator uses this role to allow system stored procedures to administer transactions across servers. Clients using the DTM XA interface require this role. See *Using Adaptive Server Distributed Transaction Management Features*.

High availability role

You must have the high availability role to configure the high availability subsystem to administer primary and companion servers through commands and stored procedures. See *Using Sybase Failover in a High Availability System*.
Monitoring and diagnosis

This role is required to administer the Adaptive Server monitoring tables. You must have this role to execute a monitoring table remote procedure call and to administer the collection of monitored data. See the *Performance and Tuning Series: Monitoring Tables*.

Job Scheduler roles

The Job Scheduler has three system roles to manage permissions for its operation:

- *js_admin_role* – required to administer Job Scheduler, and provides access to the stored procedures and allow you to modify, delete, and perform Job Scheduler administrative operations.
- *js_user_role* – required for a user to create, modify, delete, and run scheduled jobs using the Job Scheduler stored procedures.
- *js_client_role* – allows users to work with predefined jobs but not to create or alter jobs.

See the *Job Scheduler Users Guide* for more information.

Real-time messaging role

Used by the real-time messaging subsystem (RTMS) execute *msgsend*, *msgrecv*, and certain *sp_msgadmin* commands. See the *Messaging Services User’s Guide* for more information.

Web Services role

Used by the Web services subsystem to execute *create service*, *create existing service*, *drop service*, and *alter service* commands. See the *Web Services Users Guide*.
Key custodian role

The key custodian role is responsible for key management: creating and altering encryption keys, setting up the system encryption password, setting up key copies for users, and so on. See the Encrypted Columns Users Guide.

User-defined roles

Planning user-defined roles

Before you implement user-defined roles, decide:

- The roles you want to create
- The responsibilities for each role
- The position of each in the role hierarchy
- Which roles in the hierarchy are mutually exclusive and if so, at the membership or activation level

Avoid name conflicts when you create user-defined roles by following a naming convention. For example, you can use the “_role” suffix for role names. Adaptive Server does not check for such restrictions.

User-defined role names cannot duplicate user names. If a role must have the same name as a user, avoid conflict by creating a new role, having it contain the original role, and then granting the new role to the user.

After you have planned the roles to create and the relationships among them, decide how to allocate roles according to business requirements and the responsibilities of your users.

The maximum number of roles that a user can activate per user session is 127.

The minimum number of roles, 15, includes the system roles included with Adaptive Server.

The maximum number of user-defined roles that can be activated server-wide is 992. The first 32 roles are reserved for Sybase system roles.

Creating a user-defined role

Use the create role command to create a role. The syntax is:
Creating and assigning roles to users

create role role_name [with passwd "password"
 [, (passwd expiration | min passwd length |
 max failed_logins) option_value]]

where:

- role_name – name of the new role.
- password – optional password. Must be specified by any user that is using
 the role.
- passwd expiration – specifies the password expiration interval, in days. It
 can be any value between 0 and 32767, inclusive.
- min passwd length – specifies the minimum password length required for
 the specified role.
- max failed_logins – specifies the number of allowable failed login
 attempts for the specified login.
- option_value – specifies the value for passwd expiration, min passwd
 length, or max failed_logins.

For example, to create the intern_role without a password, enter:

create role intern_role

To create the doctor_role and assign the password “physician”, enter:

create role doctor_role with passwd "physician"

Only the system security officer can create user-defined roles.

Adding and removing passwords from a role

Only a system security officer can add or drop a password from a role.

Use the alter role command to add or drop a password from either a system or
user-defined role.:

alter role role_name
 [add passwd password | drop passwd]

For example, to require the password “oper8x” for the oper_role, enter:

alter role oper_role add passwd oper8x

To drop the password from the role, enter:

alter role oper_role drop passwd
Role hierarchies and mutual exclusivity

A system security officer can define role hierarchies such that if a user has one role, the user also has roles lower in the hierarchy. For example, the “chief_financial_officer” role might contain both the “financial_analyst” and the “salary_administrator” roles.

The chief financial officer can perform all tasks and see all data that can be viewed by salary administrators and financial analysts.

Additionally, you can define a role’s mutual exclusivity to enforce static or dynamic separation of duty policies. Roles can be defined to be mutually exclusive for:

- Membership – one user cannot be granted two different roles. For example, you might not want the “payment_requestor” and “payment_approver” roles to be granted to the same user.
- Activation – one user cannot activate, or enable, two different roles. For example, a user might be granted both the “senior_auditor” and the “equipment_buyer” roles, but not permitted to have both roles enabled at the same time.

System roles, as well as user-defined roles, can be defined to be in a role hierarchy, or to be mutually exclusive. For example, you might want a “super_user” role to contain the system administrator, operator, and Technical Support roles. To enforce a separation of roles, you may want to define the system administrator and system security officer roles to be mutually exclusive for membership; that is, one user cannot be granted both roles.

Role hierarchies and mutual exclusivity

This section describes how to set up role hierarchies and enforce a separation of roles.

Defining and changing mutual exclusivity of roles

To define mutual exclusivity between two roles, use:

```sql
alter role role1 { add | drop } exclusive { membership | activation } role2
```

For example, to define intern_role and specialist_role as mutually exclusive at the membership level, enter:

```sql
alter role intern_role add exclusive membership specialist_role
```
Creating and assigning roles to users

The example above restricts users who have membership in intern_role from also being members of specialist_role.

To define the sso_role and sa_role as mutually exclusive at the activation level, enter the following command, which prohibits a user who is a member of sso_role and sa_role from assuming both roles simultaneously:

```sql
alter role sso_role add exclusive activation sa_role
```

Defining and changing a role hierarchy

Defining a role hierarchy involves choosing the type of hierarchy and the roles, then implementing the hierarchy by granting roles to other roles.

For example:

```sql
grant role intern_role to specialist_role
grant role doctor_role to specialist_role
```

This grants to “specialist” all the privileges of both “doctor” and “intern.”

To establish a hierarchy with a “super_user” role containing the sa_role and oper_role system roles, specify:

```sql
grant role sa_role to super_user
grant role oper_role to super_user
```

Note If a role requires a password to be contained within another role, the user with the role that contains the other does not need to use the password for the contained role. In the example above, assume that the “doctor” role usually requires a password. The user who has the “specialist” role does not need to enter the “doctor” password because “doctor” is contained within “specialist.” Role passwords are only required for the highest level role.

When creating role hierarchies:

- You cannot grant a role to another role that directly contains it. This prevents duplication.

 In the example above, you cannot grant “doctor” to “specialist” because “specialist” already contains “doctor.”

- You can grant a role to another role that does not directly contain it.
For example, in Figure 14-2, you can grant the “intern” role to the “specialist” role, even though “specialist” already contains the “doctor” role, which contains “intern.” If you subsequently dropped “doctor” from “specialist,” then “specialist” still contains “intern.”

In Figure 14-2, “doctor” has “consultant” role permissions because “consultant” has been granted to “doctor.” The “specialist” role also has “consultant” role permissions because “specialist” contains the “doctor” role, which in turn contains the “consultant.”

However, “intern” does not have “consultant” role privileges, because “intern” does not contain the “consultant” role, either directly or indirectly.

Figure 14-2: Explicitly and implicitly granted privileges

- You cannot grant a role to another role that is contained by the first role. This prevents “loops” within the hierarchy.

For example, in Figure 14-3, you cannot grant the “specialist” role to the “consultant” role; “consultant” is already contained in “specialist.”

Figure 14-3: Granting a role to a role contained by grantor

- When the system security officer grants to a user a role that contains other roles, the user implicitly gets membership in all roles contained by the granted role. However, a role can be activated or deactivated directly only if the user has explicit membership in that role.

- The system security officer cannot grant one role to another role that is explicitly or implicitly mutually exclusive at the membership level with the first role.
Creating and assigning roles to users

For example, in Figure 14-4, if the “intern” role is defined as mutually exclusive at the membership level with the “consultant” role, the system security officer cannot grant “intern” to the “doctor.”

Figure 14-4: Mutual exclusivity at membership

- The user can activate or deactivate only directly granted roles.
 - For example, in the hierarchy shown in Figure 14-4, assume that you have been granted the “specialist” role. You have all the permissions of the “specialist” role, and, implicitly, because of the hierarchy, you have all the permissions of the “doctor” and “consultant” roles. However, you can activate only the “specialist” role. You cannot activate “doctor” or “consultant” because they were not directly granted to you. See “Activating and deactivating roles” on page 419.
 - Revoking roles from other roles is similar to granting roles to other roles. It removes a containment relationship, and the containment relationship must be a direct one.
 - For example:
 - If the system security officer revokes the “doctor” role from “specialist,” “specialist” no longer contains the “consultant” role or the “intern” role.
 - The system security officer cannot revoke the “intern” role from “specialist” because “intern” is not directly contained by “specialist.”

Setting up default activation at login

A system security officer can change the default role for any user. Individual users can change only their own default settings.
When a user logs in to Adaptive Server, the user’s roles are not necessarily active, depending upon how the role is set up as a default role. If a role has a password associated with it, the user must use the `set role` command to activate the role.

The system security officer or user determines whether to activate any roles granted by default at login. `sp_modifylogin` sets the default status of user roles individually for each user. `sp_modifylogin` only affects user roles, not system roles.

By default, user-defined roles that are granted are not activated at login, but system roles that are granted are automatically activated, if they do not have passwords associated with them.

To set up a role to activate at login:

```
sp_modifylogin loginname, "add default role", role_name
```

To assign more than one default role to a user, use multiple `sp_modifylogin` commands.

To ensure that a role is inactive at login:

```
sp_modifylogin loginname, "drop default role", role_name
```

For example, to change the default setting for Ralph’s `intern_role` to be active automatically at login, execute:

```
sp_modifylogin ralph, "add default role", intern_role
```

Activating and deactivating roles

Roles must be active to have the access privileges of each role. A default role cannot be active at login. If the role has a password, it is always inactive at login.

To immediately activate or deactivate a role:

```
set role role_name [on|off]
```

To activate or deactivate a role that has an attached password, use:

```
set role role_name with passwd "password" [on|off]
```

For example, to activate the “financial_analyst” role with the password “sailing19”, enter:

```
set role financial_analyst with passwd "sailing19" on
```
Activate roles only when you need them, and turn them off when you no longer need them. For example, when the sa_role is active, you assume the identity of database owner within any database that you use. To turn off the system administrator role and assume your "real" user identity, use:

```sql
set role sa_role off
```

If you are granted a role during a session, and you want to activate it immediately, use `set role` to turn it on.

Setting up groups and adding users

The system security officer, the system administrator, or the database administrator creates a group using `sp_addgroup group_name`.

You can grant and revoke permissions at the group level. Group permissions are automatically passed to group members. Every database is created with a group named “public” to which all users automatically belong. Add a user to a group using `sp_adduser` and change a user’s group with `sp_changegroup`. See “Changing a user’s group membership” on page 427.

Groups are represented by an entry in the `sysusers` table. You cannot use the same name for creating a group and a user in the database (for example, you cannot have both a group and a user named “shirley”).

Dropping users, groups, and user-defined roles

A system administrator, system security officer, or database owner can use `sp_dropuser` or `sp_dropgroup` to drop users and groups from databases.

Dropping users

A database owner, system security officer, or a system administrator can use `sp_dropuser` to deny an Adaptive Server user access to the database in which `sp_dropuser` is executed. (If a “guest” user is defined in that database, the user can still access that database as “guest.”)
The following is the syntax, where `name_in_db` is usually the login name, unless another name has been assigned with `sp_adduser`:

```
sp_dropuser name_in_db
```

You cannot drop a user who owns objects. Since there is no command to transfer ownership of objects, you must drop objects owned by a user before you drop the user. To deny access to a user who owns objects, use `sp_locklogin` to lock his or her account.

You also cannot drop a user who has granted permissions to other users. Use `revoke with cascade` to revoke permissions from all users who were granted permissions by the user to be dropped, then drop the user. You must then grant permissions to the users again, if appropriate.

Dropping groups

The system security officer, the system administrator, or the database administrator uses `sp_dropgroup` to drop a group. The syntax is:

```
sp_dropgroup grpname
```

You cannot drop a group that has members. If you try to do so, the error report displays a list of the members of the group you are attempting to drop. To remove users from a group, use `sp_changegroup`, discussed in "Changing a user’s group membership" on page 427.

Dropping user-defined roles

To drop a role, the system security officer uses the following, where `role_name` is the name of a user-defined role:

```
drop role role_name [with override]
```

`with override` revokes all access privileges granted to the role in every database server-wide.

If you do not use the `override` option, you must revoke all privileges granted to the role in all databases before you can drop the role. If you do not, the command fails. To revoke privileges, use the `revoke` command.

You need not drop memberships before dropping a role. Dropping a role automatically removes any user’s membership in that role, regardless of whether you use the `with override` option.
Locking or dropping Adaptive Server login accounts

To prevent a user from logging in to Adaptive Server, you can either lock or drop an Adaptive Server login account. Locking a login account maintains the suid so that it cannot be reused.

Warning! Adaptive Server may reuse the server user ID (suid) of a dropped login account when the next login account is created. This occurs only when the dropped login holds the highest suid in syslogins; however, it can compromise accountability if execution of sp_droplogin is not being audited. Also, it is possible for a user with the reused suid to access database objects that were authorized for the old suid.

You cannot drop a login when:

- The user is in any database.
- The login is the last remaining user who holds the system security officer or system administrator roles.

The system security officer can lock or drop a login using sp_locklogin or sp_droplogin. If the system procedure is being logged for replication, the system security officer must be in the master database when issuing the command.

Locking and unlocking login accounts

Use sp_locklogin to lock and unlock accounts or to display a list of locked accounts. You must be a system security officer to use sp_locklogin.

The syntax is:

```plaintext
sp_locklogin  [ {login_name | "all"}, { "lock" | "unlock" } ]
```

where:

- `login_name` is the name of the account to be locked or unlocked. The login name must be an existing valid account.
- `all` indicates to lock or unlock all login accounts on an Adaptive Server, except those with sa_role.
- `lock` | `unlock` specifies whether the account is to be locked or unlocked.

To display a list of all locked logins, use `sp_locklogin` with no parameters.
You can lock an account that is currently logged in, and the user is not locked out of the account until he or she logs out. You can lock the account of a database owner, and a locked account can own objects in databases. In addition, you can use sp_changdbowner to specify a locked account as the owner of a database.

Adaptive Server ensures that there is always at least one unlocked system security officer’s account and one unlocked system administrator’s account.

Dropping login accounts

A system security officer can use sp_droplogin to deny a user access to Adaptive Server. The syntax is:

```
sp_droplogin login_name
```

sp_droplogin fails if the user identified by `login_name` exists as a database user or alias in any database. Use sp_dropuser to drop the user from a database. See “Dropping users” on page 420.

Locking logins that own thresholds

This section discusses thresholds and how they are affected by locked user logins.

- As a security measure, threshold stored procedures are executed using the account name and roles of the login that created the procedure.
- You cannot drop the login of a user who owns a threshold.
- If you lock the login of a user who owns a threshold, the user cannot execute the stored procedure.
- The last-chance threshold, and thresholds created by the “sa” login are not affected by sp_locklogin. If you lock the “sa” login, the last chance threshold and thresholds created or modified by the “sa” user still fire.

Changing user information

Table 14-5 lists the system procedures you use to change passwords, default database, default language, full name, or group assignment.
Changing user information

Table 14-5: System procedures for changing user information

<table>
<thead>
<tr>
<th>Task</th>
<th>Required role</th>
<th>System procedure</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change your password</td>
<td>None</td>
<td>sp_password</td>
<td>Any database</td>
</tr>
<tr>
<td>Change another user’s password</td>
<td>System security officer</td>
<td>sp_password</td>
<td>Any database</td>
</tr>
<tr>
<td>Change authentication mechanism</td>
<td>System security officer</td>
<td>sp_modifylogin</td>
<td>Any database</td>
</tr>
<tr>
<td>Change your default database, default language, or full name</td>
<td>None</td>
<td>sp_modifylogin</td>
<td>Any database</td>
</tr>
<tr>
<td>Change a login account’s default database, default language, or full name</td>
<td>System administrator or system security officer</td>
<td>sp_modifylogin</td>
<td>Any database</td>
</tr>
<tr>
<td>Change the group assignment of a user</td>
<td>System administrator, database owner, or system security officer</td>
<td>sp_changegroup</td>
<td>User database</td>
</tr>
</tbody>
</table>

Changing passwords

All users can change their passwords at any time using sp_password. The system security officer can use sp_password to change any user’s password.

For example, a user can change his or her own password from “3blindmice” to “2mediumhot” using:

```
sp_password "3blindmice", "2mediumhot"
```

These passwords are enclosed in quotes because they begin with numbers.

In the following example, the system security officer whose password is “2tomato” changes Victoria’s password to “sesame1”:

```
sp_password "2tomato", sesame1, victoria
```

Requiring new passwords

You may choose to use the systemwide password expiration configuration parameter to establish a password expiration interval, which forces all Adaptive Server users to change their passwords on a regular basis. See Chapter 5, “Setting Configuration Parameters.” Even if you do not use systemwide password expiration, it is important, for security reasons, that users change their passwords periodically.

The configuration parameter is superseded by the password policy settings.
password expiration interval specifies the password expiration interval in days. It can be any value between 0 and 32767, inclusive. For example, if you create a new login on August 1, 2007 at 10:30 a.m., with a password expiration interval of 30 days, the password expires on August 31, 2007 at 10:30 a.m.

The column `pwdate` in the `syslogins` table records the date of the last password change. The following query selects all login names whose passwords have not changed since September 15, 2007:

```
select name, pwdate
from syslogins
where pwdate < "Sep 15 2007"
```

Null passwords

Do not assign a null password. When Adaptive Server is installed, the default “sa” account has a null password. The following example shows how to change a null password to a valid one:

```
sp_password null, "8M4LNCH"
```

Note Do not enclose “null” in quotes in the statement.

Logging in after lost password

You can use `dataserver -plogin_name` if your site encounters any of these situations:

- All system administrator login accounts are locked.
- All system security officer login accounts are locked.
- The password for `sa_role` or `sso_role` has been lost.

The `dataserver` parameter, with the `-p` parameter allows you to set a new password for these accounts and roles. `login_name` is the name of the user or the name of the role (`sa_role` or `sso_role`) for which the password must be reset.

When you start with the `-p` parameter, Adaptive Server generates, displays, and encrypts a random password and saves it in `master..syslogins` or in `master..sysssrvroles` as that account or role’s new password.

Sybase strongly recommends that you change the password when the server restarts. For example, to reset the password for user `rsmith` who has `sa_role`:

```
dataserver -prsmith
```
Changing user information

To reset the password of the sso_role:

 dataserver -psso_role

Changing user defaults

Any user can use sp_modifylogin to change his or her full name, default authentication method, default database, default language, and default role. Use sp_modifylogin to set password length and expiration, to limit failed login attempts, and to specify that a login script be run automatically when a user logs in. A system administrator can change these settings for any user. The syntax is:

 sp_modifylogin login_name, option, value

where:

- `login_name` – is the name of the user whose account you are modifying.
- `option` – specifies the option that you are changing. See sp_modifylogin in the Reference Manual: Procedures for a list of available options.
- `value` – is the new value for the specified option.

After you execute sp_modifylogin to change the default database, the user is connected to the new default database the next time he or she logs in. However, sp_modifylogin does not automatically give the user access to the database. Unless the database owner has set up access with sp_adduser, sp_addalias, or with a guest user mechanism, the user is connected to master even after his or her default database has been changed.

This example changes the default database for “anna” to pubs2:

 sp_modifylogin anna, defdb, pubs2

This example changes the default language for “claire” to French:

 sp_modifylogin claire, deflanguage, french

This example changes the full name for “mtwain” to “Samuel Clemens.”

 sp_modifylogin mtwain, fullname, "Samuel Clemens"
Changing a user’s group membership

A system administrator, system security officer, or the database owner can use `sp_change_group` to change a user’s group affiliation. Each user can be a member of only one group other than “public,” of which all users are always members.

Before you execute `sp_change_group`:

- The group must exist.
- The user must have access to the current database (must be listed in `sysusers`).

The syntax for `sp_change_group` is:

```
sp_change_group grpname, username
```

For example, to change the user “jim” from his current group to the group “management,” use:

```
sp_change_group management, jim
```

To remove a user from a group without assigning the user to another group, you must change the group affiliation to “public”:

```
sp_change_group "public", jim
```

The name “public” must be in quotes because it is a reserved word. This command reduces Jim’s group affiliation to “public” only.

When a user changes from one group to another, the user loses all permissions that he or she had as a result of belonging to the old group, but gains the permissions granted to the new group.

The assignment of users into groups can be changed at any time.

Changing user process information

The `set` command includes options that allow you to assign each client an individual name, host name, and application name. This is useful for differentiating among clients in a system where many clients connect to Adaptive Server using the same name, host name, or application name.

The partial syntax for the `set` command is:

```
set [clientname client_name | clienthostname host_name | clientapplname application_name]
```
Changing user information

Where client_name is the name you are assigning the client, host_name is the name of the host from which the client is connecting, and application_name is the application that is connecting to Adaptive Server. These parameters are stored in the clientname, clienthostname, and clientapplname columns of the sysprocesses table.

For example, if a user logs in to Adaptive Server as “client1,” you can assign them an individual client name, host name, and application name using commands similar to:

```
set clientname 'alison'
set clienthostname 'money1'
set clientapplname 'webserver2'
```

This user now appears in the sysprocesses table as user “alison” logging in from host “money1” and using the “webserver2” application. However, although the new names appear in sysprocesses, they are not used for permission checks, and sp_who still shows the client connection as belonging to the original login (in the case above, client1). set clientname does not perform the same function as set proxy, which allows you to assume the permissions, login name, and suid of another user.

You can set a client name, host name, or application name for only your current client session (although you can view the connection information for any client connection). Also, this information is lost when a user logs out. These parameters must be reassigned each time a user logs in. For example, the user “alison” cannot set the client name, host name, or application name for any other client connection.

Use the client’s system process ID to view their connection information. For example, if the user “alison” described above connects with a spid of 13, issue the following command to view all the connection information for this user:

```
select * from sysprocesses where spid = 13
```

To view the connection information for the current client connection (for example, if the user “alison” wanted to view her own connection information), enter:

```
select * from sysprocesses where spid = @@spid
```
Using aliases in databases

The alias mechanism allows you to treat two or more users as the same user inside a database so that they all have the same privileges. This mechanism is often used so that more than one user can assume the role of database owner. A database owner can use the setuser command to impersonate another user in the database. You can also use the alias mechanism to set up a collective user identity.

For example, suppose that several vice presidents want to use a database with identical privileges and ownerships. If you add the login “vp” to Adaptive Server and the database and have each vice president log in as “vp,” there is no way to tell the individual users apart. Instead, alias all the vice presidents, each of whom has his or her own Adaptive Server account, to the database user name “vp.”

Note Although more than one individual can use the alias in a database, you can still maintain individual accountability by auditing the database operations performed by each user. See Chapter 18, “Auditing.”

The collective user identity from using aliases implies set-ownership for database objects. For example, if user “loginA” is aliased to dbo in in database db1, all objects created by “loginA” in db1 are owned by dbo. However, Adaptive Server concretely records an object’s ownership in terms of the login name and the creator’s database user ID. See “Concrete identification” on page 569. An alias cannot be dropped from a database if he or she concretely owns objects in that database.

Note You cannot drop the alias of a login if that login created objects in the database. In most cases, use aliases only for users who do not own tables, procedures, views, or triggers.

Adding aliases

To add an alias for a user, use sp_addalias:

```
sp_addalias loginame, name_in_db
```

where:
Using aliases in databases

• **loginame** – is the name of the user who wants an alias in the current database. This user must have an account in Adaptive Server but cannot be a user in the current database.

• **name_in_db** – is the name of the database user to whom the user specified by loginame is to be linked. The name_in_db must exist in sysusers in the current database.

Executing `sp_addalias` maps the user name specified by loginame to the user name specified by name_in_db. It does this by adding a row to the system table sysalternates.

When a user tries to use a database, Adaptive Server checks for the user’s server user ID number (suid) in sysusers. If it is not found, Adaptive Server then checks sysalternates. If the user’s suid is found there, and it is mapped to a database user’s suid, the first user is treated as the second user while the first user is using the database.

For example, suppose that Mary owns a database. She wants to allow both Jane and Sarah to use the database as if they were its owner. Jane and Sarah have logins on Adaptive Server but are not authorized to use Mary’s database. Mary executes the following commands:

```
sp_addalias jane, dbo
exec sp_addalias sarah, dbo
```

Warning! Users who are aliased to the database owner have all the permissions and can perform all the actions that can be performed by the database owner, with respect to the database in question. A database owner should carefully consider the implications of vesting another user with full access to a database.

Dropping aliases

Use `sp_dropalias` to drop the mapping of an alternate suid to a user ID. Doing this deletes the relevant row from sysalternates. The syntax is the following, where loginame is the name of the user specified by loginame when the name was mapped with `sp_addalias`:

```
sp_dropalias loginame
```

After a user’s alias is dropped, the user no longer has access to the database.
You cannot drop an alias if the aliased login created any objects or thresholds. Before using `sp_dropalias` to remove an alias that has performed these actions, remove the objects or procedures. If you still need them after dropping the alias, re-create them with a different owner.

Getting information about aliases

To display information about aliases, use `sp_helpuser`. For example, to find the aliases for “dbo,” execute:

```sql
sp_helpuser dbo
```

<table>
<thead>
<tr>
<th>Users_name</th>
<th>ID_in_db</th>
<th>Group_name</th>
<th>Login_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo</td>
<td>1</td>
<td>public</td>
<td>sa</td>
</tr>
</tbody>
</table>

(1 row affected)

Users aliased to user.
Login_name

- andy
- christa
- howard
- linda

Getting information about users

Table 14-6 lists procedures you can use to obtain information about users, groups, and current Adaptive Server usage.
Getting information about users

Table 14-6: Reporting information about Adaptive Server users and groups

<table>
<thead>
<tr>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report current Adaptive Server users and processes</td>
<td>sp_who</td>
</tr>
<tr>
<td>Display information about login accounts</td>
<td>sp_displaylogin</td>
</tr>
<tr>
<td>Report users and aliases in a database</td>
<td>sp_helpuser</td>
</tr>
<tr>
<td>Report groups within a database</td>
<td>sp_helpgroup</td>
</tr>
</tbody>
</table>

Reporting on users and processes

Use sp_who to report information about current users and processes on Adaptive Server:

```sql
sp_who [loginame | "spid"]
```

where:

- `loginame` – is the user’s Adaptive Server login name. If you provide a login name, sp_who reports information about processes being run by that user.
- `spid` – is the number of a specific process.

For each process run, sp_who reports the security-relevant information for the server process ID, its status, the login name of the process user, the real login name (if `login_name` is an alias), the name of the host computer, the server process ID of a process that is blocking this one (if any), the name of the database, and the command being run.

If you do not provide a login name or `spid`, sp_who reports on processes being run by all users.

The following example shows the security-relevant results from executing `sp_who` without a parameter:

```
spid  status  loginame  oriname  hostname  blk  dbname       cmd
----  -------  ---------  --------  --------  ---  ---------------
1     running  sa        sa       sunbird  0    pubs2         SELECT
2     sleeping NULL      NULL     0        master NETWORK HANDLER
3     sleeping NULL      NULL     0        master MIRROR HANDLER
4     sleeping NULL      NULL     0        master AUDIT PROCESS
5     sleeping NULL      NULL     0        master CHECKPOINT SLEEP
```

(5 rows affected, return status = 0)

sp_who reports NULL for the `loginame` for all system processes.
Getting information about login accounts

Use `sp_displaylogin` to display information about a specified login account—or login names matching a wild-card pattern—including any roles granted, where `loginame` (or the wildcard matching pattern) is the user login name pattern about which you want information:

```
sp_displaylogin [loginame | wildcard]
```

If you are not a system security officer or system administrator, you can display information only about your own account. If you are a system security officer or system administrator, you can use the `loginame | wildcard` parameter to access information about any account.

`sp_displaylogin` displays your server user ID, login name, full name, any roles that have been granted to you, date of last password change, default database, default language, whether your account is locked, any auto-login script, password expiration interval, whether password has expired, the login password encryption version used, and the authentication mechanism specified for the login.

`sp_displaylogin` displays all roles that have been granted to you, so even if you have made a role inactive with the `set` command, that role appears. For example, this displays the roles for the `sa`:

```
sp_displaylogin 'sa'
```

```
Suid: 121
Loginame: mylogin
Fullname:
Default Database: master
Default Language:
Auto Login Script:
Configured Authorization:
  sa_role (default ON)
  sso_role (default ON)
  oper_role (default ON)
  sybase_ts_role (default ON)
Locked: NO
Date of Last Password Change: Aug 10 2006 11:17AM
Password expiration interval: 0
Password expired: NO
Minimum password length: 6
Maximum failed logins: 0
Current failed login attempts:
Authenticate with: NONE
Login password encryption: SYB-PROP, SHA-256
Last login date : Aug 17 2006 5:55PM
```
Getting information about users

Getting information about database users

Use `sp_helpuser` to report information about authorized users of the current database, where `name_in_db` is the user’s name in the current database:

```sql
sp_helpuser [name_in_db]
```

If you give a user’s name, `sp_helpuser` reports information about that user. If you do not give a name, it reports information about all users.

The following example shows the results of executing `sp_helpuser` without a parameter in the database `pubs2`:

```
sp_helpuser
Users_name ID_in_db Group_name Login_name
--------- -------- ---------- ----------
dbo 1 public sa
marcy 4 public marcy
sandy 3 public sandy
judy 5 public judy
linda 6 public linda
anne 2 public anne
jim 7 senioreng jim
```

Finding user names and IDs

To find a user’s server user ID or login name, use `suser_id` and `suser_name`.

Table 14-7: System functions `suser_id` and `suser_name`

<table>
<thead>
<tr>
<th>To find</th>
<th>Use</th>
<th>With the argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server user ID</td>
<td><code>suser_id</code></td>
<td><code>(["server_user_name"])</code></td>
</tr>
<tr>
<td>Server user name (login name)</td>
<td><code>suser_name</code></td>
<td><code>([server_user_ID])</code></td>
</tr>
</tbody>
</table>

The arguments for these system functions are optional. If you do not provide one, Adaptive Server displays information about the current user.

This example shows how to find the server user ID for the user “sandy”:

```sql
select suser_id("sandy")
```

3
This example shows how a system administrator whose login name is “mary” issues the commands without arguments:

```
select suser_name(), suser_id()
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mary</td>
<td>4</td>
</tr>
</tbody>
</table>

To find a user’s ID number or name inside a database, use `user_id` and `user_name`.

Table 14-8: System functions `user_id` and `user_name`

<table>
<thead>
<tr>
<th>To find</th>
<th>Use</th>
<th>With the argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>User ID</td>
<td><code>user_id</code></td>
<td>({"db_user_name"})</td>
</tr>
<tr>
<td>User name</td>
<td><code>user_name</code></td>
<td>{"db_user_ID"}</td>
</tr>
</tbody>
</table>

The arguments for these functions are optional. If you do not provide one, Adaptive Server displays information about the current user. For example:

```
select user_name(10)
```

```
NULL
(1 row affected)
```

```
select user_name( )
```

```
dbo
(1 row affected)
```

```
select user_id("joe")
```

```
NULL
(1 row affected)
```

Displaying information about roles

Table 14-9 lists the system procedures and functions to use to find information about roles.

Table 14-9: Finding information about roles

<table>
<thead>
<tr>
<th>To display information about</th>
<th>Use</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>The role ID of a role name</td>
<td>role_id system function</td>
<td>“Finding role IDs and names” on page 436</td>
</tr>
<tr>
<td>The role name of a role ID</td>
<td>role_name system function</td>
<td>“Finding role IDs and names” on page 436</td>
</tr>
</tbody>
</table>
Getting information about users

To display information about

<table>
<thead>
<tr>
<th>To display information about</th>
<th>Use</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>System roles</td>
<td>show_role system function</td>
<td>“Viewing active system roles” on page 436</td>
</tr>
<tr>
<td>Role hierarchies and roles that have been granted to a user or users</td>
<td>sp_displayroles system procedure</td>
<td>“Displaying a role hierarchy” on page 437</td>
</tr>
<tr>
<td>Whether one role contains another role in a role hierarchy</td>
<td>role_contain system function</td>
<td>“Viewing user roles in a hierarchy” on page 437</td>
</tr>
<tr>
<td>Whether two roles are mutually exclusive</td>
<td>mut_excl_roles system function</td>
<td>“Determining mutual exclusivity” on page 437</td>
</tr>
<tr>
<td>Roles that are active for the current session</td>
<td>sp_activeroles system procedure</td>
<td>“Determining role activation” on page 437</td>
</tr>
<tr>
<td>Whether you have activated the correct role to execute a procedure</td>
<td>proc_role system function</td>
<td>“Checking for roles in stored procedures” on page 438</td>
</tr>
<tr>
<td>Logins, including roles that have been granted</td>
<td>sp_displaylogin system procedure</td>
<td>“Getting information about login accounts” on page 433</td>
</tr>
<tr>
<td>Permissions for a user, group, or role</td>
<td>sp_helprotect system procedure</td>
<td>“Reporting on permissions” on page 591</td>
</tr>
</tbody>
</table>

Finding role IDs and names

To find a role ID when you know the role name:

```
role_id(role_name)
```

Any user can execute `role_id`. If the role is valid, `role_id` returns the server-wide ID of the role (srid). The `sys srvroles` system table contains an srid column with the role ID and a name column with the role name. If the role is not valid, `role_id` returns NULL.

To find a role name when you know the role ID, use `role_name`:

```
role_name(role_id)
```

Any user can execute `role_name`.

Viewing active system roles

Use `show_role` to display the currently active system roles for the specified login:

```
show_role()
```

If you have not activated any system role, `show_role` returns NULL. If you are a database owner, and you execute `show_role` after using `setuser` to impersonate another user, `show_role` returns your own active system roles, not those for whom you are impersonating.
Any user can execute `show_role`.

Note The `show_role` function does not include information about user-defined roles.

Displaying a role hierarchy

You can use `sp_displayroles` to see all roles granted to your login name or see the entire hierarchy tree of roles displayed in table format:

```
sp_displayroles {login_name | rolename [, expand_up | expand_down]}
```

Any user can execute `sp_displayroles` to see his or her own roles. Only the system security officer can view information about roles granted to other users.

Viewing user roles in a hierarchy

Use `role_contain` to determine whether any role you specify contains any other role you specify:

```
role_contain ("role1", "role2")
```

If `role1` is contained by `role2`, `role_contain` returns 1.

Any user can execute `role_contain`.

Determining mutual exclusivity

Use the `mut_excl_roles` function to determine whether any two roles assigned to you are mutually exclusive, and the level at which they are mutually exclusive:

```
mut_excl_roles(role1, role2, {membership | activation})
```

Any user can execute `mut_excl_roles`. If the specified roles, or any role contained by either specified role, are mutually exclusive, `mut_excl_roles` returns 1; if the roles are not mutually exclusive, `mut_excl_roles` returns 0.

Determining role activation

To find all active roles for the current login session of Adaptive Server, use:

```
sp_activeroles [expand_down]
```

`expand_down` displays the hierarchy of all roles contained by any roles granted to you.
Establishing a password and login policy

Any user can execute sp_activeroles.

Checking for roles in stored procedures

Use proc_role within a stored procedure to guarantee that only users with a specific role can execute the procedure. Only proc_role provides a fail-safe way to prevent inappropriate access to a particular stored procedure.

You can use grant execute to grant execute permission on a stored procedure to all users who have been granted a specified role. Similarly, revoke execute removes this permission.

However, grant execute permission does not prevent users who do not have the specified role from being granted execute permission on a stored procedure. To ensure, for example, that all users who are not system administrators can never be granted permission to execute a stored procedure, use proc_role within the stored procedure itself to check whether the invoking user has the correct role to execute the procedure.

proc_role takes a string for the required role and returns 1 if the invoker possesses it. Otherwise, it returns 0.

For example, here is a procedure that uses proc_role to see if the user has the sa_role role:

```sql
create proc test_proc
as
if (proc_role("sa_role") = 0)
begin
  print "You don’t have the right role"
  return -1
end
else
  print "You have System Administrator role"
  return 0
```

Establishing a password and login policy

Adaptive Server includes several controls for setting policies for logins, roles, and passwords for internal authentication.

In Adaptive Server, the system security officer can:
• Specify the maximum allowable number of times an invalid password can be entered for a login or role before that login or role is automatically locked
• Log in after a lost password
• Manually log and unlock logins and roles
• Display login password information
• Specify the minimum password length required server-wide, or for a specific login or role
• Check for password complexity of logins
• Enable custom password checks of logins
• Set the password expiration interval
• Secure login passwords stored on a disk and in memory
• Use only the SHA-256 algorithm for storing passwords on disk
• Consider login password character set
• Perform upgrade and downgrade behavior
• Lock inactive login accounts
• Use passwords in a high availability environment

Setting and changing the maximum login attempts

Setting the maximum number of login attempts allowed provides protection against “brute-force” or dictionary-based attempts to guess passwords. A system security officer can specify a maximum number of consecutive login attempts allowed, after which the login or role is automatically locked. The number of allowable failed login attempts can be set for the entire server, or for individual logins and roles. Individual settings override the server-wide setting.

The number of failed logins is stored in the logincount column in master..syslogins. A successful login resets the number of failed logins to 0.

❖ Setting the server-wide maximum failed logins

• By default, maximum failed logins is turned off and this check is not applied to passwords. Use sp_passwordpolicy to set server-wide maximum number of failed logins for logins and roles.
To set the number of failed logins allowed, enter:

```
sp_passwordpolicy 'set', 'maximum failed logins', number
```


❖ **Setting the *maximum failed logins* for specific logins**

- To set the maximum failed logins for a specific login at creation, use `sp_addlogin`.

This example creates the new login “joe” with the password “Djdiek3” and sets the maximum number of failed login attempts for the login “joe” to 2:

```
sp_addlogin joe, "Djdiek3", pubs2, null, null, null, null, 2
```


❖ **Setting the *maximum failed logins* for specific roles**

- To set the maximum failed logins for a specific role at creation, use `create role`.

This example creates the `intern_role` role with the password “temp244”, and sets the maximum failed logins for `intern_role` to 20:

```
create role intern_role with passwd "temp244",
    maximum failed logins 20
```


❖ **Changing the *maximum failed logins* for specific logins**

- Use `sp_modifylogin` to set or change the maximum failed logins for an existing login.

Changes the maximum failed logins for the login “joe” to 40:

```
sp_modifylogin "joe", "max failed_logins", "40"
```

Note The *value* parameter is a character datatype; therefore, quotes are required for numeric values.

`sp_modifylogin` only effects user roles, not system roles. For details on the syntax and rules, see `sp_modifylogin`.

Changing the maximum failed logins for specific roles

- Use `alter role` to set or change the maximum failed logins for an existing role.

 Example 1 Changes the maximum failed logins allowed for `physician_role` to 5:

  ```
  alter role "all overrides" set maximum failed logins -1
  ```

 Example 2 Removes the overrides for the maximum failed logins for all roles:

  ```
  alter role physician_role set maximum failed logins 5
  ```

 For details on the syntax and rules for using maximum failed logins, see `alter role`.

Logging in after losing a password

Use the `dataserver -p login_name` parameter to specify the name of the system security officer or system administrator at the server start-up. This allows you to set a new password for these account if there is no way to recover a lost password.

When you start with the `-p` parameter, Adaptive Server generates, displays, and encrypts a random password and saves it in `master.syslogins` as that account’s new password.

You can use `dataserver -p` to reset the password for `sa_role` and `sso_role`. Use `dataserver -p` when you have lost the password for either of these roles, that require a password to become active.

For example, if the server is started with:

```
dataserver -psa_role
```

Adaptive Server displays this message:

```
New password for role 'sa_role' : qjcdyrbfkxgyc0
```

If `sa_role` does not have a password, and it is started with `-psa_role`, Adaptive Server prints an error message in the error log.

Sybase strongly recommends that you change the password for the login or role when the server restarts.
Locking and unlocking logins and roles

A login or role can be locked when:

- Its password expires, or
- The maximum number of failed login attempts occur, or
- The system security officer manually locks it.

❖ Locking and unlocking logins

- The system security officer can use `sp_locklogin` to lock or unlock a login manually.

 For example:

  ```
  sp_locklogin "joe", "lock"
  sp_locklogin "joe", "unlock"
  ```

 Information about the lock status of a login is stored in the `status` column of `syslogins`.

❖ Locking and unlocking roles

- The system security officer can use `alter role` to lock or unlock a role manually.

 For example:

  ```
  alter role physician_role lock
  alter role physician_role unlock
  ```

 Information about the lock status of a role is stored in the `status` column of `syssrvroles`.

❖ Unlocking logins and roles at server start-up

- Automatic login lockouts can cause a site to end up in a situation where all accounts capable of unlocking logins (system administrators and system security officers) are locked. Use the `-u` flag with the `dataserver` utility to unlock a specific login or role when you start Adaptive Server.

 See `dataserver` in the Utility Guide.
Displaying password information

This section discusses how to display password information for logins and roles.

❖ Displaying password information for specific logins

- Use \texttt{sp_displaylogin} to display the password settings for a login.

This example displays information about the login \texttt{joe}:

```sql
sp\_displaylogin joe
```

Suid: 3
Loginame: joe
Fullname:
Default Database: master
Default Language:
Auto Login Script:
Configured Authorization:
Locked: NO
Date of Last Password Change: Sep 22 2008 3:50PM
Password expiration interval: 0
Password expired: NO
Minimum password length: 6
Maximum failed logins: 1
Current failed login attempts: 2
Authenticate with: ANY
Login Password Encryption: SHA-256
Last login date: Sep 18 2008 10:48PM

❖ Displaying password information for specific roles

- Use \texttt{sp_displayroles} to display the password settings for a role.

This example displays information about the \texttt{physician_role} role:

```sql
sp\_displayroles physician\_role, "display_info"
```

Role name = physician_role
Locked: NO
Date of Last Password Change: Nov 24 1997 3:35PM
Password expiration interval = 5
Password expired: NO
Minimum password length = 4
Maximum failed logins = 10
Current failed logins = 3

Establishing a password and login policy

Checking passwords for at least one digit

The system security officer can instruct the server to check for at least one digit in a password using the server-wide configuration parameter, check password for digit. If set, this parameter does not affect existing passwords. By default, checking for digits is off.

This example activates the check password functionality:

```
sp_configure "check password for digit", 1
```

This deactivates the check password functionality:

```
sp_configure "check password for digit", 0
```


Setting and changing minimum password length

The configurable password allows you to customize passwords to fit your needs such as using four-digit personal identification numbers (PINs) or anonymous logins with NULL passwords.

Note Adaptive Server uses a default value of 6 for minimum password length. Sybase recommends that you use a value of 6 or more for this parameter.

The system security officer can specify:

- A globally enforced minimum password length
- A per-login or per-role minimum password length

The per-login or per-role value overrides the server-wide value. Setting minimum password length affects only new passwords created after setting the value.

فضلاً، لدى الموقع الشابه المفضلة (من السهل يسوع) Minimum password length for a specific login

- To set the minimum password length for a specific login at creation, use `sp_addlogin`.

This example creates the new login “joe” with the password “Djdiek3”, and sets the minimum password length for “joe” to 8:

```
sp_addlogin joe, "Djdiek3", @minpwdlen=8
```
For details on the syntax and rules for using minimum password length, see sp_addlogin in the Reference Manual: Procedures.

❖ **Setting minimum password length for a specific role**

- To set the minimum password length for a specific role at creation, use create role.

This example creates the new role intern_role with the password “temp244” and sets minimum password length for intern_role to 0:

```sql
create role intern_role with passwd "temp244", min passwd length 0
```

The original password is seven characters, but the password can be changed to one of any length because minimum password length is set to 0.

❖ **Changing minimum password length for a specific login**

- Use sp_modifylogin to set or change minimum password length for an existing login. sp_modifylogin effects only user roles, not system roles.

 Example 1 Changes minimum password length for the login “joe” to 8 characters.

  ```sql
  sp_modifylogin "joe", @option="min passwd length", @value="8"
  ```

 Note The value parameter is a character datatype; therefore, quotes are required for numeric values.

 Example 2 Changes the value of the overrides for minimum password length for all logins to eight characters.

  ```sql
  sp_modifylogin "all overrides", @option="min passwd length", @value="8"
  ```

 Example 3 Removes the overrides for the minimum password length for all logins.

  ```sql
  sp_modifylogin "all overrides", "min passwd length", @value="-2"
  ```


❖ **Changing minimum password length for a specific role**

- Use alter role to set or change minimum password length for an existing role.
Establishing a password and login policy

Example 1 Sets the minimum length for `physician_role`, an existing role, to 5 characters:

```sql
alter role physician_role set min passwd length 5
```

Example 2 Overrides the minimum password length for all roles:

```sql
alter role "all overrides" set min passwd length -1
```

See `alter role` in the *Reference Manual: Commands*.

Password complexity checks

You can use these options, which support password complexity checks, in a stored procedure interface; their values are stored in the `master.dbo.sysattributes` table.

To turn off an individual option, enter:

```sql
sp_passwordpolicy 'clear', 'option'
```

To turn off all password policy options, enter:

```sql
sp_passwordpolicy 'clear'
```

See the *Reference Manual: Procedures* for the complete `sp_passwordpolicy` syntax.

Disallowing simple passwords

disallow simple password checks to see if the password contains the login name as a substring. You can set it to:

- **0** – (default) turns off the option, and allows simple passwords.
- **1** – turns the option on, and disallows simple passwords.

To set this option, enter:

```sql
sp_passwordpolicy 'set', 'disallow simple passwords', 1
```

When you disallow simple passwords, you cannot use your login name as a substring in your password. You must set it to something complex. For example:

```sql
sp_password 'old_complex_password', 'BH0tAcha789', 'johnd'
```

The login `johnd` now has a password of `BH0tAcha789`, which does not contain the login name as a substring.
However, if you change the login password entering the following, the login johnd is now a substring of the new password johnd123, and the command fails:

```
sp_password 'old_complex_password', johnd123, johnd
```

Custom password-complexity checks

Adaptive Server allows you to custom-configure password checking rules using `sp_extrapwdchecks` and `sp_cleanpwdchecks`.

These stored procedures are defined and located in the master database and are automatically invoked during Adaptive Server password complexity checks, and when dropping a login, respectively. See “Enabling custom password checks” on page 452 for an example of how to create these custom stored procedures.

Specifying characters in a password

Use these `sp_passwordpolicy` parameters to specify the minimum number of characters (digits, upper and lower characters, and so on) in a password:

- **min digits in password** – the minimum number of digits in a password. Disabled by default. Valid values are:
 - 0 through 16 – the minimum number of digits that must exist in a password.
 - -1 – the password cannot contain digits.

- **min alpha in password** – the minimum number of alphabetic characters allowed in a password. This value must be at least the sum of minimum number of uppercase characters and minimum number of lowercase characters. Disabled by default. Valid values are:
 - 0 through 16 – the minimum number of special characters required for a password.
 - -1 – the password cannot contain special characters.

- **min special char in password** – the minimum number of special characters for a password. Valid values are:
 - 0 through 16 – the minimum number of special characters required for a password.
 - -1 – the password cannot contain special characters.
Establishing a password and login policy

- min upper char in password – the minimum number of uppercase letters for a password. Disabled by default. Valid values are:
 - 0 through 16 – the number of uppercase letters required for a password.
 - -1 – the password cannot contain uppercase characters.

- min lower char in password – the minimum number of lowercase letters for a password. Valid values are:
 - 0 through 16 – the number of uppercase letters required for a password.
 - -1 – the password cannot contain uppercase characters.

- minimum password length – the minimum password length. You can set a minimum password length from 0 to 30. The value you specify must be at least the sum of all other minimum requirements. For example, minimum password length must be set to at least 10 if you have set:
 - minimum digits in password to 3
 - minimum special characters in password to 2
 - minimum uppercase characters in password to 2
 - minimum lowercase characters in password to 3

- password expiration – the number of days a password can exist before it expires. You specify this value on a global basis. Disabled by default. Valid values are:
 - 0 – the password will never expire.
 - 1 through 32767 – the number of days the password can exist without expiring.

- password exp warn interval – the number of days before a password expires that the password expiration warning messages displays. These messages display with every successful login until the password is changed or it expires. This value must be less than or equal to the password expiration. Disabled by default.

- maximum failed logins – the maximum number of failed logins that can occur before the login is locked. Specify this value globally. Disabled by default. Valid values are:
• 0 – logins are never locked, regardless of the number of failed login attempts.
• 1 through 32767 – the number of failed logins that can occur before the login is locked.
• expire login changes the login status to expired when a system security officer creates or resets a login. The login is then required to change the password on the first login. Disabled by default. Valid values are:
 • 0 – new or reset logins will not expire.
 • 1 – new or reset logins expire; you must reset your password at the first login.

Password complexity option cross-checks

Some password complexity options have interaction implications:

• minimum password length must be at least the sum of min digits in password, min alpha in password, and min special characters in password.
• min alpha in password must be at least the sum of min upper char in password and min lower char in password.
• systemwide password expiration must be greater than password exp warn interval.

For the purpose of the above cross-checks, if Adaptive Server encounters a password complexity option value of -1, it interprets that as a value of 0. If an option is not set, Adaptive Server interprets the option value to be 0 as well.

Adaptive Server prints warnings for each new password complexity option that fails to satisfy the cross-checks. Option setting, however, is successful.

Setting password complexity checks

<table>
<thead>
<tr>
<th>Password checks and policies for Adaptive Server authentication</th>
<th>Configuration parameters specified using sp_configure</th>
<th>Password complexity options specified using sp_passwordpolicy</th>
<th>Per-login overrides specified using sp_modifylogin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password expiration</td>
<td>system-wide password expiration</td>
<td>system-wide password expiration</td>
<td>password expiration</td>
</tr>
<tr>
<td>Digits in password</td>
<td>check password for digit</td>
<td>min digits in password</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Establishing a password and login policy

<table>
<thead>
<tr>
<th>Password checks and policies for Adaptive Server authentication</th>
<th>Configuration parameters specified using sp_configure</th>
<th>Password complexity options specified using sp_passwordpolicy</th>
<th>Per-login overrides specified using sp_modifylogin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabetic characters in password</td>
<td>N/A</td>
<td>min alpha in password</td>
<td>N/A</td>
</tr>
<tr>
<td>Password length</td>
<td>minimum password length</td>
<td>minimum password length</td>
<td>min passwd length</td>
</tr>
<tr>
<td>Failed logins lockout</td>
<td>maximum failed logins</td>
<td>maximum failed logins</td>
<td>max failed_logins</td>
</tr>
<tr>
<td>Disallow simple passwords</td>
<td>N/A</td>
<td>disallow simple passwords</td>
<td>N/A</td>
</tr>
<tr>
<td>Special characters in password</td>
<td>N/A</td>
<td>min special char in password</td>
<td>N/A</td>
</tr>
<tr>
<td>Uppercase letters in password</td>
<td>N/A</td>
<td>min upper char in password</td>
<td>N/A</td>
</tr>
<tr>
<td>Lowercase letters in password</td>
<td>N/A</td>
<td>min lower char in password</td>
<td>N/A</td>
</tr>
<tr>
<td>Password expiration warning interval</td>
<td>N/A</td>
<td>password exp warn interval</td>
<td>N/A</td>
</tr>
<tr>
<td>Resetting your password at first login</td>
<td>N/A</td>
<td>expire login</td>
<td>N/A</td>
</tr>
<tr>
<td>Custom password complexity checks</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Set the password complexity options at the:

- Login level using sp_addlogin or sp_modifylogin.
- Global level using the new sp_passwordpolicy or sp_configure.

Because you can set password configuration options on a global and per-login basis, and using old and new parameters, the order of precedence in which the password options is applied is important.

When applying password options, the order of precedence is:

1. Existing per-login parameters
2. Password complexity options
3. Existing global password options

Examples

Example 1 This sets the minimum password length for “johnd” to 6:

```sql
sp_addlogin @login_name = 'johnd',
    @passwd = 'complex_password',
    @minpwdlen = 6
```
These global options for login “johnd” create two minimum password length requirements for login “johnd”, and sets restrictions about digits in the password:

```
sp_configure 'minimum password length', 8
sp_configure 'check password for digit', 'true'
sp_passwordpolicy 'set', 'min digits in password', 2
```

If you then try to create a password for login “johnd”:

```
sp_password @caller_password = 'old_complex_password',
    @new_password = 'abcd123', @login_name = 'johnd'
```

Adaptive Server checks the password in the following order:

1. Per-login existing options check: minimum password length must be greater than 6. This is true and the check passes.
2. New options: minimum digits in password must be greater than 2. This is true and the check passes.
3. Existing global options: minimum password length specified here is not checked because there is already a per-login check for the login “johnd”.
4. The check password for digit option is redundant because it is already checked when the minimum number of digits is turned on and set to 2.

Once Adaptive Server checks the designated sequence, and the new password for login “johnd” passes these checks, the new password is successfully created.

Example 2 If you enter the following for user “johnd”, Adaptive Server first checks the per-login existing options, and determines the minimum password length is set to 6, but that you have attempted to create a password with only 4 characters:

```
sp_password @caller_password = 'old_complex_password',
    @new_password = 'abcd', @login_name = 'johnd'
```

The check fails, and Adaptive Server prints an error message. Once one password complexity check fails, no additional options are checked.

Example 3 This example creates a new login with the following password configuration options and sets the minimum password length for login johnd to 4:

```
sp_addlogin @login_name = 'johnd', @passwd = 'complex_password', @minpwdlen = 4
```
Establishing a password and login policy

This is a per-login, existing option. When you add the following, you have created a global requirement that the minimum number of digits for a password must be 1:

```
sp_passwordpolicy 'set', 'min digits in password', 1
```

If you then attempt to create the password for login johnd as follows:

```
sp_password @caller_password = 'old_complex_password', @ new_password = 'abcde', @login_name = 'johnd'
```

Adaptive Server performs the checks in the following order:

1. Per-login existing options check: the minimum password length of a new password is 4. The password “abcde” is greater than 4, so this check passes.
2. New global requirement check: the minimum digits in a password is set to 1, globally. This check fails.

Adaptive Server does not create a new password and prints an error message. To create a new password, all the checks must pass.

Enabling custom password checks

Adaptive Server allows a system security officer to write user-defined stored procedures that enable custom password checks.

For example, to implement password history checks, create a new user table to store password histories:

```
create table pwdhistory
(
    name varchar(30) not null,   -- Login name.
    password varbinary(30) not null,   -- old password.
    pwdate datetime not null,   -- datetime changed.
    changedby varchar(30) not null   -- Who changed.
)
go
```

This user-defined stored procedure (sp_extrapwdchecks) can be called when specifying a new password to save it in an encrypted form in the pwdhistory table:

```
create proc sp_extrapwdchecks
(
    @caller_password varchar(30),  --the current password of caller
```
@new_password varchar(30), -- the new password of the target acct
@loginame varchar(30), -- user to change password on
)

begin

declare @current_time datetime,
@encrypted_pwd varbinary(30),
@changedby varchar(30),
@cutoffdate datetime

select @changedby = suser_name()

-- Change this line according to your installation.
-- This keeps history of 12 months only.
select @current_time = getdate(),
 @cutoffdate = dateadd(month,-12,getdate())
select @encrypted_pwd = internal_encrypt(@new_password)

delete master..pwdhistory
 where name = @loginame
 and pwdate < @cutoffdate
if not exists (select 1 from master..pwdhistory
 where name = @loginame
 and password = @encrypted_pwd)
begin
 insert master..pwdhistory
 select @loginame, internal_encrypt(@new_password),
 @current_time, @changedby
 return (0)
end
else
begin
 raiserror 22001 --user defined error message
end
end

Use sp_addmessage to add the user-defined message 22001. A raiserror 22001 indicates a custom password-complexity check error and leads to a failure of sp_addlogin or sp_password.

The following user-defined stored procedure (sp_cleanpwdchecks) can be used to clean-up the password history using sp_extrapwdchecks:

create proc sp_cleanpwdchecks...
Establishing a password and login policy

```sql

{ @loginame varchar(30) -- user to change password on }

as
begin

delete master..pwdhistory
where name = @loginame
end

go

```

Once the two procedures above are defined and installed in the master database, they are called dynamically during the password complexity checks.

Setting the login and role expiration interval for a password

System administrators and system security officers can:

<table>
<thead>
<tr>
<th>Use</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_addlogin</td>
<td>Specify the expiration interval for a login password at creation.</td>
</tr>
<tr>
<td>sp_modifylogin</td>
<td>Change the expiration interval for a login password.</td>
</tr>
<tr>
<td></td>
<td>sp_modifylogin affects only user roles, not system roles.</td>
</tr>
<tr>
<td>create role</td>
<td>Specify the expiration interval for a role password at creation</td>
</tr>
<tr>
<td></td>
<td>(only the system security officer can issue create role).</td>
</tr>
<tr>
<td>alter role</td>
<td>Change the expiration interval for a role password (only the system security officer can issue alter role).</td>
</tr>
</tbody>
</table>

The following rules apply to password expiration for logins and roles:

- A password expiration interval assigned to individual login accounts or roles overrides the global password expiration value. This allows you to specify shorter expiration intervals for sensitive accounts or roles, such as system security officer passwords, and more relaxed intervals for less sensitive accounts such as an anonymous login.

- A login or role for which the password has expired is not directly activated.

- The password expires at the time of day when the password was last changed after the number of days specified by password expiration interval has passed.
For details on the syntax and rules for the commands and system procedures, see the appropriate Reference Manual.

Password expiration turned off for pre-12.x passwords

Password expiration did not affect roles in versions earlier than Adaptive Server 12.x. In Adaptive Server 12.x and later, password expiration is deactivated for any existing user-defined role passwords.

Circumventing password protection

Circumventing the password-protection mechanism may be necessary in automated login systems. You can create a role that can access other roles without passwords.

A system security officer can bypass the password mechanism for certain users by granting the password-protected role to another role, and grant the password-protected role to one or more users. Activation of this role automatically activates the password-protected role without having to provide a password.

For example:

Jane is the system security officer for ABC Inc., which uses automated login systems. Jane creates the following roles:

- financial_assistant
  ```
  create role financial_assistant with passwd "L54K3j"
  ```
- accounts_officer
  ```
  create role accounts_officer with passwd "9sF6ae"
  ```
- chief_financial_officer
  ```
  create role chief_financial_officer
  ```

Jane grants the roles of financial_assistant and accounts_officer to the chief_financial_officer role:

```
grant role financial_assistant, accounts_officer to chief_financial_officer
```

Jane then grants the chief_financial_officer role to Bob:

```
grant role chief_financial_officer to bob
```

Bob logs in to Adaptive Server and activates the chief_financial_officer role:
Establishing a password and login policy

set role chief_financial_officer on

The roles of financial_assistant and accounts_officer are automatically activated without Bob providing a password. Bob can now access everything under the financial_assistant and accounts_officer roles without having to enter the passwords for those roles.

Creating a password expiration interval for a new login

Use `sp_addlogin` to set the password expiration interval for a new login.

This example creates the new login “joe” with the password “Djdiek3”, and sets the password expiration interval for “joe” to 2 days:

```
sp_addlogin joe, "Djdiek3", null, null, null, 2
```

The password for “joe” expires after 2 days from the time of day the login account was created, or 2 days from when the password was last changed.

Creating a password expiration interval for a new role

Use `create role` to set the password expiration interval for a new role.

This example creates the new role intern_role with the password “temp244”, and sets the password expiration interval for intern_role to 7 days:

```
create role intern_role with passwd "temp244", passwd expiration 7
```

The password for intern_role expires after 7 days from the time of day you created the role, or 2 days from when the password was last changed.

Creation date added for passwords

Passwords are stamped with a creation date equal to the upgrade date of a given server. The creation date for login passwords is stored in the pwdate column of syslogins. The creation date for role passwords is stored in the pwdate column of syssrvroles.
CHAPTER 14 Managing Adaptive Server Logins, Database Users, and Client Connections

Changing or removing password expiration interval for login or role

Use `sp_modifylogin` to change the password expiration interval for an existing login, add a password expiration interval to a login that did not have one, or remove a password expiration interval. `sp_modifylogin` only effects login passwords, not role passwords.

This example changes the password expiration interval for the login “joe” to 5 days:

```
sp_modifylogin "joe", @option="passwd expiration", @value="5"
```

The password expires 5 days from the time of day you ran password expiration.

Note The `value` parameter is a character datatype; therefore, quotes are required for numeric values.

Securing login passwords on the network

Adaptive Server allows the use of asymmetric encryption to securely transmit passwords from client to server using the RSA public key encryption algorithm. Adaptive Server generates the asymmetric key pair and sends the public key to clients that use a login protocol. For example, the client encrypts the user’s login password with the public key before sending it to the server. The server decrypts the password with the private key to begin the authentication of the client connecting.

You can configure Adaptive Server to require clients to use a login protocol. Set the Adaptive Server configuration parameter `net password encryption reqd` to require all user name- and password-based authentication requests to use RSA asymmetric encryption. See “net password encryption required” on page 181.

Generating an asymmetric key pair

Adaptive Server generates a new key pair:

- At each server start-up,
- Automatically at 24-hour intervals using the Adaptive Server housekeeper mechanism, and
- When an administrator with sso_role requests key pair regeneration.
Establishing a password and login policy

The key pair is kept in memory. A message is recorded in the error log and in the audit trail when the key pair is regenerated.

To generate the key pair on demand, use:

```
sp_passwordpolicy "regenerate keypair"
```

Note Depending on the system load, there may be a delay between the time this command is executed and the time the key pair is actually generated. This is because the housekeeper task runs at a low priority and may be delayed by higher priority tasks.

To generate the key pair at a specific time, use:

```
sp_passwordpolicy "regenerate keypair", "datetime string"
```

For example, a datetime string of “Jan 16, 2007 11:00PM” generates the key pair at the specified time. The datetime string can also just be a time of day, such as “4:07a.m.”. When only time of day is specified, key-pair regeneration is scheduled for that time of day in the next 24 hour period.

Server option "net password encryption"

Adaptive Server also acts as a client when establishing a remote procedure call (RPC).

When connecting to remote servers, Adaptive Server uses the net password encryption option to determine whether it will use password encryption.

Adaptive Server uses either RSA or Sybase proprietary algorithms when this server option is set to true. The command to enable net password encryption is:

```
sp_serveroption server, "net password encryption", "true"
```

The setting is stored in master..sysservers and you can display the value of server options using the sp_helpserver stored procedure.
The default value for net password encryption is true for any new server added using \texttt{sp_addserver}. During upgrade, Adaptive Server sets net password encryption to true for sysservers entries with an ASEnterprise class value. No other server classes are modified. This improves password security between two communicating Adaptive Servers.

\textbf{Note} The administrator can optionally reset net password encryption to false if you encounter problems establishing a connection to a server. However, if the option is set to false, passwords are transmitted in clear text on the network.

\textbf{Backward compatibility}

- Sybase recommends that you use the RSA algorithm to protect passwords on the network.
- To use the RSA algorithm, you must have Adaptive Server version 15.0.2 and new Connectivity SDK clients (version 15.0 ESD #7 and later.) Sybase provides the net password encryption reqd configuration parameter and the net password encryption server option to allow settings equivalent to versions earlier than 15.0.2 and maintain backward compatibility with older clients and older servers.
- Older clients that do not support the RSA algorithm can set the property to encrypt passwords using the Sybase proprietary algorithm, which has been available version 12.0. Adaptive Server then uses the Sybase proprietary algorithm.
- New clients that support both RSA and Sybase proprietary algorithms can set properties for both algorithms. When communicating with such clients, Adaptive Server 15.0.2 uses RSA encryption. A pre-15.0.2 Adaptive Server uses the Sybase proprietary algorithm.

\textbf{Securing login passwords stored on disk and in memory}

Login passwords used by Adaptive Server to authenticate client connections are stored securely on disk as SHA-256 hash digest. The SHA-256 algorithm is a one-way encryption algorithm. The digest it produces cannot be decrypted, making its storage on disk secure. To authenticate the user connection, the SHA-256 algorithm is applied to the password sent by the client, and the result compared with the value stored on disk.
Establishing a password and login policy

To prevent dictionary-based attacks on login passwords stored on disk, a salt is mixed with the password before the SHA-256 algorithm is applied. The salt is stored along with the SHA-256 hash, and used during login authentication.

To ease the transition to the new on-disk encryption algorithm when migrating from versions earlier than 15.0.2, Adaptive Server includes the password policy allow password downgrade. After an upgrade from versions earlier than 15.0.2, the policy has a value of 1 to indicate that passwords are stored in both the Sybase proprietary algorithm used in earlier releases and the new SHA-256 algorithm used in Adaptive Server 15.0.2.

As long as passwords are stored in both old and new forms, you can downgrade Adaptive Server to Adaptive Server 15.0 or 15.0.1 without resetting user passwords. When the policy allow password downgrade is set to 0, passwords are stored only in SHA-256 form, which is incompatible with older releases. When downgrading to previous releases, only passwords stored in SHA-256 are reset to random passwords and stored in the old form compatible with older releases. See “Backward compatibility” on page 459.

Sybase recommends using only SHA-256 as soon as you are certain that there will be no downgrades to an earlier versions. Consider the trade-offs when making this decision; should there be a need to downgrade to a pre-15.0.2 release, it requires administrator intervention to unlock user login passwords.

Using only the SHA-256 algorithm

To end the period when password downgrade is allowed, execute:

```
sp_passwordpolicy set, "allow password downgrade", 0
```

Before executing this command, examine login accounts with sp_displaylogin to determine if the login account has been used, and whether the password is stored in SHA-256 encoding. If is not, the account is automatically locked and reset with a generated password. To use the account again, you must unlock the account and give the user a newly generated password.

You may want to save the output from this command because it can contain information about locked login accounts and generated passwords for those accounts.

When the password downgrade period ends:

- The datetime when the password downgrade period ended is recorded in master.dbo.sysattributes.
The value of each password column in syslogins is rewritten to use only the new password on-disk structure.

The logins that have not transitioned to the new algorithm have the password reset to a new server-generated password in SHA-256 format, and the login is locked. The generated password is displayed only to the administrator executing the sp_passwordpolicy procedure above. The lock reason is set to 3 (“Login or role not transitioned to SHA-256”).

After the sp_passwordpolicy procedure completes:

- Login authentication uses only SHA-256.
- Only the new password on-disk structure for the password column is used.
- Attempts to use the locked logins fail authentication. To use the locked logins, you must unlock the login with sp_locklogin and the user must use the password generated by sp_passwordpolicy. Alternatively, you may prefer to assign a new password instead of the generated password for locked login accounts.

Example 1

This example prepares an upgraded server to use only SHA-256. Examine login accounts to determine which encryption is used by the account using sp_displaylogin.

```
1> sp_displaylogin login993
2> go
  Suid: 70
  Loginame: login933
  Fullname: 
  Default Database: master
  Default Language: 
  Auto Login Script: 
  Configured Authorization: 
  Locked: NO
  Date of Last Password Change: Apr 20 2007 2:55PM
  Password expiration interval: 0
  Password expired: NO 
  Minimum password length: 0
  Maximum failed logins: 3
  Current failed login attempts: 
  Authenticate with: ANY
  Login Password Encryption: SYB-PROP
  Last login date: 
  (return status = 0)
```
Establishing a password and login policy

The value SYB-PROP from the line Login Password Encryption: SYB-PROP indicates that only the Sybase-proprietary encryption is used for this account. This login has not been used before they upgrade to Adaptive Server version 15.0.2, and will be locked, and its password reset if sp_passwordpolicy 'set', 'allow password downgrade', 0 is executed.

After the first login to the account after upgrading to Adaptive Server 15.0.2, the line changes to show that both old and new encryption is used:

 Login Password Encryption: SYB-PROP,SHA-256

This is the desired state for all active login accounts, so that executing sp_passwordpolicy 'set', 'allow password downgrade', 0 does not lock and reset the password for accounts.

After you execute sp_passwordpolicy 'set', 'allow password downgrade', 0, only SHA-256 encryption is used, and you see:

 Login Password Encryption: SHA-256

Login accounts that show this value are now using the stronger, on-disk encryption algorithm.

When all passwords have been changed to use the new algorithm, reexecuting sp_passwordpolicy shows no accounts reset or locked:

 1> sp_passwordpolicy 'set', 'allow password downgrade', 0
 2> go

Old password encryption algorithm usage eliminated from 0 login accounts, changes are committed.
(return status = 0)

Example 2

In this example, 990 out of 1000 login accounts have transitioned to the SHA-256 algorithm, but 10 accounts are still using SYB-PROP algorithm:

 1> sp_passwordpolicy 'set', 'allow password downgrade', 0
 2> go

Old password encryption algorithm found for login name login1000, suid 3, ver1 =5, ver2 = 0, resetting password to EcJxXmMvOrDcC4
Old password encryption algorithm found for login name login999, suid 4, ver1 =5, ver2 = 0, resetting password to MdZcUafpXkPtM1
Old password encryption algorithm found for login name login998, suid 5, ver1 =5, ver2 = 0, resetting password to ZePiZdSeMqBdE6
Old password encryption algorithm found for login name login997, suid 6, ver1 =5, ver2 = 0, resetting password to IfWpXvGLBgcDgW7
Old password encryption algorithm found for login name login996, suid 7, ver1 =5, ver2 = 0, resetting password to JhDjYnGcXwObI8
Old password encryption algorithm found for login name login995, suid 8,
CHAPTER 14 Managing Adaptive Server Logins, Database Users, and Client Connections

ver1 = 5, ver2 = 0, resetting password to QaXlRuJlCrFaE6
Old password encryption algorithm found for login name login994, suid 9,
ver1 = 5, ver2 = 0, resetting password to HlHcZdRrYcKyB2
Old password encryption algorithm found for login name login993, suid 10,
ver1 = 5, ver2 = 0, resetting password to UvMrXoVqKmZvU6
Old password encryption algorithm found for login name login992, suid 11,
ver1 = 5, ver2 = 0, resetting password to IxIwZqHxEePbX5
Old password encryption algorithm found for login name login991, suid 12,
ver1 = 5, ver2 = 0, resetting password to HxYrPyQbLzPmJ3
Old password encryption algorithm usage eliminated from 10 login accounts,
changes are committed.
(return status = 1)

Note The login name, suid, and generated password appear to the
administrator executing the procedure. The output of the command shows all
10 accounts that have not transitioned are reset (and locked).

Character set considerations for passwords

Passwords and other sensitive data that is encrypted must determine the
character set of the clear text to accurately interpret the result when it is
decrypted, or when hash values are compared during authentication.

For example, a client connects to Adaptive Server using isql and establishes a
new password. Regardless of the character set used in the client, characters are
always converted to the server’s default character set for processing within
Adaptive Server. Assuming the Adaptive Server default character set is
“iso_1,” consider the procedure call:

```
sp_password old_passwd, new_passwd
```

The parameters are varchar, and are expressed as a quoted string and stored
with “iso_1” encoding before encryption. If the Adaptive Server default
character set changes later, the encrypted password remains an encrypted string
of characters encoded with the original default character set. This may result in
authentication failure due to mismatched character mapping. Although
changing the default character set is a rare occurrence, it becomes more
important when migration occurs between platforms.

Adaptive Server converts the clear text password to canonical form before
encryption so that the password can be used across platforms, chip
architectures, and character sets.

To use canonical form for storage in syslogins:
Establishing a password and login policy

1. Convert the clear text password string to UTF-16.
2. Convert the UTF-16 string to network byte order.
3. Append a small buffer (the salt) with random bytes to the password.
4. Apply the SHA-256 hash algorithm.
5. Store digest, salt, and version in the password column.

At authentication time:
1. Convert the clear text password string to UTF-16.
2. Convert the UTF-16 string to network byte order.
3. Append the salt from the password column in syslogins to the password.
4. Apply the hash algorithm.
5. Compare results with password column in syslogins, if they match then authentication is successful.

Upgrade and and downgrade behavior

This section contains information about upgrading and downgrading Adaptive Server between versions.

Behavior changes on upgraded master database

When you upgrade the master database, Adaptive Server maintains encrypted passwords in syslogins catalogs using algorithms from the earlier- and the upgraded version of Adaptive Server in the password column.

Users can call sp_displaylogin to determine which “Login password encryption” a login uses.

On first authentication of a login after an upgrade:

- The user authenticates using the contents of the password column and the old algorithm.
- Adaptive Server updates the password column with the old encryption algorithm followed by the new encryption algorithm.

On subsequent authentication of a login after upgrade, before “allow password downgrade” is set to 0, the user authenticates using the new algorithm.
Behavior changes in a new master database

In a new Adaptive Server master database, or in an upgraded master database after allow password downgrade is set to 0, the server maintains encrypted passwords in syslogins using only the new algorithm in the password column. Only the SHA-256 algorithm authenticates the connection requests and stores the password on disk.

Issue sp_passwordpolicy to determine if a server was upgraded (for example, from version 15.0 to 15.0.2) and maintains passwords using algorithms from the pre- and post-upgraded server, or if the server is newly installed and includes a master database that uses the most recent algorithm (from the 15.0.2 version):

```
sp_passwordpolicy "list", "allow password downgrade"
```

Retaining password encryption after upgrading then downgrading

If you upgrade to an Adaptive Server 15.0.2 or later, then downgrade to an earlier version, use sp_downgrade to retain and use the password encryption functionality from the 15.0.2 and later server. By default, Adaptive Server lets you downgrade passwords after an upgrade, until you end the password downgrade period.

Note Running sp_downgrade, shutting down the server, then restarting the same version of Adaptive Server from which you downgraded removes the changes made by sp_downgrade. You must re-run sp_downgrade to redo the changes. See the Installation Guide for information about running sp_downgrade.

Adding space before you upgrade

Adaptive Server requires additional space in the master database, and transaction log. Use alter database to add additional space to the master database, and transaction log.

Encryption algorithms and password policies:

- Increase the space required for syslogins by about 30%.
- Increase the maximum row length by 135 bytes per login account.
Establishing a password and login policy

- Decrease the ratio of rows per page from about 16 rows per 2K page to 12 rows per 2K page between Adaptive Server versions 15.0.1 and 15.0.2. There is a period of time during the downgrade when the value for allow password downgrade is 1 (when both old and new password encryption algorithms are used); the ratio further decreases to about 10 rows per 2K page.

 For example, if Adaptive Server 15.0.1 has 1,000 login accounts, and the data fits into 59 pages, the same number of login accounts may require approximately 19 additional pages in Adaptive Server 15.0.2 on a new master database, or 33 additional pages if you upgraded from 15.0.1 (with allow password downgrade set to 1).

 The transaction log requires additional space for the updated password column. When users first log in, Adaptive Server requires about 829 2K pages per 1,000 logins, and about 343 pages per 1,000 logins for password changes users make during the upgrade and downgrade. To ensure there is sufficient log space, verify that there is approximately one 2K page of free log space per login before starting the password upgrade or downgrade, and when users first login to Adaptive Server version 15.0.2 and later.

Downgrading

Adaptive Server supports downgrading from version 15.0.2 or later to version 15.0 or 15.0.1. If you are downgrading to an earlier version of Adaptive Server, you may need to perform additional actions.

If allow password downgrade is 0 or NULL, or if a password has been stored in syslogins with only the SHA-256 algorithm, use sp_displaylogin on login accounts to determine which algorithm is used, or sp_downgrade "prepare" to determine which accounts are reset.

The prepare option reports whether the server is ready to be downgraded. If the prepare option fails, it reports errors that must be fixed. If a downgrade is performed on the server before the errors are fixed, the downgrade fails. For login passwords, prepare reports which passwords are reset during the downgrade.

Run sp_downgrade "prepare" to verify whether you should run sp_downgrade:

```
sp_downgrade 'prepare','15.0.1',1
```

Checking databases for downgrade readiness.

There are no errors which involve encrypted columns.

Allow password downgrade is set to 0. Login passwords
may be reset, if old encryption version of password is not present.

Warning: New password encryption algorithm found for login name user103, suid 103.

Password will be reset during the downgrade phase.

\texttt{sp_downgrade 'prepare' completed. (return status = 0)}

\texttt{sp_droplogin 'probe'}

If the login has user entries in databases, from the master database, drop users from databases, and then drop the login:

\texttt{use master}

\texttt{sp_dropuser 'probe'}

The probe login is re-created when you run \textit{installmaster} on the downgraded server.

Before executing \texttt{sp_downgrade}, Sybase recommends that you drop statistics for \textit{syslogins}, and \textit{syssrvroles}. Doing this avoids invalid column information, such as the length of password column, in \textit{sysstatistics} from being recorded during the downgrade.

To drop statistics for \textit{syslogins}, and \textit{syssrvroles}, enter:

\texttt{delete statistics master..syslogins
}

\texttt{delete statistics master..syssrvroles}

In this example, the execution of \texttt{sp_downgrade} locks, and resets the login password for user103. The random password generated by Adaptive Server is shown only to the client who executes \texttt{sp_downgrade}. The administrator can redirect this output to a file so that these passwords are retained, or the administrator can manually reset them once the downgrade is complete, and the server is restarted.

\texttt{sp_downgrade 'downgrade','15.0.1',1}

Checking databases for downgrade readiness.
There are no errors which involve encrypted columns.

Allow password downgrade is set to 0. Login passwords may be reset, if old encryption version of password is not present.

Warning: New password encryption algorithm found for login name user103, suid 103.
Password is reset during the downgrade phase.
Establishing a password and login policy

Executing downgrade step 1 [sp_passwordpolicy 'downgrade'] for :
- Database: master (dbid: 1)

New password encryption algorithm found for login name user103, suid 103.
Resetting password to 'ZdSuFpNkBxAW9'.

Total number of passwords reset during downgrade = 1

[... output from other downgrade steps ..]
(return status = 0)

Additional messages appear in the error log to identify steps that occurred during sp_downgrade:

```
00:00000:00006:2007/05/21 05:34:07.81 server  Preparing ASE downgrade from 1502 to 1501.
00:00000:00006:2007/05/21 05:35:59.09 server  Preparing ASE downgrade from 1502 to 1501.
00:00000:00006:2007/05/21 05:35:59.19 server  Starting downgrading ASE.
00:00000:00006:2007/05/21 05:35:59.20 server  Downgrade : Downgrading login passwords.
00:00000:00006:2007/05/21 05:35:59.22 server  Downgrade : Starting password downgrade.
00:00000:00006:2007/05/21 05:35:59.23 server  Downgrade : Removed sysattributes rows.
00:00000:00006:2007/05/21 05:35:59.23 server  Downgrade : Updated 1 passwords.
00:00000:00006:2007/05/21 05:35:59.24 server  Downgrade : Removed columns in syslogins - lastlogindate, crdate, locksuid, lockreason, lockdate are removed.
00:00000:00006:2007/05/21 05:35:59.26 server  Downgrade : Truncated password lengths.
00:00000:00006:2007/05/21 05:35:59.28 server  Downgrade : Successfully completed password downgrade.
00:00000:00006:2007/05/21 05:35:59.28 server  Downgrade : Marking stored procedures to be recreated from text.
00:00000:00006:2007/05/21 05:36:03.69 server  Downgrade : Dropping Sysoptions system table.
00:00000:00006:2007/05/21 05:36:03.81 server  Downgrade : Setting master database minor upgrade version.
00:00000:00006:2007/05/21 05:36:03.83 server  Downgrade : Setting user
```
databases minor
upgrade version.
00:00000:00006:2007/05/21 05:36:03.90 server ASE downgrade completed.

sp_downgrade makes catalog changes, and modifies password data. The server
must be in single user mode to successfully execute sp_downgrade. To start the
server in single user mode, and to allow only the System Administrator to log
in, use the -m command line option to start the server.

After running sp_downgrade, shut down the 15.0.2 server to avoid new logins
or other actions that may modify data or system catalogs. If you restart
Adaptive Server at version 15.0.2 after running sp_downgrade, the earlier
version shuts down and you are again upgraded to the version 15.0.2 or later
level.

Expiring passwords when allow password downgrade is set to 0

Expire passwords in syslogins at the end of the password downgrade period.

To configure login passwords to expire, use:

```
sp_passwordpolicy "expire login passwords", "[loginame | wildcard]"
```

To configure role passwords to expire, use:

```
sp_passwordpolicy "expire role passwords", "[rolename | wildcard]"
```

To configure stale login passwords to expire, use:

```
sp_passwordpolicy "expire stale login passwords", "datetime"
```

To configure stale role passwords to expire, use:

```
sp_passwordpolicy "expire stale role passwords", "datetime"
```

Passwords that are not changed since the date you set in the datetime parameter
of the sp_passwordpolicy "expire stale login passwords," expire when you
execute the command. Users are automatically required to change their
passwords after the password downgrade period ends.

You can also lock stale logins or roles; however this requires you to reset the
password manually for legitimate users to access their login account again.

Showing the current value of allow password downgrade

To obtain the current value of allow password downgrade enter:

```
sp_passwordpolicy list, "allow password downgrade"
```
Establishing a password and login policy

The result set includes the current value, and a message indicating its meaning.
If you have upgraded the master database, and are maintaining passwords with
the old and new encodings, the result is:

sp_passwordpolicy list, "allow password downgrade"
go
value message
-------- ---
 1 Password downgrade is allowed.
(1 row affected)

For an upgraded master database that only uses new password encryption, the
result is:

sp_passwordpolicy list, "allow password downgrade"
go
value message
-------- ---
 0 Last Password downgrade was allowed on <datetime>.
(1 row affected)

For a new master database on Adaptive Server 15.0.2 that only uses new
password encryption, the result is:

sp_passwordpolicy list, "allow password downgrade"
go
value message
-------- ---
 NULL New master database.
(1 row affected)

Last login and locking inactive accounts

Adaptive Server provides security for user accounts by:

- Tracking the creation date.
- Recording the last login time for an account.
- Determining which accounts are stale and locked due to inactivity.
- Recording the reason an account is locked, and the identity of the user who
 locked the account.
Using **syslogins** to track if an account is locked

syslogins includes the lastlogindate, crdate, locksuid, lockreason, and lockdate columns to support the last login, and locking inactive accounts, letting an account owner or administrator know if an account is locked, when it was locked, who locked it, and the reason why it was locked.

At login creation, the crdate column is set to the current time.

If the enable last login updates password policy option is set to 1, the lastlogindate column is set to the datetime of the login, and the previous value of the column is stored in the PSS of the login session. The update to syslogins and the PSS can occur at each login to Adaptive Server. The default value for enable last login updates a new master database or an upgraded database is 1.

To disable this option execute the procedure using administrator privileges:

```
sp_passwordpolicy "set", "enable last login updates", 0
```

@@lastlogindate is specific to each user login session, and can be used by that session to determine the date and time of the previous login to the account. If the account has not been previously used or if enable last login updates is 0, the value of @@lastlogindate is NULL.

The transaction log does not log updates to syslogins..lastlogindate.

Administrators with sso_role can lock login accounts that are inactive for a given number of days, using:

```
sp_locklogin 'all', 'lock', [@except], 'number of inactive days'
```

This command has no effect if enable last login updates is set to 0 or the value of the lastlogindate column is NULL. The range of values for number of inactive days is 1 – 32767 (days).

The lockreason column specifies the reason a login was locked. The value of the lockdate column is set to the current datetime.

When an account is unlocked, columns lockreason, lockdate, and locksuid are reset to NULL.

The lockdate, locksuid, and lockreason columns are set internally by Adaptive Server. Table 14-11 describes the lockreasons and the value of locksuid.

<table>
<thead>
<tr>
<th>lockreason value</th>
<th>locksuid value</th>
<th>Explanation of lockreason value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>NULL</td>
<td>Account has not been locked.</td>
</tr>
<tr>
<td>0</td>
<td>suid of caller of sp_locklogin</td>
<td>Account locked by locksuid by manually executing sp_locklogin.</td>
</tr>
</tbody>
</table>
Establishing a password and login policy

Using passwords in a high-availability environment

Password security impacts configuration of high availability, the behavior of passwords in syslogins between primary, and companion servers.

High-availability configuration

The primary and companion servers must have equivalent allow password downgrade values before you configure them for high availability. The allow password downgrade quorum attribute checks whether the value of allow password downgrade is the same on both primary, and secondary servers.

If allow password downgrade on the primary server is 1, and 0 on the secondary server, then the output of sp_companion is:

```
1> sp_companion "primary_server",configure
2> go
Step: Access verified from Server:'secondary_server' to Server:'primary_server'.
Step: Access verified from Server:'primary_server' to Server:'secondary_server'.
Msg 18836, Level 16, State 1:
Server 'secondary_server', Procedure 'sp_companion', Line 392:
Configuration operation 'configure' can not proceed due to Quorum Advisory Check failure. Please run 'do_advisory' command to find the incompatible attribute and fix it.
```

<table>
<thead>
<tr>
<th>lockreason value</th>
<th>locksuid value</th>
<th>Explanation of lockreason value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>suid of caller of sp_locklogin</td>
<td>Account locked due to account inactivity, locksuid has manually executed sp_locklogin 'all', 'lock', 'ndays'.</td>
</tr>
<tr>
<td>2</td>
<td>suid of attempted login</td>
<td>Account locked by Adaptive Server due to failed login attempts reaching maximum failed logins.</td>
</tr>
<tr>
<td>3</td>
<td>suid of caller of sp_passwordpolicy set, "allow password downgrade", 0</td>
<td>Account locked by locksuid as the password downgrade period has ended, and login or role has not transitioned to SHA-256.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lockreason value</th>
<th>locksuid value</th>
<th>Explanation of lockreason value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>suid of caller of sp_locklogin</td>
<td>Account locked due to account inactivity, locksuid has manually executed sp_locklogin 'all', 'lock', 'ndays'.</td>
</tr>
<tr>
<td>2</td>
<td>suid of attempted login</td>
<td>Account locked by Adaptive Server due to failed login attempts reaching maximum failed logins.</td>
</tr>
<tr>
<td>3</td>
<td>suid of caller of sp_passwordpolicy set, "allow password downgrade", 0</td>
<td>Account locked by locksuid as the password downgrade period has ended, and login or role has not transitioned to SHA-256.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lockreason value</th>
<th>locksuid value</th>
<th>Explanation of lockreason value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>suid of caller of sp_locklogin</td>
<td>Account locked due to account inactivity, locksuid has manually executed sp_locklogin 'all', 'lock', 'ndays'.</td>
</tr>
<tr>
<td>2</td>
<td>suid of attempted login</td>
<td>Account locked by Adaptive Server due to failed login attempts reaching maximum failed logins.</td>
</tr>
<tr>
<td>3</td>
<td>suid of caller of sp_passwordpolicy set, "allow password downgrade", 0</td>
<td>Account locked by locksuid as the password downgrade period has ended, and login or role has not transitioned to SHA-256.</td>
</tr>
</tbody>
</table>
A value of 2 in the Advisory column indicates that the user cannot proceed with the cluster operation unless the values on both companions match.

`sp_companion do_advisory` also lists the difference in the value of `allow password downgrade` on both servers.

Run `sp_passwordpolicy ‘allow password downgrade’` independently on both the primary, and secondary servers to synchronize the value, and to ensure both servers are in the same state.

Passwords updated after upgrade

Upon the first connection to the primary server after upgrading and configuring for high availability, the user login password synchronizes on both the primary and companion servers with the same on-disk encryption format. This avoids password reset or locking when the `allow password downgrade` period ends, and passwords are downgraded to an earlier version of Adaptive Server. Login passwords continue to be used without being reset or locked by `sp_passwordpolicy` or `sp_downgrade`.

After successfully setting up high-availability environment, end the `allow password downgrade` period separately on the primary and companion servers. Similarly, downgrade to an earlier version of Adaptive Server, execute `sp_downgrade` separately on the primary and companion servers.

Monitoring license use

The License Use Monitor allows a system administrator to monitor the number of user licenses used in Adaptive Server, and to securely manage the license agreement data. That is, you can ensure that the number of licenses used on your Adaptive Server does not exceed the number specified in your license agreement.

The License Use Monitor tracks the number of licenses issued; it does not enforce the license agreement. If the License Use Monitor reports that you are using more user licenses than specified in your license agreement, see your Sybase sales representative.

You must have system administrator privileges to configure the License Use Monitor; by default the monitor is turned off when Adaptive Server is installed or upgraded.
Monitoring license use

See “Configuring the License Use Monitor,” below.

How licenses are counted

A license is the combination of a host computer name and a user name. If a user logs in to Adaptive Server multiple times from the same host machine, one license is used. However, if the user logs in once from host A, and once from host B, two licenses are used. If multiple users log in to Adaptive Server from the same host, but with different user names, each distinct combination of user name and host name uses one license.

Configuring the License Use Monitor

Use sp_configure to specify the number of licenses in your license agreement, where number is the number of licenses:

```sql
sp_configure "license information", number
```

This example sets the maximum number of user licenses to 300, and reports an overuse for license number 301:

```sql
sp_configure "license information", 300
```

If you increase the number of user licenses, you must also change the license information configuration parameter.

Monitoring license use with the housekeeper task

After you configure the License Use Monitor, the housekeeper task determines how many user licenses are in use, based on the user ID and the host name of each user logged in to Adaptive Server. The License Use Monitor updates a variable that tracks the maximum number of user licenses in use:

- If the number of licenses in use is the same or has decreased since the previous housekeeper run, the License Use Monitor does nothing.
- If the number of licenses in use has increased since the previous housekeeper run, the License Use Monitor sets this number as the maximum number of licenses in use.
• If the number of licenses in use is greater than the number allowed by the license agreement, the License Use Monitor issues this message to the error log:

 Exceeded license usage limit. Contact Sybase Sales for additional licenses.

The housekeeper chores task runs during Adaptive Server idle cycles. Both the housekeeper free write percent and the license information configuration parameter must be set to values greater than or equal to 1 for the License Use Monitor to track license use.

For more information about the housekeeper chores task, see Chapter 3, “Using Engines and CPUs,” in the *Performance and Tuning Series: Basics*.

Logging the number of user licenses

The sylucenseslog system table is created in the master database when you install or upgrade Adaptive Server. The License Use Monitor updates the columns in sylucenseslog at the end of each 24-hour period, as shown in Table 14-12.

Table 14-12: Columns in sylucenseslog table

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>housekeeper cannot monitor licenses.</td>
</tr>
<tr>
<td>0</td>
<td>number of licenses not exceeded.</td>
</tr>
<tr>
<td>1</td>
<td>number of licensees exceeded.</td>
</tr>
<tr>
<td>logtime</td>
<td>Date and time the log information was inserted.</td>
</tr>
<tr>
<td>maxlicenses</td>
<td>Maximum number of licenses used during the previous 24 hours.</td>
</tr>
</tbody>
</table>

sylucenseslog looks similar to this:

<table>
<thead>
<tr>
<th>status</th>
<th>logdate</th>
<th>maxlicenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jul 17 1998</td>
<td>123</td>
</tr>
<tr>
<td>0</td>
<td>Jul 18 1998</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>Jul 19 1998</td>
<td>154</td>
</tr>
<tr>
<td>0</td>
<td>Jul 20 1998</td>
<td>142</td>
</tr>
<tr>
<td>0</td>
<td>Jul 21 1998</td>
<td>138</td>
</tr>
<tr>
<td>0</td>
<td>Jul 21 1998</td>
<td>133</td>
</tr>
</tbody>
</table>

In this example, the number of user licenses used exceeded the limit on July 19, 1998.
If Adaptive Server is shut down, License Use Monitor updates syblicenseslog with the current maximum number of licenses used. Adaptive Server starts a new 24-hour monitoring period when it is restarted.

The second row for July 21, 1998 was caused by a shutdown and restart of the server.

Getting information about usage: chargeback accounting

When a user logs in to Adaptive Server, the server begins accumulating CPU and I/O usage for that user. Adaptive Server can report total usage for an individual, or for all users. Information for each user is stored in the syslogins system table in the master database.

Reporting current usage statistics

The system administrator can use `sp_reportstats` or `sp_clearstats` to get or clear current total usage data for individuals or for all users on Adaptive Server.

Displaying current accounting totals

`sp_reportstats` displays current accounting totals for Adaptive Server users. It reports total CPU and total I/O, as well as the percentage of those resources used. It does not record statistics for the “sa” login (processes with an `suid` of 1), checkpoint, network, and mirror handlers.

Initiating a new accounting interval

Adaptive Server accumulates CPU and I/O statistics until you clear the totals from syslogins by running `sp_clearstats`. `sp_clearstats` initiates a new accounting interval for Adaptive Server users and executes `sp_reportstats` to print out statistics for the previous period.

Choose the length of your accounting interval by deciding how to use the statistics at your site. For example, to do monthly cross-department charging for the percentage of Adaptive Server CPU and I/O usage, run `sp_clearstats` once a month.
CHAPTER 14 Managing Adaptive Server Logins, Database Users, and Client Connections

For detailed information about these stored procedures, see the Reference Manual: Procedures.

Specifying the interval for adding accounting statistics

A system administrator can use configuration parameters to decide how often accounting statistics are added to syslogins.

To specify how many machine clock ticks accumulate before accounting statistics are added to syslogins, use the cpu accounting flush interval configuration parameter. The default value is 200. For example:

 sp_configure "cpu accounting flush interval", 600

To find out how many microseconds a tick is on your system, run the following query in Adaptive Server:

 select @@timeticks

To specify how many read or write I/Os accumulate before the information is added (flushed) to syslogins, use the i/o accounting flush interval configuration parameter. The default value is 1000. For example:

 sp_configure "i/o accounting flush interval", 2000

I/O and CPU statistics are flushed when a user accumulates more I/O or CPU usage than the specified value. The information is also flushed when the user exits an Adaptive Server session.

The minimum value allowed for either configuration parameter is 1. The maximum value allowed is $2,147,483,647$.

Getting information about usage: chargeback accounting
CHAPTER 15

Managing Remote Servers

This chapter discusses the steps the system administrator and system security officer of each Adaptive Server must execute to enable remote procedure calls (RPCs).

Overview

Users on a local Adaptive Server can execute stored procedures on a remote Adaptive Server. Executing an RPC sends the results of the remote process to the calling process, which usually appears on the user's screen.

To enable RPCs, the system administrator and system security officer of each Adaptive Server must execute the following steps:

- On the local server:
 - System security officer – use \texttt{sp_addserver} to list the local server and remote server in the system table \texttt{master..sysservers}.
 - List the remote server in the \texttt{interfaces} file or directory service for the local server.
 - Restart the local server so the global variable \texttt{@@servername} is set to the name of the local server. If this variable is not set properly, users cannot execute RPCs from the local server on any remote server.

- On the remote server:
Managing remote servers

- System security officer – use `sp_addserver` to list the server originating the RPC in the system table `master..sysservers`.
- To allow the user who is originating the remote procedure access to the server, a system security officer uses `sp_addlogin`, and a system administrator uses `sp_addremotelogin`.
- Add the remote login name as a user of the appropriate database and grant that login permission to execute the procedure. (If `execute` permission is granted to "public," the user does not need to be granted specific permission.)

Figure 15-1 shows how to set up servers for remote access.

Figure 15-1: Setting up servers to allow remote procedure calls

The user "joe" on ROSE needs to access stored procedures on ZINNIA

![Diagram of server setup](image)

`sp_addserver` ROSE, local

`sp_addserver` ZINNIA

`sp_addlogin` `joe`

`sp_addremotelogin` ROSE, `joe`

`sp_adduser` `joe` (in the appropriate database)

`grant execute` on `procedure_name` to `joe`

For operating-system-specific information about handling remote servers, see the installation documentation for your platform.

Managing remote servers

Table 15-1 lists the tasks related to managing remote servers, and the system procedures you use to perform the tasks.
Table 15-1: Tasks related to managing remote servers

<table>
<thead>
<tr>
<th>To</th>
<th>Use</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a remote server</td>
<td>sp_addserver</td>
<td>“Adding a remote server” on page 481</td>
</tr>
<tr>
<td>Manage remote server names</td>
<td>sp_addserver</td>
<td>“Managing remote server names” on page 482</td>
</tr>
<tr>
<td>Change server connection options</td>
<td>sp_serveroption</td>
<td>“Setting server connection options” on page 483</td>
</tr>
<tr>
<td>Display information about servers</td>
<td>sp_helpserver</td>
<td>“Getting information about servers” on page 485</td>
</tr>
<tr>
<td>Drop a server</td>
<td>sp_dropserver</td>
<td>“Dropping remote servers” on page 485</td>
</tr>
</tbody>
</table>

Adding a remote server

A system security officer uses `sp_addserver` to add entries to the `sys.servers` table. On the server originating the call, you must add one entry for the local server, and one for each remote server that your server will call.

When you create entries for a remote server, you can either:

- Refer to them by the name listed in the `interfaces` file, or
- Provide a local name for the remote server. For example, if the name in the `interfaces` file is “MAIN_PRODUCTION,” you may want to call it simply “main.”

The syntax is:

```
sp_addserver lname [, local | null]
[, pname]
```

where:

- `lname` – provides the local “call name” for the remote server. If this name is not the same as the remote server’s name in the `interfaces` file, provide that name as the third parameter, `pname`.

The remote server must be listed in the `interfaces` file on the local machine. If it is not listed, copy the `interfaces` file entry from the remote server and append it to your existing `interfaces` file. Keep the same port numbers.
Managing remote servers

- local – identifies the server being added as a local server. The local value is used only after starting up, or after a restart, to identify the local server name so that it can appear in messages printed out by Adaptive Server. null specifies that this server is a remote server.

Note For users to successfully run RPCs from the local server, add the local server using the local option, and restart it. The restarting is required to set the global variable @@servername.

- pname – is the remote server listed in the interfaces file for the server named lname. This optional argument permits you to establish local aliases for any other Adaptive Server, Open Server, or Backup Server that you may need to communicate with. If you do not specify pname, to lname is the default.

Examples of adding remote servers

This example creates an entry for the local server named DOCS:

```
sp_addserver DOCS, local
```

This example creates an entry for a remote server named GATEWAY:

```
sp_addserver GATEWAY
```

To run a remote procedure such as sp_who on the GATEWAY server, execute either:

```
GATEWAY.sybsystemprocs.dbo.sp_who
```

or:

```
GATEWAY..sp_who
```

This example gives a remote server called MAIN_PRODUCTION the local alias “main:”

```
sp_addserver main, null, MAIN_PRODUCTION
```

The user can then enter:

```
main..sp_who
```

Managing remote server names

The master.dbo.sysservers table has two server name columns:
• `srvname` is the unique server name that users must supply when executing remote procedure calls.

• `srvnetname` is the server’s network name, which must match the name in the `interfaces` file.

To add or drop servers from your network, use `sp_addserver` to update the server’s network name in `srvnetname`.

For example, to remove the server MAIN from the network, and move your remote applications to a server named TEMP, use the following statement to change the network name, while keeping the local alias:

```
sp_addserver MAIN, null, TEMP
```

`sp_addserver` displays a message telling you that it is changing the network name of an existing server entry.

Setting server connection options

`sp_serveroption` sets the server options `timeouts`, `net password encryption`, `rpc security model A`, and `rpc security model B`, which affect connections with remote servers. Additionally, if you have set the remote procedure security model to `rpc security model B`, you can use `sp_serveroption` to set these options: security mechanism, mutual authentication, use message confidentiality, and use message integrity.

The options you specify for `sp_serveroption` do not affect communication between Adaptive Server and Backup Server.

The following sections describe `timeouts`, `net password encryption`, `rpc security model A`, and `rpc security model B`. For information about the additional options you can specify when `rpc security model B` is on, see “Establishing security for remote procedures” on page 508.

Using the `timeouts` option

A system administrator can use the `timeouts` option to disable and enable the normal timeout code used by the local server.

By default, `timeouts` is set to `true`, and the site handler process that manages remote logins times out if there has been no remote user activity for one minute. By setting `timeouts` to `false` on both of the servers involved in remote procedure calls, the automatic timeout is disabled. To change `timeouts` to `false`, use:
Managing remote servers

```sql
sp_serveroption GATEWAY, "timeouts", false
```

After you set timeouts to false on both servers, when a user executes an RPC in either direction, the site handler on each machine runs until one of the servers is shut down. When the server is brought up again, the option remains false, and the site handler is reestablished the next time a user executes an RPC. If users execute RPCs frequently, it is probably efficient in terms of system resources to set this option to false, since there is some system overhead involved in setting up the physical connection.

Using the net password encryption option

A system security officer can use net password encryption to specify whether connections with a remote server are to be initiated with a client-side password encryption handshake or with the usual unencrypted password handshake sequence. The default is false.

If net password encryption is set to true:

1. The initial login packet is sent without passwords.
2. The client indicates to the remote server that encryption is desired.
3. The remote server returns an encryption key, which the client uses to encrypt its plain text passwords.
4. The client then encrypts its own passwords, and the remote server uses the key to authenticate them when they arrive.

This example sets net password encryption to true:

```sql
sp_serveroption GATEWAY, "net password encryption", true
```

Using the rpc security model options

The rpc security model A and rpc security model B options specify the type of security that is available for RPCs. If you use model A, the default, Adaptive Server does not support security services such as message confidentiality via encryption between the two servers.

For security model B, the local Adaptive Server gets a credential from the security mechanism and uses the credential to establish a secure physical connection with the remote Adaptive Server. With this model, you can choose one or more of these security services: mutual authentication, message confidentiality via encryption, or message integrity.
To set security model A for the server GATEWAY, execute:

```
sp_serveroption GATEWAY, "rpc security model A", true
```

For information about how to set up servers for security model B, see “Establishing security for remote procedures” on page 508.

Getting information about servers

The `sp_helpserver` reports on servers. Without an argument, `sp_helpserver` provides information about all the servers listed in `sysservers`. When you include a server name, `sp_helpserver` provides information about that server only:

```
sp_helpserver [server]
```

`sp_helpserver` checks for both `srvname` and `srvnetname` in the `master..sysremotelogins` table.

For operating-system-specific information about setting up remote servers, see the installation documentation for your platform.

Dropping remote servers

A system security officer can use `sp_dropserver` to drop servers from `sysservers`:

```
sp_dropserver server [, droplogins]
```

where:

- `server` – is the name of the server you want to drop.
- `droplogins` – allows you to drop a remote server and all of that server’s remote login information. If you do not use `droplogins`, you cannot drop a server that has remote logins associated with it.

The following statement drops the GATEWAY server and all of the remote logins associated with it:

```
sp_dropserver GATEWAY, droplogins
```

You do not have to use `droplogins` to drop the local server; that entry does not have remote login information associated with it.
Adding remote logins

The system security officer and system administrator of any Adaptive Server share control over which remote users can access the server, and what identity the remote users assume. The system administrator uses `sp_addremotelogin` to add remote logins and `sp_droremotelogin` to drop remote logins. The system security officer uses `sp_remoteoption` to control whether password checking is required.

Mapping users’ server IDs

Logins from a remote server can be mapped to a local server in three ways:

- A particular remote login can be mapped to a particular local login name. For example, user “joe” on the remote server might be mapped to “joesmith”.
- All logins from one remote server can be mapped to one local name. For example, all users sending remote procedure calls from the MAIN server might be mapped to “remusers”.
- All logins from one remote server can use their remote names.

The first option can be combined with the other two options, and its specific mapping takes precedence over the other two more general mappings. The second and third options are mutually exclusive; you can use either of them, but not both.

Changing the mapping option

Use `sp_droremotelogin` to remove the old mapping.

Use `sp_addremotelogin` to add remote logins:

```
sp_addremotelogin remoteserver [ , loginame [ , remotename ]]  
```

If the local names are not listed in `master.syslogins`, use `sp_addlogin` to add them as Adaptive Server logins before you add the remote logins.

Only a system administrator can execute `sp_addremotelogin`. See the Reference Manual: Procedures.
Mapping remote logins to particular local names

The following example maps the login “pogo” from a remote system to the local login “bob”. The user logs in to the remote system as “pogo”. When “pogo” executes remote procedure calls from GATEWAY, the local system maps the remote login name to “bob”.

```
sp_addlogin bob
sp_addremotelogin GATEWAY, bob, pogo
```

Mapping all remote logins to one local name

The following example creates an entry that maps all remote login names to the local name “albert”. All names are mapped to “albert”, except those with specific mappings, as described in the previous section. For example, if you mapped “pogo” to “bob”, and then the rest of the logins to “albert”, “pogo” still maps to “bob”.

```
sp_addlogin albert
sp_addremotelogin GATEWAY, albert
```

If you use `sp_addremotelogin` to map all users from a remote server to the same local name, use `sp_remoteoption` to specify the “trusted” option for those users. For example, if all users from server GATEWAY that are mapped to “albert” are to be trusted, specify:

```
sp_remoteoption GATEWAY, albert, NULL, trusted, true
```

If you do not specify logins as trusted, they cannot execute RPCs on the local server unless they specify passwords for the local server when they log in to the remote server. Users can run `ct_remote_pwd` to specify a password for server-to-server connections when they use Open Client Client-Library. `isql` and `bcp` do not permit users to specify a password for RPC connections. See “Password checking for remote users” on page 490 for more information about `sp_remoteoption`.

Warning! Do not map more than one remote login to a single local login, as it reduces individual accountability on the server. Audited actions can be traced only to the local server login, not to the individual logins on the remote server.
Adding remote logins

If you are using network-based security

If users are logged in to the remote server using unified login, the logins must be designated as trusted on the local server, or they must specify passwords for the server when they log in to the remote server.

Warning! Using the trusted mode of sp_remoteoption reduces the security of your server, as passwords from such “trusted” users are not verified.

Keeping remote login names for local servers

To enable remote users to keep their remote login names while using a local server:

1 Use `sp_addlogin` to create a login for each login from the remote server.

2 Use `sp_addremotelogin` for the server to create an entry in `master..sysremotelogins` with a null value for the remote login name and a value of -1 for the suid. For example:

   ```sql
   sp_addremotelogin GATEWAY
   ```

Example of remote user login mapping

This statement displays the local and remote server information recorded in `master..sysservers`:

```sql
select srvid, srvname from sysservers
srvid srvname
----- ----------
 0 SALES
 1 CORPORATE
 2 MARKETING
 3 PUBLICATIONS
 4 ENGINEERING
```

The SALES server is local. The other servers are remote.

This statement displays information about the remote servers and users stored in `master..sysremotelogins`:

```sql
select remoteserverid, remoteusername, suid
from sysremotelogins
remoteserverid remoteusername suid
------------- -------------- ------
```
By matching the value of \texttt{remoteserverid} in this result and the value of \texttt{srvid} in the previous result, you can find the name of the server for which the \texttt{remoteusername} is valid. For example, in the first result, \texttt{srvid 1} indicates the CORPORATE server; in the second result, \texttt{remoteserverid 1} indicates that same server. Therefore, the remote user login names “joe” and “nancy” are valid on the CORPORATE server.

The following statement shows the entries in \texttt{master..syslogins}:

\begin{verbatim}
select suid, name from syslogins
suid name
------- ------------
 1 sa
 2 vp
 3 admin
 4 writer
\end{verbatim}

The results of all three queries together show:

- The remote user name “joe” (suid 1) on the remote CORPORATE server (srvid and remoteserverid 1) is mapped to the “sa” login (suid 1).
- The remote user name “nancy” (suid 2) on the remote CORPORATE server (srvid and remoteserverid 1) is mapped to the “vp” login (suid 2).
- The other logins from the CORPORATE server (remoteusername “NULL”) are mapped to the “admin” login (suid 3).
- All logins from the PUBLICATIONS server (srvid and remoteserverid 3) are mapped to the “writer” login (suid 4).
- All logins from the ENGINEERING server (srvid and remoteserverid 4) are looked up in \texttt{master..syslogins} by their remote user names (suid -1).
- There is no \texttt{remoteserverid} entry for the MARKETING server in \texttt{sysremotelogins}. Therefore, users who log in to the MARKETING server cannot run remote procedure calls from that server.
Password checking for remote users

The remote user mapping procedures and the ability to set permissions for individual stored procedures give you control over which remote users can access local procedures. For example, you can allow the “vp” login from the CORPORATE server to execute certain local procedures and all other logins from CORPORATE to execute the procedures for which the “admin” login has permission.

Note Typically, the passwords for users on the remote server must match passwords on the local server.

Password checking for remote users

A system security officer can use sp_remoteoption to determine whether passwords are checked when remote users log in to the local server. By default, passwords are verified (this is the “untrusted” mode). In trusted mode, the local server accepts remote logins from other servers and front-end applications without user-access verification for the particular login.

When sp_remoteoption is used with arguments, it changes the mode for the named user:

```
sp_remoteoption [remoteserver, loginame, remotename, optname, {true | false}]
```

For example, to set trusted mode for the user “bob”, enter

```
sp_remoteoption GATEWAY, pogo, bob, trusted, true
```

Effects of using the untrusted mode

The effects of the untrusted mode depend on the user’s client program. isql and some user applications require that logins have the same password on the remote server and the local server. You can write Open Client applications to allow local logins to have different passwords on different servers.
To change your password in “untrusted” mode, you must first change it on all the remote systems you access before you can change it on your local server. If you change your password on the local server first, when you issue the remote procedure call to execute `sp_password` on the remote server, your passwords no longer match.

The syntax for changing your password on the remote server is:

```
remote_server...sp_password caller_passwd, new_passwd
```

On the local server, the syntax is:

```
sp_password caller_passwd, new_passwd
```

See “Changing passwords” on page 424.

Getting information about remote logins

`sp_helpremotelogin` prints information about the remote logins on a server. The following example shows the remote login “pogo” mapped locally to login name “bob”, with all other remote logins keeping their remote names:

```
server remote_user_name local_user_name options
--------- ---------------- ----------------- --------
GATEWAY **mapped locally** **use local name** untrusted
GATEWAY pogo bob untrusted
```

Configuration parameters for remote logins

Table 15-2 shows the configuration parameters that affect RPCs. All these configuration parameters are set using `sp_configure` and do not take effect until Adaptive Server is restarted.
Configuration parameters for remote logins

Table 15-2: Configuration parameters that affect RPCs

<table>
<thead>
<tr>
<th>Configuration parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow remote access</td>
<td>1</td>
</tr>
<tr>
<td>number of remote logins</td>
<td>20</td>
</tr>
<tr>
<td>number of remote sites</td>
<td>10</td>
</tr>
<tr>
<td>number of remote connections</td>
<td>20</td>
</tr>
<tr>
<td>remote server pre-read packets</td>
<td>3</td>
</tr>
</tbody>
</table>

See the individual configuration parameter descriptions in Chapter 5, “Setting Configuration Parameters.”
CHAPTER 16

External Authentication

This chapter describes the Adaptive Server features that enable you to authenticate users with authentication data stored in repositories that are external to Adaptive Server.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Adaptive Server for network-based security</td>
<td>494</td>
</tr>
<tr>
<td>Concurrent Kerberos authentication</td>
<td>530</td>
</tr>
<tr>
<td>Configuring Adaptive Server for LDAP user authentication</td>
<td>530</td>
</tr>
<tr>
<td>Configuring Adaptive Server for authentication using PAM</td>
<td>551</td>
</tr>
<tr>
<td>LDAPS user authentication enhancements</td>
<td>548</td>
</tr>
<tr>
<td>Enhanced login controls</td>
<td>555</td>
</tr>
</tbody>
</table>

You can enhance the security for large, heterogeneous applications by authenticating logins with a central repository. Adaptive Server supports these external authentication methods:

- Kerberos – provides a centralized and secure authentication mechanism in enterprise environments that employ the Kerberos infrastructure. Authentication occurs with a trusted, third-party server called a key distribution center (KDC) that verifies both the client and the server.

- LDAP user authentication – Lightweight Directory Access Protocol (LDAP) provides a centralized authentication mechanism based on a user’s login name and password.

- PAM user authentication – Pluggable Authentication Module (PAM) provides a centralized authentication mechanism that uses interfaces provided by the operating system for administration and runtime application interfaces.
Configuring Adaptive Server for network-based security

Figure 16-1 shows a client application using a security mechanism to ensure a secure connection with Adaptive Server.

Figure 16-1: Establishing secure connections between a client and Adaptive Server

The secure connection between a client and a server can be used for login authentication and message protection.

If a client requests authentication services:

1. The client validates the login with the security mechanism. The security mechanism returns a credential, which contains security-relevant information.
2. The client sends the credential to Adaptive Server.
3. Adaptive Server authenticates the client’s credential with the security mechanism. If the credential is valid, a secure connection is established between the client and Adaptive Server.

If the client requests message protection services:

1. The client uses the security mechanism to prepare the data packet it sends to Adaptive Server.

 Depending upon which security services are requested, the security mechanism might encrypt the data or create a cryptographic signature associated with the data.
2 The client sends the data packet to Adaptive Server.

3 Upon receiving the data packet, Adaptive Server uses the security mechanism to perform any required decryption and validation.

4 Adaptive Server returns results to the client, using the security mechanism to perform the security functions that were requested; for example, Adaptive Server may return the results in encrypted form.

Security services and Adaptive Server

Depending on the security mechanism you choose, Adaptive Server allows you to use one or more of these security services:

- Unified login – authenticates users once, without requiring them to supply a name and password every time they log in to an Adaptive Server.
- Message confidentiality – encrypts data over the network.
- Mutual authentication – verifies the identity of the client and the server. Mutual authentication can be requested only by the client; it cannot be required by Adaptive Server.
- Message integrity – verifies that data communications have not been modified.
- Replay detection – verifies that data has not been intercepted by an intruder.
- Out-of-sequence check – verifies the order of data communications.
- Message origin checks – verifies the origin of the message.
Configuring Adaptive Server for network-based security

- Remote procedure security – establishes mutual authentication, message confidentiality, and message integrity for remote procedure communications.

Note The security mechanism you are using may not employ all of these services. See “Getting information about available security services” on page 517.

Administering network-based security

Table 16-1 provides an overall process for using the network-based security functions provided by Adaptive Server. You must install Adaptive Server before you can complete the steps in Table 16-1.

Table 16-1: Administering network-based security

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set up configuration files:</td>
<td>Edit the libtcl.cfg file.</td>
<td>“Setting up configuration files for security” on page 497</td>
</tr>
<tr>
<td>• libtcl.cfg</td>
<td>Edit the objectid.dat file.</td>
<td>The documentation supplied with your security mechanism</td>
</tr>
<tr>
<td>• objectid.dat</td>
<td>Edit the interfaces file or Directory Service.</td>
<td>“Identifying users and servers to the security mechanism” on page 502</td>
</tr>
<tr>
<td>• interfaces (or directory service)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Make sure the security administrator for the security mechanism has created logins for each user and for the Adaptive Server and Backup Server.</td>
<td>The security administrator must add names and passwords for users and servers in the security mechanism. For DCE, the security administrator must create a keytab file for server entries.</td>
<td>The documentation supplied with your security mechanism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Identifying users and servers to the security mechanism” on page 502</td>
</tr>
<tr>
<td>4. Restart Adaptive Server.</td>
<td>Activates the use security services parameter.</td>
<td>The Configuration Guide for your platform</td>
</tr>
<tr>
<td>5. Add logins to Adaptive Server to support enterprise-wide login.</td>
<td>Use sp_addlogin to add users. Optionally, specify a default secure login with sp_configure.</td>
<td>“Adding logins to support unified login” on page 507</td>
</tr>
<tr>
<td>6. Determine the security model for remote procedures, and set up the local and remote servers for RPC security.</td>
<td>Use sp_serveroption to choose the security model A or B.</td>
<td>“Establishing security for remote procedures” on page 508</td>
</tr>
</tbody>
</table>
Setting up configuration files for security

Configuration files are created during installation at a default location in the Sybase directory structure.

Table 16-2: Names and locations for configuration files

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>libtcl.cfg</td>
<td>The driver configuration file contains information regarding directory,</td>
<td>UNIX platforms: $SYBASE/$SYBASE_OCS/config</td>
</tr>
<tr>
<td></td>
<td>security, and network drivers, and any required initialization information.</td>
<td>Windows platforms: %SYBASE%%SYBASE_OCS%ini</td>
</tr>
<tr>
<td>objectid.dat</td>
<td>The object identifiers file maps global object identifiers to local names</td>
<td>UNIX platforms: $SYBASE/config</td>
</tr>
<tr>
<td></td>
<td>for character set, collating sequence, and security mechanisms.</td>
<td>Windows platforms: %SYBASE%ini</td>
</tr>
<tr>
<td>UNIX: interfaces</td>
<td>The interfaces file contains connection and security information for each</td>
<td>UNIX platforms: $SYBASE</td>
</tr>
<tr>
<td>Desktop platforms:</td>
<td>server listed in the file.</td>
<td>Desktop platforms: SYBASE_home\ini</td>
</tr>
<tr>
<td>sql.ini</td>
<td>Note In Adaptive Server version 12.5.1 and later, you can use a Directory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service instead of the interfaces file.</td>
<td></td>
</tr>
</tbody>
</table>

For a detailed description of the configuration files, see the Open Client/Server Configuration Guide for your platform.
Specifying security information for the server

Use an interfaces file or a Directory Service to provide information about the servers in your installation.

The interfaces file contains network and security information for servers. To use security services, the interfaces file must include line for “secmech” that specifies the global identifier or identifiers of the security services you plan to use.

Adaptive Server supports Directory Services to keep track of information about servers. A Directory Service manages the creation, modification, and retrieval of information about network servers. The advantage of using a Directory Service is that you do not need to update multiple interfaces files when a new server is added to your network or when a server moves to a new address. To use security services with a Directory Service, you must define the secmech security attribute to point to one or more global identifiers of the security services you plan to use.

UNIX tools for specifying the security mechanism

To specify the security mechanism or mechanisms:

- If you are using the interfaces file, use the dscp utility.
- If you are using a Directory Service, use the dscp_r utility.

Note The dsedit tool, which helps you create entries for either the interfaces file or a Directory Service, is available on UNIX platforms. However, it does not support the creation of secmech entries for security mechanisms.

For more information about dscp, see the Open Client/Server Configuration Guide for UNIX.

Desktop tools for specifying server attributes

To provide information about the servers for your installation in the sql.ini file or a Directory Service, use the dsedit utility. This utility provides a graphical user interface for specifying server attributes such as the server version, name, and security mechanism. For the security mechanism attribute, you can specify one or more object identifiers for the security mechanisms you plan to use. For information about using dsedit, see the Open Client/Server Configuration Guide for Desktop Platforms.
Preparing *libtcl.cfg* to use network-based security

libtcl.cfg and *libtcl64.cfg* (for 64-bit applications) contain information about three types of drivers:

- Network (Net-Library)
- Directory Services
- Security

A **driver** is a Sybase library that provides an interface to an external service provider. Drivers are dynamically loaded so that you can change the driver used by an application without relinking the application.

Entries for network drivers

The syntax for a network driver entry is:

```
driver=protocol description
```

where:

- **driver** – is the name of the network driver.
- **protocol** – is the name of the network protocol.
- **description** – is a description of the entry. This element is optional.

Note If you do not specify a network driver, an appropriate driver for your application and platform is automatically used. For example, for UNIX platforms, a driver that can handle threads is automatically chosen when security services are being used.

Entries for Directory Services

Directory Services entries apply if you want to use a Directory Service instead of the *interfaces* file. See the configuration documentation for your platform, and the *Open Client/Server Configuration Guide* for your platform.

Entries for security drivers

The syntax for a security driver entry is:

```
provider=driver init-string
```

where:
Configuring Adaptive Server for network-based security

- **provider** – is the local name for the security mechanism. The mapping of the local name to a global object identifier is defined in `objectid.dat`.

 The default local names are:
 - “dce” – for the DCE security mechanism.
 - “csfkrb5” – for the CyberSAFE or MIT Kerberos security mechanism.
 - “LIBSMSSP” – for Windows LAN Manager on Windows NT or Windows 95 (clients only).

 If you use a local mechanism name other than the default, change the local name in the `objectid.dat` file (For an example, see “The objectid.dat file” on page 502).

- **driver** – is the name of the security driver. The default location of all drivers for UNIX platforms is `$/SYBASE/$SYBASE_OCS/lib`. The default location for Windows platform is `%SYBASE%\%SYBASE_OCS%\dll`.

- **init-string** – is an initialization string for the driver. This element is optional. The value for **init-string** varies by driver:
 - DCE driver – the following is the syntax for **init-string**, where `cell_name` is the name of your DCE cell:

    ```
    secbase=/../cell_name
    ```
 - Kerberos driver – the following is the syntax for **init-string**, where `realm` is the default Kerberos realm name:

    ```
    secbase=@realm
    ```
 - Windows NT LAN Manager – **init-string** is not applicable.

UNIX platform information

No special tools for editing the `libtcl.cfg` file are available. Use your favorite editor to comment and uncomment the entries that are already in place after you install Adaptive Server.

After you install Adaptive Server on a UNIX platform, the `libtcl.cfg` file already contains entries for the three sections of the file:

- [DRIVERS]
- [DIRECTORY]
- [SECURITY]

The sections do not have to be in a specific order.
Make sure that the entries you do not want to use are commented (begin with ";") and the entries you want are uncommented (do not begin with ";").

For more information, see the Open Client/Server Configuration Guide for UNIX.

Sample libtcl.cfg for Sun Solaris

```
[DRIVERS]
;libtli.so=tcp unused ; This is the non-threaded tli driver.
;libtli_r.so=tcp unused ; This is the threaded tli driver.

[DIRECTORY]
;dce=libsybddce.so ditbase=./subsys/sybase/dataservers
;dce=libsybddce.so ditbase=./users/cfrank

[SECURITY]
dce=libsybsdce.so secbase=/.../svrsole4_cell
```

This libtcl.cfg file uses the DCE security service. This file does not use Directory Services because all [DIRECTORY] section entries are commented.

Because all entries in the [DRIVERS] section for network drivers are also commented, appropriate drivers are automatically chosen by the system. Adaptive Server automatically chooses a threaded driver when you use security services, and chooses an unthreaded driver for applications that cannot work with threaded drivers. For example, Backup Server does not support security services and does not work with a threaded driver.

Desktop platform information

The oscfg utility automatically creates section headings for the libtcl.cfg file; you can also use oscfg to edit the libtcl.cfg file.

This is a sample libtcl.cfg file for desktop platforms:

```
[NT_DIRECTORY]
ntreg_dsa=LIBDREG  ditbase=software\sybase\serverdsa

[DRIVERS]
NLWNSCK=TCP  Winsock TCP/IP Net-Lib driver
NLMSNMP=NAMEPIPE  Named Pipe Net-Lib driver
NLNWLINK=SPX  NT NWLINK SPX/IPX Net-Lib driver
NLDECFNET=DECNET  DecNET Net-Lib driver

[SECURITY]
NTLM=LIBSMTP
```
Configuring Adaptive Server for network-based security

See the Open Client/Server Configuration Guide for Desktop Platforms.

The objectid.dat file

The objectid.dat file maps global object identifiers, such as the one for the DCE service (for example, an identifier like 1.3.6.1.4.1.897.4.6.1) to local names, such as “dce”. The objectid.dat file contains sections such as [CHARSET] for character sets and [SECURITY] for security services. Following is a sample objectid.dat file:

```
[secmech]
1.3.6.1.4.1.897.4.6.1   = dce
1.3.6.1.4.1.897.4.6.3   = NTLM
1.3.6.1.4.1.897.4.6.6   = csfkrb5
```

Use a text editor to change this file only if you have changed the local name of a security service in the libtcl.cfg file.

For example, if you changed:

```
[SECURITY]
dce=libsybsdce.so secbase=/.../svrsole4_cell
```

to:

```
[SECURITY]
dce_group=libsybsdce.so secbase=/.../svrsole4_cell
```

Change the objectid.dat in libtcl.cfg to reflect the change. Simply change the local name in the line for DCE in objectid.dat:

```
1.3.6.1.4.1.897.4.6.1   = dce_group
```

Note You can specify only one local name per security mechanism.

Identifying users and servers to the security mechanism

The security administrator for the security mechanism must define principals (both users and servers) to the security mechanism. Table 16-3 lists tools you can use to add users and servers.
CHAPTER 16 External Authentication

Table 16-3: Defining users and servers to the security mechanism

<table>
<thead>
<tr>
<th>Security mechanism</th>
<th>Command or tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE</td>
<td>Use the dceep’s user and create commands to create a new principal (user or server). In addition, use the keytab create command to create a DCE keytab file, which contains a principal’s password in encrypted form. When you define a server to DCE, use command options that specify that the new principal can act as a server.</td>
</tr>
<tr>
<td>Kerberos</td>
<td>See your Kerberos vendor-specific tools for information about defining users and servers. See “Using Kerberos” on page 518 for more information about Kerberos and Adaptive Server.</td>
</tr>
<tr>
<td>Windows NT LAN Manager</td>
<td>Run the User Manager tool to define users to the Windows NT LAN Manager. Define the Adaptive Server name as a user to Windows NT LAN Manager and display Adaptive Server as that user name.</td>
</tr>
</tbody>
</table>

Note In a production environment, control access to files that contain the keys of the servers and users. If users can access the keys, they can create a server that impersonates your server.

See the documentation available from the third-party provider of the security mechanism for detailed information about how to perform required administrative tasks.

Configuring Adaptive Server for security

Adaptive Server includes several configuration parameters for administering network-based security. To set these parameters, you must be a system security officer. All parameters for network-based security are part of the “Security-Related” configuration parameter group.

Enabling network-based security

To enable or disable network-based security, use sp_configure to set the use security services configuration parameter.

If use security services is set to 1, Adaptive Server supports a security mechanism when both of the following circumstances are true:

- The security mechanism’s global identifier is listed in the interfaces file or Directory Service.
Configuring Adaptive Server for network-based security

- The global identifier is mapped in objectid.dat to a local name that is listed in libtcl.cfg.

For information about how Adaptive Server determines which security mechanism to use for a particular client, see “Using security mechanisms for the client” on page 516.

Requiring unified login

To require all users, other than the system security officer, to be authenticated by a security mechanism, set the unified login required configuration parameter to 1. Only the user with the sso_role can log in to the server with a user name and password when this configuration parameter is set:

`sp_configure "unified login required", [0|1]`

For example, to require all logins to be authenticated by a security mechanism, execute:

`sp_configure "unified login required", 1`

Establishing a secure default login

When a user with a valid credential from a security mechanism logs in to Adaptive Server, the server checks whether the user name exists in master..syslogins. If it does, Adaptive Server uses that user name. For example, if a user logs in to the DCE security mechanism as “ralph,” and “ralph” is in master..syslogins, Adaptive Server uses all roles and authorizations defined for “ralph” in the server.

However, if a user with a valid credential logs in to Adaptive Server, but is unknown to the server, the login is accepted only if a secure default login is defined with `sp_configure`. Adaptive Server uses the default login for any user who is not defined in master..syslogins, but who is preauthenticated by a security mechanism. The syntax is:

`sp_configure "secure default login", 0, login_name`

The default value for secure default login is “guest.”

A secure default login must also be a valid login in master..syslogins. For example, to set the “gen_auth” as the default login:

1 Use `sp_addlogin` to add the login as a valid user in Adaptive Server:

 `sp_addlogin gen_auth, pwgenau`

 This procedure sets the initial password to “pwgenau”.

504 Adaptive Server Enterprise
2 Designate the login as the security default:

```
sp_configure "secure default login", 0, gen_auth
```

Adaptive Server uses this login for a user who is preauthenticated by a security mechanism but is unknown to Adaptive Server.

Note More than one user can assume the suid associated with the secure default login. Therefore, you might want to activate auditing for all activities of the default login. You may also want to consider using `sp_addlogin` to add all users to the server.

See “Adding logins to support unified login” on page 507 and “Adding logins to Adaptive Server” on page 399.

Mapping security mechanism login names to server names

Some security mechanisms may allow login names that are invalid in Adaptive Server. For example, login names that are longer than 30 characters, or login names containing special characters such as !, %, *, and & are invalid in Adaptive Server. All login names in Adaptive Server must be valid identifiers.

Table 16-4 shows how Adaptive Server converts invalid characters in login names:

<table>
<thead>
<tr>
<th>Invalid characters</th>
<th>Converts to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampersand &</td>
<td>Underscore _</td>
</tr>
<tr>
<td>Apostrophe '</td>
<td></td>
</tr>
<tr>
<td>Backslash \</td>
<td></td>
</tr>
<tr>
<td>Colon :</td>
<td></td>
</tr>
<tr>
<td>Comma ,</td>
<td></td>
</tr>
<tr>
<td>Equals sign =</td>
<td></td>
</tr>
<tr>
<td>Left quote '</td>
<td></td>
</tr>
<tr>
<td>Percent %</td>
<td></td>
</tr>
<tr>
<td>Right angle bracket ></td>
<td></td>
</tr>
<tr>
<td>Right quote '</td>
<td></td>
</tr>
<tr>
<td>Tilde ~</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Adaptive Server for network-based security

Requiring message confidentiality with encryption

To require all messages into and out of Adaptive Server to be encrypted, set the `msg confidentiality reqd` configuration parameter to 1. If this parameter is 0 (the default), message confidentiality is not required but may be established by the client. The syntax is:

```
sp_configure "configuration_parameter", [0 | 1]
```

For example, to require that all messages be encrypted, execute:

```
sp_configure "msg confidentiality reqd", 1
```

Requiring data integrity

Adaptive Server allows you to use the `msg integrity reqd` configuration parameter to require that one or more types of data integrity be checked for all messages. Set `msg integrity reqd` to 1 to require that all messages be checked for general tampering. If `msg integrity reqd` is 0 (the default), message integrity is not required but may be established by the client if the security mechanism supports it.

<table>
<thead>
<tr>
<th>Invalid characters</th>
<th>Converts to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caret ^</td>
<td>Dollar sign $</td>
</tr>
<tr>
<td>Curly braces { }</td>
<td></td>
</tr>
<tr>
<td>Exclamation point !</td>
<td></td>
</tr>
<tr>
<td>Left angle bracket <</td>
<td></td>
</tr>
<tr>
<td>Parenthesis ()</td>
<td></td>
</tr>
<tr>
<td>Period .</td>
<td></td>
</tr>
<tr>
<td>Question mark ?</td>
<td></td>
</tr>
<tr>
<td>Asterisk *</td>
<td>Pound sign #</td>
</tr>
<tr>
<td>Minus sign -</td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td></td>
</tr>
<tr>
<td>Plus sign +</td>
<td></td>
</tr>
<tr>
<td>Quotation marks "</td>
<td></td>
</tr>
<tr>
<td>Semicolon ;</td>
<td></td>
</tr>
<tr>
<td>Slash /</td>
<td></td>
</tr>
<tr>
<td>Square brackets []</td>
<td></td>
</tr>
</tbody>
</table>
Memory requirements for network-based security

Allocate approximately 2K additional memory per secure connection. The value of the `max total_memory` configuration parameter specifies the amount of memory that Adaptive Server requires at start-up. For example, if your server uses 2K logical pages, and if you expect the maximum number of secure connections occurring at the same time to be 150, increase the `max total_memory` parameter by 150, which increases memory allocation by 150 2K blocks.

The syntax is:

```
sp_configure "max total_memory", value
```

For example, if Adaptive Server requires 75,000 2K blocks of memory, including the increased memory for network-based security, execute:

```
sp_configure "max total_memory", 75000
```


Adding logins to support unified login

When users log in to Adaptive Server with a preauthenticated credential, Adaptive Server:

1. Checks whether the user is a valid user in `master..syslogins`. If the user is listed in `master..syslogins`, Adaptive Server accepts the login without requiring a password.

2. If the user name is not in `master..syslogins`, Adaptive Server checks whether a default secure login is defined. If the default login is defined, the user is logged in successfully using the default. If a default login is not defined, the user cannot log in.

Therefore, consider whether you want to allow only those users who are defined as valid logins to use Adaptive Server, or whether you want users to be able to log in with the default login. To define the default, add the default login in `master..syslogins` and use `sp_configure`. See “Establishing a secure default login” on page 504.
General procedure for adding logins

Follow the general procedure described in Table 16-5 to add logins to the server and, optionally, to add users with appropriate roles and authorizations to one or more databases.

Table 16-5: Adding logins and authorizing database access

<table>
<thead>
<tr>
<th>Task</th>
<th>Required role</th>
<th>Command or procedure</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Add a login for the user.</td>
<td>System security officer</td>
<td>sp_addlogin</td>
<td>“Adding logins to Adaptive Server” on page 399</td>
</tr>
<tr>
<td>2. Add the user to one or more databases.</td>
<td>System administrator or Database owner</td>
<td>sp_adduser – execute this procedure from within the database.</td>
<td>“Adding users to databases” on page 402</td>
</tr>
<tr>
<td>3. Add the user to a group in a database.</td>
<td>System administrator or Database owner</td>
<td>sp_changegroup – execute this procedure from within the database.</td>
<td>“Changing a user’s group membership” on page 427</td>
</tr>
<tr>
<td>4. Grant system roles to the user.</td>
<td>System administrator or system security officer</td>
<td>grant role</td>
<td>“Creating and assigning roles to users” on page 408</td>
</tr>
<tr>
<td>5. Create user-defined roles and grant the roles to users.</td>
<td>System security officer</td>
<td>create role grant role</td>
<td>“Creating and assigning roles to users” on page 408 in the Reference Manual</td>
</tr>
</tbody>
</table>

Establishing security for remote procedures

Adaptive Server acts as the client when it connects to another server to execute a remote procedure call (RPC).

One physical connection is established between the two servers. The servers use the physical connection to establish one or more logical connections—one logical connection for each RPC.
Security model A

In security model A, which is the default, Adaptive Server does not support security services such as message confidentiality via encryption between the two servers.

Security model B

In security model B, the local Adaptive Server receives a credential from the security mechanism and uses the credential to establish a secure physical connection with the remote Adaptive Server. You can use one or more of these security services with model B:

- Mutual authentication – the local server authenticates the remote server by retrieving the credential of the remote server and verifying it with the security mechanism. The credentials of both servers are authenticated and verified.
- Message confidentiality via encryption – messages are encrypted when sent to the remote server, and results from the remote server are encrypted.
- Message integrity – messages between the servers are checked for tampering.

Unified login and the remote procedure models

If the local server and remote server are set up to use security services, you can use unified login on both servers with either model, using one of these two methods:

- The system security officer defines a user as “trusted” with `sp_remoteoption` on the remote server. A security mechanism such as DCE authenticates the user and password. The user gains access to the local server using a “unified login” and executes an RPC on the remote server. The user is trusted on the remote server and does not need to supply a password.
- A user specifies a password for the remote server when he or she connects to the local server. The facility to specify a remote server password is provided by the `ct_remote_pwd` routine available with Open Client Client-Library/C. See the Open Client Client-Library/C Reference Manual.
Establishing the security model for RPCs

To establish the security model for RPCs for model A and B, use sp_serveroption. The syntax is:

```
sp_serveroption server, optname, [true | false]
```

To establish the security model, set `optname` to `rpc security model A` or `rpc security model B`. `server` names the remote server.

For example, to set security model B for remote server TEST3, execute:

```
sp_serveroption test3, "rpc security model B", true
```

The default model is “A.” No server options need to be set for model A.

Rules for setting up security model B for RPCs

Follow these rules when setting up security model B for RPCs:

- Both servers must be using security model B.
- Both servers must be using the same security mechanism, and that security mechanism must support the security services set with `sp_serveroption`.
- The system security officer of the local server must specify any security services that are required by the remote server. For example, if the remote server requires that all messages use the message confidentiality security service, the system security officer must use `sp_serveroption` to activate `use message confidentiality`.
- Logins that are authenticated by a security mechanism and log in to Adaptive Server using “unified login” cannot execute RPCs on the remote procedure unless the logins are specified as “trusted” on the remote server, or the login specifies the password for the remote server. Users, when they use Open Client Client-Library, can use the routine `ct_remote_pwd` to specify a password for server-to-server connections. A system administrator on Adaptive Server can use `sp_remoteoption` to specify that a user is trusted to use the remote server without specifying a password.

Preparing to use security model B for RPCs

Table 16-6 provides steps for using security model B to establish security for RPCs.
Table 16-6: Using security model B for RPCs

<table>
<thead>
<tr>
<th>Task, who performs it, and where</th>
<th>Command, system procedure, or tool</th>
<th>See</th>
</tr>
</thead>
</table>
| **System administrator from the operating system:** | UNIX: dscp Desktop: dsedit | “Specifying security information for the server” on page 498
dscp in the Open Client/Server Configuration Guide for UNIX
dsedit in the Open Client/Server Configuration Guide for Desktop Platforms |
| 1. Make sure the interfaces file or the Directory Service contains an entry for both servers and a secmech line listing the security mechanism. | | |
| **System security officer on remote server:** | sp_addserver
Example:
sp_addserver *lcl_server* | “Adding a remote server” on page 481
| 2. Add the local server to master..sysservers. | | |
| **System security officer on remote server:** | sp_addlogin
Example:
sp_addlogin user1, "pwuser1" | “Adding logins to Adaptive Server” on page 399
sp_addlogin in the Reference Manual |
| 3. Add logins to master..syslogins. | | |
| **System security officer on remote server:** | sp_configure – to set use security services.
sp_serveroption – to set the RPC security model.
Example:
sp_configure "use security services", 1
sp_serveroption lcl_server, "rpc security model B", true | “Establishing the security model for RPCs” on page 510
“Enabling network-based security” on page 503
use security services in Chapter 5, “Setting Configuration Parameters”
sp_configure and sp_serveroption in the Reference Manual: Procedures |
| 4. Set use security services on, and set the rpc security model B as the model for connections with the local server. | | |
| **System administrator on remote server:** | sp_remoteoption
Example:
sp_remoteoption lcl_server, user1, user1, trusted, true | “Password checking for remote users” on page 490
sp_remoteoption in the Reference Manual: Procedures |
| 5. Optionally, specify certain users as “trusted” to log in to the remote server from the local server without supplying a password. | | |
| **System security officer on local server:** | sp_addserver
Example:
sp_addserver lcl_server, local
sp_addserver rem_server | “Adding a remote server” on page 481
sp_addserver in the Reference Manual: Procedures |
| 6. Add both the local server and the remote server to master..syssservers. | | |
Configuring Adaptive Server for network-based security

<table>
<thead>
<tr>
<th>Task, who performs it, and where</th>
<th>Command, system procedure, or tool</th>
<th>See</th>
</tr>
</thead>
</table>
| **System security officer on local server:**
7. Add logins to master.logins. | sp_addlogin
Example: `sp_addlogin user1, "pwuser1"` | “Adding logins to Adaptive Server” on page 399
sp_addlogin in the Reference Manual: Procedures |
| **System security officer on local server:**
8. Set use security services on, and set the rpc security model B as the model for connections with the remote server. | sp_configure – to set use security services.
sp_serveroption – to set the RPC security model.
Example:
`sp_configure "use security services", 1
sp_serveroption rem_server, "rpc security model B", true` | “Establishing the security model for RPCs” on page 510
“Enabling network-based security” on page 503
use security services in Chapter 5, “Setting Configuration Parameters”
sp_configure and sp_serveroption in the Reference Manual: Procedures |
| **System security officer on local server:**
9. Specify the security mechanism and the security services to use for connections with the remote server. | sp_serveroption
Example:
`sp_serveroption rem_server, "security mechanism", dce
sp_serveroption rem_server, "use message integrity", true` | “Setting server connection options” on page 483
sp_serveroption in the Reference Manual: Procedures |

Example of setting up security model B for RPCs

This example assumes that:

- A local server, “lcl_serv,” runs RPCs on a remote server, “rem_serv.”
- Both servers use security model B and the DCE security service.
- The mutual authentication and message integrity RPC security services are in effect.
- “User1” and “user2” use unified logins to log in to the local server, “lcl_serv,” and run RPCs on “rem_serv.” These users are “trusted” on “rem_serv” and need not specify a password for the remote server.
- “User3” does not use a unified login, is not trusted, and must supply a password to Adaptive Server when logging in.

To set up security for RPCs between the servers:

The interfaces file or Directory Service must have entries for “rem_serv” and “lcl_serv.” Each entry should specify the “dce” security service. For example, you might have these interfaces entries, as created by the dsdap utility:
System security officer on remote server “rem_serv” issues:

```
sp_addserver 'lcl_serv'
sp_addlogin user1, "eracg12"
sp_addlogin user2, "esirpret"
sp_addlogin user3, "drabmok"
sp_configure "use security services", 1
sp_serveroption lcl_serv, "rpc security model B", true
sp_serveroption lcl_serv, "security mechanism", dce
```

System administrator on remote server “rem_serv” issues:

```
sp_remoteoption lcl_serv, user1, user1, trusted, true
sp_remoteoption lcl_serv, user2, user2, trusted, true
```

System security officer on local server “lcl_serv” issues:

```
sp_addserver lcl_serv, local
sp_addserver rem_serv
sp_addlogin user1, "eracg12"
sp_addlogin user2, "esirpret"
sp_addlogin user3, "drabmok"
sp_configure "use security services", 1
sp_configure rem_serv, "rpc security model B", true
sp_serveroption rem_serv, "security mechanism", dce
sp_serveroption rem_serv, "mutual authentication" true
sp_serveroption rem_serv, "use message integrity" true
```

Note To use the security services on either server, you must restart the server so the `use security services` static parameter takes effect.
Getting information about remote servers

`sp_helpserver` displays information about servers. When you run `sp_helpserver` without an argument, it provides information about all the servers listed in `sysservers`. You can specify a particular server to receive information about that server. The syntax is:

```
sp_helpserver [server]
```

For example, to display information about the GATEWAY server, execute:

```
sp_helpserver GATEWAY
```

Connecting to the server and using the security services

The `isql` and `bcp` utilities include the following command line options to enable network-based security services on the connection:

- `-K keytab_file`
- `-R remote_server_principal`
- `-V security_options`
- `-Z security_mechanism`

These options are described in the following paragraphs.

- `-K keytab_file` – can be used only with DCE security, and specifies a DCE keytab file that contains the security key for the user logging in to the server. You can create keytab files with the DCE `dcecp` utility—see your DCE documentation.

 If the `-K` option is not supplied, the `isql` user must be logged in to DCE. If the user specifies the `-U` option, the name specified with `-U` must match the name defined for the user in DCE.

- `-R remote_server_principal` – specifies the principal name for the server as defined to the security mechanism. By default, a server’s principal name matches the server’s network name (which is specified with the `-S` option or the DSQUERY environment variable). The `-R` option must be used when the server’s principal name and network name are not the same.
• \(-V\) security_options – specifies network-based user authentication. With this option, the user must log in to the network’s security system before running the utility. In this case, if a user specifies the \(-U\) option, the user must supply the network user name known to the security mechanism; any password supplied with the \(-P\) option is ignored. \(-V\) can be followed by a security_options string of key-letter options to enable additional security services. These key letters are:
 • c – enables data confidentiality service.
 • i – enables data integrity service.
 • m – enables mutual authentication for connection establishment.
 • o – enables data origin stamping service.
 • r – enables data replay detection.
 • q – enables out-of-sequence detection.
• \(-Z\) security_mechanism – specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the libtcl.cfg configuration file. If no security_mechanism name is supplied, the default mechanism is used. See the Open Client/Server Configuration Guide for your platform.

If you log in to the security mechanism and then log in to Adaptive Server, you do not need to specify the isql \(-U\) option because Adaptive Server gets the user name from the security mechanism. For example, consider the following session:

```
svrssole4% dce_login user2
Enter Password:
svrssole4% $SYBASE/bin/isql_r -V
1> select suser_name()
2> go
-------------------------------
user2
```

For this example, “user2” logs in to DCE with dce_login and then logs in to Adaptive Server without specifying the \(-U\) option. The \(-V\) option without parameters implicitly specifies one security service: unified login.

For more information about Adaptive Server utilities, see the Utility Guide.
Configuring Adaptive Server for network-based security

If you are using Client-Library to connect to Adaptive Server, you can define security properties before connecting to the server. For example, to check message sequencing, set the CS_SEC_DETECTSEQ property. For information about using security services with Client-Library, see the Open Client Client-Library/C Reference Manual.

Example using security services

This example assumes that your login is “mary” and you want to use the DCE security mechanism with unified login (always in effect when you specify the -V option of isql or bcp), message confidentiality, and mutual authentication for remote procedures. You want to connect to server WOND and run remote procedures on GATEWAY with mutual authentication. Assuming that a system security officer has set up both WOND and GATEWAY for rpc model B, added you as a user on both servers, and defined you as a remote, “trusted” user on GATEWAY, you can use the following process:

1. Log in to the DCE security mechanism and receive a credential:
   ```
   dce_login mary
   ```
2. Log in to the Adaptive Server with isql:
   ```
   isql -SWOND -Vcm
   ```
3. Run:
   ```
   GATEWAY...sp_who
   GATEWAY...mary_prc1
   GATEWAY...mary_prc2
   ```

Now, all messages that Mary sends to the server and receives from the server are encrypted (message confidentiality), and when she runs remote procedures, both the WOND and GATEWAY servers are authenticated.

Using security mechanisms for the client

Adaptive Server, when it is started, determines the set of security mechanisms it supports. See “Determining supported security services and mechanisms” on page 517. From the list of supported security mechanisms, Adaptive Server must choose the one to be used for a particular client.

If the client specifies a security mechanism (for example with the -Z option of isql), Adaptive Server uses that security mechanism. Otherwise, it uses the first security mechanism listed in the libtcl.cfg file.
Getting information about available security services

Adaptive Server lets you determine:

- What security mechanisms and services are supported by Adaptive Server
- What security services are active for the current session
- Whether a particular security service is enabled for the session

Determining supported security services and mechanisms

A system table, `syssecmechs`, provides information about the security mechanisms and security services supported by Adaptive Server. The table, which is dynamically built when you query it, contains these columns:

- `sec_mech_name` – is the name of the security mechanism; for example, the security mechanism might be “dce” or “NT LANMANAGER.”
- `available_service` – is the name of a security service supported by the security mechanism; for example, the security service might be “unified login.”

The table may have several rows for a single security mechanism: one row for each security service supported by the mechanism.

To list all the security mechanisms and services supported by Adaptive Server, run:

```sql
select * from syssecmechs
```

The result might look something like this:

<table>
<thead>
<tr>
<th>sec_mech_name</th>
<th>available_service</th>
</tr>
</thead>
<tbody>
<tr>
<td>dce</td>
<td>unifiedlogin</td>
</tr>
<tr>
<td>dce</td>
<td>mutualauth</td>
</tr>
<tr>
<td>dce</td>
<td>delegation</td>
</tr>
<tr>
<td>dce</td>
<td>integrity</td>
</tr>
<tr>
<td>dce</td>
<td>confidentiality</td>
</tr>
<tr>
<td>dce</td>
<td>detectreplay</td>
</tr>
<tr>
<td>dce</td>
<td>detectseq</td>
</tr>
</tbody>
</table>

Determining active security services

To determine which security services are active for the current session, use the function `show_sec_services`:

```sql
select show_sec_services()
```
Determining whether a security service is enabled

To determine whether a particular security service, such as “mutualauth” is enabled, use the function `is_sec_service_on`:

```sql
is_sec_service_on(security_service_nm)
```

Where `security_service_nm` is a security service that is available:

Use the security server that is returned when you query `syssecmechs`.

For example, to determine whether “mutualauth” is enabled, execute:

```sql
select is_sec_service_on("mutualauth")
```

```sql
1
```

(1 row affected)

A result of 1 indicates the security service is enabled for the session. A result of 0 indicates the service is not in use.

Using Kerberos

Kerberos is a network authentication protocol that uses secret-key cryptography so that a client can prove its identity to a server across a network connection. User credentials are obtained when the user logs in to the operating system, or by executing an authentication program. Each application uses these credentials to perform authentication. Users only have to log in once, instead of having to log in to each application.

Kerberos assumes the key distribution center (KDC) is running and properly configured for your realm, and the client libraries are installed under or on each client host in your realm. For configuration information, consult the documentation and the reference pages that come with the Kerberos software.

Adaptive Server supports Kerberos through:

- CyberSafe Kerberos libraries
- MIT Kerberos libraries, version 1.3.1
Native libraries

Note To enable Kerberos security options, you must have ASE_SECDIR, the “Security and directory services” package.

Kerberos compatibility

Table 16-7 shows which variation of Kerberos is supported on which platforms.

<table>
<thead>
<tr>
<th>Hardware platforms</th>
<th>KDC server</th>
<th>Generic security standard (GSS) client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris 32</td>
<td>CSF, AD, MIT</td>
<td>CSF, MIT, Native</td>
</tr>
<tr>
<td>Solaris 64</td>
<td>CSF, AD, MIT</td>
<td>CSF, MIT, Native</td>
</tr>
<tr>
<td>Linux 32</td>
<td>CSF, AD, MIT</td>
<td>MIT, Native</td>
</tr>
<tr>
<td>Windows 32</td>
<td>CSF, AD</td>
<td>CSF</td>
</tr>
<tr>
<td>AIX 32</td>
<td>CSF</td>
<td>CSF</td>
</tr>
</tbody>
</table>

Use the following keys to read the interoperability matrix:

- CSF – CyberSafe Ltd.
- AD – Microsoft Active Directory
- MIT – MIT version 1.3.1

Starting Adaptive Server under Kerberos

To start Adaptive Server under Kerberos, add the Adaptive Server name to the KDC and extract the service key to a key table file. For example:

```
/krb5/bin/admin admin/ASE -k -t /krb5/v5srvtab -R“
addrn my_ase; mod
my_ase attr nopwchg; ext -n my_ase eytabfile.krb5”
Connecting as: admin/ASE
Connected to csfA5v01 in realm ASE.
Principal added.
Principal modified.
Key extracted.
```
Disconnected.

Note The administrator can also be authenticated using a password on the command line. In this example, the `-k` option is used, which tells the administrator to search the `/krb5/v5srvtab` file (specified using the `-t` option) for the administrator and the Adaptive Server key, instead of prompting for a password, which is useful for writing shell scripts.

Configuring Kerberos

The configuration process is similar, regardless of which variety of Kerberos you use.

1. Set up Kerberos third-party software and create a Kerberos administrative user. To do this, you must:
 a. Install Kerberos client software on machines where Open Client Server clients or Adaptive Server will run. The following client packages have been verified to work with:
 - CyberSafe TrustBroker 4.0
 - MIT Kerberos version 1.3.1
 b. Install the Kerberos KDC server on a separate, dedicated machine.
 Note KDCs from CyberSafe TrustBroker 4.0, MIT Kerberos v.1.3.1, and Microsoft Windows Active Directory have been verified for use with Adaptive Server.
 c. Create an administrator account with administration privileges on the Kerberos server. This account is used for subsequent client actions such as creating principals from the client machines.
 Note Execute the remainder of these steps on the Kerberos client machine.

2. Add Kerberos principal for Adaptive Server `ase120srv` or `ase120srv@MYREALM`.

3. Extract the `keytab` file for principal `ase120srv@MYREALM` and store it as a file:

   ```bash
   /krb5/v5srvtab
   ```
CHAPTER 16 External Authentication

The following UNIX examples use the command line tool kadmin, available with CyberSafe or MIT Kerberos (there are also GUI tools available to administer Kerberos and users):

 CyberSafe Kadmin:
 % kadmin aseadmin
 Principal - aseadmin@MYREALM
 Enter password:
 Connected to csfA5v01 in realm ASE.
 Command: add ase120srv
 Enter password:
 Re-enter password for verification:
 Principal added.
 Command: ext -n ase120srv
 Service Key Table File Name (/krb5/v5srvtab):
 Key extracted.
 Command: quit
 Disconnected.

 In a production environment, control the access to the keytab file. If a user can read the keytab file, he or she can create a server that impersonates your server.

 Use chmod and chgrp so that /krb5/v5srvtab is:

 -rw-r----- 1 root sybase 45 Feb 27 15:42 /krb5/v5srvtab

 When using Active Directory as the KDC, log in to the Domain Controller to add users and Adaptive Server principals. Use the Active Directory Users and Computers wizard to guide you through creating users and principals.

 Extracting the keytab file for use with Adaptive Server requires an optional tool called ktpass, which is included in the Microsoft Support Tools package.

 With Active Directory, extracting the keytab with ktpass is a separate step from creating the principal. The keytab file on Windows for Adaptive Server is located with the CyberSafe program files. For example, c:\Program Files\CyberSafe\v5srvtab is the expected location of the Adaptive Server keytab file when CyberSafe software is installed on the C: drive.

 Add a Kerberos principal for the user "sybuser1" as "sybuser1@MYREALM".
Configuring Adaptive Server for network-based security

Start Adaptive Server and use isql to log in as “sa”. The following steps configure Adaptive Server parameters to use Kerberos security services, and create the user login account. These are the same on both Windows or UNIX machines:

- Change configuration parameter use security services to 1:

 \[
 \text{sp_configure 'use security services', 1}
 \]

- Add a new login for user, “sybuser1” and then add the user:

 \[
 \text{sp_addlogin sybuser1, password}
 \]

Shut down Adaptive Server and modify administrative files and connectivity configuration files.

- On UNIX platforms, the interfaces file is under $SYBASE/ and has an entry that looks similar to:

 \[
 \text{ase120srv}
 \quad \text{master tli tcp myhost 2524}
 \quad \text{query tli tcp myhost 2524}
 \quad \text{secmech 1.3.6.1.4.1.897.4.6.6}
 \]

 On Windows platforms, the sql.ini file is in %SYBASE%\ini, and has an equivalent server entry that looks like:

 \[
 \text{[ase120srv]}
 \quad \text{master=TCP,myhost,2524}
 \quad \text{query=TCP,myhost,2524}
 \quad \text{secmech=1.3.6.1.4.1.897.4.6.6}
 \]

- The libtcl.cfg or libtcl64.cfg file is located in $SYBASE/\SYBASE_OCS/config/ on UNIX platforms. The SECURITY section should have an entry that looks similar to the following for CyberSafe Kerberos client libraries:

 \[
 \text{[SECURITY]}
 \quad \text{csfkrb5=libsybskrb.so secbase=@MYREALM}
 \quad \text{libgss=/krb5/lib/libgss.so}
 \]

 A 64-bit CyberSafe Kerberos client library entry follows:

 \[
 \text{[SECURITY]}
 \quad \text{csfkrb5=libsybskrb64.so secbase=@MYREALM libgss=}
 \quad \text{/krb5/appsec-rt/lib/64/libgss.so}
 \]

 For a machine that uses MIT Kerberos client libraries, the entry looks something like:
[SECURITY]
csfkrb5=libsybskrb.so
secbase=@MYREALM
libgss=/opt/mitkrb5/lib/libgssapi_krb5.so

For a machine that uses Native OS provided libraries, such as Linux, it looks similar to:

[SECURITY]
csfkrb5=libsybskrb.so secbase=@MYREALM
libgss=/usr/kerberos/lib/libgssapi_krb5.so

On Windows, the %SYBASE%\%SYBASE_OCS%\ini\libtcl.cfg file contains an entry like:

[SECURITY]
csfkrb5=libskrb secbase=@MYREALM
libgss=\WinNT\System32\gssapi32.dll

Note The libgss=<gss shared object path> specifies the GSS API library to be used. You must distinctly locate the Kerberos Client libraries being used, especially when multiple versions are installed on a machine.

- Also check the objectid.dat under $SYBASE/$SYBASE_OCS/config/ and make sure the [secmech] section has an entry for csfkrb5:

 [secmech]
 1.3.6.1.4.1.897.4.6.6 = csfkrb5

7 You can use environment variables to override default locations of keytab files, Kerberos configuration, and realm configuration files. This is Kerberos-specific behavior and may not work consistently on all platforms.

For example, use the CSFC5KTNAME environment variable on CyberSafe UNIX platforms to specify the keytab file:

% setenv CSFC5KTNAME /krb5/v5srvtab

For MIT Kerberos, the equivalent environment variable is KRB5_KTNAME.

See the vendor documentation for information about these environment variables.
You may need to modify the environment variable for dynamic library search paths. On UNIX, the most commonly used environment variable is LD_LIBRARY_PATH; on Windows, PATH is typically set to include DLL locations. You may need to modify these environment variables to enable applications to load the third-party objects correctly. For example, this command adds the location of CyberSafe 32-bit libgss.so shared object to the search path in a C-shell environment:

```
% set path = ( /krb5/lib $path )
```

8 Restart Adaptive Server. You should see:

```
00:0000:0000:2001/07/25 11:43:09.91 server
Successfully initialized the security mechanism 'csfkrb5'. The SQL Server will support use of this security mechanism.
```

9 Use isql as UNIX user "sybuser1" (without the -U and -P arguments) to connect:

```
% $SYBASE/$SYBASE_OCS/bin/isql -Sase120srv -V
1>...
```

You can also use the encryption option:

```
$SYBASE/$SYBASE_OCS/bin/isql -Sase120srv -Vc
```

Using principal names

The principal name is the name the server uses to authenticate with the Kerberos key distribution center (KDC). When you have multiple instances of Adaptive Server running, you must have different principal names for each Adaptive Server.

Specifying the Adaptive Server principal name

Use the DLISTEN and DSQUERY environment variables, or the dataserver -s server_name command line option to specify the Adaptive Server name.

Use either the setenv command or the -k dataserver option to set the principal name.

By default, the principal name is the name of Adaptive Server. To specify a different name, set SYBASE_PRINCIPAL before starting Adaptive Server to use Kerberos:

```
setenv SYBASE_PRINCIPAL <name of principal>
```
Once you have set an Adaptive Server principal name, Adaptive Server uses the value of this variable to authenticate itself to Kerberos.

To specify an Adaptive Server principal name when starting Adaptive Server, use:

```
-k <server principal name>
```

When you start an Adaptive Server with the Kerberos security mechanism enabled, Adaptive Server first uses the principal name specified with the `-k` option for Kerberos authentication. If the `-k` option is not specified, Adaptive Server looks for the principal name in the environment variable `SYBASE_PRINCIPAL`. If neither is specified, Adaptive Server uses the server name for authentication.

Adaptive Server accepts Kerberos Open Client connections that use different server principal names if the entry for the principal name is present in the `keytab` file. To allow connections with different principal names:

- Pass an empty string as a parameter for the `-k` option, or
- Set the `SYBASE_PRINCIPAL` environment variable to "". For example:

  ```
  export SYBASE_PRINCIPAL=""
  ```

Example

In this example, the Adaptive Server name is "secure_ase" and the realm name is "MYREALM.COM." The Adaptive Server name is specified on the command line with `-s` parameter to the `dataserver`. The current realm is specified in `libtcl.cfg` by a `secbase` attribute value:

```
[SECURITY]
  csfkrb5=libskrb.so libgss=/krb5/lib/libgss.so
  secbase=@MYREALM.COM
```

The default Adaptive Server principal name is "secure_ase@MYREALM.COM." If the principal name defined in the Adaptive Server `keytab` file is "aseprincipal@MYREALM.COM," you can override the default Adaptive Server principal name by setting a server principal name using options 1 or 2 below:

- **Option 1**, specify `-k "":**

  ```
  $SYBASE/$SYBASE_ASE/bin/dataserver -dmaster.dat
  -s secure_ase -k aseprincipal@MYREALM.COM
  ```

 The Adaptive Server principal name used to authenticate with Kerberos is "aseprincipal@MYREALM.COM."

- **Option 2**, set `SYBASE_PRINCIPAL`:**
Configuring Adaptive Server for network-based security

setenv SYBASE_PRINCIPAL aseprincipal@MYREALM.COM
$SYBASE/$SYBASE_ASE/bin/dataserver -dmaster.dat
 -s secure_ase

The Adaptive Server principal name used to authenticate with Kerberos is “aseprincipal@MYREALM.COM,” the value of $SYBASE_PRINCIPAL.

- Option 3, neither -k nor SYBASE_PRINCIPAL is set:
 % $SYBASE/$SYBASE_ASE/bin/dataserver -dmaster.dat
 -s secure_ase

The Adaptive Server principal name used to authenticate with Kerberos is “secure_ase@MYREALM.COM.”

Using sybmapname to handle user principal names

sybmapname converts external user principal names used in the Kerberos environment to the namespace of Adaptive Server user logins. You can customize the sybmapname shared object and map names specified in the Kerberos input buffer to names suitable for a login to the Adaptive Server output buffer.

Use the sybmapname shared object to perform the custom mapping between the user principal name and the Adaptive Server login name. This shared object is optionally loaded at server start-up, and the function syb__map_name contained in the shared object is called after a successful Kerberos authentication and just before the user principal is mapped to a login in the syslogins table. This function is useful when the user principal name and the login name to be mapped are not identical.

syb__map_name(NAMEMAPTYPE *protocol, char *orig, int origlen, char *mapped, int *mappedlen)

where:

- NAMEMAPTYPE *protocol – refers to a structure reserved for usage of this function.
- char *orig – is an input buffer that is not null-terminated.
- int origlen – is the input buffer length, which should be less than or equal to 255 characters.
- char *mapped – is an output buffer that should not be null-terminated.
- int *mappedlen – is an output buffer length, which should be less than or equal to 30.
syb_map_name returns a value greater than 0 if the mapping succeeds, or returns a value of 0 if no mapping occurred, and it returns a value less than 0 when an error occurs in syb_map_name. When an error occurs, reporting the mapping failure is written to the Adaptive Server error log.

For example, to authenticate a Kerberos user on Adaptive Server:

 A sample sybmapname.c file is located in $SYBASE/$SYBASE_ASE/sample/server/sybmapname.c.

2. Modify sybmapname.c to implement your logic. See “Precautions when using sybmapname” on page 529.

3. Build the shared object or DLL using the generic platform-specific makefile supplied. You may need to modify the makefile to suit your platform-specific settings.

4. Place the resulting shared object generated in a location specified in your $LD_LIBRARY_PATH on UNIX machines, and PATH variable on Windows machines. The file should have read and execute permissions for the “sybase” user.

 Note Sybase recommends that only the “sybase” user is allowed read and execute permissions, and that all other access should be denied.

Verifying your login to Adaptive Server using Kerberos authentication

To verify your login to Adaptive Server using Kerberos authentication, assume that:

- $SYBASE refers to your release and installation directory.
- $SYBASE_ASE refers to the Adaptive Server version directory that contains your server binary.
- $SYBASE_OCS refers to the Open Client/Server version directory.

Example 1 If a client’s principal name is user@REALM, and the corresponding entry in syslogins table is user_REALM, you can code sybmapname to accept the input string user@realm and to convert the input string to the output string user_REALM.
Example 2 If the client principal name is `user`, and the corresponding entry in `syslogins` table is `USER`, then `sbmapname` can be coded to accept the input string `user` and convert this string to uppercase string `USER`.

`sbmapname` is loaded by Adaptive Server at runtime and uses its logic to do the necessary mapping.

The following actions and output illustrate the `sbmapname` function described in Example 2. The `sbmapname.c` file containing the customized definition for `sb_map_name` should be compiled and built as a shared object (or DLL), and finally placed in the appropriate path location. Start Adaptive Server with the Kerberos security mechanism enabled.

To initialize the Ticket Granted Ticket (TGT), which is a encrypted file that provides identification:

```
$ /krb5/bin/kinit johnd@public
Password for johnd@public:
$ 
```

To list the TGT:

```
$ /krb5/bin/klist
 Cache Type: Kerberos V5 credentials cache
   Cache Name: /krb5/tmp/cc/krb5cc_9781
 Default principal: johnd@public 
```

Log in as “sa” and verify the user login for “johnd”:

```
$ $SYBASE/$SYBASE_OCS/bin/isql -Usa -P
   -Ipwd`/interfaces
 1> 

1> sp_displaylogin johnd
2> go
No login with the specified name exists.
(return status = 1)

1> sp_displaylogin JOHND
2> go
Suid: 4
 Loginame: JOHND
Fullname: 
 Default Database: master
 Default Language:
 Auto Login Script:
 Configured Authorization:
 Locked: NO
 Password expiration interval: 0
```
Password expired: NO
Minimum password length: 6
Maximum failed logins: 0
Current failed login attempts:
Authenticate with: ANY
(return status = 0)

Successful Kerberos authentication, maps lower-case johnd to uppercase JOHND using the sybmapname utility, and allows user johnd to log in to Adaptive Server:

```
$ $SYBASE/$SYBASE_OCS/bin/isql -V -I'pwd'/interfaces
```

Precautions when using sybmapname

When coding for sybmapname:

- Use caution when making modifications to the sample `sybmapname.c` program. Avoid using code that may create a segmentation fault, that may call exit, that may call system calls, that may change UNIX signals, or that makes any blocking calls. Improper coding or calls may interfere with the Adaptive Server engine.

Note Sybase bears no responsibility for coding errors in sybmapname.

- Code defensively, check all pointers before no longer referencing them, and avoid system calls. The functions you write must be quick name-filtering functions.
- Do not use goto statements since, depending on the platform, they may cause unexpected side effects.
- If you use multiple realms, use caution when mapping the user principal names to a suitable login name to reflect the realm information. For example, if you have two users whose user principal names are `userA@REALMONE` and `userB@REALMTWO`, respectively, map them to the login names `userA_REALMONE` and `userB_REALMTWO`, instead of `userA` or `userB`. This distinguishes the two users who belong to different realms.
Concurrent Kerberos authentication

Adaptive Server version 15.0.3 supports concurrent Kerberos authentication, whereas earlier versions used locking mechanisms during Kerberos authentication to protect internal data structures.

When there are concurrent logins using Kerberos authentication, Adaptive Server now establishes multiple Kerberos authentication sessions.

Version 15.0.3 also resolves an issue with concurrent login sessions, which may be blocked during Kerberos authentication. This concurrency issue occurs when you use prior versions of Adaptive Server with MIT version 1.3.x and 1.4.x Kerberos GSSAPI libraries.

Configuring Adaptive Server for LDAP user authentication

The LDAP user authentication allows client applications to send user name and password information to Adaptive Server for authentication by the LDAP server instead of syslogins. Authentication using the LDAP server allows you to use server-wide passwords instead of Adaptive Server or application-specific passwords.

LDAP user authentication is ideal if you want to simplify and centralize user administration, or want to avoid unnecessary complexities for user administration.

LDAP user authentication works with directory servers that meet Version 3 of the LDAP protocol standard, including Active Directory, iPlanet, and OpenLDAP Directory Server.

Use one of these authentication algorithms with LDAP user authentication:

- Composed DN for authentication, available for Adaptive Server version 12.5.1 or later, or,
- Searched DN for authentication, available for Adaptive Server version 12.5.2 and later.

These algorithms differ in how they obtain a user’s distinguished name (DN). The primary data structure used with the LDAP protocol is the LDAP URL.
An LDAP URL specifies a set of objects or values on an LDAP server. Adaptive Server uses LDAP URLs to specify an LDAP server and search criteria to use to authenticate login requests.

The LDAP URL uses this syntax:

```
ldapurl::=ldap://host:port/node/attributes [base | one | sub] filter
```

where:

- **host** – is the host name of the LDAP server.
- **port** – is the port number of the LDAP server.
- **node** – specifies the node in the object hierarchy at which to start the search.
- **attributes** – is a list of attributes to return in the result set. Each LDAP server may support a different list of attributes.
- **base | one | sub** – qualifies the search criteria. base specifies a search of the base node; one specifies a search of the base node and one sublevel below the base node; sub specifies a search of the base node and all node sublevels.
- **filter** – specifies the attribute or attributes to be authenticated. The filter can be simple, such as `uid=*`, or compound, such as `(uid=*)(ou=group)`.

Composed DN algorithm

This is the login sequence when you use the composed DN algorithm:

1. Open Client connects to an Adaptive Server listener port.
2. The Adaptive Server listener accepts the connection.
3. Open Client sends an internal login record.
5. Adaptive Server binds to the LDAP server with a DN composed from the primary URL and the login name from the login record. This bind also uses the password from the login record.
6. The LDAP server authenticates the user, returning either a success or failure message.
7. If the Primary URL specifies a search, then Adaptive Server sends the search request to the LDAP server.
8 The LDAP server returns the results of the search.
9 Adaptive Server accepts or rejects the login, based on the search results.

Searched DN algorithm

This is the login sequence when you use the searched DN algorithm:
1 Open Client connects to an Adaptive Server listener port.
2 The Adaptive Server listener accepts the connection.
3 Open Client sends an internal login record.
4 Adaptive Server reads the login record.
5 Adaptive Server binds to the LDAP server with a directory server access account.
 The connection established in steps 5 and 6 may persist between authentication attempts from Adaptive Server to reuse connections to DN searches.
6 The LDAP server authenticates the user, returning either a success or failure message.
7 Adaptive Server sends search requests to the LDAP server based on the login name from the login record and the DN lookup URL.
8 The LDAP server returns the results of the search.
9 Adaptive Server reads the results to obtain an a value of attribute from the DN lookup URL.
10 Adaptive Server uses the value of attribute as the DN and the password from the login record to bind to the LDAP server.
11 The LDAP server authenticates the user, returning either a success or failure message.
12 If the primary URL specifies a search, Adaptive Server sends the search request to the LDAP server.
13 The LDAP server returns the results of the search.
14 Adaptive Server accepts or rejects the login, based on the search results.
Adaptive Server reports a generic login failure to the client if any of these authentication criteria are not met.
You may skip steps 12 and 13 by not specifying search criteria in the primary or secondary URL strings. The authentication completes, displaying the success or failure returned by step 11.

Configuring LDAP

These are the steps for configuring Adaptive Server for LDAP authentication.

1. Specify the Adaptive Server LDAP URL search strings and access account values.
2. Set `enable ldap user auth` to 2.
3. Add users in the LDAP directory server using LDAP vendor-supplied tools.
4. Add users to Adaptive Server using `sp_addlogin`. You can also use `sp_maplogin` to automatically create login accounts upon authentication or apply other login controls.

Migrating existing Adaptive Servers to LDAP

To avoid disruption of service in existing server installations, migrate Adaptive Server to LDAP:

- Specify an LDAP URL search string to Adaptive Server.
- Set the configuration parameter `enable ldap user auth` to 1.
- Add users in the LDAP directory server.
- When all users are added to the LDAP server, set `enable ldap user auth` to 2 to require all authentications to be performed with LDAP, or use `sp_maplogin` to override configuration parameters with login controls.

LDAP user authentication administration

Use `sp_ldapadmin` to create or list an LDAP URL search string, verify an LDAP URL search string or login, and specify the access accounts and tunable LDAP user authentication (LDAPUA) related parameters. You must have the SSO role to execute `sp_ldapadmin`.

See the *Reference Manual: Commands.*
If you use a simple LDAP server topology and schema, you can use a composed DN algorithm for user authentication. If you use commercially available schemas (for example, iPlanet Directory Servers or OpenLDAP Directory Servers), users are created as objects in the same container in the LDAP server tree, and Adaptive Server determines the user’s DN from the object’s location. However, there are restrictions on the LDAP server’s schema:

- You must specify the filter with the attribute name that uniquely identifies the user to be authenticated.
- You must specify the filter with the attribute name=*. The asterisk is a wildcard character. The appropriate attribute name to use in the filter depends on the schema used by the LDAP server.
- The Adaptive Server login name is the same as the short user name for example, a UNIX user name.
- The DN uses the short user name rather than a full name with embedded spaces or punctuation. For example, jqpublic meets the restriction for a DN, but “John Q. Public” does not.

iPlanet example

LDAP vendors may use different object names, schema, and attributes than those used in these examples. There are many possible LDAP URL search strings, and valid sites may also extend schemas locally or use them in ways that differ from each other:

- This example uses the uid=* filter. To compose the DN, Adaptive Server replaces the wildcard with the Adaptive Server login name to be authenticated, and appends the resulting filter to the node parameter in the LDAP URL. The resulting DN is:

 \[
 uid=myloginname,ou=People,dc=mycompany,dc=com
 \]

- After a successful bind operation, Adaptive Server uses the connection to search for attribute names, such as uid, that are equal to the login name:

 \[
 sp_ldapadmin set_primary_url, \\
 'ldap://myhost:389/ou=People,dc=mycompany,dc=com??sub?uid=*
 '\]

- This example uses the schema defined in OpenLDAP 2.0.25, with an attribute name of cn.

The composed DN is:

\[
sp_ldapadmin set_primary_url, \\
'ldap://myhost:389/dc=mycompany,dc=com??sub?cn=*'
\]
Use the searched DN to use an Active Directory server or other LDAP server environment that does not meet the restrictions to use the composed DN algorithm.

- Perform these steps for an Active Directory server using a commercially available user schema from a Windows 2000 Server.

 a. Set the access account information:

  ```
  sp_ldapadmin set_access_acct, 
  'cn=Admin Account, cn=Users, dc=mycompany, dc=com', 
  'Admin Account secret password'
  ```

 b. Set the primary URL:

  ```
  sp_ldapadmin set_primary_url, 'ldap://hostname:389/
  ```

 c. Set the DN lookup URL search string:

  ```
  sp_ldapadmin set_dn_lookup_url, 
  ```

 On Windows 2000, the short name is typically referred to as the “User Logon Name” and is given the attribute name `samaccountname` in the default schema. This is the attribute name used to match the Adaptive Server login name. The DN for a user contains a full name with punctuation and embedded spaces (for example, `cn=John Q. Public, cn=Users, dc=mycompany, dc=com`). The DN on Windows does not use the short name, so the searched DN algorithm is appropriate for sites using the Active Directory schema (the default) as the LDAP server. The primary URL does not specify a search. Instead, it relies on the bind operation for authentication.

You can use LDAP URL search strings to restrict access to groups of users on LDAP servers. For example, to restrict logins to users in an accounting group, use a compound filter to restrict access to the group of users where `attribute group=accounting`.

- The following LDAP URL string uses the composed DN algorithm for an iPlanet server:

  ```
  sp_ldapadmin set_primary_url, 
  'ldap://myhost:389/ou=People,dc=mycompany, 
  dc=com??sub?(&uid=*)(group=accounting)'
  ```

 Adaptive Server binds with DN
 `uid=mylogin,ou=People,dc=mycompany,dc=com`. After successfully binding with this identity, it searches for:

 "`ou=People,dc=mycompany,dc=com??sub?(&uid=mylogin)(group=accounting)`"
Authentication succeeds if this search returns any objects.

- These examples use LDAP URL strings with compound filters:

  ```
  sp_ldapadmin set_primary_url,
  'ldap://myhost:389/ou=people,dc=mycompany,dc=com??s
  ub?(&{uid=*)(ou=accounting) {l=Santa Clara})'
  sp_ldapadmin, set_primary_url,
  'ldap://myhost:389/ou=people,dc=mycompany,dc=com??s
  ub?(&{uid=*)(ou=Human%20Resources})'
  ```

LDAP user authentication password information changes

There are two LDAP user authentication-related informational messages that Adaptive Server obtains from the LDAP server and passes to the client:

- If you log in to an Adaptive Server using an LDAP authentication mechanism with an LDAP user authentication password that is about to expire, you see:

 Your password will expire in `<number>` days.

- If you attempt to log in to Adaptive Server using an LDAP authentication mechanism after the LDAP server administrator resets your password or after your LDAP server password has expired, you see message 4002:

 Login failed

 If auditing is enabled and the errors auditing option is turned on, message 4099 is sent to the audit log:

 Your LDAP password has expired.

Note Configure your LDAP server to give this additional information. Additionally, Adaptive Server must support the transmission of LDAP password controls to an LDAP client.
Failover support

When a major failure occurs in the LDAP directory server specified by the primary URL, and the server no longer responds to network requests, Adaptive Server attempts to connect to the secondary LDAP directory server specified by the secondary URL. Adaptive Server uses the LDAP function `ldap_init` to determine if it can open a connection to the LDAP directory server. A null or invalid primary URL string causes Adaptive Server to attempt to fail over to a secondary URL. Failures returned by LDAP bind or search operations do not cause Adaptive Server to fail over to the secondary URL.

Adaptive Server logins and LDAP user accounts

Once you enable LDAP user authentication, choose and set an authentication algorithm and URL strings, you must configure the user accounts. The LDAP administrator creates and maintain accounts in the LDAP server, and the database administrator creates and maintains accounts in Adaptive Server. Alternatively, the database administrator can choose administration options that allow flexibility with login accounts when integrating Adaptive Server with external authentication mechanisms such as LDAP server. The database administrator continues to administer the Adaptive Server account roles, default database, default language, and other login-specific attributes using traditional commands and procedures.

Table 16-8 describes the updates to `syslogins` table Adaptive Server makes at login time. These updates assume that LDAP user authentication is configured, the login is not restricted from using LDAP, and you have not set the `create login` mapping.

Failover support

When a major failure occurs in the LDAP directory server specified by the primary URL, and the server no longer responds to network requests, Adaptive Server attempts to connect to the secondary LDAP directory server specified by the secondary URL. Adaptive Server uses the LDAP function `ldap_init` to determine if it can open a connection to the LDAP directory server. A null or invalid primary URL string causes Adaptive Server to attempt to fail over to a secondary URL. Failures returned by LDAP bind or search operations do not cause Adaptive Server to fail over to the secondary URL.

Adaptive Server logins and LDAP user accounts

Once you enable LDAP user authentication, choose and set an authentication algorithm and URL strings, you must configure the user accounts. The LDAP administrator creates and maintain accounts in the LDAP server, and the database administrator creates and maintains accounts in Adaptive Server. Alternatively, the database administrator can choose administration options that allow flexibility with login accounts when integrating Adaptive Server with external authentication mechanisms such as LDAP server. The database administrator continues to administer the Adaptive Server account roles, default database, default language, and other login-specific attributes using traditional commands and procedures.

Table 16-8 describes the updates to `syslogins` table Adaptive Server makes at login time. These updates assume that LDAP user authentication is configured, the login is not restricted from using LDAP, and you have not set the `create login` mapping.
Configuring Adaptive Server for LDAP user authentication

Table 16-8: Updates to syslogins from LDAP

<table>
<thead>
<tr>
<th>Does the row exist in syslogins?</th>
<th>LDAP server authentication succeeds?</th>
<th>Changes in syslogins</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No change, login fails</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No change, login fails</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Update row if password has changed</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No change</td>
</tr>
</tbody>
</table>

Secondary lookup server support

Adaptive Server provides uninterrupted support to Adaptive Server clients that are authenticated by an LDAP server. You can specify a secondary LDAP lookup server to fail over from a primary LDAP server in the event of the LDAP server failure or planned downtime.

The health of the URL set is monitored through the following states:

- **INITIAL** – indicates that LDAP user authentication is not configured.
- **RESET** – indicates that the URL has been entered with Adaptive Server administrative commands.
- **READY** – indicates that the URL is ready to accept connections.
- **ACTIVE** – indicates that the URL has performed a successful LDAP user authentication.
- **FAILED** – indicates that there is a problem connecting to the LDAP server.
- **SUSPENDED** – indicates that the URL is in maintenance mode, and will not be used.

The following sequence of events describe the failover and manual failback:

1. The primary and secondary URL sets are configured and in a READY state.
2. The connections are authenticated using the primary server infrastructure.
3. The primary server fails, and its state is changed to FAILED.
4. Connections automatically begin authentication through the secondary server infrastructure.
5 The primary server is repaired and brought back online by an LDAP administrator. The primary LDAP server state is changed by an Adaptive Server administrator to READY.

6 New connections are authenticated using the primary server.

Note Once Adaptive Server has failed over to the secondary LDAP server, a database administrator must manually activate the primary LDAP server before it can be used again.

When Adaptive Server encounters errors connecting to an LDAP server, it retries the authentication three times. If the errors persist, the LDAP server is marked as FAILED. See “Troubleshooting LDAP user authentication errors” on page 546 for information on the LDAP errors that force Adaptive Server into a retry loop.

Use `sp_ldapadmin` to configure secondary lookup LDAP servers.

- To set the secondary DN lookup URL, enter:

 `sp_ldapadmin set_secondary_dn_lookup_url, <URL>`

- To set the administrative access account for the secondary DN lookup URL, enter:

 `sp_ldapadmin set_secondary_access_acct, <DN>, <password>`

- To suspend the use of a primary or secondary URL for authentication, enter:

 `sp_ldapadmin suspend, {primary | secondary}`

- To activate the set of primary or secondary URLs for authentication, enter:

 `sp_ldapadmin activate, {primary | secondary}`

- To display details about the primary and secondary LDAP server settings and status, enter:

 `sp_ldapadmin list`

 `sp_ldapadmin list` combines previous outputs from `list_access_acct` and `list_urls`. It has the following expected output for the primary and secondary servers:

 - Search URL
 - Distinguished name lookup URL
Configuring Adaptive Server for LDAP user authentication

- Access account DN
- Active [true | false]
- Status [ready | active | failed | suspended | reset]

Adaptive Server version 12.5.4 and later includes the following sp_ldapadmin options that support secondary servers.

- To display DN lookup URLs for the secondary server, enter:
  ```
  sp_ldapadmin list_urls
  ```
- To display the administrative account for the secondary DN lookup URL, enter:
  ```
  sp_ldapadmin list_access_acct
  ```
- To display subcommands, enter:
  ```
  sp_ldapadmin help
  ```

LDAP server state transitions

Table 16-9 – Table 16-14 list LDAP server state transitions when each sp_ldapadmin commands is executed.

Table 16-9 shows the state transitions when you execute sp_ldapadmin set_URL, where set_URL represents one of these commands:

- set_dn_lookup_url
- set_primary_url
- set_secondary_dn_lookup_url
- set_secondary_url
Table 16-9: State transitions when sp_ldapadmin set_URL is executed

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>RESET</td>
</tr>
<tr>
<td>RESET</td>
<td>RESET</td>
</tr>
<tr>
<td>READY</td>
<td>READY</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>RESET</td>
</tr>
<tr>
<td>FAILED</td>
<td>RESET</td>
</tr>
<tr>
<td>SUSPENDED</td>
<td>RESET</td>
</tr>
</tbody>
</table>

Table 16-10 shows the state transitions when you execute sp_ldapadmin suspend.

Table 16-10: State transitions when sp_ldapadmin suspend is executed

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>Error</td>
</tr>
<tr>
<td>RESET</td>
<td>SUSPENDED</td>
</tr>
<tr>
<td>READY</td>
<td>SUSPENDED</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>SUSPENDED</td>
</tr>
<tr>
<td>FAILED</td>
<td>SUSPENDED</td>
</tr>
<tr>
<td>SUSPENDED</td>
<td>SUSPENDED</td>
</tr>
</tbody>
</table>

Table 16-11 shows the state transitions when you execute sp_ldapadmin activate.

Table 16-11: State transitions when sp_ldapadmin activate is executed

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>Error</td>
</tr>
<tr>
<td>RESET</td>
<td>READY</td>
</tr>
<tr>
<td>READY</td>
<td>READY</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>FAILED</td>
<td>READY</td>
</tr>
<tr>
<td>SUSPENDED</td>
<td>READY</td>
</tr>
</tbody>
</table>

The following tables show the LDAP server state transitions carried out implicitly by Adaptive Server.

Table 16-12 shows the state transitions when Adaptive Server is restarted:
Configuring Adaptive Server for LDAP user authentication

Table 16-12: State transitions when Adaptive Server is restarted

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>INITIAL</td>
</tr>
<tr>
<td>RESET</td>
<td>RESET</td>
</tr>
<tr>
<td>READY</td>
<td>READY</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>READY</td>
</tr>
<tr>
<td>FAILED</td>
<td>FAILED</td>
</tr>
<tr>
<td>SUSPENDED</td>
<td>SUSPENDED</td>
</tr>
</tbody>
</table>

Adaptive Server only attempts an LDAP login if the LDAP server is in a READY or ACTIVE state. Table 16-13 shows the state transitions:

Table 16-13: State transitions when an LDAP login succeeds

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>

Table 16-14 shows the state transitions when an LDAP login fails:

Table 16-14: State transitions when an LDAP login fails

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>FAILED</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>FAILED</td>
</tr>
</tbody>
</table>

LDAP user authentication tuning

Configure and tune Adaptive Server options based on the load of incoming connections and the Adaptive Server-LDAP server infrastructure. Configure these options based on the number of simultaneous incoming requests:

- Use `sp_configure` to set `max native threads`, which indicates the number of native threads per engine.
- Use `sp_ldapadmin` to configure `maxldapua_native_threads`, which indicates the number of LDAP user authentication native threads per engine.

Configure the `set_timeout` option (which indicates the LDAP server bind and search timeouts) based on the network and the health of the Adaptive Server/LDAP server infrastructure.
Configure the `set_abandon_idapua_when_full` option to specify Adaptive Server behavior when incoming connections have consumed `max_idapua_native_threads`:

Use these `sp_ldapadmin` options to configure the LDAP server for better performance:

- `set_max_idapua_desc` – manages the concurrency of the LDAPUA connection requests. If you are using a distinguished name algorithm, setting `set_max_idapua_desc` to a larger number expedites the LDAPUA connections Adaptive Server is processing.

- `set_num_retries` – sets the number of attempts. Tune this number according to the number of transient errors between Adaptive Server and the LDAP server. You can nullify transient errors by configuring the number of retries.

- `set_log_interval` – controls the number of messages sent to the Adaptive Server error log for diagnostic purposes. Using a low number clutters the error log may be helpful in identifying specific errors. Using a large number sends fewer messages to the error log, but does not have the same investigative value. Tune `set_log_interval` according to your error log size.

Adding tighter controls on login mapping

Use `sp_maplogin` to map users that are authenticated with LDAP or PAM to the local Adaptive Server login.

Note To map a user authenticated with Kerberos, use `sybmapname` instead of `sp_maplogin`.

Only users with `sso_role` can create or modify login mappings using `sp_maplogin`.

Adaptive Server avoids conflicts between an authentication mechanism setting for a login and a mapping that uses the login. Potential mapping conflicts are detected by the stored procedures `sp_maplogin`, `sp_modifylogin`, or `sp_addlogin`.

These controls do not allow maps:

- From one Adaptive Server login name to another login name
- From an external name that already exists as a local login
- To a nonexistent login name
Additionally, when the authentication mechanism is specified with a mapping, the mechanism is checked with the authentication mechanism set in the target login.

If a target login’s authentication mechanism restricts the login to use a particular authentication mechanism, then the mechanism specified with the mapping must match either that specified for the login or match the “ANY” authentication mechanism.

When `sp_maplogin` detects that a conflict exists, `sp_maplogin` fails and reports an error that identifies the conflict.

Similarly, `sp_modifylogin` and `sp_addlogin` check for an existing mapping that may conflict with the authenticate with option for the user login.

When `sp_modifylogin` or `sp_addlogin` detect a conflict, an error is reported to identify any conflicts with a login mapping.

Examples

Example 1 Maps an LDAP user to the Adaptive Server “sa” login. A company has adopted LDAP as their repository for all user accounts and has a security policy that requires LDAP authentication of all users including database administrators, “adminA” and “adminB,” who may manage hundreds of Adaptive Servers. Auditing is enabled, and login events are recorded in the audit trail.

To map these administrator accounts to “sa,” enter:

```
sp_maplogin LDAP, 'adminA', 'sa'
go
sp_maplogin LDAP, 'adminB', 'sa'
go
```

Require all users to authenticate using LDAP authentication:

```
sp_configure 'enable ldap user auth', 2
go
```

When “adminA” authenticates during login to Adaptive Server, the distinguished name associated with “adminA” rather than only “sa” is recorded in the login audit event. This allows each individual performing an action to be identified in the audit trail.

Because the “adminA” and “adminB” password is set in the LDAP server, there is no need to maintain the “sa” password on all Adaptive Servers being managed.

This example also allows different external identities and passwords to be used for authentication, while their actions within Adaptive Server still require the special privileges associated with “sa” account.
Example 2 Uses both PAM and LDAP to map users to application logins. A company has adopted both PAM and LDAP authentication but for different purposes. The company security policy defines LDAP as the authentication mechanism for general user accounts, and PAM for special users, such as for a middle-tier application. A middle-tier application may establish a pool of connections to Adaptive Server to handle requests on behalf of users of the middle-tier application.

Configure Adaptive Server for both LDAP and PAM user authentication:

```sql
sp_configure 'enable ldap user auth', 2
sp_configure 'enable pam user auth', 2
```

Establish an Adaptive Server login `appX` locally with permissions that are appropriate for the middle-tier application:

```sql
sp_addlogin 'appX', password
sp_modifylogin appX, 'authenticate with', PAM
```

Instead of hard-coding a simple password in “appX” and maintaining the password consistently in several different Adaptive Servers, develop a custom PAM module to authenticate the application in a centralized repository using additional facts to verify the middle-tier application.

Client application login “appY” requires LDAP authentication of the user with its LDAP identity and password. Use `sp_maplogin` to map all LDAP authenticated users to login “appY,”

```sql
sp_addlogin 'appY', password
sp_maplogin LDAP, NULL, 'appY'
```

Users of “appY” are authenticated with their company identity and password, then mapped to a local Adaptive Server login “appY” to execute database actions. Authentication has occurred with the identity of the LDAP user, which is recorded in the audit trail, and executes with permissions appropriate to the application login “appY.”
Troubleshooting LDAP user authentication errors

Adaptive Server may experience the following transient errors when communicating with the LDAP server. These errors are generally resolved by retrying the connection. If the errors persist after three retry attempts, Adaptive Server marks the LDAP server as FAILED.

- LDAP_BUSY – server is busy.
- LDAP_CONNECT_ERROR – error during a connection.
- LDAP_LOCAL_ERROR – error on the client side.
- LDAP_NO_MEMORY – cannot allocate memory on the client side.
- LDAP_OPERATIONS_ERROR – error on the server side.
- LDAP_OTHER – unknown error code.
- LDAP_ADMINLIMIT_EXCEEDED – a search has exceeded a limit.
- LDAP_UNAVAILABLE – server cannot process the request.
- LDAP_UNWILLING_TO_PERFORM – server is not going to process the request.
- LDAP_LOOP_DETECT – a loop has been detected during a referral.
- LDAP_SERVER_DOWN – server is not reachable (connection fails).
- LDAP_TIMEOUT – LDAP API fails because operation does not complete in the user-specified amount of time.

Transient errors and a large number of simultaneous login requests may lead to a large number of repeated error messages in the error log. To increase the readability of the log, this error message logging algorithm is used:

1. If a message is being logged for the first time, log it.
2. If the last time the message was logged was greater than 3 minutes:
 - Log the error message.
 - Log the number of times the message was repeated since the message was last printed.
 - Log the time elapsed, in minutes, since the message was printed.

Authentication failures arising from the following are not considered LDAP errors and are not conditions for retrying the authentication request:

- Bind failure due to bad password or an invalid distinguished name.
A search after a successful bind that returns a result set of 0 or no attribute value.

Syntax errors found while parsing the URL are caught when an LDAP URL is set, and therefore do not fall into any of the above categories.

Configuring an LDAP server

❖ **Configure a connection to an LDAP server**

1. Make sure that all trusted root certificates are located in the same file.

 After you define the trusted servers, Adaptive Server configures a secure connection, where `servername` is the name of the current Adaptive Server. If you:
 - Have defined `$SYBASE_CERTDIR`, Adaptive Server loads certificates from `$SYBASE_CERTDIR/servername.txt` (for UNIX) or `%SYBASE_CERTDIR%servername.txt` (for Windows).
 - Have not defined `$SYBASE_CERTDIR`, Adaptive Server loads certificates from `$SYBASE/$SYBASE_ASE/certificates/servername.txt` (for UNIX) or `%SYBASE%/%SYBASE_ASE%certificates\servername.txt` (for Windows).

2. Restart Adaptive Server to change the trusted root certificate file.

3. Use `sp_ldapadmin`, specifying `ldaps://` URLs instead of `ldap://` URLs, to establish a secure connection to a secure port of the LDAP server.

4. Establish a TLS session over a plain TCP connection:

   ```sql
   sp_ldapadmin 'starttls_on_primary', {true | false}
   ```

 or

   ```sql
   sp_ldapadmin 'starttls_on_secondary', {true | false}
   ```

 Note LDAP server connections do not have a connect timeout option; if the LDAP server stops responding, all login connections also stop responding.
LDAPS user authentication enhancements

In earlier versions of Adaptive Server, if you modify the Certifying Authority (CA) trusted root file, you must restart Adaptive Server for the modifications to take effect. Adaptive Server version 15.0.3 and later supports modifications to the trusted root file, so that restarting the server is unnecessary. A new subcommand, `reinit_descriptors`, which unbinds the LDAP server descriptors and reinitializes the user authentication subsystem. For the syntax of this option see the Reference Manual: Procedures.

- This command requires System Security Officer permissions.
- If the trusted root file is modified without execution of this command by a user with System Security Officer permissions, the housekeeping utility chores task uses a new chore, designed to reinitialize the user authentication subsystem every 60 minutes.

Automatic LDAP user authentication and failback

Adaptive Server 15.0.3 provides support for a secondary LDAP server. Previously, after bringing a failed primary LDAP server online, it was necessary to activate the LDAP server manually, in order to authenticate new LDAP logins and move them to the primary LDAP server.

In versions 15.0.3 and later, a new chore has been added to Adaptive Server’s housekeeping utility to activate an LDAP server automatically: `set_failback_interval` – for syntax, see “Setting the LDAP failback time interval” on page 549.

The `set_failback_interval` option in `sp_ldapadmin set_failback_interval` sets the interval between attempts to activate failed LDAP servers; if you do not set this parameter, the default value is 15 minutes. See `sp_ldapadmin` in the Reference Manual: Procedures.

If the primary URL is marked FAILED, the housekeeper task attempts to activate it, using the primary access account distinguished name (DN) and password. If you have not configured a primary access account, the housekeeper task attempts to use an anonymous bind. If the bind operation fails on the first attempt, the housekeeper task retries the bind operation for the number of retry times configured. If the bind operation succeeds, the primary URL is marked READY.
If the secondary URL is marked FAILED, the housekeeper task attempts to activate the secondary URL in a similar way.

The `reinit_descriptors` option in `sp_ldapadmin` executes when the certificate file is modified, in which case it reinitializes the LDAP user authentication subsystem every 60 minutes.

After you set the failback interval, the housekeeper task checks for failed LDAP servers each time it sweeps through its chores. When it finds a failed LDAP server, it attempts to activate the LDAP server when the failback time interval expires.

Setting the LDAP failback time interval

The syntax for `sp_ldapadmin set_failback_interval` is:

```
sp_ldapadmin 'set_failback_interval', time_in_minutes
```

Where `time_in_minutes` is a value from -1 to 1440 minutes (24 hours).

- A value of 0 indicates that failback is manual. That is, the housekeeper task does not attempt to automatically fail back the LDAP server. You must perform this task manually.
- A value of -1 sets the failover time interval to 15 minutes, the default.
- If you issue `sp_ldapadmin 'set_failback_interval'` without any parameters, `sp_ldapadmin` displays the value to which the failback interval is set.
- If you issue `sp_ldapadmin` without any parameters, `sp_ldapadmin` includes the failback time interval in the output:

```plaintext
sp_ldapadmin
--------------
Primary:
  URL:     
  DN Lookup URL: 
  Access Account: 
  Active:   'FALSE'
  Status:   'NOT SET
  StartTLS on Primary LDAP URL: 'TRUE'
Secondary:
  URL:     
  DN Lookup URL: 
  Access Account: 
  Active:   'FALSE'
  Status:   'NOT SET'
```

sp_ldapadmin
Login mapping of external authentication

When you configure an external authentication mechanism, if there is exactly one mapping of an external user to an internal Adaptive Server login, and if it is successfully authenticated, Adaptive Server updates the internal login’s password to match the external user’s password. For example, under these conditions:

1. USER1 has an Adaptive Server login name of user_ase with password user_password. Another user has an LDAP login name of user_ldap with password user_ldappasswd
2. Adaptive Server has a one to one mapping for user_ldap to user_ase.

Examples

This example sets the LDAP failback time interval to 60 minutes:

```
sp_ldapadmin 'set_failback_interval' 60
```

This example sets the LDAP failback time interval to the default, 15 minutes:

```
sp_ldapadmin 'set_failback_interval' -1
```

This example displays the value to which the failback interval is set:

```
sp_ldapadmin 'set_failback_interval'
The LDAP property 'set_failback_interval' is set to '15 minutes'.
```

Login mapping of external authentication

StartTLS on Secondary LDAP URL: 'FALSE'
Timeout value: '-1'(10000) milliseconds
Log interval: '3' minutes
Number of retries: '3'
Maximum LDAPUA native threads per Engine: '49'
Maximum LDAPUA descriptors per Engine: '20'
Abandon LDAP user authentication when full: 'false'
Failback interval: '-1'(15) minutes
(return status = 0)
CHAPTER 16 External Authentication

3 User user_ldap logs in to Adaptive Server using password user_ldappasswd

4 Adaptive Server updates the user_ase password to user_ldapppasswd.

In the following example, if you configure an external authentication mechanism by mapping an external user to an Adaptive Server internal login and the authentication fails over to Adaptive Server, you can log in with the external user name and correct Adaptive Server password. Adaptive Server internally uses the mapped internal login to authenticate the external user:

1 A user has an Adaptive Server login name of user_ase with password user_password

2 Another user has an LDAP login name of user_ldap
Adaptive Server maps user_ldap to user_ase

3 If you enable LDAP:

 sp_configure 'enable ldap user auth', 1

4 If the LDAP server is shutdown or crashes, user_ldap can log in to Adaptive Server using login name user_ldap and password user_password.

Configuring Adaptive Server for authentication using PAM

Pluggable Authentication Module (PAM) support allows multiple authentication service modules to be stacked and made available without modifying the applications that require authentication.

PAM integrates Adaptive Server with Solaris and Linux operating systems and simplifies the management and administration of user accounts and authentication mechanisms, thus reducing the total cost of ownership. Users can customize or write their own authentication and authorization modules.

Note PAM support is currently available on Linux and on Solaris platforms. For more information on PAM user authentication, see your operating system documentation.
Configuring Adaptive Server for authentication using PAM

Adaptive Server Enterprise

Figure 16-2: PAM architecture

Adaptive Server passes the login name and credentials obtained from the login packet to the PAM API. PAM loads a service provider module as specified in the operating system configuration files and calls appropriate functions to complete the authentication process.

Enabling PAM in Adaptive Server

Both Linux and Solaris have predefined PAM modules. You can use one of these modules, or create one of your own. When creating your own modules, follow the guidelines in your operating system documentation on creating a PAM module.

Note: PAM modules you create should comply with RFC 86.0 “Unified Login With Pluggable Authentication Modules (PAM).” Adaptive Server supports the authentication management module of the RFC. It does not support the account management, session management, or password management modules.
Configuring operating system s

To enable PAM support, configure your operating system as follows:

- For Solaris, add the following line to `/etc/pam.conf`:
  ```
  ase auth required /user/lib/security/$ISA/pam_unix.so.1
  ```
- For Linux, create a new file called `/etc/pam.d/ase`, and add:
  ```
  auth required /lib/security/pam_unix.so
  ```

For more information on how to create these entries, see your operating system documentation.

Running a 32- and 64-bit server on the same machine

$ISA is an environment variable that allows 32- and 64-bit libraries to run together.

On Solaris 32-bit machines, $ISA is replaced by an empty string, while on 64-bit machines, it is replaced by the string “sparcv9”.

To use both 32- and 64-bit servers, place the 32-bit PAM module in a directory, and place the 64-bit version in a subdirectory of this directory.

The entry in `pam.conf` should look similar to:

```
$ ls /usr/lib/security/pam_sec.so.1
pam_sec.so.1 -> /SYBASE/pam_whatever_32bits.so.1

$ ls /usr/lib/security/sparcv9/pam_sec.so.1
pam_sec.so.1 -> /SYBASE/pam_sec_64bits.so.1

ase auth required
/usr/lib/security/$ISA/pam_sec.so.1
```

Note $ISA is the only variable allowed in `pam.conf`.

Configuring Adaptive Server for PAM user authentication

`enable pam user auth` enables PAM user authentication support:

```
sp_configure "enable pam user auth", 0 | 1 | 2
```

where:

- 0 – disables PAM authentication. This is the default.
Configuring Adaptive Server for authentication using PAM

- 1 – indicates Adaptive Server first attempts PAM authentication, and then uses syslogins authentication if PAM authentication fails.
- 2 – indicates only PAM authentication may be used.

Note When PAM is enabled, password management is delegated to the PAM service providers.

Adaptive Server logins and PAM user accounts

After you have set enable PAM user authentication and completed the PAM configuration for both Adaptive Server and the operating system, you must configure the user accounts. The operating system or network security administrator creates and maintains user accounts in the PAM service provider, and the database administrator creates and maintains accounts in Adaptive Server. Alternatively, the database administrator can choose administration options that allow flexibility with login accounts when integrating Adaptive Server with external authentication mechanisms such as PAM. The database administrator continues to administer the Adaptive Server account roles, default database, default language, and other login-specific attributes using traditional commands and procedures.

Table 16-15 describes updates to syslogins made at login time. It assumes that PAM user authentication is configured, the login is not restricted from using PAM, and you have not set the create login mapping.
Enhanced login controls

Configure Adaptive Server to allow the server-wide authentication mechanism according to the methods discussed in the LDAP and PAM sections earlier. You can also configure Adaptive Server to specify the authentication mechanism for each individual login on the server using Adaptive Server enhanced login controls described below.

Login-specific controls may be useful when a server is transitioning between authentication mechanisms or for server-specific logins that local server administration may require: they are not associated with a centrally managed user login.

Forcing authentication

You can force a login to use a specific authentication process by using these parameters for `sp_modifylogin` and `sp_addlogin`:

- **ASE** – use Adaptive Server internal authentication using passwords from syslogins table.
- **LDAP** – use external authentication with an LDAP server.
- **PAM** – use external authentication with PAM.
- **ANY** – by default, users are authenticated using this authentication method. A user with ANY authentication means that Adaptive Server checks if there is any external authentication mechanism defined, and if there is, it is used. Otherwise, it uses Adaptive Server authentication.

Adaptive Server checks for external authentication mechanisms in the following order:

<table>
<thead>
<tr>
<th>Does the row exist in syslogins?</th>
<th>PAM authentication succeeds?</th>
<th>Changes in syslogins</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No change, login fails</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No change, login fails</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Update row if password has changed</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No change</td>
</tr>
</tbody>
</table>

Table 16-15: Updates to syslogins from PAM
Enhanced login controls

1. LDAP.
2. Pluggable Authentication Modules (PAM). If both LDAP and PAM are enabled, PAM authentication is never attempted for a user.
3. If neither PAM nor LDAP is enabled, Adaptive Server uses syslogins to authenticate the login.

Login accounts such as “sa” continue to be validated using the syslogins catalog. Only the SSO role can set authenticate for a login.

For example, the following authenticates the login with sp_modifylogin:

```sql
sp_modifylogin "nightlyjob", "authenticate with", "ASE"
sp_displaylogin "nightlyjob"
```

Displays output similar to:

```
Suid: 1234
Loginname: nightlyjob
Fullname: Batch Login
Default Database: master

Date of Last Password Change: Oct 2 2003 7:38 PM
Password expiration interval: 0
Password expired: N
Minimum password length: 
Maximum failed logins: 0
Current failed login attempts: 
Authenticate with: ASE
```

Mapping logins using **sp_maplogin**

Use sp_maplogin to map logins:

```sql
sp_maplogin (authentication_mech | null),
(client_username | null), (action | login_name | null)
```

where:

- **authentication_mech** – is one of the valid values specified for the authenticate with option in sp_modifylogin.
- **client_username** – is an external user name, which can be an operating system name, a user name for an LDAP server, or anything else the PAM library understands. A null value indicates that any login name is valid.
• **action** – indicates create login or drop. When you use create login, the login is created as soon as is authenticated. Use drop to remove logins.

• **login name** is an Adaptive Server login that already exists in syslogins.

This example maps external user “jsmith” to the Adaptive Server user “guest.” Once authenticated, “jsmith” has the privileges of “guest.” The audit login record shows both the **client_username** and the Adaptive Server user name:

```
sp_maplogin NULL, "jsmith", "guest"
```

This example tells Adaptive Server to create a new login for all external users authenticated with LDAP, if a login does not already exist:

```
sp_maplogin LDAP, NULL, "create login"
```

Displaying mapping information

sp_helpmaplogin displays mapping information:

```
sp_helpmaplogin [ (authentication_mech | null), (client_username | null) ]
```

where **authentication_mech** is one of the valid values specified for authenticate with option in **sp_modifylogin**, and **client_username** is an external user name.

If you do not include any parameters, **sp_helpmaplogin** displays login information about all users currently logged in to Adaptive Server. You can restrict the output to specific sets of client user names or authentication mechanisms by using the parameters listed above.

This displays information about all logins:

```
sp_helpmaplogin
authentication client name login name
----------------- ----------- ------------------
NULL jsmith guest
LDAP NULL create login
```

Determining the authentication mechanism

Use the **@@authmech** global variable to determine the authentication mechanism Adaptive Server uses.
For example, if Adaptive Server is enabled for LDAP user authentication with failover (enable ldap user auth = 2) and user “Joe” is an external user with authentication set to ANY, when Joe logs in, Adaptive Server attempts to authenticate Joe, using LDAP user authentication. If Joe fails authentication as a user in LDAP, Adaptive Server authenticates Joe using Adaptive Server authentication, and if that succeeds, he logs in successfully.

@@authmech global has this value:

```
select @@authmech
-------------------------
ase
```

If Adaptive Server is configured for strict LDAP user authentication (enable ldap user auth = 2) and Joe is added as a valid user in LDAP, when Joe logs in, the value for @@authmech is:

```
select @@authmech-------------------------
ldap
```
Overview

Discretionary access controls (DACs) allow you to restrict access to objects and commands based on a user’s identity, group membership and active roles. The controls are “discretionary” because a user with a certain access permission, such as an object owner, can choose whether to pass that access permission on to other users.

Adaptive Server’s discretionary access control system recognizes the following types of users:

- Users possessing one or more system defined roles: system administrator, system security officer, operator, and other roles
- Database owners
- Database object owners
- Other users
System administrators operate outside the DAC system and have access permissions on all database objects at all times except encryption keys (see User Guide for Encrypted Columns). System security officers can always access the audit trail tables in the sybsecurity database.

Database owners do not automatically receive permissions on objects owned by other users; however, they can:

- Temporarily acquire all permissions of a user in the database by using the setuser command to assume the identity of that user.
- Permanently acquire permission on a specific object by using the setuser command to assume the identity of the object owner, and then using grant commands to grant the permissions.

For details on assuming another user’s identity to acquire permissions on a database or object, see “Acquiring the permissions of another user” on page 586.

Object owners can grant access to those objects to other users and can also grant other users the ability to pass the access permission to other users. You can give various permissions to users, groups, and roles with the grant command, and rescind them with the revoke command. Use grant and revoke to give users permission to:

- Create databases
- Create objects within a database
- Execute certain commands such as dbcc and set proxy
- Access specified tables, views, stored procedures, encryption keys, and columns

grant and revoke can also be used to set permissions on system tables.

For permissions that default to “public,” no grant or revoke statements are needed.

Some commands can be used at any time by any user, with no permission required. Others can be used only by users of a particular status and they are not transferable.

The ability to assign permissions for the commands that can be granted and revoked is determined by each user’s role or status (as system administrator, database owner, system security officer, or database object owner), and by whether the user was granted a role with permission that includes the option to grant that permission to other users.
You can also use views and stored procedures as security mechanisms. See “Using views and stored procedures as security mechanisms” on page 596.

Permissions for creating databases

Only a system administrator can grant permission to use the create database command. The user that receives create database permission must also be a valid user of the master database because all databases are created while using master.

In many installations, the system administrator maintains a monopoly on create database permission to centralize control of database placement and database device space allocation. In these situations, a system administrator creates new databases on behalf of other users, and then transfers ownership to the appropriate user.

To create a database that is to be owned by another user:

1. Issue the create database command in the master database.
2. Switch to the new database with the use command.
3. Execute sp_changedbowner.

Changing database ownership

Use sp_changedbowner to change the ownership of a database. Often, system administrators create the user databases, then give ownership to another user after some of the initial work is complete. Only the system administrator can execute sp_changedbowner.

Sybase suggests that you transfer ownership before the user has been added to the database, and before the user has begun creating objects in the database. The new owner must already have a login name on Adaptive Server, but cannot be a user of the database, or have an alias in the database. You may have to use sp_dropuser or sp_dropalias before you can change a database’s ownership, and you may have to drop objects before you can drop the user.

Issue sp_changedbowner in the database whose ownership is to be changed. The syntax is:

```
sp_changedbowner loginame [, true ]
```
Database owner privileges

This example makes “albert” the owner of the current database and drops aliases of users who could act as the old “dbo:"

 sp_changedbowner albert

Include the true parameter to transfer aliases and their permissions to the new “dbo.”

Note You cannot change the ownership of the master, model, tempdb, or sybsystemprocs databases and should not change the ownership of any other system databases.

Database owner privileges

Database owners and system administrators are the only users who can grant object creation permissions to other users (except for create encryption key and create trigger permission which can only be granted by the system security officer). The database owner has full privileges to do anything inside that database, and must explicitly grant permissions to other users with the grant command.

Permission to use the following commands is automatically granted to the database owner and cannot be transferred to other users:

- checkpoint
- dbcc
- alter database
- online database
- drop database
- dump database
- dump transaction
- grant (object creation permissions)
- load database
- load transaction
- revoke (object creation permissions)
setuser

Database owners can grant or revoke permission to:

- Use these commands: create default, create procedure, create rule, create table, create view.

 Database owners can grant permission to use create database, set tracing, and connect if they have the sa_role and are in the master database.

 Database owners can grant permission to use set session authorization, create trigger, and create encryption key if they have the sso_role.

- all – if you are the database owner, all grants permissions for all create commands except create database, create trigger and create encryption key.

 If you have the sa_role, all grants permissions for create database, set tracing, and connect as well, if you issue the grant command in the master database.

- default permissions on system tables

- Use dbcc commands: checkalloc, checkcatalog, checkdb, checkindex, checkstorage, checktable, checkverify, fix_text, indexalloc, reindex, tablealloc, textalloc, tune

Database object owner privileges

A user who creates a database object (a table, view, encryption key, or stored procedure) owns the object and is automatically granted all object access permissions on it. Users other than the object owner, including the owner of the database, are automatically denied all permissions on that object, unless they are explicitly granted by either the owner or a user who has grant permission on that object.

As an example, suppose that Mary is the owner of the pubs2 database, and has granted Joe permission to create tables in it. Now Joe creates the table new_authors; he is the owner of this database object.

Initially, object access permissions on new_authors belong only to Joe. Joe can grant or revoke object access permissions for this table to other users.

The following object altering permissions default to the owner of a table and cannot be transferred to other users:

- alter table
Other database user privileges

- drop table
- create index

Permission to use the grant and revoke commands to grant specific users select, insert, update, delete, references, decrypt, truncate table, update statistics, delete statistics, and execute permissions on specific database objects can be transferred, using the grant with grant option command.

Permission to drop an object—a table, view, index, stored procedure, rule, encryption key, trigger, or default—defaults to the object owner and cannot be transferred.

Other database user privileges

At the bottom of the hierarchy are other database users. Permissions are granted to or revoked from them by object owners, database owners, users who were granted permissions, system administrator or a system security officer. These users are specified by user name, group name, or the keyword public.

Permissions on system procedures

Set permissions on system procedures in the sybsystemprocs database, where the system procedures are stored.

Security-related system procedures can be run only by system security officers. Certain other system procedures can be run only by system administrators.

Some of the system procedures can be run only by database owners. These procedures make sure that the user executing the procedure is the owner of the database from which they are being executed.

Other system procedures can be executed by any user who has been granted permission. A user must have permission to execute a system procedure in all databases, or in none of them.
Users who are not listed in `sybsystemprocs..sysusers` are treated as “guest” in `sybsystemprocs`, and are automatically granted permission on many of the system procedures. To deny a user permission on a system procedure, the system administrator must add him or her to `sybsystemprocs..sysusers` and issue a `revoke` statement that applies to that procedure. The owner of a user database cannot directly control permissions on the system procedures from within his or her own database.

Granting and revoking permissions

You can control the following types of permissions with `grant` and `revoke`:

- Object access permissions
- Permission to select from functions
- Permission to execute commands
- Permission to execute `dbcc` commands
- Permission to execute some `set` commands
- Default permissions on system tables

Each database has its own independent protection system. Having permission to use a certain command in one database does not give you permission to use that command in other databases.

Object access permissions

Object access permissions regulate the use of certain commands that access certain database objects. For example, you must explicitly be granted permission to use the `select` command on the `authors` table. Object access permissions are granted and revoked by the object owner (and system administrators or system security officers), who can grant them to other users. Table 17-1 lists the types of object access permissions and the objects to which they apply.
Granting and revoking permissions

<table>
<thead>
<tr>
<th>Permission</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>Table, view, column</td>
</tr>
<tr>
<td>update</td>
<td>Table, view, column</td>
</tr>
<tr>
<td>insert</td>
<td>Table, view</td>
</tr>
<tr>
<td>delete</td>
<td>Table, view</td>
</tr>
<tr>
<td>references</td>
<td>Table, column</td>
</tr>
<tr>
<td>execute</td>
<td>Stored procedure</td>
</tr>
<tr>
<td>truncate table</td>
<td>Table</td>
</tr>
<tr>
<td>delete statistics</td>
<td>Table</td>
</tr>
<tr>
<td>update statistics</td>
<td>Table</td>
</tr>
<tr>
<td>decrypt</td>
<td>Table, view, column</td>
</tr>
<tr>
<td>select</td>
<td>Encryption key</td>
</tr>
</tbody>
</table>

The `references` permission refers to referential integrity constraints that you can specify in an `alter table` or `create table` command. The `decrypt` permission refers to the permission required to decrypt an encrypted column. An encryption key’s `select` permission refers to the permissions required to use encryption keys in `create table`, `alter table` or `select into` command to encrypt columns. The other permissions refer to SQL commands. Object access permissions default to the object’s owner, or system administrators or system security officers for `decrypt` on an encrypted column and `select` on an encryption key, and can be granted to other users.

Use the `grant` command to grant object access permissions. The syntax is:

```
grant {all [privileges] | permission_list}
on { table_name [(column_list)]
| view_name [(column_list)]
| stored_procedure_name}
to {public | name_list | role_name}
[with grant option]
```

Use the `revoke` command to revoke object access permissions. The syntax is:

```
revoke [grant option for]
{all [privileges] | permission_list}
on { table_name [(column_list)]
| view_name [(column_list)]
| stored_procedure_name}
from {public | name_list | role_name}
[cascade]
```
CHAPTER 17 Managing User Permissions

- all or all privileges specifies all permissions applicable to the specified object, except decrypt permission. All object owners can use all with an object name to grant or revoke permissions on their own objects. If you are granting or revoking permissions on a stored procedure, all is the same as execute.

Note insert, update statistics, delete statistics, truncate table, and delete permissions do not apply to columns, so you cannot include them in a permission list (or use the keyword all) if you specify a column list.

- permission_list is the list of permissions that you are granting. If you name more than one permission, separate them with commas. Table 17-2 illustrates the access permissions that can be granted on each type of object:

Table 17-2: Object access permissions

<table>
<thead>
<tr>
<th>Object</th>
<th>permission_list can include</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table or view</td>
<td>select, insert, delete, update, references, truncate table, update statistics, decrypt, delete statistics references applies to tables but not views; the other permissions apply to both tables and views. update statistics, delete statistics, and truncate table apply to tables on, not views.</td>
</tr>
<tr>
<td>Column</td>
<td>select, update, references</td>
</tr>
<tr>
<td>Stored procedure</td>
<td>execute</td>
</tr>
<tr>
<td>Encryption key</td>
<td>select</td>
</tr>
</tbody>
</table>

You can specify columns in the permission_list or the column_list, but not both.

- on specifies the object for which the permission is being granted or revoked. You can grant or revoke permissions for only one table, view, encryption key, or stored procedure object at a time. You can grant or revoke permissions for more than one column at a time, but all the columns must be in the same table or view. You can grant or revoke permissions only on objects in your current database.

- public refers to the group “public,” which includes all Adaptive Server users. public means slightly different things for grant and revoke:
 - For grant, public includes the object owner. Therefore, if you have revoked permissions from yourself on your object, and later you grant permissions to public, you regain the permissions along with the rest of “public.”
 - For revoke, public excludes the owner.
Granting and revoking permissions

- **name_list** includes:
 - Group names
 - User names
 - A combination of user and group names, each separated from the next by a comma

- **role_name** is an Adaptive Server system-defined or user-defined role. You can create and define a hierarchy of user-defined roles and grant them privileges based on the specific role granted. System-defined roles include `sa_role` (system administrator), `sso_role` (system security officer), and `oper_role` (operator). You cannot create or modify system-defined roles.

- With grant option in a grant statement allows the users specified in **name_list** to grant the specified object access permissions to other users. If a user has with grant option permission on an object, that permission is not revoked when permissions on the object are revoked from public or a group of which the user is a member.

- Grant option for revokes with grant option permissions, so that the users specified in **name_list** can no longer grant the specified permissions to other users. If those other users have granted permissions to other users, you must use the cascade option to revoke permissions from them as well. The user specified in **name_list** retains permission to access the object, but can no longer grant access to other users. Grant option for applies only to object access permissions, not to object creation permissions.

 - The **cascade** option in a revoke statement removes the specified object access permissions from the user(s) specified in **name_list**, and also from any users they granted those permissions to.

You may grant and revoke permissions only on objects in the current database.

If several users grant access to an object to a particular user, the user’s access remains until access is revoked by all those who granted access or until a system administrator revokes the access. That is, if a system administrator revokes access, the user is denied access even though other users have granted access.

Only a system security officer can grant or revoke permission to create encryption keys. The database owner can create triggers on any user table. Users can create triggers only on tables that they own.

Permission to issue the `create trigger` command is granted to users by default.
When the system security officer revokes permission for a user to create triggers, a revoke row is added in the `sysprotects` table for that user. To grant permission to that user to issue `create trigger`, issue two grant commands: the first command removes the revoke row from `sysprotects`; the second inserts a grant row. The system security officer must grant permission to create triggers. If permission to create triggers is revoked, the user cannot create triggers even on tables that the user owns. Revoking permission to create triggers from a user affects only the database where the `revoke` command was issued.

Concrete identification

Adaptive Server identifies users during a session by login name. This identification applies to all databases in the server. When the user creates an object, the server associates both the owner’s database user ID (`uid`) and the creator’s login name with the object in the `sysobjects` table. This information concretely identifies the object as belonging to that user, which allows the server to recognize when permissions on the object can be granted implicitly.

If an Adaptive Server user creates a table and then creates a procedure that accesses the table, any user who is granted permission to execute the procedure does not need permission to access the object directly. For example, by giving user “mary” permission on `proc1`, she can see the `id` and `descr` columns from `table1`, though she does not have explicit select permission on the table:

```sql
create table table1 (id int, amount money, descr varchar(100))
create procedure proc1 as select id, descr from table1
grant execute on proc1 to mary
```

There are, however, some cases where implicit permissions are only useful if the objects can be concretely identified. One case is where aliases and cross-database object access are both involved.

Special requirements for SQL92 standard compliance

When you have used the `set` command to turn `ansi_permissions` on, additional permissions are required for `update` and `delete` statements. Table 17-3 summarizes the required permissions.
Granting and revoking permissions

Table 17-3: ANSI permissions for update and delete

<table>
<thead>
<tr>
<th>Permissions required: set ansi_permissions off</th>
<th>Permissions required: set ansi_permissions on</th>
</tr>
</thead>
<tbody>
<tr>
<td>update</td>
<td>update permission on columns where values are being set and select permission on all columns appearing in the where clause</td>
</tr>
<tr>
<td>delete</td>
<td>delete permission on the table from which rows are being deleted and select permission on all columns appearing in the where clause</td>
</tr>
</tbody>
</table>

If ansi_permissions is on and you attempt to update or delete without having all the additional select permissions, the transaction is rolled back and you receive an error message. If this occurs, the object owner must grant you select permission on all relevant columns.

Examples of granting object access permissions

This statement gives Mary and the “sales” group permission to insert into and delete from the titles table:

grant insert, delete
on titles
 to mary, sales

This statement gives Harold permission to use the stored procedure makelist:

grant execute
on makelist
 to harold

This statement grants permission to execute the custom stored procedure sa_only_proc to users who have been granted the system administrator role:

grant execute
on sa_only_proc
 to sa_role

This statement gives Aubrey permission to select, update, and delete from the authors table and to grant the same permissions to other users:

grant select, update, delete
on authors
 to aubrey
 with grant option
Examples of revoking object access permissions

These two statements both revoke permission for all users except the table owner to update the price and total_sales columns of the titles table:

```
revoke update
  on titles (price, total_sales)
from public
```

This statement revokes permission from Clare to update the authors table, and simultaneously revokes that permission from all users to whom she had granted that permission:

```
revoke update
  on authors
from clare
  cascade
```

This statement revokes permission from operators to execute the custom stored procedure new_sproc:

```
revoke execute
  on new_sproc
from oper_role
```

Granting and revoking permissions for update statistics, delete statistics, and truncate table

Adaptive Server allows you to grant and revoke permissions for users, roles, and groups for the update statistics, delete statistics, and truncate table commands. Table owners can also provide permissions through an implicit grant by adding update statistics, delete statistics, and truncate table to a stored procedure and then granting execute permissions on that procedure to a user or role.

You cannot grant or revoke permissions for update statistics at the column level. You must have the sso_role to run update statistics or delete statistics on sysroles, syssrvroles, and sysloginroles security tables.

By default, users with the sa_role have permission to run update statistics and delete statistics on system tables other than sysroles, syssrvroles and sysloginroles, and can transfer this privilege to other users.

The partial syntax for grant and revoke is:

```
grant [truncate table] | update statistics | delete statistics on table_name
to {user_name | role_name | group_name}
```
Granting and revoking permissions

revoke [truncate table | update statistics | delete statistics] on
table_name from (user_name | role_name | group_name)

You can also issue grant all to grant permissions on update statistics, delete
statistics, and truncate table.

For example, the following allows user “harry” to use truncate table and
updates statistics on the authors table:

grant truncate table on authors to harry
grant update statistics on authors to harry

The following revokes truncate table and update statistics privileges from
“harry” on the authors table:

revoke truncate table on authors from harry
revoke update statistics on authors from harry

The following allows user “billy” to use the delete statistics command on the
authors table:

grant delete statistics on authors to billy

The following revokes the delete statistics privileges from user “billy” on the
authors table:

revoke delete statistics on authors from billy

The following grants truncate table and update and delete statistics privileges to
all users with the oper_role (if users “billy” and “harry” possess the oper_role,
you can now run these commands on authors):

grant truncate table on authors to oper_role
grant update statistics on authors to oper_role
grant delete statistics on authors to oper_role

The following revokes truncate table and update and delete statistics privileges
from all users with the oper_role:

revoke truncate table on authors from oper_role
revoke update statistics on authors from oper_role
revoke delete statistics on authors from oper_role

Users “billy” and “harry” can no longer run these commands on authors.

You can also implicitly grant permissions for truncate table, delete statistics,
and update statistics through a stored procedure. For example, assuming “billy”
owns the authors table, he can run the following to grant “harry” privileges to
run truncate table and update statistics on authors:

create procedure sproc1
as
CHAPTER 17 Managing User Permissions

```
truncate table authors
update statistics authors
go
grant execute on sproc1 to harry
go
```

You can also implicitly grant permissions at the column level for update statistics and delete statistics through stored procedures.

Note Once you grant permission to execute update statistics to a user, they also have permission to execute variations of this command, such as update all statistics, update partition statistics, update index statistics, update statistics table, and so on. For example, the following grants “billy” permission to run all variations of update statistics on the authors table:

```
grant update statistics on authors to billy
```

If you revoke a user’s permission to execute update statistics, you also revoke their ability to execute the variations of this command.

You cannot grant variants of update statistics (for example, update index statistics) separately. That is, you cannot issue:

```
grant update all statistics to harry
```

However, you can write stored procedures that control who executes these commands. For example, the following grants “billy” execute permission for update index statistics on the authors table:

```
create proc sp_ups as
  update index statistics on authors
go
revoke update statistics on authors from billy
go
grant execute on sp_ups to billy
```

You cannot grant and revoke delete statistics permissions at the column level.

Although Adaptive Server audits truncate table as a global, miscellaneous audit, it does not audit update statistics. To retain clear audit trails for both truncate table and update statistics, Sybase recommends that you include both commands in a stored procedure to which you grant users execute permission, as described above.

The command fails and generates error number 10330 if a user issues update statistics, delete statistics or truncate table and they:

- Do not own the table.
Granting and revoking permissions

- Do not have the sa_role.
- Are not a database owner who has successfully used setuser to become the user who is the owner of the table.
- Have not been granted update statistics, delete statistics, or truncate table privileges.

Granting permissions on functions

Use grant select on builtin function_name to grant a user permission to use the functions set_appcontext, get_appcontext, list_appcontext, and rm_appcontext.

The syntax is:

```sql
grant select on [builtin] function_name
to {name_list | role_list}
```

Where:

- builtin – Used to distinguish between a table and a grantable function with the same name.
- function_name – Name of the function for which you are granting permission. Functions for which select permission can be granted are set_appcontext, get_appcontext, list_appcontext, and rm_appcontext.
- name_list – List of users’ database names and group names.
- role_list – List of the names of system or user-defined roles to which permission is being granted, and cannot be a variable.

This grants select permission on the get_appcontext function to public:

```sql
grant select on builtin get_appcontext to public
```

Granting and revoking permissions to execute commands

This section describes how to grant and revoke permissions for users to execute specific commands.
Granting permissions to execute commands

Object creation permissions regulate the use of commands that create objects. Other than commands for creating objects, other commands like `connect` and `set session authorization` can be granted. These permissions can be granted only by a system administrator or a database owner (unless otherwise noted).

The commands are:

- `connect`
- `create database`
- `create default`
- `create procedure`
- `create rule`
- `create table`
- `create view`
- `set session authorization`
- `create encryption key` (only grantable by system security officer)
- `create trigger` (only grantable by system security officer)

The syntax for command permissions differs slightly from the syntax for object access permissions. The syntax for `grant` is:

```
grant {all [privileges] | command_list}
   to {public | name_list | role_name}
```

The syntax for `revoke` is:

```
revoke {all [privileges] | command_list}
   from {public | name_list | role_name}
```

where:

- `all` or `all privileges` – can be used only by a system administrator or the database owner. When used by a system administrator in the master database, `grant all` assigns all create permissions, including `create database` (except `create encryption key` and `create trigger`). If the system administrator executes `grant all` from another database, all create permissions are granted except `create database`, `create trigger`, and `create encryption key`. When the database owner uses `grant all`, Adaptive Server grants all create permissions except `create database`, `create trigger`, and `create encryption key`, and prints an informational message.
Granting and revoking permissions

- **command_list** – is the object creation and other command permissions that you are granting or revoking. Separate commands with commas. The list can include create database, create default, create procedure, create rule, create table, connect, create encryption key, set session authorization, create view, and create trigger. create database permission can be granted only by a system administrator, and only from within the master database. You must have system security officer privileges to grant create encryption key, set session authorization, and create trigger permissions.

- **public** – is all users except the database owner (who “owns” object creation permissions within the database).

- **name_list** – is a list of user or group names, separated by commas.

- **role_name** – is the name of an Adaptive Server system or user-defined role. You can create and define a hierarchy of user-defined roles and grant them privileges based on the specific role granted.

Granting command permission examples

The first example grants Mary and John permission to use create database and create table. Because create database permission is being granted, this command can be executed only by a system administrator within the master database. Mary and John’s create table permission applies only to the master database.

```
grant create table, create database
to mary, john
```

This command grants permission to create tables and views in the current database to all users:

```
grant create table, create view
to public
```

Revoking command permission example

This example revokes permission to create tables and rules from “mary:”

```
revoke create table, create rule
from mary
```
Granting proxy authorization

System security officers use the grant set proxy or grant set session authorization command to give a user permission to impersonate another user within the server. The user with this permission can then execute either set proxy or set session authorization to become another user.

To grant proxy authorization permission, you must be a system security officer and execute the grant command from the master database. The syntax is:

```
grant set proxy to user | role
[restricted role role_list | all | system]
```

where:

- `role_list` – list of roles you are restricting for the target login. If the grantees do not yet have the roles in the `role_list` granted to them, set proxy to the target login fails if the target login contains roles in the `role_list` granted.

- `all` – when used to grant `set proxy` to `role_list`, restricts granting the grantee any new roles when switching identities.

- `system` – ensures the grantee has the same set of system roles as the target login.

Example 1

Example 1: This example grants `set proxy` to user “joe” but restricts him from switching identities to any user with the `sa_role`, `sso_role`, or `admin_role` roles (however, if he already has these roles, he can `set proxy` for any user with these roles):

```
grant set proxy to joe
restricted role sa_role, sso_role, admin_role
```

When “joe” tries to switch his identity to a user with `admin_role` (in this example, `Our_admin_role`), the command fails unless he already has `admin_role`:

```
set proxy Our_admin_role
Msg 10368, Level 14, State 1:
Server 's', Line 2: Set session authorization permission denied because the target login has a role that you do not have and you have been restricted from using.
```

After “joe” is granted the `admin_role` and retries the command, it succeeds:

```
grant role admin_role to joe
set proxy Our_admin_role
```

Example 2

Example 2: Restricts “joe” from being granted any new roles when switching identities:
Granting and revoking permissions

grant set proxy to joe
 restricted role all

“joe” can grant set proxy only to users who have the same (or a subset of) roles that he has.

Example 3
Example 3: Restricts Joe from acquiring any new system roles when using set proxy:

grant set proxy to joe
 restricted role system

set proxy fails if the target login has system roles that joe lacks.

Granting permissions on dbcc commands

System administrators can grant the permission to execute dbcc commands to users and roles that do not have system administrator-level privileges in Adaptive Server. This discretionary access control allows system administrators to control access to database objects or to certain database- and server-level actions.

See the Reference Manual: Commands for the complete dbcc syntax.

Server-wide and database-specific dbcc commands

dbcc commands are either:

- Database-specific – dbcc commands that execute on a particular target database (for example, checkalloc, checktable, checkindex, checkstorage, checkdb, checkcatalog, checkverify, fix_text, indexalloc, reindex, tablealloc, and textalloc). Although these commands are database-specific, only system administrators can grant or revoke them.

- Server-wide – dbcc commands such as tune that are effective server-wide and are not associated with any particular database. These commands are granted server-wide by default and are not associated with any database.

System administrators can allow users to execute the dbcc command in all databases by making them valid users in those databases. However, it may be more convenient to grant dbcc to roles instead of individual users, since this allows users to use databases as a “guest” user instead of requiring that they each be added manually to the database.
From a security administration perspective, system administrators may prefer to grant permission to execute database-specific dbcc commands server-wide. For example, you can execute grant dbcc checkstorage on all databases to a user-defined role called storage_admin_role, thereby eliminating the need to execute grant dbcc checkstorage to storage_admin_role in every database.

The following commands are effective server-wide, but are not database-specific:

- Server-wide dbcc commands such as tune.
- Database-specific dbcc commands that are granted server-wide, such as grant dbcc checkstorage granted to storage_admin_role.

dbcc grantees and users in databases

grant dbcc and revoke dbcc work on users in databases.

Since roles are automatically added as users in a database on their first grant in a database, there are no additional requirements when roles are granted dbcc privileges. Logins must be valid users in the database where permissions are granted. Valid users include “guest.”

For server-wide dbcc commands, the login must be a valid user in master, and the system administrator must be in master when granting the permission.

For database-specific dbcc commands the login should be a valid user in the target database.

Permissions on system tables

Permissions for use of the system tables can be controlled by the database owner, just like permissions on any other tables. When a database is created, select permission on some system tables is granted to public, and select permission on some system tables is restricted to administrators. For some other tables, a few columns have restricted select permissions for public.

To determine the current permissions for a particular system table, execute:

```sql
sp_helpprotect system_table_name
```

For example, to check the permissions of syssrvroles in the master database, execute:

```sql
use master
go
```
Granting and revoking permissions

```
sp_helpgrant syssrvroles
```

go

The default situation is that no users—including database owners—can modify the system tables directly. Instead, the T-SQL commands and the system procedures supplied with Adaptive Server modify the system tables. This helps guarantee integrity.

Warning! Although Adaptive Server provides a mechanism that allows you to modify system tables, Sybase strongly recommends that you do not do so.

Granting default permissions to system tables and stored procedures

The grant and revoke commands include the default permissions parameter. installmodel or installmaster do not grant default permissions on any system tables (see the table below). Instead, the default permissions on the system tables are assigned when Adaptive Server builds a new database. The partial syntax is:

```
grant default permissions on system tables
revoke default permissions on system tables
```

where default permissions on system tables specifies that you grant or revoke the default permissions for the following system tables when you issue it from any database:

<table>
<thead>
<tr>
<th>sysalternates</th>
<th>sysjars</th>
<th>sysqueryplans</th>
<th>systypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysattributes</td>
<td>syskeys</td>
<td>sysreferences</td>
<td>sysusermessages</td>
</tr>
<tr>
<td>syscolumns</td>
<td>syslogs</td>
<td>sysroles</td>
<td>sysusers</td>
</tr>
<tr>
<td>syscomments</td>
<td>sysobjects</td>
<td>syssegments</td>
<td>sysxtypes</td>
</tr>
<tr>
<td>sysconstraints</td>
<td>syspartitions</td>
<td>sysstatistics</td>
<td></td>
</tr>
<tr>
<td>sysdepends</td>
<td>sysprocedures</td>
<td>systabstats</td>
<td></td>
</tr>
<tr>
<td>sysindexes</td>
<td>sysprotects</td>
<td>systhresholds</td>
<td></td>
</tr>
</tbody>
</table>

Default permissions on system tables also makes the following changes:

- Revokes select on syscolumns(encrkeyid) from public
- Revokes select on syscolumns(encrkeydb) from public
- Grants select on syscolumns to sso_role
- Revokes sysobjects(audflags) permissions from public
- Grants permissions for sysobjects to sso_role
• Revokes select on all columns of sysencryptkeys from public
• Grants select on all columns of sysencryptkeys to sso_role

If you run this command from the master database, default permissions for the following system tables are granted or revoked:

<table>
<thead>
<tr>
<th>syscharsets</th>
<th>syslanguages</th>
<th>systransactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysconfigures</td>
<td>syslocks</td>
<td>systransactions</td>
</tr>
<tr>
<td>syscurconf</td>
<td>sysservers</td>
<td>systransactions</td>
</tr>
<tr>
<td>sysservers</td>
<td>sysmessages</td>
<td>systransactions</td>
</tr>
<tr>
<td>sysservers</td>
<td>sysmessages</td>
<td>systransactions</td>
</tr>
</tbody>
</table>

The command also makes the following changes:
• Revokes select on sysdatabases(audflags) from public
• Revokes select on syscolumns(encrkeyid) from public
• Revokes select on syscolumns(encrkeydb) from public
• Grants select on syscolumns to sso_role
• Revokes select on sysdatabases(deftabaud) from public
• Revokes select on sysdatabases(defvwaud) from public
• Revokes select on sysdatabases(defpraud) from public
• Revokes select on sysdatabases(audflags2) from public
• Grants select on sysdatabases to sso_role.
• Revokes select on syslogins(password) to public
• Revokes select on syslogins(audflags) from public
• Grants select on syslogins to sso_role
• Revokes select on syssliteners(net_type) from public
• Revokes select on syssliteners(address_info) from public
• grant select on syssliteners to sso_role
• Revokes select on syssrvroles(srid) from public
• Revokes select on syssrvroles(name) from public
• Revokes select on syssrvroles(password) from public
• Revokes select on syssrvroles(pwdate) from public
Granting and revoking permissions

- Revokes select on syssrvroles(status) from public
- Revokes select on syssrvroles(logincount) from public
- grant select on syssrvroles to sso_role
- Revokes select on sysloginroles(suid) from public
- Revokes select on sysloginroles(srid) from public
- Revokes select on sysloginroles(status) from public
- Revokes select on sysloginroles to sso_role

Combining grant and revoke statements

Assign specific permissions to specific users, or, if most users are going to be granted most privileges, it may be easier to assign all permissions to all users, and then revoke specific permissions from specific users.

For example, a database owner can grant all permissions on the titles table to all users by issuing:

```sql
grant all
on titles
  to public
```

The database owner can then issue a series of `revoke` statements, for example:

```sql
revoke update
  on titles (price, advance)
  from public
revoke delete
  on titles
  from mary, sales, john
```

`grant` and `revoke` statements are order-sensitive: in case of a conflict, the most recently issued statement supersedes all others.

Note Under SQL rules, you must use the `grant` command before using the `revoke` command, but the two commands cannot be used within the same transaction. Therefore, when you grant “public” access to objects, and then revoke that access from an individual, there is a short period of time during which the individual has access to the objects in question. To prevent this situation, use the `create schema` command to include the `grant` and `revoke` clauses within one transaction.
Understanding permission order and hierarchy

grant and revoke statements are sensitive to the order in which they are issued. For example, if Jose’s group has been granted select permission on the titles table and then Jose’s permission to select the advance column has been revoked, Jose can select all the columns except advance, while the other users in his group can still select all the columns.

A grant or revoke statement that applies to a group or role changes any conflicting permissions that have been assigned to any member of that group or role. For example, if the owner of the titles table has granted different permissions to various members of the sales group, and wants to standardize, he or she might issue the following statements:

```sql
revoke all on titles from sales
grant select on titles(title, title_id, type, pub_id)
to sales
```

Similarly, a grant or revoke statement issued to public changes, for all users, all previously issued permissions that conflict with the new regime.

The same grant and revoke statements issued in different orders can create entirely different situations. For example, the following set of statements leaves Jose, who belongs to the public group, without any select permission on titles:

```sql
grant select on titles(title_id, title) to jose
revoke select on titles from public
```

In contrast, the same statements issued in the opposite order result in only Jose having select permission and only on the title_id and title columns:

```sql
revoke select on titles from public
grant select on titles(title_id, title) to jose
```

When you use the keyword `public` with `grant`, you are including yourself. With `revoke` on object creation permissions, you are included in public unless you are the database owner. With `revoke` on object access permissions, you are included in public unless you are the object owner. You may want to deny yourself permission to use your own table, while giving yourself permission to access a view built on it. To do this, you must issue `grant` and `revoke` statements explicitly setting your permissions. You can reinstitute the permission with a `grant` statement.
Grant dbcc and set proxy issue warning for fipsflagger
grant dbcc and set proxy issue the following warning when they are issued while set fipsflagger option is enabled:

SQL statement on line number 1 contains Non-ANSI text. The error is caused due to the use of DBCC.

Granting and revoking roles

After a role is defined, it can be granted to any login account or role in the server, provided that it does not violate the rules of mutual exclusivity and hierarchy. Table 17-4 lists the tasks related to roles, the role required to perform the task, and the command to use.

<table>
<thead>
<tr>
<th>Task</th>
<th>Required role</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant the sa_role role</td>
<td>System administrator</td>
<td>grant role</td>
</tr>
<tr>
<td>Grant the sso_role role</td>
<td>System security officer</td>
<td>grant role</td>
</tr>
<tr>
<td>Grant the oper_role role</td>
<td>System security officer</td>
<td>grant role</td>
</tr>
<tr>
<td>Grant user-defined roles</td>
<td>System security officer</td>
<td>grant role</td>
</tr>
<tr>
<td>Create role hierarchies</td>
<td>System security officer</td>
<td>grant role</td>
</tr>
<tr>
<td>Modify role hierarchies</td>
<td>System security officer</td>
<td>revoke role</td>
</tr>
<tr>
<td>Revoke system roles</td>
<td>System security officer</td>
<td>revoke role</td>
</tr>
<tr>
<td>Revoke user-defined roles</td>
<td>System security officer</td>
<td>revoke role</td>
</tr>
</tbody>
</table>

Granting roles

To grant roles to users or other roles, use:

```
grant role role_granted [{, role_granted}...]
to grantee [{, grantee}...]
```

where:

- `role_granted` – is the role being granted. You can specify any number of roles to be granted.
- `grantee` – is the name of the user or role. You can specify any number of grantees.
All roles listed in the grant statement are granted to all grantees. If you grant one role to another, it creates a role hierarchy.

For example, to grant Susan, Mary, and John the “financial_analyst” and the “payroll_specialist” roles, enter:

```
grant role financial_analyst, payroll_specialist
to susan, mary, john
```

Understanding `grant` and roles

Use the grant command to grant permission on objects to all users who have been granted a specified role, whether system or user-defined. This allows you to restrict use of an object to users who have been granted any of these roles:

- Any system-defined role
- Any user-defined role

A role can be granted only to a login account or another role. However, grant permission does not prevent users who do not have the specified role from being granted execute permission on a stored procedure. To ensure, for example, that only system administrators can successfully execute a stored procedure, use the `proc_role` system function within the stored procedure itself. See “Displaying information about roles” on page 435 for more information.

Permissions granted to roles override permissions granted to users or groups. For example, assume John has been granted the system security officer role, and `sso_role` has been granted permission on the `sales` table. If John’s individual permission on `sales` is revoked, he can still access `sales` when he has `sso_role` active because his role permissions override his individual permissions.

In granting permissions, a system administrator is treated as the object owner. If a system administrator grants permission on another user’s object, the owner’s name appears as the grantor in `sysprotects` and in `sp_helprotect` output.

If several users grant access to an object to a particular user, the user’s access remains until access is revoked by all those who granted access. If a system administrator revokes access, the user is denied access, even though other users have granted access.
Revoking roles

Use `revoke` role to revoke roles from users and other roles:

```
revoke role role_name [[, role_name]...] from grantee [[, grantee]...]
```

where:

- `role_name` – is the role being revoked. You can specify any number of roles to be revoked.
- `grantee` – is the name of the user or role. You can specify any number of grantees.

All roles listed in the `revoke` statement are revoked from all grantees.

You cannot revoke a role from a user while the user is logged in.

Acquiring the permissions of another user

Adaptive Server provides two ways to acquire another user’s identity and permissions status:

- A database owner can use the `setuser` command to “impersonate” another user’s identity and permissions status in the current database. See “Using `setuser`” on page 586.
- **proxy authorization** allows one user to assume the identity of another user on a server-wide basis. See “Using proxy authorization” on page 587.

Using `setuser`

A database owner may use `setuser` to:

- Access an object owned by another user
- Grant permissions on an object owned by another user
- Create an object that will be owned by another user
- Temporarily assume the DAC permissions of another user for some other reason
While the `setuser` command enables the database owner to automatically acquire another user’s DAC permissions, the command does not affect the roles that have been granted.

`setuser` permission defaults to the database owner and cannot be transferred. The user being impersonated must be an authorized user of the database. Adaptive Server checks the permissions of the user being impersonated.

System administrators can use `setuser` to create objects that will be owned by another user. However, system administrators operate outside the DAC permissions system; therefore, they need not use `setuser` to acquire another user’s permissions. The `setuser` command remains in effect until another `setuser` command is given, the current database is changed, or the user logs off.

The syntax is:

```
setuser ["user_name"]
```

where `user_name` is a valid user in the database that is to be impersonated.

To reestablish your original identity, use `setuser` with no value for `user_name`.

This example shows how the database owner would grant Joe permission to read the `authors` table, which is owned by Mary:

```
setuser "mary"
grant select on authors to joe
setuser /*reestablishes original identity*/
```

Using proxy authorization

With the proxy authorization capability of Adaptive Server, system security officers can grant selected logins the ability to assume the security context of another user, and an application can perform tasks in a controlled manner on behalf of different users. If a login has permission to use proxy authorization, the login can impersonate any other login in Adaptive Server.

Warning! The ability to assume another user’s identity is extremely powerful and should be limited to trusted administrators and applications. `grant set proxy ... restrict role` can be used to restrict which roles users cannot acquire when switching identities.
Acquiring the permissions of another user

A user executing set proxy or set session authorization operates with both the login name and server user ID of the user being impersonated. The login name is stored in the name column of master..syslogins and the server user ID is stored in the suid column of master..syslogins. These values are active across the entire server in all databases.

Note set proxy and set session authorization are identical in function and can be used interchangeably. The only difference between them is that set session authorization is ANSI-SQL92-compatible, and set proxy is a Transact-SQL extension.

Using set proxy to restrict roles

Grant set proxy...restrict role to restrict which roles cannot be acquired when switching identities.

The syntax for set proxy is:

```
grant set proxy to user | role
    [restrict role role_list | all | system]
```

where:

- `role_list` – list of roles you are restricting for the target login. The grantee must have all roles on this list, or the set proxy command fails.
- `all` – ensures the grantee can run set proxy only for those users who have the same roles, or a subset of the roles, as the grantee.
- `system` – ensures the grantee has the same set of system roles as the target login.

For example, this grants set proxy to user “joe” but restricts him from switching identities to any user with the sa, sso, or admin roles (however, if he already has these roles, he can set proxy for any user with these roles):

```
grant set proxy to joe
    restrict role sa_role, sso_role, admin_role
```

When “joe” tries to switch his identity to a user with admin_role (in this example, Our_admin_role), the command fails unless he already has admin_role:

```
set proxy Our_admin_role
Msg 10368, Level 14, State 1:
Server 's', Line 2:Set session authorization permission denied because the target login has a role that you do
not have and you have been restricted from using.

After “joe” is granted the admin_role and retries the command, it succeeds:

grant role admin_role to joe
set proxy Our_admin_role

For more information about the set proxy command, see the Reference Manual: Commands.

Executing proxy authorization

Follow these rules when you execute set proxy or set session authorization:

- You cannot execute set proxy or set session authorization from within a transaction.
- You cannot use a locked login for the proxy of another user. For example, if “joseph” is a locked login, the following command is not allowed:
  
  set proxy "joseph"

- You can execute set proxy or set session authorization from any database you are allowed to use. However, the login_name you specify must be a valid user in the database, or the database must have a “guest” user defined for it.
- Only one level is permitted; to impersonate more than one user, you must return to your original identity between impersonations.
- If you execute set proxy or set session authorization from within a procedure, your original identity is automatically resumed when you exit the procedure.

If you have a login that has been granted permission to use set proxy or set session authorization, you can set proxy to impersonate another user. The following is the syntax, where login_name is the name of a valid login in master.syslogins:

set proxy login_name

or

set session authorization login_name

Enclose the login name in quotation marks.

For example, to set proxy to “mary,” execute:

set proxy "mary"
After setting proxy, check your login name in the server and your user name in the database. For example, assume that your login is “ralph” and that you have been granted set proxy authorization. You want to execute some commands as “sallyn” and as “rudolph” in pubs2 database. “sallyn” has a valid name (“sally”) in the database, but Ralph and Rudolph do not. However, pubs2 has a “guest” user defined. You can execute:

```
set proxy "sallyn"
go
use pubs2
go
select suser_name(), user_name()
go
-------------------------- ---------------------
sallyn sally
```

To change to Rudolph, you must first change back to your own identity. To do so, execute:

```
set proxy "ralph"
select suser_name(), user_name()
go
-------------------------- ---------------------
ralph guest
```

Notice that Ralph is a “guest” in the database.

Then execute:

```
set proxy "rudolph"
go
select suser_name(), user_name()
go
-------------------------- ---------------------
rudolph guest
```

Rudolph is also a guest in the database because Rudolph is not a valid user in the database.

Now, impersonate the “sa” account. Execute:

```
set proxy "ralph"
go
set proxy "sa"
go
select suser_name(), user_name()
go
-------------------------- ---------------------
sa dbo
```
Proxy authorization for applications

Figure 17-1 shows an application server logging in to Adaptive Server with the generic login “appl” to execute procedures and commands for several users. While “appl” impersonates Tom, the application has Tom’s permissions. Likewise, when “appl” impersonates Sue and John, the application has only Sue’s and John’s permissions, respectively.

**Figure 17-1: Applications and proxy authorization**

Tom, Sue, and John establish sessions with the Application Server:

<table>
<thead>
<tr>
<th>Tom</th>
<th>Sue</th>
<th>John</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The application server (“appl”) on Adaptive Server executes:

- **set proxy “tom”**
  (SQL command for Tom)
- **set proxy “sue”**
  (SQL command for Sue)
- **set proxy “John”**
  (SQL command for John)

Reporting on permissions

Table 17-5 lists the system procedures for reporting information about proxies, object creation, and object access permissions:
Reporting on permissions

Table 17-5: System procedures for reporting on permissions

<table>
<thead>
<tr>
<th>To report information on</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxies</td>
<td>system tables</td>
</tr>
<tr>
<td>Users and processes</td>
<td>sp_who</td>
</tr>
<tr>
<td>Permissions on database objects or users</td>
<td>sp_helprotect</td>
</tr>
<tr>
<td>Permissions on specific tables</td>
<td>sp_table_privileges</td>
</tr>
<tr>
<td>Permissions on specific columns in a table</td>
<td>sp_column_privileges</td>
</tr>
</tbody>
</table>

Querying the `sysprotects` table for proxy authorization

To display information about permissions that have been granted to—or revoked from—users, groups, and roles, query the `sysprotects` table. The action column specifies the permission. For example, the action value for `set proxy` or `set session authorization` is equal to 167.

You might execute this query:

```
select * from sysprotects where action = 167
```

The results provide the user ID of the user who granted or revoked the permission (column `grantor`), the user ID of the user who has the permission (column `uid`), and the type of protection (column `protecttype`). The `protecttype` column can contain these values:

- 0 for `grant with grant`
- 1 for `grant`
- 2 for `revoke`

For more information about the `sysprotects` table, see the *Reference Manual: Building Blocks*.

Displaying information about users and processes

`sp_who` displays information about all current Adaptive Server users and processes or about a particular user or process. The results of `sp_who` include the `loginame` and `origname`. If a user is operating under a proxy, `origname` contains the name of the original login. For example, assume that “ralph” executes the following, then executes some SQL commands:

```
set proxy susie
sp_who
```

`sp_who` returns “susie” for `loginame` and “ralph” for `origname`.
sp_who queries the master.sysprocesses system table, which contains columns for the server user ID (suid) and the original server user ID (origsuid).

For more information, see sp_who in the Reference Manual: Procedures.

**Reporting permissions on database objects or users**

Use sp_helprotect to report on permissions by database object or by user, and (optionally) by user for a specified object. Any user can execute this procedure. The syntax is:

```
sp_helprotect [name [, username [, "grant"
[,"none"]|"granted"|"enabled"|role_name]]]]
```

where:

- **name** – is either the name of the table, view, or stored procedure, or the name of a user, group, or role in the current database. If you do not provide a name, sp_helprotect reports on all permissions in the database.
- **username** – is a user’s name in the current database.

If you specify **username**, only that user’s permissions on the specified object are reported. If **name** is not an object, sp_helprotect checks whether **name** is a user, group, or role and if it is, lists the permissions for the user, group, or role. If you specify the keyword **grant**, and **name** is not an object, sp_helprotect displays all permissions granted by with grant option.

- **grant** – displays the permissions granted to **name** with grant option.
- **none** – ignores roles granted to the user.
- **granted** – includes information on all roles granted to the user.
- **enabled** – includes information on all roles activated by the user.
- **role_name** – displays permission information for the specified role only, regardless of whether this role has been granted to the user.

For example, suppose you issue the following series of **grant** and **revoke** statements:

```
grant select on titles to judy
grant update on titles to judy
revoke update on titles(contract) from judy
grant select on publishers to judy
 with grant option
```
To determine the permissions Judy now has on each column in the titles table, enter:

```
sp_helprotect titles, judy
```

<table>
<thead>
<tr>
<th>grantor</th>
<th>grantee</th>
<th>type</th>
<th>action</th>
<th>object</th>
<th>column</th>
<th>grantable</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Select</td>
<td>titles</td>
<td>All</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>advance</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>notes</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>price</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>pub_id</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>pubdate</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>title</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>title_id</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>total_sales</td>
<td>FALSE</td>
</tr>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Update</td>
<td>titles</td>
<td>type</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

The first row shows that the database owner (“dbo”) gave Judy permission to select all columns of the titles table. The rest of the lines indicate that she can update only the columns listed in the display. Judy cannot give select or update permissions to any other user.

To see Judy’s permissions on the publishers table, enter:

```
sp_helprotect publishers, judy
```

In this display, the grantable column indicates TRUE, meaning that Judy can grant the permission to other users.

<table>
<thead>
<tr>
<th>grantor</th>
<th>grantee</th>
<th>type</th>
<th>action</th>
<th>object</th>
<th>column</th>
<th>grantable</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo</td>
<td>judy</td>
<td>Grant</td>
<td>Select</td>
<td>publishers</td>
<td>all</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

**Reporting permissions on specific tables**

Use `sp_table_privileges` to return permissions information about a specified table. The syntax is:

```
sp_table_privileges table_name [, table_owner
 [, table_qualifier]]
```

where:

- `table_name` – is the name of the table, and is required.
- `table_owner` – can be used to specify the name of the table owner, if it is not “dbo” or the user executing `sp_table_privileges`. 
• **table_qualifier** – is the name of the current database.

Use `null` for parameters that you want to skip.

For example, this statement returns information about all permissions granted on the `titles` table:

```
sp_table_privileges titles
```

For more information about the output of `sp_table_privileges`, see the *Reference Manual: Procedures*.

### Reporting permissions on specific columns

Use `sp_column_privileges` to return information about permissions on columns in a table. The syntax is:

```
sp_column_privileges table_name [, table_owner
 [, table_qualifier [, column_name]]]
```

where:

- **table_name** – is the name of the table.
- **table_owner** – can be used to specify the name of the table owner, if it is not “dbo” or the user executing `sp_column_privileges`.
- **table_qualifier** – is the name of the current database.
- **column_name** – is the name of the column on which you want to see permissions information.

Use `null` for parameters that you want to skip.

For example, this statement returns information about the `pub_id` column of the `publishers` table:

```
sp_column_privileges publishers, null, null, pub_id
```

For more information about the output of `sp_column_privileges`, see the *Reference Manual: Procedures*. 
Using views and stored procedures as security mechanisms

Views and stored procedures can serve as security mechanisms. You can give users controlled access to database objects via a view or stored procedure without granting them direct access to the data. For example, you might give a clerk execute permission on a procedure that updates cost information in a projects table without letting the user see confidential data in the table. To use this feature, you must own the procedure or view as well as its underlying objects. If you do not own the underlying objects, users must have permission to access the objects. For more information about when permissions are required, see “Understanding ownership chains” on page 599.

Adaptive Server makes permission checks, as required, when the view or procedure is used. When you create the view or procedure, Adaptive Server makes no permission checks on the underlying objects.

Using views as security mechanisms

Through a view, users can query and modify only the data they can see. The rest of the database is neither visible nor accessible.

Permission to access the view must be explicitly granted or revoked, regardless of the permissions on the view’s underlying tables. If the view and underlying tables are owned by the same owner, no permissions need to be given on the underlying tables. Data in an underlying table that is not included in the view is hidden from users who are authorized to access the view but not the underlying table.

By defining different views and selectively granting permissions on them, a user (or any combination of users) can be restricted to different subsets of data. Access can be restricted to:

- A subset of the rows of a base table (a value-dependent subset). For example, you might define a view that contains only the rows for business and psychology books to keep information about other types of books hidden from some users.

- A subset of the columns of a base table (a value-independent subset). For example, you might define a view that contains all the rows of the titles table, but omits the price and advance columns, since this information is sensitive.

- A row-and-column subset of a base table.
• The rows that qualify for a join of more than one base table. For example, you might define a view that joins the titles, authors, and titleauthor tables. This view hides personal data about authors and financial information about the books.

• A statistical summary of data in a base table. For example, you might define a view that contains only the average price of each type of book.

• A subset of another view, or of some combination of views and base tables.

Let’s say you want to prevent some users from accessing the columns in the titles table that display money and sales amounts. You can create a view of the titles table that omits those columns, and then give all users permission on the view but only the Sales Department permission on the table:

```
grant all on bookview to public
grant all on titles to sales
```

An equivalent way of setting up these privilege conditions, without using a view, is to use the following statements:

```
grant all on titles to public
revoke select, update on titles (price, advance, total_sales)
from public
grant select, update on titles (price, advance, total_sales)
to sales
```

One possible problem with the second solution is that users not in the sales group who enter the `select * from titles` command might be surprised to see the message that includes the phrase:

```
permission denied
```

Adaptive Server expands the asterisk into a list of all the columns in the titles table, and since permission on some of these columns has been revoked from nonsales users, access to these columns is denied. The error message lists the columns for which the user does not have access.

To see all the columns for which they do have permission, the nonsales users must name them explicitly. For this reason, creating a view and granting the appropriate permissions on it is a better solution.

You can also use views for context-sensitive protection. For example, you can create a view that gives a data entry clerk permission to access only those rows that he or she has added or updated. To do so, add a column to a table in which the user ID of the user entering each row is automatically recorded with a default. You can define this default in the `create table` statement, like this:
create table testtable
    (empid int,
     startdate datetime,
     username varchar(30) default user)

Next, define a view that includes all the rows of the table where uid is the current user:

create view context_view
    as
    select *
    from testtable
    where username = user_name()
    with check option

The rows retrievable through this view depend on the identity of the person who issues the select command against the view. By adding with check option to the view definition, you make it impossible for any data entry clerk to falsify the information in the username column.

Using stored procedures as security mechanisms

If a stored procedure and all underlying objects are owned by the same user, that owner can grant users permission to use the procedure without granting permissions on the underlying objects. For example, you might give a user permission to execute a stored procedure that updates a row-and-column subset of a specified table, even though that user does not have any other permissions on that table.

Roles and stored procedures

Use the grant execute command to grant execute permission on a stored procedure to all users who have been granted a specified role. revoke execute removes this permission. But grant execute permission does not prevent users who do not have the specified role from being granted execute permission on the stored procedure.

For further security, you can restrict the use of a stored procedure by using the proc_role system function within the procedure to guarantee that a procedure can be executed only by users who have a given role. proc_role returns 1 if the user has a specific role (sa_role, sso_role, oper_role, or any user-defined role) and returns 0 if the user does not have that role. For example, here is a procedure that uses proc_role to see if the user has the system administrator role:
create proc test_proc
as
if (proc_role("sa_role") = 0)
begin
   print "You don’t have the right role"
   return -1
end
else
   print "You have SA role"
   return 0


Understanding ownership chains

Views can depend on other views or tables. Procedures can depend on other procedures, views, or tables. These dependencies can be thought of as an ownership chain.

Typically, the owner of a view also owns its underlying objects (other views and tables), and the owner of a stored procedure owns all the procedures, tables, and views referenced by the procedure.

A view and its underlying objects are usually all in the same database, as are a stored procedure and all the objects it references; however, this is not required. If objects are in different databases, a user wanting to use the view or stored procedure must be a valid user or guest user in all of the databases containing the objects. This prevents users from accessing a database unless the database owner has authorized it.

When a user who has been granted `execute` permission on a procedure or view uses it, Adaptive Server does not check permissions on any of the underlying objects if:

- These objects and the view or procedure are owned by the same user, and
- The user accessing the view or procedure is a valid user or guest user in each of the databases containing the underlying objects.
However, if all objects are not owned by the same user, Adaptive Server checks object permissions when the ownership chain is broken. That is, if object A references object B, and B is not owned by the user who owns object A, Adaptive Server checks the permissions for object B. In this way, Adaptive Server allows the owner of the original data to retain control over who is authorized to access it.

Ordinarily, a user who creates a view needs to worry only about granting permissions on that view. For example, say Mary has created a view called auview1 on the authors table, which she also owns. If Mary grants select permission to Sue on auview1, Adaptive Server allows Sue to access it without checking permissions on authors.

However, a user who creates a view or stored procedure that depends on an object owned by another user must be aware that any permissions he or she grants depend on the permissions allowed by those other owners.

**Example of views and ownership chains**

Say Joe creates a view called auview2, which depends on Mary’s view auview1. Joe grants Sue select permission on auview2.

\[\text{Figure 17-2: Ownership chains and permission checking for views, case 1}\]

<table>
<thead>
<tr>
<th>Sue’s permission</th>
<th>Objects</th>
<th>Ownership</th>
<th>Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>auview2</td>
<td>Joe</td>
<td>Sue not owner&lt;br&gt;Check permissions</td>
</tr>
<tr>
<td></td>
<td>auview1</td>
<td>Mary</td>
<td>Different owner&lt;br&gt;Check permissions</td>
</tr>
<tr>
<td></td>
<td>authors</td>
<td>Mary</td>
<td>Same owner&lt;br&gt;No permission check</td>
</tr>
</tbody>
</table>

Adaptive Server checks the permissions on auview2 and auview1, and finds that Sue can use them. Adaptive Server checks ownership on auview1 and authors and finds that they have the same owner. Therefore, Sue can use auview2.
Taking this example a step further, suppose that Joe’s view, auview2, depends on auview1, which depends on authors. Mary decides she likes Joe’s auview2 and creates auview3 on top of it. Both auview1 and authors are owned by Mary.

The ownership chain looks like this:

*Figure 17-3: Ownership chains and permission checking for views, case 2*

<table>
<thead>
<tr>
<th>Sue’s permission</th>
<th>Objects</th>
<th>Ownership</th>
<th>Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>auview3</td>
<td>Mary</td>
<td>Sue not owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check permissions</td>
</tr>
<tr>
<td>select</td>
<td>auview2</td>
<td>Joe</td>
<td>Different owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check permissions</td>
</tr>
<tr>
<td>select</td>
<td>auview1</td>
<td>Mary</td>
<td>Different owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check permissions</td>
</tr>
<tr>
<td>none</td>
<td>authors</td>
<td>Mary</td>
<td>Same owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No permission check</td>
</tr>
</tbody>
</table>

When Sue tries to access auview3, Adaptive Server checks permissions on auview3, auview2, and auview1. If Joe has granted permission to Sue on auview2, and Mary has granted her permission on auview3 and auview1, Adaptive Server allows the access. Adaptive Server checks permissions only if the object immediately before it in the chain has a different owner (or if it is the first object in the chain). For example, it checks auview2 because the object before it—auview3—is owned by a different user. It does not check permission on authors, because the object that immediately depends on it, auview1, is owned by the same user.

**Example of procedures and ownership chains**

Procedures follow the same rules as views. For example, suppose the ownership chain looks like this:
Using views and stored procedures as security mechanisms

<table>
<thead>
<tr>
<th>Sue’s permission</th>
<th>Objects</th>
<th>Ownership</th>
<th>Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>execute</td>
<td>proc4</td>
<td>Mary</td>
<td>Sue not owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check permissions</td>
</tr>
<tr>
<td>none</td>
<td>proc3</td>
<td>Mary</td>
<td>Same owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No permissions check</td>
</tr>
<tr>
<td>execute</td>
<td>proc2</td>
<td>Joe</td>
<td>Different owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check permissions</td>
</tr>
<tr>
<td>execute</td>
<td>proc1</td>
<td>Mary</td>
<td>Different owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check permissions</td>
</tr>
<tr>
<td>none</td>
<td>authors</td>
<td>Mary</td>
<td>Same owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No permission check</td>
</tr>
</tbody>
</table>

To execute proc4, Sue must have permission to execute proc4, proc2, and proc1. Permission to execute proc3 is not necessary because proc3 and proc4 have the same owner.

Adaptive Server checks Sue’s permissions on proc4 and all objects it references each time she executes proc4. Adaptive Server knows which referenced objects to check: it determined this the first time Sue executed proc4, and it saved the information with the procedure’s execution plan. Unless one of the objects referenced by the procedure is dropped or redefined, Adaptive Server does not change its initial decision about which objects to check.

This protection hierarchy allows every object’s owner to fully control access to the object. Owners can control access to views and stored procedures, as well as to tables.
Permissions on triggers

A trigger is a special kind of stored procedure used to enforce integrity, especially referential integrity. Triggers are never executed directly, but only as a side effect of modifying a table. You cannot grant or revoke permissions for triggers.

Only an object owner can create a trigger. However, the ownership chain can be broken if a trigger on a table references objects owned by different users. The protection hierarchy rules that apply to procedures also apply to triggers.

While the objects that a trigger affects are usually owned by the user who owns the trigger, you can write a trigger that modifies an object owned by another user. If this is the case, any users modifying your object in a way that activates the trigger must have permission on the other object as well.

If Adaptive Server denies permission on a data modification command because a trigger affects an object for which the user does not have permission, the entire data modification transaction is rolled back.


Using row-level access control

Row-level access control enables the database owner or table owner to create a secure data access environment automatically, by providing:

- More granular data security: you can set permissions for individual rows, not just tables and columns
- Automatic data filtering according to group, role, and application
- Data-level security encoded in the server

Row-level access control restricts access to data in a table’s individual rows, through three features:

- Access rules that the database owner defines and binds to the table
- Application Context Facility, which provides built-in functions that define, store, and retrieve user-defined contexts
- Login triggers that the database owner, sa_role, or the user can create
Using row-level access control

Adaptive Server enforces row-level access control for all data manipulation languages (DMLs), preventing users from bypassing the access control to get to the data.

The syntax for configuring your system for row-level access control is:

```
sp_configure "enable row level access", 1
```

This option slightly increases the amount of memory Adaptive Server uses, and you need an ASE_RLAC license option. Row-level access control is a dynamic option, so you need not restart Adaptive Server.

Access rules

To use the row-level access control feature, add the access option to the existing create rule syntax. Access rules restrict any rows that can be viewed or modified.

Access rules are similar to domain rules, which allow table owners to control the values users can insert or update on a column. The domain rule applies restrictions to added data, functioning on update and insert commands.

Access rules apply restrictions to retrieved data, enforced on select, update, and delete operations. Adaptive Server enforces the access rules on all columns that are read by a query, even if the columns are not included in the select list. In other words, in a given query, Adaptive Server enforces the domain rule on the table that is updated, and the access rule on all tables that are read.

For example:

```
insert into orders_table
select * from old_orders_table
```

In this query, if there are domain rules on the orders_table and access rules on the old_orders_table, Adaptive Server enforces the domain rule on the orders_table, because it is updated, and the access rule on the old_orders_table, because it is read.

Using access rules is similar to using views, or using an ad hoc query with where clauses. The query is compiled and optimized after the access rules are attached, so it does not cause performance degradation. Access rules provide a virtual view of the table data, the view depending on the specific access rules bound to the columns.
Access rules can be bound to user-defined datatypes, defined with `sp_addtype`. Adaptive Server enforces the access rule on user tables, which frees the table owner or database owner from the maintenance task of binding access rules to columns in the normalized schema. For instance, you can create a user-defined type, whose base type is `varchar(30)`, call it `username`, and bind an access rule to it. Adaptive Server enforces the access rule on any tables in your application that have columns of type `username`.

Application developers can write flexible access rules using Java and application contexts, described in “Access rules as user-defined Java functions” on page 610, and “Using the Application Context Facility” on page 613.

**Syntax for access rules**

Use the `access` parameter in the `create rule` syntax to create access rules.

```
create [or|and] access rule (access_rule_name)
as (condition)
```

**Creating a sample table with access rules**

This section shows the process of creating a table and binding an access rule to it.

**Creating a table**

A table owner creates and populates table `T` (`username` `char(30)`, `title` `char(30)`, `classified_data` `char(1024)`):

- AA, "Administrative Assistant", " Memo to President"
- AA, "Administrative Assistant", "Tracking Stock Movements"
- VP1, "Vice President", "Meeting Schedule"
- VP2, "Vice President", "Meeting Schedule"

**Creating and binding access rules**

The table owner creates access rule `uname_acc_rule` and binds it to the `username` column on table `T`.

```
create access rule uname_acc_rule
as @username = suser_name()

sp_bindrule uname_acc_rule, "T.username"
```

**Querying the table**

When you issue the following query:

```
select * from T
```
Using row-level access control

Adaptive Server processes the access rule that is bound to the username column on table T and attaches it to the query tree. The tree is then optimized and an execution plan is generated and executed, as though the user had executed the query with the filter clause given in the access rule. In other words, Adaptive Server attaches the access rule and executes the query as:

```sql
select * from T where T.username = suser_name().
```

The condition `where T.username = suser_name()` is enforced by the server. The user cannot bypass the access rule.

The result of an Administrative Assistant executing the select query is:

```
AA, "Administrative Assistant","Memo to President"
AA, "Administrative Assistant","Tracking Stock Movements"
```

Dropping an access rule

Before you drop an access rule, you must unbind it from any columns or datatypes, using `sp_unbindrule`, as in the following example:

```sql
sp_unbindrule "T.username", NULL, "all"
```

`sp_unbindrule` unbinds any domain rules attached to the column by default.

After you unbind the rule, you can drop it:

```sql
drop rule "rule_name"
```

For example:

```sql
drop rule "T.username"
```

Syntax for extended access rule

Each access rule is bound to one column, but you can have multiple access rules in a table. `create rule` provides `AND` and `OR` parameters to handle evaluating multiple access rules. To create `AND` access rules and `OR` access rules, use extended access rule syntax:

- **AND access rule**:
  ```sql
 create and access rule rule_name
  ```

- **OR access rule**:
  ```sql
 create or access rule rule_name as
  ```
You can bind AND access rules and OR access rules to a column or user-defined datatype. With the extended access rule syntax, you can bind multiple access rules to the table, although you can bind only one per column. When the table is accessed, the access rules go into effect, the AND rules bound first by default, and then the OR access rules.

If you bind multiple access rules to a table without defining AND or OR access, the default access rule is AND.

If there is only one access rule on a row of the table and it is defined as an OR access rule, it behaves as an AND access rule.

**Using access and extended access rules**

**Create access rules**

The following steps create access rules:

```sql
create access rule empid1_access
 as @empid = 1

create access rule deptno1_access
 as @deptid = 2
```

The following steps create OR access rules:

```sql
create or access rule name1_access
 as @name = "smith"

create or access rule phone_access
 as @phone = "9999"
```

**Create table**

This step creates a test table:

```sql
create table testtab1 (empno int, deptno int, name char(10), phone char(4))
```

**Bind rules to table**

The following steps bind access rules to the test table columns:

```sql
sp_bindrule empid1_access, "testtab1.empno"
/*Rule bound to table column.*/
(return status = 0)

sp_bindrule deptno1_access,"testtab1.deptno"
/*Rule bound to table column.*/
(return status = 0)

sp_bindrule name1_access,"testtab1.name"
/*Rule bound to table column.*/
(return status = 0)
```
Using row-level access control

sp_bindrule phone_access,"testtabl.phone"
/*Rule bound to table column.*/
(return status = 0)

Insert data into table

The following steps insert values into the test table:

insert testtabl values (1,1,"smith","3245")
(1 row affected)
insert testtabl values(2,1,"jones","0283")
(1 row affected)
insert testtabl values(1,2,"smith","8282") (1 row affected)
insert testtabl values(2,2,"smith","9999")
(1 row affected)

Access rule examples

The following examples show how access rules return specific rows containing information limited by access rules.

Example 1

This example returns information from two rows:

/* return rows when empno = 1 and deptno = 2 and ( name = "smith" or phone = "9999" ) */
/*
select * from testtabl
empno       deptno      name       phone
------------ ----------- ---------- -----  
1           2 smith      8282
1           2 jones      9999
*/

(2 rows affected)

/* unbind access rule from specific column */
sp_unbindrule "testtabl.empno",NULL,"accessrule"
/*Rule unbound from table column.*/*
(return status = 0)

Example 2

This example returns information from four rows:
/* return rows when deptno = 2 and ( name = "smith" or phone = "9999" )*/
select * from testtabl
empno deptno name phone
----------- ----------- ---------- -----
 1  2 smith  8282
 2  2 smith  9999
 3  2 smith  8888
 1  2 jones  9999
(4 rows affected)

/* unbind all deptno rules from specific column */
sp_unbindrule "testtabl.deptno",NULL,"all"
/*Rule unbound from table column.*/
(return status = 0)

Example 3
This example returns information from six rows:
/* return the rows when name = "smith" or phone = "9999" */
select * from testtabl
empno deptno name phone
----------- ----------- ---------- -----
 1  1 smith  3245
 1  2 smith  8282
 2  2 smith  9999
 3  2 smith  8888
 1  2 jones  9999
 2  3 jones  9999
Access rules and alter table command

When the table owner uses the alter table command, Adaptive Server disables access rules during the execution of the command and enables them upon completion of the command. The access rules are disabled to avoid filtering the table data during the alter table command.

Access rules and bcp

Adaptive Server enforces access rules when data is copied out of a table using the bcp. Adaptive Server cannot disable access rules, as it does with alter table, because any user can use bcp who has select permission on the table.

For security purposes, the database owner should lock the table exclusively and disable access rules during bulk copy out. The lock disables access to other users while the access rules are disabled. The database owner should bind the access rules and unlock the table after the data has been copied.

Access rules as user-defined Java functions

Access rules can use user-defined Java functions. For example, you can use Java functions to write sophisticated rules using the profile of the application, the user logged in to the application, and the roles that the user is currently assigned for the application.

The following Java class uses the method GetSecVal to demonstrate how you can use Java methods that use JDBC as user-defined functions inside access rules:

```java
import java.sql.*;
import java.util.*;

public class sec_class {
 static String _url = "jdbc:sybase:asejdbc";
 public static int GetSecVal(int c1)
 {
 try
 {
 PreparedStatement pstmt;
 ResultSet rs = null;
 Connection con = null;
 int pno_val;
 pstmt = null;
```
Class.forName("sybase.asejdbc.ASEDriver");
con = DriverManager.getConnection(_url);

if (con == null)
{
    return (-1);
}

pstmt = con.prepareStatement("select classification from sec_tab where id = ?");
if (pstmt == null)
{
    return (-1);
}
pstmt.setInt(1, c1);
rs = pstmt.executeQuery();
rs.next();
pno_val = rs.getInt(1);
rs.close();
pstmt.close();
con.close();
return (pno_val);
}

catch (SQLException sqe)
{
    return(sqe.getErrorCode());
}

catch (ClassNotFoundException e)
{
    System.out.println("Unexpected exception : " + e.toString());
    System.out.println("This error usually indicates that " + "your Java CLASSPATH environment has not been set properly.");
e.printStackTrace();
Using row-level access control

```java
return (-1);
}
catch (Exception e)
{
System.out.println("Unexpected exception : " +
e.toString());
e.printStackTrace();
return (-1);
}
```

After compiling the Java code, you can run the same program from `isql`, as follows.

For example:

```bash
javac sec_class.java
jar cufo sec_class. jar sec_class.class
installjava -Usa -Password -
f/work/work/FGAC/sec_class.jar -
-D testdb
```

From `isql`:

```sql
/*to create new user datatype class_level*/
sp_addtype class_level, int
/*to create the sample secure data table*/
create table sec_data (c1 varchar(30),
c2 varchar(30),
c3 varchar(30),
clevel class_level)
/*to create the classification table for each user*/
create table sec_tab (userid int, clevel class-level int)
insert into sec_tab values (1,10)
insert into sec_tab values (2,9)
insert into sec_tab values (3,7)
insert into sec_tab values (4,7)
insert into sec_tab values (5,4)
insert into sec_tab values (6,4)
insert into sec_tab values (7,4)
```

```sql
declare @v1 int
select @v1 = 5
while @v1 > 0
begin
```

---

612

Adaptive Server Enterprise
Using the Application Context Facility

Applications on a database server must limit access to the data. Applications are carefully coded to consider the profile of the user. For example, a Human Resources application is coded to know which users are allowed to update salary information.
The attributes that enable this coding comprise an application context. The Application Context Facility (ACF) consists of three built-in functions that provide a secure environment for data access, by allowing access rules to compare against the intrinsic values assigned to users in a session.

An application context consists of context_name, attribute_name, and attribute_value. Users define the context name, the attributes, and the values for each context. You can use the default read-only application context that Sybase provides, SYS_SESSION, to access some session-specific information. This application context is shown as Table 17-6 on page 621. You can also create your own application contexts, as described in “Creating and using application contexts” on page 616.

The user profile, combined with the application profile, which is defined in a table created by the system administrator, permits cumulative and overlapping security schemes.

ACF allows users to define, store, and retrieve:

- User profiles (the roles authorized to a user and the groups to which the user belongs)
- Application profiles currently in use

Any number of application contexts per session are possible, and any context can define any number of attribute/value pairs. ACF context rows are specific to a session, and not persistent across sessions; however, unlike local variables, they are available across nested levels of statement execution. ACF provides built-in functions that set, get, list, and remove these context rows.

### Setting permissions for using application context functions

You execute an application context function in a select statement. The owner of the function is the system administrator of the server. You can create, set, retrieve, and remove application contexts using built-in functions.

The data used in the functions is defined in a table that contains all logins for all tables, which created by the system administrator. For more information about this table, see “Using login triggers” on page 623.

- `set_appcontext()` stores:
  ```sql```
 select set_appcontext ("titles", "rlac", "1")
  ```
- `get_appcontext()` supplies two parts of a context in a session, and retrieves the third:
select get_appcontext ("titles", "rlac")
------------------------
1

For more information on these functions and on list_appcontext and
rm_appcontext, see “Creating and using application contexts” on page 616.

Granting and revoking

Grant and revoke privileges to users, roles, and groups in a given database to
access objects in that database. The only exceptions are create database, set
session authorization, and connect. A user granted these privileges should be a
valid user in the master database. To use other privileges, the user must be a
valid user in the database where the object is located.

Using of functions means that unless special arrangements are made, any
logged-in user can reset the profiles of the session. Although Adaptive Server
audits built-in functions, security may be compromised before the problem is
noticed. To restrict access to these built-in functions, use grant and revoke
privileges. Only users with the sa_role can grant or revoke privileges on the
built-in functions. Only the select privilege is checked as part of the
server-enforced data access control checks performed by the functions.

Valid users

Functions do not have an object ID and they do not have a home database.
Therefore, each database owner must grant the select privilege for the
functions to the appropriate user. Adaptive Server finds the user’s default
database and checks the permissions against this database. With this approach,
only the owner of the users’ default database needs to grant the select privilege.
If other databases should be restricted, the owner of those databases must
explicitly revoke permission from the user in those databases.

Only the application context built-in functions perform data access control
checks on the user when you grant and revoke privileges on them. Granting or
revoking privileges for other functions has no effect in Adaptive Server.

Privileges granted to public affect only users named in the table created by the
system administrator. For information about the table, see “Using login
triggers” on page 623. Guest users have privileges only if the sa_role
specifically grants it by adding them to the table.

A system administrator can execute the following commands to grant or revoke
select privileges on specific application context functions:

grant select on set_appcontext to user_role
grant select on set_appcontext to joe_user
revoke select on set_appcontext from joe_user
Creating and using application contexts

The following functions are available for creating and maintaining application contexts. For more information, see the Reference Manual: Building Blocks.

- set_appcontext
- get_appcontext
- list_appcontext
- rm_appcontext

set_appcontext

Sets an application context name, attribute name, and attribute value, defined by the attributes of an application, for a specified user session.

```sql
set_appcontext ("context_name", "attribute_name", "attribute_value")
```

- `context_name` – a row that specifies an application context name, saved as the datatype `char(30)`.
- `attribute_name` – a row that specifies an application context name, saved as the datatype `char(30)`.
- `attribute_value` – a row that specifies an application attribute value, saved as the datatype `char(255)`.

Examples

This example creates an application context called CONTEXT1, with an attribute ATTR1 that has the value VALUE1:

```sql
select set_appcontext ("CONTEXT1", "ATTR1", "VALUE1")
```

This example shows an attempt to override the existing application context. The attempt fails, returning -1:

```sql
select set_appcontext ("CONTEXT1", "ATTR1", "VALUE1")
```

This example shows how set_appcontext can include a datatype conversion in the value:

```sql
declare @val numeric
select @val = 20
```
select set_appcontext ("CONTEXT1", "ATTR2", convert(char(20), @val))
------------
0

This example shows the result when a user without appropriate permissions attempts to set the application context. The attempt fails, returning -1:

```
select set_appcontext("CONTEXT1", "ATTR2", "VALUE1")

-1
```

Usage

- `set_appcontext` returns 0 for success and -1 for failure.
- If you set values that already exist in the current session, `set_appcontext` returns -1.
- `set_appcontext` cannot override the values of an existing application context. To assign new values to a context, remove the context and recreate it using the new values.
- `set_appcontext` saves attributes as char datatypes. If you create an access rule that must compare the attribute value to another datatype, the rule should convert the char data to the appropriate datatype.
- All arguments in this function are required.

`get_appcontext`

Returns the value of the attribute in a specified context.

```
get_appcontext ("context_name", "attribute_name")
```

- `context_name` – a row specifying an application context name, saved as datatype char(30).
- `attribute_name` – a row specifying an application context attribute name, saved as datatype char(30).

Examples

This example shows VALUE1 returned for ATTR1:

```
select get_appcontext ("CONTEXT1", "ATTR1")

VALUE1
```
Using row-level access control

ATTR1 does not exist in CONTEXT2:

```sql
select get_appcontext("CONTEXT2", "ATTR1")

NULL
```

This example shows the result when a user without appropriate permissions attempts to get the application context:

```sql
select get_appcontext("CONTEXT1", "ATTR2")
select permission denied on built-in get_appcontext, database dbid

-1
```

Usage

- `get_appcontext` returns 0 for success and -1 for failure.
- If the attribute you require does not exist in the application context, `get_appcontext` returns “null.”
- `get_appcontext` saves attributes as `char` datatypes. If you create an access rule that compares the attribute value to other datatypes, the rule should convert the `char` data to the appropriate datatype.
- All arguments in this function are required.

**list_appcontext**

Lists all the attributes of all the contexts in the current session.

```sql
list_appcontext ("context_name")
```

- `context_name` – names all the application context attributes in the session.
  - `list_appcontext` has a datatype of `char(30)`.

Examples

To use `list_appcontext`, the user must have appropriate permissions. For more information, see “Setting permissions for using application context functions” on page 614.

This example shows the results of a user with appropriate permissions listing the application contexts:

```sql
select list_appcontext ("*", "*")
Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE2)
```
This example shows a user without appropriate permissions attempting to list the application contexts. The attempt fails, returning -1.

```
select list_appcontext()
Select permission denied on built-in
list_appcontext, database DBID

-1
```

**Usage**

- list_appcontext returns 0 for success and -1 for failure.
- Since built-in functions do not return multiple result sets, the client application receives list_appcontext returns as messages.

**rm_appcontext**

Removes a specific application context, or all application contexts.

```
rm_appcontext ("context_name", "attribute_name")
```

- **context_name** – a row specifying an application context name, saved as datatype `char(30)`.
- **attribute_name** – a row specifying an application context attribute name, saved as datatype `char(30)`.

**Examples**

The following three examples show how to remove an application context by specifying some or all attributes. Use an asterisk ("*" ) to remove all attributes in the specified context.

```
select rm_appcontext("CONTEXT1", "*")

0
```

Use an asterisk ("*" ) to remove all the contexts and attributes.

```
select rm_appcontext("*", "*")

0
```
Using row-level access control

This example shows a user attempting to remove a nonexistent context. The attempt fails, returning -1.

```sql
select rm_appcontext("NON_EXISTING_CTX", "ATTR2")

-1
```

This example shows the result of a user without appropriate permissions attempting to remove an application context.

```sql
select rm_appcontext("CONTEXT1", "ATTR2")

-1
```

Usage

- `rm_appcontext` returns 0 for success, -1 for failure.
- All arguments in this function are required.

SYS_SESSION system application context

The SYS_SESSION context shows the default predefined application context, which provides session-specific pairs of attributes and values. The syntax for using the context is:

```sql
select list_appcontext ("SYS_SESSION", ")
```

Then:

```sql
select get_appcontext ("SYS_SESSION", "<attribute>")
```
Table 17-6: SYS_SESSION attributes and values

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Login name</td>
</tr>
<tr>
<td>hostname</td>
<td>Host name from which the client has connected</td>
</tr>
<tr>
<td>applname</td>
<td>Name of the application as set by the client</td>
</tr>
<tr>
<td>userid</td>
<td>User ID of the user in the current database</td>
</tr>
<tr>
<td>groupid</td>
<td>Group ID of the user in the current database</td>
</tr>
<tr>
<td>dbid</td>
<td>ID of the user’s current database</td>
</tr>
<tr>
<td>dbname</td>
<td>Current database</td>
</tr>
<tr>
<td>spid</td>
<td>Server process ID</td>
</tr>
<tr>
<td>proxy_userid</td>
<td>The server user ID of the proxy</td>
</tr>
<tr>
<td>client_name</td>
<td>Client name set by the middle-tier application, using the set client_name command</td>
</tr>
<tr>
<td>client_applname</td>
<td>Client application name set by the middle-tier application, using the set client_applname command</td>
</tr>
<tr>
<td>client_hostname</td>
<td>Client host name set by the middle-tier application, using the set client_hostname command</td>
</tr>
<tr>
<td>language</td>
<td>Current language the client is using by default or after using the set language command (@@language)</td>
</tr>
<tr>
<td>character_set</td>
<td>Character set the client is using (@@client_csname)</td>
</tr>
<tr>
<td>dateformat</td>
<td>Date expected by the client, set using the set dateformat command</td>
</tr>
<tr>
<td>is_showplan_on</td>
<td>Returns YES if set showplan is on, NO if it is off</td>
</tr>
<tr>
<td>is_noexec_on</td>
<td>Returns YES if set no exec is on, NO if it is off</td>
</tr>
</tbody>
</table>

Solving a problem using an access rule and ACF

This section shows the solution of a problem: each of five users, on different security levels, should see only rows with a value less than or equal to his or her security level. This solution uses access rules, with the Application Context Facility, to display only the rows that one of the users, Dave, sees.

There are five logins:
- Anne has security level 1.
- Bob has security level 1.
- Cassie has security level 2.
- Dave has security level 2.
• Ellie has security level 4.

Users should see only rows with a value in rlac that is less than or equal to their own security level. To accomplish this, create an access rule and apply ACF.

The rlac column is type integer, and appcontext arguments are type char.

```sql
create access rule rlac_rule as
 @value <= convert(int, get_appcontext("titles", "rlac"))

sp_bindrule rlac_rule, "titles.rlac"

/* log in as Dave and apply ACF value of 2*/
select set_appcontext("titles", "rlac", "2")

/*this value persists throughout the session*/
/*select all rows*/
select title_id, rlac from titles
```

<table>
<thead>
<tr>
<th>title_id</th>
<th>rlac</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC8888</td>
<td>1</td>
</tr>
<tr>
<td>BU1032</td>
<td>2</td>
</tr>
<tr>
<td>PS7777</td>
<td>1</td>
</tr>
<tr>
<td>PS3333</td>
<td>1</td>
</tr>
<tr>
<td>BU1111</td>
<td>2</td>
</tr>
<tr>
<td>FC1035</td>
<td>1</td>
</tr>
<tr>
<td>BU2075</td>
<td>2</td>
</tr>
<tr>
<td>PS2091</td>
<td>1</td>
</tr>
<tr>
<td>PS2106</td>
<td>1</td>
</tr>
<tr>
<td>BU7832</td>
<td>2</td>
</tr>
<tr>
<td>PS1372</td>
<td>1</td>
</tr>
</tbody>
</table>

(11 rows affected)
Using login triggers


Login triggers execute a specified stored procedure every time a user logs in. The login trigger is an ordinary stored procedure, except it executes in the background. It is the last step in a successful login process, and sets the application context for the user logging in.

Only the system security officer can register a login trigger to users in the server.

To provide a secure environment, the system administrator must:

1. Revoke select privilege on the set_appcontext function. The owner of a login trigger must have explicit permission to use set_appcontext, even if the owner has sa_role.

2. Configure a login trigger from a stored procedure for each user, and register the login trigger to the user.

3. Provide execute privilege to the login trigger that the user executes.

Creating login triggers

Create a login trigger as a stored procedure. Do not use the create trigger command. The following sample creates a login trigger stored procedure in the pubs2 database:

```sql
create loginproc as
 declare @appname varchar(20)
 declare @attr varchar(20)
 declare @value varchar(20)
 declare @retvalue int
 declare apctx cursor for
 select appname, attr, value from pubs2.dbo.lookup where login = suser_name()
 open apctx
 fetch apctx into @appname, @attr, @value
 While (@@sqlstatus = 0)
 begin
 select f@retval =
 set_appcontext (rtrim (@appname),
```
Using row-level access control

```plaintext
rtrim(@attr), rtrim(@value))
fetch apctx into @appname, @attr, @value
end

grant execute on loginproc to public

To associate a specific user with the login trigger, run sp_modifylogin in the user’s default database.

Configuring login triggers

You must have sso_role enabled to set, change, or drop a login trigger. The object ID of the login trigger is stored in the syslogins.procid column. Login triggers do not exist by default. They must be registered using sp_modifylogin. The syntax is:

```
sp_modifylogin <login_name>, "login script", <sproc_name>
```

- `login_name` – the user’s login name.
- "login script" – type in as shown; "login script" tells sp_modifylogin that the next parameter, "sproc_name", is a login trigger.
- `sproc_name` – the name of the stored procedure configured as a login trigger for this user.

Run this procedure from the user’s default database. The stored procedure you are registering as a login trigger must be available in the user’s default database, because Adaptive Server searches the sysobjects table in the user’s default database to find the login trigger object.

The following example configures the stored procedure `my_proc` (which must exist in the database you want to configure) as a login trigger for Adaptive Server login `my_login`:

```
sp_modifylogin my_login, "login script", my_proc
```

Again, you must execute the command from within the user’s default database. Adaptive Server checks to see whether the login has execute permissions on the stored procedure, but not until the user actually logs in and executes the login trigger.

Dropping and changing the login trigger

Once you have configured a stored procedure as a login trigger, you cannot drop it. You must unconfigure it first, either by dropping the login trigger altogether, or by changing the login trigger to a different stored procedure. To drop the login trigger, enter:
sp_modifylogin my_login, "login script", NULL
To change the login trigger to a different stored procedure, enter:
sp_modifylogin my_login, "login script", diff_proc

Displaying the login trigger
To display the current login trigger, use sp_displaylogin:
sp_displaylogin my_login

go
(....)
Default Database: my_db
Default Language:
Auto Login Script: my_proc
....

Executing a login trigger
Login triggers are different from ordinary stored procedures in that once they are registered they execute in the background, without active user connections. Once you have configured a login trigger, Adaptive Server automatically executes it in the background as soon as the user logs in, but before the server executes any commands from the client application.

If one login makes multiple concurrent connections, the login trigger executes independently during each session. Similarly, multiple logins can configure the same stored procedure to be a login trigger.

Background execution means that you cannot use some standard features of stored procedures in a stored procedure configured as a login trigger. For instance, you cannot pass any parameters without default values to or from the procedure, nor does the procedure pass back any result values.

This special execution mode affects any stored procedures that are called by the login trigger stored procedure, as well as any output generated by the login trigger stored procedure itself.

You can also execute a login trigger stored procedure as a normal stored procedure, for example, from isql. The procedure executes and behaves normally, showing all output and error messages as usual.

Understanding login trigger output
The main effect of executing the stored procedure as a background task is that output from the login trigger is not written to the client application, but to the Adaptive Server error log file, as are some, but not all, error messages.
Using row-level access control

Output from print or raiserror messages is prefixed by the words background task message or background task error in the error log. For example, the statements print “Hello!” and raiserror 123456 in a login trigger appear in the Adaptive Server error log as:

(....) background task message: Hello!
(....) background task error 123456: This is test message 123456

However, not all output goes to the Adaptive Server error log:

- No result sets from select statements (which are normally sent to a client connection) appear anywhere, not even in the Adaptive Server error log. This information disappears.
- The following statements execute normally: insert...select and select...into statements, as well as other DML statements which do not ordinarily send a result set to the client application, and DDL statements ordinarily allowed in a stored procedure.

Using login triggers for other applications

Login triggers are part of the row-level access control feature in Adaptive Server. In this context, you can use a login trigger in combination with the features for access rules and application contexts to set up row-level access controls, once a session logs in to Adaptive Server. However, you can use login triggers for other purposes as well.

Limiting the number of concurrent connections

The following example limits the number of concurrent connections to Adaptive Server that a specific login can make. Each of the commands described in steps 1 and 2 in the example are executed in the default database of the user for whom the access needs to be restricted:

1. As system administrator, create the limit_user_sessions stored procedure:

```sql
create procedure limit_user_sessions
    as
    declare @cnt int,
        @limit int,
        @loginname varchar(32)
    select @limit = 2 -- max nr. of concurrent logins
    /*
     * determine current #sessions */
    select @cnt = count(*)
    from master.dbo.sysprocesses
    where suid = suser_id()
```
/* check the limit */
if @cnt > @limit
begin
 select @loginname = suser_name()
 print "Aborting login [%1!]: exceeds session
 limit [%2!]",
 @loginname, @limit
 /* abort this session */
 select syb_quit()
end

go

grant exec on limit_user_sessions to public

go

2 As system security officer, configure this stored procedure as a login
 trigger for user "bob":

 sp_modifylogin "bob", "login script",
 "limit_user_sessions"

go

3 Now, when user “bob” creates a third session for Adaptive Server, this
 session is terminated by the login trigger calling the syb_quit() function:

 % isql -SASE125 -Ubob -Pbobpassword
 1> select 1
 2> go

 CT-LIBRARY error:
 ct_results(): network packet layer: internal net
 library error: Net-Library operation terminated due
to disconnect

4 This message appears in the Adaptive Server error log file:

 (...) background task message: Aborting login [my_login]: exceeds session limit [2]

Enforcing timed-based restrictions

This example describes how system administrators can create a login trigger to
enforce time-based restrictions on user sessions. Each of the commands
described in steps 1 – 4 are executed in the default database of the user for
whom the access needs to be restricted:

1 As system administrator, create this table:

 create table access_times (suid int not null,
Using row-level access control

dayofweek tinyint,
shiftstart time,
shiftend time)

2 As system administrator, insert the following rows in table access_times.
These rows indicate that user “bob” is allowed to log into Adaptive Server
on Mondays between 9:00am and 5:00pm, and user “mark” is allowed to
login to Adaptive Server on Tuesdays between 9:00Am and 5:00PM

insert into access_times
select suser_id('bob'), 1, '9:00', '17:00'
go
insert into access_times
select suser_id('mark'), 2, '9:00', '17:00'
go

3 As system administrator, create the limit_access_time stored procedure,
which references the access_time table to determine if login access should
be granted:

create procedure limit_access_time as
declare @curdate date,
 @curdow tinyint,
 @curtime time,
 @cnt int,
 @loginname varchar(32)
 -- setup variables for current day-of-week, time
select @curdate = current_date()
select @curdow = datepart(cdw,@curdate)
select @curtime = current_time()
select @cnt = 0
 -- determine if current user is allowed access
select @cnt = count(*)
from access_times
where suid = suser_id()
and dayofweek = @curdow
and @curtime between shiftstart and shiftend
if @cnt = 0
begin
 select @loginname = suser_name()
 print "Abortng login [%1!]: login attempt past
 normal working hours", @loginname

 -- abort this session
 return -4
end
go

grant exec on limit_access_time to public

go

4 As system security officer, configure the limit_access_time stored procedure as a login trigger for users “bob” and “mark”:

sp_modifylogin "bob", "login script", "limit_access_time"
go
sp_modifylogin "mark", "login script", "limit_access_time"
go

5 On Mondays, user “bob” can successfully create a session:

isql -Ubob -Ppassword
1> select 1
2> go

 1
(1 row affected)

However, user “mark” is denied access to Adaptive Server:

isql -Umark -Ppassword
1> select 1
2> go
CT-LIBRARY error:
crl_results(): network packet layer: internal net
library error: Net-Library operation terminated
due to disconnect

6 The following message is logged in the error log:

(...) server back-ground task message: Aborting
login [mark]: login attempt past normal working
hours

The above examples show how you can limit the number of concurrent
connections for a specific login and restrict access to specific times of day for
that login, but it has one disadvantage: the client application cannot easily
detect the reason the session was terminated. To display a message to the user,
such as “Too many users right now—please try later,” use a different approach.

Instead of calling the built-in function syb_quit(), which causes the server to
simply terminate the current session, you can deliberately cause an error in the
stored procedure to abort the login trigger stored procedure.
Using row-level access control

For example, dividing by zero aborts the login trigger stored procedure, terminates the session, and causes a message to appear.

Login trigger restrictions

The following actions are restricted.

- You cannot use a login trigger to set session-specific options, such as `set nocount on`, `set rowcount on`, and so on. Setting session options in any stored procedure has an effect only inside that stored procedure.

- You cannot create `#temp` tables to use later in the session. Once the procedure completes, the `#temp` tables drop away automatically and the original session settings are restored, as in any other stored procedure.

- You should not use login triggers on the `sa` login; a failing login trigger can lock you out of Adaptive Server.

- Do not use a login trigger for anything that may take longer than a few seconds to process, or that risks processing problems.

Issues and information

- If you do not have access to the Adaptive Server error log, do not use login triggers. Always check the Adaptive Server error log for error messages.

- For Adaptive Server version 15.0.2 and later, any exportable option set or unset in a login trigger take effect in the login process when the server starts.

 To disable this behavior, execute `set export_options off` inside the login trigger.

 Adaptive Server versions 15.0.1, 12.5.4, and earlier required that you start Adaptive Server with trace flag 4073 to enable the options for a login trigger.

- A client application, like `isql`, is unaware of the existence or execution of a login trigger; it presents a command prompt immediately after the successful login, though Adaptive Server does not execute any commands before the login trigger successfully executes. This `isql` prompt displays even if the login trigger has terminated the user connection.
The user logging in to Adaptive Server must have execute permission to use the login trigger stored procedure. If no execute permission has been granted, an error message appears in the Adaptive Server error log and the user connection closes immediately (though isql still shows a command prompt).

Adaptive Server error log shows a message similar to the following:

```
EXECUTE permission denied on object my_proc,
database my_db, owner dbo
```

The login trigger stored procedure cannot contain parameters without specified default values. If parameters without default values appear in the stored procedure, the login trigger fails and an error similar to the following appears in the Adaptive Server error log:

```
Procedure my_proc expects parameter @param1, which was not supplied...
```

Disabling execute privilege on login triggers

A database owner or administrator can disable execute privilege on the login trigger, or code the login trigger to permit access only at certain times. For example, you may want to prohibit regular users from using the server while the database owner or administrator is updating the table.

Note If the login trigger returns a minus number, the login fails.

Exporting set options from a login trigger

Adaptive Server allows options for the set command that are inside login triggers to remain valid for the entire user session.

The following set options are automatically exported:

- showplan
- arithabort [overflow | numeric_truncation]
- arithignore [overflow]
- colnames
- format
Using row-level access control

- statistics io
- procid
- rowcount
- altnames
- nocount
- quoted_identifier
- forceplan
- fmtonly
- close on endtran
- fipsflagger
- self_recursion
- ansinull
- dup_in_subquery
- or_strategy
- flushmessage
- ansi_permissions
- string_rtruncation
- prefetch
- triggers
- replication
- sort_resources
- transactional_rpc
- cis_rpc_handling
- strict_dtm_enforcement
- raw_object_serialization
- texptr_parameters
- remote_indexes
- explicit_transaction_required
Setting global login triggers

Use `sp_logintrigger` to set a global login trigger that is executed at each user login. To take user-specific actions, set a user specific login trigger using `sp_modifylogin` or `sp_addlogin`.

Note You can activate this option by setting trace flag -T4073.
Using row-level access control
This chapter describes how to set up auditing for your installation.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to auditing in Adaptive Server</td>
<td>635</td>
</tr>
<tr>
<td>Installing and setting up auditing</td>
<td>640</td>
</tr>
<tr>
<td>Setting global auditing options</td>
<td>657</td>
</tr>
<tr>
<td>Querying the audit trail</td>
<td>667</td>
</tr>
<tr>
<td>Understanding the audit tables</td>
<td>667</td>
</tr>
</tbody>
</table>

Introduction to auditing in Adaptive Server

A principal element of a secure system is accountability. One way to ensure accountability is to audit events on the system. Many events that occur in Adaptive Server can be recorded.

Auditing is an important part of security in a database management system. An audit trail can be used to detect penetration of the system and misuse of resources. By examining the audit trail, a system security officer can inspect patterns of access to objects in databases and can monitor the activity of specific users. Audit records are traceable to specific users, which may act as a deterrent to users who are misusing the system.

Each audit record can log the nature of the event, the date and time, the user responsible for it, and the success or failure of the event. Among the events that can be audited are log ins and log outs, server starts, use of data access commands, attempts to access particular objects, and a particular user’s actions. The audit trail, or log of audit records, allows the system security officer to reconstruct events that occurred on the system and evaluate their impact.

The system security officer is the only user who can start and stop auditing, set up auditing options, and process the audit data. As a system security officer, you can establish auditing for events such as:

- Server-wide, security-relevant events
Introduction to auditing in Adaptive Server

- Creating, deleting, and modifying database objects
- All actions by a particular user or all actions by users with a particular role active
- Granting or revoking database access
- Importing or exporting data
- Log ins and log outs

Correlating Adaptive Server and operating system audit records

The easiest way to link Adaptive Server audit records with operating system records is to make Adaptive Server login names the same as operating system login names.

Alternatively, the system security officer can map users’ operating system login names to their Adaptive Server login names. However, this approach requires ongoing maintenance, as login names for new users must be recorded manually.

The audit system

The audit system consists of:

- The sybsecurity database, which contains global auditing options and the audit trail
- The in-memory audit queue, to which audit records are sent before they are written to the audit trail
- Configuration parameters for managing auditing
- System procedures for managing auditing

The sybsecurity database

The sybsecurity database is created during the auditing installation process. In addition to all the system tables found in the model database, it contains syssauditoptions, a system table for keeping track of server-wide auditing options, and system tables for the audit trail.
sysauditoptions contains the current setting of global auditing options, such as whether auditing is enabled for disk commands, remote procedure calls, ad hoc user-defined auditing records, or all security-relevant events. These options affect the entire Adaptive Server.

The audit trail

Adaptive Server stores the audit trail in system tables named sysaudits_01 through sysaudits_08. When you install auditing, you determine the number of audit tables for your installation. For example, if you choose to have two audit tables, they are named sysaudits_01 and sysaudits_02. At any given time, only one audit table is current. Adaptive Server writes all audit data to the current audit table. A system security officer can use sp_configure to set (or change) which audit table is current.

Sybase recommends two or more audit tables, with each table on a separate audit device. This allows you to set up a smoothly running auditing process in which audit tables are archived and processed with no loss of audit records and no manual intervention.

Warning! Sybase strongly recommends against using a single audit table on production systems. If you use only a single audit table, you may lose audit records. If you must use only a single audit table because of limited system resources, see “Single-table auditing” on page 653 for instructions.

Figure 18-1 shows how the auditing process works with multiple audit tables.
The auditing system writes audit records from the in-memory audit queue to the current audit table. When the current audit table is nearly full, a threshold procedure can automatically archive the table to another database. The archive database can be backed up and restored with the dump and load commands. Use archive database access for read-only access to archived audit tables from backup. See Chapter 14, “Archive Database Access,” in the System Administration Guide, Volume 2. For more information about managing the audit trail, see “Setting up audit trail management” on page 644.
The audit queue

When an audited event occurs, an audit record first goes to the in-memory audit queue. The record remains in memory until the audit process writes it to the audit trail. You can configure the size of the audit queue with the audit queue size parameter of `sp_configure`.

Before you configure the size of the audit queue, consider the trade-off between the risk of losing records in the queue if the system crashes and the loss of performance when the queue is full. As long as an audit record is in the queue, it can be lost if the system crashes. However, if the queue repeatedly becomes full, overall system performance is affected. If the audit queue is full when a user process tries to generate an audit record, the process sleeps until space in the queue becomes available.

Note Because audit records are not written directly to the audit trail, you cannot count on an audit record’s being stored immediately in the current audit table.

Auditing configuration parameters

Use these configuration parameters to manage the auditing process:

- `auditing` enables or disables auditing for the entire Adaptive Server. The parameter takes effect immediately upon execution of `sp_configure`. Auditing occurs only when this parameter is enabled.
- `audit queue size` establishes the size of the audit queue. Because the parameter affects memory allocation, the parameter does not take effect until Adaptive Server is restarted.
- `suspend audit when device full` controls the behavior of the audit process when an audit device becomes full. The parameter takes effect immediately upon execution of `sp_configure`.
- `current audit table` sets the current audit table. The parameter takes effect immediately upon execution of `sp_configure`.

System procedures for auditing

Use these system procedures to manage the auditing process:

- `sp_audit` enables and disables auditing options. This is the only system procedure required to establish the events to be audited.
Installing and setting up auditing

- sp_displayaudit displays the active auditing options.
- sp_addauditrecord adds user-defined audit records (comments) into the audit trail. Users can add these records only if a system security officer enables ad hoc auditing with sp_audit.

Installing and setting up auditing

Table 18-1 provides a general procedure for setting up auditing.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install auditing.</td>
<td>Set the number of audit tables and assign devices for the audit trail and the syslogs transaction log in the sybsecurity database.</td>
<td>“Installing the audit system” on page 641 and the Adaptive Server installation and configuration documentation</td>
</tr>
<tr>
<td>2. Set up audit trail management.</td>
<td>Write and establish a threshold procedure that receives control when the current audit table is nearly full. The procedure automatically switches to a new audit table and archives the contents of the current table. In addition, this step involves setting the audit queue size and the suspend audit when device full configuration parameters.</td>
<td>“Setting up audit trail management” on page 644 For single-table auditing, “Single-table auditing” on page 653</td>
</tr>
<tr>
<td>3. Set up transaction log management in the sybsecurity database.</td>
<td>Determine how to handle the syslogs transaction log in the sybsecurity database, how to set the trunc log on chkpt database option and establishing a last-chance threshold procedure for syslogs if trunc log on chkpt is off.</td>
<td>“Setting up transaction log management” on page 650</td>
</tr>
<tr>
<td>4. Set auditing options.</td>
<td>Use sp_audit to establish the events to be audited.</td>
<td>“Setting global auditing options” on page 657</td>
</tr>
<tr>
<td>5. Enable auditing.</td>
<td>Use sp_configure to turn on the auditing configuration parameter. Adaptive Server begins writing audit records to the current audit table.</td>
<td>“Enabling and disabling auditing” on page 652</td>
</tr>
<tr>
<td>6. Restarting auditing.</td>
<td>Use sp_audit restart to restart auditing if it fails.</td>
<td>“Restarting auditing” on page 656</td>
</tr>
</tbody>
</table>
Installing the audit system

The audit system is usually installed with auditinit, the Sybase installation program. Alternatively, you can install auditing without auditinit. For details, see “Installing auditing with installsecurity” on page 641. Installation and auditinit are discussed in the Adaptive Server installation and configuration documentation for your platform.

When you install auditing, you can establish the number of system tables you want to use for the audit trail, the device for each audit system table, and the device for the syslogs transaction log.

Tables and devices for the audit trail

You can specify up to eight system tables (sysaudits_01 through sysaudits_08). Plan to use at least two tables for the audit trail. Put each table on its own device separate from the master device. If you do this, you can use a threshold procedure to automatically archive the current audit table before it fills up and switch to a new empty table for the subsequent audit records.

Device for the syslogs transaction log table

When you install auditing, you must specify a separate device for the transaction log, which consists of the syslogs system table. The syslogs table, which exists in every database, contains a log of the transactions that are executed in the database.

Installing auditing with installsecurity

The $SYBASE/ASE-15_0/scripts directory contains installsecurity, a script for installing auditing.

Note This example assumes a server that uses a logical page size of 2K.

To use installsecurity to install auditing:

1 Create the auditing devices and auditing database with the disk init and create database commands. For example:

 disk init name = "auditdev",
 physname = "/dev/dsk/c2d0s4",
 size = "10M"
 disk init name = "auditlogdev",
Installing and setting up auditing

```plaintext
physname = "/dev/dsk/c2d0s5",
size = "2M"
create database sybsecurity on auditdev
log on auditlogdev
```

2 Use `isql` to execute the `installsecurity` script:

```plaintext
cd $SYBASE/ASE-12_5/scripts
setenv DSQUERY server_name
isql -Usa -P password -S server_name < installsecurity
```

3 Shut down and restart Adaptive Server.

When you have completed these steps, the sybsecurity database has one audit table (`sysaudits_01`) created on its own segment. You can enable auditing at this time, but should add more auditing tables with `sp_addaudittable`. For information about disk init, `create database`, and `sp_addaudittable`, see the Reference Manual: Procedures.

Moving the auditing database to multiple devices

Place the sybsecurity database on its own device, separate from the master database. If you have more than one audit table, place each table on its own device. It can also be helpful to put each table on a separate segment which points to a separate device. If you currently have sybsecurity on the same device as master, or if you want to move sybsecurity to another device, use one of the procedures described in the following sections. When you move the database, you can specify whether to save your existing global audit settings.

Moving `sybsecurity` without saving global audit settings

Note These steps include dropping the sybsecurity database, which destroys all audit records and global audit settings previously recorded in sybsecurity. Before you drop the sybsecurity database, make sure you archive existing records with a backup or by following instructions in “Archiving the audit table” on page 645 to avoid losing any historical data that remains in the sybsecurity tables.

To move the `sybsecurity` database without saving the global audit settings:

1 Execute the following to remove any information related to logins from the syslogins system table:

```plaintext
sp_audit "all","all","all","off"
```
2 Drop the sybsecurity database.
3 Install sybsecurity again using the installation procedure described in either:
 • The configuration documentation for your platform, or
 • “Installing auditing with installsecurity” on page 641.
4 During the installation process, place the sybsecurity database on one or more devices, separate from the master device.

Moving sybsecurity and saving global audit settings

- **To move the sybsecurity database and save the global audit settings**

1 Dump the sybsecurity database:

   ```
   dump database sybsecurity to "/remote/sec_file"
   ```

2 Drop the sybsecurity database:

   ```
   drop database sybsecurity
   ```

3 Initialize the first device on which you want to place the sybsecurity database:

   ```
   disk init name = "auditdev",
   physname = "/dev/dsk/c2d0s4",
   size = "10M"
   ```

4 Initialize the device where you want to place the security log:

   ```
   disk init name = "auditlogdev",
   physname = "/dev/dsk/c2d0s5",
   size = "2M"
   ```

5 Create the new sybsecurity database:

   ```
   create database sybsecurity on auditdev
   log on auditlogdev
   ```

6 Load the contents of the old sybsecurity database into the new database. The global audit settings are preserved:

   ```
   load database sybsecurity from "/remote/sec_file"
   ```

7 Run online database, which upgrades sysaudits and sysauditoptions if necessary:

   ```
   online database sybsecurity
   ```
Installing and setting up auditing

8 Load the auditing system procedures using the configuration documentation for your platform.

❖ Creating more than one sysaudits table in sybsecurity

1 Initialize the device where you want to place the additional table:

 disk init name = "auditdev2",
 physname = "/dev/dsk/c2d0s6",
 size = "10M"

2 Extend the sybsecurity database to the device you initialized in step 1:

 alter database sybsecurity on auditdev2 = "2M"

3 Run sp_addaudittable to create the next sysaudits table on the device you initialized in step 1:

 sp_addaudittable auditdev2

4 Repeat steps 1 – 3 for each sysaudits table.

Setting up audit trail management

To effectively manage the audit trail:

1 Be sure that auditing is installed with two or more tables, each on a separate device. If not, consider adding additional audit tables and devices.

2 Write a threshold procedure and attach it to each audit table segment.

3 Set configuration parameters for the audit queue size and to indicate appropriate action should the current audit table become full.

The following sections assume that you have installed auditing with two or more tables, each on a separate device. If you have only one device for the audit tables, skip to “Single-table auditing” on page 653.

Setting up threshold procedures

Before enabling auditing, establish a threshold procedure to automatically switch auditing tables when the current table is full.

The threshold procedure for the audit device segments should:

- Make the next empty audit table current using sp_configure to set the current audit table configuration parameter.
- Archive the audit table that is almost full using the insert...select command.
Changing the current audit table

The current audit table configuration parameter establishes the table where Adaptive Server writes audit rows. As a system security officer, you can change the current audit table with `sp_configure`, using the following syntax, where \(n \) is an integer that determines the new current audit table:

```sql
sp_configure "current audit table", \n[, "with truncate"]
```

The valid values for \(n \) are:

- 1 means `sysaudits_01`, 2 means `sysaudits_02`, and so forth.
- 0 tells Adaptive Server to automatically set the current audit table to the next table. For example, if your installation has three audit tables, `sysaudits_01`, `sysaudits_02`, and `sysaudits_03`, Adaptive Server sets the current audit table to:
 - 2 if the current audit table is `sysaudits_01`
 - 3 if the current audit table is `sysaudits_02`
 - 1 if the current audit table is `sysaudits_03`

The `with truncate` option specifies that Adaptive Server should truncate the new table if it is not already empty. If you do not specify this option and the table is not empty, `sp_configure` fails.

Note If Adaptive Server truncates the current audit table and you have not archived the data, the table’s audit records are lost. Archive the audit data before you use the `with truncate` option.

To execute `sp_configure` to change the current audit table, you must have the `sso_role` active. You can write a threshold procedure to automatically change the current audit table.

Archiving the audit table

You can use `insert with select` to copy the audit data into an existing table having the same columns as the audit tables in `sybsecurity`.

Be sure that the threshold procedure can successfully copy data into the archive table in another database:

1. Create the archive database on a separate device from the one containing audit tables in `sybsecurity`.

2. Create an archive table with columns identical to those in the `sybsecurity` audit tables. If such a table does not already exist, you can use `select into` to create an empty one by having a false condition in the `where` clause. For example:

```sql
use aud_db
GO
select *
into audit_data
from sybsecurity.dbo.sysaudits_01
where 1 = 2
```

The `where` condition is always false, so an empty duplicate of `sysaudits_01` is created.

The `select into/bulk copy` database option must be turned on in the archive database (using `sp_dboption`) before you can use `select into`.

The threshold procedure, after using `sp_configure` to change the audit table, can use `insert` and `select` to copy data to the archive table in the archive database. The procedure can execute commands similar to these:

```sql
insert aud_db.sso_user.audit_data
select * from sybsecurity.dbo.sysaudits_01
```

Example threshold procedure for audit segments

This sample threshold procedure assumes that three tables are configured for auditing:

```sql
declare @audit_table_number int
/*
** Select the value of the current audit table
*/
select @audit_table_number = scc.value
from master.dbo.syscurconfigs scc, master.dbo.sysconfigures sc
where sc.config=scc.config and sc.name = "current audit table"
/*
** Set the next audit table to be current.
** When the next audit table is specified as 0,
** the value is automatically set to the next one.
*/
exec sp_configure "current audit table", 0, "with truncate"
/*
** Copy the audit records from the audit table
** that became full into another table.
*/
if @audit_table_number = 1
 Attaching the threshold procedure to each audit segment

To attach the threshold procedure to each audit table segment, use the `sp_addthreshold`.

Before executing `sp_addthreshold`:
- Determine the number of audit tables configured for your installation and the names of their device segments
- Have the permissions and roles you need for `sp_addthreshold` for all the commands in the threshold procedure

**Warning!** `sp_addthreshold` and `sp_modifythreshold` check to ensure that only a user with `sa_role` directly granted can add or modify a threshold. All system-defined roles that are active when you add or modify a threshold are inserted as valid roles for your login in the `systhresholds` table. However, only directly granted roles are activated when the threshold procedure fires.

Audit tables and their segments

When you install auditing, `auditinit` displays the name of each audit table and its segment. The segment names are “aud_seg1” for `sysaudits_01`, “aud_seg2” for `sysaudits_02`, and so forth. You can find information about the segments in the `sybsecurity` database if you execute `sp_helpsegment` with `sybsecurity` as your current database. One way to find the number of audit tables for your installation is to execute the following SQL commands:

```
use sybsecurity
go
select count(*) from sysobjects
```
Installing and setting up auditing

where name like "sysaudit%"

go

Get additional information about the audit tables and the sybsecurity database by executing the following SQL commands:

sp_helpdb sybsecurity
go
use sybsecurity
go
sp_help sysaudits_01
go
sp_help sysaudits_02
go
...

Required roles and permissions

To execute sp_addthreshold, you must be either the database owner or a system administrator. A system security officer should be the owner of the sybsecurity database and, therefore, should be able to execute sp_addthreshold. In addition to being able to execute sp_addthreshold, you must have permission to execute all the commands in your threshold procedure. For example, to execute sp_configure for current audit table, the sso_role must be active. When the threshold procedure fires, Adaptive Server attempts to turn on all the roles and permissions that were in effect when you executed sp_addthreshold.

To attach the threshold procedure audit_thresh to three device segments:

use sybsecurity
go
sp_addthreshold sybsecurity, aud_seg_01, 250, audit_thresh
sp_addthreshold sybsecurity, aud_seg_02, 250, audit_thresh
sp_addthreshold sybsecurity, aud_seg_03, 250, audit_thresh
go

The sample threshold procedure audit_thresh receives control when fewer than 250 free pages remain in the current audit table.

For more information about adding threshold procedures, see Chapter 16, “Managing Free Space with Thresholds,” in System Administration Guide: Volume 2.
Auditing with the sample threshold procedure in place

After you enable auditing, Adaptive Server writes all audit data to the initial current audit table, sysaudits_01. When sysaudits_01 is within 250 pages of being full, the threshold procedure audit_thresh fires. The procedure switches the current audit table to sysaudits_02, and, immediately, Adaptive Server starts writing new audit records to sysaudits_02. The procedure also copies all audit data from sysaudits_01 to the audit_data archive table in the audit_db database. The rotation of the audit tables continues in this fashion without manual intervention.

Setting auditing configuration parameters

Set the following configuration parameters for your auditing installation:

- audit queue size sets the number of records in the audit queue in memory.
- suspend audit when device full determines what Adaptive Server does if the current audit table becomes completely full. The full condition occurs only if the threshold procedure attached to the current table segment is not functioning properly.

Setting the size of the audit queue

The default audit queue size is 100 bytes. The amount of memory consumed by the audit queue pool is defined by the audit queue size parameter, and includes data buffers and overhead for the memory pool. However, the amount of memory in the pool can vary between releases and chip architectures.

Use sp_configure to set the length of the audit queue. The syntax is:

sp_configure "audit queue size", [value]

value is the number of records that the audit queue can hold. The minimum value is 1, and the maximum is 65,535. For example, to set the audit queue size to 300, execute:

sp_configure "audit queue size", 300

For more information about setting the audit queue size and other configuration parameters, see Chapter 5, “Setting Configuration Parameters.”
Suspending auditing if devices are full

If you have two or more audit tables, each on a separate device other than the master device, and have a threshold procedure for each audit table segment, the audit devices should never become full. Only if a threshold procedure is not functioning properly would the “full” condition occur. Use `sp_configure` to set the `suspend audit when device full` parameter to determine what happens if the devices do become full. Choose one of these options:

- Suspend the auditing process and all user processes that cause an auditable event. Resume normal operation after a system security officer clears the current audit table.

- Truncate the next audit table and start using it. This allows normal operation to proceed without intervention from a system security officer.

Use `sp_configure` to set this configuration parameter. You must have the `sso_role` active. The syntax is:

```
sp_configure "suspend audit when device full", [0|1]
```

- 0 – truncates the next audit table and starts using it as the current audit table whenever the current audit table becomes full. If you set the parameter to 0, the audit process is never suspended; however, older audit records are lost if they have not been archived.

- 1 (the default value) – suspends the audit process and all user processes that cause an auditable event. To resume normal operation, the system security officer must log in and set up an empty table as the current audit table. During this period, the system security officer is exempt from normal auditing. If the system security officer’s actions would generate audit records under normal operation, Adaptive Server sends an error message and information about the event to the error log.

If you have a threshold procedure attached to the audit table segments, set `suspend audit when device full` to 1 (on). If it is set to 0 (off), Adaptive Server may truncate the audit table that is full before your threshold procedure has a chance to archive your audit records.

Setting up transaction log management

This section describes guidelines for managing the transaction log in `sybsecurity`.
If the trunc log on chkpt database option is active, Adaptive Server truncates syslogs every time it performs an automatic checkpoint. After auditing is installed, the value of trunc log on chkpt is on, but you can use `sp_dboption` to change its value.

**Truncating the transaction log**

If you enable the trunc log on chkpt option for the syssecurity database, you do not need to worry about the transaction log becoming full. Adaptive Server truncates the log whenever it performs a checkpoint. With this option enabled, you cannot use `dump transaction` to dump the transaction log, but you can use `dump database` to dump the database.

If you follow the procedures in “Setting up threshold procedures” on page 644, audit tables are automatically archived to tables in another database. You can use standard backup and recovery procedures for this archive database.

If a crash occurs on the syssecurity device, you can reload the database and resume auditing. At most, only the records in the in-memory audit queue and the current audit table are lost because the archive database contains all other audit data. After you reload the database, use `sp_configure` with `truncate` to set and truncate the current audit table.

If you have not changed server-wide auditing options since you dumped the database, all auditing options stored in `sysauditoptions` are automatically restored when you reload syssecurity. If not, you can run a script to set the options prior to resuming auditing.

**Managing the transaction log with no truncation**

If you use `db_option` to turn the trunc log on chkpt off, the transaction log may fill up. Plan to attach a last-chance threshold procedure to the transaction log segment. This procedure gets control when the amount of space remaining on the segment is less than a threshold amount computed automatically by Adaptive Server. The threshold amount is an estimate of the number of free log pages that are required to back up the transaction log.
Installing and setting up auditing

The default name of the last-chance threshold procedure is sp_thresholdaction, but you can specify a different name with sp_modifythreshold, as long as you have the sa_role active.

**Note** sp_modifythreshold checks to ensure you have “sa_role” active. See “Attaching the threshold procedure to each audit segment” on page 647 for more information.

Adaptive Server does not supply a default procedure, but Chapter 16, “Managing Free Space with Thresholds,” in *System Administration Guide: Volume 2* contains examples of last-chance threshold procedures. The procedure should execute the dump transaction command, which truncates the log. When the transaction log reaches the last-chance threshold point, any transaction that is running is suspended until space is available. The suspension occurs because the option abort xact when log is full is always set to false for the sybsecurity database. You cannot change this option.

With the trunc log on chkpt option disable, you can use standard backup and recovery procedures for the sybsecurity database, but be aware that the audit tables in the restored database may not be in sync with their status during a device failure.

### Enabling and disabling auditing

Use sp_configure with the auditing configuration parameter to enable or disable auditing. The syntax is:

```
sp_configure "auditing", [0 | 1]
```

- 1 – enables auditing.
- 0 – disables auditing.

For example, to enable auditing, enter:

```
sp_configure "auditing", 1
```

**Note** When you enable or disable auditing, Adaptive Server automatically generates an audit record. See event codes 73 and 74 in Table 18-5 on page 669.
Single-table auditing

Sybase strongly recommends that you not use single-device auditing for production systems. If you use only a single audit table, you create a window of time while you are archiving audit data and truncating the audit table during which incoming audit records are lost. There is no way to avoid this when using only a single audit table.

If you use only a single audit table, your audit table is likely to fill up. The consequences of this depend on how you have set suspend audit when device full. If you have suspend audit when device full set to on, the audit process is suspended, as are all user processes that cause auditable events. If suspend audit when device full is off, the audit table is truncated, and you lose all the audit records that were in the audit table.

For non-production systems, where the loss of a small number of audit records may be acceptable, you can use a single table for auditing, if you cannot spare the additional disk space for multiple audit tables, or you do not have additional devices to use.

The procedure for using a single audit table is similar to using multiple audit tables, with these exceptions:

- During installation, you specify only one system table to use for auditing.
- During installation, you specify only one device for the audit system table.
- The threshold procedure you create for archiving audit records is different from the one you would create if you were using multiple audit tables.

Figure 18-2 shows how the auditing process works with a single audit table.
Establishing and managing single-table auditing

The steps to configure for single-table auditing is the same as for multiple-table auditing. See Table 18-1 for more information.

Threshold procedure for single-table auditing

For single-table auditing, the threshold procedure should:

- Archive the almost-full audit table to another table, using the `insert` and `select` commands.
- Truncate the audit table to create space for new audit records, using the `truncate table` command.
Before you can archive your audit records, create an archive table that has the same columns as your audit table. After you have done this, your threshold procedure can use insert with select to copy the audit records into the archive table.

Here is a sample threshold procedure for use with a single audit table:

```sql
create procedure audit_thresh as
/*
** copy the audit records from the audit table to
** the archive table
*/
insert aud_db.sso_user.audit_data
 select * from sysaudits_01
return(0)
go
/*
** truncate the audit table to make room for new
** audit records
*/
truncate table "sysaudits_01"
go
```

After you have created your threshold procedure, you will need to attach the procedure to the audit table segment. For instructions, see “Attaching the threshold procedure to each audit segment” on page 647.

**Warning!** On a multiprocessor, the audit table may fill up even if you have a threshold procedure that triggers before the audit table is full. For example, if the threshold procedure is running on a heavily loaded CPU, and a user process performing auditable events is running on a less heavily loaded CPU, the audit table may fill up before the threshold procedure triggers. The configuration parameter `suspend audit when device full` determines what happens when the audit table fills up. For information about setting this parameter, see “Suspending auditing if devices are full” on page 650.

**What happens when the current audit table is full?**

When the current audit table is full:

1. The audit process attempts to insert the next audit record into the table. This fails, so the audit process terminates. An error message is written to the error log.
Installing and setting up auditing

2 When a user attempts to perform an auditable event, the event cannot be completed because auditing cannot proceed. The user process terminates. Users who do not attempt to perform an auditable event are unaffected.

3 If you have login auditing enabled, no one can log in to the server except a system security officer.

4 If you are auditing commands executed with the sso_role active, the system security officer cannot execute commands.

Recovering when the current audit table is full

If the current audit device and the audit queue become full, the system security officer becomes exempt from auditing. Every auditable event performed by a system security officer after this point sends a warning message to the error log file. The message states the date and time and a warning that an audit has been missed, as well as the login name, event code, and other information that would normally be stored in the extrainfo column of the audit table.

When the current audit table is full, the system security officer can archive and truncate the audit table as described in “Archiving the audit table” on page 645. A system administrator can execute shutdown to stop the server and then restart the server to reestablish auditing.

If the audit system terminates abnormally, the system security officer can shut down the server after the current audit table has been archived and truncated. Normally, only the system administrator can execute shutdown.

Restarting auditing

If the audit process is forced to terminate due to an error, sp_audit can be manually restarted by entering:

    sp_audit restart

The audit process can be restarted provided that no audit was currently running, but the audit process must be enabled with sp_configure “auditing” 1.
Setting global auditing options

After you have installed auditing, you can use `sp_audit` to set auditing options. The syntax for `spAudit` is:

```
sp_audit option, login_name, object_name [,setting]
```

If you run `sp_audit` with no parameters, it provides a complete list of the options. For details about `sp_audit`, see the Reference Manual: Procedures.

**Note** Auditing does not occur until you activate auditing for the server. For information on how to start auditing, see “Enabling and disabling auditing” on page 652.

Auditing options: types and requirements

The values you can specify for the `login_name` and `object_name` parameters to `sp_audit` depend on the type of auditing option you specify:

- **Global options** apply to commands that affect the entire server, such as booting the server, disk commands, and allowing ad hoc, user-defined audit records. Option settings for global events are stored in the `syssecurity..sysauditoptions` system table.

- **Database-specific options** apply to a database. Examples include altering a database, bulk copy (bcp in) of data into a database, granting or revoking access to objects in a database, and creating objects in a database. Option settings for database-specific events are stored in the `master..sysdatabases` system table.

- **Object-specific options** apply to a specific object. Examples include selecting, inserting, updating, or deleting rows of a particular table or view and the execution of a particular trigger or procedure. Option settings for object-specific events are stored in the `sysobjects` system table in the relevant database.

- **User-specific options** apply to a specific user or system role. Examples include accesses by a particular user to any table or view or all actions performed when a particular system role, such as `sa_role`, is active. Option settings for individual users are stored in `master..syslogins`. The settings for system roles are stored in `master..sysauditoptions`.

Table 18-2 shows:
Setting global auditing options

- Valid values for the option and the type of each option – global, database-specific, object-specific, or user-specific
- Valid values for the login_name and object_name parameters for each option
- The database to be in when you set the auditing option
- The command or access that is audited when you set the option
- An example for each option

The default value for all options is off.

**Table 18-2: Auditing options, requirements, and examples**

<table>
<thead>
<tr>
<th>Option (option type)</th>
<th>login_name</th>
<th>object_name</th>
<th>Database to be in to set the option</th>
<th>Command or access being audited</th>
</tr>
</thead>
<tbody>
<tr>
<td>adhoc (user-specific)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Allows users to use sp_addauditrecord</td>
</tr>
<tr>
<td>all (user-specific)</td>
<td>A login name or role</td>
<td>all</td>
<td>Any</td>
<td>All actions of a particular user or by users with a particular role active</td>
</tr>
<tr>
<td>alter (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>alter database, alter table</td>
</tr>
<tr>
<td>bcp (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>bcp in</td>
</tr>
<tr>
<td>bind (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>sp_bindefault, sp_bindmsg, sp_bindrule</td>
</tr>
</tbody>
</table>

Example: `sp_audit "adhoc", "all", "all", "on"`
(Enables ad hoc user-defined auditing records.)

Example: `sp_audit "all", "sa_role", "all", "on"`
(Turns auditing on for all actions in which the sa_role is active.)

Example: `sp_audit @option = "alter", @login_name = "all", @object_name = "master", @setting = "on"`
(Turns auditing on for all executions of alter database and alter table in the master database.)

Example: `sp_audit "bcp", "all", "pubs2"`
(Returns the status of bcp auditing in the pubs2 database. If you do not specify a value for setting, Adaptive Server returns the status of auditing for the option you specify)

Example: `sp_audit "bind", "all", "planning", "off"`
(Turns bind auditing off for the planning database.)
### Option (option type)	login_name	object_name	Database to be in to set the option	Command or access being audited
**cmdtext**  (user-specific)  | Login name of the user to be audited | all | Any | SQL text entered by a user.  
(Does not reflect whether or not the text in question passed permission checks or not.  
*eventmod* always has a value of 1.)

**Example**  
*sp_audit "cmdtext", "sa", "all", "off"*

(Turns text auditing off for database owners.)

**create**  (database-specific)  | all | Database to be audited | Any | create database, create table, create procedure, create trigger, create rule,  
create default, *sp_addmessage*, create view, create index, create function

**Note**  
Specify **master** for **object_name** to audit **create database**.  
You are also auditing the creation of other objects in **master**.

**Example**  
*sp_audit "create", "all", "planning", "pass"*

(Turns on auditing of successful object creations in the **planning** database.  
The current status of auditing **create database** is not affected because you did not specify the **master** database.)

**dbaccess**  (database-specific)  | all | Database to be audited | Any | Any access to the database from another database

**Example**  
*sp_audit "dbaccess", "all", "project", "on"*

(Audits all external accesses to the **project** database.)

**dbcc**  (global)  | all | all | Any | All *dbcc* commands that require permissions

**Example**  
*sp_audit "dbcc", "all", "all", "on"*

(Audits all executions of the *dbcc* command.)

**delete**  (object-specific)  | all | Name of the table or view to be audited, or default view or default table | The database of the table or view (except **tempdb**) | delete from a table, delete from a view

**Example**  
*sp_audit "delete", "all", "default table", "on"*

(Audits all delete actions for all future tables in the current database.)

**disk**  (global)  | all | all | Any | disk init, disk refit, disk reinit, disk mirror,  
disk unmirror, disk remirror, disk resize

**Example**  
*sp_audit "disk", "all", "all", "on"*

(Audits all disk actions for the server.)
### Setting global auditing options

<table>
<thead>
<tr>
<th>Option (option type)</th>
<th>login_name</th>
<th>object_name</th>
<th>Database to be in to set the option</th>
<th>Command or access being audited</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>drop database, drop table, drop procedure, drop index, drop trigger, drop rule, drop default, sp_dropmessage, drop view, drop function</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>sp_audit &quot;drop&quot;, &quot;all&quot;, &quot;financial&quot;, &quot;fail&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Audits all drop commands in the financial database that fail permission checks.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dump (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>dump database, dump transaction</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>sp_audit &quot;dump&quot;, &quot;all&quot;, &quot;pubs2&quot;, &quot;on&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Audits dump commands in the pubs2 database.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>encryption_key (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>alter encryption key, create encryption key, drop encryption key, sp_encryption</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>Audits all the above commands in the pubs2 database: sp_audit &quot;encryption_key&quot;, &quot;all&quot;, &quot;pubs2&quot;, &quot;on&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>errors (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Fatal error, non-fatal error</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>sp_audit &quot;errors&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Audits errors throughout the server.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>errorlog</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>sp_errorlog or the errorlog_admin function</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>sp_audit &quot;errorlog&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Audits attempts to &quot;change log&quot; to move to a new Adaptive Server error log file.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exec_procedure (object-specific)</td>
<td>all</td>
<td>Name of the procedure to be audited or default procedure</td>
<td>The database of the procedure (except tempdb)</td>
<td>execute</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>sp_audit &quot;exec_procedure&quot;, &quot;all&quot;, &quot;default procedure&quot;, &quot;off&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Turns automatic auditing off for new procedures in the current database.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exec_trigger (object-specific)</td>
<td>all</td>
<td>Name of the trigger to be audited or default trigger</td>
<td>The database of the trigger (except tempdb)</td>
<td>Any command that fires the trigger</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>sp_audit &quot;exec_trigger&quot;, &quot;all&quot;, &quot;trig_fix_plan&quot;, &quot;fail&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Audits all failed executions of the trig_fix_plan trigger in the current database.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Chapter 18 Auditing

<table>
<thead>
<tr>
<th>Option (option type)</th>
<th>login_name</th>
<th>object_name</th>
<th>Database to be in to set the option</th>
<th>Command or access being audited</th>
</tr>
</thead>
<tbody>
<tr>
<td>func_dbaccess</td>
<td>all</td>
<td>Name of the database you are auditing</td>
<td>Any</td>
<td>Access to the database using the following functions: curunreserved_pgs, db_name, db_id, lct_admin, setdbrepsstat, setrerepsstatus, serreropedefmode, is_repagent_enabled, rep_agent_config, rep_agent_admin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: sp_audit @option=&quot;func_dbaccess&quot;, @login_name=&quot;all&quot;, @object_name = &quot;strategy&quot;, @setting = &quot;on&quot; (Audits accesses to the strategy database via built-in functions.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>func_obj_access</td>
<td>all</td>
<td>Name of any object that has an entry in sysobjects</td>
<td>Any</td>
<td>Access to an object using the following functions: schema_inc, col_length, col_name, data_pgs, index_col, object_id, object_name, reserved_pgs, rowcnt, used_pgs, has_subquery</td>
</tr>
<tr>
<td>(object-specific)</td>
<td></td>
<td></td>
<td></td>
<td>Example: sp_audit @option=&quot;func_obj_access&quot;, @login_name=&quot;all&quot;, @object_name = &quot;customer&quot;, @setting = &quot;on&quot; (Audits accesses to the customer table via built-in functions.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grant</td>
<td>all</td>
<td>Name of the database to be audited</td>
<td>Any</td>
<td>grant</td>
</tr>
<tr>
<td>(database-specific)</td>
<td></td>
<td></td>
<td></td>
<td>Example: sp_audit @option=&quot;grant&quot;, @login_name=&quot;all&quot;, @object_name = &quot;planning&quot;, @setting = &quot;on&quot; (Audits all grants in the planning database.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>all</td>
<td>Name of the view or table to which you are inserting rows, or default view or default table</td>
<td>The database of the object (except tempdb)</td>
<td>insert into a table, insert into a view</td>
</tr>
<tr>
<td>(object-specific)</td>
<td></td>
<td></td>
<td></td>
<td>Example: sp_audit &quot;insert&quot;, &quot;all&quot;, &quot;dpt_101_view&quot;, &quot;on&quot; (Audits all inserts into the dpt_101_view view in the current database.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>install</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>install java</td>
</tr>
<tr>
<td>(database-specific)</td>
<td></td>
<td></td>
<td></td>
<td>Example: sp_audit &quot;install&quot;, &quot;all&quot;, &quot;planning&quot;, &quot;on&quot; (Audits the installation of java classes in database planning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>load</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>load database, load transaction</td>
</tr>
<tr>
<td>(database-specific)</td>
<td></td>
<td></td>
<td></td>
<td>Example: sp_audit &quot;load&quot;, &quot;all&quot;, &quot;projects_db&quot;, &quot;fail&quot; (Audits all failed executions of database and transaction loads in the projects_db database.)</td>
</tr>
</tbody>
</table>

System Administration Guide: Volume 1 661
### Setting global auditing options

<table>
<thead>
<tr>
<th>Option (option type)</th>
<th>login_name</th>
<th>object_name</th>
<th>Database to be in to set the option</th>
<th>Command or access being audited</th>
</tr>
</thead>
<tbody>
<tr>
<td>login (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Any login to Adaptive Server</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;login&quot;, &quot;all&quot;, &quot;all&quot;, &quot;fail&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Audits all failed attempts to log in to the server.)</td>
<td></td>
</tr>
<tr>
<td>login_locked (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Login is locked because of exceeding the configured number of failed login attempts.</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;login_locked&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
</tr>
<tr>
<td>logout (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Any logout from Adaptive Server</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;logout&quot;, &quot;all&quot;, &quot;all&quot;, &quot;off&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Turns auditing off of logouts from the server.)</td>
<td></td>
</tr>
<tr>
<td>mount (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>mount database</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;mount&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Audits all mount database commands issued.)</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Setting of global password and login policy options</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;password&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
</tr>
<tr>
<td>quiesce (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>quiesce database</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;quiesce&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Turns auditing on for quiesce database commands.)</td>
<td></td>
</tr>
<tr>
<td>reference (object-specific)</td>
<td>all</td>
<td>Name of the view or table to which you are inserting rows, or default view or default table</td>
<td>Any</td>
<td>create table, alter table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;reference&quot;, &quot;all&quot;, &quot;titles&quot;, &quot;off&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Turns off auditing of the creation of references to the titles table.)</td>
<td></td>
</tr>
<tr>
<td>remove (database-specific)</td>
<td>all</td>
<td>All</td>
<td>Any</td>
<td>Audits the removal of Java classes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;remove&quot;, &quot;all&quot;, &quot;planning&quot;, &quot;on&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Audits the removal of Java classes in the planning database.)</td>
<td></td>
</tr>
<tr>
<td>revoke (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>revoke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;revoke&quot;, &quot;all&quot;, &quot;payments_db&quot;, &quot;off&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Turns off auditing of the execution of revoke in the payments_db database.)</td>
<td></td>
</tr>
<tr>
<td>rpc (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Remote procedure calls (either in or out)</td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td>sp_audit &quot;rpc&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Audits all remote procedure calls out of or into the server.)</td>
<td></td>
</tr>
</tbody>
</table>
### CHAPTER 18 Auditing

<table>
<thead>
<tr>
<th>Option (option type)</th>
<th>login_name</th>
<th>object_name</th>
<th>Database to be in to set the option</th>
<th>Command or access being audited</th>
</tr>
</thead>
<tbody>
<tr>
<td>security (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Server-wide security-relevant events. See the “security” option in Table 18-5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;security&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits server-wide security-relevant events in the server.)</td>
</tr>
<tr>
<td>select (object-specific)</td>
<td>all</td>
<td>Name of the view or table to which you are inserting rows, or default view or default table</td>
<td>The database of the object (except tempdb)</td>
<td>select from a table, select from a view</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;select&quot;, &quot;all&quot;, &quot;customer&quot;, &quot;fail&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits all failed selects from the customer table in the current database.)</td>
</tr>
<tr>
<td>setuser (database-specific)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>setuser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;setuser&quot;, &quot;all&quot;, &quot;projdb&quot;, &quot;on&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits all executions of <code>setuser</code> in the <code>projdb</code> database.)</td>
</tr>
<tr>
<td>table_access (user-specific)</td>
<td>Login name</td>
<td>all</td>
<td>Any</td>
<td>select, delete, update, or insert access in a table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;table_access&quot;, &quot;smithson&quot;, &quot;all&quot;, &quot;on&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits all table accesses by the login named “smithson”.)</td>
</tr>
<tr>
<td>transfer_table (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>Server-wide option. Does not appear in <code>sysauditoptions</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;transfer_table&quot;, &quot;tdb1.table1&quot;, &quot;all&quot;, &quot;on&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits server-wide transfer-relevant events in the server.)</td>
</tr>
<tr>
<td>truncate (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td>truncate table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;truncate&quot;, &quot;all&quot;, &quot;customer&quot;, &quot;on&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits all table truncations in the <code>customer</code> database.)</td>
</tr>
<tr>
<td>unbind (database-specific)</td>
<td>all</td>
<td>Database to be audited</td>
<td>Any</td>
<td><code>sp_unbinddefault</code>, <code>sp_unbindrule</code>, <code>sp_unbindmsg</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;unbind&quot;, &quot;all&quot;, &quot;master&quot;, &quot;fail&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits all failed attempts of unbinding in the <code>master</code> database.)</td>
</tr>
<tr>
<td>unmount (global)</td>
<td>all</td>
<td>all</td>
<td>Any</td>
<td>unmount database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example <code>sp_audit &quot;unmount&quot;, &quot;all&quot;, &quot;all&quot;, &quot;on&quot;</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Audits all attempts to unmount or create a manifest file with any database.)</td>
</tr>
</tbody>
</table>
Setting global auditing options

<table>
<thead>
<tr>
<th>Option (option type)</th>
<th>login_name</th>
<th>object_name</th>
<th>Database to be in to set the option</th>
<th>Command or access being audited</th>
</tr>
</thead>
<tbody>
<tr>
<td>update</td>
<td>all</td>
<td>Name specifying the object to be audited</td>
<td>The database of the object</td>
<td>update to a table, update to a view</td>
</tr>
<tr>
<td></td>
<td></td>
<td>default table or default view</td>
<td>(except tempdb)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>sp_audit &quot;update&quot;, &quot;all&quot;, &quot;projects&quot;, &quot;on&quot;</td>
<td>(Audits all attempts by users to update the projects table in the current database.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>view_access</td>
<td>Login name of the user to be audited</td>
<td>all</td>
<td>Any</td>
<td>select, delete, insert, or update to a view</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>sp_audit &quot;view_access&quot;, &quot;joe&quot;, &quot;all&quot;, &quot;off&quot;</td>
<td>(Turns off view auditing of user &quot;joe&quot;).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples of setting auditing options

Suppose you want to audit all failed deletions on the projects table in the company_operations database and for all new tables in the database. Use the object-specific delete option for the projects table and use default table for all future tables in the database. You must be in the object’s database before you execute sp_audit to set object-specific auditing options:

```
sp_audit "security", "all", "all", "fail"
```

For this example, execute:

```
use company_operations
go
sp_audit "delete", "all", "projects", "fail"
go
sp_audit "delete", "all", "default table", "fail"
go
```
Hiding system stored procedure and command password parameters

When auditing is configured and enabled, and the `sp_audit` option 'cmdtext' is set, system stored procedure and command password parameters are replaced with a fixed length string of asterisks in the audit records contained in the audit logs.

For example, executing:

```sql
sp_password 'oldpassword', 'newpassword'
```

when auditing is enabled and `sp_audit cmdtext` is set, results in output similar to:

```sql
sp_password '******', '******'
```

This protects passwords from being seen by other with access to the audit log.

Determining current auditing settings

To determine the current auditing settings for a given option, use `sp_displayaudit`. The syntax is:

```sql
sp_displayaudit [procedure | object | login | database | global | default_object | default_procedure [, name]]
```

For more information, see `sp_displayaudit` in the Reference Manual: Procedures.

Adding user-specified records to the audit trail

`sp_addauditrecord` allows users to enter comments into the audit trail. The syntax is:

```sql
```

All the parameters are optional:

- `text` – is the text of the message that you want to add to the `extrainfo` audit table.

- `db_name` – is the name of the database referred to in the record, which is inserted into the `dbname` column of the current audit table.
Setting global auditing options

- **obj_name** – is the name of the object referred to in the record, which is inserted into the **objname** column of the current audit table.

- **owner_name** – is the owner of the object referred to in the record, which is inserted into the **objowner** column of the current audit table.

- **dbid** – is an integer value representing the database ID number of **db_name**, which is inserted into the **dbid** column of the current audit table. Do not place it in quotes.

- **objid** – is an integer value representing the object ID number of **obj_name**. Do not place it in quotes. **objid** is inserted into the **objid** column of the current audit table.

You can use **sp_addauditrecord** if:

- You have execute permission on **sp_addauditrecord**.

- The auditing configuration parameter was activated with **sp_configure**.

- The adhoc auditing option was enabled with **sp_audit**.

By default, only a system security officer and the database owner of **sybsecurity** can use **sp_addauditrecord**. Permission to execute it may be granted to other users.

### Examples of adding user-defined audit records

The following example adds a record to the current audit table. The text portion is entered into the **extrainfo** column of the current audit table, “corporate” into the **dbname** column, “payroll” into the **objname** column, “dbo” into the **objowner** column, “10” into the **dbid** column, and “1004738270” into the **objid** column:

```
sp_addauditrecord "I gave A. Smith permission to view the payroll table in the corporate database. This permission was in effect from 3:10 to 3:30 pm on 9/22/92.", "corporate", "payroll", "dbo", 10, 1004738270
```

The following example inserts information only into the **extrainfo** and **dbname** columns of the current audit table:

```
sp_addauditrecord @text="I am disabling auditing briefly while we reconfigure the system", @db_name="corporate"
```
Querying the audit trail

To query the audit trail, use SQL to select and summarize the audit data. If you follow the procedures discussed in “Setting up audit trail management” on page 644, the audit data is automatically archived to one or more tables in another database. For example, assume that the audit data resides in a table called audit_data in the audit_db database. To select audit records for tasks performed by “bob” on July 5, 1993, execute:

```sql
use audit_db
go
select * from audit_data
where loginname = "bob"
and eventtime like "Jul 5% 93"
go
```

This command requests audit records for commands performed in the pubs2 database by users with the system security officer role active:

```sql
select * from audit_data
where extrainfo like "%sso_role%"
and dbname = "pubs2"
go
```

This command requests audit records for all table truncations (event 64):

```sql
select * from audit_data
where event = 64
go
```

To query the audit trail using the name of an audit event, use the audit_event_name function. For example, to request the audit records for all database creation events, enter:

```sql
select * from audit_data where audit_event_name(event) = "Create Database"
go
```

Understanding the audit tables

The system audit tables can be accessed only by a system security officer, who can read the tables by executing SQL commands. The only commands that are allowed on the system audit tables are select and truncate.

Table 18-3 describes the columns in all audit tables.
Table 18-3: Columns in each audit table

<table>
<thead>
<tr>
<th>Column name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>smallint</td>
<td>Type of event being audited. See Table 18-5 on page 669.</td>
</tr>
<tr>
<td>eventmod</td>
<td>smallint</td>
<td>More information about the event being audited. Indicates whether or not the event in question passed permission checks. Possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0 = no modifier for this event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 = the event passed permission checking.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 = the event failed permission checking.</td>
</tr>
<tr>
<td>spid</td>
<td>smallint</td>
<td>ID of the process that caused the audit record to be written.</td>
</tr>
<tr>
<td>eventtime</td>
<td>datetime</td>
<td>Date and time that the audited event occurred.</td>
</tr>
<tr>
<td>sequence</td>
<td>smallint</td>
<td>Sequence number of the record within a single event. Some events require more than one audit record.</td>
</tr>
<tr>
<td>suid</td>
<td>smallint</td>
<td>Server login ID of the user who performed the audited event.</td>
</tr>
<tr>
<td>dbid</td>
<td>int null</td>
<td>Database ID in which the audited event occurred, or in which the object, stored procedure, or trigger resides, depending on the type of event.</td>
</tr>
<tr>
<td>objid</td>
<td>int null</td>
<td>ID of the accessed object, stored procedure, or trigger.</td>
</tr>
<tr>
<td>xactid</td>
<td>binary(6) null</td>
<td>ID of the transaction containing the audited event. For a multi-database transaction, this is the transaction ID from the database where the transaction originated.</td>
</tr>
<tr>
<td>loginname</td>
<td>varchar(30) null</td>
<td>Login name corresponding to the suid.</td>
</tr>
<tr>
<td>dbname</td>
<td>varchar(30) null</td>
<td>Database name corresponding to the dbid.</td>
</tr>
<tr>
<td>objname</td>
<td>varchar(30) null</td>
<td>Object name corresponding to the objid.</td>
</tr>
<tr>
<td>objowner</td>
<td>varchar(30) null</td>
<td>Name of the owner of objid.</td>
</tr>
<tr>
<td>extrainfo</td>
<td>varchar(255) null</td>
<td>Additional information about the audited event. This column contains a sequence of items separated by semicolons. For details, see “Reading the extrainfo column” on page 668.</td>
</tr>
<tr>
<td>nodeid</td>
<td>tinyint</td>
<td>Server nodeid in a cluster where the event occurred.</td>
</tr>
</tbody>
</table>

Reading the extrainfo column

The extrainfo column contains a sequence of data separated by semicolons. The data is organized in the following categories.

Table 18-4: Information in the extrainfo column

<table>
<thead>
<tr>
<th>Position</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roles</td>
<td>A list of active roles, separated by blanks.</td>
</tr>
<tr>
<td>2</td>
<td>Keywords or Options</td>
<td>The name of the keyword or option that was used for the event. For example, for the alter table command, the add column or drop constraint options might have been used. If multiple keywords or options are listed, they are separated by commas.</td>
</tr>
</tbody>
</table>
This example shows an `extrainfo` column entry for the event of changing an auditing configuration parameter.

```
 sso_role;suspend audit when device full;1;0;;ralph;
```

This entry indicates that a system security officer changed `suspend audit when device full` from 1 to 0. There is no “other information” for this entry. The sixth category indicates that the user “ralph” was operating with a proxy login. No principal name is provided.

The other fields in the audit record give other pertinent information. For example, the record contains the server user ID (suid) and the login name (loginname).

Table 18-5 lists the values that appear in the `event` column, arranged by `sp_audit` option. The “Information in extrainfo” column describes information that might appear in the `extrainfo` column of an audit table, based on the categories described in Table 18-4.

**Table 18-5: Values in event and extrainfo columns**

<table>
<thead>
<tr>
<th>Audit option</th>
<th>Command or access to be audited</th>
<th>event</th>
<th>Information in extrainfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Automatically audited event not controlled by an option)</td>
<td>Enabling auditing with: <code>sp_configure auditing</code></td>
<td>73</td>
<td>—</td>
</tr>
<tr>
<td>(Automatically audited event not controlled by an option)</td>
<td>Disabling auditing with: <code>sp_configure auditing</code></td>
<td>74</td>
<td>—</td>
</tr>
<tr>
<td>Unlocking Administrator’s account</td>
<td>Disabling auditing with: <code>sp_configure auditing</code></td>
<td>74</td>
<td>—</td>
</tr>
<tr>
<td>adhoc</td>
<td>User-defined audit record</td>
<td>1</td>
<td><code>extrainfo</code> is filled by the text parameter of <code>sp_addauditrecord</code></td>
</tr>
</tbody>
</table>
## Understanding the audit tables

<table>
<thead>
<tr>
<th>Audit option</th>
<th>Command or access to be audited</th>
<th>event</th>
<th>Information in extrainfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>alter</td>
<td>alter database</td>
<td>2</td>
<td>Subcommand keywords:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>alter maxhold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>alter size</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inmemory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>alter table</td>
<td>3</td>
<td>Subcommand keywords:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>add/drop/modify column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>replace columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>replace decrypt default</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>replace/add decrypt default</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>add constraint</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drop constraint</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If one or more encrypted columns are added, extrainfo contains: add/drop/modify column column1/keyname1, [column2/keyname2] where keyname is the fully qualified name of the key.</td>
</tr>
<tr>
<td>bcp</td>
<td>bcp in</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>bind</td>
<td>sp_binddefault</td>
<td>6</td>
<td>Other information: Name of the default</td>
</tr>
<tr>
<td></td>
<td>sp_bindmsg</td>
<td>7</td>
<td>Other information: Message ID</td>
</tr>
<tr>
<td></td>
<td>sp_bindrule</td>
<td>8</td>
<td>Other information: Name of the rule</td>
</tr>
<tr>
<td>all, create</td>
<td>create database</td>
<td>9</td>
<td>Keywords or options: inmemory</td>
</tr>
<tr>
<td>cmdtext</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>create</td>
<td>create database</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create default</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create procedure</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create rule</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create table</td>
<td>10</td>
<td>For encrypted columns, extrainfo contains column names and keynames. EK column1/keyname1[,column2/keyname2] where EK is a prefix indicating that subsequent information refers to encryption keys and keyname is the fully qualified name of the key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>create trigger</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create view</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create index</td>
<td>104</td>
<td>Other information: Name of the index</td>
</tr>
<tr>
<td></td>
<td>create function</td>
<td>97</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>sp_addmessage</td>
<td>15</td>
<td>Other information: Message number</td>
</tr>
<tr>
<td>Audit option</td>
<td>Command or access to be audited</td>
<td>event</td>
<td>Information in extrainfo</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>dbaccess</td>
<td>Any access to the database by any user</td>
<td>17</td>
<td>Keywords or options: use cmd outside reference</td>
</tr>
<tr>
<td>dbcc</td>
<td>dbcc all keywords</td>
<td>81</td>
<td>Keywords or options: Any of the dbcc keywords such as checkstorage and the options for that keyword.</td>
</tr>
<tr>
<td>delete</td>
<td>delete from a table</td>
<td>18</td>
<td>Keywords or options: delete</td>
</tr>
<tr>
<td></td>
<td>delete from a view</td>
<td>19</td>
<td>Keywords or options: delete</td>
</tr>
<tr>
<td>disk</td>
<td>disk init</td>
<td>20</td>
<td>Keywords or options: disk init</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk mirror</td>
<td>23</td>
<td>Keywords or options: disk mirror</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk refit</td>
<td>21</td>
<td>Keywords or options: disk refit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk reinit</td>
<td>22</td>
<td>Keywords or options: disk reinit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk release</td>
<td>87</td>
<td>Keywords or options: disk release</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk remirror</td>
<td>25</td>
<td>Keywords or options: disk remirror</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk unmirror</td>
<td>24</td>
<td>Keywords or options: disk unmirror</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td></td>
<td>disk resize</td>
<td>100</td>
<td>Keywords or options: disk resize</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other information: Name of the disk</td>
</tr>
<tr>
<td>drop</td>
<td>drop database</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop default</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop procedure</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop table</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop trigger</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop rule</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop view</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>drop index</td>
<td>105</td>
<td>Other information: Index name</td>
</tr>
<tr>
<td></td>
<td>drop function</td>
<td>98</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>sp_dropmessage</td>
<td>32</td>
<td>Other information: Message number</td>
</tr>
<tr>
<td>dump</td>
<td>dump database</td>
<td>34</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>dump transaction</td>
<td>35</td>
<td>—</td>
</tr>
</tbody>
</table>
Understanding the audit tables

<table>
<thead>
<tr>
<th>Audit option</th>
<th>Command or access to be audited</th>
<th>event</th>
<th>Information in extrainfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>encryption_key</td>
<td>sp_encryption</td>
<td>106</td>
<td>If password is set the first time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENCR_ADMIN system_encr_passwd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>password **********</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the password is subsequently changed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENCR_ADMIN system_encr_passwd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>password **********</td>
</tr>
<tr>
<td>create encryption key</td>
<td></td>
<td>107</td>
<td>Keywords contain:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>algorithm name-bitlength/IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[random]NULL/pad [random] NULL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>user/system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AES-128/IV RANDOM/PAD NULL USER</td>
</tr>
<tr>
<td>alter encryption key</td>
<td></td>
<td>108</td>
<td>default/not default</td>
</tr>
<tr>
<td>drop encryption key</td>
<td></td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>AEK modify encryption</td>
<td></td>
<td>118</td>
<td>modify encryption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with user passwd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(with login passwd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(with user passwd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(with keyvalue)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(for recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note that keyvalue is displayed only for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>replication of alter encryption key modify</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>encryption. For example, when user “stephen”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>modifies his key copy, the following</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>information is saved:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MODIFY ENCRYPTION for user</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stephen WITH USER PASSWD</td>
</tr>
<tr>
<td>AEK add encryption</td>
<td></td>
<td>119</td>
<td>add encryption for user user_name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for login association</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note that keyvalue is displayed only for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>replication of alter encryption key add</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>encryption.</td>
</tr>
<tr>
<td>alter encryption key</td>
<td>drop encryption</td>
<td>120</td>
<td>drop encryption [for recovery</td>
</tr>
<tr>
<td>drop encryption key</td>
<td></td>
<td></td>
<td>user_name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See the Encrypted Columns Users Guide.</td>
</tr>
<tr>
<td>alter encryption key</td>
<td>modify owner</td>
<td>121</td>
<td>modify owner [new owner user_name]</td>
</tr>
<tr>
<td>modify owner</td>
<td></td>
<td></td>
<td>See the Encrypted Columns Users Guide.</td>
</tr>
<tr>
<td>Audit option</td>
<td>Command or access to be audited</td>
<td>event</td>
<td>Information in extrainfo</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>alter encryption key recover key</td>
<td>122</td>
<td>recovery key [with key_value] with key_value is only used during replication of alter encryption key. See the Encrypted Columns Users Guide.</td>
<td></td>
</tr>
<tr>
<td>errorlog</td>
<td>errorlog or errorlog_admin function</td>
<td>127</td>
<td>The parameters passed to errorlog_admin are logged to identify the subcommand: errorlog_admin (param1, param2,...).</td>
</tr>
<tr>
<td>errors</td>
<td>Fatal error</td>
<td>36</td>
<td>Other information: Error number, Severity, State</td>
</tr>
<tr>
<td>errors</td>
<td>Non-fatal error</td>
<td>37</td>
<td>Other information: Error number, Severity, State</td>
</tr>
<tr>
<td>exec_procedure</td>
<td>Execution of a procedure</td>
<td>38</td>
<td>Other information: All input parameters</td>
</tr>
<tr>
<td>exec_trigger</td>
<td>Execution of a trigger</td>
<td>39</td>
<td>—</td>
</tr>
<tr>
<td>func_obj_access, func_dbaccess</td>
<td>Accesses to objects and databases via Transact-SQL functions. (Auditing must be enabled for the sa_role to audit functions).</td>
<td>86</td>
<td>—</td>
</tr>
<tr>
<td>grant</td>
<td>grant</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>insert</td>
<td>insert into a table</td>
<td>41</td>
<td>Keywords or option: insert</td>
</tr>
<tr>
<td></td>
<td>insert into a view</td>
<td>42</td>
<td>Keywords or options: insert</td>
</tr>
<tr>
<td>insert into a view</td>
<td>42</td>
<td>Keywords or options: insert</td>
<td></td>
</tr>
<tr>
<td>install</td>
<td>install</td>
<td>93</td>
<td>—</td>
</tr>
<tr>
<td>login</td>
<td>Any login to the server</td>
<td>45</td>
<td>Other information: host name and IP address of the machine from which the login was performed.</td>
</tr>
<tr>
<td>login_locked</td>
<td>Login locked due to exceeding the configured number of failed login attempts</td>
<td>112</td>
<td>—</td>
</tr>
<tr>
<td>logout</td>
<td>Any logouts from the server</td>
<td>46</td>
<td>Other information: Host name</td>
</tr>
<tr>
<td>mount</td>
<td>mount database</td>
<td>101</td>
<td>—</td>
</tr>
<tr>
<td>password</td>
<td>sp_passwordpolicy and all its actions except list.</td>
<td>115</td>
<td>Parameters for sp_passwordpolicy</td>
</tr>
<tr>
<td>Audit option</td>
<td>Command or access to be audited</td>
<td>event</td>
<td>Information in extrainfo</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>quiesce</td>
<td>quiesce database</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>
| reference    | Creation of references to tables| 91    | Keywords or options: reference  
Other information: Name of the referencing table |
| remove       | remove java                     | 94    |                         |
| revoke       | revoke                          | 47    |                         |
| rpc          | Remote procedure call from another server | 48 | Keywords or options: Name of client program  
Other information: Server name, host name of the machine from which the RPC was executed.  
Remote procedure call to another server | 49 | Keywords or options: Procedure name |
| security     | connect to (CIS only)           | 90    | Keywords or options: connect to |
|              | online database                 | 83    |                         |
|              | proc_role function (executed from within a system procedure) | 80 | Other information: Required roles |
|              | Regeneration of a password by an sso | 76 | Keywords or options: Setting SSO password  
Other information: Login name |
|              | Role toggling                   | 55    | Previous value: on or off  
Current value: on or off  
Other information: Name of the role being set |
|              | Server start                    | 50    | Other information:  
-dmasterdevicename  
-interfaces file path  
-Sservername  
-errortilename |
|              | sp_webservices                  | 111   | Keywords or options: deploy if deploying a web service. deploy_all if deploying all web services |
|              | sp_webservices                  | 111   | Keywords or options: undeploy if undeploying a web service. undeploy_all if undeploying all web services |
|              | Server shutdown                 | 51    | Keywords or options: shutdown |
|              | set proxy or set session authorization | 88 | Previous value: Previous suid  
Current value: New suid |
<table>
<thead>
<tr>
<th>Audit option</th>
<th>Command or access to be audited</th>
<th>event</th>
<th>Information in extrainfo</th>
</tr>
</thead>
</table>
| `sp_configure` | | 82 | **Keywords or options:** SETCONFIG  
**Other information:**  
• If a parameter is being set: number of configuration parameter  
• If a configuration file is being used to set parameters: name of the configuration file |
| `sp_ssladmin` administration enabled | | 99 | Keywords contains SSL_ADMIN addcert, if adding a certification. |
| Audit table access | | 61 | — |
| `create login, drop login` | | 103 | **Keywords or options:** create login, drop login |
| `create, drop, alter, grant, or revoke role` | | 85 | **Keywords or options:** create, drop, alter, grant, or revoke role |
| Built-in functions | | 86 | **Keywords or options:** Name of function |
| Security command or access to be audited, specifically, starting Adaptive Server with `-u` option to unlock the administrator’s account | | 95 | Other information contains 'Unlocking admin account' |
| Changes to the LDAP state changes | | 123 | **Keywords or options:** Primary URL state and secondary URL state  
• Previous value  
• Current value  
Additional information indicates whether the state change happened automatically or because of a manually entered command. |
| The regeneration of asymmetric keypairs for network password encryption by the system or `sp_passwordpolicy` | | 117 | Information in extrainfo |
| `select` | `select from a table` | 62 | **Keywords or options:**  
select into  
select  
readtext |
| `select` | `select from a view` | 63 | **Keywords or options:**  
select into  
select  
readtext |
| `setuser` | `setuser` | 84 | **Other information:** Name of the user being set |
Table 18-6 lists the values that appear in the event column, arranged by the audit event.

<table>
<thead>
<tr>
<th>Audit option</th>
<th>Command or access to be audited</th>
<th>event</th>
<th>Information in extrainfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>table_access</td>
<td>delete</td>
<td>18</td>
<td><em>Keywords or options: delete</em></td>
</tr>
<tr>
<td></td>
<td>insert</td>
<td>41</td>
<td><em>Keywords or options: insert</em></td>
</tr>
<tr>
<td></td>
<td>select</td>
<td>62</td>
<td><em>Keywords or options: select into select readtext</em></td>
</tr>
<tr>
<td></td>
<td>update</td>
<td>70</td>
<td><em>Keywords or options: update writetext</em></td>
</tr>
<tr>
<td>truncate</td>
<td>truncate table</td>
<td>64</td>
<td>—</td>
</tr>
<tr>
<td>transfer_table</td>
<td>transfer table</td>
<td>136</td>
<td>transfer table</td>
</tr>
<tr>
<td>unbind</td>
<td>sp_unbindefault</td>
<td>67</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>sp_unbindmsg</td>
<td>69</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>sp_unbindrule</td>
<td>68</td>
<td>—</td>
</tr>
<tr>
<td>unmount</td>
<td>unmount database</td>
<td>102</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>create manifest file</td>
<td>116</td>
<td>Information in extrainfo</td>
</tr>
<tr>
<td>update</td>
<td>update to a table</td>
<td>70</td>
<td><em>Keywords or options: update writetext</em></td>
</tr>
<tr>
<td></td>
<td>update to a view</td>
<td>71</td>
<td><em>Keywords or options: update writetext</em></td>
</tr>
<tr>
<td>view_access</td>
<td>delete</td>
<td>19</td>
<td><em>Keywords or options: delete</em></td>
</tr>
<tr>
<td></td>
<td>insert</td>
<td>42</td>
<td><em>Keywords or options: insert</em></td>
</tr>
<tr>
<td></td>
<td>select</td>
<td>63</td>
<td><em>Keywords or options: select into select readtext</em></td>
</tr>
<tr>
<td></td>
<td>update</td>
<td>71</td>
<td><em>Keywords or options: update writetext</em></td>
</tr>
</tbody>
</table>

*Table 18-6: Audit event values*

<table>
<thead>
<tr>
<th>Audit event ID</th>
<th>Command name</th>
<th>Audit event ID</th>
<th>Command name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ad hoc audit record</td>
<td>62</td>
<td>select table</td>
</tr>
<tr>
<td>Audit event ID</td>
<td>Command name</td>
<td>Audit event ID</td>
<td>Command name</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2</td>
<td>alter database</td>
<td>63</td>
<td>select view</td>
</tr>
<tr>
<td>3</td>
<td>alter table</td>
<td>64</td>
<td>truncate table</td>
</tr>
<tr>
<td>4</td>
<td>bcp in</td>
<td>65</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td>66</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>bind default</td>
<td>67</td>
<td>unbind default</td>
</tr>
<tr>
<td>7</td>
<td>bind message</td>
<td>68</td>
<td>unbind rule</td>
</tr>
<tr>
<td>8</td>
<td>bind rule</td>
<td>69</td>
<td>unbind message</td>
</tr>
<tr>
<td>9</td>
<td>create database</td>
<td>70</td>
<td>update table</td>
</tr>
<tr>
<td>10</td>
<td>create table</td>
<td>71</td>
<td>update view</td>
</tr>
<tr>
<td>11</td>
<td>create procedure</td>
<td>72</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>create trigger</td>
<td>73</td>
<td>auditing enabled</td>
</tr>
<tr>
<td>13</td>
<td>create rule</td>
<td>74</td>
<td>auditing disabled</td>
</tr>
<tr>
<td>14</td>
<td>create default</td>
<td>75</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>create message</td>
<td>76</td>
<td>SSO changed password</td>
</tr>
<tr>
<td>16</td>
<td>create view</td>
<td>77</td>
<td>Reserved</td>
</tr>
<tr>
<td>17</td>
<td>access to database</td>
<td>78</td>
<td>Reserved</td>
</tr>
<tr>
<td>18</td>
<td>delete table</td>
<td>79</td>
<td>Reserved</td>
</tr>
<tr>
<td>19</td>
<td>delete view</td>
<td>80</td>
<td>role check performed</td>
</tr>
<tr>
<td>20</td>
<td>disk init</td>
<td>81</td>
<td>dbcc</td>
</tr>
<tr>
<td>21</td>
<td>disk refit</td>
<td>82</td>
<td>config</td>
</tr>
<tr>
<td>22</td>
<td>disk reinit</td>
<td>83</td>
<td>online database</td>
</tr>
<tr>
<td>23</td>
<td>disk mirror</td>
<td>84</td>
<td>setuser command</td>
</tr>
<tr>
<td>24</td>
<td>disk unmirror</td>
<td>85</td>
<td>UDR command</td>
</tr>
<tr>
<td>25</td>
<td>disk remirror</td>
<td>86</td>
<td>built-in function</td>
</tr>
<tr>
<td>26</td>
<td>drop database</td>
<td>87</td>
<td>Disk release</td>
</tr>
<tr>
<td>27</td>
<td>drop table</td>
<td>88</td>
<td>set SSA command</td>
</tr>
<tr>
<td>28</td>
<td>drop procedure</td>
<td>89</td>
<td>kill or terminate command</td>
</tr>
<tr>
<td>29</td>
<td>drop trigger</td>
<td>90</td>
<td>connect</td>
</tr>
<tr>
<td>30</td>
<td>drop rule</td>
<td>91</td>
<td>reference</td>
</tr>
<tr>
<td>31</td>
<td>drop default</td>
<td>92</td>
<td>command text</td>
</tr>
<tr>
<td>32</td>
<td>drop message</td>
<td>93</td>
<td>JCS install command</td>
</tr>
<tr>
<td>33</td>
<td>drop view</td>
<td>94</td>
<td>JCS remove command</td>
</tr>
<tr>
<td>34</td>
<td>dump database</td>
<td>95</td>
<td>Unlock admin account</td>
</tr>
<tr>
<td>35</td>
<td>dump transaction</td>
<td>96</td>
<td>quiesce database</td>
</tr>
<tr>
<td>36</td>
<td>Fatal error</td>
<td>97</td>
<td>create SQLJ function</td>
</tr>
<tr>
<td>37</td>
<td>Non-fatal error</td>
<td>98</td>
<td>drop SQLJ function</td>
</tr>
</tbody>
</table>
### Understanding the audit tables

<table>
<thead>
<tr>
<th>Audit event ID</th>
<th>Command name</th>
<th>Audit event ID</th>
<th>Command name</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>execution of stored procedure</td>
<td>99</td>
<td>SSL administration</td>
</tr>
<tr>
<td>39</td>
<td>Execution of trigger</td>
<td>100</td>
<td>disk resize</td>
</tr>
<tr>
<td>40</td>
<td>grant</td>
<td>101</td>
<td>mount database</td>
</tr>
<tr>
<td>41</td>
<td>insert table</td>
<td>102</td>
<td>unmount database</td>
</tr>
<tr>
<td>42</td>
<td>insert view</td>
<td>103</td>
<td>login command</td>
</tr>
<tr>
<td>43</td>
<td>load database</td>
<td>104</td>
<td>create index</td>
</tr>
<tr>
<td>44</td>
<td>load transaction</td>
<td>105</td>
<td>drop index</td>
</tr>
<tr>
<td>45</td>
<td>login</td>
<td>106</td>
<td>sp_encryption (encrypted column administration)</td>
</tr>
<tr>
<td>46</td>
<td>logout</td>
<td>107</td>
<td>create encryption key</td>
</tr>
<tr>
<td>47</td>
<td>revoke</td>
<td>108</td>
<td>Alter Encryption Key as/not default</td>
</tr>
<tr>
<td>48</td>
<td>rpc in</td>
<td>109</td>
<td>drop encryption key</td>
</tr>
<tr>
<td>49</td>
<td>rpc out</td>
<td>110</td>
<td>deploy user-defined web services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>undeploy user defined web services</td>
</tr>
<tr>
<td>50</td>
<td>server boot</td>
<td>112</td>
<td>login has been locked</td>
</tr>
<tr>
<td>51</td>
<td>server shutdown</td>
<td>113</td>
<td>quiesce hold security</td>
</tr>
<tr>
<td>52</td>
<td>Reserved</td>
<td>114</td>
<td>quiesce release</td>
</tr>
<tr>
<td>53</td>
<td>Reserved</td>
<td>115</td>
<td>Password administration</td>
</tr>
<tr>
<td>54</td>
<td>Reserved</td>
<td>116</td>
<td>create manifest file</td>
</tr>
<tr>
<td>55</td>
<td>role toggling</td>
<td>117</td>
<td>regenerate keypair</td>
</tr>
<tr>
<td>56</td>
<td>Reserved</td>
<td>118</td>
<td>alter encryption key modify encryption</td>
</tr>
<tr>
<td>57</td>
<td>Reserved</td>
<td>119</td>
<td>alter encryption key add encryption</td>
</tr>
<tr>
<td>58</td>
<td>Reserved</td>
<td>120</td>
<td>alter encryption key drop encryption</td>
</tr>
<tr>
<td>59</td>
<td>Reserved</td>
<td>121</td>
<td>alter encryption key modify owner</td>
</tr>
<tr>
<td>60</td>
<td>Reserved</td>
<td>122</td>
<td>alter encryption key for key recovery</td>
</tr>
<tr>
<td>61</td>
<td>access to audit table</td>
<td>123</td>
<td>LDAP state changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127</td>
<td>Errorlog administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136</td>
<td>transfer table</td>
</tr>
</tbody>
</table>
Monitoring failed login attempts

The audit option login_locked and the event Locked Login (value 112) record when a login account is locked due to exceeding the configured number of failed login attempts. This event is enabled when audit option login_locked is set. To set login_locked, enter:

```
sp_audit "login_locked", "all", "all", "ON"
```

If the audit tables are full and the event cannot be logged, a message with the information is sent to the error log.

The host name and network IP address are included in the audit record. Monitoring the audit logs for the Locked Login event (number 112) helps to identify attacks on login accounts.

Auditing login failures

Although client applications may fail to login for many reasons, Adaptive Server does not provide them with any detailed information about the login failure. This is done to avoid giving information to malintentioned users attempting to crack passwords or otherwise breach Adaptive Server’s authentication mechanisms.

However, as a system administrator, detailed information is useful for diagnosing Adaptive Server administrative or configuration problems, and it is useful to security officers for investigating attempts to breach security.

This enables auditing for all login failures:

```
sp_audit "login", "all", "all", "fail"
```

In order to provide a barrier to inappropriate use of the information, only a user granted the SSO role can access the audit trail information containing this sensitive information.

Adaptive Server audits login failures for the following conditions:

- For Adaptive Server started as a Windows Service, if the Sybase SQLServer service is paused (for example, by the Microsoft Management Console for Services).
- If a remote server attempts to establish a site handler for server-to-server RPCs, but insufficient resources (or any of the other conditions listed here) cause the site handler initialization to fail.
Understanding the audit tables

- Using Adaptive Server for Windows with the Trusted Login or Unified Login configuration, but the specified user is not a trusted administrator (that is, an authentication failure).
- Adaptive Server does not support the SQL interface requested by the client.
- A user is attempting to log into Adaptive Server when it is in single-user mode. In single-user mode, exactly one user with the sa_role is allowed to log in to Adaptive Server. Additional logins are prevented, even if they have the sa_role.
- The syslogins table in the master database fails to open, indicating the master database has an internal error.
- A client attempts a remote login, but sysremotelogins cannot be opened, or there is no entry for the specified user account and no guest account exists.
- A client attempts a remote login and, although it finds an entry referring to a local account for the specified user in sysremotelogins, the referenced local account does not exist.
- A client program requests a security session (for example, a Kerberos authentication), but the security session could not be established because:
  - The Adaptive Server security subsystem was not initialized at startup.
  - Insufficient memory resources for allocated structures.
  - The authentication negotiation failed.
- An authentication mechanism is not found for the specified user.
- The specified password was not correct.
- syslogins does not contain the required entry for the specified login.
- The login account is locked.
- Adaptive Server has reached its limit for the number of user connections.
- The configuration parameter unified login required is set, but the login has not been authenticated by the appropriate security subsystem.
- Adaptive Server’s network buffers are unavailable, or the requested packet size is invalid.
- A client application requests a host-based communication socket connection, but memory resources for the host-based communication buffers are not available.
• A shutdown is in progress, but the specified user does not have the sa role.

• Adaptive Server could not open the default database for a login, and this login does not have access to the master database.

• A client makes a high availability login fail over request, but the high availability subsystem is does not have a high availability session for this login, or the login is unable to wait for the fail over to complete.

• A client requests a high availability login setup, but the high availability subsystem is unable to create the session or is unable to complete the TDS protocol negotiations for the high availability session.

• Adaptive Server fails to setup tempdb for a login.

• TDS Login Protocol errors are detected.
CHAPTER 19

Confidentiality of Data

This chapter describes how to configure Adaptive Server to ensure that all data is secure and confidential.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Sockets Layer (SSL) in Adaptive Server</td>
<td>683</td>
</tr>
<tr>
<td>Kerberos confidentiality</td>
<td>704</td>
</tr>
<tr>
<td>Dumping and loading databases with password protection</td>
<td>704</td>
</tr>
</tbody>
</table>

Secure Sockets Layer (SSL) in Adaptive Server

Adaptive Server Enterprise security services now support Secure Sockets Layer (SSL) session-based security. SSL is the standard for securing the transmission of sensitive information, such as credit card numbers, stock trades, and banking transactions, over the Internet.

While a comprehensive discussion of public-key cryptography is beyond the scope of this document, the basics are worth describing so that you have an understanding of how SSL secures Internet communication channels. This document is not a comprehensive guide to public-key cryptography.

The implementation of Adaptive Server SSL features assume that there is a knowledgeable system security officer who is familiar with the security policies and needs of your site, and who has general understanding of SSL and public-key cryptography.
Internet communications overview

TCP/IP is the primary transport protocol used in client/server computing, and is the protocol that governs the transmission of data over the Internet. TCP/IP uses intermediate computers to transport data from sender to recipient. The intermediate computers introduce weak links to the communication system where data may be subjected to tampering, theft, eavesdropping, and impersonation.

Public-key cryptography

Several mechanisms, known collectively as public-key cryptography, have been developed and implemented to protect sensitive data during transmission over the Internet. Public-key cryptography consists of encryption, key exchange, digital signatures, and digital certificates.

Encryption

Encryption is a process wherein a cryptographic algorithm is used to encode information to safeguard it from anyone except the intended recipient. There are two types of keys used for encryption:

- **Symmetric-key encryption** – is where the same algorithm (key) is used to encrypt and decrypt the message. This form of encryption provides minimal security because the key is simple, and therefore easy to decipher. However, transfer of data that is encrypted with a symmetric key is fast because the computation required to encrypt and decrypt the message is minimal.

- **Public/private key encryption** – also known as asymmetric-key, is a pair of keys that are made up of public and private components to encrypt and decrypt messages. Typically, the message is encrypted by the sender with a private key, and decrypted by the recipient with the sender’s public key, although this may vary. You can use a recipient’s public key to encrypt a message, who then uses his private key to decrypt the message.

  The algorithms used to create public and private keys are more complex, and therefore harder to decipher. However, public/private key encryption requires more computation, sends more data over the connection, and noticeably slows data transfer.

Key exchange

The solution for reducing computation overhead and speeding transactions without sacrificing security is to use a combination of both symmetric key and public/private key encryption in what is known as a key exchange.
For large amounts of data, a symmetric key is used to encrypt the original message. The sender then uses either his private key or the recipient’s public key to encrypt the symmetric key. Both the encrypted message and the encrypted symmetric key are sent to the recipient. Depending on what key was used to encrypt the message (public or private) the recipient uses the opposite to decrypt the symmetric key. Once the key has been exchanged, the recipient uses the symmetric key to decrypt the message.

**Digital signatures**

Digital signatures are used for tamper detection and non-repudiation. Digital signatures are created with a mathematical algorithm that generates a unique, fixed-length string of numbers from a text message; the result is called a hash or message digest.

To ensure message integrity, the message digest is encrypted by the signer’s private key, then sent to the recipient along with information about the hashing algorithm. The recipient decrypts the message with the signer’s public key. This process also regenerates the original message digest. If the digests match, the message proves to be intact and tamper free. If they do not match, the data has either been modified in transit, or the data was signed by an imposter.

Further, the digital signature provides **non-repudiation**—senders cannot deny, or repudiate, that they sent a message, because their private key encrypted the message. Obviously, if the private key has been compromised (stolen or deciphered), the digital signature is worthless for non-repudiation.

**Digital certificates**

Digital Certificates are like passports: once you have been assigned one, the authorities have all your identification information in the system. Like a passport, the certificate is used to verify the identity of one entity (server, router, Web sites, and so on) to another.

Adaptive Server uses two types of certificates:

- **Server certificates** — a server certificate authenticates the server that holds it. Certificates are issued by a trusted third-party Certificate Authority (CA). The CA validates the holder’s identity, and embeds the holder’s public key and other identification information into the digital certificate. Certificates also contain the digital signature of the issuing CA, verifying the integrity of the data contained therein and validating its use.

- **CA certificates** (also known as **trusted root certificates**) — is a list of trusted CAs loaded by the server at start-up. CA certificates are used by servers when they function as a client, such as during remote procedure calls (RPCs). Adaptive Server loads its CA trusted root certificate at start-up. When connecting to a remote server for RPCs, Adaptive Server verifies that the CA that signed the remote server’s certificate is a “trusted” CA listed in its own CA trusted roots file. If it is not, the connection fails.
Certificates are valid for a period of time and can be revoked by the CA for various reasons, such as when a security breach has occurred. If a certificate is revoked during a session, the session connection continues. Subsequent attempts to login fail. Likewise, when a certificate expires, login attempts fail.

The combination of these mechanisms protect data transmitted over the Internet from eavesdropping and tampering. These mechanisms also protect users from impersonation, where one entity pretends to be another (spoofing), or where a person or an organization says it is set up for a specific purpose when the real intent is to capture private information (misrepresentation).

**SSL overview**

SSL is an industry standard for sending wire- or socket-level encrypted data over secure network connections.

Before the SSL connection is established, the server and the client exchange a series of I/O round trips to negotiate and agree upon a secure encrypted session. This is called the SSL handshake.

**SSL handshake**

When a client requests a connection, the SSL-enabled server presents its certificate to prove its identity before data is transmitted. Essentially, the handshake consists of the following steps:

- The client sends a connection request to the server. The request includes the SSL (or Transport Layer Security, TLS) options that the client supports.
- The server returns its certificate and a list of supported cipher suites, which includes SSL/TLS support options, algorithms used for key exchange, and digital signatures.
- A secure, encrypted session is established when both client and server have agreed upon a CipherSuite.

For more specific information about the SSL handshake and the SSL/TLS protocol, see the Internet Engineering Task Force Web site at http://www.ietf.org. For a list of cipher suites that Adaptive Server supports, see “Cipher Suites” on page 696.

**SSL in Adaptive Server**

Adaptive Server’s implementation of SSL provides several levels of security.
• The server authenticates itself—proves that it is the server you intended to contact—and an encrypted SSL session begins before any data is transmitted.

• Once the SSL session is established, the client requesting a connection can send his user name and password over the secure, encrypted connection.

• A comparison of the digital signature on the server certificate can determine whether the data received by the client was modified before reaching the intended recipient.

On most platforms, Adaptive Server uses SSL Plus(TM) library API from Certicom Corp. However, for Windows Opteron X64, Adaptive Server uses OpenSSL as the SSL provider.

SSL filter

The Adaptive Server directory service, such as the interfaces file, Windows Registry, or LDAP service, defines the server address and port numbers, and determines the security protocols that are enforced for client connections. Adaptive Server implements the SSL protocol as a filter that is appended to the master and query lines of the directory services.

The addresses and port numbers on which Adaptive Server accepts connections are configurable, so you can enable multiple network and security protocols for a single server. Server connection attributes are specified with directory services, such as LDAP, or with the traditional Sybase interfaces file. See “Creating server directory entries” on page 693.

All connection attempts to a master or query entry in the interfaces file with an SSL filter must support the SSL protocol. A server can be configured to accept SSL connections and have other connections that accept clear text (unencrypted data), or use other security mechanisms.

For example, the interfaces file on UNIX that supports both SSL-based connections and clear-text connections looks like this:

```
SYBSRV1
 master tcp ether myhostname myport1 ssl
 query tcp ether myhostname myport1 ssl
 master tcp ether myhostname myport2
```

The SSL filter is different from other security mechanisms, such as DCE and Kerberos, which are defined with SECMECH (security mechanism) lines in the interfaces file (sql.ini on Windows).
Secure Sockets Layer (SSL) in Adaptive Server

Authentication via the certificate

The SSL protocol requires server authentication via a server certificate to enable an encrypted session. Likewise, when Adaptive Server is functioning as a client during RPCs, there must be a repository of trusted CAs that a client connection can access to validate the server certificate.

The server certificate

Each Adaptive Server must have its own server certificate file that is loaded at start-up. The following is the default location for the certificates file, where *servername* is the name of the Adaptive Server as specified on the command line during start-up with the -s flag, or from the environment variable $DSDLISTEN:

- **UNIX**: $SYBASE/$SYBASE_ASE/certificates/servername.crt
- **Windows**: %SYBASE%\%SYBASE_ASE\%certificates\servername.crt

The server certificate file consists of encoded data, including the server’s certificate and the encrypted private key for the server certificate.

Alternatively, you can specify the location of the server certificate file when using `sp_ssladmin`.

**Note** To make a successful client connection, the common name in the certificate must match the Adaptive Server name in the *interfaces* file.

The CA trusted roots certificate

The list of trusted CAs is loaded by Adaptive Server at start-up from the trusted roots file. The trusted roots file is similar in format to a certificate file, except that it contains certificates for CAs known to Adaptive Server. A trusted roots file is accessible by the local Adaptive Server in the following, where *servername* is the name of the server:

- **UNIX**: $SYBASE/$SYBASE_ASE/certificates/servername.txt
- **Windows**: %SYBASE%\%SYBASE_ASE\certificates\servername.txt

The trusted roots file is only used by Adaptive Server when it is functioning as a client, such as when performing RPC calls or Component Integration Services (CIS) connections.

The system security officer adds and deletes CAs that are to be accepted by Adaptive Server, using a standard ASCII-text editor.

**Warning!** Use the system security officer role (sso_role) within Adaptive Server to restrict access and execution on security-sensitive objects.
Adaptive Server provides tools to generate a certificate request and to authorize certificates. See “Using Adaptive Server tools to request and authorize certificates” on page 692.

Connection types

This section describes various client-to-server and server-to-server connections.

Client login to Adaptive Server

Open Client applications establish a socket connection to Adaptive Server similarly to the way that existing client connections are established. Before any user data is transmitted, an SSL handshake occurs on the socket when the network transport-level connect call completes on the client side and the accept call completes on the server side.

Server-to-server remote procedure calls

Adaptive Server establishes a socket connection to another server for RPCs in the same way that existing RPC connections are established. Before any user data is transmitted, an SSL handshake occurs on the socket when the network transport-level connect call completes. If the server-to-server socket connection has already been established, the existing socket connection and security context is reused.

When functioning as a client during RPCs, Adaptive Server requests the remote server’s certificate during connection. Adaptive Server then verifies that the CA that signed the remote server’s certificate is trusted; that is to say, on its own list of trusted CAs in the trusted roots file. It also verifies that the common name in the server certificate matches the common name used when establishing the connection.

Companion server and SSL

You can use a companion server to configure Adaptive Server for failover. You must configure both the primary and secondary servers with the same SSL and RPC configuration. When connections fail over or fail back, security sessions are reestablished with the connections.

Open Client connections

Component Integration Services, RepAgent, Distributed Transaction Management, and other modules in Adaptive Server use Client-Library to establish connections to servers other than Adaptive Server. The remote server is authenticated by its certificate. The remote server authenticates the Adaptive Server client connection for RPCs with user name and password.
Enabling SSL

Adaptive Server determines which security service it will use for a port based on the interface file (sql.ini on Windows).

❖ Enabling SSL

1. Generate a certificate for the server.
2. Create a trusted roots file.
3. Use `sp_configure` to enable SSL. From a command prompt, enter:
   
   ```
 sp_configure "enable ssl", 1
   ```
   
   - 1 – enables the SSL subsystem at start-up, allocates memory, and SSL performs wire-level encryption of data across the network.
   - 0 (the default) – disables SSL. This value is the default.
4. Add the SSL filter to the `interfaces` file. See “Creating server directory entries” on page 693.
5. Use `sp_ssladmin` to add a certificate to the certificates file. See “Administering certificates” on page 693.

Note To request, authorize, and convert third-party certificates, see the Utility Guide for information on the `certauth`, `certreq`, and `certpk12` tools.

Unlike other security services, such as DCE, Kerberos, and NTLAN, SSL relies neither on the “Security” section of the Open Client/Open Server configuration file `libtcl.cfg`, nor on objects in `objectid.dat`.

The system administrator should consider memory use by SSL when planning for total physical memory. You need approximately 40K per connection (connections include user connections, remote servers, and network listeners) in Adaptive Server for SSL connections. The memory is reserved and preallocated within a memory pool and is used internally by Adaptive Server and SSL Plus libraries as requested.

Obtaining a certificate

The system security officer installs server certificates and private keys for Adaptive Server by:
• Using third-party tools provided with existing public-key infrastructure already deployed in the customer environment.

• Using the Adaptive Server certificate request tool in conjunction with a trusted third-party CA.

To obtain a certificate, you must request a certificate from a CA. If you request a certificate from a third party and that certificate is in PKCS #12 format, use the `certpk12` utility to convert the certificate into a format that is understood by Adaptive Server.

To test the Adaptive Server certificate request tool and to verify that the authentication methods are working on your server, Adaptive Server provides a tool, for testing purposes, that allows you to function as a CA and issue CA-signed certificate to yourself.

The main steps to creating a certificate for use with Adaptive Server are:

1. Generate the public and private key pair.
2. Securely store the private key.
3. Generate the certificate request.
4. Send the certificate request to the CA.
5. After the CA signs and returns the certificate, store it in a file and append the private key to the certificate.
6. Store the certificate in the Adaptive Server installation directory.

Most third-party PKI vendors and some browsers have utilities to generate certificates and private keys. These utilities are typically graphical wizards that prompt you through a series of questions to define a distinguished name and a common name for the certificate.

Follow the instructions provided by the wizard to create certificate requests. Once you receive the signed PKCS #12-format certificate, use `certpk12` to generate a certificate file and a private key file. Concatenate the two files into a `servername.crt` file, where `servername` is the name of the server, and place it in the `certificates` directory under `$SYBASE/$SYBASE_ASE`. See the Utility Guide.
Adaptive Server provides two tools for requesting and authorizing certificates. `certreq` generates public and private key pairs and certificate requests. `certauth` converts a server certificate request to a CA-signed certificate.

**Warning!** Use `certauth` only for testing purposes. Sybase recommends that you use the services of a commercial CA because it provides protection for the integrity of the root certificate, and because a certificate that is signed by a widely accepted CA facilitates the migration to the use of client certificates for authentication.

Preparing the server’s trusted root certificate is a five-step process. Perform the first two steps to create a test trusted root certificate so you can verify that you are able to create server certificates. Once you have a test CA certificate (trusted roots certificate) repeat steps three through five to sign server certificates.

1. Use `certreq` to request a certificate.
2. Use `certauth` to convert the certificate request to a CA self-signed certificate (trusted root certificate).
3. Use `certreq` to request a server certificate and private key.
4. Use `certauth` to convert the certificate request to a CA-signed server certificate.
5. Append the private key text to the server certificate and store the certificate in the server’s installation directory.

**Note** Adaptive Server includes the openssl open source utility in $SYBASE/$SYBASE_OCS/bin. Use openssl to accomplish all certificate management tasks implemented by `certreq`, `certauth` and `certpk12`. Sybase includes this binary as a convenience, and is not responsible for any issues incurred using the binary. See www.openssl.org for details.

For information about Sybase utilities, `certauth`, `certreq`, and `certpk12` for requesting, authorizing and converting third-party certificates, see the *Utility Guide*.

**Note** `certauth` and `certreq` are dependent on RSA and DSA algorithms. These tools only work with crypto modules that use RSA and DSA algorithms to construct the certificate request.
Creating server directory entries

Adaptive Server accepts client logins and server-to-server RPCs. The address and port numbers where Adaptive Server accepts connections are configurable so you can specify multiple networks, different protocols, and alternate ports.

In the `interfaces` file, SSL is specified as a filter on the master and query lines, whereas security mechanisms such as DCE or Kerberos are identified with a SECMECH line. The following example shows a TLI-based entry for an Adaptive Server using SSL in a UNIX environment:

An entry for an Adaptive Server with SSL and DCE security mechanisms on UNIX might look like:

```
SYBSRV1
 master tcp ether myhostname myport1 ssl
 query tcp ether myhostname myport1 ssl
 master tcp ether myhostname myport2
 SECMECH 1.3.6.1.4.897.4.6.1
```

An entry for the server with SSL and Kerberos security mechanisms on Windows might look like:

```
[SYBSRV2]
 query=nlwnsck, 18.52.86.120,2748,ssl
 master=nlwnsck 18.52.86.120,2748,ssl
 master=nlwnsck 18.52.86.120,2749
 secmech=1.3.6.1.4.897.4.6.6
```

The SECMECH lines for SYBSRV1 and SYBSRV2 in the examples contain an object identifier (OID) that refers to security mechanisms DCE and Kerberos, respectively. The OID values are defined in:

- UNIX – `$SYBASE/$SYBASE_OCS/config/objectid.dat`
- Windows – `%SYBASE%\%SYBASE_OCS\ini\objectid.dat`

In these examples, the SSL security service is specified on port number 2748(0x0abc).

**Note** The use of SSL concurrently with a SECMECH security mechanism is intended to facilitate migration from SECMECHs to SSL security.

Administering certificates

To administer SSL and certificates in Adaptive Server, use `sp_ssladmin`. `sso_role` is required to execute the stored procedure.
Secure Sockets Layer (SSL) in Adaptive Server

sp_ssladmin is used to:

- Add local server certificates. You can add certificates and specify the password used to encrypt private keys, or require input of the password at the command line during start-up.
- Delete local server certificates.
- List server certificates.

The syntax for sp_ssladmin is:

```
sp_ssladmin [addcert, certificate_path [, password|NULL]]
[dropcert, certificate_path]
[lscert]
[help])
[lskeys]
[setciphers, {"FIPS" | "Strong" | "Weak" | "All"
| quoted_list_of_ciphersuites}]
```

For example:

```
sp_ssladmin addcert, "/sybase/ASE-12_5/certificates/Server1.crt",
"mypassowrd"
```

This adds an entry for the local server, Server1.crt, in the certificates file in the absolute path to /sybase/ASE-12_5/certificates (x:\sybase\ASE-12_5\certificates on Windows). The private key is encrypted with the password “mypassowrd”. The password should be the one specified when you created the private key.

Before accepting the certificate, sp_ssladmin verifies that:

- The private key can be decrypted using the provided password (except when NULL is specified).
- The private key and public key in the certificate match.
- The certificate chain, from root CA to the server certificate, is valid.
- The common name in the certificate matches the common name in the interfaces file.
If the common names do not match, `sp_ssladmin` issues a warning. If the other criteria fails, the certificate is not added to the certificates file.

**Warning!** Adaptive Server limits passwords to 64 characters. In addition, certain platforms restrict the length of valid passwords when creating server certificates. Select a password within these limits:

- Sun Solaris – both 32- and 64-bit platforms, 256 characters.
- Linux – 128 characters.
- IBM – both 32- and 64-bit platforms, 32 characters.
- HP – both 32- and 64-bit platforms, 8 characters.
- Windows – 256 characters.

The use of NULL as the password is intended to protect passwords during the initial configuration of SSL, before the SSL-encrypted session begins. Since you have not yet configured SSL, the password travels unencrypted over the connection. You can avoid this by specifying the password as NULL during the first login.

When NULL is the password, you must start `dataserver` with a `-y` flag, which prompts the administrator for the private-key password at the command line.

After restarting Adaptive Server with an SSL connection established, use `sp_ssladmin` again, this time using the actual password. The password is then encrypted and stored by Adaptive Server. Any subsequent starts of Adaptive Server from the command line use the encrypted password; you do not have to specify the password on the command line during start-up.

An alternative to using a NULL password during the first login is to avoid a remote connection to Adaptive Server via `isql`. You can specify “localhost” as the `hostname` in the `interfaces` file (`sql.ini` on Windows) to prevent clients from connecting remotely. Only a local connection can be established, and the password is never transmitted over a network connection.

**Note** Adaptive Server has sufficient memory in its network memory pool to allow `sp_ssladmin` to set the certificate and private key password with its default memory allocations. However, if another network memory consumer has already allocated the default network memory, `sp_ssladmin` may fail and display this error to the client:

```
Msg 12823, Level 16, State 1:
Server 'servername', Procedure 'sp_ssladmin', Line 72:
```
Command 'addcert' failed to add certificate path
/work/REL125/ASE-12_5/certificates/servername.crt,
system error: ErrMemory.
(return status = 1)

Or the following message may appear in the error log:

... ssl_alloc: Cannot allocate using
ubfalloc(rnetmempool, 131072)

As a workaround, you can increase the additional network memory
configuration parameter. Adaptive Server needs about 500K bytes of memory
for sp_ssladmin addcert to succeed, so increasing additional network memory
by this amount may allow it to succeed. This memory is reused by the network
memory pool when needed, or you can return additional network memory to its
previous value after sp_ssladmin has successfully completed.

---

**Performance**

There is additional overhead required to establish a secure session, because
data increases in size when it is encrypted, and it requires additional
computation to encrypt or decrypt information. The additional memory
requirements for SSL increases the overhead by 50-60 percent for network
throughput or for establishing a connection. You must have approximately 40K
more memory for each user connection.

---

**Cipher Suites**

During the SSL handshake, the client and server negotiate a common security
protocol via a CipherSuite. **Cipher Suites** are preferential lists of
key-exchange algorithms, hashing methods, and encryption methods used by
SSL-enabled applications. For a complete description of Cipher Suites, visit
the Internet Engineering Task Force (IETF) organization at

By default, the strongest CipherSuite supported by both the client and the
server is the CipherSuite that is used for the SSL-based session.
Adaptive Server supports the Cipher Suites that are available with the SSL Plus library API and the cryptographic engine, Security Builder™, both from Certicom Corp.

**Note** The Cipher Suites listed conform to the Transport Layer Specification (TLS). TLS is an enhanced version of SSL 3.0, and is an alias for the SSL version 3.0 Cipher Suites.

---

**@@ssl_cipher**

The Transact-SQL global variable `@@ssl_cipher` allows users to know which cipher suite was chosen by the SSL handshake and verify that an SSL or a non-SSL connection was established.

Adaptive Server sets `@@ssl_cipher` when the SSL handshake completes. The value is either NULL, indicating a non-SSL connection, or a string containing the name of the cipher suite chosen by the SSL handshake.

For example, an `isql` connection using SSL protocol displays the cipher suite chosen for it.

```
1> select @@ssl_cipher
2> go
```

Output:

```

TLS_RSA_WITH_AES_128_CBC_SHA
```

(1 row affected)

---

### Setting SSL cipher suite preferences

In Adaptive Server, `sp_ssladmn` has two command options to display and set cipher suite preferences: `lsheets` and `setsheets`. With these options, the set of cipher suites that Adaptive Server uses can be restricted, giving control to the system security officer over the kinds of encryption algorithms that may be used by client connections to the server or outbound connections from Adaptive Server. The default behavior for use of SSL cipher suites in Adaptive Server is the same as in earlier versions; it uses an internally defined set of preferences for cipher suites.

To display the values for any set cipher suite preferences, enter:
Secure Sockets Layer (SSL) in Adaptive Server

To set a specific cipher suite preference, enter:

```
sp_ssladmin setciphers, {"FIPS" | "Strong" | "Weak" | "All" | quoted_list_of_ciphersuites }
```

where:

- "FIPS" – is the set of encryptions, hash, and key exchange algorithms that are FIPS-compliant. The algorithms included in this list are AES, 3DES, DES, and SHA1.
- "Strong" – is the set of encryption algorithms using keys longer than 64 bits.
- "Weak" – is the set of encryption algorithms from the set of all supported cipher suites that are not included in the strong set.
- "All" – is the set of default cipher suites.
- `quoted_list_of_ciphersuites` – specifies a set of cipher suites as a comma-separated list, ordered by preference. Use quotes (") to mark the beginning and end of the list. The quoted list can include any of the predefined sets as well as individual cipher suite names. Unknown cipher suite names cause an error to be reported, and no changes are made to preferences.

The detailed contents of the predefined sets are in Table 19-1 on page 699.

`sp_ssladmin setciphers` sets cipher suite preferences to the given ordered list. This restricts the available SSL cipher suites to the specified set of "FIPS", "Strong", "Weak", "All", or a quoted list of cipher suites. This takes effect on the next listener started, and requires that you restart Adaptive Server to ensure that all listeners use the new settings.

You can display any cipher suite preferences that have been set using `sp_ssladmin lsciphers`. If no preferences have been set, `sp_ssladmin lsciphers` returns 0 rows to indicate no preferences are set and Adaptive Server uses its default (internal) preferences.
<table>
<thead>
<tr>
<th>Set name</th>
<th>Cipher suite names included in the set</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPS</td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_AES_128_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td>Strong</td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_AES_128_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_RC4_128_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_RC4_128_MD5</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_RC4_128_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td>Weak</td>
<td>TLS_RSA_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA</td>
</tr>
</tbody>
</table>
Secure Sockets Layer (SSL) in Adaptive Server

Table 19-2 describes Cipher suites no longer supported for Adaptive Server 15.0 and later. Attempts to use any dropped cipher suite results in an SSLHandshake failure and a failure to connect to Adaptive Server.

<table>
<thead>
<tr>
<th>Set name</th>
<th>Cipher suite names included in the set</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_AES_128_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_RC4_128_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_RC4_128_MD5</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_RC4_128_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT_WITH_RC4_40_MD5</td>
</tr>
<tr>
<td></td>
<td>TLS_RSA_EXPORT_WITH_DES40_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA</td>
</tr>
</tbody>
</table>
### Examples *sp_ssladmin*

On initial startup, before any cipher suite preferences have been set, no preferences are shown by *sp_ssladmin lscipher*.

```
1> sp_ssladmin lscipher
2> go
```

Output:

<table>
<thead>
<tr>
<th>Cipher Suite Name</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0 rows affected)
(return status = 0)

The following example specifies the set of cipher suites that use FIPS algorithms.

```
1> sp_ssladmin setcipher, 'FIPS'
```

The following cipher suites and order of preference are set for SSL connections:

<table>
<thead>
<tr>
<th>Cipher Suite Name</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA</td>
<td>1</td>
</tr>
<tr>
<td>TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA</td>
<td>2</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>3</td>
</tr>
<tr>
<td>TLS_DH_anon_EXPORT_WITH_DES_CBC_SHA</td>
<td>4</td>
</tr>
<tr>
<td>TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA</td>
<td>5</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA</td>
<td>6</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cipher Suite Name</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>1</td>
</tr>
<tr>
<td>TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA</td>
<td>2</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>3</td>
</tr>
<tr>
<td>TLS_DH_anon_EXPORT_WITH_DES_CBC_SHA</td>
<td>4</td>
</tr>
<tr>
<td>TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA</td>
<td>5</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>6</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>7</td>
</tr>
</tbody>
</table>
Secure Sockets Layer (SSL) in Adaptive Server

TLS_DHE_RSA_WITH_DES_CBC_SHA 8
TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA 9
TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA 10

A preference of 0 (zero) sp_ssladmin output indicates a cipher suite is not used by Adaptive Server. The other, non-zero numbers, indicate the preference order that Adaptive Server uses the algorithm during the SSL handshake. The client side of the SSL handshake chooses one of these cipher suites that matches its list of accepted cipher suites.

This example uses a quoted list of cipher suites to set preferences in Adaptive Server:

1> sp_ssladmin setcipher, 'TLS_RSA_WITH_AES_128_CBC_SHA,'
   'TLS_RSA_WITH_AES_256_CBC_SHA'
2> go

The following cipher suites and order of preference are set for SSL connections:

<table>
<thead>
<tr>
<th>Cipher Suite Name</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS_RSA_WITH_AES_128_CBC_SHA</td>
<td>1</td>
</tr>
<tr>
<td>TLS_RSA_WITH_AES_256_CBC_SHA</td>
<td>2</td>
</tr>
</tbody>
</table>

Other considerations

When you upgrade to Adaptive Server version 12.5.3 and later, the cipher suite preferences are the server defaults, and sp_ssladmin option lscipher displays no preferences. The server uses its default preferences, those defined by "All". The system security officer should consider the security policies employed at his or her site and the available SSL cipher suites to decide whether to restrict cipher suites and which cipher suites are appropriate for the security policies.

If you upgrade from Adaptive Server version 12.5.3 and later and have set cipher suite preferences, those preferences remain after upgrade. After the upgrade is complete, review your server's cipher suite preferences with current security policies and the lists of supported and unsupported cipher suites found in tables Table 19-1. Omit any cipher suites that are not supported.

If you have set SSL cipher suite preferences and want to remove all preferences from the server and use default preferences, delete the preferences from their storage location in system catalogs using the following commands:

1> sp_configure 'allow updates to system tables', 1
2> go

1> delete from master..sysattributes where class=24
2> go

Adaptive Server Enterprise
1> sp_configure 'allow updates to system tables', 0
2> go

These commands can be executed only by the system security officer or system administrator.

Using SSL to specify a common name

The server name specified in the directory service entry can be different from the common name the SSL server certificate uses to perform an SSL handshake. This allows you to use a fully-qualified domain name for the SSL certificate common name (for example, server1.bigcompany.com).

To add a common name to the interfaces file, use:

```plaintext
ase1
 master tcp ether host_name port_number ssl="CN='common_name'
query tcp ether host_name port_number ssl="CN='common_name"
```

When clients use SSL to connect to an Adaptive Server that also uses SSL, the SSL filter is placed after the port number in the interfaces file. The directory service includes the common name, which you add either by using dsedit or a text editor.

Specifying a common name with sp_listener

`sp_listener` includes the CN=common_name parameter, which allows you to specify a common name for the SSL certificate. The syntax is:

```plaintext
sp_listener 'command','[protocol:]machine_name:port_number:
"CN=common_name", 'engine_number'
```

Where CN=common_name is used only if you specify ssltcp as the protocol. The common_name you specify here is validated against the common_name in the SSL certificate. If you do not include CN=common_name, Adaptive Server uses server_name to validate against the common name in the SSL certificate. If you include a fully-qualified domain name in the certificate, it must match the CN=common_name.

The attribute name “CN” is case insensitive (it can be “CN”, “cn” or “Cn”), but the attribute value for the common name is case sensitive.

For example, to specify the common name asel.big server 1.com:
Kerberos confidentiality

sp_listener 'start','ssltcp:blade1:17251:"CN=ase1.big server 1.com"','0'

See the Reference Manual: Procedures for more information about sp_listener.

Stored procedure sp_addserver changed

The filter parameter is enhanced to specify a common name. See the Reference Manual: Procedures.

Kerberos confidentiality

You can also ensure the confidentiality of all messages with Adaptive Server. To require all messages into and out of Adaptive Server to be encrypted, set the msg confidentiality reqd configuration parameter to 1. If this parameter is 0 (the default), message confidentiality is not required but may be established by the client.

For example, to require that all messages be encrypted, execute:

```
sp_configure "msg confidentiality reqd", 1
```

For more information about using Message Confidentiality with Kerberos and other Security Services supported, see “Administering network-based security” on page 496.

Dumping and loading databases with password protection

You can protect your database dump from unauthorized loads using the password parameter of the dump database command. If you include the password parameter when you make a database dump, you must also include this password when you load the database.

The partial syntax for the password-protected dump database and load database commands are:

```
dump database database_name to file_name [with passwd = password]
```
load database database_name from file_name [ with passwd = password ]

where:

- database_name – is the name of the database that is being dump or loaded.
- file_name – is the name of the dump file.
- password – is the password you provide to protect the dump file from unauthorized users.

Your password must be between 6 and 30 characters long. If you provide a password that is less than 6 or greater than 30 characters, Adaptive server issues an error message. If you issue an incorrect password when you attempt to load the database, Adaptive Server issues an error message and the command fails.

For example, the following uses the password “bluesky” to protect the database dump of the pubs2 database:

dump database pubs2 to "/Syb_backup/mydb.db" with passwd = "bluesky"

The database dump must be loaded using the same password:

load database pubs2 from "/Syb_backup/mydb.db" with passwd = "bluesky"

Passwords and earlier versions of Adaptive Server

You can use the password-protected dump and load commands only with Adaptive Server version 12.5.2 and later. If you use the password parameter on a dump of a 12.5.2 version of Adaptive Server, the load fails if you try to load it on an earlier version of Adaptive Server.

Passwords and character sets

You can load the dump only to another server with the same character set. For example, if you attempt to load a dump from a server that uses an ASCII character set to a server that uses a non-ASCII character set, the load fails because the value of the ASCII password is different from the non-ASCII password.
Passwords entered by users are converted to Adaptive Server’s local character set. Because ASCII characters generally have the same value representation across character sets, if a user’s password is in an ASCII character set, the passwords for dump and load are recognized across all character sets.

Adaptive Server version 15.0.2 and later allows you to store portable passwords. See “Character set considerations for passwords” on page 463.
Symbols

& (ampersand)  
translated to underscore in login names 505
'
(apostrophe) converted to underscore in login names 505
* (asterisk)  
converted to pound sign in login names 506
select and 597
\ (backslash)  
translated to underscore in login names 505
:= (BNF notation)  
in SQL statements xxii
^ (caret)  
converted to dollar sign in login names 506
: (colon)  
converted to underscore in login names 505
, (comma)  
converted to underscore in login names 505
in SQL statements xxiii
{ } (curly braces)  
converted to dollar sign in login names 506
in SQL statements xxii
= (equals sign)  
converted to underscore in login names 505
! (exclamation point)  
converted to dollar sign in login names 506
< (left angle bracket)  
converted to dollar sign in login names 506
' (left quote), converted to underscore in login names 505
- (minus sign)  
converted to pound sign in login names 506
() (parentheses)  
converted to dollar sign in login names 506
in SQL statements xxii
% (percent sign)  
error message placeholder 355
translated to underscore in login names 505
. (period)  
converted to dollar sign in login names 506
| (pipe)  
converted to pound sign in login names 506
+ (plus)  
converted to pound sign in login names 506
? (question mark) converted to dollar sign in login names 506
?? (question marks)  
for suspect characters 348
“ ” (quotation marks)  
converted to pound sign in login names 506
enclosing parameter values 12
enclosing punctuation 399
enclosing values 399
> (right angle bracket)  
converted to underscore in login names 505
' (right quote), converted to underscore in login names 505
; (semicolon) converted to pound sign in login names 506
/ (slash)  
converted to pound sign in login names 506
[ ] (square brackets)  
converted to pound sign in login names 506
in SQL statements xxii
~ (tilde)  
converted to underscore in login names 505
$ISA 553
@@client_csexpansion global variable 338

Numerics

7-bit ASCII character data, character set conversion for 343

A

abstract plan cache configuration parameter 82
abstract plan dump configuration parameter 82
abstract plan load configuration parameter 82
abstract plan replace configuration parameter 83
access 604
access control, row level 603
access permissions. See object access permissions
access rules
   alter table command 610
   bcp 610
   creating 607
   creating and binding 605
   dropping 606
   examples 608
   extended 606
   sample table 605
accounting, chargeback 476
accounts, server
   See logins:users
ACF (Application Context Facility), problem-solving with 621
activating roles 419
Adaptive Server Plug-In (ASEP)
   command line updates for 15.0.3 50
Adaptive Server principal name 524
adding
   comments to the audit trail 640
database devices 209, 282–288
date strings 335
group to a database 401–402
guest users 403
logins to server 399–400
months of the year 335
remote logins 405, 486–488
remote servers 480–485
users to a database 209, 397
users to a group 402
additional network memory configuration parameter 83
address, server 16
administering security, getting started 387–390
aggressive garbage collection 371
   priority level 371
aggressive housekeeper 371
aliases
   server 482
aliases, user
   See also logins:users
   creating 429
database ownership transfer and 562
dropping 430, 431
help on 431
all keyword
   grant 567, 575
   revoke 575
allocation
   pages 282
   units 282
   units See also size; space allocation
allow backward scans configuration parameter 86
allow nested triggers configuration parameter 86
allow procedure grouping configuration parameter 87
allow remote access configuration parameter 87
allow resource limits configuration parameter 88
allow sendmsg configuration parameter 88
allow sql server async io configuration parameter 88
allow updates configuration parameter (now called allow updates to system tables) 14
allow updates to system tables configuration parameter 14, 89
alter database command
   omitting database device and 289, 290
   system tables and 278
alter role command 414, 442
alternate identity. See alias, user
alternate languages. See languages, alternate
and (&)
   translated to underscore in login names 505
ansi_permissions option, set
   permissions and 569
apostrophe converted to underscore in login names 505
Application Context Facility 613, 614
   granting and revoking privileges 615
   setting permissions 614
   valid users 615
application contexts
   built-in functions 616
   using 616
applications
proxy authorization and 591
Arabic character set support 305
ASCII characters
character set conversion and 343
ASEP (Adaptive Server Plug-In)
Connection Profile Description, Import, Export
options 50
features new to 15.0.3 51
new search tool 50
support for Windows Vista 51
assigning
login names 389
asymmetric key pairs, generating 457
asterisk (*)
converted to pound sign in login names 506
select and 597
asynchronous I/O
limiting Server requests for 158
asynchronous prefetch
configuring 141
@@char_convert global variable 338
@@client_csid global variable 338
@@client_csname global variable 338
@@langid global variable 340
@@language global variable 340
@@max_connections global variable 207
@@maxcharlen global variable 338
@@ncharsize global variable 338
audit options
displaying 640
examples 658
setting 657
audit queue 639, 649
**audit queue size** configuration parameter 91, 639, 649
audit trail 30, 635, 667
adding comments 640, 665
changing current audit table 645
illustration with multiple audit tables 637
managing 644
querying 667
stacktrace of error messages 356
threshold procedure for 644
auditing 394, 635, 635–667
*See also* audit options
adding comments to the audit trail 640
configuration parameters 639
devices for 641
disabling 639
displaying options for 640
enabling 639
enabling and disabling 652
installing 641
managing the audit trail 644
managing the transaction log 650
overview 635
queue, size of 91, 639
*syssecurity* database 30, 636
*sysaudits_01...sysaudits_08* tables 667
system procedures for 639
threshold procedure for 644
turning on and off 652
auditing configuration parameter 92, 652
authentication 494
mutual 495
authorizations. *See permissions*
automatic cluster takeover configuration parameter 92
automatic LDAP enhancements 548
automatic operations
character conversions in logins 505
automatic user authentication enhancements 548
**average cap size** configuration parameter 90

B
Back up
master database 55
backslash ()
translated to underscore in login names 505
backtracing errors. *See error logs*
Backup Server
error messages 365
shutting down 379
tape retention in days configuration parameter 257
backups 41–44
hints 41–44
Backus Naur Form (BNF) notation xxii
Baltic character set support 305
base tables. *See tables*
Index

**bcp** (bulk copy utility)
- character set conversion and 350
- security services and 514
- sort order changes and 327
- with access rules 610

**Big 5**
- similarities to CP 950 305

**binary sort order of character sets**
- character set changes and database dumps 327

**BNF notation in SQL statements** xxii
brackets. *See square brackets [ ]*

**built-in functions**
- security 517

**bytes**
- character 348

**C**
- CA certificates 685
  - location of 688
  - trusted root certificate 685
- cache partitions
  - configuring 141, 142
  - cache, procedure 225
  - caches, data 363
  - database integrity errors and 363
  - calls, remote procedure 479–492
  - timeouts 483
- **caps per ccb** configuration parameter 93
- **cascade option, revoke** 568
- case sensitivity
  - in SQL xxiii
- certificates
  - administration of 693
  - authorizing 692
  - CA certificates 685
  - defined 685
  - obtaining 690
  - public-key cryptography 685
  - requesting 692
  - self-signed CA 692
  - server certificates 685
- chains, ownership 599
- changing
  - *See also* updating

**configuration parameters** 77, 491
- **database options** 295–297
- **database owners** 561
- **default database** 426
- **passwords for login accounts** 424
- **server logins** 426
- **system tables, dangers of** 11, 14
- **user information** 423–427
- user’s group 427
- user’s identity 586

**@@char_convert** global variable 338
- **character set conversions** 341, 349
- **character sets** 108
  - *See also* Japanese character sets
    - Arabic 305
    - Baltic 305
    - changing 325
    - conversion between client and file system 350
    - conversion between client and server 342–344
    - conversion between client and terminal 350
    - conversion errors 347
    - conversion paths supported 342–348
    - Cyrillic-script 305
    - default 310
    - definition 303
    - definition files 337
    - Eastern European 305
    - encoding in different 341
    - European currency symbol and 306
    - for language groups 305
    - Greek 305
    - Hebrew 305
    - ID number 108
    - Japanese 305
    - Korean 305
    - multibyte 333
    - multibyte, changing to 334
    - reindexing after configuring 331–334
    - Russian 305
    - Simplified Chinese 305
    - Thai 305
    - Traditional Chinese 305
    - translation files, terminal-specific 337, 351
    - Turkish 305
    - Unicode 305
    - upgrading text values after changing 333
conflicting permissions 583
   See also permissions
connecting to Adaptive Server 16
connections
   directory services 17
   interfaces files 16
   maximum user number 207
consistency
   checking databases 43
context-sensitive protection 597
conventions
   See also syntax
   Transact-SQL syntax xxii
   used in the Reference Manual xxii
copying selected data
   See insert command; select command
cost of a cpu unit configuration parameter 101
cost of a logical io configuration parameter 100
cost of a physical io configuration parameter 101
CP 1252
   similarities to ISO 8859-1 305
CP 950
   similarities to Big 5 305
cp437 character set 108
cp850 character set 108
CPR files 380
cpu accounting flush interval configuration parameter 102, 477
cpu grace time configuration parameter 103
CPU usage
   per user 476
create database command
   default database size configuration parameter and 109
   model database and 27
   omitting database device and 289, 290
   permission to use 561
   system tables and 9
create index command 273, 279
create procedure command 14
create role command 414
create rule command, new functionality 604
create rule syntax 604
create rule, syntax 605
create table command 273
create trigger command 568

creating
   database objects 273
data bases 54, 561
groups 401–402
guest users 55, 403
master database 275
model database 275
segments 276
stored procedures 14
sybsecurity database 641
system procedures 14
system tables 9
tempdb database 275
triggers 568
user aliases 429
user-defined error messages 358
users 56
credential, security mechanism and 494
cross-platform dump and load, handling suspect partitions 335
\texttt{cs\_connection} command, number of user connections and 209
curly braces (\{\})
   converted to dollar sign in login names 506
curly braces (\{\}) in SQL statements xxii
current audit table configuration parameter 104, 645
current database 359
current usage statistics 476
current user
   set proxy and 590
cursors
   row count, setting 96
custom password checks 452
custom password complexity checks 447
cyrillic character set support 305

D
DAC. See discretionary access control (DAC)
data
   See also permissions
   integrity of 506
data caches
   configuring partitions 141, 142
database integrity errors and 363
Index

data dictionary. See system tables

database administration 3–7

database device
  space See segments; space allocation

database devices 281
  See also disk mirroring; dump devices; master device
  adding 282–288
  default 290–291
  dropping 290
  fragments 278
  information about 289
  initializing 281–288
  names of 276, 283
  number of server-usable 187
  placing objects on 275

database dumps
  password-protected 704

database object owners 6
  See also database owners
  permissions 7, 560, 587
  status not transferable 421
  tasks of 6

database objects
  See also individual object names
  access permissions for 7, 566
  assigning to devices 274
  controlling user creation of 26
  creating 26, 273, 563
  dependent 600
  dropping 563, 564
  dropping users who own 421
  errors affecting 363
  finding 359
  maximum number of open 200
  ownership 6, 421, 563
  permissions on 563
  triggers on 603

database options 295–297
  listing 296
  setting 296
  showing settings 296

database owners 6
  changing 561
  error responsibilities of 359, 361
  login name 4, 6
  name inside database 421, 430
  objects not transferred between 421
  password forgotten by 410
  permissions granted by 575
  permissions of 6, 560, 562
  See also database object owners 559
  setuser command and 586–587
  several users as same 429
  tasks of 6
  permissions
  database size configuration variable 55

databases
  See also database objects; user databases
  adding users 402–405
  auditing 641
  backing up 27, 42, 55
  creating 54
  creation permission 561
  default 26, 400, 426
  default storage for 24, 290
  dropping users from 420
  dumping 42
  errors affecting 363
  guest users 55
  integrity concerns 363
  loading after character set change 327
  loading after sort order change 327
  new 27
  number of open 196
  options 295–297
  ownership of 561
  size 27
  system 23
  database-specific dbcc, master and 579
dataserver command
  using to unlock logins and roles 442

date parts
  alternate language 335

dates
  adding date parts 335
  alternate language 335
  display formats 339
  format in error messages 357

days
  alternate language 335
dbcc and storage_admin_role command 579
Index

**dbcc** (database consistency checker) 43
database damage and 358, 363
database-specific commands 578, 579
defined 578
described 578
discretionary access control 578
grant dbcc and roles 579
grant dbcc and users in databases 579
grant dbcc checkstorage command and 579
server-wide commands 578, 579
tune command and 579
when to use 363

**DBISQL11**
enhanced features of 51
now separate product 51

**DB-Library programs**
number of user connections and 209
“dbo” user name 4, 6
dbprocess command, number of user connections and 209

**DCE** (Distributed Computing Environment) security mechanism 503
deactivating roles 419
deadlock checking period configuration parameter 105
deadlock pipe active configuration parameter 106
deadlock pipe max messages configuration parameter 106
deadlock retries configuration parameter 106
deadlocks 360
descending scans and 86
deckanji character set 108
default character set id configuration parameter 108
default database
changing user’s 426
default database devices
designating 290
default database size configuration parameter 109
default exp_row_size percent configuration parameter 109
default fill factor percent configuration parameter 110
default language id configuration parameter 111
default network packet size configuration parameter 111
default segment 276
default settings
changing character set 325–334
changing sort order 327–333
default sortorder id configuration parameter 113
default XML sortorder configuration parameter 113
defaulton | defaultoff option, sp_diskdefault 291
defaults
See also database objects
defncopy utility command
See also Utility Programs manual
character set conversion and 350
delete command 371
delete statistics syntax 571
deleting
files 290
users 56

deny access to a user 422, 423
descending scans
deadlocks and 86
detached transactions 116
development server 36
device fragments 278
device shrinkage, disk resize 293
devices 281
See also database devices; dump devices; master device
adding 282–288
audit system 641
dropping 290
information listings on 289
initializing 281–288
names for physical 283
number of user connections and 207, 209
using separate 274
digital signature
defined 685
nonrepudiation 685
public-key cryptography 685
tamper detection 685
direct updates
to system tables 89
directory drivers 499
character set ID number 108
configuration parameters 63
databases 26, 400
language 111
permissions 27
sort order 112, 113
system databases at installation 276
example of entry in libtcl.cfg file 501
directory entries, creating 693
directory services in libtcl.cfg file 17, 499
directory structure
  character sets 338
  internationalization files 338
  localization files 340
  *.loc files 340
dirty pages 229
disable character set conversions configuration parameter 114
disable disk mirroring configuration parameter 115
disabling auditing 639
disallowing simple passwords 446
discretionary access control (DAC) 559–603
  See also permissions
    granting and revoking permissions 565
    of dbcc commands 578
    overview 393
    stored procedures and 598
    system administrators and 560
    user alias and 586
    views for 596
disk controllers 288
disk devices
  See also database devices; dump devices; space allocation
disk I/O
  configuration parameters for 190
  database loads and 161, 187, 193
disk i/o structures configuration parameter 115
disk init command 272, 278, 282–288
disk mirror command 273
disk mirroring
  disabling 115
  enabling 115
  recovery and 275
  status in sysdevices table 290
disk reinit command
  See also disk init command
disk resize 273, 292
  device shrinkage 293
  insufficient disk space 293
  minimum size 292
  mirroring 292
  syntax 292
  using 292
disks See database devices; devices; dump devices
Distributed Transaction Management (DTM) 30
Distributed Transaction Processing (DTP) 30
DMA object pool size configuration parameter 116
drop logins option, sp_dropserver 485
drop role command 421
dropping
  database devices 290
dump devices 290
  groups 421
  guest users of master 403
  logins from servers 423
  master device from default space pool 291
  remote logins 485, 486
  servers 485
  user aliases 430, 431
  user from a database 420
  user-defined roles 421
  users from servers 423
  users who own database objects 421
dscp utility for specifying security mechanism 498
dsedit utility for security services 498
dsync option
disk init 290
dtm detach timeout period configuration parameter 116, 370
dtm lock timeout period configuration parameter 117
dump database command
  disk init and 282
  master database and 42
  model database and 27
dump database syntax 704
dump devices
  dropping 290
  information about 289
  sysdevices table and 277
dump on conditions configuration parameter 118
dump, database 42
dynamic allocation on demand configuration parameter 118
dynamic configuration parameters 64
Enabling auditing 639  
SSL 690  
Encoding characters 341  
Encryption  
key exchange 684  
public/private key 684  
public-key cryptography 684  
symmetric key 684  
Encryption, password 141  
Engine memory log size configuration parameter 136  
Engines  
identification numbers 357  
number of 167  
Environment variable $ISA 553  
Errors  
See also error logs; error messages  
character conversion 347  
fatal 362–364  
logging 356  
multiple 354  
reporting of 364  
server responses to 353–364  
state numbers 353  
types of information logged 15  
user 359, 359–362  
Errorlog pipe active configuration parameter 136  
Errorlog pipe max messages configuration parameter 137  
Errors  
See also error logs; error messages  
Character conversion 347  
Fatal 362–364  
Logging 356  
Multiple 354  
Reporting of 364  
Server responses to 353–364  
State numbers 353  
Types of information logged 15  
User 359, 359–362  
Esp execution priority configuration parameter 137  
Esp execution stacksize configuration parameter 137  
Esp unload dll configuration parameter 138
Index

eucjis character set 108
European currency symbol
  character sets 306
**event buffers per engine** configuration parameter 138
**event log computer name** configuration parameter 139
**event logging** configuration parameter 140
exclamation point (!)
  converted to dollar sign in login names 506
**executable code size + overhead** configuration parameter 140
execution
  ESPs and XP Server priority 137
**expand_down** parameter
  **sp_activeroles** 437
expiration interval for passwords 454
expiration of passwords 454
expired passwords 256
exporting set options 631
**extended cache size** configuration parameter 141
extended stored procedures
  configuration parameters 137–269
extended UNIX character set 108

F
failures, media 364
fatal errors
  backtrace from kernel 356, 362
  error messages for 362–364
  severity levels 19 and up 362–364
file descriptors 207
  maximum per-process configured for your operating system 210
files
  character set translation (.xlt) 337
Closed Problem Reports (CPRs) 380
deleting 290
error log 15, 356
interfaces 16
internationalization 337
libtcl.cfg file 17
localization 338–339
System Problem Reports (SPRs) 380

fillfactor
  **default fill factor percent** configuration parameter 110
filter parameter, in **sp_addserver** 704
finding
  database objects 359
  user IDs 434
  user names 434
  users in a database 434
**FIPS login password encryption** configuration parameter 141
**fix_text** option, dbcc 333–334
For load 55
formats
  date, time, and money 339
  locale, unsupported 335–337
formulas
  user requirements and 208
forwarded rows
  reducing with **default exp_row_size** configuration parameter 109
fragments, device space 278
french
  character set support 305
functions
  security 517

G
garbage collection
  aggressive test 371
  lazy test 371
garbage collector
  configuring aggressive 372
  housekeeper utility 371
German
  character set support 305
**get_appcontext** 616, 617
**global async prefetch limit** configuration parameter 141
**global cache partition number** configuration parameter 142
global login triggers 633
**grant** command 560, 565–583
  all keyword 575

System Administration Guide: Volume 1 717
Index

public group and 567
roles and 585
grant dbcc
roles and 579
users in databases and 579
grant option
sp_helprotect 593
grant option for option, revoke 568
granting
access permissions 6
create trigger permission 568
object creation permissions 6
proxy authorization permission 577
roles to roles 416
roles with grant role 584
granting and revoking permissions for users and roles 571
granting default permissions on system tables 579–581
Greek
character set support 305
groups
See also public group
changing 427
conflicting permissions and 583
creating 401–402
dropping 421
grant and 570
language 305
naming 401
public 56
revoke and 571
Guest users
creating 55
guest users 565
adding 403
creating 403
databases 55
permissions 404
sample databases and 31, 404
guidelines, security 388

hash
defined 685
message digest 685
hash buckets (lock) 155
heap memory per user configuration parameter 143
Hebrew
character set support 305
hierarchy
permissions. See permissions
roles. See role hierarchies
high availability
installhasvss script 122
insthavss script 122
setting enable HA 122
high availability and passwords 472
histogram tuning factor configuration parameter 143
housekeeper chores 370
configuration parameter license information 371
housekeeper free write percent configuration parameter 143, 370
housekeeper garbage collector 371
housekeeper task
configuring 145
license use monitoring 474
space reclamation and 123
statistics flushing 145
housekeeper utility
functionality 370
housekeeper wash, housekeeper garbage collection,
housekeeper chores 370
three tasks 370
wash 370
wash task 145

I
I/O
usage statistics 476
i/o accounting flush interval configuration parameter 146, 477
i/o batch size configuration parameter 147
i/o polling process count configuration parameter 148
IBM character set 108
Icons 50

H
handling suspect partitions 334
hardware
errors 364
identification and authentication
See also logins
controls 391
identities
alternate 429
proxies and 587
session authorizations and 587
**identity burning set factor** configuration parameter 149
**identity grab size** configuration parameter 150
identity of user. See aliases; logins; users
**identity reservation size** configuration parameter 150
**idle migration timeout** configuration parameter 151
IDs, user 409, 434
system procedures and 14
impersonating a user. See **setuser** command
index descriptors
maximum number open 198
indexes
character set changes 333
character-based 331
default fill factor percent percentage for 110
object allocation maps of 195
rebuilding 332
sort order changes 332
suspect 332, 363
individual accountability 389
information (server)
changing user 423–427
configuration parameters 67
database devices 289
database options 296
devices 289
dump devices 289
error messages 355–364
locked logins 422
logins 434
permissions 591–595
problems 356
remote server logins 491
remote servers 485
user aliases 431
users, database 431–477
information messages (server). See error messages;
severity levels
initializing
database devices 281–288
installation, server
audit system 641
establishing security after 388–390
interfaces file 17
status after 275
**installhasvss** script 122
installing
sample databases 31
**insthasv** script 122
insufficient disk space
disk resize 293
insufficient permission 360
insufficient resource errors (Level 17) 361
interfaces file 16, 498
internal error, nonfatal 361–362
international language support. See character sets;
languages
internationalization
a sample system 301
advantages 300
definition 299
directory structure for character sets 338
files 337
**is_sec_service_on** security function 518
ISO 8859-1
similarities to CP 1252 305
iso_1 character set 108
**isql** utility command
character set conversion and 350
**number of user connections** and 208
passwords and 490
security services and 514
status and informational messages 359
system administration and 7

J
Japanese character sets 108
sjis (Shift-JIS) 108
support 305
See also languages, alternate
Java configuration parameters 242
**job scheduler interval** configuration parameter 151
Index

job scheduler tasks configuration parameter 152
joins
views and 597

K
-k option 525
kadmin 520
kanji. See Japanese character sets
Kerberos 518
compatibility 519
configuring 520
CyberSafe Kerberos libraries 518
keytab file 520
licenses 519
MIT Kerberos libraries 518
Native libraries 518
Kerberos authentication 524
concurrent 530
verifying 527
kernel
error messages 356, 362
key exchange
encryption 684
public/private key 684
symmetric key 684
key pairs, generating assymetric 457
keys, table
on system tables 11
keytab file
specifying for utility programs 514
kill command 366–369
kill command, changes 369
kill statusonly parameter 369
known problems 380
Korean
character set support 305

L
LAN Manager security mechanism 503
@@langid global variable 340
language defaults 111
changing user’s 331

us_english 111
@@language global variable 340
language groups 304, 305
languages
on server 304
supported by a character set 304
languages, alternate 337
See also character sets; charset.loc file; Japanese character sets
date formats in unsupported 335
localization files 321–340
supported languages 300
Latin alphabet 305
lazy garbage collection 371
LDAP
access restrictions 18
defined 18
enhancements 548
multiple directory services 19
setting failback time interval 549
state transitions 540
support 538
syntax 549
versus the interfaces file 19
LDAP user authentication 542
password changes 536
tighter controls on login mapping 543
troubleshooting 546
tuning 542
levels, severity.
See severity levels, error
libtcl.cfg file 17
example of 501
preparing for network-based security 499
tools for editing 500
license information configuration parameter 152, 474
license information, configuration parameter 371
License Security and Directory Services required 141
license use
error log messages 475
monitoring 473
linkage, page
See also pages, data
linking users. See alias, user
list_appcontext 616, 618
listing
load database syntax
load, database

number of large I/O buffers configuration parameter 115, 161, 187, 193
local and remote servers. See remote servers
local option, sp_addserver 482
local servers 482
locales directory 322
locales.dat file 339
localization 300
See also languages, alternate
files for 338–339
lock address spinlock ratio configuration parameter 153
lock hash buckets 155
lock hash table
configuring size of 153
lock hashtable size configuration parameter 153
lock promotion thresholds
setting with sp_configure 215–235
lock scheme
default 154
lock scheme configuration parameter 154
lock shared memory configuration parameter 154
lock spinlock ratio configuration parameter 155
lock table spinlock ratio configuration parameter 156
lock timeouts
configuring server-wide 157
lock wait period configuration parameter 156
locking 56
by dbcc commands 334
logins 422, 439
locking logins 56
locking scheme
server-wide default 154
locks
quantity of 193
log audit logon failure configuration parameter 157
log audit logon success configuration parameter 157
log file. See error logs
log on option
create database 278
logging

login failures 157
login mapping 550
successful logins 158
Windows NT event log in 139, 140
logical
page sizes 35
login IDs, number of 405
login mapping
tighter controls 543
login names. See logins
login password encryption 141
login process
authentication 494
login triggers
and set options 631
configuring 623
disabling execute privilege 631
displaying 625
dropping and changing 624
executing 625
issues 630
issues and information 630
output 625
restrictions 630
restrictions on 630
syntax for configuring 624
syntax for creating 623
understanding output 625
using 623
using for other applications 625
logins
See also remote logins; users
adding to servers 399–400
alias 430, 431
assigning names for 389
database object owner 6
“dbo” user name 4, 6
displaying password information 443
dropping 423
finding 434
identification and authentication 391
information on 434
invalid names 505
locking 56, 422, 439, 442
maximum attempts, changing 440
maximum attempts, setting 439
Index

“sa” 388
unlocking 422, 442
logsegment log storage 276
lookup server
  secondary 538

M
Macintosh character set 108, 348
mail session, starting 250
management, space. See space allocation; storage
management
managing users. See users
mapping
  device name to physical name 282
  remote users 486–490
mapping, login 550
master database 9, 25–26, 42
  See also disk mirroring:system tables
backing up 42, 55
changing option settings 295
creating 275
dropping guest users of 403
granting default permissions on system tables 581
guest user in 403
keys for system tables in 11
ownership of 562
revoking default permissions on system tables 581
sysdevices table 289
master device 24, 283, 289
  See also database devices
removing from default space pool 290, 291
sp_diskdefault and 291
max async i/os per engine configuration parameter 158
max async i/os per server configuration parameter 159
max cis remote connections configuration parameter 160
max concurrently recovered db configuration parameter 161, 187
max memory configuration parameter 161
max native threads for LDAP user authentication 542
max native threads per engine configuration parameter 162
max nesting level configuration parameter 162
max network packet size configuration parameter 163
max number network listeners configuration parameter 166
max online engines configuration parameter 166
max online Q engines 167
max parallel degree configuration parameter 168
max pci slots configuration parameter 168
max repartition degree configuration parameter 170
max resource granularity configuration parameter 170
max roles enabled per user configuration parameter 181, 413
max scan parallel degree configuration parameter 170
max SQL text monitored configuration parameter 172
max transfer history. configuration parameter 172
@@max_connections global variable 207
@@maxcharlen global variable 338
maximum buffers per lava operator configuration parameter 173
maximum dump conditions configuration parameter 173
mci memory size configuration parameter 219
membership keyword, alter role 415
memory
  See also space allocation
  audit records 91, 649
  freeing from XP Server 138
  network-based security and 507
  number of open databases and 197
memory alignment boundary configuration parameter 175
memory per worker process configuration parameter 176
message digest
defined 685
hash 685
messages
  confidentiality 495, 506
  error 15, 355–364
  fatal error 15
  integrity 495, 506
  language setting for 300
  origin checks 495
  protection services for 494
Index

start-up 15
system 355–364
user-defined 358
messaging memory configuration parameter 177
metadata caches configuration parameters 74–213
metrics elap max configuration parameter 177
metrics exec max configuration parameter 177
metrics lio max configuration parameter 178
metrics pio max configuration parameter 178
Microsoft character set 108
min pages for parallel scan 178
minimum
alphabetic characters in password 447
digits in password 447
number of uppercase letters in password 448
size. disk resize 292
minimum pages for a parallel scan configuration parameter 178
minimum password length configuration parameter 179
minus sign (-)
converted to pound sign in login names 506
miscellaneous user error 360
mistakes, user. See errors; severity levels, error
mnc_full_index_filter configuration parameter 180
model database 55
model database 27
creating 275
keys for system tables in 11
size 109, 284
modifying
server logins 426
money
local formats 339
monitoring
spt_monitor table 13
SQL text 172
Windows NT Performance Monitor 244
monitoring tables
configuration options 74
month values
alternate language 335
MSDTC 120
msg confidentiality reqd configuration parameter 181
msg integrity reqd configuration parameter 181
multibyte character sets 333
changing to 334
default character set id configuration parameter 108
incompatible 348
multilingual character set 108
multiple directory services
LDAP 19
mut_excl_roles system function 437
mutual exclusivity of roles 394, 437

N
name of device 282
sysdevices listing 278
names
See also information (server); logins
alias 430, 431, 586
column, in commands 361
finding user 434
for logins 389
group 568
mapping remote user 487
original identity 587
remote server 481
remote user 487
server 482
system extended stored procedures 14
system procedures 12
user 402, 434, 564, 568
naming
groups 401
servers 482
user-defined roles 413
Navigating
to objects 50
@@ncharsize global variable 338
nested trigger configuration parameter (now called allow nested triggers) 86
net password encryption option 484
net password encryption reqd configuration parameter 181
network drivers 499
example of entry in libtcl.cfg file 501
syntax for in libtcl.cfg file 499
Index

network-based security 493–518
  adding logins for unified login 507
  configuring server for 503
  connecting to server 514
  getting information about 514, 517
  identifying users and servers 502
  memory requirements 507
  process for administering 496
  remote procedure calls 508
  security mechanism 502
  setting up configuration files 497
  using 514
networks
  connections 16
  directory services 17
  interfaces files 16
  software 38
nonrepudiation, digital signature 685
nonstop recovery 275
NT LAN Manager security mechanism 503
null keyword
  in sp_addlogin 400
null passwords 425
number (quantity of)
  database devices 187
  engines 166
  locks 193
  open databases on Server 196
  open objects 200
  seconds for acquiring locks 157
  user connections (@@max_connections) 207
number of alarms configuration parameter 182
number of aux scan descriptors configuration parameter 183
number of backup connections configuration parameter 186
number of ccbs configuration parameter 186
number of devices configuration parameter 187
number of dtx participants configuration parameter 188
number of histogram steps configuration parameter 191
number of index trips configuration parameter 191
number of large i/o buffers configuration parameter 193
number of locks configuration parameter 193
  number of login IDs 405
number of mailboxes configuration parameter 194
number of messages configuration parameter 195
number of oam trips configuration parameter 195
number of open databases configuration parameter 196
number of open indexes configuration parameter 198
number of open objects configuration parameter 200
number of pre-allocated extents configuration parameter 203
number of Q engines at startup 204
number of remote connections configuration parameter 204
number of remote logins configuration parameter 189, 205
number of remote sites configuration parameter 205
number of sort buffers configuration parameter 206
number of threads for memory dumps, determining 189
number of user connections configuration parameter 78, 207–209
number of users 405
number of worker processes configuration parameter 210
numbers
  engine 357
  error message 355
  sort order 112, 113
  status bit (sysdevices) 289
O
0/s file descriptors configuration parameter 210
object access permissions See permissions
object lockwait timing configuration parameter 211
object owners. See database object owners
object permissions
  grant all 567, 575
objectid.dat file 502
  location of 693
objects
  icons 50
  navigating to 50
  See database objects
old and new password complexity checks 449
on keyword
  grant 567
  revoke 567
open index hash spinlock ratio configuration parameter 211
open index spinlock ratio configuration parameter 212
open object spinlock ratio configuration parameter 212, 213
operating system commands executing 14
operator role 5 permissions 410
optimization goals and configuration parameters 214
optimization timeout limit configuration parameter 214
options database 295–297 remote logins 490 remote servers 483 server 483
order of commands grant and revoke statements 565–586
out-of-sequence checks 495
overflow errors server stack 248
overflow stack (stack guard size configuration parameter) 247
overriding user permissions 56
owners. See database object owners 575
ownership chains 599

P
packets, network size, configuring 164–165
page lock promotion HWM configuration parameter 215
page lock promotion LWM configuration parameter 215, 234
page lock promotion PCT configuration parameter 216
pages, data dirty 229
parameters, procedure 400
parentheses () converted to dollar sign in login names 506

Index

open index hash spinlock ratio configuration in SQL statements xxii
partition groups configuration parameter 218
partition spinlock ratio configuration parameter 218
partitions disk 283
partitions, suspect, fixing tables 335
partitions, suspect, handling 334
password expiration warnings 448
password changes for LDAP user authentication 536
password complexity cross-checks 449
custom password checks 452
old and new 449
password complexity checks 446
custom password complexity checks 447
Disallowing simple passwords 446
password expiration warnings 448
specifying a minimum number of alphabetic characters 447
specifying a minimum number of digits 447
specifying a minimum number of uppercase characters in password 448
password security 438–473
generating an assymetric key pair 457
generating key pairs using sp_passwordpolicy 458
securing login passwords on a network 457
password-protected database dumps 704
passwords backward compatibility 459
changing 424
checking for at least one character 444
choosing 398
choosing secure 398
date of last change 433
displaying information 443
downgrading 460
cryption over network 484
expiration interval 454
expiration of 454
for roles 454
forgotten 410
high availability and 472
minimum length 444
null 425
protecting 398
protection against guessing 439
remote users 484, 490
roles and 419
rules for 398
sp_password 424
per object statistics active configuration parameter 220
per object statistics active configuration parameter 219
percent sign (%)
error message placeholder 355
translated to underscore in login names 505
performance
audit queue size 91
default fill factor percent effect on 110
disk mirroring and 274
ESPs and XP Server priority 137
space allocation and 275
speed and 275
performance monitoring option configuration parameter 221
period (.)
converted to dollar sign in login names 506
permission cache entries configuration parameter 222
permissions
See also discretionary access control (DAC)
acquiring other users’ 586
aliases and 429
ansi_permissions option and 569
assigned by database owners 575
assigning 575
concrete identification 569
create database 561
database object owners 7
database owners 6, 560, 562
default 27
denyning 360
disk init 288
for creating triggers 568
granting 565–583
group versus user 56
groups and 401
guest users 403, 404
hierarchy of user 585
information on 591–595
insufficient (Level 14) 360
master database 26
model database 27
object 7, 563
object access 565, 565–571
object creation 575
operator 410
overriding 56
ownership chains and 599
proxy authorization 577
public group 564, 567, 583
remote users 490
revoking 565–583
selective assignment of 582
stored procedures 490, 563, 567
summary of 559
system administrator 560–561
system procedures 564
system tables 579
tables 563, 567
tables compared to views 596
tempdb database 29
transfers and 562
triggers and 603
using setuser 586
views 596–598
on views instead of columns 597
physical resources, managing.
See storage management
pinyin
gbpinyin, gbpinyinocs sort orders 317
size of unilib cache configuration parameter 317
size of unilib cache configuration parameter 317
transliterates Mandarin pronunciation 317
use of accents 317
placeholders
error message percent sign (%) 355
plan text pipe active configuration parameter 222
plan text pipe max messages configuration parameter 223
Pluggable Authentication Module (PAM) 551
$ISA 553
32- and 64-bit servers on the same machine 553
configuring Adaptive Server for PAM 553
determining which module to use 552
enable pam user auth 553
password management 554
RFC 86.0 552

726

Adaptive Server Enterprise
unified logins 552
plus (+)
converted to pound sign in login names 506
preferences, user name 402
preventing garbage collection
accumulating empty pages 371
principal name
for Adaptive Server 524
using sybmapname 526
with SYBASE_PRINCIPAL 524
with the -k option 525
print deadlock information configuration parameter 223
print recovery information configuration parameter 224
priority
XP Server 137
proc_role system function
stored procedures and 438, 598
procedure cache 225, 363
procedure calls.
See remote procedure calls
procedures. See stored procedures; system procedures
process ID, status of 369
process wait events configuration parameter 226
processes (server tasks) 366, 369
See also servers
administering Adaptive Server 387
current on server 432
information on 432
killing 366–369
prod-consumer overlap factor 226
production server 36
protection mechanisms. See security functions; stored
procedures; views
protection system
context-sensitive 597
hierarchy (ownership chains) 599
reports 591–595
summary 559
proxy authorization 586–595
executing 589
granting 577
granting permission for 577
how applications use it 591
how users use it 589
overview 587
using 587, 589
public group 401
See also groups
grant and 567, 576
guest user permissions and 404
permissions 564, 583
revoke and 567
sp_adduser and 402
sp_changegroup and 427
public keyword
grant 576
public membership 56
public/private key encryption 684
public-key cryptography
certificates 684
defined 684
digital signature 684
encryption 684
pubs2 database
administering 31
image information in 32
pubs3 database
administering 31
Q
queries
conversion errors, preventing 348
question marks (??)
for suspect characters 348
quorum heartbeat interval configuration parameter 226
quorum heartbeat retries configuration parameter 227
quotation marks (" ")
converted to pound sign in login names 506
R
read committed with lock configuration parameter 227
read only database option 331
reads
Index

physical 275
rebooting the server
  See restarts, server
record keeping 45–47
  configuration 46
  contacts 46
  maintenance 46
  system 47
records, audit 639
recovery
  configuration parameters for 228–230
  loading databases 327
  master database 42, 282
  nonstop 275
  planning backups for 27
  after reconfiguration 327
  sort order changes and 327
  space allocation and 274
recovery interval in minutes configuration parameter 228–230
  long-running transactions and 228
  reestablishing original identity 587
remote logins
  adding 486–488
  configuration parameters for 87, 491
  dropping 485, 486
  options for 490
  timing out 483
  trusted or untrusted mode 488
remote procedure calls 479–492
  configuration parameters for 491
  example of setting security 512
  network-based security 508
  overall process for security model B 510
  security models for 510
  unified login and 509
remote server pre-read packets configuration parameter 231
remote server users. See remote logins
remote servers 480–485
  adding 480–485
  dropping 485
  information on 485
  names of 481
  options for 483
remote users. See remote logins
reorg command
  running manually 373
reorg reclaim_space command 371
replay detection 495
reporting
  errors 359, 361, 364
  usage statistics 476
reports
  See also information (server)
  server usage 476
reset configuration.
  See configuration parameters; reconfigure command
resource limits
  configuring 88
response time 259
restarts, server
  after reconfiguration 331
  reindexing after 331
  from same directory 356
  system tables and 331
  temporary tables and 29
restricted decrypt permission configuration parameter 231
relaindays option
  dump database 257
  dump transaction 257
return status
  system procedures 13
revoke command 560, 565–583
  public group and 567
  revoking
    create trigger permission 568
    default permissions from system tables 581
    roles with revoke role 586
  revoking default permissions on master database system tables 581
RFC 86.0 552
rm_appcontext 616, 619
role hierarchies 394
  creating 585
  displaying 437
  displaying with role_contain 437
  displaying with sp_displayroles 437
role_contain system function 437
roles
  activating 419
configured for sa login 388
deactivating 419
in grant and revoke statements 568, 576
locking 439, 442
maximum login attempts, changing 441
maximum login attempts, setting 440
passwords for 454
permissions and 585
stored procedure permissions and 438
stored procedures and 585, 598
unlocking 442
roles, system
operator 5
system administrator 4
system security officer 5
roles, user-defined
planning 413
rolling back processes
recovery interval and 228
server stack capacity and 249
roman8 character set 108
row lock promotion HWM configuration parameter 233
row lock promotion LWM configuration parameter 234
row lock promotion PCT configuration parameter 235
row lock promotion thresholds
setting with sp_configure 233, 235
row level access control 603
rows, table
sysindexes 279
RPCs. See remote procedure calls
rtm thread idle wait period configuration parameter 235
rules
See also database objects
protection hierarchy 602
runnable process search count configuration parameter 236
running out of space. See space
running reorg command manually 373
russian
character set support 305
S
“sa” login 388
changing password for 389
configured with system administrator and system
security officer roles 388
security recommendations for using 388
savepoints
error (Level 13) 360
scan descriptors 183–185
scripts 304
secmech specification 502
secondary
lookup server support 538
lookup servers, using sp_ldapadmin 539
secure default login 504
secure default login configuration parameter 238
securing login passwords on a network 457
security
auditing 394
discretionary access control 393
establishing after installation 388–390
identification and authentication controls 391
Kerberos 518
login features 438
roles 393
security administration
example of 389
getting started 387–390
guidelines 388
Security and Directory Services, requirement of 141
security drivers
example of entry in libtcl.cfg file 501
syntax for entries in libtcl.cfg file 499
security functions 517
security mechanisms 516
security models 509
example of model B 512
for RPCs 510
model B 510
setting up model B for RPCs 510
security services
example 494–495
supported by Adaptive Server 495
segmap column, sysusages table
procedures that change 278
segments 279

System Administration Guide: Volume 1 729
Index

See also database devices; space allocation creating 276
default 276
logsegment 276
syssegments table 279
system segment 276
select * command error message 597
select into/bulkcopy/pllsort database option model database and 27
select on syscomments.text column configuration parameter 239
send doneinproc tokens 239
sensitive information, views of 596
separation of roles 393
sequence checks 495
server aliases 482
server authentication server certificates 688
server certificates 685
location of 688
server authentication 688
server information options. See information (server) server user name and ID 434
server.loc file 339
server_name.cfg, default name of configuration file 64
servers See also processes (server tasks): remote servers adding new logins to 399–400
adding users to 399–400
connecting 16
dropping logins from 423
error message severity levels 358–364
error messages 356
fatal errors and 362–364
installing 37, 275
interfaces files 16
local 482
monitoring performance 77
names of 482
nonfatal internal errors 361–362
passwords on 484, 490
remote 481–487
scheduler 259
shutting down 378
single-user mode 90
sort order consistency among 327
stopping 378
syntax errors 360
unlocking logins or roles at startup 442
user connections to 209
user information 431–477
values for configuration parameters 63
server-wide dbcc, master and 579
session authorization option, set 589
session migration timeout configuration parameter 239
set command roles and 419
set options exportable 631
set_appcontext 616
setting timeout for LDAP user authentication 542
setuser command show_role and 436
setuser, using 586
7-bit ASCII character data, character set conversion for 343
severity levels, error 353, 358
Backup Server 365
levels 10-18 (user errors) 359
levels 19-24 (fatal) 362
shared memory starting address configuration parameter 240
show_role system function 436
show_sec_services security function 517
shutdown command 378–380
shutting down servers 378
simplified Chinese character set support 305
single-user mode 90, 331
size See also space
dbcc fix_text transaction 333
error log 15
model database 109, 284
new database 27
tempdb database 28
size of auto identity column configuration parameter 241
size of global fixed heap configuration parameter 241
size of process object fixed heap configuration parameter 242
size of shared class heap configuration parameter 242
size of unilib cache configuration parameter 243
sjis (Shift-JIS) character set. See Japanese character sets slash (/) converted to pound sign in login names 506
sort order changing 327–331
consistency among servers 327
default sortorder id 112, 113
default XML sortorder 113
definition files 337
installing new 337
numbers 112
rebuilding indexes after changing 332
sp_activeroles system procedure 437
sp_addalias system procedure 429
sp_addauditrecord system procedure 665
sp_addgroup system procedure 401
sp_addlanguage system procedure 335
sp_addlogin system procedure 399–400, 454, 456
sp_addremotelogin system procedure 486–488
sp_addsegment system procedure
sysusages and 278
sp_addserver
sp_adddevice system procedure 429
sp_addgroup system procedure 401
sp_addlanguage system procedure 335
sp_addlogin system procedure 399–400, 454, 456
sp_addremotelogin system procedure 486–488
sp_addsegment system procedure
sysusages and 278
sp_addserver
sp_addserver includes filter parameter 704
sp_addserver system procedure 481–483
sp_adduser system procedure 27, 402–404
sp_audit system procedure
setting options with 657
sp_changedbowner system procedure 561
sp_changeindex system procedure 401, 427
sp_column_privileges catalog stored procedure 595
sp_configure system procedure 67
See also individual configuration parameter names configuring server for security services 503
remote logins and 491
sp_countmetadata system procedure 197, 198, 200, 201
sp_dboption system procedure 295–297
sp_deviceattr system procedure 272, 286
sp_diskdefault system procedure 272, 290–291
sp_displaylogin system procedure 433
sp_displayroles system procedure 437
sp_dropalias system procedure 430, 431
sp_dropdevice system procedure 290
sp_dropgroup system procedure 421
sp_droplogin system procedure 423
sp_dropremotelogin system procedure 486
sp_dropsegment system procedure
sysusages and 278
sp_dropserver system procedure 485
sp_dropuser system procedure 420
sp_extendsegment system procedure
sysusages and 278
sp_helpconfig system procedure 196, 198, 200
sp_helpdb system procedure 13
database option information 296
sp_helpdevice system procedure 13, 288
sp_helpindex system procedure 13
sp_helpjoins system procedure 11
sp_helpkey system procedure 11
sp_helpremotelogin system procedure 491
sp_helpextend system procedure 593–594
sp_helpremotelogin system procedure 491
sp_helpserver system procedure 485
sp_helpsyntax system procedure 13
sp_helpuser system procedure 431
sp_incuspect system procedure 332
sp_lidadmin 539
sp_listener, specifying a common name 703
sp_locklogin system procedure 422
sp_logintrigger 633
sp_maplogin 543
sp_modiflogin system procedure 331, 426, 454, 457
sp_monitorconfig system procedure
configuring number of open databases and 197
configuring number of open indexes and 199
configuring number of open objects and 200,
202
sp_password system procedure 424
sp_passwordpolicy syntax 458
sp_remoteoption system procedure 490–491
sp_reportstats system procedure 476
sp_serveroption net password encryption description 458
sp_serveroption system procedure 483
sp_showplan system procedure 376
sp_showpsexe system command, housekeeper output 370
sp_table_privileges catalog stored procedure 594
Index

sp_who system procedure 432, 592
sp_who, housekeeper output 370
space
  See also size; space allocation
running out of 361
space allocation
  See also database devices; segments; storage
  management
  commands summary 272
recovery/performance and 274
  sysusages table 278
space reclamation
  enable housekeeper GC configuration parameter 123
Spanish
  character set support 305
#spdevtab temporary table 13
speed (server)
  system performance and 275
#spindtab temporary table 13
spinlocks
  lock hash table 155
splitting
  tables across two disks 275
SPR files 380
sproc optimize timeout limit configuration parameter 243
spt_committab table 13
spt_monitor table 13
spt_values table 13
SQL batch capture configuration parameter 243, 244
sql server clock tick length configuration parameter 245
sql text pipe active configuration parameter 245, 246
sql text pipe max messages configuration parameter 246
square brackets [][]
  converted to pound sign in login names xxii
  in SQL statements
.srt files 337
srvname column, sysservers table 483
srvnetname column, sysservers table 483
SSL
  common name, to specify 703
  defined 686
  enabling SSL 690
  filter, defined 687
  handshake 686
SSL connections
  for companion servers 689
  for RPCs 689
  Open Client 689
stack guard size configuration parameter 247
stack size configuration parameter 249
standalone utilities and character sets 350
start mail session configuration parameter 250
start xp server during reboot configuration parameter 250
startup delay configuration parameter 251
state transitions
  LDAP server 540
statement pipe active configuration parameter 252
statement pipe max messages configuration parameter 252
statement statistic active configuration parameter 253
statement statistics active configuration parameter 253
static configuration parameters 64
statistics
  flushing with housekeeper task 145
  housekeeper flushing and 145
  I/O usage 476
status
  information messages (Level 10) 359
  status bits in sysevents 289
stem 578
steps
  administering security 387
  stopping
    Backup Server 379
    Servers 378
space allocation
  storage management 271
  commands summary 272
  database device initialization 281–289
default database devices 290–291
defaults at installation 275
issues 39–41, 274
See also space 271
  system tables and 276–279
stored procedure
  triggers. See triggers
stored procedures
  See also database objects; system procedures
Index

checking for roles in 438
creating 14
granting execution permission to roles 438
ownership chains 599
permissions granted 567
permissions on 490, 563, 567
procedure cache and 225
remote user access to 490
roles and 598
as security mechanisms 598
system tables changes and 14
strict dtm enforcement configuration parameter 253
structure
  internationalization files directory 338
  localization files directory 339
suffix names, temporary table 29
suid (server user ID) 400
sun character set 108
suser_id system function 434–435
suser_name system function 434–435
suspect partitions, in cross-platform dump and load 335
suspend audit when device full configuration parameter 254, 650
syb__map_name 526
syb_sendmsg port number configuration parameter 254, 255
Sybase Central, using for system administration tasks 8
SYBASE_PRINCIPAL 524
sybllicenseslog table 475
sybmapname 526
sybsecurity database 30, 636
sybsystemdb database 30
sybsystemprocs database 12, 14, 28
  See also databases
  permissions and 565
symbols
  in SQL statements xxii
symmetric key encryption 684
syntax
  disk resize 292
dump database 704
errors in 360
load database 704
syntax conventions, Transact-SQL xxii

sys_session application context table 620, 621
sysalternates table 430
  See also sysusers table
sysconfigures table 80–81
syscurconfigs table 80–81
sysdevices table 277, 288
disk init and 278
sp_dropdevice and 290
sp_helpdevice and 288
status bits 289
sysindexes table 279, 331
syslogins table
  sp_addlogin effect on 400
syslogs table
  modification of 11
syslogs transaction log for sybsecurity 650
sysmessages table 354, 355
sysobjects table 331
sysremotelogins table 488
syssegments table 279
sys.servers table 479, 480, 481, 485
  sp_helpserver and 485, 514
  srvname column 483
  srvnetname column 483
system administration tasks
  accomplishing with Sybase Central 8
System Administrator
  error responsibilities of 358, 361–364
  resolving system problems 358, 361
  tasks for beginners 35–47
system administrator 3–7
  permissions 560–561
system audit tables 667
system catalogs. See system tables
system databases 23–30
system extended stored procedures 14
system messages. See error messages 353
system problems
  See also errors
  Server responses to 353–364
  severity levels 10 to 18 359–362
  severity levels 19 to 24 362–364
  System Problem Reports (SPRs) 380
system procedure
tables 13
system procedures 12–14
Index

See also information (server); stored procedures; individual procedure names
for adding users 397
for changing user information 423–427
creating 14
for dropping aliases 431
for managing remote servers 480–485
permissions 564
on temporary tables 29
using 12
system roles
activating 419
deactivating 419
granting with grant role 584
max_roles_enabled configuration parameter and 413
show_role and 436
system security officer 5
system segment 276
system tables 9–11
See also individual table names
changes allowed to 580
changes dangerous to 14
corruption 364
create database and 9, 278
creation of 9
dbcc reindex and 333
keys for 11
permissions on 579
querying 10, 14
reindexing and 333
server restarts and 331
storage management relationships 276–279
stored procedures and 10, 14
updating 11, 14
for user databases 27
systemwide password expiration configuration parameter 256
sysusages table 278
corruption 364
sysusers table
permissions and 565
sysalternates table and 430

T
Table editor 57
table owners. See database object owners
tables
See also database objects; system tables
context-sensitive protection of 597
dbcc checktable and 332
integrity damage to 363
object allocation maps of 195
ownership chains for 599
permissions information on 594
permissions on 563, 567
permissions on, compared to views 596
read-only 331
splitting across two disks 275
suspect, fixing 335
system procedure 13
temporary 28
underlying 596
with suspect partitions, fixing 335
without indexes 333
tamper detection, digital signature 685
tape retention in days configuration parameter 257
tcp no delay configuration parameter 257
tempdb database 28–29
See also databases
creating 275
size of 28
temporary tables 28
terminals
character set conversion for 350
installing new definitions 337
test servers 36–37
text datatype
changing character sets and 333
multibyte character sets and 333
text prefetch size configuration parameter 258
text values, dbcc fix_text upgrade of 333
Thai
calendar set support 305
threshold procedures
audit trail 644
time
for acquiring locks 157
time slice configuration parameter 259
time values
Index

Permissions and 603

untrusted mode, remote logins and 490

unified login required 263

univarchar datatype 306

UNIX platforms, raw disk partition 283

unlocking

login accounts 422, 442
roles 442

untrusted mode, remote logins and 490

update statistics syntax 571

updating

See also changing

allow updates to system tables configuration parameter and 14

system procedures and 598
text after character set change 333

upgrade version configuration parameter 264

us_english language 111

usage

disk resize 292

statistics 476

use security services configuration parameter 264, 503

user authentication enhancements 548

user connections

memory allocated per 207–209

user databases

See also databases; permissions

master database control of 25

system tables for 27

user-defined messages 358

user errors 359, 359–362

user groups. See groups; public group

user IDs 409
displaying 433

underlying tables of views (base tables) 596

unichar datatype 306

Unicode 304, 306–310

character sets 305

unichar datatype 306

univarchar datatype 306

UTF-16 306

unified login 495

mapping login names 505

remote procedure security models 509

requiring 504

secure default login 504

unified login required 263

univarchar datatype 306

UNIX platforms, raw disk partition 283

unlocking

login accounts 422, 442
roles 442

untrusted mode, remote logins and 490

update statistics syntax 571

updating

See also changing

allow updates to system tables configuration parameter and 14

system procedures and 598
text after character set change 333

upgrade version configuration parameter 264

us_english language 111

usage

disk resize 292

statistics 476

use security services configuration parameter 264, 503

user authentication enhancements 548

user connections

memory allocated per 207–209

user databases

See also databases; permissions

master database control of 25

system tables for 27

user-defined messages 358

user errors 359, 359–362

user groups. See groups; public group

user IDs 409
displaying 433

underlying tables of views (base tables) 596

unichar datatype 306

Unicode 304, 306–310

character sets 305

unichar datatype 306

univarchar datatype 306

UTF-16 306

unified login 495

mapping login names 505

remote procedure security models 509

requiring 504

secure default login 504

unified login required 263

univarchar datatype 306

UNIX platforms, raw disk partition 283

unlocking

login accounts 422, 442
roles 442

untrusted mode, remote logins and 490

update statistics syntax 571

updating

See also changing

allow updates to system tables configuration parameter and 14

system procedures and 598
text after character set change 333

upgrade version configuration parameter 264

us_english language 111

usage

disk resize 292

statistics 476

use security services configuration parameter 264, 503

user authentication enhancements 548

user connections

memory allocated per 207–209

user databases

See also databases; permissions

master database control of 25

system tables for 27

user-defined messages 358

user errors 359, 359–362

user groups. See groups; public group

user IDs 409
displaying 433

underlying tables of views (base tables) 596

unichar datatype 306

Unicode 304, 306–310

character sets 305

unichar datatype 306

univarchar datatype 306

UTF-16 306

unified login 495

mapping login names 505

remote procedure security models 509

requiring 504

secure default login 504

unified login required 263

univarchar datatype 306

UNIX platforms, raw disk partition 283

unlocking

login accounts 422, 442
roles 442

untrusted mode, remote logins and 490

update statistics syntax 571

updating

See also changing

allow updates to system tables configuration parameter and 14

system procedures and 598
text after character set change 333

upgrade version configuration parameter 264

us_english language 111

usage

disk resize 292

statistics 476

use security services configuration parameter 264, 503

user authentication enhancements 548

user connections

memory allocated per 207–209

user databases

See also databases; permissions

master database control of 25

system tables for 27

user-defined messages 358

user errors 359, 359–362

user groups. See groups; public group

user IDs 409
displaying 433
Index

finding 434
number 1, Database Owner 14
user log cache size configuration parameter 265
user log cache spinlock ratio configuration parameter 266
user mistakes. See errors; severity levels, error
user names 434, 564
changing 426
finding 434
preferences 402
user objects. See database objects
user_id system function 435
user_name system function 435
user-defined roles
activating 419
deactivating 419
dropping 421
granting with grant role 584
number of 413
planning 413
users
See also aliases; groups; logins; remote logins
adding 397–402
aliases 429
application name, setting 427
client host name, setting 427
client name, setting 427
creating 56
currently on database 432
currently on server 432
deleting 56
dropping from databases 420–421
dropping from groups 427
dropping from servers 423
errors by 359, 359–362
guest 55, 403, 565
IDs 409, 434
information on 431–477
license use monitoring 473
number of user connections and 208
number or 405
permissions to all or specific 582, 597
remote 486–490
single-user mode 90
views for specific 597
visiting 405
users, object. See database object owners
using proxy authorization 587
UTF-16 306
utility commands
See also Utility Programs manual
character sets and 350
utility, housekeeper, aggressive 371
V
variables in error messages 355
verification, user-access 484, 488
verifying Kerberos authentication 527
Vietnamese
character set support 305
views
See also database objects
dependent 600
ownership chains 599
permissions on 567, 596–598
security and 596
virtual
address 288
page numbers 285
visitor accounts 405
vstart option
disk init 288
W
wait event timing configuration parameter 266
wash, housekeeper task 145
Western Europe
character set support 305
window of vulnerability 90
Windows NT LAN Manager security mechanism 503
with grant option option, grant 568
with nowait option, shutdown 378, 379
With override, database option 55
workload manager size configuration parameter 266
write operations
physical 275
Index

X
X/Open XA 120
xact 267
.xlt files 337
XP Server
  freeing memory from 138
  priority 137
xp_cmdshell context configuration parameter 268
xp_cmdshell system extended stored procedure 14
Index