
Java in Adaptive Server Enterprise

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC31652-01-1570-01

LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Java in Adaptive Server Enterprise iii

CHAPTER 1 An Introduction to Java in the Database .. 1
Advantages of Java in the database.. 1
Capabilities of Java in the database ... 2

Invoking Java methods in the database .. 2
Storing Java classes as datatypes.. 3
Storing and querying XML in the database.. 4

Java components .. 4
Functional changes in Adaptive Server 15.0.3 and later.............................. 4

Changes in class distribution .. 5
The PCA/JVM runs in headless mode ... 5
Changes in memory management .. 6
Changes in ClassLoader behavior .. 6

Standards.. 7
Java in the database: questions and answers.. 7

What are the key features? ... 7
How are Java instructions stored in the database? 8
How is Java executed in the database?... 8
Which Java Virtual Machines (JVMs) are supported?......................... 8
What is headless mode? ... 9
What about JDBC?... 9
How can Java and SQL be used together? ... 9
What is the Java API? .. 9
Which Java classes are supported in the Java API? 10
Can user-defined classes be installed in the database?....................... 10
Can data be accessed using Java?... 10
Can the same classes be used on the client and the server? 10
How to use Java classes in SQL... 11
Where can information about Java in the database be found? 11
What you cannot do with Java in the database................................... 11

CHAPTER 2 Managing the Java Environment .. 13
Components of the Java environment.. 13

The JVM pluggable component ... 14
Pluggable component adapter JVM (PCA/JVM)............................... 15

Contents

iv Adaptive Server Enterprise

Pluggable component interface (PCI) and the PCI Bridge 16
The PCI memory pool.. 16
The sybpcidb database ... 18
How configuration values are organized in sybpcidb 18

When to change configuration values.. 19
Server-level options ... 19
Configuration options for the PCI Bridge.. 20
Configuration options for the PCA/JVM ... 20

Changing configuration values in a running server 21
Changing configuration values by restarting Adaptive Server 22
Changing configuration values before the JVM is initialized............ 22
Changing configuration values after the JVM is initialized............... 22

Restoring default configuration values to sybpcidb 23
Using monitor tables to display information about the PCI Bridge 24

CHAPTER 3 Preparing for and Maintaining Java in the Database............................ 27
The Java runtime environment .. 27

Java classes in the database.. 27
JDBC drivers .. 28
The JVM... 29

Enabling Java... 29
Installing Java classes in the database ... 29

Using installjava... 30
Referencing other Java-SQL classes .. 32

Viewing information about installed classes and JARs............................. 33
Downloading installed classes and JARs .. 33
Removing classes and JARs .. 34

Retaining classes .. 34

CHAPTER 4 Using Java Classes in SQL ... 35
General concepts.. 35

Java considerations... 36
Java-SQL names... 36

Using Java classes as datatypes ... 37
Creating and altering tables with Java-SQL columns 38
Selecting, inserting, updating, and deleting Java objects................... 40

Invoking Java methods in SQL.. 41
Sample methods ... 43
Exceptions in Java-SQL methods .. 43

Representing Java instances .. 43
Assignment properties of Java-SQL data items... 44
Datatype mapping between Java and SQL fields 47
Character sets for data and identifiers ... 48

Contents

Java in Adaptive Server Enterprise v

Subtypes in Java-SQL data .. 48
Widening conversions .. 49
Narrowing conversions... 49
Runtime versus compile-time datatypes... 50

Treatment of nulls in Java-SQL data.. 50
References to fields and methods of null instances 51
Null values as arguments to Java-SQL methods 52
Null values when using the SQL convert function............................. 53

Java-SQL string data .. 54
Zero-length strings.. 54

Type and void methods .. 55
Java void instance methods .. 56
Java void static methods ... 57

Equality and ordering operations ... 58
Evaluation order and Java method calls... 59

Columns.. 59
Variables and parameters.. 60
Deterministic Java functions in expressions....................................... 60

Static variables in Java-SQL classes .. 62
Changes for static variables for Adaptive Server 15.0.3 and later 63
Changes for static variables for the Cluster Edition 64

Java classes in multiple databases.. 64
Scope .. 64
Cross-database references... 65
Inter-class transfers... 65
Passing inter-class arguments ... 66
Temporary and work databases .. 67

 Java classes.. 67

CHAPTER 5 Data Access Using JDBC.. 73
Overview .. 73
JDBC concepts and terminology.. 74
Differences between client- and server-side JDBC.................................... 74
Permissions .. 75
Using JDBC to access data... 75

Overview of the JDBCExamples class ... 76
The main() and serverMain() methods ... 76
Obtaining a JDBC connection: the Connecter() method 78
Routing the action to other methods: the doAction() method 78
Executing imperative SQL operations: the doSQL() method 79
Executing an update statement: the updater() method....................... 79
Executing a select statement: the selecter() method.......................... 80
Calling a SQL stored procedure: the caller() method........................ 81

Error handling in the native JDBC driver .. 82

Contents

vi Adaptive Server Enterprise

The JDBCExamples class.. 84
The main() method.. 84
The serverMain() method.. 85
The connecter() method .. 85
The doAction() method... 86
The doSQL() method .. 87
The updater() method.. 88
The selecter() method.. 88
The caller() method... 89

CHAPTER 6 SQLJ Functions and Stored Procedures ... 91
Overview.. 91

Compliance with SQLJ Part 1 specifications..................................... 92
General issues... 92
Security and permissions.. 93
SQLJ Examples.. 93

Invoking Java methods in Adaptive Server ... 94
Using Sybase Central to manage SQLJ functions and procedures............ 96
SQLJ user-defined functions ... 97

Handling null argument values .. 100
Deleting a SQLJ function name ... 102

SQLJ stored procedures ... 102
Modifying SQL data .. 105
Using input and output parameters .. 106
Returning result sets... 109

Viewing information about SQLJ functions and procedures 113
Advanced topics... 113

Mapping Java and SQL datatypes.. 113
Using the command main method.. 117

SQLJ and Sybase implementation: a comparison 118
SQLJExamples class.. 120

CHAPTER 7 Debugging Java in the Database .. 125
Supported Java debuggers ... 125
Setting up Java debugging ... 126

Configuring the server to support debugging................................... 126
Attaching the remote debugger to the JVM debug agent................. 127

CHAPTER 8 File and Network Access Using Java ... 129
File access using java.io .. 129

User identity and permissions .. 130
Specifying directories for file I/O: UNIX platforms........................ 131

Contents

Java in Adaptive Server Enterprise vii

Specifying directories for file I/O: Windows platforms 133
File I/O changes.. 134
Rules for opening existing files .. 134
Rules for creating files with a file open operation............................ 136
Final file check ... 136

File access using java.net ... 137
Examples .. 137

CHAPTER 9 Additional Topics .. 141
JDK requirement for Java classes in the server.. 141
Assignments ... 142

Assignment rules at compile-time .. 142
Assignment rules at runtime ... 142

Allowed conversions.. 143
Transferring Java-SQL objects to clients ... 144
Suggestions for improving performance .. 144

Minimize the number of calls from SQL to the JVM....................... 144
Use the java.lang.Thread class with care.. 146
Determine if you are running within the PCA/JVM......................... 146
Avoid SQL loops in a multi-engine environment 147

Controlling access to native methods in the PCA/JVM........................... 147
Unsupported Java API packages, classes, and methods........................... 148

Restricted Java packages, classes, and methods............................... 149
Unsupported java.sql methods and interfaces 150

Invoking SQL from Java .. 152
Special considerations .. 152

Transact-SQL commands from Java methods ... 153
Datatype mapping between Java and SQL... 157
Java-SQL identifiers... 159
Java-SQL class and package names ... 160
Java-SQL column declarations... 161
Java-SQL variable declarations.. 162
Java-SQL column references ... 162
Java-SQL member references .. 163
Java-SQL method calls... 164

Glossary.. 167

Index... 173

Contents

viii Adaptive Server Enterprise

Java in Adaptive Server Enterprise 1

C H A P T E R 1 An Introduction to Java in the
Database

This chapter provides an overview of Java in Adaptive Server®
Enterprise.

Advantages of Java in the database
Adaptive Server provides a runtime environment for Java, which means
that Java code can be executed in the server. Building a runtime
environment for Java in the database server provides powerful new ways
of managing and storing both data and logic.

• You can use the Java programming language as an integral part of
Transact-SQL.

• You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most
sense to you.

• Java in Adaptive Server provides a more powerful language than
stored procedures for building logic into the database.

• Java classes become rich, user-defined data types.

• Methods of Java classes provide new functions accessible from SQL.

Topic Page
Advantages of Java in the database 1

Capabilities of Java in the database 2

Java components 4

Functional changes in Adaptive Server 15.0.3 and later 4

Standards 7

Java in the database: questions and answers 7

Capabilities of Java in the database

2 Adaptive Server Enterprise

• Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database
Java in Adaptive Server allows you to:

• Invoke Java methods in the database

• Store Java classes as datatypes

• Store and query XML in the database

Invoking Java methods in the database
You can install Java classes in Adaptive Server, and then invoke the static
methods of those classes in two ways:

• You can invoke the Java methods directly in SQL.

• You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

Invoking Java
methods directly in
SQL

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classes for static (class) methods. You can invoke the
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a value to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

• If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 3

Invoking Java
methods as SQLJ
stored procedures and
functions

You can enclose Java static methods in SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

• Allows Java methods to return output parameters and result sets to the
calling environment.

• Allows you to take advantage of traditional SQL syntax, metadata, and
permission capabilities.

• Allows you to invoke SQLJ functions across databases.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant, third-
party database.

• Complies with Part 1 of the standard specification. See “Standards” on
page 7.

Storing Java classes as datatypes
With Java in the database, you can install pure Java classes in a SQL system,
and then use those classes in a natural manner as datatypes in a SQL database.
This capability adds a full object-oriented datatype extension mechanism to
SQL, using a model that is widely understood and a language that is portable
and widely available. The objects that you create and store with this facility are
readily transferable to any Java-enabled environment, either in another SQL
system or standalone Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

• It provides a type extension mechanism for SQL, which you can use for
data that is created and processed in SQL.

• It provides a persistent data capability for Java, which you can use to store
data in SQL that is created and processed (mainly) in Java. Java in
Adaptive Server provides a distinct advantage over traditional SQL
facilities: you do not need to map the Java objects into scalar SQL
datatypes or store the Java objects as untyped binary strings.

Java components

4 Adaptive Server Enterprise

Storing and querying XML in the database
Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) allows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

XML Services in Adaptive Server Enterprise describes the Sybase® native
XML processor and the Sybase Java-based XML support, introduces XML in
the database, and documents the query and mapping functions that comprise
XML Services.

Java components
Adaptive Server lets you plug in commercial, off-the-shelf Java runtime
environment (JRE) and Java virtual machine (JVM) components. After
configuring Adaptive Server for Java, you can include any standard JVM that
supports Java 6 or later. This infrastructure lets you run Java applications
configured with the Java solution in Adaptive Server versions prior to 15.0.3
as well as applications created using the Adaptive Server version 15.0.3 and
later.

The Java interface for Adaptive Server include the commercial JVM and the
Sybase components that support it:

• The pluggable component adaptor/ JVM (PCA/JVM)

• The pluggable component interface (PCI) and the PCI Bridge, which are
internal to Adaptive Server

See Chapter 2, “Managing the Java Environment.”

Functional changes in Adaptive Server 15.0.3 and later
With Adaptive Server version 15.0.3, Sybase introduces support for
commercial JVMs such as the Sun Java 2 Platform, Standard Edition (J2SE).
Adaptive Server version 15.0.2 and earlier provided an internal JVM.

The Adaptive Server PCA/JVM ensures that Java applications created before
version 15.0.3 run seamlessly with Java applications you create with Adaptive
Server version 15.0.3 and later.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 5

In addition to the changes described in this section, see:

• “Changes for static variables for Adaptive Server 15.0.3 and later” on
page 63

• “Changes for static variables for the Cluster Edition” on page 64

Changes in class distribution
The Java runtime classes delivered with Adaptive Server 15.0.2 and earlier was
a limited subset of the Java 1.2 release. Adaptive Server no longer provides the
runtime classes. Rather, the JVM uses the runtime classes delivered as part of
the commercial JRE.

In general, Java classes from later versions can be presumed to be backwards
compatible with earlier versions. However, certain methods or classes marked
“deprecated” in earlier versions may no longer be compatible with later
versions. Make sure that any deprecated classes or methods used by your
applications are still supported and unchanged in later versions of Java.

Adaptive Server version 15.0.2 and earlier included a runtime.zip file in the
$SYBASE/$SYBASE_ASE/lib directory. This file included the Adaptive Server
specific classes, JDBC classes required for driver support, and a subset of the
standard Java classes.

Adaptive Server 15.0.3 replaces the runtime.zip file with the sybasert.jar
(which contains the Sybase Java classes required by the PCA/JVM) and uses
the rt.jar to provide the standard Java class set. sybasert.jar is located in
$SYBASE/ASE-15_0/lib/pca, and rt.jar is located in the Java distribution in
$SYBASE/shared/<jre_directory>/lib, where jre_directory is a name specific
to your platform.

The PCA/JVM runs in headless mode
Classes and methods requiring user interaction were excluded from the Java
distribution provided by Adaptive Server 15.0.2 and earlier. Because the
PCA/JVM uses the standard class distribution, these classes are now available.
To prevent users from invoking methods that require user interaction, the
PCA/JVM always runs in headless mode.

Functional changes in Adaptive Server 15.0.3 and later

6 Adaptive Server Enterprise

Changes in memory management
Adaptive Server 15.0.2 and earlier used a memory management system
consisting of three distinct heaps: a global fixed heap, a shared class heap, and
a process object heap. Adaptive Server 15.0.3 and later uses a single PCI
memory pool. Any existing configuration values from 15.0.2 and earlier are
ignored by Adaptive Server 15.0.3. You must specify the total memory for the
PCI subsystem using the pci memory size configuration parameter. See Chapter
2, “Managing the Java Environment.”

If you are transitioning from Adaptive Server version 15.0.2 and earlier, you
may need to change the default size of the PCI memory pool. The life cycle of
classes and garbage collection algorithms used by commercial JVMs differs
significantly from that of the Sybase internal JVM. Once the size of the PCI
memory pool is appropriately configured, you should see no difference in
behavior.

Changes in ClassLoader behavior
In Adaptive Server version 15.0.3 and later, ClassLoader behavior conforms to
JVM specifications for the verification of classes during loading.

In Adaptive Server version 15.0.2 and earlier, references to additional classes
within the class being loaded were checked but not fully resolved. For
example, if class A referred to class B within a method, the ClassLoader did
not check that class B was actually available. Thus, a class could successfully
load without satisfying all of its dependencies. An exception would be raised
only when the method that requiring the unsatisfied dependency was
encountered.

The ClassLoader for all commercial JVM implementations performs the full
class verification when the initial class is loaded. As a result, a class with
unsatisfied dependencies does not load, an Unhandled Java Exception is raised,
and the Java stack trace lists the error as “java.lang.NoClassDefFoundError.”

This means that, in rare instances, a class that loads successfully in Adaptive
Server 15.0.2 and earlier may not load in Adaptive Server 15.0.3 and later
unless a full set of user and Java-supplied classes is provided so that all
dependencies can be satisfied.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 7

Standards
The ANSI SQL standards specify SQL extensions for using Java facilities in
SQL. The Java-SQL specifications are in the SQL standard, “Part 13: SQL
Routines and Types Using the Java™ Programming Language (SQL/JRT).”
This standard is referred to informally as “SQLJ.”

Sybase supports the SQLJ specifications for Java routines, and provides
equivalent facilities for Java types. In addition, Sybase extends the standard.
For example, Adaptive Server allows you to reference Java methods and
classes directly in SQL.

Java in the database: questions and answers
Although this book assumes that readers are familiar with Java, there is much
to learn about Java in a database. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database.

Both experienced and novice Java users should read this section. It uses a
question-and-answer format to familiarize you with the basics of Java in
Adaptive Server.

What are the key features?
All of these points are explained in detail in later sections. With Java in
Adaptive Server, you can:

• Run Java using any commercial JVM that supports Java 6 or later.

• Call Java functions (methods) directly from SQL statements.

• Wrap Java methods in SQL aliases and call them as standard SQL stored
procedures and built-in functions.

• Access SQL data from Java using an internal JDBC driver.

• Use Java classes as SQL datatypes.

• Save instances of Java classes in tables.

Java in the database: questions and answers

8 Adaptive Server Enterprise

• Generate XML-formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

• Debug Java classes running in the database.

How are Java instructions stored in the database?
Java is an object-oriented language. Its instructions come in the form of
classes. You write and compile the Java instructions outside the database into
compiled classes (byte code), which are binary files holding Java instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server provides a runtime environment for Java classes. You need a
Java development environment, such as Sybase PowerJ™ or Sun
Microsystems Java Development Kit (JDK), to write and compile Java.

How is Java executed in the database?
When Adaptive Server encounters a Java statement within an executing SQL
statement, the server invokes the JVM to execute the statement. If the JVM is
already running, the Java invocation is forwarded to it; if this is the first Java
request, the JVM starts automatically. The JVM locates and loads the class
identified by the Java statement and executes the byte code.

Which Java Virtual Machines (JVMs) are supported?
The Adaptive Server Java framework has been designed to work with any
standard JVM that supports Java 6 or later. Adaptive Server version 15.0.3 has
been certified with Java 6 version that is included in the $SYBASE/shared
directory. Classes compiled by earlier versions of Java will continue to run
correctly under later versions of Java.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 9

What is headless mode?
Java in Adaptive Server runs in headless mode, which means that display
devices, keyboards, and mice are not used. Although all classes in the standard
Java distribution are available to the user, certain methods that expect user
input or output devices are not supported.

What about JDBC?
JDBC is the industry standard API for executing SQL in Java.

Adaptive Server provides a native JDBC driver. This driver is designed to
maximize performance as it executes on the server because it does not need to
communicate across the network. This driver permits Java classes installed in
a database to use JDBC classes that execute SQL statements.

How can Java and SQL be used together?
A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality.

• Java operations are invoked from SQL – Sybase has extended the range of
SQL expressions to include fields and methods of Java objects, so that you
can include Java operations in a SQL statement.

• Java methods as SQLJ stored procedures and functions – you create a
SQLJ alias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

• Java classes become user-defined datatypes – you store Java class
instances using the same SQL statements as those used for traditional SQL
datatypes.

You can use classes that are part of the Java API, and classes created and
compiled by Java developers.

What is the Java API?
The Java Application Programming Interface (API) is a basic set of
functionality defined by Sun Microsystems. It can be used and extended by
Java developers. It is the core of “what you can do” with Java.

Java in the database: questions and answers

10 Adaptive Server Enterprise

The Java API offers considerable functionality in its own right, and is the
foundation for all user-defined classes created for individual user applications.

Which Java classes are supported in the Java API?
Adaptive Server supports all standard Java classes in the database. Because
Java in the database runs in headless mode (see “What is headless mode?” on
page 9), certain methods expecting user input or output devices raise a Java
exception.

Can user-defined classes be installed in the database?
You can install your own Java classes into the database as, for example, a user-
created Employee class or Inventory class that a developer designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both data and methods to operate on
data. Once installed in a database, Adaptive Server lets you use these classes in
all parts and operations of the database and execute their functionality (in the
form of class or instance methods).

Can data be accessed using Java?
The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

Adaptive Server provides an internal JDBC driver, which permits Java classes
installed in a database to use JDBC classes that execute SQL statements.

Can the same classes be used on the client and the server?
You can create Java classes that can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, a middle tier, or the database.

CHAPTER 1 An Introduction to Java in the Database

Java in Adaptive Server Enterprise 11

Take care that classes used in different tiers, or in the same tier over time,
remain compatible or are knowingly made incompatible so that behavior is
consistent across the application. See the Java documentation on the
serialVersionUID in the java.io.Serializable class for details.

How to use Java classes in SQL
Using user-defined Java classes is a three-step activity:

1 Write or acquire a set of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classes in the Adaptive Server database.

Note Classes included in the Java distribution are always available and do
not need to be installed in the database prior to use.

3 Use those classes in SQL code:

• Invoke static methods directly as UDFs.

• Declare the Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

• Reference the fields or methods of Java-SQL columns, variables, or
parameters.

• Wrap static methods in SQL aliases and use them as stored procedures
or functions.

Where can information about Java in the database be found?
There are many books about Java and Java in the database. The most recent
Java language specification is located on the Sun Web site.

What you cannot do with Java in the database
Adaptive Server is a runtime environment for Java classes, not a Java
development environment.

You cannot perform these actions in the database:

Java in the database: questions and answers

12 Adaptive Server Enterprise

• Edit class source files (*.java files).

• Compile Java class source files (*.java files).

• Execute Java APIs that are not supported, such as applet and visual
classes.

• Use the Java Native Interface (JNI).

• Use Java objects as parameters sent to a remote procedure call or received
from a remote procedure call. They do not translate correctly.

Sybase recommends that you do not use nonfinal static variables in methods
referenced by Java-SQL functions, SQLJ functions, or SQLJ stored
procedures. The values returned for these variables may be unreliable as the
scope of the static variable is implementation-dependent.

Java in Adaptive Server Enterprise 13

C H A P T E R 2 Managing the Java Environment

You can plug in off-the-shelf, standard Java JRE and JVM components
such as J2SE, to Adaptive Server. This chapter describes the Sybase
components that support Java and how to change default configuration
values.

The Adaptive Server Java framework has been designed to work with any
standard JVM that supports Java 6 or later. ASE 15.5 has been certified
with the Java 6 version that is included in the $SYBASE/shared directory.
Classes compiled by earlier versions of Java continue to run correctly
under later versions of Java.

The JVM is independent of Adaptive Server. You can change or upgrade
your Java applications to take advantage of new Java functionality as it
becomes available.

Components of the Java environment
Figure 2-1 shows the components that make up the Adaptive Server Java
environment.

Topic Page
Components of the Java environment 13

When to change configuration values 19

Changing configuration values in a running server 21

Restoring default configuration values to sybpcidb 23

Using monitor tables to display information about the PCI Bridge 24

Components of the Java environment

14 Adaptive Server Enterprise

Figure 2-1: Java components

The JVM pluggable component
The JVM plug-in is a dynamically loaded module that is engineered,
supported, and installed on your platform independently from Adaptive Server.
To Adaptive Server, the plug-in is a “black-box” application and not Sybase-
supported technology: the JVM plug-in issues Java result sets, which are
translated by the PCI Bridge, which then sends the translated result sets to
Adaptive Server.

Because the JVM plug-in is controlled by the PCA/JVM, it is indirectly
connected to Adaptive Server. You can install, upgrade, and start the JVM
plug-in independently of Adaptive Server.

Typically, Java distributions include one or more JVM implementations. This
allows users to select the VM that best corresponds to the performance
requirements of individual applications.

Java
J2SE/JVM

Pluggable
component

PCI
Bridge

Adaptive Server

PCA/JVM

CHAPTER 2 Managing the Java Environment

Java in Adaptive Server Enterprise 15

• Client applications – on platforms typically used for client applications,
the JRE includes a VM that is tuned to reduce start-up time and memory
footprint.

• Server applications – on all platforms, the JRE includes a version of the
JVM that is designed for maximum program execution speed.

There are many Java distributions, however, these features of Java technology
are common to both the client and server VM versions:

• Adaptive compiler – the Java plug-in uses a standard interpreter to launch
applications, but analyzes the code as it runs to detect performance
bottlenecks, or “hot spots.”

• Rapid memory allocation and garbage collection – Java technology
provides for rapid memory allocation for objects, and offers a choice of
fast, efficient, state-of-the-art garbage collectors.

• Thread synchronization – the Java programming language allows you to
use multiple, concurrent paths of program execution (called “threads”).
Java technology includes a thread-handling capability that scales readily
for use in large, shared-memory multiprocessor servers.

Note Take care when using methods that spawn child threads.
java.lang.Thread objects started within a Java method are scheduled at
runtime rather than by the Adaptive Server scheduler. If these threads are
processor intensive, or spawn large numbers of threads, server
performance can degrade due to competition for processor time.

Although the PCA/JVM plug-in can use either the client or server JVM, Sybase
recommends that you use the server version to maximize Java method
performance by default; the server version is used by the installation process.

See the client-version documentation for information about the appropriate
client version for your enterprise.

Pluggable component adapter JVM (PCA/JVM)
The PCA/JVM acts as a broker, managing service requests between the
Adaptive Server and the JVM. The PCA/JVM forwards and controls requests
in both directions—from the Adaptive Server to the JVM, and from the JVM
to the Adaptive Server.

Components of the Java environment

16 Adaptive Server Enterprise

Pluggable component interface (PCI) and the PCI Bridge
The PCI is a generic interface internal to Adaptive Server; it is installed by
default when you install or upgrade Adaptive Server. The PCI Bridge, a
component internal to the PCI, performs the actual work between Adaptive
Server and the JVM plug-in.

The PCI Bridge provides:

• Native thread (process) management

• Memory management

• Synchronization (lock, condition, and event) management

• Data access service support

• Configuration management

• On-demand function dispatching with automatic plug-in loading

• Signal and exception handling

• Platform runtime support

• Dynamic instrumentation facility

• Error message channeling to the Adaptive Server error log

For most scenarios, the default PCI Bridge configuration is appropriate and
sufficient. If necessary, and with the advice of Sybase Technical Support, you
can use the sp_pciconfig system stored procedure to modify the PCI
configuration. sp_pciconfig includes parameters that allow you to list, report,
enable, or disable the directives and arguments in sybpcidb. See “Changing
configuration values in a running server” on page 21.

The PCI memory pool
The PCI memory pool is allocated all at once when the PCI Bridge initializes;
it does not grow after that. It is controlled by Adaptive Server and is governed
by the same restrictions as other memory pools—for example, a single
allocation cannot exceed 1MB. The default size of the PCI memory pool is
32,768 KB.

Use the enable pci configuration parameter to enable the PCI memory pool
when you configure the server for Java. See the installation guide for your
platform.

CHAPTER 2 Managing the Java Environment

Java in Adaptive Server Enterprise 17

Changing the size of
the PCI memory pool

The default size of the PCI memory pool size is adequate for most nonclustered
installations. To increase the size of the memory pool, reset the pci memory size
configuration parameter.

For example, to set pci memory size to 13800 pages (each page is 2KB), enter:

sp_configure "pci memory size", 13800

pci memory size is a dynamic configuration parameter; you do not need to
restart Adaptive Server for the change to take effect.

If Adaptive Server does not have sufficient memory available to allocate to the
memory pool, this configuration change is ignored and the PCI Bridge does not
start.

See the System Administration Guide: Volume 1 for more information about pci
memory size.

Java VM memory
consumption in multi-
engine Adaptive
Server

In a multi-engine environment, multiple Adaptive Server tasks can use the Java
VM in parallel. As a result, the Java VM requires more memory in a multi-
engine environment than in a single-engine environment. As a result, you may
need to increase the size of the PCI memory pool based on the types of
applications you are running and the number of users executing Java in
parallel.

You can allow Adaptive Server to calculate heap sizes, or you can configure
them yourself using sp_jreconfig to set the -Xmx and -Xms arguments of the
PCA_JVM_JAVA_OPTIONS directive.

To let Adaptive Server configure heap sizes for you, the calculated heap size
must be greater than 4MB and you must not set the -Xmx and -Xms arguments.
(Adaptive Server uses the values stored in sybpcidb.)

When Adaptive Server configures heap sizes:

• The -Xmx argument of the PCA_JVM_JAVA_OPTIONS directive is set so
that the Java heap size is 65% of the PCI memory pool size.

• The -Xms argument is set to the same value as -Xmx.

• 20% of the Java heap size is configured for the young heap generations,
also called the Eden space.

Components of the Java environment

18 Adaptive Server Enterprise

The sybpcidb database
The sybpcidb database stores configuration information for the PCI Bridge and
the PCA/JVM plug-in. You create sybpcidb, install its tables, and create its
system stored procedures when you configure the server for Java. See the
installation guide for your platform.

The sybpcidb system stored procedures are:

• sp_pciconfig – configures PCI Bridge properties.

• sp_jreconfig – configures PCA/JVM plug-in properties.

sybpcidb tables The sybpcidb database contains these tables.

See the Reference Manual: Tables for more information about sybpcidb. See
the Reference Manual: Procedures for more information about sp_pciconfig
and sp_jreconfig.

How configuration values are organized in sybpcidb
Configuration values for the PCI Bridge and the PCA/JVM are stored in
sybpcidb and organized in a hierarchy of directives and arguments. Each
directive contains one or more arguments; each argument holds a configuration
value. Arguments are of these types:

• “switch” arguments – describe properties that can only be enabled or
disabled. Switch arguments contain no data. (PCI Bridge and PCA/JVM)

• “number” arguments – contain numeric property values. (PCI Bridge and
PCA/JVM)

• “string” arguments – contain string property values. (PCA/JVM only)

User table Contents

pci_directives Directive configuration information for the PCI Bridge.

pci_arguments Argument configuration information for the PCI Bridge.

pci_slotinfo Information for each slot, including table names for the relevant directives and
arguments.

pci_slot_syscalls The runtime system call configuration information for the runtime dispatching
model used by the PCI Bridge.

pca_jre_directives Directive information specific to the PCA/JVM plug-in.

pca_jre_arguments Argument information specific to the PCA/JVM plug-in.

CHAPTER 2 Managing the Java Environment

Java in Adaptive Server Enterprise 19

• “array” arguments – are a collection of one or more string property values.
(PCA/JVM only)

You can enable or disable each directive and each of its arguments. The state
of a directive overrides the states of its arguments. For example, suppose a
directive has three arguments: “arg1” is enabled, “arg2” is disabled, and “arg3”
is disabled.

• If the directive is enabled, each argument retains its base state. That is
“arg1” is enabled, “arg2” is disabled, and “arg3” is disabled.

• If the directive is disabled, the disabled state of the directive overrides the
base states of the arguments so that “arg1”, “arg2”, and “arg3” are all
disabled.

• However, if the directive is re-enabled, each argument returns to its base
state: “arg1” is enabled, “arg2” is disabled, and “arg3” is disabled. This
arrangement lets you disable all arguments or return all arguments to their
original states with a single command.

When to change configuration values
The default configuration options for the server and for the PCI Bridge and the
PCA/JVM are sufficient for most installations. Although you can safely change
and manage a few configuration options on your own, most configuration
options should not be changed without instructions from Sybase Technical
Support.

You can set configuration options:

• At the server level

• For the PCI Bridge

• For the PCA/JVM

Server-level options
Use sp_configure to change and manage these server-level configuration
parameters:

• enable pci – enables the PCI Bridge.

When to change configuration values

20 Adaptive Server Enterprise

• enable java – enables Java in the database.

• pci memory size – sets the maximum size of the PCI memory pool.

Note You must enable both Java and the PCI Bridge before you can use the
PCA/JVM.

See the installation guide for your platform and the System Administration
Guide: Volume 1.

Configuration options for the PCI Bridge
Do not change any configuration options—directives or arguments—for the
PCI Bridge unless instructed to do so by Sybase Technical Support.

Configuration options for the PCA/JVM
You can safely change these arguments for the PCA/JVM:

• pca_jvm_module_path – change this property only if you are using a JRE
other than that provided by the installation. If you are, point this property
to the JRE to be used by the PCA/JVM.

• pca_jvm_work_dir – add one entry to this argument array for each working
directory (trusted directory) that can be configured with a specific
permission mask, as needed. See Chapter 8, “File and Network Access
Using Java.”

• pca_jvm_netio – enable this argument to enable network I/O. Disable this
argument to disable network I/O.

• pca_jvm_dbg_agent_port – enable this argument and set its numeric value
to the port number the JVM uses for the debug agent. Your Java debugger
must listen on the same port.

CHAPTER 2 Managing the Java Environment

Java in Adaptive Server Enterprise 21

• pca_jvm_java_dbg_agent_suspend – enable this argument to start the
debug agent in a suspended state. Enabling this argument is useful because
it can allow you time to set breakpoints and other options in your Java
debugger after it is attached to the running process. See the Reference
Manual: Commands.

Note Use pca_jvm_java_dbg_agent_suspend with caution. Enabling
pca_jvm_java_dbg_agent_suspend suspends the JVM and all Adaptive
Server Java tasks wait until you attach the debugger and instruct the JVM
to continue. Sybase recommends that you start the JVM and run a simple
Java command to attach the debugger rather than enabling
pca_jvm_java_dbg_agent_suspend. Using the Java command allows the
JVM to start, and lets you attach the debugger before executing the class
that is to be debugged.

Do not change any other directives or arguments for the PCA/JVM without
instructions from Sybase Technical Support.

Changing configuration values in a running server
If, with advice from Sybase Technical Support, you want to change the default
configuration values, you can use the sp_jreconfig and sp_pciconfig system
stored procedures. See “When to change configuration values” on page 19.
This section describes how to load the changed configuration values into
memory in a running server.

When Adaptive Server starts, it automatically loads the JVM if the server has
been configured for Java. The JVM is not initialized, however, until it receives
the first Java request. This depends on how frequently Java is used. Changing
configuration values before initialization is relatively simple. Changing
configuration values after initialization, when the configuration information
has been read into in-memory data structures, is more difficult.

You can update configuration information:

• By restarting Adaptive Server

• Before the JVM has been initialized (for the PCA/JVM plug-in only)

• After the JVM has been initialized (for the PCA/JVM plug-in only)

Changing configuration values in a running server

22 Adaptive Server Enterprise

Changing configuration values by restarting Adaptive Server
This is the easiest method of changing configuration information, and it is
always available.

Note You must use this method if you are using sp_pciconfig to change
configuration values for the PCI Bridge.

1 Use sp_jreconfig or sp_pciconfig to change configuration values.

2 Restart Adaptive Server.

Changing configuration values before the JVM is initialized
Use this method to change configuration values for the PCA/JVM plug-in
when Adaptive Server is running, but the JVM is not initialized.

1 Use sp_jreconfig to change configuration values.

2 Load the configuration parameters into memory. Enter:

sp_jreconfig "reload_config"

You do not need to restart Adaptive Server for the new configuration values to
take effect.

Note Changes made with sp_jreconfig "reload_config" take effect only if you
have not yet initialized the JVM. Using sp_jreconfig modifies only the table
values in sybpcidb, and does not affect the current in-memory data structures
that were loaded into memory when you started Adaptive Server.

You can safely attempt this method even if you are unsure whether the JVM
has been initialized or not. If the JVM has been initialized, the reload_config
command fails and an error message displays. There are no negative
consequences.

Changing configuration values after the JVM is initialized
If Adaptive Server is running and you have initialized the JVM, the
configuration parameters are in memory, and you can change the PCA/JVM
plug-in configuration parameters.

CHAPTER 2 Managing the Java Environment

Java in Adaptive Server Enterprise 23

The steps you follow for changing the JVM configuration values depend on
whether Adaptive Server is configured for threaded or process mode.

• Threaded mode –

a Use sp_jreconfig to change configuration values.

b Restart Adaptive Server.

After Adaptive Server restarts, the JVM is in an uninitiated state until it
receives its first Java request.

• Process mode –

a Use sp_jreconfig to change configuration values.

b Bring the engine running the JVM offline (in this example, engine
number three):

sp_engine "offline", 3

c Bring the engine running the JVM back online:

sp_engine "online", 3

Adaptive Server continues to run during this procedure, but Java is not
available until you bring the engine running the JVM online. After you
bring the engine online, the JVM is again in the uninitiated state until it
receives the first Java request.

Restoring default configuration values to sybpcidb
The steps for restoring the default configuration values to the sybpcidb
configuration values after the JVM has been initialized depend on whether you
can restart Adaptive Server, and whether you are using a single- or multiple-
engine Adaptive Server.

If you are using a single-engine Adaptive Server:

1 Reinstall the installpcidb installation script to reset the sybpcidb
configuration table values to their factory defaults. For example:

isql -Usa -Psa_password -Sserver_name
-i $SYBASE_ASE/scripts/installpcidb

2 Restart Adaptive Server. The default configuration values take effect when
the JVM initializes in response to the first Java request.

Using monitor tables to display information about the PCI Bridge

24 Adaptive Server Enterprise

If you are using a multiple-engine Adaptive Server:

1 Reinstall installpcidb to reset the sybpcidb configuration table values to
their factory defaults. For example:

isql -Usa -Psa_password -Sserver_name
-i $SYBASE_ASE/scripts/installpcidb

2 Bring the engine running the JVM offline. For example:

sp_engine "offline", 3

In this example, the JVM is running on engine “3”.

3 Bring the engine running the JVM back online. For example:

sp_engine "online", 3

You do not need to restart Adaptive Server for the new configuration values to
take effect.

Using monitor tables to display information about the
PCI Bridge

You can display information about the PCI Bridge using these monitor tables:

• monPCIBridge – displays general information about the PCI Bridge. For

For example:

select * from monPCIBridge

Status ConfiguredSlots ActiveSlots ConfiguredPCIMemoryKB UsedPCIMemoryKB

ACTIVE 1 1 65668 1613

• monPCISlots – displays information about the plug-in bound to each slot.
For example:

select * from monPCISlots

Slot Status Modulename Engine

 1 IN USE PCA/JVM 0

CHAPTER 2 Managing the Java Environment

Java in Adaptive Server Enterprise 25

• monPCIEngine – displays engine information for the PCI Bridge and its
plug-ins. For example:

select * from monPCIEngine

Engine Status PLBStatus NumberofActiveThreads PLBRequest PLBWakeupRequests

 0 PCA ACTIVE ACTIVE 10 4 4
 1 PCA ACTIVE ACTIVE 4 0 0

See the Reference Manual: Tables for more information.

Using monitor tables to display information about the PCI Bridge

26 Adaptive Server Enterprise

Java in Adaptive Server Enterprise 27

C H A P T E R 3 Preparing for and Maintaining
Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Java classes in the database.

The Java runtime environment
The Adaptive Server runtime environment for Java requires a third-party
JVM, the Sybase PCI, which is available as part of the database server, and
the Sybase runtime Java classes, or Java API. If you are running Java
applications on the client, you may also require the Sybase JDBC driver,
jConnect, on the client.

Java classes in the database
You can use any of the following sources for Java classes:

Topic Page
The Java runtime environment 27

Enabling Java 29

Installing Java classes in the database 29

Viewing information about installed classes and JARs 33

Downloading installed classes and JARs 33

Removing classes and JARs 34

The Java runtime environment

28 Adaptive Server Enterprise

• The standard Java distribution found in rt.jar and classes installed in the
“ext” directory under the Java installation directory.

Note The contents of the ext directory may vary depending on the Java
vendor. See the vendor’s documentation for detailed information about
these classes.

• User-defined classes

Sybase runtime Java classes

The Sybase runtime Java classes are the low-level classes installed to Java-
enable a database. They are downloaded automatically when Adaptive Server
is installed and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/sybasert.jar (UNIX) or
%SYBASE%\%SYBASE_ASE%\lib\sybasert.jar (Windows). Adaptive Server
sets the CLASSPATH environment when the JVM starts.

Note If CLASSPATH is set in the operating system environment, Adaptive
Server ignores that value when the internal JVM starts.

User-defined Java classes

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

JDBC drivers
The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC versions 1.1 and 1.2, and is compliant with several classes and methods
of JDBC version 2.0. See Chapter 9, “Additional Topics,” for a complete list
of supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 6.x or later, which supports JDBC version 2.0.

CHAPTER 3 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 29

The JVM
The Adaptive Server Java framework has been designed to work with any
standard JVM that supports Java 6 or later. Adaptive Server version 15.0.3 has
been certified with the Java 6 version that is included in the $SYBASE/shared
directory. Classes compiled by earlier versions of Java will continue to run
correctly under later versions of Java.

Enabling Java

Note Configure sybpcidb as described in the install guide for your platform
before enabling the PCI and Java.

To enable the server and its databases for Java, enter these commands from isql:

sp_configure "enable pci", 1
sp_configure "enable java", 1

Then, shut down and restart the server. Adaptive Server 15.0.3 and later require
that you enable the PCI as a prerequisite to enabling Java.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

Installing Java classes in the database
To install Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

Installing Java classes in the database

30 Adaptive Server Enterprise

Using installjava
installjava copies an uncompressed JAR file into the Adaptive Server system
and makes the Java classes contained in the JAR available for use in the current
database. The syntax is:

installjava
-f file_name
[-new | -update]
[-j jar_name]
[-S server_name]
[-U user_name]
[-P password]
[-D database_name]
[-I interfaces_file]
[-a display_charset]
[-J client_charset]
[-z language]
[-t timeout]

For example, to install classes in the addr.jar file, enter:

installjava -f “/home/usera/jars/addr.jar”

The –f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note When you install a JAR file, Application Server copies the file to a
temporary table and then installs it from there. If you install a large JAR file,
you may need to expand the size of tempdb using the alter database command.

Installing uncompressed JARs

The installjava and instjava tools require an uncompressed jar file.

To install Java classes in a database, save the classes or packages in a JAR file,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Java jar cf0 (“zero”) command.

In this UNIX example, the jar command creates an uncompressed JAR file that
contains all .class files in the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

CHAPTER 3 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 31

Retaining the JAR file

When a JAR is installed in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specified in installjava or uses the JAR only to extract the classes to be installed.

• If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

• If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. This is the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file:

• You can remove the JAR and all classes associated with it, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at a time.

• You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARs” on page 33.

Updating installed classes

The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.

• If you specify new, you cannot install a class with the same name as an
existing class.

• If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

 Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

Installing Java classes in the database

32 Adaptive Server Enterprise

• If you update a JAR, all classes in the existing JAR are deleted and
replaced with classes in the new JAR.

• A class can be associated only with a single JAR. You cannot install a class
in one JAR if a class of that same name is already installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
a JAR if that class is currently installed and associated with a JAR.

You can, however, install a class in a retained JAR with the same name as
an installed class not associated with a JAR. In this case, the class not
associated with a JAR is deleted and the new class of the same name is
associated with the new JAR.

If you want to reorganize your installed classes in new JARs, you may find it
easier to first disassociate the affected classes from their JARs. See “Retaining
classes” on page 34 for more information.

Referencing other Java-SQL classes
Installed classes can reference other classes in the same JAR file and classes
previously installed in the same database, but they cannot reference classes in
other databases.

If the classes in a JAR file do reference undefined classes, an error may result:

• If an undefined class is referenced directly in SQL, it causes a syntax error
for “undefined class.”

• If an undefined class is referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in the invoked Java
method or cause the general SQL exception described in “Exceptions in
Java-SQL methods” on page 43.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the class is not instantiated or
referenced.

CHAPTER 3 Preparing for and Maintaining Java in the Database

Java in Adaptive Server Enterprise 33

Viewing information about installed classes and JARs
To view information about classes and JARs installed in the database, use
sp_helpjava. The syntax is:

sp_helpjava [‘class’ [, name [, 'detail' | , 'depends']] |
‘jar’ [, name [, 'depends']]]

For example, to view detailed information about the Address class, including
the version number, log in to isql and enter:

sp_helpjava ’class’, Address, detail

See “sp_helpjava” in the Reference Manual for more information.

Downloading installed classes and JARs
You can download copies of Java classes installed on one database for use in
other databases or applications.

Use the extractjava system utility to download a JAR file and its classes to a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava –j ’addr.jar’ -f
 ‘~/home/usera/jars/addrcopy.jar'

See the Utility Guide manual for more information.

Removing classes and JARs

34 Adaptive Server Enterprise

Removing classes and JARs
Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Java class
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isql enter:

remove java package "utilityClasses"

Note Adaptive Server does not let you remove classes that are used as
datatypes for columns and parameters or that are referenced by SQLJ functions
or stored procedures. Other classes cannot be checked for usage and may be
removed while still referenced in stored procedures. Make sure that you do not
remove subclasses or classes that are used as variables or UDF return types.

remove java package deletes all classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes
You can delete a JAR file from the database but retain its classes as classes no
longer associated with a JAR. Use remove java with the retain classes option if,
for example, you want to rearrange the contents of several retained JARs.

For example, from isql enter:

remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARs, you can associate them
with new JARs using installjava with the new keyword.

Java in Adaptive Server Enterprise 35

C H A P T E R 4 Using Java Classes in SQL

This chapter describes how to use Java classes in an Adaptive Server
environment. The first sections give you enough information to get
started; succeeding sections provide more advanced information.

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables
or as Java-SQL data items.

General concepts
This sections provides general Java and Java-SQL identifier information.

Topics Page
General concepts 35

Using Java classes as datatypes 37

Invoking Java methods in SQL 41

Representing Java instances 43

Assignment properties of Java-SQL data items 44

Datatype mapping between Java and SQL fields 47

Character sets for data and identifiers 48

Subtypes in Java-SQL data 48

Treatment of nulls in Java-SQL data 50

Java-SQL string data 54

Type and void methods 55

Equality and ordering operations 58

Evaluation order and Java method calls 59

Static variables in Java-SQL classes 62

Java classes in multiple databases 64

Java classes 67

General concepts

36 Adaptive Server Enterprise

Java considerations
Before you use Java in your Adaptive Server database, here are some general
considerations.

• Java classes contain:

• Fields that have declared Java datatypes.

• Methods whose parameters and results have declared Java datatypes.

• Java datatypes for which there are corresponding SQL datatypes are
defined in “Datatype mapping between Java and SQL” on page 157.

• Java classes can include classes, fields, and methods that are private,
protected, or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private or protected cannot be
referenced in SQL, but they can be referenced in Java, and are subject to
normal Java rules.

• Java classes, fields, and methods all have various syntactic properties:

• Classes – the number of fields and their names

• Field – their datatypes

• Methods – the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL names
Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or less if you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiers if you use them in Transact-SQL statements.

Class, field, and method names of 30 or more bytes must be surrounded by
quotation marks.

The first character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore (_) symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symbol, or the
underscore (_) symbol.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 37

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 159 for more information about identifiers.

Using Java classes as datatypes
After you have installed a set of Java classes, you can reference them as
datatypes in SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
java.io.Externalizable.

You can specify Java-SQL classes as:

• The datatypes of SQL columns

• The datatypes of Transact-SQL variables and parameters to Transact-SQL
stored procedures

• Default values for SQL columns

When you create a table, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar(30),
home_addr Address,
mailing Address2Line null)

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be a constant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar(30),
home_addr Address default new Address

Using Java classes as datatypes

38 Adaptive Server Enterprise

('Not known', ''),
mailing_addr Address2Line

)

Creating and altering tables with Java-SQL columns
When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information in the column is to be stored. Your choice of storage options affects
the speed with which Adaptive Server references and updates the fields in these
columns.

Column values for a row typically are stored “in-row,” that is, consecutively on
the data pages allocated to a table. However, you can also store Java-SQL
columns in a separate “off-row” location in the same way that text and image
data items are stored. The default value for Java-SQL columns is off-row.

If a Java-SQL column is stored in-row:

• Objects stored in-row are processed more quickly than objects stored off-
row.

• An object stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includes its entire serialization, not just the values in its fields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

If a Java-SQL column is stored off-row, the column is subject to the restrictions
that apply to text and image columns:

• Objects stored off-row are processed more slowly than objects stored in-
row.

• An object stored off-row can be of any size—subject to normal limits on
text and image columns.

• An off-row column cannot be referenced in a check constraint.

Similarly, do not reference a table that contains an off-row column in a
check constraint. Adaptive Server allows you to include the check
constraint when you create or alter the table, but issues a warning message
at compile time and ignores the constraint at runtime.

• You cannot include an off-row column in the column list of a select query
with select distinct.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 39

• You cannot specify an off-row column in a comparison operator, in a
predicate, or in a group by clause.

Partial syntax for create table with the in row/off row option is:

create table...column_name datatype
 [default {constant_expression | user | null}]
 {[{identity | null | not null}]
 [off row | [in row [(size_in_bytes)]]]...

size_in_bytes specifies the maximum size of the in-row column. The value can
be as large as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the values in its fields, plus minimum
values for overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of a representative object you intend to store in the
column.

For example:

select datalength (new class_name(...))

where class_name is an installed Java-SQL class.

Partial syntax for alter table is:

alter table...{add column_name datatype
 [default {constant_expression | user | null}]
 {identity | null} [off row | [in row]]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

Altering partitioned tables

If a table containing Java columns is partitioned, you cannot alter the table
without first dropping the partitions. To change the table schema:

1 Remove the partitions.

2 Use the alter table command.

3 Repartition the table.

Using Java classes as datatypes

40 Adaptive Server Enterprise

Selecting, inserting, updating, and deleting Java objects
After you specify Java-SQL columns, the values that you assign to those data
items must be Java instances. Such instances are generated initially by calls to
Java constructors using the new operator. You can generate Java instances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor is invoked, the one with the proper number and
type of arguments is used.

In the following example, Java instances are generated for both columns and
variables:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = new Address()
 select @AA = new Address('123 Main Street', '99123')
 select @A2 = new Address2Line()
 select @AA2 = new Address2Line('987 Front Street',
 'Unit 2', '99543')

 insert into emps values('John Doe', new Address(),
 new Address2Line())
 insert into emps values('Bob Smith',

new Address('432 ElmStreet', ‘99654’),
new Address2Line('PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = home_addr, @A2 = mailing_addr from emps
 where name = 'John Doe'
 insert into emps values ('George Baker', @A, @A2)

 select @AA2 = @A2
 update emps
 set home_addr = new Address('456 Shoreline Drive', '99321'),
 mailing_addr = @AA2
 where name = 'Bob Smith'

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 41

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
name char(30),
home_addr Address,
mailing_addr Address2Line null

)
insert into trainees
select * from emps

where name in ('Don Green', 'Bob Smith',
'George Baker')

You can reference and update the fields of Java-SQL columns and of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dots to qualify names, use a double-angle (>>) to qualify Java field and
method names when referencing them in SQL.

declare @name varchar(100), @street varchar(100),
 @streetLine2 varchar(100), @zip char(10), @A Address

 select @A = new Address()
 select @A>>street = '789 Oak Lane'
 select @street = @A>>street

 select @street = home_add>>street, @zip = home_add>>zip from emps
 where name = 'Bob Smith'
 select @name = name from emps
 where home_addr>>street= '456 Shoreline Drive'

 update emps
 set home_addr>>street = '457 Shoreline Drive',

home_addr>>zip = '99323'
 where home_addr>>street = '456 Shoreline Drive'

Invoking Java methods in SQL
You can invoke Java methods in SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for static methods.

Invoking Java methods in SQL

42 Adaptive Server Enterprise

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not a particular instance of the class. Static methods often apply to objects and
values from a wide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be serializable.

One of the primary benefits of using Java with Adaptive Server is that you can
use static methods that return a value to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, a trigger, a
where clause, or anywhere that you can use a built-in SQL function.

Java methods invoked directly in SQL as UDFs are subject to these limitations:

• If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

• Cross-database invocations of static methods are supported only if you use
a class instance as a column value.

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the data is checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
table t1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions” on page 93.

To use Java static methods to return result sets and output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQLJ stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 94 for a comparison of the ways you can invoke Java methods in Adaptive
Server.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 43

Sample methods
The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

declare @name varchar(100)
declare @street varchar(100)
declare @streetnum int
declare @A2 Address2Line

select @name = Misc.stripLeadingBlanks(name),

@street = Misc.stripLeadingBlanks(home_addr>>street),
@streetnum = Misc.getNumber(home_addr>>street),
@A2 = mailing_addr

from emps
where home_addr>>toString() like '%Shoreline%'

For information about void methods (methods with no returned value) see
“Type and void methods” on page 55.

Exceptions in Java-SQL methods
When the invocation of a Java-SQL method completes with unhandled
exceptions, a SQL exception is raised, and this error message displays:

Unhandled Java method exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances
Non-Java clients such as isql cannot receive serialized Java objects from the
server. To allow you to view and use the object, Adaptive Server must convert
the object to a viewable representation.

Assignment properties of Java-SQL data items

44 Adaptive Server Enterprise

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address class is an example of such a method. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java API does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use a toString() method, Adaptive Server imposes a limit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @@stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include a toString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

• You can select a particular field in the Java-SQL column, which
automatically invokes toString():

select home__addr>>street from emps

• You can select the column and the toString() method, which lists in one
string all of the field values in the column:

select home_addr>>toString() from emps

Assignment properties of Java-SQL data items
The values assigned to Java-SQL data items are derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and results is different from
the logical representation of Java-SQL columns.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 45

• Java-SQL columns, which are persistent, are Java serialized streams stored
in the containing row of the table. They are stored values containing
representations of Java instances.

• Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Java instances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examples illustrate.

• The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns a reference to it.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = new Address('432 Post Lane', '99444')

• Variable @A contains a reference to a Java instance in the Java VM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

• This assignment modifies the zip field of the Address referenced by @A.
This is the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip='99222'

• The Address constructor method with the new operator constructs an
Address instance and returns a reference to it. However, since the target is
a Java-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copies the serialized value into the new row
of the emps table.

insert into emps
values ('Don Green', new Address('234 Stone
Road', '99777'), new Address2Line())

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and stores the serialized value into the new row of
the emps table.

Assignment properties of Java-SQL data items

46 Adaptive Server Enterprise

• The insert statement specifies no value for the mailing_addr column, so that
column will be set to null, in the same manner as any other column whose
value is not specified in an insert. This null value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
Java VM at all.

insert into emps (name, home_addr) values ('Frank Lee', @A)

The insert statement specifies that the value of the home_addr column is to
be taken from the Java-SQL variable @A. That variable contains a
reference to an Address instance in the Java VM. Since the target is a Java-
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

• This statement inserts a new emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. It is also a
serialization of the Java instance referenced by @A.

insert into emps (name, home_addr) values ('Bob Brown', @A)

• This update statement sets the zip field of the home_addr column of the
‘Frank Lee’ row to ‘99777.’ This has no effect on the zip field in the ‘Bob
Brown’ row, which is still ‘99444.’

update emps
set home_add>>zip = '99777'
where name = 'Frank Lee'

• The Java-SQL column home_addr contains a serialized representation of
the value of an Address instance. The SQL system invokes the Java VM to
deserialize that representation as a Java instance in the Java VM, and
return a reference to the new deserialized copy. That reference is assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home_addr from emps where name = 'Frank Lee'

• This assignment modifies the zip field of the Address instance referenced
by @A. This instance is a copy of the home_addr column of the 'Frank Lee'
row, but is independent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee'
row.

select @A>>zip = '95678'

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 47

Datatype mapping between Java and SQL fields
When you transfer data in either direction between the Java VM and Adaptive
Server, you must take into account that the datatypes of the data items are
different in each system. Adaptive Server automatically maps SQL items to
Java items and vice versa according to the correspondence tables in “Datatype
mapping between Java and SQL” on page 157.

Thus, SQL type char translates to Java type String, the SQL type binary
translates to the Java type byte[], and so on.

• For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

• For the datatype correspondences from Java to SQL:

• The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytes is defined
by Adaptive Server.

• The Java BigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes is java.String, and they are treated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression is used in a SQL
context. For example, if the field home_addr>>street for employee ‘Smith’ is
260 characters, and begins ‘6789 Main Street ...:

Character sets for data and identifiers

48 Adaptive Server Enterprise

select Misc.getStreet(home_addr>>street) from emps where name='Smith'

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street….’. That 255-character string is now an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

Character sets for data and identifiers
The character set for both Java source code and for Java String data is Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Java identifiers used in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data
Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from a class to one of its
superclasses is a widening conversion; a conversion from a class to one of its
subclasses is a narrowing conversion.

• Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

• Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 49

Widening conversions
You do not need to use the convert function to specify a widening conversion.
For example, since the Address2Line class is a subclass of the Address class,
you can assign Address2Line values to Address data items. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

update emps
set home_addr = mailing_addr
where home_addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions
You must use the convert function to convert an instance of a class to an
instance of a subclass of the class. For example:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null

The narrowing conversions in the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null
 and home_addr>>getClass()>>toString() = 'Address2Line'

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object class is implicitly a
superclass of all classes, so the methods defined for it are available for all
classes.

You can also use a case expression:

update emps
 set mailing_addr =

Treatment of nulls in Java-SQL data

50 Adaptive Server Enterprise

 case
 when home_addr>>getClass()>>toString()
 ='Address2Line'
 then convert(Address2Line, home_addr)
 else null
 end

where mailing_addr is null

Runtime versus compile-time datatypes
Neither widening nor narrowing conversions modify the actual instance value
or its runtime datatype; they simply specify the class to be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
column into the home_address column, those values still have the runtime type
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home_addr>>toString() from emps
 where home_addr>>toString() not like '%Line2=[]'

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of the home_addr value is either Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address class is invoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclass is invoked.

See “Null values when using the SQL convert function” on page 53 for a
description of null values for widening and narrowing conversions.

Treatment of nulls in Java-SQL data
This section discusses the use of nulls in Java-SQL data items.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 51

References to fields and methods of null instances
If the value of the instance specified in a field reference is null, then the field
reference is null. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rules for the effect of referencing a field or method of a null
instance. In Java, if you attempt to reference a field of a null instance, an
exception is raised.

For example, suppose that the emps table has the following rows:

insert into emps (name, home_addr)
values ("Al Adams",
new Address("123 Main", "95321"))

insert into emps (name, home_addr)
values ("Bob Baker",
new Address("456 Side", "95123"))

 insert into emps (name, home_addr)
values ("Carl Carter", null)

Consider the following select:

select name, home_addr>>zip from emps
where home_addr>>zip in ('95123', '95125', '95128')

 If the Java rule were used for the references to “home_addr>>zip,” then those
references would cause an exception for the “Carl Carter” row, whose
“home_addr” column is null. To avoid such an exception, you would need to
write such a select as follows:

select name,
case when home_addr is not null then home_addr>>zip
else null end

from emps
where case when home_addr is not null
then home_addr>>zip

else
null end

in ('95123', '95125', '95128')

The SQL convention is therefore used for references to fields and methods of
null instances: if the instance is null, then any field or method reference is null.
The effect of this SQL rule is to make the above case statement implicit.

Treatment of nulls in Java-SQL data

52 Adaptive Server Enterprise

However, this SQL rule for field references with null instances only applies to
field references in source (right-side) contexts, not to field references that are
targets (left-side) of assignments or set clauses. For example:

update emps
set home_addr>>zip D '99123'
where name D 'Charles Green'

This where clause is obviously true for the “Charles Green” row, so the update
statement tries to perform the set clause. This raises an exception, because you
cannot assign a value to a field of a null instance as the null instance has no
field to which a value can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

 The same considerations apply to invocations of methods of null instances,
and the same rule is applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column:

select name, home_addr>>toString()from emps
where home_addr>>toString() D
'StreetD234 Stone Road ZIPD 99777'

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement is valid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods
The outcome of passing null as a parameter is independent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver a null value.

You cannot pass the null value as a parameter to a Java scalar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable {
 public static int identity1(int I) {return I;}
 public static java.lang.Integer identity2
 (java.lang.Integer I) {return I;}
 public static Address identity3 (Address A) {return A;}
 }

Consider these calls:

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 53

declare @I int
declare @A Address;

select @I = General.identity1(@I)
select @I = General.identity2(new java.lang.Integer(@I))
select @A = General.identity3(@A)

The values of both variable @I and variable @A are null, since values have not
been assigned to them.

• The call of the identity1() method raises an exception. The datatype of the
parameter @I of identity1() is the Java int type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

• The call of the identity2() method succeeds. The datatype of the parameter
of identity2() is the Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
@I.

• The call of the identity3() method succeeds.

A successful call of identity1() never returns a null result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function
You use the convert function to convert a Java object of one class to a Java
object of a superclass or subclass of that class.

As shown in “Subtypes in Java-SQL data” on page 48, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home_addr>>street, convert(Address2Line, home_addr)>>line2,
home_addr>>zip from emps

the expression “convert(Address2Line, home_addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

Java-SQL string data

54 Adaptive Server Enterprise

• If the runtime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

• If the runtime value of the expression (home_addr) is a superclass of the
specified class (Address), then a null is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

• If the value of the home_addr column is an Address2Line, then convert
returns that value, and the field reference extracts the line2 field. If convert
returns null, then the field reference itself is null.

• When a convert returns null, then the field reference itself evaluates to null.

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column is an Address. As described in “Treatment of nulls in Java-
SQL data” on page 50, the select also shows a null line2 value for those rows
in which the home_addr column is null.

Java-SQL string data
In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL data item whose type is
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL data item whose type is char, varchar, nchar, or text is assigned to
a Java-SQL String field that is stored as Unicode, the character data is
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings
In Transact-SQL, a zero-length character string is treated as a null value, and
the empty string () is treated as a single space.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 55

To be consistent with Transact-SQL, when a Java-SQL String value whose
length is zero is assigned to a SQL data item whose type is char, varchar, nchar,
nvarchar, or text, the Java-SQL String value is replaced with a single space.

For example:

1> declare @s varchar(20)
2> select @s = new java.lang.String()
3> select @s, char_length(@s)
4> go

 (1 row affected)

----------------- -----------------
1

Otherwise, the zero-length value would be treated in SQL as a SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Java null.

Type and void methods
Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with a result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:

• The toString() method is a type method whose type is String.

• The removeLeadingBlanks() method is a void method.

• The Address constructor method is a type method whose type is the
Address class.

You invoke type methods as functions and use the new keyword when invoking
a constructor method:

insert into emps
values ('Don Green', new Address('234 Stone Road', '99777'),

 new Address2Line())

select name, home_addr>>toString() from emps
 where home_addr>>toString() like ‘%Baker%’

Type and void methods

56 Adaptive Server Enterprise

The removeLeadingBlanks() method of the Address class is a void instance
method that modifies the street and zip fields of a given instance. You can
invoke removeLeadingBlanks() for the home_addr column of each row of the
emps table. For example:

update emps
 set home_addr =
 home_addr>>removeLeadingBlanks()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide a framework or syntax for such an action. It simply replaces column
values.

Java void instance methods
To use the “update-in-place” actions of Java void instance methods in the SQL
system, Java in Adaptive Server treats a call of a Java void instance method as
follows:

For a void instance method M() of an instance CI of a class C, written
“CI.M(...)”:

• In SQL, the call is treated as a type method call. The result type is
implicitly class C, and the result value is a reference to CI. That reference
identifies a copy of the instance CI after the actions of the void instance
method call.

• In Java, this call is a void method call, which performs its actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows:

update emps
 set home_addr = home_addr>>removeLeadingBlanks()
 where home_addr>>removeLeadingBlanks()>>street like “123%”

1 In the where clause, “home_addr>>removeLeadingBlanks()” calls the
removeLeadingBlanks() method for the home_addr column of a row of the
emps table. removeLeadingBlanks() strips the leading blanks from the
street and zip fields of a copy of the column. The SQL system then returns
a reference to the modified copy of the home_addr column. The
subsequent field reference:

home_addr>>removeLeadingBlanks()>>street

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 57

returns the street field that has the leading blanks removed. The references
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

2 The update statement performs the set clause for each row of emps in
which the where clause is true.

3 On the right-side of the set clause, the invocation of
“home_addr>>removeLeadingBlanks()” is performed as it was for the
where clause: removeLeadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns a reference to the
modified copy of the home_addr column.

4 The Address instance denoted by the result of the right side of the set
clause is serialized and copied into the column specified on the left-side of
the set clause: the result of the expression on the right side of the set clause
is a copy of the home_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy is then assigned
back to the home_addr column as the new value of that column.

The expressions of the right and left side of the set clause are independent, as
is normal for the update statement.

The following update statement shows an invocation of a void instance method
of the mailing_addr column on the right side of the set clause being assigned to
the home_address column on the left side.

update emps
 set home_addr = mailing_addr>>removeLeadingBlanks()
 where ...

In this set clause, the void method removeLeadingBlanks() of the mailing_addr
column yields a reference to a modified copy of the Address2Line instance in
the mailing_addr column. The instance denoted by that reference is then
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods
You cannot invoke a void static method using a simple SQL execute command.
Rather, you must place the invocation of the void static method in a select
statement.

Equality and ordering operations

58 Adaptive Server Enterprise

For example, suppose that a Java class C has a void static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC calls to perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for a void
method.

You must invoke the void static method in a select command, such as:

select C.M(...)

To allow void static methods to be invoked using a select, void static methods
are treated in SQL as returning a value of datatype int with a value of null.

Equality and ordering operations
You can use equality and ordering operators when you use Java in the database.
You cannot:

• Reference Java-SQL data items in ordering operations.

• Reference Java-SQL data items in equality operations if they are stored in
an off-row column.

• Use the order by clause, which requires that you determine the sort order.

• Make direct comparisons using the “>”, “<”, “<=”, or “>=” operator.

These equality operations are allowed for in-row columns:

• Use of the distinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

• Direct comparisons using the “=” and “!=” operators.

• Use of the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

• Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 59

Evaluation order and Java method calls
Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
query and chooses an evaluation order based on the most rapid rate of
execution.

This section describes how different evaluation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examples in
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable {
 public static int F (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
 public static int G (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
}

Columns
In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at least one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home_addr) > Utility.F(E.home_addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for a row whose
home_addr column has a 5-character zip, such as “95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

Evaluation order and Java method calls

60 Adaptive Server Enterprise

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparison is
1>0, and the where clause is true; if the right operand is evaluated first, the
comparison is 0>1, and the where clause is false.

Variables and parameters
Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar(20)

select @A = new Address('95444', '123 Port Avenue')
select case when Utility.F(@A)>Utility.G(@A)

then ‘Left’ else ‘Right’ end
select @Order = case when utility.F(@A) > utility.G(@A)
 then 'Left' else 'Right' end

The new Address has a five-character zip code field. When the case expression
is evaluated, depending on whether the left or right operand of the comparison
is evaluated first, the comparison is either 1>0 or 0>1, and the @Order variable
is set to ‘Left’ or ‘Right’ accordingly.

As for column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparison is
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321” or “95444-1234.”

Deterministic Java functions in expressions
Deterministic expressions and functions always return the same result if they
are evaluated with the same set of input values. All Java functions in Adaptive
Server are deterministic. As a result, if the parameters and input values in an
expression involving a Java function do not change, Adaptive Server treats the
entire expression as deterministic.

When Adaptive Server encounters a Java function in an expression, Adaptive
Server calculates the expression immediately so that the calculation is
performed only once and not repeated for each row. This improves
performance, but may cause unexpected behavior.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 61

Consider this example:

1> create table CaseTest
2> (TestValue varchar(50))
3> go
1> insert into CaseTest values(’07’)
2> go
(1 row affected)

1> declare @IntArray sybase.cpp.value.client/common.IntArray
2> select @IntArray = new sybase.cpp.value.client.common.IntArray()
3> SELECT CASE
4> WHEN CT.TestValue = ’07’
5> THEN @IntArray >> setInt(new java.lang.Integer(10))
6> ELSE @IntArray >> setInt(new java.lang.Integer(11))
7> END
8> FROM CaseTest CT
9> select @IntArray >> getInt(0) as GetObjAfter0
10> select @IntArray >> getInt(1) as GetObjAfter1
11> select @IntArray >> getArraySize() as NumObjectsOnArray
12> go

--
sybase.cpp.value.client.common.IntArray@22cc0f30

(1 row affected)
GetObjAfter0
--
11

(1 row affected)
NumObjectsOnArray

2

(1 row affected)

You might expect one branch of the case statement to evaluate to true and thus
have only one value (10) inserted into the integer array, but because the
expressions setInt(new java.lang.Integer(10)) and setInt(new
java.lang.Integer(11)) are deterministic, Adaptive Server
“precalculates” the result, and populates the array with both values.

Static variables in Java-SQL classes

62 Adaptive Server Enterprise

You can make expressions nondeterministic by adding a reference to columns
so that Adaptive Server does not know that the expressions produce the same
result for each execution. For example, make these changes to the Transact-
SQL statements in the example:

1> declare @IntArray Sybase.cpp.value.client.common.IntArray
2> select @IntArray = new sybase.cpp.value.client.common.IntArray()
3> SELECT CASE
4> WHEN CT.TestValue = ’07’
5> THEN @IntArray >> setInt(new java.lang.Integer(10 +
convert(int,CT.TestValue) - convert(int,CT.TestValue)))
6> ELSE @IntArray >> setInt(new java.lang.Integer(11 +
convert(int,CT.TestValue) - convert(int,CT.TestValue)))
7> END
8> FROM CaseTest CT
9> select @IntArray >> getInt(0) as GetObjAfter0
10> select @IntArray >> getInt(1) as GetObjAfter1
11> select @IntArray >> getArraySize() as NumObjectsOnArray
12> go

By including the column references in the THEN and ELSE portions of the case
statement, the optimizer no longer treats the statements as constants and does
not precalculate the Java insert statement.

Static variables in Java-SQL classes
A Java variable that is declared static is associated with the Java class, rather
than with each instance of the class. The variable is allocated once for the entire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable {

public static int recommendedLimit;
public String street;
public String zip;

// ...
}

You can specify that a static variable is final, which indicates that it is not
updatable:

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 63

 public static final int recommendedLimit;

Otherwise, you can update the variable.

 You reference a static variable of a Java class in SQL by qualifying the static
variable with an instance of the class. For example:

declare @a Address
select @a>>recommendedLimit

If you don't have an instance of the class, you can use the following technique:

select convert(Address, null)>>recommendedLimit

The expression “(convert(null, Address))” converts a null value to an Address
type; that is, it generates a null Address instance, which you can then qualify
with the static variable name. You cannot reference a static variable of a Java
class in SQL by qualifying the static variable with the class name. For example,
the following are both incorrect:

select Address.recommendedLimit

select Address>>recommendedLimit

Values assigned to nonfinal static variables are accessible only within the
current session.

Changes for static variables for Adaptive Server 15.0.3 and later
In Adaptive Server 15.0.2 and earlier, each task was assigned its own internal
JVM. Each JVM was associated with a unique set of ClassLoaders. As a result,
class variables were available only to a single Adaptive Server task.

With Adaptive Server 15.0.3 and later, and the introduction of the PCA/JVM,
Adaptive Server uses a separate JVM thread for each Adaptive Server task
within the same JVM. All user classes are loaded by ClassLoaders associated
only with the specific Adaptive Server task executing the particular Java
method. Because ClassLoaders associated with user classes are not shared
across Adaptive Server tasks, user classes are not considered the same.
Therefore, class variables from user classes are not visible across Adaptive
Server tasks.

However, class variables from classes loaded by the system ClassLoader are
visible across all Adaptive Server tasks because all user ClassLoaders share the
system ClassLoader as a parent. This is true for all standard JVMs. Class
variables in these classes do not endanger functionality or security when they
are used across multiple tasks.

Java classes in multiple databases

64 Adaptive Server Enterprise

Changes for static variables for the Cluster Edition
In the Cluster Edition, Adaptive Server handles class variables from user
classes and classes loaded by the system ClassLoader as described in “Changes
for static variables for Adaptive Server 15.0.3 and later” on page 63: however,
each node has a separate, unrelated PCA/JVM instance running. If you set a
class variable on one node, that value is not automatically changed on all other
nodes in the cluster. Because an Adaptive Server task can run across multiple
nodes, if user classes rely on class variables, you must explicitly set that same
class variable on all nodes.

Java classes in multiple databases
You can store Java classes of the same name in different databases in the same
Adaptive Server system. This section describes how you can use these classes.

Scope
When you install a Java class or set of classes, it is installed in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are always included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

• Identical classes that have been installed in different databases.

• Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either class is acceptable to the other.

• Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptable to the
other, but not vice versa.

• Different classes that are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 65

Cross-database references
You can reference objects stored in table columns in one database from another
database.

For example, assume the following configuration:

• The Address class is installed in db1 and db2.

• The emps table has been created in both db1 with owner Smith, and in db2,
with owner Jones.

In these examples, the current database is db1. You can invoke a join or a
method across databases. For example:

• A join across databases might look like this:

declare @count int
select @count(*)

from db2.Jones.emps, db1.Smith.emps
where db2.Jones.emps.home_addr>>zip =

db1.Smith.emps.home_addr>>zip

• A method invocation across databases might look like this:

select db2.Jones.emps.home_addr>>toString()
from db2.Jones.emps
where db2.Jones.emps.name = 'John Stone'

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by a routine in db1. Thus,
for across-database joins and method invocations:

• db1 need not contain an Address class.

• If db1 does contain an Address class, it can have completely different
properties than the Address class in db2.

Inter-class transfers
You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the class in the
source database are transferred into columns or variables whose declared type
is the class in the current (target) database.

You can insert or update from a table in one database to a table in another
database. For example:

insert into db1.Smith.emps select * from

Java classes in multiple databases

66 Adaptive Server Enterprise

db2.Jones.emps

update db1.Smith.emps
set home_addr = (select db2.Jones.emps.home_addr

from db2.Jones.emps
where db2.Jones.emps.name =

db1.Smith.emps.name)

You can insert or update from a variable in one database to another database.
(The following fragment is in a stored procedure on db2.) For example:

declare @home_addr Address
select @home_addr = new Address(‘94608’, ‘222 Baker

Street’)
insert into db1.Janes.emps(name, home_addr)

values (‘Jone Stone’, @home_addr)

In these examples, instance values are transferred between databases. You can:

• Transfer instances between two local databases.

• Transfer instances between a local database and a remote database.

• Transfer instances between a SQL client and an Adaptive Server.

• Replace classes using install and update statements or remove and update
statements.

In an inter-class transfer, the Java serialization is transferred from the source to
the target. If the class in the source database is not compatible with the class in
the target database, then the Java exception InvalidClassException is raised.

Passing inter-class arguments
You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

• A Java-SQL column is associated with the version of the specified Java
class in the database that contains the column.

• A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

• A Java-SQL intermediate result of class C is associated with the version of
class C in the same database as the Java method that returned the result.

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 67

• When a Java instance value JI is assigned to a target variable or column,
or passed to a Java method, JI is converted from its associated class to the
class associated with the receiving target or method.

Temporary and work databases
All rules for Java classes and databases also apply to temporary databases and
the model database:

• Java-SQL columns of temporary tables contain byte string serializations
of the Java instances.

• A Java-SQL column is associated with the version of the specified class in
the temporary database.

You can install Java classes in a temporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Java classes for reference in temporary databases
is to install Java classes in the model database. They are then present in any
temporary database derived from the model.

 Java classes
This section shows the simple Java classes that this chapter uses to illustrate
Java in Adaptive Server.

This is the Address class:

//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.
*/

Java classes

68 Adaptive Server Enterprise

public class Address implements java.io.Serializable {

/**
* The street data for the address.
* @serial A simple String value.
*/
 public String street;

/**
* The zipcode data for the address.
* @serial A simple String value.
*/
 String zip;

/** A default constructor.
*/

public Address () {
 street = "Unknown";
 zip = "None";
 }
/**
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
 public Address (String S, String Z) {
 street = S;
 zip = Z;
 }
/**
* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
 public String toString() {
 return "Street= " + street + " ZIP= " + zip;
 }
/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 street = Misc.stripLeadingBlanks(street);
 zip = Misc.stripLeadingBlanks(street);
 }
}

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 69

This is the Address2Line class, which is a subclass of the Address class:

//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass
* as a SQL datatype.
*/
public class Address2Line extends Address implements java.io.Serializable {

/**
* The second line of street data for the address.
* @serial a simple String value
*/
 String line2;
/**
* A default constructor
*/
 public Address2Line () {
 street = "Unknown";
 line2 = " ";
 zip = "None";
 }
/**
* A constructor with parameters.
* @param S a string with the street information
* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information
*/
public Address2Line (String S, String L2, String Z) {
 street = S;
 line2 = L2;
 zip = Z;
}

/**
* A method to return a display of the address data
* @returns a string with a display version of the address data
*/

public String toString() {
 return "Street= " + street + " Line2= " + line2 + " ZIP= " + zip;

Java classes

70 Adaptive Server Enterprise

}

/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 line2 = Misc.stripLeadingBlanks(line2);
 super.removeLeadingBlanks();
 }
}

The Misc class contains sets of miscellaneous routines:
//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.
*/

public class Misc{

/**
* The Misc class contains only static methods and cannot be instantiated.
*/

private Misc() { }

/**
* Removes leading blanks from a String
*/

public static String stripLeadingBlanks(String s) {
 if (s == null) return null;
 for (int scan=0; scan<s.length(); scan++)
 if (!java.lang.Character.isWhitespace(s.charAt(scan)))
 break;
 } else if (scan == s.length()){

return "";
 } else return s.substring(scan);

}
 }

CHAPTER 4 Using Java Classes in SQL

Java in Adaptive Server Enterprise 71

}
return "";

}
/**
* Extracts the street number from an address line.
* e.g., Misc.getNumber(" 123 Main Street") == 123
* Misc.getNumber(" Main Street") == 0
* Misc.getNumber("") == 0
* Misc.getNumber(" 123 ") == 123
* Misc.getNumber(" Main 123 ") == 0
* @param s a string assumed to have address data
* @return a string with the extracted street number
*/

public static int getNumber (String s) {
 String stripped = stripLeadingBlanks(s);

if (s==null) return -1;
 for(int right=0; right < stripped.length(); right++){
 if (!java.lang.Character.isDigit(stripped.charAt(right))) {

break;
 } else if (right==0){

return 0;
 } else {

return java.lang.Integer.parseInt
(stripped.substring(0, right), 10);

 }
}
return -1;

}

/**
* Extract the "street" from an address line.
* e.g., Misc.getStreet(" 123 Main Street") == "Main Street"
* Misc.getStreet(" Main Street") == "Main Street"
* Misc.getStreet("") == ""
* Misc.getStreet(" 123 ") == ""
* Misc.getStreet(" Main 123 ") == "Main 123"
* @param s a string assumed to have address data
* @return a string with the extracted street name
*/

public static String getStreet(String s) {
 int left;

if (s==null) return null;
 for (left=0; left<s.length(); left++){

if(java.lang.Character.isLetter(s.charAt(left))) {
break;

Java classes

72 Adaptive Server Enterprise

} else if (left == s.length()) {
return "";

 } else {
return s.substring(left);

}
}
return "";

 }
}

Java in Adaptive Server Enterprise 73

C H A P T E R 5 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to
access data.

Overview
JDBC provides a SQL interface for Java applications. If you want to
access relational data from Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of
two ways:

• JDBC on the client – Java client applications can make JDBC calls to
Adaptive Server using the Sybase jConnect JDBC driver.

• JDBC on the server – Java classes installed in the database can make
JDBC calls to the database using the JDBC driver native to Adaptive
Server.

The use of JDBC calls to perform SQL operations is essentially the same
in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods
are not intended to serve as templates, but as general guidelines.

Topics Page
Overview 73

JDBC concepts and terminology 74

Differences between client- and server-side JDBC 74

Permissions 75

Using JDBC to access data 75

Error handling in the native JDBC driver 82

The JDBCExamples class 84

JDBC concepts and terminology

74 Adaptive Server Enterprise

JDBC concepts and terminology
JDBC is a Java API and a standard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of events is typical of a JDBC application:

1 Create a Connection object – call the getConnection() static method of the
DriverManager class to create a Connection object. This establishes a
database connection.

2 Generate a Statement object – use the Connection object to generate a
Statement object.

3 Pass a SQL statement to the Statement object – if the statement is a query,
this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at a time (similar to the way a cursor works).

4 Loop over the rows of the results set – call the next() method of the
ResultSet object to:

• Advance the current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

• Return a Boolean value (true/false) to indicate whether there is a row
to advance to.

5 For each row, retrieve the values for columns in the ResultSet object – use
the getInt(), getString(), or similar method to identify either the name or
position of the column.

Differences between client- and server-side JDBC
The difference between JDBC on the client and in the database server is in how
a connection is established with the database environment.

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the server.

• For client-side JDBC, you use the Sybase jConnect JDBC driver, and call
the Drivermanager.getConnection() method with the identification of the
server. This establishes a connection to the designated server.

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 75

• For server-side JDBC, you use the Adaptive Server native JDBC driver,
and call the Drivermanager.getConnection() method with one of the
following values:

• jdbc:default:connection

• jdbc:sybase:ase

• jdbc:default

• empty string

This establishes a connection to the current server. Only the first call to the
getConnection() method creates a new connection to the current server.
Subsequent calls return a wrapper of that connection with all connection
properties unchanged.

You can write JDBC classes to run at both the client and the server by using a
conditional statement to set the URL.

Permissions
• Java execution permissions – like all Java classes in the database, classes

containing JDBC statements can be accessed by any user. There is no
equivalent of the grant execute statement that grants permission to execute
procedures in Java methods, and there is no need to qualify the name of a
class with the name of its owner.

• SQL execution permissions – Java classes are executed with the
permissions of the connection executing them. This behavior is different
from that of stored procedures, which execute with granted permission by
the database owner.

Using JDBC to access data
This section describes how you can use JDBC to perform the typical operations
of a SQL application. The examples are extracted from the class
JDBCExamples, which is described in “The JDBCExamples class” on page 84.

JDBCExamples illustrates the basics of a user interface and shows the internal
coding techniques for SQL operations.

Using JDBC to access data

76 Adaptive Server Enterprise

Overview of the JDBCExamples class
To execute these examples on your machine, install the Address class on the
server and include it in the Java CLASSPATH of the jConnect client.

You can call the methods of JDBCExamples from either a jConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server native driver does not support create procedure and drop
procedure statements.

JDBCExamples static methods perform the following SQL operations:

• Create and drop an example table, xmp:

 create table xmp (id int, name varchar(50), home Address)

• Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @id int, @newname varchar(50),
 @newhome Address, @oldname varchar(50) output, @oldhome
 Address output as

select @oldname = name, @oldhome = home from xmp
 where id=@id
update xmp set name=@newname, home = @newhome
 where id=@id

• Insert a row into the xmp table.

• Select a row from the xmp table.

• Update a row of the xmp table.

• Call the stored procedure inoutproc, which has both input parameters and
output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

The main() and serverMain() methods
JDBCExamples has two primary methods:

• main() – is invoked from the command line of the jConnect client.

• serverMain() – performs the same actions as main(), but is invoked within
Adaptive Server.

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 77

All actions of the JDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()

• You can invoke the main() method from a jConnect command line as
follows:

java JDBCExamples
“server-name:port-number?user=user-name&password=password” action

You can determine server-name and port-number from your interfaces file,
using the dsedit tool. user-name and password are your user name and
password. If you omit &password=password, the default is the empty password.
Here are two examples:

"antibes:4000?user=smith&password=1x2x3"
"antibes:4000?user=sa"

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is case insensitive.

You can invoke JDBCExamples from a jConnect command line to create the
table xmp and the stored procedure inoutproc as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions as
follows:

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call
java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “Action performed.”

To drop the table xmp and the stored procedure inoutproc, enter:

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Using JDBC to access data

78 Adaptive Server Enterprise

Using serverMain()

Note Because the server-side JDBC driver does not support create procedure
or drop procedure, create the table xmp and the example stored procedure
inoutproc with client-side calls of the main() method before executing these
examples. Refer to “Overview of the JDBCExamples class” on page 76.

After creating xmp and inoutproc, you can invoke the serverMain() method as
follows:

select JDBCExamples.serverMain('insert')
go
select JDBCExamples.serverMain('select')
go
select JDBCExamples.serverMain('update')
go
select JDBCExamples.serverMain('call')
go

Note Server-side calls of serverMain() do not require a server-name:port-
number parameter; Adaptive Server simply connects to itself.

Obtaining a JDBC connection: the Connecter() method
Both main() and serverMain() call the connecter() method, which returns a
JDBC Connection object. The Connection object is the basis for all subsequent
SQL operations.

Both main() and serverMain() call connecter() with a parameter that specifies
the JDBC driver for the server- or client-side environment. The returned
Connection object is then passed as an argument to the other methods of the
JDBCExamples class. By isolating the connection actions in the connecter()
method, JDBCExamples’ other methods are independent of their server- or
client-side environment.

Routing the action to other methods: the doAction() method
The doAction() method routes the call to one of the other methods, based on the
action parameter.

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 79

doAction() has the Connection parameter, which it simply relays to the target
method. It also has a parameter locale, which indicates whether the call is
server- or client-side. Connection raises an exception if either create procedure
or drop procedure is invoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method
The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters: the Connection object and the SQL statement it
is to perform. doSQL() creates a JDBC Statement object and uses it to execute
the specified SQL statement.

Executing an update statement: the updater() method
The updater() method performs a Transact-SQL update statement. The update
action is:

String sql = "update xmp set name = ?, home = ? where id = ?";

It updates the name and home columns for all rows with a given id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updater() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the JDBC setString(),
setObject(), and setInt() methods with these parameters:

• The ordinal parameter marker to be substituted

• The value to be substituted

For example:

pstmt.setString(1, name);
pstmt.setObject(2, home);
pstmt.setInt(3, id);

After making these substitutions, updater() executes the update statement.

To simplify updater(), the substituted values in the example are fixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Using JDBC to access data

80 Adaptive Server Enterprise

Executing a select statement: the selecter() method
The selecter() method executes a Transact-SQL select statement:

String sql = "select name, home from xmp where id=?";

The where clause uses a parameter marker (?) for the row to be selected. Using
the JDBC setInt() method, selecter() supplies a value for the parameter marker
after preparing the SQL statement:

PreparedStatement pstmt =
con.prepareStatement(sql);

pstmt.setInt(1, id);

selecter() then executes the select statement:

ResultSet rs = pstmt.executeQuery();

Note For SQL statements that return no results, use doSQL() and updater().
They execute SQL statements with the executeUpdate() method.

 For SQL statements that do return results, use the executeQuery() method,
which returns a JDBC ResultSet object.

The ResultSet object is similar to a SQL cursor. Initially, it is positioned before
the first row of results. Each call of the next() method advances the ResultSet
object to the next row, until there are no more rows.

selecter() requires that the ResultSet object have exactly one row. The selecter(
) method invokes the next method, and checks for the case where ResultSet has
no rows or more than one row.

 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }

In the above code, the call of methods getString() and getObject() retrieve the
two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object, and
then coerces that object to the Address class. If the returned object is not an
Address, then an exception is raised.

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 81

selecter() retrieves a single row and checks for the cases of no rows or more
than one row. An application that processes a multiple row ResultSet would
simply loop on the calls of the next() method, and process each row as for a
single row.

Executing in batch
mode

If you want to execute a batch of SQL statements, make sure that you use the
execute() method. If you use executeQuery() for batch mode:

• If the batch operation does not return a result set (contains no select
statements), the batch executes without error.

• If the batch operation returns one result set, all statements after the
statement that returns the result are ignored. If getXXX() is called to get an
output parameter, the remaining statements execute and the current result
set is closed.

• If the batch operation returns more than one result set, an exception is
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the caller() method
The caller() method calls the stored procedure inoutproc:

create proc inoutproc @id int, @newname varchar(50), @newhome Address,
 @oldname varchar(50) output, @oldhome Address output as

 select @oldname = name, @oldhome = home from xmp where id=@id
 update xmp set name=@newname, home = @newhome where id=@id

This procedure has three input parameters (@id, @newname, and @newhome)
and two output parameters (@oldname and @oldhome). caller() sets the name
and home columns of the row of table xmp with the ID value of @id to the
values @newname and @newhome, and returns the former values of those
columns in the output parameters @oldname and @oldhome.

The inoutproc procedure illustrates how to supply input and output parameters
in a JDBC call.

caller() executes the following call statement, which prepares the call
statement:

CallableStatement cs = con.prepareCall("{call inoutproc (?, ?, ?, ?, ?)}");

All of the parameters of the call are specified as parameter markers (?).

Error handling in the native JDBC driver

82 Adaptive Server Enterprise

caller() supplies values for the input parameters using JDBC setInt(), setString(
), and setObject() methods that were used in the doSQL(), updatAction(), and
selecter() methods:

 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);

These set methods are not suitable for the output parameters. Before executing
the call statement, caller() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, java.sql.Types.JAVA_OBJECT);

caller() then executes the call statement and obtains the output values using the
same getString() and getObject() methods that the selecter() method used:

 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);

Error handling in the native JDBC driver
Sybase supports and implements all methods from the java.sql.SQLException
and java.sql.SQLWarning classes. SQLException provides information on
database access errors. SQLWarning extends SQLException and provides
information on database access warnings.

Errors raised by Adaptive Server are numbered according to severity. Lower
numbers are less severe; higher numbers are more severe. Errors are grouped
according to severity:

• Warnings (EX_INFO: severity 10) – are converted to SQLWarnings.

• Exceptions (severity 11 to18) – are converted to SQLExceptions.

• Fatal errors (severity 19 to 24) – are converted to fatal SQLExceptions.

SQLExceptions can be raised through JDBC, Adaptive Server, or the native
JDBC driver. Raising a SqlException aborts the JDBC query that caused the
error. Subsequent system behavior differs depending on where the error is
caught:

• If the error is caught in Java – a “try” block and subsequent “catch” block
process the error.

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 83

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and can
always be caught. There are no driver-specific SQLWarning messages.

• If the error is not caught in Java – the Java VM returns control to Adaptive
Server, Adaptive Server catches the error, and an unhandled SQLException
error is raised.

The raiserror command is used typically with stored procedures to raise an
error and to print a user-defined error message. When a stored procedure
that calls the raiserror command is executed via JDBC, the error is treated
as an internal error of severity EX_USER, and a nonfatal SQLException is
raised.

Note You cannot access extended error data using the raiserror command;
the with errordata clause is not implemented for SQLException.

If an error causes a transaction to abort, the outcome depends on the transaction
context in which the Java method is invoked:

• If the transaction contains multiple statements – the transaction aborts and
control returns to the server, which rolls back the entire transaction. The
JDBC driver ceases to process queries until control returns from the server.

• If the transaction contains a single statement – the transaction aborts, the
SQL statement it contains rolls back, and the JDBC driver continues to
process queries.

The following scenarios illustrate the different outcomes. Consider a Java
method jdbcTests.Errorexample() that contains these statements:

stmt.executeUpdate("delete from parts where partno = 0"); Q2
stmt.executeQuery("select 1/0"); Q3
stmt.executeUpdate("delete from parts where partno = 10"); Q4

A transaction containing multiple statements includes these SQL commands:

begin transaction
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample()

In this case, these actions result from an aborted transaction:

• A divide-by-zero exception is raised in Q3.

• Changes from Q1 and Q2 are rolled back.

• The entire transaction aborts.

The JDBCExamples class

84 Adaptive Server Enterprise

A transaction containing a single statement includes these SQL commands:

set chained off
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample()

In this case:

• A divide-by-zero exception is raised in Q3.

• Changes from Q1 and Q2 are not rolled back

• The exception is caught in “catch” and “try” blocks in
JDBCTests.Errorexample.

• The deletion specified in Q4 does not execute because it is handled in the
same “try” and “catch” blocks as Q3.

• JDBC queries outside of the current “try” and “catch” blocks can be
executed.

The JDBCExamples class
// An example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.
//
// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,
// using the main method, or from the SQL server, using
// the serverMain method.
//
import java.sql.*; // JDBC
public class JDBCExamples {
{

The main() method
// The main method, to be called from a client-side command line
//
 public static void main(String args[]) {
 if (args.length!=2) {
 System.out.println("\n Usage: "
 + "java ExternalConnect server-name:port-number

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 85

 action ");
 System.out.println(" The action is connect, createtable,
 " + "createproc, drop, "
 + "insert, select, update, or call \n");
 return;
 }
 try{
 String server = args[0];
 String action = args[1].toLowerCase();
 Connection con = connecter(server);
 String workString = doAction(action, con, client);
 System.out.println("\n" + workString + "\n");
 } catch (Exception e) {
 System.out.println("\n Exception: ");
 e.printStackTrace();
 }
 }

The serverMain() method
// A JDBCExamples method equivalent to 'main',
// to be called from SQL or Java in the server

 public static String serverMain(String action) {
 try {
 Connection con = connecter("default");
 String workString = doAction(action, con, server);
 return workString;
 } catch (Exception e) {
 if (e.getMessage().equals(null)) {
 return "Exc: " + e.toString();
 } else {
 return "Exc - " + e.getMessage();
 }
 }
 }

The connecter() method
// A JDBCExamples method to get a connection.
// It can be called from the server with argument 'default',
// or from a client, with an argument that is the server name.

The JDBCExamples class

86 Adaptive Server Enterprise

public static Connection connecter(String server)
 throws Exception, SQLException, ClassNotFoundException {

 String forName="";
 String url="";

 if (server=="default") { // server connection to current server
 forName = "sybase.asejdbc.ASEDriver";
 url = "jdbc:default:connection";
 } else if (server!="default") { //client connection to server
 forName= "com.sybase.jdbc.SybDriver";
 url = "jdbc:sybase:Tds:"+ server;
 }

 String user = "sa";
 String password = "";

 // Load the driver
 Class.forName(forName);
 // Get a connection
 Connection con = DriverManager.getConnection(url,
 user, password);
 return con;
 }

The doAction() method
// A JDBCExamples method to route to the 'action' to be performed

 public static String doAction(String action, Connection con,
 String locale)
 throws Exception {

 String createProcScript =
 " create proc inoutproc @id int, @newname varchar(50),
 @newhome Address, "
 + " @oldname varchar(50) output, @oldhome Address
 output as "
 + " select @oldname = name, @oldhome = home from xmp
 where id=@id "
 + " update xmp set name=@newname, home = @newhome
 where id=@id ";
 String createTableScript =
 " create table xmp (id int, name varchar(50),
 home Address)" ;

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 87

 String dropTableScript = "drop table xmp ";
 String dropProcScript = "drop proc inoutproc ";

 String insertScript = "insert into xmp "
 + "values (1, 'Joe Smith', new Address('987 Shore',
 '12345'))";

 String workString = "Action (" + action +) ;
 if (action.equals("connect")) {
 workString += "performed";
 } else if (action.equals("createtable")) {
 workString += doSQL(con, createTableScript);
 } else if (action.equals("createproc")) {
 if (locale.equals(server)) {
 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, createProcScript);
 }
 } else if (action.equals("droptable")) {
 workString += doSQL(con, dropTableScript);
 } else if (action.equals("dropproc")) {
 if (locale.equals(server)) {
 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, dropProcScript);
 }
 } else if (action.equals("insert")) {
 workString += doSQL(con, insertScript);
 } else if (action.equals("update")) {
 workString += updater(con);
 } else if (action.equals("select")) {
 workString += selecter(con);
 } else if (action.equals("call")) {
 workString += caller(con);
 } else { return "Invalid action: " + action ;
 }
 return workString;
 }

The doSQL() method
// A JDBCExamples method to execute an SQL statement.

The JDBCExamples class

88 Adaptive Server Enterprise

 public static String doSQL (Connection con, String action)
 throws Exception {

 Statement stmt = con.createStatement();
 int res = stmt.executeUpdate(action);
 return "performed";
 }

The updater() method
// A method that updates a certain row of the 'xmp' table.
// This method illustrates prepared statements and parameter markers.

 public static String updater(Connection con)
 throws Exception {

 String sql = "update xmp set name = ?, home = ? where id = ?";
 int id=1;
 Address home = new Address("123 Main", "98765");
 String name = "Sam Brown";
 PreparedStatement pstmt = con.prepareStatement(sql);
 pstmt.setString(1, name);
 pstmt.setObject(2, home);
 pstmt.setInt(3, id);
 int res = pstmt.executeUpdate();
 return "performed";
 }

The selecter() method
// A JDBCExamples method to retrieve a certain row
// of the 'xmp' table.
// This method illustrates prepared statements, parameter markers,
// and result sets.

 public static String selecter(Connection con)
 throws Exception {

 String sql = "select name, home from xmp where id=?";
 int id=1;
 Address home = null;
 String name = "";
 String street = "";

CHAPTER 5 Data Access Using JDBC

Java in Adaptive Server Enterprise 89

 String zip = "";
 PreparedStatement pstmt = con.prepareStatement(sql);
 pstmt.setInt(1, id);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned
 multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }
 return "- Row with id=1: name("+ name +)
 + " street(" + home.street +) zip("+ home.zip +);

The caller() method
// A JDBCExamples method to call a stored procedure,
// passing input and output parameters of datatype String
 // and Address.
 // This method illustrates callable statements, parameter markers,
 // and result sets.

 public static String caller(Connection con)
 throws Exception {
 CallableStatement cs = con.prepareCall("{call inoutproc
 (?, ?, ?, ?, ?)}");
 int id = 1;
 String newName = "Frank Farr";
 Address newHome = new Address("123 Farr Lane", "87654");
 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);
 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, java.sql.Types.JAVA_OBJECT);
 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);
 return "- Old values of row with id=1: name("+oldName+)
 street(" + oldHome.street + ") zip("+ oldHome.zip +);
 }
}

The JDBCExamples class

90 Adaptive Server Enterprise

Java in Adaptive Server Enterprise 91

C H A P T E R 6 SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use
them as Adaptive Server functions and stored procedures.

Overview
You can enclose Java static methods in SQL wrappers and use them
exactly as you would Transact-SQL stored procedures or built-in
functions. This functionality:

• Allows Java methods to return output parameters and result sets to the
calling environment.

• Complies with Part 1 of the ANSI SQLJ standard specification.

• Allows you to take advantage of traditional SQL syntax, metadata,
and permission capabilities.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant,
third-party database.

Name Page
Overview 91

Invoking Java methods in Adaptive Server 94

Using Sybase Central to manage SQLJ functions and procedures 96

SQLJ user-defined functions 97

SQLJ stored procedures 102

Viewing information about SQLJ functions and procedures 113

Advanced topics 113

SQLJ and Sybase implementation: a comparison 118

SQLJExamples class 120

Overview

92 Adaptive Server Enterprise

❖ Creating a SQLJ stored procedure or function

Perform these steps to create and execute a SQLJ stored procedure or function.

1 Create and compile the Java method. Install the method class in the
database using the installjava utility.

Refer to Chapter 3, “Preparing for and Maintaining Java in the Database,”
for information on creating, compiling, and installing Java methods in
Adaptive Server.

2 Using the SQLJ create procedure or create function statement, define a SQL
name for the method.

3 Execute the procedure or function. The examples in this chapter use JDBC
method calls or isql. You can also execute the method using Embedded
SQL or ODBC.

Compliance with SQLJ Part 1 specifications
Adaptive Server SQLJ stored procedures and functions comply with SQLJ Part
1 of the standard specifications for using Java with SQL. See “Standards” on
page 7 for a description of the SQLJ standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features are
listed in Table 6-3 on page 119; partially supported features are listed in
Table 6-4 on page 119. Sybase-defined features—those not defined by the
standard but left to the implementation—are listed in Table 6-5 on page 119.

In those instances where Sybase proprietary implementation differs from the
SQLJ specifications, Sybase supports the SQLJ standard. For example, non-
Java Sybase SQL stored procedures support two parameter modes: in and inout.
The SQLJ standard supports three parameter modes: in, out, and inout. The
Sybase syntax for creating SQLJ stored procedures supports all three
parameter modes.

General issues
This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 93

Security and permissions
Sybase provides different security models for SQLJ stored procedures and
SQLJ functions.

SQLJ functions and user-defined functions (UDFs) (see “Invoking Java
methods in SQL” on page 41) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queries via JDBC, permission to access the data is
checked against the invoker of the function. Thus, if user A invokes a function
that accesses table t1, user A must have select permission on t1 or the query fails.

SQLJ stored procedures use the same security model as Transact-SQL stored
procedures. The user must be granted explicit permission to execute a SQLJ or
Transact-SQL stored procedure. If a SQLJ procedure performs SQL queries
via JDBC, implicit permission grant support is applied. This security model
allows the owner of the stored procedure, if the owner owns all SQL objects
referenced by the procedure, to grant execute permission on the procedure to
another user. The user who has execute permission can execute all SQL queries
in the stored procedure, even if the user does not have permission to access
those objects.

In general, after the JVM is configured and running, any user able to access
Java classes from the database can run them. However, the following
operations are restricted:

• Thread operations except those required to create and join

• System operations that affect the server such as exit() and abort()

• Changes to the class loader hierarchy

• Override of the installed SecurityManager

For a more detailed description of security for stored procedures, see the
Security Administration Guide.

SQLJ Examples
The examples used in this chapter assume a SQL table called sales_emps with
these columns:

• name – the employee’s name

• id – the employee’s identification number

• state – the state in which the employee is located

Invoking Java methods in Adaptive Server

94 Adaptive Server Enterprise

• sales – amount of the employee’s sales

• jobcode – the employee’s job code

The table definition is:

create table sales_emps
(name varchar(50), id char(5),
state char(20), sales decimal (6,2),
jobcode integer null)

The example class is SQLJExamples, and the methods are:

• region() – maps a U.S. state code to a region number. The method does not
use SQL.

• correctStates() – performs a SQL update command to correct the spelling
of state codes. Old and new spellings are specified by input parameters.

• bestTwoEmps() – determines the top two employees by their sales records
and returns those values as output parameters.

• SQLJExamplesorderedEmps() – creates a SQL result set consisting of
selected employee rows ordered by values in the sales column, and returns
the result set to the client.

• job() – returns a string value corresponding to an integer job code value.

See “SQLJExamples class” on page 120 for the text of each method.

Invoking Java methods in Adaptive Server
You can invoke Java methods in two different ways in Adaptive Server:

• Invoke Java methods directly in SQL. Directions for invoking methods in
this way are presented in Chapter 4, “Using Java Classes in SQL.”

• Invoke Java methods indirectly using SQLJ stored procedures and
functions that provide Transact-SQL aliases for the method name. This
chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Java methods and install
them in the Adaptive Server database using the installjava utility. See Chapter
3, “Preparing for and Maintaining Java in the Database,” for more
information.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 95

Invoking Java
methods directly with
their Java names

You can invoke Java methods in SQL by referencing them with their fully
qualified Java names. Reference instances for instance methods, and either
instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
value to the calling environment. You can use a Java static method as a UDF in
stored procedures, triggers, where clauses, select statements, or anywhere that
you can use a built-in SQL function.

When you call a Java method using its name, you cannot use methods that
return output parameters or result sets to the calling environment. A method
can manipulate the data it receives from a JDBC connection, but the method
can only return the single return value declared in its definition to the calling
environment.

You cannot use cross-database invocations of UDF functions.

See Chapter 4, “Using Java Classes in SQL,” for information about using Java
methods in this way.

Invoking Java
methods indirectly
using SQLJ

You can invoke Java methods as SQLJ functions or stored procedures. By
wrapping the Java method in a SQL wrapper, you take advantage of these
capabilities:

• You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

• You can take advantage of SQL metadata capabilities. For example, you
can view a list of all stored procedures or functions in the database.

• SQLJ provides a SQL name for a method, which allows you to protect the
method invocation with standard SQL permissions.

• Sybase SQLJ conforms to the recognized SQLJ Part 1 standard, which
allows you to use Sybase SQLJ procedures and functions in conforming
non-Sybase environments.

• You can invoke SQLJ functions and SQLJ stored procedures across
databases.

• Because Adaptive Server checks datatype mapping when the SQLJ
routine is created, you need not be concerned with datatype mapping when
executing the routines.

You must reference static methods in a SQLJ routine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQLJ stored
procedures and functions.

Using Sybase Central to manage SQLJ functions and procedures

96 Adaptive Server Enterprise

Using Sybase Central to manage SQLJ functions and
procedures

You can manage SQLJ functions and procedures from the command line using
isql and from the Adaptive Server plug-in to Sybase Central. From the Adaptive
Server plug-in you can:

• Create a SQLJ function or procedure

• Execute a SQLJ function or procedure

• View and modify the properties of a SQLJ function or procedure

• Delete a SQLJ function or procedure

• View the dependencies of a SQLJ function or procedure

• Create permissions for a SQLJ procedure

The following procedures describes how to create and view the properties of a
SQLJ routine. You can view dependencies and create and view permissions
from the routine’s property sheet.

❖ Creating a SQLJ function/procedure

First, create and compile the Java method. Install the method class in the
database using installjava. Then follow these steps:

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

2 Double-click on the database in which you want to create the routine.

3 Open the SQLJ Procedures/SQLJ Functions folder.

4 Double-click the Add new Java Stored Procedure/Function icon.

5 Use the Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-in
displays the SQLJ routine you have created in an edit screen, where you
can modify the routine and execute it.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 97

❖ To view the properties of a SQLJ function or procedure

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

2 Double-click on the database in which the routine is stored.

3 Open the SQLJ Procedures/SQLJ Functions folder.

4 Highlight a function or procedure icon.

5 Select File | Properties.

SQLJ user-defined functions
The create function command specifies a SQLJ function name and signature for
a Java method. You can use SQLJ functions to read and modify SQL and to
return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision[, scale])]
[, sql_parameter_name sql_datatype

[(length) | (precision[, scale])]]
...])

returns sql_datatype
[(length)| (precision[, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name 'java_method_name

[([java_datatype[{, java_datatype }
...]])]'

When creating a SQLJ function:

• The SQL function signature is the SQL datatype sql_datatype of each
function parameter.

• To comply with the ANSI standard, do not include an @ sign before
parameter names.

SQLJ user-defined functions

98 Adaptive Server Enterprise

Sybase adds an @ sign internally to support parameter name binding. You
will see the @ sign when using sp_help to print out information about the
SQLJ stored procedure.

• When creating a SQLJ function, you must include the parentheses that
surround the sql_parameter_name and sql_datatype information—even if
you do not include that information.

For example:

create function sqlj_fc()
language java
parameter style java

external name 'SQLJExamples.method'

• The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. This is the default value. You
do not need to include it except for syntactic compatibility with the SQLJ
Part 1 standard.

• es returns null on null input and called on null input specify how Adaptive
Server handles null arguments of a function call. returns null on null input
specifies that if the value of any argument is null at runtime, the return
value of the function is set to null and the function body is not invoked.
called on null input is the default. It specifies that the function is invoked
regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nulls in the function call” on page 101.

• You can include the deterministic or not deterministic keywords, but Adaptive
Server does not use them. They are included for syntactic compatibility
with the SQLJ Part 1 standard.

• Clauses exportable keyword specifies that the function is to run on a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

• Clauses language java and parameter style java specify that the referenced
method is written in Java and that the parameters are Java parameters. You
must include these phrases when creating a SQLJ function.

• The external name clause specifies that the routine is not written in SQL
and identifies the Java method, class and, package name (if any).

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 99

• The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If it is not
specified, Adaptive Server infers the Java method signature from the SQL
function signature.

Sybase recommends that you include the method signature as this practice
handles all datatype translations. See “Mapping Java and SQL datatypes”
on page 113.

• You can define different SQL names for the same Java method using
create function and then use them in the same way.

Writing the Java
method

Before you can create a SQLJ function, you must write the Java method that it
references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to a region number
and returns that number to the user.

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals "MN") || s.equals("VT") ||

s.equals("NH")) return 1;
if (s.equals("FL") || s.equals("GA") ||

s.equals("AL")) return 2;
if (s.equals("CA") || s.equals("AZ") ||

s.equals("NV")) return 3;
else throw new SQLException

("Invalid state code", "X2001");

}

Creating the SQLJ
function

After writing and installing the method, you can create the SQLJ function. For
example:

create function region_of(state char(20))
returns integer

language java parameter style java
external name

'SQLJExamples.region(java.lang.String)'

The SQLJ create function statement specifies an input parameter (state
char(20))and an integer return value. The SQL function signature is char(20).
The Java method signature is java.lang.String.

Calling the function You can call a SQLJ function directly, as if it were a built-in function. For
example:

SQLJ user-defined functions

100 Adaptive Server Enterprise

select name, region_of(state) as region
from sales_emps

where region_of(state)=3

Note The search sequence for functions in Adaptive Server is:

1 Built-in functions

2 SQLJ functions

3 Java-SQL functions that are called directly

Handling null argument values
Java class datatypes and Java primitive datatypes handle null argument values
in different ways.

• Java object datatypes that are classes—such as java.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql.Timestamp—can hold both
actual values and null reference values.

• Java primitive datatypes—such as boolean, byte, short, and int—have no
representation for a null value. They can hold only non-null values.

When a Java method is invoked that causes a SQL null value to be passed as
an argument to a Java parameter whose datatype is a Java class, it is passed as
a Java null reference value.When a SQL null value is passed as an argument to
a Java parameter of a Java primitive datatype, however, an exception is raised
because the Java primitive datatype has no representation for a null value.

Typically, you will write Java methods that specify Java parameter datatypes
that are classes. In this case, nulls are handled without raising an exception. If
you choose to write Java functions that use Java parameters that cannot handle
null values, you can either:

• Include the returns null on null input clause when you create the SQLJ
function, or

• Invoke the SQLJ function using a case or other conditional expression to
test for null values and call the SQLJ function only for the non-null values.

You can handle expected nulls when you create the SQLJ function or when you
call it. The following sections describe both scenarios, and reference this
method:

public static String job(int jc)

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 101

throws SQLException {
if (jc==1) return “Admin”;

 else if (jc==2) return “Sales”;
else if (jc==3) return “Clerk”;
else return “unknown jobcode”;
}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input clause
when you create the function. For example:

create function job_of(jc integer)
returns varchar(20)

returns null on null input
language java parameter style java
external name 'SQLJExamples.job(int)'

You can then call job_of in this way:

select name, job_of(jobcode)
from sales_emp

where job_of(jobcode) <> "Admin"

When the SQL system evaluates the call job_of(jobcode) for a row of
sales_emps in which the jobcode column is null, the value of the call is set to
null without actually calling the Java method SQLJExamples.job. For rows with
non-null values of the jobcode column, the call is performed normally.

Thus, when a SQLJ function created using the returns null on null input clause
encounters a null argument, the result of the function call is set to null and the
function is not invoked.

Note If you include the returns null on null input clause when creating a SQLJ
function, the returns null on null input clause applies to all function parameters,
including nullable parameters.

If you include the called on null input clause (the default), null arguments for
non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-nullable
parameters. The following example uses a case expression:

SQLJ stored procedures

102 Adaptive Server Enterprise

select name,
case when jobcode is not null

then job_of(jobcode)
else null end

from sales_emps where
case when jobcode is not null

then job_of(jobcode)
else null end <> "Admin"

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name
You can delete the SQLJ function name for a Java method using the drop
function command. For example, enter:

drop function region_of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect the referenced Java
method or class.

See the Reference Manual: Building Blocks for complete syntax and usage
information.

SQLJ stored procedures
Using Java-SQL capabilities, you can install Java classes in the database and
then invoke those methods from a client or from within the SQL system. You
can also invoke Java static (class) methods in another way—as SQLJ stored
procedures.

SQLJ stored procedures:

• Can return result sets and/or output parameters to the client

• Behave exactly as Transact-SQL stored procedures when executed

• Can be called from the client using ODBC, isql, or JDBC

• Can be called within the server from other stored procedures or native
Adaptive Server JDBC

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 103

The end user need not know whether the procedure being called is a SQLJ
stored procedure or a Transact-SQL stored procedure. They are both invoked
in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision[, scale])]

[, [in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision[, scale])]]

...])
[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java_method_name

[([java_datatype[, java_datatype
...]])]'

Note To comply with the ANSI standard, the SQLJ create procedure command
syntax is different from syntax used to create Sybase Transact-SQL stored
procedures.

Refer to the Reference Manual: Commands for a detailed description of each
keyword and option in this command.

When creating SQLJ stored procedures:

• The SQL procedure signature is the SQL datatype sql_datatype of each
procedure parameter.

• When creating a SQLJ stored procedure, do not include an @ sign before
parameter names. This practise is compliant with the ANSI standard.

Sybase adds an @ sign internally to support parameter name binding. You
will see the @ sign when using sp_help to print out information about the
SQLJ stored procedure.

SQLJ stored procedures

104 Adaptive Server Enterprise

• When creating a SQLJ stored procedure, you must include the parentheses
that surround the sql_parameter_name and sql_datatype information—
even if you do not include that information.

For example:

create procedure sqlj_sproc ()
language java
parameter style java

external name "SQLJExamples.method1"

• You can include the keywords modifies sql data to indicate that the method
invokes SQL operations and reads and modifies SQL data. This is the
default value.

• You must include the dynamic result sets integer option when result sets
are to be returned to the calling environment. Use the integer variable to
specify the maximum number of result sets expected.

• You can include the keywords deterministic or not deterministic for
compatibility with the SQLJ standard. However, Adaptive Server does not
make use of this option.

• You must include the language java parameter and style java keywords,
which tell Adaptive Server that the external routine is written in Java and
the runtime conventions for arguments passed to the external routine are
Java conventions.

• The external name clause indicates that the external routine is written in
Java and identifies the Java method, class, and package name (if any).

• The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If one is
not specified, Adaptive Server infers one from the SQL procedure
signature.

Sybase recommends that you include the method signature as this practice
handles all datatype translations. See “Mapping Java and SQL datatypes”
on page 113 for more information.

• You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 105

Modifying SQL data
You can use a SQLJ stored procedure to modify information in the database.
The method referenced by the SQLJ procedure must be either:

• A method of type void, or

• A method with an int return type (incorporation of the int return type is a
Sybase extension of the SQLJ standard).

Writing the Java
method

The method SQLJExamples.correctStates() performs a SQL update statement to
correct the spelling of state codes. Input parameters specify the old and new
spellings. correctStates() is a void method; no value is returned to the caller.

public static void correctStates(String oldSpelling,
String newSpelling) throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName("sybase.asejdbc.ASEDriver");
conn = DriverManager.getConnection

("jdbc:default:connection");
}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}
try {

pstmt = conn.prepareStatement
("UPDATE sales_emps SET state = ?
WHERE state = ?");

pstmt.set.String(1, newSpelling);
pstmt.set.String(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println(“SQLException: "+
e.getErrorCode() + e.getMessage());

}
return;

}

Creating the stored
procedure

Before you can call a Java method with a SQL name, you must create the SQL
name for it using the SQLJ create procedure command. The modifies sql data
clause is optional.

create procedure correct_states(old char(20),

SQLJ stored procedures

106 Adaptive Server Enterprise

not_old char(20))
modifies sql data
language java parameter style java
external name

'SQLJExamples.correctStates
(java.lang.String, java.lang.String)'

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature is java.lang.String, java.lang.String.

Calling the stored
procedure

You can execute the SQLJ procedure exactly as you would a Transact-SQL
procedure. In this example, the procedure executes from isql:

execute correct_states 'GEO', 'GA'

Using input and output parameters
Java methods do not support output parameters. When you wrap a Java method
in SQL, however, you can take advantage of Sybase SQLJ capabilities that
allow input, output, and input/output parameters for SQLJ stored procedures.

When you create a SQLJ procedure, you identify the mode for each parameter
as in, out, or inout.

• For input parameters, use the in keyword to qualify the parameter. in is the
default; Adaptive Server assumes an input parameter if you do not enter a
parameter mode.

• For output parameters, use the out keyword.

• For parameters that can pass values both to and from the referenced Java
method, use the inout keyword.

Note You create Transact-SQL stored procedures using only the in and out
keywords. The out keyword corresponds to the SQLJ inout keyword. See the
create procedure reference pages in the Reference Manual: Commands for
more information.

To create a SQLJ stored procedure that defines output parameters, you must:

• Define the output parameter(s) using either the out or inout option when
you create the SQLJ stored procedure.

• Declare those parameters as Java arrays in the Java method. SQLJ uses
arrays as containers for the method’s output parameter values.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 107

For example, if you want an Integer parameter to return a value to the
caller, you must specify the parameter type as Integer[] (an array of Integer)
in the method.

The array object for an out or inout parameter is created implicitly by the
system. It has a single element. The input value (if any) is placed in the
first (and only) element of the array before the Java method is called.
When the Java method returns, the first element is removed and assigned
to the output variable. Typically, this element will be assigned a new value
by the called method.

The following examples illustrate the use of output parameters using a Java
method bestTwoEmps() and a stored procedure best2 that references that
method.

Writing the Java
method

The SQLJExamples.bestTwoEmps() method returns the name, ID, region, and
sales of the two employees with the highest sales performance records. The
first eight parameters are output parameters requiring a containing array. The
ninth parameter is an input parameter and does not require an array.

public static void bestTwoEmps(String[] n1,
String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = "****";
id1[0] = "";
r1[0] = 0;
s1[0] = new BigDecimal(0):
n2[0] = "****",
id2[0] = "";
r2[0] = 0;
s2[0] = new BigDecimal(0);

try {
Connection conn = DriverManager.getConnection

("jdbc:default:connection");
java.sql.PreparedStatement stmt =

conn.prepareStatement("SELECT name, id,"
+ "region_of(state) as region, sales FROM"
+ "sales_emps WHERE"
+ "region_of(state)>? AND"
+ "sales IS NOT NULL ORDER BY sales DESC");

stmt.setInteger(1, regionParm);
ResultSet r = stmt.executeQuery();

SQLJ stored procedures

108 Adaptive Server Enterprise

if(r.next()) {
n1[0] = r.getString("name");
id1[0] = r.getString("id");
r1[0] = r.getInt("region");
s1[0] = r.getBigDecimaL("sales");

}
else return;

if(r.next()) {
n2[0] = r.getString("name");
id2[0] = r.getString("id");
r2[0] = r.getInt("region");
s2[0] = r.getBigDecimal("sales");

}
else return;

}
catch (SQLException e) {

System.err.println("SQLException: "+
e.getErrorCode() + e.getMessage());

}
}

Creating the SQLJ
procedure

Create a SQL name for the bestTwoEmps method. The first eight parameters
are output parameters; the ninth is an input parameter.

create procedure best2
(out n1 varchar(50), out id1 varchar(5),
out s1 decimal(6,2), out r1 integer,
out n2 varchar(50), out id2 varchar(50),
out r2 integer, out s2 decimal(6,2),
in region integer)
language java
parameter style java
external name

'SQLJExamples.bestTwoEmps (java.lang.String,
java.lang.String, int, java.math.BigDecimal,
java.lang.String, java.lang.String, int,
java.math.BigDecimal, int)'

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal (6,2)
and so on. The Java method signature is String, String, int, BigDecimal and so on.

Calling the procedure After the method is installed in the database and the SQLJ procedure
referencing the method has been created, you can call the SQLJ procedure.

At runtime, the SQL system:

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 109

1 Creates the needed arrays for the out and inout parameters when the SQLJ
procedure is called.

2 Copies the contents of the parameter arrays into the out and inout target
variables when returning from the SQLJ procedure.

The following example calls the best2 procedure from isql. The value for
the region input parameter specifies the region number.

declare @n1 varchar(50), @id1 varchar(5),
@s1 decimal (6,2), @r1 integer, @n2 varchar(50),
@id2 varchar(50), @r2 integer, @s2 decimal(6,2),
@region integer
select @region = 3
execute best2 @n1 out, @id1 out, @s1 out, @r1 out,
@n2 out, @id2 out, @r2 out, @s2 out, @region

Note Adaptive Server calls SQLJ stored procedures exactly as it calls
Transact-SQL stored procedures. Thus, when using isql or any other non-Java
client, you must precede parameter names by the @ sign.

Returning result sets
A SQL result set is a sequence of SQL rows that is delivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets, those
result sets are implicit output from the procedure call. That is, they are not
declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as explicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap the
Java method in a SQLJ stored procedure. When you call the method as a SQLJ
stored procedure, the result sets, which are returned by the Java method as Java
result set objects, are transformed by the server to SQL result sets.

When writing the Java method to be invoked as a SQLJ procedure that returns
a SQL-style result set, you must specify an additional parameter to the method
for each result set that the method can return. Each such parameter is a single-
element array of the Java ResultSet class.

SQLJ stored procedures

110 Adaptive Server Enterprise

This section describes the basic process of writing a method, creating the SQLJ
stored procedure, and calling the method. See “Specifying Java method
signatures explicitly or implicitly” on page 115 for more information about
returning result sets.

Writing the Java
method

The following method, SQLJExamples.orderedEmps, invokes SQL, includes a
ResultSet parameter, and uses JDBC calls for securing a connection and opening
a statement.

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

("sybase.asejdbc.ASEDriver");
Connection conn =

DriverManager.getConnection
("jdbc:default:connection");

}
catch (Exception e) {

System.err.println(e.getMessage()
+ ":error in connection");

}

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
("SELECT name, region_of(state)"
"as region, sales FROM sales_emps"
"WHERE region_of(state) > ? AND"
"sales IS NOT NULL"
"ORDER BY sales DESC");

stmt.setInt(1, regionParm);
rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e)

System.err.println("SQLException:"
+ e.getErrorCode() + e.getMessage());

}
return;

}

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 111

orderedEmps returns a single result set. You can also write methods that return
multiple result sets. For each result set returned, you must:

• Include a separate ResultSet array parameter in the method signature.

• Create a Statement object for each result set.

• Assign each result set to the first element of its ResultSet array.

Adaptive Server always returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

• Create a Statement object for each result set that is to be returned to the
client.

• Do not explicitly close ResultSet and Statement objects. Adaptive Server
closes them automatically.

Note Adaptive Server ensures that ResultSet and Statement objects are not
closed by garbage collection unless and until the affected result sets have
been processed and returned to the client.

• If some rows of the result set are fetched by calls of the Java next() method,
only the remaining rows of the result set are returned to the client.

Creating the SQLJ
stored procedure

When you create a SQLJ stored procedure that returns result sets, you must
specify the maximum number of result sets that can be returned. In this
example, the ranked_emps procedure returns a single result set.

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps(int,

ResultSet[]'

If ranked_emps generates more result sets than are specified by create
procedure, a warning displays and the procedure returns only the number of
result sets specified. As written, the ranked_emps SQLJ stored procedures
matches only one Java method.

Note Some restrictions apply to method overloading when you infer a method
signature involving result sets. See “Mapping Java and SQL datatypes” on
page 113 for more information.

SQLJ stored procedures

112 Adaptive Server Enterprise

Calling the procedure After you have installed the method’s class in the database and created the
SQLJ stored procedure that references the method, you can call the procedure.
You can write the call using any mechanism that processes SQL result sets.

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sql.CallableStatement stmt =
conn.prepareCall("{call ranked_emps(?)}");

stmt.setInt(1,3);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {

String name = rs.getString(1);
int.region = rs.getInt(2);
BigDecimal sales = rs.get.BigDecimal(3);
System.out.print("Name = " + name);
System.out.print("Region = "+ region);
System.out.print("Sales = "+ sales);
System.out.printIn():

}

The ranked_emps procedure supplies only the parameter declared in the create
procedure statement. The SQL system supplies an empty array of ResultSet
parameters and calls the Java method, which assigns the output result set to the
array parameter. When the Java method completes, the SQL system returns the
result set in the output array element as a SQL result set.

Note You can return result sets from a temporary table only when using an
external JDBC driver such as jConnect. You cannot use the Adaptive Server
native JDBC driver for this task.

Deleting a SQLJ stored procedure name

You can delete the SQLJ stored procedure name for a Java method using the
drop procedure command. For example, enter:

drop procedure correct_states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the Java
class and method referenced by the procedure.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 113

Viewing information about SQLJ functions and
procedures

Several system stored procedures can provide information about SQLJ
routines:

• sp_depends lists database objects referenced by the SQLJ routine and
database objects that reference the SQLJ routine.

• sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQLJ routine.

• sp_helpjava lists information about Java classes and JARs installed in the
database. The depends parameter lists dependencies of specified classes
that are named in the external name clause of the SQLJ create function or
SQLJ create procedure statement.

• sp_helprotect reports the permissions of SQLJ stored procedures and SQLJ
functions.

See the Reference Manual: Procedures for complete syntax and usage
information for these system procedures.

Advanced topics
The following topics present a detailed description of SQLJ topics for
advanced users.

Mapping Java and SQL datatypes
When you create a stored procedure or function that references a Java method,
the datatypes of input and output parameters or result sets must not conflict
when values are converted from the SQL environment to the Java environment
and back again. The rules for how this mapping takes place are consistent with
the JDBC standard implementation. They are shown below and in Table 6-1 on
page 114.

Each SQL parameter and its corresponding Java parameter must be mappable.
SQL and Java datatypes are mappable in these ways:

Advanced topics

114 Adaptive Server Enterprise

• A SQL datatype and a primitive Java datatype are simply mappable if so
specified in Table 6-1.

• A SQL datatype and a non-primitive Java datatype are object mappable if
so specified in Table 6-1.

• A SQL abstract datatype (ADT) and a non-primitive Java datatype are
ADT mappable if both are the same class or interface.

• A SQL datatype and a Java datatype are output mappable if the Java
datatype is an array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example, character
and String[] are output mappable.

• A Java datatype is result-set mappable if it is an array of the result set-
oriented class: java.sql.ResultSet.

In general, a Java method is mappable to SQL if each of its parameters is
mappable to SQL and its result set parameters are result-set mappable and the
return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored procedures is a Sybase extension
of the SQLJ Part 1 standard.

Table 6-1: Simply and object mappable SQL and Java datatypes

SQL datatype

Corresponding Java datatypes

Simply mappable Object mappable

char/unichar java.lang.String

nchar java.lang.String

varchar/univarchar java.lang.String

nvarchar java.lang.String

text java.lang.String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney java.math.BigDecimal

bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int Integer

bigint long java.math.BigInteger

unsigned smallint int Integer

unsigned int long Integer

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 115

Specifying Java
method signatures
explicitly or implicitly

When you create a SQLJ function or stored procedure, you typically specify a
Java method signature. You can also allow Adaptive Server to infer the Java
method signature from the routine’s SQL signature according to standard
JDBC datatype correspondence rules described earlier in this section and in
Table 6-1.

Sybase recommends that you include the Java method signature as this practise
ensures that all datatype translations are handled as specified.

You can allow Adaptive Server to infer the method signature for datatypes that
are:

• Simply mappable

• ADT mappable

• Output mappable

• Result-set mappable

For example, if you want Adaptive Server to infer the method signature for
correct_states, the create procedure statement is:

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘SQLJExamples.correctStates’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks like this:

unsigned bigint java.math.BigInteger

real float Float

float double Double

double precision double Double

binary byte[]

varbinary byte[]

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

date java.sql.Date

time java.sql.Time

SQL datatype

Corresponding Java datatypes

Simply mappable Object mappable

Advanced topics

116 Adaptive Server Enterprise

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘SQLJExamples.correctStates

(java.lang.String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that are
object mappable. Otherwise, Adaptive Server infers the primitive, simply
mappable datatype.

For example, the SQLJExamples.job method contains a parameter of type int.
(See “Handling null argument values” on page 100.) When creating a function
referencing that method, Adaptive Server infers a Java signature of int, and you
need not specify it.

However, suppose the parameter of SQLJExamples.job was Java Integer, which
is the object-mappable type. For example:

public class SQLJExamples {
public static String job(Integer jc)

throws SQLException ...

Then, you must specify the Java method signature when you create a function
that references it:

create function job_of(jc integer)
...
external name

'SQLJExamples.job(java.lang.Integer)'

Returning result sets
and method
overloading

When you create a SQLJ stored procedure that returns result sets, you specify
the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the single
method that matches the method name and signature. For example:

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps

(int, java.sql.ResultSet[])'

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked_emps(region integer)
dynamic result sets 1

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 117

language java parameter style java
external name 'SQLJExamples.orderedEmps'

If two methods exist, one with a signature of int, RS[], the other with a signature
of int, RS[], RS[], Application Server cannot distinguish between the two
methods and the procedure fails. If you allow Adaptive Server to infer the Java
method signature when returning result sets, make sure that only one method
satisfies the inferred conditions.

Note The number of dynamic result sets specified only affects the maximum
number of results that can be returned. It does not affect method overloading.

Ensuring signature
validity

If an installed class has been modified, Adaptive Server checks to make sure
that the method signature is valid when you invoke a SQLJ procedure or
function that references that class. If the signature of a modified method is still
valid, the execution of the SQLJ routine succeeds.

Using the command main method
In a Java client, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of a class. The
JDBCExamples class, for example, contains a main method. It is the command
main method that executes when you execute the class from the command line
as in the following:

java JDBCExamples

Note You cannot reference a Java main method in a SQLJ create function
statement.

If you reference a Java main method in a SQLJ create procedure statement, the
command main method must have the Java method signature String[] as in:

public static void main(java.lang.String[]) {
...
}

If the Java method signature is specified in the create procedure statement, it
must be specified as (java.lang.String[]). If the Java method signature is
not specified, it is assumed to be (java.lang.String[]).

SQLJ and Sybase implementation: a comparison

118 Adaptive Server Enterprise

If the SQL procedure signature contains parameters, those parameters must be
char, unichar, varchar, or univarchar. At runtime, they are passed as a Java array
of java.lang.String.

Each argument you provide to the SQLJ procedure must be char, unichar,
varchar, univarchar, or a literal string because it is passed to the main method as
an element of the java.lang.String array. You cannot use the dynamic result sets
clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison
This section describes differences between SQLJ Part 1 standard specifications
and the Sybase proprietary implementation for SQLJ stored procedures and
functions.

Table 6-2 describes Adaptive Server enhancements to the SQLJ
implementation.

Table 6-2: Sybase enhancements

Table 6-3 describes SQLJ standard features not included in the Sybase
implementation.

Category SQLJ standard Sybase implementation

create procedure command Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Java methods that allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return
types.

create procedure and create function
commands

Supports only SQL datatypes in
create procedure or create function
parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract data types (ADTs).

SQLJ function and SQLJ procedure
invocation

Does not support implicit SQL
conversion to SQLJ datatypes.

Supports implicit SQL conversion to
SQLJ datatypes.

SQLJ functions Does not allow SQLJ functions to
run on remote servers.

Allows SQLJ functions to run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 119

Table 6-3: SQLJ features not supported

Table 6-4 describes the SQLJ standard features supported in part by the Sybase
implementation.

Table 6-4: SQLJ features partially supported

Table 6-5 describes the SQLJ implementation-defined features in the Sybase
implementation.

Table 6-5: SQLJ features defined by the implementation

SQLJ category SQLJ standard Sybase implementation

create function command Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique names for all stored
procedure and functions.

utilities Supports sqlj.install_jar,
sqlj.replace_jar, sqlj.remove_jar, and
similar utilities to install, replace,
and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

SQLJ category SQLJ standard Sybase implementation

create procedure and create function
commands

Allows users to install different
classes with the same name in the
same database if they are in different
JAR files.

Requires unique class names in the
same database.

create procedure and create function
commands

Supports the key words no sql,
contains sql, reads sql data, and
modifies sql data to specify the SQL
operations the Java method can
perform.

Supports modifies sql data only.

create procedure command Supports java.sql.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sql.ResultSet only.

drop procedure and drop function
commands

Supports the key word restrict, which
requires the user to drop all SQL
objects (tables, views, and routines)
that invoke the procedure or function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

SQLJ category SQLJ standard Sybase implementation

create procedure and create function
commands

Supports the deterministic |
not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

SQLJExamples class

120 Adaptive Server Enterprise

SQLJExamples class
This section displays the SQLJExamples class used to illustrate SQLJ stored
procedures and functions.

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function is invoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs all validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

Can specify the create procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Invoking SQLJ routines When a Java method executes a SQL
statement, any exception conditions
are raised in the Java method as a
Java exception of the
Exception.sqlException subclass.
The effect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server JDBC.

Invoking SQLJ routines The implementation defines whether
a Java method called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of the invoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

drop procedure and drop function
commands

Can specify the drop procedure or
drop function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

SQLJ category SQLJ standard Sybase implementation

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 121

import java.lang.*;
import java.sql.*;
import java.math.*;

static String _url = “jdbc:default:connection”;

public class SQLExamples {

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals("MN") || s.equals("VT") ||

s.equals("NH")) return 1;
if (s.equals("FL") || s.equals("GA") ||

s.equals("AL")) return 2;
if (s.equals("CA") || s.equals("AZ") ||

s.equals("NV")) return 3;
else throw new SQLException

("Invalid state code", "X2001");

}
public static void correctStates

(String oldSpelling, String newSpelling)
throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName
("sybase.asejdbc.ASEDriver");

conn = DriverManager.getConnection(_url);
}
catch (Exception e) {

System.err.println(e.getMessage() +
":error in connection");

}
try {

pstmt = conn.prepareStatement
("UPDATE sales_emps SET state = ?
WHERE state = ?");

pstmt.setString(1, newSpelling);
pstmt.setString(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println("SQLException: "+
e.getErrorCode() + e.getMessage());

SQLJExamples class

122 Adaptive Server Enterprise

}

}
public static String job(int jc)

throws SQLException {
if (jc==1) return "Admin";

 else if (jc==2) return "Sales";
else if (jc==3) return "Clerk";
else return "unknown jobcode";

}
public static String job(int jc)

throws SQLException {
if (jc==1) return "Admin";

 else if (jc==2) return "Sales";
else if (jc==3) return "Clerk";
else return "unknown jobcode";
}

public static void bestTwoEmps(String[] n1,
String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = "****";
id1[0] = "";
r1[0] = 0;
s1[0] = new BigDecimal(0):
n2[0] = "****";
id2[0] = "";
r2[0] = 0;
s2[0] = new BigDecimal(0);

try {
Connection conn = DriverManager.getConnection

("jdbc:default:connection");
java.sql.PreparedStatement stmt =

conn.prepareStatement("SELECT name, id,"
+ "region_of(state) as region, sales FROM"
+ "sales_emps WHERE"
+ "region_of(state)>? AND"
+ "sales IS NOT NULL ORDER BY sales DESC");

stmt.setInteger(1, regionParm);
ResultSet r = stmt.executeQuery();

if(r.next()) {
n1[0] = r.getString("name");

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise 123

id1[0] = r.getString("id");
r1[0] = r.getInt("region");
s1[0] = r.getBigDecimal("sales");

}
else return;

if(r.next()) {
n2[0] = r.getString("name");
id2[0] = r.getString("id");
r2[0] = r.getInt("region");
s2[0] = r.getBigDecimal("sales");

}
else return;

}
catch (SQLException e) {

System.err.println("SQLException: "+
e.getErrorCode() + e.getMessage());

}
}

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

("sybase.asejdbc.ASEDriver");
Connection conn =

DriverManager.getConnection
("jdbc:default:connection");

}
catch (Exception e) {

System.err.println(e.getMessage()
+ ":error in connection");

}

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
("SELECT name, region_of(state)"
"as region, sales FROM sales_emps"
"WHERE region_of(state) > ? AND"
"sales IS NOT NULL"

SQLJExamples class

124 Adaptive Server Enterprise

"ORDER BY sales DESC");
stmt.setInt(1, regionParm);
rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e) {

System.err.println("SQLException:"
+ e.getErrorCode() + e.getMessage());

}
return;

} return;
}

}

Java in Adaptive Server Enterprise 125

C H A P T E R 7 Debugging Java in the Database

All PCA /JVMs include built-in support for the Java Platform Debugger
Architecture (JPDA). The JPDA lets you debug Java code running on
Adaptive Server. The JPDA consists of:

• The user interface controlling the debugging, that is, the debugger

• The JVM running the classes to be debugged, and the debug agent
providing access to the JVM

• A communication channel between the debug agent and the debugger

The JPDA allows users to debug Java classes either from the command
line, by starting the JVM within a debugger application, or remotely, by
attaching a debugger to the debug agent on a running JVM. Because users
do not have access to the JVM command line in the server, all debugging
for Java in the Adaptive Server database is done remotely.

Supported Java debuggers
Every JDK provides an implementation of the basic, command line
debugger “jdb” in its development tools package. You can also use an
integrated development environment (IDE) for Java development and
debugging, for example, Sun Java Studio, IBM WebSphere Studio,
JBuilder, and Eclipse. In addition, there are standalone JPDA debuggers
such as JSwat.

Topic Page
Supported Java debuggers 125

Setting up Java debugging 126

Setting up Java debugging

126 Adaptive Server Enterprise

If you use an IDE or standalone debugger tool, consult the documentation
provided by the vendor for specific JDK requirements.

Note The jdb debugger is not included in the JRE distribution. To use jdb, you
must install the JDK, which lets you access the jdb debugger.

Setting up Java debugging
Whether you use an IDE, a standalone debugger, or a jdb debugger, you must:

1 Configure the server to support debugging

2 Attach the remote debugger to the JVM debugging agent

Configuring the server to support debugging
Start the debug agent for the JVM using a user-supplied or default port number.
Use sp_jreconfig with these configuration parameters to enable debugging,
choose a port number, and specify whether the JVM is immediately suspended:

• pca_jvm_java_dbg_agent_port – enables or disables debugging and
establishes the port number on which the debug agent in the JVM listens.
If you enable this parameter, the JVM starts with the debug agent running
in a manner that allows a remote debugger to attach. By default, the debug
agent listens on port 8000. To enable the debug agent and allow debugging
using the default port, enter:

sp_jreconfig "enable", "pca_jvm_java_dbg_agent_port"

To use a different port, change the port number prior to starting the JVM.
Once the JVM is started with the debug agent running, the debug agent
listens on that port until the JVM shuts down. To enable debugging and
change the port on which the debug agent listens, enter:

sp_jreconfig "update", "pca_jvm_java_dbg_agent_port", new_port_number

• pca_jvm_java_dbg_agent_suspend – controls whether the JVM suspends
on startup when the debug agent is running. By default,
pca_jvm_java_dbg_agent_suspend is disabled.

CHAPTER 7 Debugging Java in the Database

Java in Adaptive Server Enterprise 127

When pca_jvm_java_dbg_agent_suspend is enabled, no Java method can
execute until a debugger is attached and the JVM is restarted. Suspending
the JVM lets you examine the early initialization of the JVM before any
classes are loaded. In general, suspending the JVM is not necessary for
debugging user classes.

To enable pca_jvm_java_dbg_agent_suspend, enter:

sp_jreconfig "enable", "pca_jvm_java_dbg_agent_suspend"

Note Use pca_jvm_java_dbg_agent_suspend with caution. Enabling
pca_jvm_java_dbg_agent_suspend causes the JVM to suspend and all
Adaptive Server Java tasks to wait until you attach and instruct the JVM
to continue via the debugger. Sybase recommends that you start the JVM
and run a simple Java command to allow you to attach the debugger rather
than enabling pca_jvm_java_dbg_agent_suspend. This allows the JVM to
boot, and lets you attach the debugger before executing the class that is to
be debugged.

Once the configuration values enabling the debug agent in the JVM are set, the
next time the JVM is started the debug agent is available. To disable the debug
agent the debug agent, disable the configuration parameters and restart the
JVM (the agent cannot be turned off once the JVM has started with the agent
running).

Note Do not run the debug agent by default. When the debug agent is running,
any debug application with network access to the host can potentially connect
with the JVM and gain access to object internal data.

Attaching the remote debugger to the JVM debug agent
A debug session begins when the remote debugger attaches to the debug agent
running in Adaptive Server. In addition to the connection information supplied
using sp_jreconfig, you must enter the location of the source files for the classes
that are to be debugged.

If you are using an IDE or standalone debugger, consult the vendor
documentation for instruction on how to attach the remote debugger to the
debug agent.

Setting up Java debugging

128 Adaptive Server Enterprise

This example assumes you are using a jdb command line debugger. You
connect to the debug agent on the machine “myhost” on port 8000 and specify
Java source files in the JAR archive mysource.jar in your home directory.

jdb –attach myhost:8000 –source .:${HOME}/mysource.jar

The syntax varies for other debugger tools, but you must always supply
connection information and source file locations.

Java in Adaptive Server Enterprise 129

C H A P T E R 8 File and Network Access Using
Java

This chapter describes and provides examples of file and network access
using Java.

Adaptive Server supports both file and network I/O capabilities using
java.io, java.net, and java.nio packages.

Note If both file and network I/O are streaming large text documents in
and out of the server, you may need to increase the amount of memory
available to the JVM. If you are handling large documents, you may need
to increase the value of the pci memory size configuration parameter to
accommodate larger memory requirements. See “The PCI memory pool”
on page 16.

File access using java.io
The PCA/JVM supports direct file I/O through the java.io and java.nio
packages. These packages allow users to read and write files both to and
from the file system.

A clear distinction must be made between the user identity used by the
operating system and the user identity used by Adaptive Server.

Topic Page
File access using java.io 129

File access using java.net 137

File access using java.io

130 Adaptive Server Enterprise

User identity and permissions
When Adaptive Server starts, the server process executes using the system user
ID that started the process. For example, if Adaptive Server is started by a
system user ID “sybase”:

% ps -Usybase -o user,pid,command

USER PID CMD
sybase 20405 /sybase/ASE-15-0/bin/dataserver ...

Thus, all interactions between the Adaptive Server process and the operating
system are associated with the system user ID that started Adaptive Server.

In the server, however, the situation is different. As each user logs in to the
server, the user does so with a user ID defined on the Adaptive Server server.
This user ID is distinct from the user ID defined on the host machine—even
though it might be expected that a user ID represents the same person on both
Adaptive Server and the operating system.

Within the database, users may perform different actions based on the roles
assigned to them. It is likely that users logged in to Adaptive Server do not have
user accounts on the host machine. Thus, the user account that started the
server may be acting as a proxy for any number of database users. For example,
suppose two files are to be read by the Adaptive Server users (file permissions
are strictly read-only for the user).

-r----------1 sybase sybuser 1263 Aug 19 18:54 myfile1.dat
-r----------1 jdoe sybuser 952 Aug 7 9:02 myfile2.dat

If users log in to Adaptive Server to run a Java method that attempts to read
these files, the Java file I/O eventually comes down to the functions managed
by the host interface:

isql -Usa -P...
isql -Ujdoe -P...
isql -Ujanedoe -P...

The behavior of the underlying read() runtime function is the same for each
user. Every user can read myfile1.dat, which is owned by the system user ID
“sybase” because the server is identified to the operating system as owned by
that user. However, no user can read myfile2.dat, even though it appears to be
owned by one of the database users, because all database user identities are
compressed into a single operating system identity “sybase,” which is
associated with the process owner. Thus, file access is denied.

CHAPTER 8 File and Network Access Using Java

Java in Adaptive Server Enterprise 131

Specifying directories for file I/O: UNIX platforms
You can specify optional, additional permission restrictions on the path using
traditional UNIX notation. For example, “u+rw” gives the user read-write
access, the group read-only access, and all others are denied access. These
restrictions do not affect operating system permissions; a user who allowed
read-write access in the configuration statement does not gain write access to
a directory that has read-only operating system permissions.

When a mask is not provided, the default mask of 0666 is used for the directory
for all write operations including file creation. The mask is not used for read-
only operations.

When a mask is provided, a default mask of all zeroes is assumed. This ensures
that a mask specified as (u+rw) results in a mask of 0600.

Mask syntax

The work_dir (trusted directory) permission mask:

• Must be placed immediately after the path with no intervening spaces.

• Can define [u]ser, [g]roup, [o]ther, and [a]all masks using the leading
character (u, g, o, and a) followed by +, –, =, r, w, and x.

For example:

• (u=rw,go=r) equals 0644

• (ugo+r,u+w) equals 0644

• (ugo+r,u+wx) equals 0755

• (ugo=rwx,go–wx) equals 0755

There are many ways to define masks, but they are always evaluated from left
to right. For example, suppose the mask is initially defined as 0777 (ugo=rwx).
If you later remove w(rite) and x(ecute) for g(roup) and o(ther), the octal
equivalent becomes 0744 and the mask (ugo=rwx,go–wx).

If no mask is specified (when the mask portion is optional), the directory uses
the default write mask of 0666.

Valid syntax values are:

File access using java.io

132 Adaptive Server Enterprise

u ... user (or owner).
g ... group.
o ... other (or world).
a ... all (sets u, g, and o). For example: (a+rw) turns on read and write for u, g,
 and o.
+ ... turn on bits.
– ... turn off bits.
= ... replace bits. For example: (u=rw) replaces user.
r ... read bit.
w ... write bit.
x ... execute bit.

Examples

• To add a new working directory path to the pca_jvm_work_dir array,
enter:

sp_jreconfig "add", "work_dir", "/some/path(u+rw)

or,

sp_jreconfig "add", "work_dir", "/some/path(u=rw)

• To delete an existing working directory path from the pca_jvm_work_dir
array, enter:

sp_jreconfig "delete", "work_dir", "/some/path"

When deleting or updating a work_dir array element or path entry, only the
path portion is required in the supplied string.

• To modify an existing working directory path in the pca_jvm_work_dir
array, enter:

sp_jreconfig "update", "work_dir", "/old", "/new"

• To change the path and update permissions, enter:

sp_jreconfig "update", "work_dir", "/some/path(u+rw)", "/some/path(u+w)"

• To disable an existing working directory path in the pca_jvm_work_dir
array, enter:

sp_jreconfig "disable", "work_dir", "/some/path"

The last argument is a full or partial string value that identifies an
individual work_dir array element, and must be supplied even if there is
only one element in the array.

CHAPTER 8 File and Network Access Using Java

Java in Adaptive Server Enterprise 133

• To clear the entire set of working directory paths in the pca_jvm_work_dir
array, enter:

sp_jreconfig "array_clear", "work_dir"

• To enable the entire array, enter:

sp_jreconfig "array_enable", "work_dir"

• To disable the entire array, enter:

sp_jreconfig "array_disable", "work_dir"

Specifying directories for file I/O: Windows platforms
You can specify optional, additional permission restrictions on the path using
the following notation.

Mask syntax

In a Windows environment, the following syntax can be added to the end of a
working directory definition to define the permission mask:

• /RW – defines read/write permission

• /RO – defines read-only permission

• /NA – defines no access

Examples

• To define D:\my_work_dir as trusted with full access, enter:

sp_jreconfig "add", "work_dir", "C:\my_work_dir/RW"

• To define D:\my_read_only as trusted with read-only access, enter:

sp_jreconfig "add", "work_dir","D:\my_read_only_dir/RO"

• To define E:\general as trusted with full access, but disallow access to a
subdirectory of E:\general called TOP_SECRET, enter:

sp_jreconfig "add", "work_dir","E:\general/RW;E:\general\TOP_SECRET/NA"

Delimit individual directory entries with a semi-colon.

File access using java.io

134 Adaptive Server Enterprise

File I/O changes
File I/O in the JVM is controlled primarily through file-open operations. After
a file has been opened successfully, additional I/O operations on the file are
generally permitted. For security reasons, all file-open requests must be made
with an absolute path to the physical file; soft links are not supported. Relative
paths are converted to absolute paths before any file I/O operations are
attempted. For this reason, it is not possible to set up the $SYBASE directory as
a soft link. Doing so prevents the JVM from initializing because it cannot open
files in $SYBASE/shared.

If a file-open operation does not conform to a specific set of rules, the file
cannot open. File-open rules are based on:

• Whether or not the file already exists

• Whether or not the file is to be opened for read-only or read-write access

• The location of the file to be opened

Rules for opening existing files
This section describes the rules and checks for opening files on UNIX and
Windows platforms.

Note If any check fails, the open file request is denied and an error is reported
to the caller.

UNIX platforms

If the user ID associated with the server has permission to access the file, the
file can be opened for read-only access if it is in the $SYBASE/shared directory.
Read access is not allowed for any other $SYBASE directory.

Note Write access, including file creation, is never allowed for any $SYBASE
directory.

Files opened for write access are given additional checks before the file open
request is granted. Adaptive Server checks that:

• The user issuing the file-open request is the file owner.

CHAPTER 8 File and Network Access Using Java

Java in Adaptive Server Enterprise 135

• The number of hard links is no more than one. If greater than one, the
request fails.

• The file to be opened is in a valid directory location. The request fails if
the file is in the $SYBASE directory or not in one of the configured
working directories.

• The working directory has been configured with an access mask that
allows files to be opened with write access. The default mask is 0666. The
mask is not required unless you want a mask other than the default.

Windows platforms

If the user ID associated with the server has permission to access the file,
access is granted if:

• The file already exists in the %SYBASE% directory structure, read-only
access is allowed, and open-for-write requests receive an
ERROR_ACCESS_DENIED error, or

• The file exists or is being created in the Windows %TEMP% directory and
read-write access is allowed, or

• The file exists or is being created in a configured work directory (a trusted
directory). The access allowed is that defined for the work directory, or

• The file exists or is being created in any subdirectory under a trusted
directory. The access allowed is that defined for the parent directory.

• If one trusted directory is nested inside another, then the system examines
access to each trusted parent in the target file path and the most restricted
access is applied. Thus it is possible to allow read-write access to a trusted
directory tree, but then specify read-only or no access for specified
directories below it. This behavior is similar to Windows behavior when
applying ACLs to files.

File access using java.io

136 Adaptive Server Enterprise

Rules for creating files with a file open operation
An open request for a file that does not exist is essentially a file-create
operation, and must be handled differently than for a file that already exists.
The same location constraints that apply to an existing file being opened for
write access apply to a newly created file: if the newly created file is to be in
either the $SYBASE directory structure or is not contained in a configured
working directory, the request fails. In addition, the access mask for the
directory must allow the user ID associated with the server process to write to
the target directory.

Note Write access, including file creation, is always allowed in the /tmp
directory.

On UNIX platforms – files created with an open request must specify write
access and are always opened using the file open flags (O-CREAT | O-EXCL |
O-RDWR) and an access mask of (0600). For security reasons, these file open
flags and this access mask is always used—without regard to the flags and
access mask specified by the file open request. You cannot create files using
file open flags that specify the file is to be opened for read-only access. To limit
the file size or set disk usage quotas, you must do so at the operating system
level.

Final file check
After a file open has passed all file checks and the file is allowed to open, a final
check ensures that the opened file matches the file originally requested. This
prevents attempts to open files not otherwise allowed that attempt to
circumvent the checks. If a file open request fails, an annotation is added to the
audit trace and a java.lang.IOException is raised to the calling method.
Method-specific handling of the IOException determines whether the
exception is visible to the user or handled by an alternate mechanism in the
Java code.

CHAPTER 8 File and Network Access Using Java

Java in Adaptive Server Enterprise 137

File access using java.net
Adaptive Server support for java.net and java.nio lets you create client-side
Java networking applications in the server. You can create a network Java client
application that connects to any server, which effectively enables Adaptive
Server to function as a client to external servers.

You can use java.net and java.nio to:

• Download documents from any URL on the Internet.

• Send e-mail messages from inside the server.

• Connect to an external server to save a document and perform file
functions such as saving or editing a document.

• Access documents using XML.

Note Use java.net with caution:

• Most objects associated with java.net are not serializable; they cannot be
inserted into tables.

• Most I/O-related methods use buffered I/O and are not automatically
flushed. These methods, such as PrintWriter, must be flushed explicitly.

Examples
This section provides examples for using socket classes and the URL class. You
can:

• Access an external document with XML Query Language (XQL), using
the URL class.

• Use the MailTo class to mail a document.

Using socket classes

The Java socket classes allow more sophisticated network transfers than the
URL classes. The socket classes let you connect to a specified port on any
network host, and use the InputStream and OutputStream classes to read and
write the data.

File access using java.net

138 Adaptive Server Enterprise

Using the URL classes

You can use the URL classes to:

• Send an e-mail message.

• Download an HTTP document from a Web server. The HTTP document
can be a static file or can be dynamically constructed by the Web server.

• Access an external document with XQL.

• Use the mailto:URL class to mail a document.

For example, you can mail a document using the URL class. Your client must
be connected to a mail server so that the machine referenced by System
Properties (in this example, it is salsa.sybase.com), is running a mail server
such as sendmail.

For this example, the steps are:

1 Create a URL object.

2 Set a URLConnection object.

3 Create an OutputStream object from the URL object.

4 Write the mail. For example:

import java.io.*;
import java.net.*;
public class MailTo {

public static void sendIt()
throws Exception{
System.getProperty("mail.host", "salsa.sybase.com");
URL url = new URL("mailto:name@sybase.com");
URLConnection conn = url.openConnection();
PrintStream out = new PrintStream(conn.getOutputStream(),true);
out.println ("From janedoes@sybase.com");
out.println ("Subject: Works Great!");
out.println ("Thanks for the example - it works great!");
out.close();
System.out.println("Message Sent");

}
}

5 Install mailto:URL for sending e-mail messages from within the database:

select MailTo.sendIt()

CHAPTER 8 File and Network Access Using Java

Java in Adaptive Server Enterprise 139

You can also use the URL class to download a document from an HTTP URL.
When you start, the client connects to a Web server. The steps are:

1 Create a URL object.

2 Create an InputStream object from the URL object.

3 Use read on the InputStream object to read in the document.

The following code sample reads the entire document into Adaptive Server
memory and creates a new InputStream on the document in memory.

import java.io.*;
import java.net.*;
public class URLprovess {

public static InputStream readURL()
throws Exception {
URL u = newURL("http://www.xxxx.con");
InputStream in = u.openStream");
//This is the same as creating URLConnection, then calling
//getInputStream(). In Adaptive Server, you must read the entire
//document into memory, and then create an InputStream on the
//in-memory copy.
int n = 0;
int off = 0;
byte b() = new byte(50000);
for)off = 0; (off<b.length512) &&

((n = in.read(b.off,512)! = 1);off+=n) {}
System.out.prinln("Number of bytes read :" + off);
in.close();
ByteArrayInputStream test = new ByteArrayInputStream(b,-,off);
return (InputStream) test;

}
}

File access using java.net

140 Adaptive Server Enterprise

After you create the new InputStream class, you can install this class and use it
to read a text file into the database. The following example inserts data into
table mytable.

create table mytable (cl text)
go
insert into mytable values (URLprocess.readURL())
go
Number of bytes read :40867
select datalength(cl) from mytable
go

40867

Java in Adaptive Server Enterprise 141

C H A P T E R 9 Additional Topics

This chapter presents information on several reference topics.

JDK requirement for Java classes in the server
Java classes that you install and use in the server must be at or below the
version of the JVM plugged in to Adaptive Server through the PCA/JVM.
The PCA/JVM supports Java 6 and later.

Topic Page
JDK requirement for Java classes in the server 141

Assignments 142

Allowed conversions 143

Transferring Java-SQL objects to clients 144

Suggestions for improving performance 144

Controlling access to native methods in the PCA/JVM 147

Unsupported Java API packages, classes, and methods 148

Invoking SQL from Java 152

Transact-SQL commands from Java methods 153

Datatype mapping between Java and SQL 157

Java-SQL identifiers 159

Java-SQL class and package names 160

Java-SQL column declarations 161

Java-SQL variable declarations 162

Java-SQL column references 162

Java-SQL member references 163

Java-SQL method calls 164

Assignments

142 Adaptive Server Enterprise

Assignments
This section defines the rules for assignment between SQL data items whose
datatypes are Java-SQL classes.

Each assignment transfers a source instance to a target data item:

• For an insert statement specifying a table that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert value
as the source instance.

• For an update statement that updates a Java-SQL column, refer to the Java-
SQL column as the target data item and the update value as the source
instance.

• For a select or fetch statement that assigns to a variable or parameter, refer
to the variable or parameter as the target data item and the retrieved value
as the source instance.

Note If the source is a variable or parameter, then it is a reference to an object
in the Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 162) yield a reference to an object in the Java VM. Thus,
the source is a reference to an object in the Java VM.

Assignment rules at compile-time
1 Define SC and TC as compile-time class names of the source and target.

Define SC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

2 SC_T must be the same as TC_T or a subclass of TC_T.

Assignment rules at runtime
Assume that DT_SC is the same as DT_TC or its subclass.

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 143

• Define RSC as the runtime class name of the source value. Define RSC_S
as the class named RSC in the database associated with the source. Define
RSC_T as the name of a class RSC_T installed in the database associated
with the target. If there is no class RSC_T, then an exception is raised. If
RSC_T is neither the same as TC_T nor a subclass of TC_T, then an
exception is raised.

• If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the class RSC_T that it will be
associated with in the database associated with the target.

• If the target is a SQL variable or parameter, then the source is copied by
reference to the target.

• If the target is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Allowed conversions
You can use convert to change the expression datatype in these ways:

• Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “Datatype mapping between Java and SQL” on
page 157. The action of the convert function is the mapping implied by the
Java-SQL mapping.

• Convert SQL datatypes to Java types shown in “Datatype mapping
between Java and SQL” on page 157. The action of the convert function
is the mapping implied by the SQL-Java mapping.

• Convert any Java-SQL class installed in the SQL system to any other Java-
SQL class installed in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Transferring Java-SQL objects to clients

144 Adaptive Server Enterprise

Transferring Java-SQL objects to clients
When a value whose datatype is a Java-SQL object type is transferred from
Adaptive Server to a client, the data conversion of the object depends on the
client type:

• If the client is an isql client, the toString() or similar method of the object
is invoked and the result is truncated to varchar, which is transferred to the
client.

Note The number of bytes transferred to the client is dependent on the
value of the @@stringsize global variable. The default value is 50 bytes.
See “Representing Java instances” on page 43 for more information.

• If the client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

• If the client is a b client:

• If the object is a column declared as in row, the serialized value
contained in the column is transferred to the client as a varbinary value
of length determined by the size of the column.

• Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client as an
image value.

Suggestions for improving performance
This section provides guidelines for improving performance when using Java
in Adaptive Server.

Minimize the number of calls from SQL to the JVM
Off-the-shelf JVMs, and thus the PCA/JVM, benefit from advances in JVM
capabilities and significant optimizations so that they are considerably faster
than the internal JVM in Adaptive Server 15.0.2 and earlier. However,
propagating a SQL call into Java can still create a bottleneck that can be even
more pronounced with the PCA/JVM.

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 145

To take advantage of the speed of the PCA/JVM, minimize the number of calls
from SQL to the JVM.

Consider the simple Address class:

public class Address implements java.io.Serializable {
private int state;
private String street;
private String zip;

// ...

public Address()
{

// ...
}

public Address(String street, String zip, int state)
{

this();
this.setStreet(street);
this.setZip(zip);
this.setState(state);

}

// ,,,

public void setStreet(String street)
(

// ..
}

public void setZip(String zip)
{

// ...
}

}

Because of the overhead associated with calls into the JVM, it is significantly
faster to use the three-argument constructor from SQL than the zero-argument
constructor followed by the set methods for the data members. Thus, this
statement:

1> declare @a Address
2> select @a=new Address("123 Elm Street", "12345", 10)

is more efficient than:

Suggestions for improving performance

146 Adaptive Server Enterprise

1> declare @a Adress
2> select @a = new Address()
3> select @a >> setStreet("123 Elm Street")
4> select @a >> setZip("12345")
5> select @a >> setState(10)

Pushing as much processing as possible into the Java without requiring
repeated crossing of the SQL-Java interface reduces overhead and more fully
exploits the improved capabilities of the JVM.

Use the java.lang.Thread class with care
The PCA/JVM supports the java.lang.Thread class, which allows you to create
classes that use multithreaded methods in Adaptive Server. Threads created
within a Java method compete with Adaptive Server for CPU and other
resources. Large numbers or resource-intensive threads can impact overall
server performance.

Determine if you are running within the PCA/JVM
In general, it makes little difference whether a class is running under the
PCA/JVM or a standalone JVM. You can use boolean logic to verify whether
the class is loaded via the Sybase ContextClassLoader. For example:

boolean running_in_ase = false;

running_in_ase =
this.getClass().getClassLoader().getName().equals
("sybase.aseutils.ContextClassLoader");

if (running_in_ase)
{

//in ASE
...

}
else
{

//in a standalone JVM
...

}

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 147

Avoid SQL loops in a multi-engine environment
In a multi-engine environment, certain Java/SQL commands can negatively
affect performance. This typically happens when the same Java method
executes multiple times within a SQL loop. To avoid this, write Java/SQL
commands so that the method and the loop are executed in the VM context:

1 Write loop in Java.

2 Call method from Java-coded loop.

Controlling access to native methods in the PCA/JVM
The Java language lets you use functionality implemented in non-Java
languages through the Java Native Interface (JNI) via native methods. Classes
using native methods must explicitly load the native library using either the
load(String filename) or loadLibrary(String libname) method as described in both
the java.lang.System and java.langRuntime classes. Because these libraries are
not stored as controlled objects in the database, some users may consider them
less secure.

To prevent unexpected access to native libraries, the PCA/JVM has introduced
a system property sybase.allow.native.lib to control the loading of native
libraries.

Many Java properties can be set either on the command line or from within the
application via the java.lang.System setProperty(String key, String value)
method. However, this is forbidden by the SecurityManager to prevent users
from overriding system policy. By default, users cannot load native libraries. If
an attempt is made to load a native library or alter the existing property setting,
a SecurityException is raised and the load attempt fails.

For example, if you try to load the java.net.ServerSocket class without setting
the sybase.allow.native.lib property, the initializer fails because it requires the
Socket library to be loaded. The actual Java stack varies. However, it or the
client message displays:

java.lang.SecurityException: Cannot load native
libraries from within a user Task!

This indicates that a required native library has been unable to load.

To enable loading of native libraries, set this property in the sybpcidb database
prior to starting the JVM:

Unsupported Java API packages, classes, and methods

148 Adaptive Server Enterprise

1> sp_jreconfig "add","pca_jvm_java_option",
"-Dsybase.allow.native.lib=true"

2> go

Once sybase.allow.native.lib is set true, the additional property is passed in to
the JVM on the command line at JVM startup. This property cannot be changed
while the JVM is running. If you no longer need to load libraries, use
sp_jreconfig to delete or disable pca_jvm_java_option.

Unsupported Java API packages, classes, and
methods

Adaptive Server supports many but not all classes and methods in the Java API.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread manipulation facilities of java.lang.Thread.

 Warning! Take care when using methods that spawn child threads.
java.lang.Thread objects started within a Java method are scheduled by
runtime rather than the Adaptive Server scheduler. If these threads are
processor intensive or if large numbers of threads are spawned, server
performance can degrade due to competition for processor time by greedy user
threads.

Because the PCA/JVM uses a standard Java plug-in, the full class distribution
is available to you. In general, methods are supported unless their use risks
interference with the operation of the server or other Java tasks.

Java in Adaptive Server does not support the native methods invoked through
the Java Native Interface (JNI).

This section lists:

• Unsupported Java methods

• Unsupported java.sql methods

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 149

Restricted Java packages, classes, and methods
• Because the JVM runs in headless mode, Java methods requiring user

input or output are disabled

• Operations that could interfere with the operations of the server or other
JVM tasks are not permitted

• These java.lang.Thread methods are not permitted:

• interrupt()

• setPriority ()

• setName()

• enumerate()

• setDaemon()

• checkAccess()

• getContextClassLoader()

• setDefaultExceptionHandler()

• setContextClassLoader()

• getStackTrace()

• getAllStarkTraces()

• setDefaultUncaughtExceptionHandler()

• stop()

• destroy()

• suspend()

• resume()

• Deprecated methods are allowed, but may be unsafe

• countStackFrames()

• These java.lang.ThreadGroup methods are not permitted:

• getParent()

• setDaemon()

• setMaxPriority()

• checkAccess()

Unsupported Java API packages, classes, and methods

150 Adaptive Server Enterprise

• enumerate()

• interrupt()

• stop()

• destroy()

• suspend()

• resume()

• Deprecated methods are allowed, but may be unsafe

• allowThreadSuspension()

• Security issues:

• You can not override the existing SecurityManager or instantiate
other class loaders.

• The exit() methods in java.lang.System and java.lang.Runtime are not
permitted.

Unsupported java.sql methods and interfaces
For the Java 6 class distribution, the java.sql package conforms with the JDBC
4.x specification. However, the underlying Sybase implementation is at the
JDBC 2.0 level. All JDBC methods included since the JDBC 2.0 specification
are not supported. In addition, the following methods specified in JDBC 2.0 are
not supported.

• Connection.commit()

• Connection.getMetaData()

• Connection.nativeSQL()

• Connection.rollback()

• Connection.setAutoCommit()

• Connection.setCatalog()

• Connection.setReadOnly()

• Connection.setTransactionIsolation()

• DatabaseMetaData.* – DatabaseMetaData is supported except for these
methods:

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 151

• deletesAreDetected()

• getUDTs()

• insertsAreDetected()

• updatesAreDetected()

• othersDeletesAreVisible()

• othersInsertsAreVisible()

• othersUpdatesAreVisible()

• ownDeletesAreVisible()

• ownInsertsAreVisible()

• ownUpdatesAreVisible()

• PreparedStatement.setAsciiStream()

• PreparedStatement.setUnicodeStream()

• PreparedStatement.setBinaryStream()

• ResultSetMetaData.getCatalogName()

• ResultSetMetaData.getSchemaName()

• ResultSetMetaData.getTableName()

• ResultSetMetaData.isCaseSensitive()

• ResultSetMetaData.isReadOnly()

• ResultSetMetaData.isSearchable()

• ResultSetMetaData.isWritable()

• Statement.getMaxFieldSize()

• Statement.setMaxFieldSize()

• Statement.setCursorName()

• Statement.setEscapeProcessing()

• Statement.getQueryTimeout()

• Statement.setQueryTimeoutt()

Invoking SQL from Java

152 Adaptive Server Enterprise

Invoking SQL from Java
Adaptive Server supplies a native JDBC driver, java.sql, that implements JDBC
1.1 and 1.2 specifications, and is compliant with version 2.0. java.sql enables
Java methods executing in Adaptive Server to perform SQL operations.

Special considerations
java.sql.DriverManager.getConnection() accepts these URLs:

• null

• “” (the null string)

• jdbc:default:connection

When invoking SQL from Java some restrictions apply:

• A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sql to invoke other SQL operations that
also perform update actions.

• Triggers that are fired by SQL using the facilities of java.sql cannot
generate result sets.

• java.sql cannot be used to execute extended stored procedures or remote
stored procedures.

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 153

Transact-SQL commands from Java methods
You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 9-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Reference Manual: Commands.

Table 9-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors” are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

Transact-SQL commands from Java methods

154 Adaptive Server Enterprise

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

disk unmirror Not supported.

drop database Not supported.

drop default Not supported.

drop function Supported.

drop index Not supported.

drop procedure Not supported.

drop role Not supported.

drop rule Not supported.

drop table Supported.

drop trigger Not supported.

drop view Not supported.

dump database Not supported.

dump transaction Not supported.

execute Supported.

goto Supported.

grant Not supported.

group by and having clauses Supported.

if…else Supported.

insert table Supported.

kill Not supported.

load database Not supported.

load transaction Not supported.

online database Not supported.

order by Clause Supported.

prepare transaction Not supported.

print Not supported.

raiserror Supported.

readtext Not supported.

return Supported.

revoke Not supported.

rollback trigger Not supported.

rollback Not supported.

Command Status

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 155

Table 9-2 lists set command options and whether or not you can use them in
Java methods.

Table 9-2: Support status of set command options

save transaction Not supported.

set See Table 9-2 for set
options.

setuser Not supported.

shutdown Not supported.

truncate table Supported.

union Operator Supported.

update statistics Not supported.

update Supported.

use Not supported.

waitfor Supported.

where Clause Supported.

while Supported.

writetext Not supported.

set command option Status

ansinull Supported.

ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.

char_convert Not supported.

cis_rpc_handling Not supported

close on endtran Not supported

cursor rows Not supported

datefirst Supported

dateformat Supported

fipsflagger Not supported

flushmessage Not supported

forceplan Supported

identity_insert Supported

language Not supported

lock Supported

nocount Supported

Command Status

Transact-SQL commands from Java methods

156 Adaptive Server Enterprise

noexec Not supported

offsets Not supported

or_strategy Supported

parallel_degree Supported. See Note 2.

parseonly Not supported

prefetch Supported

process_limit_action Supported. See Note 2.

procid Not supported

proxy Not supported

quoted_identifier Supported

replication Not supported

role Not supported

rowcount Supported

scan_parallel_degree Supported. See Note2.

self_recursion Supported

session_authorization Not supported

showplan Supported

sort_resources Not supported

statistics io Not supported

statistics subquerycache Not supported

statistics time Not supported

string_rtruncation Supported

stringsize Supported

table count Supported

textsize Not supported

transaction iso level Not supported. See Note 1.

transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify is already in effect. That is, this kind of
set command is allowed if it has no affect. This is done to
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no affect. This supports the use of stored
procedures that set the parallel degree for other contexts.

set command option Status

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 157

Datatype mapping between Java and SQL
Adaptive Server maps SQL datatypes to Java types (SQL-Java datatype
mapping) and Java scalar types to SQL datatypes (Java-SQL datatype
mapping). Table 9-3 shows SQL-Java datatype mapping.

Datatype mapping between Java and SQL

158 Adaptive Server Enterprise

Table 9-3: Mapping SQL datatypes to Java types

Note The mapping of unsigned bigint to double is an approximation; it will not

SQL type Java type

char String

varchar String

nchar String

nvarchar String

unichar String

univarchar String

unitext String

text String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney Java.math.BigDecimal

bit boolean

tinyint byte

smallint short

integer int

bigint long

unsigned smallint int

unsigned int long

unsigned bigint java.math.BigInteger

bigint java.math.BigInteger

real float

float double

double precision double

binary byte[]

varbinary byte[]

image java.io.InputStream

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

bigdatetime java.sql.Timestamp

bigtime java.sql.Time

date java.sql.Date

time java.sql.Time

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 159

provide exact values. For exact values, convert the unsigned bigint value to a
string value when passing it to a Java method.

Table 9-4 shows Java-SQL datatype mapping.

Table 9-4: Mapping Java scalar types to SQL datatypes

Java-SQL identifiers
Description Java-SQL identifiers are a subset of Java identifiers that can be referenced in

SQL.

Syntax java_sql_identifier ::= alphabetic character | underscore (_) symbol
[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]

Usage • Java-SQL identifiers can be a maximum of 255 bytes in length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

• The first character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore (_) symbol. Subsequent
characters can include alphabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

• Java-SQL identifiers are always case sensitive.

Java scalar type SQL type

boolean bit

byte tinyint

short smallint

int integer

long bigint

float real

double double

Java-SQL class and package names

160 Adaptive Server Enterprise

Delimited Identifiers

• Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option is on or off.

• Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

create table t1
(c1 char(12)
c2 p1.”select”.p2.”jar”)

• Double quotes surround only individual Java-SQL identifiers, not the fully
qualified name.

See also For additional information about identifiers, see Chapter 4, "Expressions,
Identifiers, and Wildcard Characters," in the Reference Manual: Building
Blocks.

Java-SQL class and package names
Description To reference a Java-SQL class or package, use the following syntax:

Syntax java_sql_class_name ::= [java_sql_package_name.]java_sql_identifier

java_sql_package_name ::=
[java_sql_package_name.]java_sql_identifier

Parameters java_sql_class_name
The fully qualified name of a Java-SQL class in the current database.

java_sql_package_name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

Usage For Java-SQL class names:

• A class name reference always refers to a class in the current database.

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 161

• If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

• If a SQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

• If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

• Use Java-SQL package names only as qualifiers for class names or
subpackage names and to delete packages from the database using the
remove java command.

Java-SQL column declarations
Description To declare a Java-SQL column when you create or alter a table, use the

following syntax:

Syntax java_sql_column ::= column_name java_sql_class_name

Parameters java_sql_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class_name
The name of a Java-SQL class in the current database. This is the “declared
class” of the column.

Usage • The declared class must implement either the Serializable or Externalizable
interface.

• A Java-SQL column is always associated with the current database.

• A Java-SQL column cannot be specified as:

• not null

• unique

• A primary key

Java-SQL variable declarations

162 Adaptive Server Enterprise

See also You use a Java-SQL column declaration only when you create or alter a table.
See the create table and alter table information in the Reference Manual:
Commands.

Java-SQL variable declarations
Description Use Java-SQL variable declarations to declare variables and stored procedure

parameters for datatypes that are Java-SQL classes.

Syntax java_sql_variable ::= @variable_name java_sql_class_name

java_sql_parameter ::= @parameter_name java_sql_class_name

Parameters java_sql_variable
Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sql_class_name
The name of a Java-SQL class in the current database.

Usage A java_sql_variable or java_sql_parameter is always associated with the
database containing the stored procedure.

See also Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references
Description To reference a Java-SQL column, use the following syntax:

Syntax column_reference ::=
[[[database_name.]owner.]table_name.]column_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.

Usage • If the value of the column is null, then the column reference is also null.

• If the value of the column is a Java serialization, S, and the name of its
class is CS, then:

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 163

• If the class CS does not exist in the current database or if CS is not the
name of a class in the database associated with the serialization, then
an exception is raised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tables and in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originally.

• The value of the column reference is:

CSC.readObject(S)

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields a reference to an object in the Java VM, which
is associated with the database associated with the serialization.

Java-SQL member references
Description References a field or method of a class or class instance.

Syntax member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name

instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name

Parameters member_reference
An expression that describes a field or method of a class or object.

class_member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL class instance.

Java-SQL method calls

164 Adaptive Server Enterprise

java_sql_class_name
A fully qualified name of a Java-SQL class in the current database.

instance_expression
An expression whose datatype is a Java-SQL class.

member_name
The name of a field or method of the class or class instance.

Usage • If a member references a field of a class instance, the instance has a null
value, and the Java-SQL member reference is the target of a fetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

• The double angle (>>) and dot (.) qualification take precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

X>>A1>>B1 + X>>A1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

• The field or method designated by a member reference is associated with
the same database as that of its Java-SQL class or instance of its Java-SQL
class.

If the Java type of a member reference is one of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
reference is obtained by mapping the Java type to its equivalent SQL type.

If the Java type of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls
Description To invoke a Java-SQL method, which returns a single value, use the following

syntax:

Syntax method_call ::= member_reference ([parameters])
| new java_sql_class_name ([parameters])

parameters ::= parameter [(, parameter)...]

parameter ::= expression

CHAPTER 9 Additional Topics

Java in Adaptive Server Enterprise 165

Parameters method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
The list of parameters to be passed to the method. If there are no parameters,
include empty parentheses.

Usage Method overloading

• When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of method calls

• The datatype of a method call is determined as follows:

• If a method call specifies new, its datatype is that of its Java-SQL
class.

• If a method call specifies a member reference that denotes a type-
valued method, then the datatype of the method call is that type.

• If a method call specifies a member reference that denotes a void
static method, then the datatype of the method call is SQL integer.

• If a method call specifies a member reference that denotes a void
instance method of a class, then the datatype of the method call is that
of the class.

• To include a parameter in a member reference when the parameter is a
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance is included in both
databases. Otherwise, an exception is raised.

Runtime results

• The runtime result of a method call is as follows:

• If a method call specifies a member reference whose runtime value is
null (that is, a reference to a member of a null instance), then the result
is null.

• If a method call specifies a member reference that denotes a type-
valued method, then the result is the value returned by the method.

Java-SQL method calls

166 Adaptive Server Enterprise

• If a method call specifies a member reference that denotes a void
static method, then the result is the null value.

• If a method call specifies a member reference that denotes a void
instance method of an instance of a class, then the result is a reference
to that instance.

• The method call and result of the method call are associated with the
same database.

• Adaptive Server does not pass the null value as the value of a
parameter to a method whose Java type is scalar.

Java in Adaptive Server Enterprise 167

Glossary

This glossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

assignment A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
a target data item.

associated JAR If a class/JAR is installed with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated JAR. See retained JAR.

bytecode The compiled form of Java source code that is executed by the Java VM.

class A class is the basic element of Java programs, containing a set of field
declarations and methods. A class is the master copy that determines the
behavior and attributes of each instance of that class. class definition is the
definition of an active data type, that specifies a legal set of values and
defines a set of methods that handle the values. See class instance.

class method See static method.

class file A file of type “class” (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

class instance Value of the class data type that contains a value for each field of the class
and that accepts all methods of the class.

datatype mapping Conversions between Java and SQL datatypes.

declared class The declared datatype of a Java-SQL data item. It is either the datatype of
the runtime value or a supertype of it.

externalization An externalization of a Java instance is a byte stream that contains
sufficient information for the class to reconstruct the instance.
Externalization is defined by the externalizable interface. All Java-SQL
classes must be either externalizable or serializable. See serialization.

 Glossary

168 Adaptive Server Enterprise

installed classes Java classes and methods that have been placed in the Adaptive Server system
by the installjava utility.

instance method A invoked method that references a specific instance of a class.

interface A named collection of method declarations. A class can implement an interface
if the class defines all methods declared in the interface.

Java archive (JAR) A platform-independent format for collecting classes in a single file.

Java Database
Connectivity (JDBC)

A Java-SQL API that is a standard part of the Java Class Libraries that control
Java application development. JDBC provides capabilities similar to those of
ODBC.

Java datatypes Java classes, either user-defined or from the JavaSoft API, or Java primitive
datatypes, such as boolean, byte, short, and int.

Java Development
Kit (JDK)

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Java file A file of type “java” (for example, myfile.java) that contains Java source code.
See class file and Java archive (JAR).

Java method
signature

The Java datatype of each parameter of a Java method.

Java object An instance of a Java class that is contained in the storage of the Java VM. Java
instances that are referenced in SQL are either values of Java columns or Java
objects.

Java-SQL column A SQL column whose datatype is a Java-SQL class.

Java-SQL class A public Java class that has been installed in the Adaptive Server system. It
consists of a set of variable definitions and methods.

A class instance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclass is a class that is declared to extend (at most) to one other class. That
other class is called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

Java-SQL datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype mapping
between Java and SQL” on page 157.

Java-SQL variable A SQL variable whose datatype is a Java-SQL class.

 Glossary

Java in Adaptive Server Enterprise 169

Java Virtual Machine
(JVM)

The Java interpreter that processes Java in the server. It is invoked by the SQL
implementation.

mappable A Java datatype is mappable if it is either:

• Listed in the first column of Table 9-3 on page 158, or

• A public Java-SQL class that is installed in the Adaptive Server system.

A SQL datatype is mappable if it is either:

• Listed in the first column of Table 9-4 on page 159, or

• A public Java-SQL class that is built-in or installed in the Adaptive Server
system.

A Java method is mappable if all of its parameter and result datatypes are
mappable.

method A set of instructions, contained in a Java class, for performing a task. A method
can be declared static, in which case it is called a class method. Otherwise, it is
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance.

narrowing
conversion

A Java operation for converting a reference to a class instance to a reference to
an instance of a subclass of that class. This operation is written in SQL with the
convert function. See also widening conversion.

package A package is a set of related classes. A class either specifies a package or is part
of an anonymous default package. A class can use Java import statements to
specify other packages whose classes can then be referenced.

pluggable
component adaptor/
JVM

A Sybase component that manages service requests between Adaptive Server
and the JVM.

pluggable
component interface
(PCI)

The Adaptive Server Java framework, which lets you, with the help of the
PCA/JVM, use a commercially available JVM with Adaptive Server.

pluggable
component interface
(PCI) Bridge

An Adaptive Server component, and part of the PCI, that enables interaction
between the JVM plug-in and Adaptive Server.

procedure An SQL stored procedure, or a Java method with a void result type.

public Public fields and methods, as defined in Java.

 Glossary

170 Adaptive Server Enterprise

retained JAR See associated JAR.

serialization A serialization of a Java instance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

SQL function
signature

The SQL datatype of each parameter of a SQLJ function.

SQL-Java datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype mapping
between Java and SQL” on page 157.

SQL procedure
signature

The SQL datatype of each parameter of a SQLJ procedure.

static method A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also called a class method.

subclass A class below another class in a hierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclass is its direct superclass. See
superclass, narrowing conversion, and widening conversion.

superclass A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. See subclass, narrowing conversion, and widening conversion.

synonymous
classes

Java-SQL classes that have the same fully qualified name but are installed in
different databases.

Unicode A 16-bit character set defined by ISO 10646 that supports many languages.

variable In Java, a variable is local to a class, to instances of the class, or to a method.
A variable that is declared static is local to the class. Other variables declared
in the class are local to instances of the class. Those variables are called fields
of the class. A variable declared in a method is local to the method.

visible A Java class that has been installed in a SQL system is visible in SQL if it is
declared public; a field or method of a Java instance is visible in SQL if it is
both public and mappable. Visible classes, fields, and methods can be
referenced in SQL. Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

well-formed
document

In XML, the necessary characteristics of a well-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

 Glossary

Java in Adaptive Server Enterprise 171

widening conversion A Java operation for converting a reference to a class instance to a reference to
an instance of a superclass of that class. This operation is written in SQL with
the convert function. See also narrowing conversion.

 Glossary

172 Adaptive Server Enterprise

Java in Adaptive Server Enterprise 173

Symbols
>> (double angle)

to qualify Java fields and methods 164
@ sign 97

A
Adaptive Server

plug-in 39, 96
additional information

about Java 11
ADT mappable datatypes 114
alter table

command 39
syntax 39

ANSI standards 7
array arguments 19
assignment properties

Java-SQL data items 44
assignments 142

C
called on null input parameter 98
case expressions 49, 101
changes for Adaptive Server 15.0.3 and later 4
character sets

Adaptive server plug-in 96
unicode 39, 48, 96

class names 160
class subtypes 48–50
classes. See Java classes
ClassLoader behavior 6
clients

bcp 144
isql 144

column

declarations 161
referencing 162

column datatypes, requirements 37
column declarations 161
column references 162
command main method 117
commands

create procedure SQLJ 105
create table 38, 39
drop function 102
SQLJ create function 97
SQLJ create procedure 103

compile-time datatypes 50
configuration options

changing values in a running server 21
PCA/JVM 20
PCI Bridge 20
restoring default values 23

constructor method 40
constructors 40, 55
conversions 143

narrowing 49
widening 49

convert function 48, 143
create procedure (SQLJ) command 103, 105
create table command, syntax 38, 39
creating

tables 38

D
datatype conversions 143
datatype mapping 47, 113, 157–159
datatypes

compile-time 50
conversions 143
Java classes 3
method calls 165
runtime 50

Index

Index

174 Adaptive Server Enterprise

debugger
attaching 127
setting up 126

debugging
Java 125–128

debugging Java 125
deleting 40, 112

Java objects 40
delimited identifiers 160
deterministic parameter 98, 104
distinct keyword 58
double angle

qualifying Java fields and methods 164
to qualify Java fields and methods 41

downloading
installed classes 33
installed JARs 33

drop function command 102
dynamic result sets parameter 104

E
enabling Java 29
equality operations 58
examples

for SQLJ routines 93
exceptions 43
explicit Java method signatures 115
external name parameter 104
externalization 161
extractjava utility 33

F
file access

rules for creating files 136
rules for opening files 134
specifying directories 131
user identity and permissions 130
using java.io 129
using java.net 137

G
group by clause 58

H
headless mode 5, 9

I
identifiers 159

delimited 160
implicit Java method signatures 115
in parameter 106
inout parameter 106
inserting

Java objects 40
installing

Java classes 29, 32
uncompressed JARS 30

installjava utility 28, 29
-f option 30
-j option 31
-new option 31
syntax 30
update option 31

instance methods 56
inter-class arguments 66
invoking

Java method, using SQLJ 95
Java methods 41, 94
Java methods, invoking directly 94
Java methods, using SQLJ 94
SQL from Java 152, 156

J
JAR files

creating 30
retaining 31

JARs
uncompressed, installing 30

Java API 9
supported packages 148–151

Index

Java in Adaptive Server Enterprise 175

Sybase support for 10
Java arrays 106
Java class datatypes 100
Java class distribution 5
Java classes

as datatypes 3, 37
installing 29–32
referencing other classes 32
retained 34
runtime 28
SQLJ examples 94
subtypes 48
supported 10
updating 31
user-defined 10, 28

Java datatypes
ADT mappable 114
object mappable 114
output mappable 114
result-set mappable 114
simply mappable 114

Java Development Kit 8
Java environment

components of 13
JVM pluggable component 14
pluggable component adapter (PCA/JVM) 15
pluggable component interface (PCI) 16
pluggable component interface (PCI) Bridge 16

Java in the database
advantages of 1
capabilities 2
key features 7
preparing for 27–34
questions and answers 7

Java instances, representing 44
Java method signature 99, 104
Java methods

call by reference 43, 59
command main 117
exceptions 43
instance 56
invoking 41, 94
static 57
type 54, 55
void 55

Java objects 40

Java operations, invoked from SQL 9
Java primitive datatypes 100
Java runtime environment 27
Java Virtual Machine,

support for 8, 29
Java, SQL, using together 9
java.lang.Thread class, caution using 146
java.net, for network access 129
java.sql 152
java.sql methods, unsupported 150
Java-SQL

class names 160
column declarations 161
column references 162
columns 45, 59
creating tables 38
function results 45
identifiers 159
member references 163
method calls 164
names 36
package names 160
parameters 45, 60
static variables 62
transferring objects 144
transferring objects to clients 143
unsupported methods 150
variable declarations 162
variables 45, 60

Java-SQL classes
in multiple databases 62
installing 29–32

Java-SQL columns
storage options 38

jdb debugger 127
JDBC 73–89

accessing data 75
client-side 74
concepts 74
connection defaults 75
connections 78
interface 10
JDBCExamples class 76
obtaining a connection 78
permissions 75
server-side 74

Index

176 Adaptive Server Enterprise

terminology 74
version support 28

JDBC drivers 28, 152
client-side 74
server-side 74

JDBC standard datatype mapping 113
JDBCExamples class 84–89

methods 76–82
overview 76

L
language java parameter 104

M
mapping datatypes 157–159
mapping Java and SQL datatypes 113
member references 163
method calls 164

datatype of 165
method overloading 116, 165
methods

exceptions 43
runtime results 165
See also XQL methods
SQLJExamples.bestTwoEmps() 94
SQLJExamples.correctStates() 94, 105
SQLJExamples.job() 94
SQLJExamples.region() 94

modifies sql data parameter 98, 104
multiple databases 64

N
names in Java-SQL 36

case 37
length 36

narrowing conversions 49
native methods in PCA/JVM 147
network access, java.net 129
null values

case statements 101

in SQLJ functions 100
nulls in Java-SQL 50–54

arguments to methods 52
using convert functions 53

number arguments 18

O
object mappable datatypes 114
obtaining connections 78
options

external name 98
language java 98
parameter style java 98

order by clauses 58
ordering operations 58
out parameter 106
output mappable datatypes 114

P
package names 160
parameter style java parameter 104
parameters

deterministic 104
external name 104
inout 106
input 106
language java 104
modifies sql data 104
not deterministic 104
output 106
parameter style java 104

PCA/JVM 15
PCI Bridge 16
PCI memory pool 16

changing the size of 17
in a multi-engine environment 17

performance, improving 144
permissions

Java 36
JDBC 75
SQLJ routines 93

persistent data items 45

Index

Java in Adaptive Server Enterprise 177

procedure
creating SQLJ routine 92

Q
questions and answers 7

R
rearranging installed classes 34
referencing

fields 41
remove java command 34, 161
removing classes 34
removing JARs 34
restrictions on Java in the database 11
result sets 116
ResultSet

mappable datatypes 114
returns null on null input parameter, Java clause 98
runtime

datatypes 50
Runtime environment 27
Runtime Java classes

location of 28
runtime Java classes 28

S
sample classes 67–70

address 67
address2Line 69
JDBCExamples 76–89
misc 70

search order
function types 100

security
SQLJ routines 93

selecting Java objects 40
serialization 161, 163
set commands

allowed in Java methods 155
updating 57

simply mappable datatypes 114
sp_depends system procedure 113
sp_help system procedure 113
sp_helpjava

syntax 33
utilitysp_helpjava 33

sp_helpjava system procedure 113
sp_helprotect system procedure 113
SQL

expressions, include Java objects 9
function signature 97
procedure signature 103
wrappers 91, 95

SQL loops, avoiding 147
SQLJ create procedure command 103
SQLJ functions 97–102

dropping 102
viewing information about 113

SQLJ implementation
features not supported 119
features partially supported 119
SQLJ and Sybase differences 118
Sybase defined 119

SQLJ standards 92
SQLJ stored procedures 102–104, 112

capabilities of 102
deleting 112
modifying SQL data 105
using input and output parameters 106
viewing information about 113

SQLJExamples class 120
SQLJExamples.bestTwoEmps() method 94
SQLJExamples.correctStates() method 94, 105
SQLJExamples.job() method 94
SQLJExamples.region() method 94, 99
standards for SQL 7
standards specifications 7
static methods 57, 95, 102
static variables 62
storage options

in row 38
string arguments 18
String data

zero length 54
string data 54
style java keyword 104

Index

178 Adaptive Server Enterprise

subtypes 48
supertypes 48
switch arguments 18
Sybase Central

creating a SQLJ function or procedure from 96
managing SQLJ procedures and functions from 96
viewing SQLJ routine properties from 97

sybpcidb database 18
changing values 19
configuration values in 18
restoring default values 23
system tables in 18

system procedures
helpjava 33
sp_depends 113
sp_help 113
sp_helpjava 113
sp_helprotect 113

T
table definition 94
temporary databases 67
transact-SQL

commands, in Java methods 153
transient data items 45

U
unicode 54
union operator 58
updating Java objects 40
using

Java and SQL together 9
Java classes 35, 67

V
variable declarations 162
variables 162

datatypes of 37
static 62
values assigned to 40

viewing information
about installed classes 33
about installed JARs 33

void methods 105

W
where clause 49, 56, 59
work databases 67

Z
zero-length strings 54

	Java in Adaptive Server Enterprise
	Adaptive Server® Enterprise
	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Invoking Java methods directly in SQL
	Invoking Java methods as SQLJ stored procedures and functions

	Storing Java classes as datatypes
	Storing and querying XML in the database

	Java components
	Functional changes in Adaptive Server 15.0.3 and later
	Changes in class distribution
	The PCA/JVM runs in headless mode
	Changes in memory management
	Changes in ClassLoader behavior

	Standards
	Java in the database: questions and answers
	What are the key features?
	How are Java instructions stored in the database?
	How is Java executed in the database?
	Which Java Virtual Machines (JVMs) are supported?
	What is headless mode?
	What about JDBC?
	How can Java and SQL be used together?
	What is the Java API?
	Which Java classes are supported in the Java API?
	Can user-defined classes be installed in the database?
	Can data be accessed using Java?
	Can the same classes be used on the client and the server?
	How to use Java classes in SQL
	Where can information about Java in the database be found?
	What you cannot do with Java in the database

	CHAPTER 2 Managing the Java Environment
	Components of the Java environment
	Figure 2-1: Java components
	The JVM pluggable component
	Pluggable component adapter JVM (PCA/JVM)
	Pluggable component interface (PCI) and the PCI Bridge
	The PCI memory pool
	Changing the size of the PCI memory pool
	Java VM memory consumption in multi- engine Adaptive Server

	The sybpcidb database
	sybpcidb tables

	How configuration values are organized in sybpcidb

	When to change configuration values
	Server-level options
	Configuration options for the PCI Bridge
	Configuration options for the PCA/JVM

	Changing configuration values in a running server
	Changing configuration values by restarting Adaptive Server
	Changing configuration values before the JVM is initialized
	Changing configuration values after the JVM is initialized

	Restoring default configuration values to sybpcidb
	Using monitor tables to display information about the PCI Bridge

	CHAPTER 3 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The JVM

	Enabling Java
	Installing Java classes in the database
	Using installjava
	Installing uncompressed JARs
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 4 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	Treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters
	Deterministic Java functions in expressions

	Static variables in Java-SQL classes
	Changes for static variables for Adaptive Server 15.0.3 and later
	Changes for static variables for the Cluster Edition

	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 5 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the updater() method
	Executing a select statement: the selecter() method
	Executing in batch mode

	Calling a SQL stored procedure: the caller() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The serverMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updater() method
	The selecter() method
	The caller() method

	CHAPTER 6 SQLJ Functions and Stored Procedures
	Overview
	Creating a SQLJ stored procedure or function
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJ Examples

	Invoking Java methods in Adaptive Server
	Invoking Java methods directly with their Java names
	Invoking Java methods indirectly using SQLJ

	Using Sybase Central to manage SQLJ functions and procedures
	Creating a SQLJ function/procedure
	To view the properties of a SQLJ function or procedure

	SQLJ user-defined functions
	Writing the Java method
	Creating the SQLJ function
	Calling the function
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Writing the Java method
	Creating the stored procedure
	Calling the stored procedure

	Using input and output parameters
	Writing the Java method
	Creating the SQLJ procedure
	Calling the procedure

	Returning result sets
	Writing the Java method
	Creating the SQLJ stored procedure
	Calling the procedure
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Table 6-1: Simply and object mappable SQL and Java datatypes
	Specifying Java method signatures explicitly or implicitly
	Returning result sets and method overloading
	Ensuring signature validity

	Using the command main method

	SQLJ and Sybase implementation: a comparison
	Table 6-2: Sybase enhancements
	Table 6-3: SQLJ features not supported
	Table 6-4: SQLJ features partially supported
	Table 6-5: SQLJ features defined by the implementation

	SQLJExamples class

	CHAPTER 7 Debugging Java in the Database
	Supported Java debuggers
	Setting up Java debugging
	Configuring the server to support debugging
	Attaching the remote debugger to the JVM debug agent

	CHAPTER 8 File and Network Access Using Java
	File access using java.io
	User identity and permissions
	Specifying directories for file I/O: UNIX platforms
	Mask syntax
	Examples

	Specifying directories for file I/O: Windows platforms
	Mask syntax
	Examples

	File I/O changes
	Rules for opening existing files
	UNIX platforms
	Windows platforms

	Rules for creating files with a file open operation
	Final file check

	File access using java.net
	Examples
	Using socket classes
	Using the URL classes

	CHAPTER 9 Additional Topics
	JDK requirement for Java classes in the server
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Suggestions for improving performance
	Minimize the number of calls from SQL to the JVM
	Use the java.lang.Thread class with care
	Determine if you are running within the PCA/JVM
	Avoid SQL loops in a multi-engine environment

	Controlling access to native methods in the PCA/JVM
	Unsupported Java API packages, classes, and methods
	Restricted Java packages, classes, and methods
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Table 9-1: Support status of Transact-SQL commands
	Table 9-2: Support status of set command options

	Datatype mapping between Java and SQL
	Table 9-3: Mapping SQL datatypes to Java types
	Table 9-4: Mapping Java scalar types to SQL datatypes

	Java-SQL identifiers
	Delimited Identifiers

	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls
	Method overloading
	Datatype of method calls
	Runtime results

	Glossary
	assignment
	associated JAR
	bytecode
	class
	class method
	class file
	class instance
	datatype mapping
	declared class
	externalization
	installed classes
	instance method
	interface
	Java archive (JAR)
	Java Database Connectivity (JDBC)
	Java datatypes
	Java Development Kit (JDK)
	Java file
	Java method signature
	Java object
	Java-SQL column
	Java-SQL class
	Java-SQL datatype mapping
	Java-SQL variable
	Java Virtual Machine (JVM)
	mappable
	method
	narrowing conversion
	package
	pluggable component adaptor/ JVM
	pluggable component interface (PCI)
	pluggable component interface (PCI) Bridge
	procedure
	public
	retained JAR
	serialization
	SQL function signature
	SQL-Java datatype mapping
	SQL procedure signature
	static method
	subclass
	superclass
	synonymous classes
	Unicode
	variable
	visible
	well-formed document
	widening conversion

	Index

