SYBASE

Java in Adaptive Server Enterprise

Adaptive Server® Enterprise
15.5

DOCUMENT ID: DC31652-01-1550-01
LAST REVISED: October 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

ADOUL TRIS BOOKvcuieuiiiietisieici ittt et e e s ese st eseeseesesasteseebesbense e sbessenseneesassaneeneasens iX
CHAPTER 1 An Introduction to Javain the Database........c.cccveevenenenencnincnscnnene 1
Advantages of Javain the database...........ccoceveeeieiieni e 1
Capabilities of Javain the databaseccccecvveveiviiiivccnc e 2
Invoking Java methods in the database...........ccocveecnineincnesiene 2
Storing Java Classes 8S dalatyPeS.......covrvererereniiieiesieniesisesee s 3
Storing and querying XML in the database...........c.covvvrienieerinieneennn 4
JAVA COMPONENES ...ttt sttt sresreennen 4
Functional changesin Adaptive Server 15.0.3 and later..........ccccevrerivennns 4
Changesin class distribution..........ccoecvveniinnn e 5
The PCA/IVM runsin headless modeccccevveveerinesenieeseseeseeeens 5
Changesin memory Managementcccceeeeerereeresesieseesessessesseseeseens 6
Changesin ClassLoader bENAVIONccccceveiiiiieie e 6
S 010 =0 TS 7
Javain the database: questions and aNSWErS.........cccccvvvereererieecese s 7
What arethe Key fEatUrES?cooeievieeee e 7
How are Javainstructions stored in the database?coccovvererveennnn. 8
How is Java executed in the database?..........covvvrreennennereneneccenes 8
Which Java Virtual Machines (JVMs) are supported?...........cccevevnnne 8
What iSheadleSS MOdE? ... 9
What @D0Ut IDBC?......ciriiiieiniirieiit ettt 9
How can Javaand SQL be used together?occovevivrcneneneecniens 9
What iSthe JAVAAPI? ..o s 9
Which Java classes are supported in the Java API?.......ccocvvvvienennne 10
Can user-defined classes be installed in the database?....................... 10
Can data be accessed USING JAVA?.......c..cvvverereeienereeise e 10
Can the same classes be used on the client and the server?.............. 10
How to use Java classeS in SOLoovcuecveeiieieeeeeeeeeee e 11
Where can information about Java in the database be found?............ 11
What you cannot do with Javain the database...........cccocevveercniennne. 11
Java in Adaptive Server Enterprise iii

Contents

CHAPTER 2 Managing the Java ENVir ONMENtcccoceiririneniene e 13
Components of the Java enViroNMENT...........ccverririeneenine s 13
The VM pluggable CoOmPOoNENt..........ccoererninineesie e 14
Pluggable component adapter VM (PCA/IVM)....coovieieenienenennnns 15
Pluggable component interface (PCl) and the PCI Bridge................. 16

The PClI MEMOTY POO0Lccuiirieieeeeesiesieese e et sre s essessesseseeesnens 16
The sybpcidb database..........coevvereieiicier e 18
How configuration values are organized in sybpcidb..........c.ccceene. 18
When to change configuration ValUES...........ccccoveiviiievecenieseseee e 19
SerVer-leVel OpLiIONSccccciviireeiec e 19
Configuration options for the PCl Bridge............ccceenirennerieninenn 20
Configuration options for the PCA/IVMccccccvvvivnenenncscnenes 20
Changing configuration valuesin arunning Serverccoveeverieneeceenns 21
Changing configuration values by restarting Adaptive Server 22
Changing configuration values before the VM isinitiaized............ 22
Changing configuration values after the VM isinitidized............... 22
Restoring default configuration values to sybpcidbccccceveeeecviinienns 23
Using monitor tablesto display information about the PCI Bridge........... 24
CHAPTER 3 Preparing for and Maintaining Javain the Database.............cccccveeeenene 27
The Java runtime enVironmeNtoeoveeereereneie e 27
Java classesin the database...........cocoeveerviecenccc e 27
IDBC AriVEIS....coieeeeiereee ettt ettt et e e 28

LI 2T AV TS 29
ENDIING JAVA. ...ttt b 29
Installing Java classesin the databasecoveeeiiinensenenesesee s 29
USING iNSAlJAVAL....c. e 30
Referencing other Java-SQL ClaSSeS........ovvevveerieniinernesiesieeeeniee 32
Viewing information about installed classes and JARS.........c.ccoceereriennn. 33
Downloading installed classes and JARSccovvinienineneeeneseeeees 33
Removing Classes and JARS ... se e nen 34
RELAINING ClASSES.......cceviiiiiiceeise ettt sae s 34
CHAPTER 4 Using Java ClasseSin SQL ...ccvvereereeeerireeesessseese e seesseseesesneeseesessessens 35
GENEral CONCEPLS......ceveeiiiieeeeete et saaseenes 35
JAVA CONSIEIALIONS......ecue ettt sttt s 36
JAVESOQL NAMES. ...t see e snean 36
Using Java classes as datatyPeS.......cccuvvreeeiesienieesiesesesesresesesesesseseenens 37
Creating and altering tables with Java-SQL columns...........cccceceeee. 38
Selecting, inserting, updating, and deleting Java objects................... 40
Invoking Java methods in SQL........coceeveririneinisine e 41
SaMPlE MELNOS ... e 43
Exceptionsin Java-SQL Methods.........cocevvinininnini e 43

iv Adaptive Server Enterprise 15.5

Contents

Representing Java iNSLANCES.cvveviiieiee et enes 43
Assignment properties of Java-SQL dataitems........ccccvvveveeeiesereesenennnn, 44
Datatype mapping between Java and SQL fields........cccvceveveceieceecennnn. 47
Character setsfor data and identifiers.........ccovvvreeineeineeseeeeeeens 48
Subtypesin JaVarSQL daa.......ccccevereeeeiiiiinienisise e 48
Widening CONVEISIONScoueieuerierieriereeisie st snas 49
NarrOWING CONVEISIONS.cceriiiiriirieienie st see s sseeeessesees 49
Runtime versus compile-time datatypes..........cocoreereneieriesnneeieneennns 50
Treatment of nullsin Java-SQL data...........cccceveeeeereverieie e 50
References to fields and methods of null instances...........ccccoceeeveeeee. 51

Null values as arguments to Java-SQL methods..........ccceeevvveeirennnn. 52

Null values when using the SQL convert function............cccecerueneeee. 53
JaVa-SQL StHNG ABEA........cereeieeeeiriesieeeese et saesae e e eresnens 54
Zero-1ength StriNgS......cccoveeeeeeceeeee e 54
Type and void MEthOTS........cc..eeueirirerieeeesee e 55
Java void instance MEthOScccceereereeerenerrees s 56
Java void static MEthOAS.........ccceieieeiccr e 57
Equality and ordering Operations...........cccccouveienneneninesesieneeseseseesessenees 58
Evaluation order and Javamethod Calls.........c.coveeieniinneinsceeecens 59
COIUMNS....c.otiiecteeee ettt renes 59
Variables and parameters.........cveveeeceninenne s 60
Deterministic Java functions in eXPressions...........cveeeeeeesereeseseennns 60
Static variablesin Java-SQL ClasseS........ccvvvvviviiveecie et 62
Changes for static variables for Adaptive Server 15.0.3 and later 63
Changes for static variables for the Cluster Edition...........ccccceeeeene. 64
Javaclasses in multiple databases...........ccceveiiinieice s 64
o0 0 TR 64
Cross-database rEfEreNCES........coovrirrreirreree e 65
INEEr-ClasS traNSErS.ovoireerereree e 65
Passing inter-class argUmMENTS.........covei e 66
Temporary and Work databases..........cooevvininneninensesese s 67
JAVA CIASSES. ... v 67
CHAPTER 5 Data AcCessS USING JDBCoceiieeeeecece et s ne s 73
OVEIVIBI ..ottt ettt n e 73
JDBC concepts and termMiNOIOgYcoveerereeeeereneenieesesesesesseseesessessens 74
Differences between client- and server-side JDBC...........ccceovvreienenirenene 74
PEIMISSIONS ...ttt sttt b e b et e e e b 75
USING JDBC t0 8CCESS AALA......cueiveeererierieieresieiesesieseessseseesaesee e saseesessesnes 75
Overview of the IDBCEXampPIES Class.......ccccvveveerieesesieeeie e 76

The main() and serverMain() methods...........ccceevveveeienineneciennnens 76
Obtaining a JDBC connection: the Connecter() method................... 78
Routing the action to other methods: the doAction() method............ 78
Executing imperative SQL operations: the doSQL () method 79

Java in Adaptive Server Enterprise v

Contents

Executing an update statement: the updater() method...................... 79
Executing a select statement: the selecter() methodcccccveennene 80
Calling a SQL stored procedure: the caller() methodc..c...... 81
Error handling in the native IDBC driVEr........ccccoeveeienieeeeseeesese e 82
The IDBCEXaMPIES ClaSS.....c.ccouiuirieieriserieneeesesieeeresesse e ssessesessessesseneens 84
Themain() Method.........coceiiirereeese e 84

The serverMain() method..........ccoveeveeiiiienceceee s 85

The connecter() MEthodcceeeeeieiereece e 85

The doAction() MEthod..........ceveieieeicirerce e 86

The doSQL () MEthOdccoiveieiririre e 87

The updater() MEthod.........ocvereeriirire e 88

The selecter() Method.........ccccivirierrri s 88

The caler() Method. ... 89
CHAPTER 6 SQLJ Functionsand Stored Procedures..........cccoevveieieeieenecieeseseennens 91
OVEIVIBIV ...ttt r e 91
Compliance with SQLJ Part 1 specifications...........ccccvvvenrereninnenn 92
GENEIAl ISSUES.......eceeiieeieics ettt et sttt s 92
Security and PEMMISSIONS........cccvieeeeiirieresiresieeseseeeesseeesessessenens 93
SQLIEXAMPIES.....covireeieieeesieieesiestesiete st s eesesaesseseesessesnenens 93
Invoking Java methods in Adaptive SEIrVErccccveveeeeseceeesesieneenens 94
Using Sybase Central to manage SQLJ functions and procedures............ 96
SQLJ user-defined fUNCLIONScooueieeiececeeee e 97
Handling null argument ValUES ..o 100
Deleting a SQLJIfUNCLION NAMEcccv e 102
SQLJ SLOred PrOCEAUIES.......ccevereerieieesiesie st se e seeneen 102
MOdifying SQL data........ccvirerieiieniinesirie s 105
Using input and OUtpuUt Parametersc.oovveerereneneneseneseseneenene 106
ReEtUrNIiNG reSUIt SELS......coveiriiierieiese et 109
Viewing information about SQL Jfunctions and procedures.................. 113
AdVaNCEA tOPICS....c.eeveiviieeciirier ettt ere sttt 113
Mapping Javaand SQL datalypes..........cccvvreereeerieneereeesseseeensessens 113
Using the command main method............ccccccvvviveeecesccece e, 117
SQLJand Sybase implementation: a compariSoncccceeveeeereereeenns 118
SQLJIEXAMPIES ClESS....c.ccvivireeeeeresieieesese sttt sse s e sreneen 120
CHAPTER 7 Debugging Javain the Database.........cccceenirievinene e 125
Supported Java AEDUGOENScoueririeirerinerie e 125
Setting Up Java debugOinNgc..evveirerenieieire e 126
Configuring the server to support debugging..........cocvereerererennens 126
Attaching the remote debugger to the VM debug agent................. 127

Vi Adaptive Server Enterprise 15.5

Contents

CHAPTER 8

CHAPTER 9

Fileand Network AcCess USING JAVA......ccccccevvererereeneeneeeenesesesieseeseens 129
File aCCESS USING JAVAIO....ccviiei it 129
User identity and permiSSIONS.........ccueveereneeienieseseeeseseesessessesensens 130
Specifying directories for file I/O: UNIX platforms..........ccccevueneee. 131
Specifying directories for file I/0O: Windows platforms................... 133

File 1/0 ChangES......cocveueriienisirie st 134

Rules for opening existing fileS.........cccvvvrevninenneneseeereee 134

Rules for creating files with afile open operation............cccoceveennene 136

Final file CheCKocooveieee e 136

File aCCESS USING JAVANELc.eeiriireeiricsie st 137
EXAMPIES ...ttt s 137

WX [0 11 To gz N I o] ot 141
JDK requirement for Java classes in the Server........ccocveveececceccesiesenn 141
ASSIGNMENES ...t re s sbesee e esesaesaeneesensens 142
Assignment rules at CoMpPile-time.......cccevevvierersieneseese e 142
Assignment ruleS at FUNLIME..........ccueveereeeiesieeise e 142
AlOWED CONVEISIONS.cviviiieieeesiesieeeee e ste s tese e seesassesessaseesensens 143
Transferring Java-SQL objectsto Clients.........covvvevcivenccncneneee 144
Suggestions for improving performance...........ccoevveveneenienenesieseneens 144
Minimize the number of callsfrom SQL tothe WVM....................... 144
Usethejavalang.Thread class with care.........cccooeeeeveieccninnicnine 146
Determine if you are running within the PCA/IVM.......cccccovviinnne 146

Avoid SQL loopsin amulti-engine environmentc.ceccevereenenn 147
Controlling access to native methods in the PCA/IVM........cccceevvvevvennnn 147
Unsupported Java API packages, classes, and methods...........ccccevveneene 148
Restricted Java packages, classes, and methods...........ccccceeevvenienee. 149
Unsupported java.sgl methods and interfacesccoovvevvecicniennne 150
INvoking SQL from JAVA.........cceevieeeeerisieseecise et 152
Special CONSIAEratioNSccveeeerierieeii e 152
Transact-SQL commands from Javamethodsc.cceeveeeveveeveneseesienenn, 153
Datatype mapping between Javaand SQL..........ccoeeevneneninienienneeiniens 157
JavarSQL IdeNtifierS.....ceceeceeec e 159
Java-SQL class and package Names...........covevininninenscse s 160
Java-SQL column deClarations..........ccceeeeveeresieeeeesee e 161
Java-SQL variable declarations...........ccccovvceeeeveveeceesese e 162
Java-SQL COlUMN FEfFErENCEScvvecvi et 162
Java-SQL member referenCeS......oocveeiececeeeeeceeeeeeeee e 163
JavarSQL Method CallS.......ccueuiiieiceceeeeee e 164
... 167
... 173

Java in Adaptive Server Enterprise Vii

Contents

viii Adaptive Server Enterprise 15.5

About This Book

Audience Thisbook is for Sybase® System Administrators, Database Owners, and
userswho are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).
Familiarity with Java Database Connectivity (JDBC) isassumed for those
who use these features.

How to use this book Thisbook will assist you ininstalling, configuring, and using Java classes
and methodsin the Adaptive Server® database. It includes these chapters:

Java in Adaptive Server Enterprise

Chapter 1, “An Introduction to Javain the Database,” provides an
overview of Javain Adaptive Server, including a“questions and
answers’ section for both novice and experienced Java users.

Chapter 2, “Managing the Java Environment,” describes the
components of the Java environment and how to manage them.

Chapter 3, “Preparing for and Maintaining Java in the Database,”
describes the Java runtime environment and the steps for installing
Java classes.

Chapter 4, “Using Java Classesin SQL,” describes how to use Java-
SQL classes in your Adaptive Server database.

Chapter 5, “Data Access Using JDBC,” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

Chapter 6, “SQLJ Functions and Stored Procedures,” describes how
you can enclose and use Java methods in SQL wrappers.

Chapter 7, “Debugging Javain the Database,” describes how to
debug Javain the database.

Chapter 8, “File and Network Access Using Java,” describes how
you can use java.net, a package that allows you to create networking
applications over TCP/IP. It enables classes running in Adaptive
Server to access different kinds of servers.

Chapter 9, “ Additional Topics,” providesinformation about datatype
mapping, Java-SQL syntax, performance enhancements, and other
useful information.

Related documents

In addition, a glossary provides descriptions of the Java and Java-SQL terms
used in this book.

The Adaptive Server® Enterprise documentation set consists of:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available. To check
for critical product or document information that was added after the
release of the product CD, use the Sybase® Product Manuals Web site.

Theinstallation guide for your platform — describes installation,
upgrading, and some configuration proceduresfor all Adaptive Server and
related Sybase products.

New Feature Summary — describes the new featuresin Adaptive Server,
the system changes added to support those features, and changes that may
affect your existing applications.

Active Messaging Users Guide — describes how to use the Active
Messaging feature to capture transactions (data changes) in an Adaptive
Server Enterprise database, and deliver them as events to external
applicationsin real time.

Component Integration Services Users Guide — explains how to use
Component I ntegration Services to connect remote Sybase and non-
Sybase databases.

The Configuration Guide for your platform — provides instructions for
performing specific configuration tasks.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server Users Guide— describes how to use Historical Server to
obtain performance information from Adaptive Server.

Javain Adaptive Server Enterprise— describeshow to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Job Scheduler Users Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or a graphical user interface (GUI).

Migration Technol ogy Guide— describes strategies and tool sfor migrating
to adifferent version of Adaptive Server.

Adaptive Server Enterprise 15.5

About This Book

e Monitor Client Library Programmers Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

¢ Monitor Server Users Guide — describes how to use Monitor Server to
obtain performance statistics from Adaptive Server.

e Monitoring Tables Diagram — illustrates monitor tables and their entity
relationshipsin aposter format. Full-size availableonly in print version; a
compact version is available in PDF format.

e Performance and Tuning Series—is a series of booksthat explain how to
tune Adaptive Server for maximum performance:

e Basics— contains the basics for understanding and investigating
performance questions in Adaptive Server.

< Improving Performance with Satistical Analysis— describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

e Locking and Concurrency Control — describes how to use locking
schemes to improve performance, and how to select indexes to
minimize concurrency.

e Monitoring Adaptive Server with sp_sysmon — discusses how to use
sp_sysmon to monitor performance.

« Monitoring Tables — describes how to query Adaptive Server
monitoring tables for statistical and diagnostic information.

e Physical Database Tuning — describes how to manage physical data
placement, space allocated for data, and the temporary databases.

e Query Processing and Abstract Plans — explains how the optimizer
processes queries, and how to use abstract plansto change some of the
optimizer plans.

e Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

+ Reference Manual —is a series of books that contains detailed
Transact-SQL ® information:

< Building Blocks — discusses datatypes, functions, global variables,
expressions, identifiers and wildcards, and reserved words.

Java in Adaptive Server Enterprise Xi

Xii

e Commands — documents commands.

» Procedures—describes system procedures, catal og stored procedures,
system extended stored procedures, and dbcc stored procedures.

e Tables—discusses system tables, monitor tables, and dbcc tables.
System Administration Guide —

* Volume 1 — provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and instructions for
diagnosing system problems. The second part of Volume 1Lisanin-
depth discussion about security administration.

e Volume 2 —includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of Volume 2 describes how to back up and restore system
and user databases.

System Tables Diagram — illustrates system tables and their entity
relationshipsin aposter format. Full-size available only in print version; a
compact version is available in PDF format.

Transact-SQL Users Guide — documents Transact-SQL, the Sybase-
enhanced version of therelational database language. Thisguide servesas
atextbook for beginning users of the database management system, and
also contains detailed descriptions of the pubs2 and pubs3 sample
databases.

Troubleshooting: Error Messages Advanced Resolutions — contains
troubleshooting procedures for problems you may encounter. The
problems discussed here are the ones the Sybase Technical Support staff
hear about most often.

Encrypted Columns Users Guide — describes how to configure and use
encrypted columns with Adaptive Server.

In-Memory Database Users Guide — describes how to configure and use
in-memory databases.

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Adaptive Server Enterprise 15.5

About This Book

Other sources of
information

Using Backup Server with IBM® Tivoli® Sorage Manager — describes
how to set up and use the IBM Tivoli Storage Manager to create Adaptive
Server backups.

Using Sybase Failover in a High Availability System — provides
instructions for using Sybase Failover to configure an Adaptive Server as
acompanion server in a high availability system.

Unified Agent and Agent Management Console — describes the Unified
Agent, which provides runtime services to manage, monitor, and control
distributed Sybase resources.

Utility Guide — documents the Adaptive Server utility programs, such as
isgl and bep, which are executed at the operating system level.

Web Services Users Guide — explains how to configure, use, and
troubleshoot Web services for Adaptive Server.

XA Interface Integration Guide for CICS Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enterprise— describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that are available in XML services.

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to |earn more about your product:

The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

Java in Adaptive Server Enterprise Xiii

The Sybase Product Manuals Web siteis an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybase certifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

[IFinding the latest information on product certifications

1

4

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocsl/.

Click Certification Report.

In the Certification Report filter select aproduct, platform, and timeframe
and then click Go.

Click a Certification Report title to display the report.

[IFinding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybase isafree service that allowsyou to create
apersonalized view of Sybase Web pages.

1

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Xiv

Adaptive Server Enterprise 15.5

About This Book

Sybase EBFs and

software

maintenance

Conventions

[JFinding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

The following sections describe conventions used in this manual.

SQL isafree-formlanguage. There are no rules about the number of wordsyou
can put on aline or where you must break aline. However, for readability, all
examples and most syntax statementsin this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual:

Table 1: Font and syntax conventions for this manual

Element

Example

Command names,procedure names, utility names, and select
other keywords display in sans serif font. sp_configure

Database names and datatypes are in sans serif font. master database

Book names, filenames, variables, and pathnamesare System Administration Guide

initalics.

sgl.ini file
column_name
$SYBASE/ASE directory

Java in Adaptive Server Enterprise XV

Element

Example

Variables—or words that stand for valuesthat you fill
in—when they are part of aquery or statement, arein
italicsin Courier font.

select column_name
from table name
where search conditions

Type parentheses as part of the command.

compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbal.
Indicates “is defined as’.

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed optionsisoptional. Do not typethe brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipeor vertical bar(|) meansyou may select only
one of the options shown.

cash | check | credit

Anéllipsis(...) meansthat you can repeat the last unit
as many times asyou like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | creditl]...

You must buy at |east onething and giveits price. You may
choose amethod of payment: one of theitemsenclosed in
sguare brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, giveits name, its price, and (optionally) a method of
payment.

e Syntax statements (displaying the syntax and all options for a command)

appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

» Examples showing the use of Transact-SQL commands are printed like

this:

select * from publishers

» Examples of output from the computer appear as follows:

XVi

Adaptive Server Enterprise 15.5

About This Book

pub name city state
New Age Books Boston MA
Binnet & Hardley Washington DC
Algodata Infosystems Berkeley CA

(3 rows affected)

Accessibility
features

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For moreinformation, see the System Administration Guide.

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For moreinformation, see the System Administration Guide.

Thisdocument is availablein an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Java in Adaptive Server Enterprise XVii

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

Xviii Adaptive Server Enterprise 15.5

CHAPTER 1 An Introduction to Java in the

Database

This chapter provides an overview of Javain Adaptive Server Enterprise.

Topic

Page

Advantages of Javain the database

Capabilities of Javain the database

Java components

Functional changesin Adaptive Server 15.0.3 and later

Standards

NN AN

Javain the database: questions and answers

Advantages of Java in the database

Adaptive Server provides a runtime environment for Java, which means

that Java code can be executed in the server. Building aruntime

environment for Javain the database server provides powerful new ways

of managing and storing both data and logic.

e You can use the Java programming language as an integral part of

Transact-SQL.

* You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most

sense to you.

e Javain Adaptive Server provides a more powerful language than

stored procedures for building logic into the database.
e Javaclasses becomerich, user-defined data types.

* Methods of Java classes provide new functions accessible from SQL .

Java in Adaptive Server Enterprise

Capabilities of Java in the database

» Javacan be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database

Javain Adaptive Server allows you to:

* Invoke Java methods in the database
» Store Java classes as datatypes

* Storeand query XML in the database

Invoking Java methods in the database

Invoking Java
methods directly in
SQL

You can install Java classesin Adaptive Server, and then invoke the static
methods of those classes in two ways:

* You can invoke the Java methods directly in SQL.

* You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classesfor static (class) methods. You caninvokethe
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a val ue to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

» Output parameters are not supported. A method can manipul ate the dataiit
receives from a JDBC connection, but the only valueit can return to its
caler isasinglereturn value declared as part of its definition.

Adaptive Server Enterprise 15.5

CHAPTER 1 An Introduction to Java in the Database

Invoking Java
methods as SQLJ
stored procedures and
functions

You can enclose Java static methodsin SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

e Allows Java methods to return output parameters and result sets to the
calling environment.

e Allowsyou to take advantage of traditional SQL syntax, metadata, and
permission capabilities.
e Allowsyou to invoke SQLJ functions across databases.

« Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant, third-
party database.

e Complieswith Part 1 of the standard specification. See “ Standards” on
page 7.

Storing Java classes as datatypes

With Javain the database, you can install pure Java classesin a SQL system,
and then use those classes in a natural manner as datatypesin a SQL database.
This capability adds afull object-oriented datatype extension mechanism to
SQL, using amodel that is widely understood and a language that is portable
and widely available. The objectsthat you create and storewith thisfacility are
readily transferable to any Java-enabled environment, either in another SQL
system or standal one Java environment.

This capability of using Java classesin the database has two different but
complementary uses:

« It provides atype extension mechanism for SQL, which you can use for
datathat is created and processed in SQL .

* It providesapersistent data capability for Java, which you can useto store
datain SQL that is created and processed (mainly) in Java. Javain
Adaptive Server provides a distinct advantage over traditional SQL
facilities: you do not need to map the Java objects into scalar SQL
datatypes or store the Java objects as untyped binary strings.

Java in Adaptive Server Enterprise 3

Java components

Storing and querying XML in the database

Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) allows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

XML Servicesin Adaptive Server Enter prise describesthe Sybase native XML
processor and the Sybase Java-based XML support, introduces XML in the
database, and documentsthe query and mapping functionsthat comprise XML
Services.

Java components

Adaptive Server lets you plug in commercial, off-the-shelf Java runtime
environment (JRE) and Java virtual machine (VM) components. After
configuring Adaptive Server for Java, you can include any standard VM that
supports Java 6 or later. Thisinfrastructure lets you run Java applications
configured with the Java solution in Adaptive Server versions prior to 15.0.3
aswell as applications created using the Adaptive Server version 15.0.3 and
later.

The Javainterface for Adaptive Server include the commercial VM and the
Sybase components that support it:

e The pluggable component adaptor/ VM (PCA/JVM)

e The pluggable component interface (PCl) and the PCI Bridge, which are
internal to Adaptive Server

See Chapter 2, “Managing the Java Environment.”

Functional changes in Adaptive Server 15.0.3 and later

With Adaptive Server version 15.0.3, Sybase introduces support for
commercial IVMs such as the Sun Java 2 Platform, Standard Edition (J2SE).
Adaptive Server version 15.0.2 and earlier provided an internal VM.

The Adaptive Server PCA/IVM ensures that Java applications created before
version 15.0.3 run seamlessly with Java applications you create with Adaptive
Server version 15.0.3 and | ater.

4 Adaptive Server Enterprise 15.5

CHAPTER 1 An Introduction to Java in the Database

In addition to the changes described in this section, see:

e “Changesfor static variables for Adaptive Server 15.0.3 and later” on
page 63

e “Changesfor static variables for the Cluster Edition” on page 64

Changes in class distribution

The Javaruntime classesdelivered with Adaptive Server 15.0.2 and earlier was
alimited subset of the Java 1.2 release. Adaptive Server no longer providesthe
runtime classes. Rather, the VM uses the runtime classes delivered as part of
the commercial JRE.

In general, Java classes from later versions can be presumed to be backwards
compatible with earlier versions. However, certain methods or classes marked
“deprecated” in earlier versions may no longer be compatible with later
versions. Make sure that any deprecated classes or methods used by your
applications are still supported and unchanged in later versions of Java.

Adaptive Server version 15.0.2 and earlier included aruntime.zip file in the
$SYBASE/$SYBASE_ASE/lib directory. Thisfileincluded the Adaptive Server
specific classes, IDBC classes required for driver support, and a subset of the
standard Java classes.

Adaptive Server 15.0.3 replaces the runtime.zip file with the sybasert.jar
(which contains the Sybase Java classes required by the PCA/IVM) and uses
thert.jar to provide the standard Java class set. sybasert.jar islocated in
$SYBASE/ASE-15 0/lib/pca, and rt.jar islocated in the Java distribution in
$SYBASE/shared/<jre_directory>/lib, where jre_directory is a name specific
to your platform.

The PCA/JVM runs in headless mode

Classes and methods requiring user interaction were excluded from the Java
distribution provided by Adaptive Server 15.0.2 and earlier. Because the
PCA/JVM usesthe standard class distribution, these classes are now available.
To prevent users from invoking methods that require user interaction, the
PCA/JVM aways runsin headless mode.

Java in Adaptive Server Enterprise 5

Functional changes in Adaptive Server 15.0.3 and later

Changes in memory management

Adaptive Server 15.0.2 and earlier used a memory management system
consisting of three distinct heaps: aglobal fixed heap, a shared class heap, and
aprocess object heap. Adaptive Server 15.0.3 and later usesasingle PCI
memory pool. Any existing configuration values from 15.0.2 and earlier are
ignored by Adaptive Server 15.0.3. You must specify the total memory for the
PCI subsystem using the pci memory size configuration parameter. See Chapter
2, “Managing the Java Environment.”

If you are transitioning from Adaptive Server version 15.0.2 and earlier, you
may need to change the default size of the PClI memory pool. Thelife cycle of
classes and garbage collection algorithms used by commercia JVMsdiffers
significantly from that of the Sybase internal JVM. Once the size of the PCI
memory pool is appropriately configured, you should see no differencein
behavior.

Changes in ClassLoader behavior

In Adaptive Server version 15.0.3 and | ater, ClassL oader behavior conformsto
JVM specifications for the verification of classes during loading.

In Adaptive Server version 15.0.2 and earlier, references to additional classes
within the class being loaded were checked but not fully resolved. For
example, if class A referred to class B within a method, the ClassL oader did
not check that class B was actually available. Thus, a class could successfully
load without satisfying all of its dependencies. An exception would be raised
only when the method that requiring the unsatisfied dependency was
encountered.

The ClassLoader for all commercial VM implementations performs the full
class verification when the initial classisloaded. As aresult, aclass with
unsati sfied dependencies does not |oad, an Unhandled JavaException israised,
and the Java stack trace lists the error as “java.lang.NoClassDefFoundError.”

Thismeansthat, in rare instances, aclass that loads successfully in Adaptive
Server 15.0.2 and earlier may not load in Adaptive Server 15.0.3 and later
unless afull set of user and Java-supplied classesis provided so that all
dependencies can be satisfied.

6 Adaptive Server Enterprise 15.5

CHAPTER 1 An Introduction to Java in the Database

Standards

The ANSI SQL standards specify SQL extensions for using Javafacilitiesin
SQL. The Java-SQL specifications are in the SQL standard, “Part 13: SQL
Routines and Types Using the Java™ Programming Language (SQL/JRT).”
This standard is referred to informally as “SQLJ.”

Sybase supports the SQL J specifications for Java routines, and provides
equivalent facilities for Javatypes. In addition, Sybase extends the standard.
For example, Adaptive Server allows you to reference Java methods and
classesdirectly in SQL.

Java in the database: questions and answers

Although this book assumes that readers are familiar with Java, thereis much
to learn about Javain a database. Sybaseis not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database.

Both experienced and novice Java users should read this section. It usesa
question-and-answer format to familiarize you with the basics of Javain
Adaptive Server.

What are the key features?

All of these points are explained in detail in later sections. With Javain
Adaptive Server, you can:

¢ RunJavausing any commercial VM that supports Java 6 or later.
e Cadl Javafunctions (methods) directly from SQL statements.

e Wrap Javamethodsin SQL aliases and call them as standard SQL stored
procedures and built-in functions.

e Access SQL datafrom Javausing aninternal JDBC driver.
e UseJavaclasses as SQL datatypes.

¢ Saveinstances of Java classesin tables.

Java in Adaptive Server Enterprise 7

Java in the database: questions and answers

e Generate XML-formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

e Debug Javaclasses running in the database.

How are Java instructions stored in the database?

Javais an object-oriented language. Its instructions come in the form of
classes. You write and compile the Java instructions outside the database into
compiled classes (byte code), which are binary files holding Java instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server provides aruntime environment for Java classes. You need a
Java development environment, such as Sybase PowerJ™ or Sun
Microsystems Java Development Kit (JDK), to write and compile Java.

How is Java executed in the database?

When Adaptive Server encounters a Java statement within an executing SQL
statement, the server invokes the VM to execute the statement. If the VM is
already running, the Javainvocation is forwarded to it; if thisisthefirst Java
request, the VM starts automatically. The VM locates and loads the class
identified by the Java statement and executes the byte code.

Which Java Virtual Machines (JVMs) are supported?

The Adaptive Server Java framework has been designed to work with any
standard JVM that supports Java 6 or later. Adaptive Server version 15.0.3 has
been certified with Java 6 version that isincluded in the $SYBASE/shared
directory. Classes compiled by earlier versions of Javawill continue to run
correctly under later versions of Java.

8 Adaptive Server Enterprise 15.5

CHAPTER 1 An Introduction to Java in the Database

What is headless mode?

Javain Adaptive Server runs in headless mode, which means that display
devices, keyboards, and mice are not used. Although all classesin the standard
Javadistribution are available to the user, certain methods that expect user
input or output devices are not supported.

What about JDBC?
JDBC istheindustry standard API for executing SQL in Java.

Adaptive Server provides a native JDBC driver. Thisdriver is designed to
maximize performance as it executes on the server because it does not need to
communicate across the network. Thisdriver permits Java classesinstalled in
adatabase to use JDBC classes that execute SQL statements.

How can Java and SQL be used together?

A guiding principle for the design of Javain the database is that it provides a
natural, open extension to existing SQL functionality.

« Javaoperationsareinvoked from SQL — Sybase has extended the range of
SQL expressionsto include fields and methods of Java objects, so that you
can include Java operationsin a SQL statement.

» Java methods as SQL J stored procedures and functions — you create a
SQLJdlias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

e Java classes become user-defined datatypes — you store Java class
instances using the same SQL statements asthose used for traditional SQL
datatypes.

You can use classes that are part of the Java API, and classes created and
compiled by Java devel opers.

What is the Java API?

The Java Application Programming Interface (API) is abasic set of
functionality defined by Sun Microsystems. It can be used and extended by
Javadevelopers. It is the core of “what you can do” with Java.

Java in Adaptive Server Enterprise 9

Java in the database: questions and answers

The Java API offers considerable functionality inits own right, and isthe
foundation for all user-defined classes created for individual user applications.

Which Java classes are supported in the Java API?

Adaptive Server supports all standard Java classes in the database. Because
Javain the database runsin headless mode (see “What is headless mode?’ on
page 9), certain methods expecting user input or output devices raise a Java
exception.

Can user-defined classes be installed in the database?

You caninstall your own Java classes into the database as, for example, auser-
created Employee class or Inventory class that a devel oper designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both data and methods to operate on
data. Onceinstalled in adatabase, Adaptive Server letsyou usethese classesin
all parts and operations of the database and execute their functionality (in the
form of class or instance methods).

Can data be accessed using Java?

The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

Adaptive Server provides an internal JIDBC driver, which permits Java classes
installed in a database to use JDBC classes that execute SQL statements.

Can the same classes be used on the client and the server?

You can create Java classesthat can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, amiddle tier, or the database.

10 Adaptive Server Enterprise 15.5

CHAPTER 1 An Introduction to Java in the Database

Take care that classes used in different tiers, or in the same tier over time,
remain compatible or are knowingly made incompatible so that behavior is
consistent across the application. See the Java documentation on the
serialVersionUID in the java.io.Seridizable class for details.

How to use Java classes in SQL
Using user-defined Java classes is a three-step activity:

1 Writeor acquire aset of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classesin the Adaptive Server database.

Note Classesincludedinthe Javadistribution are alwaysavailable and do
not need to be installed in the database prior to use.

3 Usethose classesin SQL code:
* Invoke static methods directly as UDFs.

* Declarethe Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

e Reference the fields or methods of Java-SQL columns, variables, or
parameters.

e Wrap static methodsin SQL aliases and usethem as stored procedures
or functions.

Where can information about Java in the database be found?

There are many books about Java and Javain the database. The most recent
Javalanguage specification is located on the Sun Web site.

What you cannot do with Java in the database

Adaptive Server is aruntime environment for Java classes, not a Java
devel opment environment.

You cannot perform these actions in the database:

Java in Adaptive Server Enterprise 11

Java in the database: questions and answers

12

e Edit class sourcefiles (*.java files).
e Compile Javaclass sourcefiles (*.java files).

» Execute Java APIsthat are not supported, such as applet and visual
classes.

e Usethe Java Native Interface (INI).

» UseJavaobjectsas parameters sent to aremote procedure call or received
from aremote procedure call. They do not trandlate correctly.

Sybase recommends that you do not use nonfinal static variablesin methods
referenced by Java-SQL functions, SQL J functions, or SQLJ stored
procedures. The values returned for these variables may be unreliable asthe
scope of the static variable is implementati on-dependent.

Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

Topic Page
Components of the Java environment 13
When to change configuration values 19
Changing configuration values in a running server 21
Restoring default configuration values to sybpcidb 23
Using monitor tables to display information about the PCI Bridge 24

You can plug in off-the-shelf, standard Java JRE and VM components
such as J2SE, to Adaptive Server. This chapter describes the Sybase
components that support Java and how to change default configuration
values.

The Adaptive Server Javaframework has been designed to work with any
standard VM that supports Java 6 or later. ASE 15.5 has been certified
with the Java 6 version that isincluded in the $SYBASE/shared directory.
Classes compiled by earlier versions of Java continue to run correctly
under later versions of Java.

The JVM isindependent of Adaptive Server. You can change or upgrade
your Java applications to take advantage of new Java functionality as it
becomes available.

Components of the Java environment

Figure 2-1 shows the components that make up the Adaptive Server Java
environment.

Java in Adaptive Server Enterprise 13

Components of the Java environment

Figure 2-1: Java components

r— - - - — — — — |
Java
J2SE/JVM
Pluggable PCA/JVM bl
component Bridge

Adaptive Server

The JVM pluggable component

The VM plug-in is adynamically loaded module that is engineered,
supported, and installed on your platform independently from Adaptive Server.
To Adaptive Server, the plug-inisa*“black-box” application and not Sybase-
supported technology: the VM plug-in issues Java result sets, which are
translated by the PCI Bridge, which then sends the translated result setsto
Adaptive Server.

Because the VM plug-in is controlled by the PCA/IVM, it isindirectly
connected to Adaptive Server. You can install, upgrade, and start the VM
plug-in independently of Adaptive Server.

Typicaly, Java distributions include one or more JVM implementations. This
allows users to select the VM that best corresponds to the performance
requirements of individual applications.

14 Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

e Client applications — on platforms typically used for client applications,
the JRE includes aVM that is tuned to reduce start-up time and memory
footprint.

e Server applications—on all platforms, the JRE includes a version of the
JVM that is designed for maximum program execution speed.

There are many Java distributions, however, these features of Javatechnology
are common to both the client and server VM versions:

e Adaptive compiler —the Java plug-in uses astandard interpreter to launch
applications, but analyzes the code as it runs to detect performance
bottlenecks, or “hot spots.”

* Rapid memory allocation and garbage collection — Java technology
provides for rapid memory allocation for objects, and offers a choice of
fadt, efficient, state-of-the-art garbage collectors.

e Thread synchronization — the Java programming language allows you to
use multiple, concurrent paths of program execution (called “threads”).
Java technology includes a thread-handling capability that scales readily
for use in large, shared-memory multiprocessor servers.

Note Take care when using methods that spawn child threads.
javalang.Thread objects started within a Java method are scheduled at
runtime rather than by the Adaptive Server scheduler. If these threads are
processor intensive, or spawn large numbers of threads, server
performance can degrade due to competition for processor time.

Althoughthe PCA/JVM plug-in can use either theclient or server VM, Sybase
recommends that you use the server version to maximize Java method
performance by default; the server version is used by the installation process.

See the client-version documentation for information about the appropriate
client version for your enterprise.

Pluggable component adapter JVM (PCA/JVM)

The PCA/JVM acts as a broker, managing service requests between the
Adaptive Server and the VM. The PCA/IVM forwards and controls requests
in both directions—from the Adaptive Server to the VM, and from the VM
to the Adaptive Server.

Java in Adaptive Server Enterprise 15

Components of the Java environment

Pluggable component interface (PCI) and the PCI Bridge

The PCI isageneric interface internal to Adaptive Server; it isinstalled by
default when you install or upgrade Adaptive Server. The PCI Bridge, a
component internal to the PCI, performs the actual work between Adaptive
Server and the VM plug-in.

The PCI Bridge provides:

» Nativethread (process) management

* Memory management

e Synchronization (lock, condition, and event) management
e Dataaccess service support

e Configuration management

e On-demand function dispatching with automatic plug-in loading
e Signa and exception handling

e Platform runtime support

e Dynamic instrumentation facility

» Error message channeling to the Adaptive Server error log

For most scenarios, the default PCI Bridge configuration is appropriate and
sufficient. If necessary, and with the advice of Sybase Technical Support, you
can use the sp_pciconfig system stored procedure to modify the PCI
configuration. sp_pciconfig includes parameters that alow you to list, report,
enable, or disable the directives and arguments in sybpcidb. See “ Changing
configuration values in arunning server” on page 21.

The PClI memory pool

16

The PCI memory pool isallocated all at once when the PCI Bridge initializes;
it does not grow after that. It is controlled by Adaptive Server and is governed
by the same restrictions as other memory pools—for example, asingle
allocation cannot exceed 1M B. The default size of the PCI memory pool is
32,768 KB.

Use the enable pci configuration parameter to enable the PCI memory pool
when you configure the server for Java. See the installation guide for your
platform.

Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

Changing the size of
the PCI memory pool

Java VM memory
consumption in multi-
engine Adaptive
Server

Thedefault size of the PCI memory pool sizeisadequate for most nonclustered
installations. To increase the size of the memory pool, reset the pci memory size
configuration parameter.

For example, to set pci memory size to 13800 pages (each page is 2KB), enter:
sp_configure "pci memory size", 13800

pci memory size is a dynamic configuration parameter; you do not need to
restart Adaptive Server for the change to take effect.

If Adaptive Server does not have sufficient memory availableto allocate to the
memory pool, this configuration changeisignored and the PCI Bridge does not
Start.

Seethe System Administration Guide: Volume 1 for moreinformation about pci
memory size.

In amulti-engine environment, multiple Adaptive Server tasks can usethe Java
VM in paralel. Asaresult, the Java VM requires more memory in a multi-
engine environment than in a single-engine environment. Asaresult, you may
need to increase the size of the PClI memory pool based on the types of
applications you are running and the number of users executing Javain
paralel.

You can alow Adaptive Server to calculate heap sizes, or you can configure
them yourself using sp_jreconfig to set the -Xmx and -Xms arguments of the
PCA_JVM_JAVA_OPTIONS directive.

To let Adaptive Server configure heap sizes for you, the calculated heap size
must be greater than 4MB and you must not set the -Xmx and -Xms arguments.
(Adaptive Server uses the values stored in sybpcidb.)

When Adaptive Server configures heap sizes:

e The-Xxmx argument of the PCA_JVM_JAVA_OPTIONSdirectiveis set so
that the Java heap size is 65% of the PClI memory pool size.

e The-Xms argument is set to the same value as -Xmx.

* 20% of the Java heap size is configured for the young heap generations,
also called the Eden space.

Java in Adaptive Server Enterprise 17

Components of the Java environment

The sybpcidb database

sybpcidb tables

User table

The sybpcidb database stores configuration information for the PCI Bridge and
the PCA/JVM plug-in. You create sybpcidb, install its tables, and create its
system stored procedures when you configure the server for Java. See the
installation guide for your platform.

The sybpcidb system stored procedures are;

e sp_pciconfig — configures PCI Bridge properties.

e sp_jreconfig — configures PCA/JVM plug-in properties.
The sybpcidb database contains these tables.

Contents

pci_directives

Directive configuration information for the PCI Bridge.

pci_arguments

Argument configuration information for the PCI Bridge.

pci_slotinfo

Information for each dot, including table names for the relevant directives and
arguments.

pci_slot_syscalls

The runtime system call configuration information for the runtime dispatching
model used by the PCI Bridge.

pca_jre_directives

Directive information specific to the PCA/JVM plug-in.

pca_jre_arguments

Argument information specific to the PCA/JVM plug-in.

See the Reference Manual: Tables for more information about sybpcidb. See
the Reference Manual: Procedures for more information about sp_pciconfig
and sp_jreconfig.

How configuration values are organized in sybpcidb

18

Configuration values for the PCI Bridge and the PCA/IVM are stored in
sybpcidb and organized in a hierarchy of directives and arguments. Each
directive contains one or more arguments; each argument holdsaconfiguration
value. Arguments are of these types:

e “switch” arguments — describe properties that can only be enabled or
disabled. Switch arguments contain no data. (PCI Bridge and PCA/JVM)

e “number” arguments— contain numeric property values. (PCI Bridge and
PCA/IVM)

e “string” arguments— contain string property values. (PCA/JVM only)

Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

e “array” arguments—are acollection of one or more string property values.
(PCA/JVM only)

You can enable or disable each directive and each of its arguments. The state
of adirective overrides the states of its arguments. For example, suppose a
directive hasthreearguments. “argl” isenabled, “arg2” isdisabled, and “ arg3”
is disabled.

e If thedirective is enabled, each argument retains its base state. That is
“argl” isenabled, “arg2” isdisabled, and “arg3” is disabled.

e Ifthedirectiveisdisabled, the disabled state of the directive overridesthe
base states of the arguments so that “argl”, “arg2”, and “arg3” are all
disabled.

« However, if the directive is re-enabled, each argument returnsto its base
state: “argl” is enabled, “arg2” isdisabled, and “arg3” isdisabled. This
arrangement lets you disable all arguments or return all argumentsto their
original states with a single command.

When to change configuration values

The default configuration optionsfor the server and for the PCI Bridge and the
PCA/IVM aresufficient for most installations. Although you can safely change
and manage a few configuration options on your own, most configuration
options should not be changed without instructions from Sybase Technical
Support.

You can set configuration options:
* Attheserver level

* For the PCI Bridge

e For the PCA/IVM

Server-level options

Use sp_configure to change and manage these server-level configuration
parameters:

e enable pci — enables the PCI Bridge.

Java in Adaptive Server Enterprise 19

When to change configuration values

enable java — enables Java in the database.

pci memory size — sets the maximum size of the PCI memory pool.

Note You must enable both Java and the PCI Bridge before you can use the
PCA/IVM.

See the installation guide for your platform and the System Administration
Guide: Volume 1.

Configuration options for the PCI Bridge

Do not change any configuration options—directives or arguments—for the
PCI Bridge unless instructed to do so by Sybase Technical Support.

Configuration options for the PCA/JVM
You can safely change these arguments for the PCA/IVM:

20

pca_jvm_module_path — change this property only if you are using a JRE
other than that provided by the installation. If you are, point this property
to the JRE to be used by the PCA/JVM.

pca_jvm_work_dir —add one entry to thisargument array for each working
directory (trusted directory) that can be configured with a specific
permission mask, as needed. See Chapter 8, “File and Network Access
Using Java.”

pca_jvm_netio — enabl e this argument to enable network 1/0. Disable this
argument to disable network 1/0.

pca_jvm_dbg_agent_port —enable this argument and set its numeric value
to the port number the VM usesfor the debug agent. Your Java debugger
must listen on the same port.

Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

e pca_jvm_java_dbg_agent_suspend — enable this argument to start the
debug agent in asuspended state. Enabling thisargument isuseful because
it can allow you time to set breakpoints and other optionsin your Java
debugger after it is attached to the running process. See the Reference
Manual: Commands.

Note Usepca_jvm_java_dbg_agent_suspend with caution. Enabling
pca_jvm_java_dbg_agent_suspend suspends the VM and all Adaptive
Server Javatasks wait until you attach the debugger and instruct the VM
to continue. Sybase recommends that you start the VM and run asimple
Java command to attach the debugger rather than enabling
pca_jvm_java_dbg_agent_suspend. Using the Java command allows the
JVM to start, and lets you attach the debugger before executing the class
that isto be debugged.

Do not change any other directives or arguments for the PCA/JVM without
instructions from Sybase Technical Support.

Changing configuration values in a running server

If, with advice from Sybase Technical Support, you want to change the default
configuration values, you can use the sp_jreconfig and sp_pciconfig system
stored procedures. See “When to change configuration values’ on page 19.
This section describes how to load the changed configuration valuesinto
memory in arunning server.

When Adaptive Server starts, it automatically loadsthe VM if the server has
been configured for Java. The VM isnot initialized, however, until it receives
the first Java request. This depends on how frequently Javais used. Changing
configuration values before initialization is relatively simple. Changing
configuration values after initialization, when the configuration information
has been read into in-memory data structures, is more difficult.

You can update configuration information:

e By restarting Adaptive Server

» Beforethe JVM has been initialized (for the PCA/IVM plug-in only)
e After the VM has beeninitialized (for the PCA/JVM plug-in only)

Java in Adaptive Server Enterprise 21

Changing configuration values in a running server

Changing configuration values by restarting Adaptive Server

Thisisthe easiest method of changing configuration information, and it is
always available.

Note You must use this method if you are using sp_pciconfig to change
configuration values for the PCI Bridge.

1 Usesp_jreconfig or sp_pciconfig to change configuration values.
2 Restart Adaptive Server.

Changing configuration values before the JVM is initialized

Use this method to change configuration values for the PCA/JVM plug-in
when Adaptive Server is running, but the VM is not initialized.

1 Usesp_jreconfig to change configuration values.
2 Load the configuration parameters into memory. Enter:
sp_jreconfig "reload config"

You do not need to restart Adaptive Server for the new configuration valuesto
take effect.

Note Changes made with sp_jreconfig "reload_config" take effect only if you
have not yet initialized the VM. Using sp_jreconfig modifies only the table
values in sybpcidb, and does not affect the current in-memory data structures
that were loaded into memory when you started Adaptive Server.

You can safely attempt this method even if you are unsure whether the VM
has been initialized or not. If the VM has been initialized, the reload_config
command fails and an error message displays. There are no negative
conseguences.

Changing configuration values after the JVM is initialized

If the server is running and the VM has been initialized, the configuration
parameters are in memory. You can, in this situation, change the PCA/JVM
plug-in configuration parameters without restarting Adaptive Server, however:

22 Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

e Adaptive Server must be running in multiple-engine mode, and
e The JVM must be running on its own engine.

Otherwise, you must restart Adaptive Server.

Follow these steps:

1 Usesp_jreconfig to change configuration values.

2 Bringthe enginerunning the VM offline (in thisexampl e, engine number
three):

sp_engine "offline", 3
3 Bring the engine running the VM back online:
sp_engine "online", 3

Adaptive Server continues to run during this procedure, but Javais not
available until you bring the engine running the JVvM online. After you bring
the engine online in step 3, the VM is again in the uninitiated state—until it
receives the first Javarequest.

Restoring default configuration values to sybpcidb

The steps for restoring the default configuration values to the sybpcidb
configuration values after the VM hasbeen initialized depend on whether you
can restart Adaptive Server, and whether you are using a single- or multiple-
engine Adaptive Server.

If you are using a single-engine Adaptive Server:

1 Reinstall theinstallpcidb installation script to reset the sybpcidb
configuration table values to their factory defaults. For example:

isgl -Usa -Psa password -Sserver name
-1 $SYBASE ASE/scripts/installpcidb

2 Restart Adaptive Server. Thedefault configuration val uestake effect when
the VM initializes in response to the first Java request.

If you are using a multiple-engine Adaptive Server:

1 Reinstall installpcidb to reset the sybpcidb configuration table valuesto
their factory defaults. For example:

isgl -Usa -Psa password -Sserver name

Java in Adaptive Server Enterprise 23

Using monitor tables to display information about the PCI Bridge

-1 $SYBASE ASE/scripts/installpcidb
2 Bring the engine running the VM offline. For example:
sp_engine "offline", 3
In this example, the VM isrunning on engine“3”.
3 Bring the engine running the VM back online. For example:
sp_engine "online", 3

You do not need to restart Adaptive Server for the new configuration valuesto
take effect.

Using monitor tables to display information about the
PCI Bridge
You can display information about the PCI Bridge using these monitor tables:
e monPCIBridge — displays general information about the PCI Bridge. For
For example:

select * from monPCIBridge

Status ConfiguredSlots ActiveSlots ConfiguredPCIMemoryKB UsedPCIMemoryKB

ACTIVE 1 1 65668 1613

e monPCISlots — displays information about the plug-in bound to each slot.
For example:

select * from monPCISlots

24 Adaptive Server Enterprise 15.5

CHAPTER 2 Managing the Java Environment

e monPCIEngine — displays engine information for the PCI Bridge and its
plug-ins. For example:

select * from monPCIEngine
Engine Status PLBStatus NumberofActiveThreads PLBRequest PLBWakeupRequests

0 PCA ACTIVE ACTIVE 10
1 PCA ACTIVE ACTIVE 4 0 0

See the Reference Manual: Tables for more information.

Java in Adaptive Server Enterprise 25

Using monitor tables to display information about the PCI Bridge

26 Adaptive Server Enterprise 15.5

CHAPTER 3 Preparing for and Maintaining

Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Javaclassesin the database.

Topic Page
The Java runtime environment 27
Enabling Java 29
Installing Java classes in the database 29
Viewing information about installed classes and JARS 33
Downloading installed classes and JARs 33
Removing classes and JARs 34

The Java runtime environment

The Adaptive Server runtime environment for Javarequires a third-party
JVM, the Sybase PCl, whichisavailable aspart of the database server, and
the Sybase runtime Java classes, or Java API. If you are running Java

applications on the client, you may also require the Sybase JDBC driver,

jConnect, on the client.

Java classes in the database

You can use any of the following sources for Java classes:

Java in Adaptive Server Enterprise

27

The Java runtime environment

e The standard Java distribution found in rt.jar and classesinstalled in the
“ext” directory under the Javainstallation directory.

Note The contents of the ext directory may vary depending on the Java
vendor. See the vendor’s documentation for detailed information about
these classes.

e User-defined classes

Sybase runtime Java classes

The Sybase runtime Java classes are the low-level classesinstalled to Java
enable a database. They are downloaded automatically when Adaptive Server
isinstalled and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/sybasert.jar (UNIX) or

%SYBASEY\%SYBASE ASE%\lib\sybasert.jar (Windows). Adaptive Server
sets the CLASSPATH environment when the VM starts.

Note If CLASSPATH is set in the operating system environment, Adaptive
Server ignores that value when the internal VM starts.

User-defined Java classes

JDBC drivers

28

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC versions 1.1 and 1.2, and is compliant with several classes and methods
of JDBC version 2.0. See Chapter 9, “Additional Topics,” for acompletelist
of supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 6.x or later, which supports JDBC version 2.0.

Adaptive Server Enterprise 15.5

CHAPTER 3 Preparing for and Maintaining Java in the Database

The JVM

The Adaptive Server Java framework has been designed to work with any
standard JVM that supports Java 6 or later. Adaptive Server version 15.0.3 has
been certified with the Java 6 version that is included in the $SYBASE/shared
directory. Classes compiled by earlier versions of Javawill continue to run
correctly under later versions of Java.

Enabling Java

Note Configure sybpcidb as described in the install guide for your platform
before enabling the PCI and Java.

To enablethe server and itsdatabasesfor Java, enter these commandsfromisql:

sp_configure "enable pci", 1
sp_configure "enable java", 1

Then, shut down and restart the server. Adaptive Server 15.0.3 and later require
that you enable the PCI as a prerequisite to enabling Java.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

Installing Java classes in the database

To install Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

Java in Adaptive Server Enterprise 29

Installing Java classes in the database

Using installjava

installjava copies an uncompressed JAR file into the Adaptive Server system
and makesthe Java classes contained inthe JAR availablefor usein the current
database. The syntax is:

installjava

-f file_name

[-new | -update]

[-j jar_name]

[-S server_name]
[-U user_name]

[-P password]

[-D database_name]
[-l interfaces_file]

[-a display_charset]
[-J client_charset]

[-z language]

[-t timeout]

For example, toinstall classes in the addr.jar file, enter:
installjava -f “/home/usera/jars/addr.jar”

The —f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note Whenyou install aJAR file, Application Server copiesthefileto a
temporary table and then installs it from there. If you install alarge JAR file,
you may need to expand the size of tempdb using the alter database command.

Installing uncompressed JARs
Theinstalljava and instjava tools require an uncompressed jar file.

Toinstall Java classesin adatabase, save the classes or packagesin aJJARfile,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Javajar cfo (“zero”) command.

Inthis UNIX example, the jar command creates an uncompressed JAR filethat
contains all .classfilesin the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

30 Adaptive Server Enterprise 15.5

CHAPTER 3 Preparing for and Maintaining Java in the Database

Retaining the JAR file

When aJAR isinstalled in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specifiedininstalljava or usesthe JAR only to extract the classesto beinstalled.

« If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the norma manner, and then retains the JAR and
its association with the installed classes.

« If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. Thisis the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file:

¢ Youcanremovethe JAR and all classes associated withit, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at atime.

e You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARS’ on page 33.

Updating installed classes

The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.

e If you specify new, you cannot install a class with the same name as an
existing class.

e If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

Java in Adaptive Server Enterprise 31

Installing Java classes in the database

e If you update a JJAR, all classesin the existing JAR are deleted and
replaced with classes in the new JAR.

e Aclasscanbeassociated only with asingle JAR. You cannot install aclass
inone JAR if aclass of that same nameisaready installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
aJARIf that classis currently installed and associated with a JAR.

You can, however, install aclassin aretained JAR with the same name as
an installed class not associated with aJAR. In this case, the class not
associated with aJAR is deleted and the new class of the same nameis
associated with the new JAR.

If you want to reorganize your installed classes in new JARS, you may find it
easier to first disassociate the affected classes from their JARs. See“Retaining
classes’ on page 34 for more information.

Referencing other Java-SQL classes

Installed classes can reference other classes in the same JAR file and classes
previoudly installed in the same database, but they cannot reference classesin
other databases.

If the classesin aJAR file do reference undefined classes, an error may result:

» If anundefined classisreferenced directly in SQL, it causesa syntax error
for “undefined class.”

» If anundefined classis referenced within a Java method that has been
invoked, it throws a Java exception that may be caught intheinvoked Java
method or cause the general SQL exception described in “ Exceptionsin
Java-SQL methods’ on page 43.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the classis not instantiated or
referenced.

32 Adaptive Server Enterprise 15.5

CHAPTER 3 Preparing for and Maintaining Java in the Database

Viewing information about installed classes and JARs

To view information about classes and JARs installed in the database, use
sp_helpjava. The syntax is:

sp_helpjava [‘class’ [, name [, 'detail’ | , 'depends']] |
‘jar’ [, name [, 'depends']]]

For example, to view detailed information about the Address class, including
the version number, log in to isql and enter:

sp_helpjava ’'class’, Address, detail

See“sp_helpjava’ in the Reference Manual for more information.

Downloading installed classes and JARS

You can download copies of Java classes installed on one database for usein
other databases or applications.

Use the extractjava system utility to download a JAR file and its classesto a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava -j ’addr.jar’ -f
‘~/home/usera/jars/addrcopy.jar'’

See the Utility Guide manual for more information.

Java in Adaptive Server Enterprise 33

Removing classes and JARs

Removing classes and JARsS

Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classesfrom the database. remove java can specify one or more Javaclass
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isql enter:

remove java package "utilityClasses"

Note Adaptive Server does not et you remove classes that are used as
datatypesfor columnsand parameters or that are referenced by SQL Jfunctions
or stored procedures. Other classes cannot be checked for usage and may be
removed while still referenced in stored procedures. Make sure that you do not
remove subclasses or classes that are used as variables or UDF return types.

remove java package deletes all classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes

You can delete a JAR file from the database but retain its classes as classes no
longer associated with aJAR. Useremove java with theretain classes optionif,
for example, you want to rearrange the contents of several retained JARS.

For example, from isqgl enter:
remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARS, you can associate them
with new JARs using installjava with the new keyword.

34 Adaptive Server Enterprise 15.5

CHAPTER 4

Using Java Classes in SQL

This chapter describes how to use Java classesin an Adaptive Server

environment. The first sections give you enough information to get

started; succeeding sections provide more advanced information.

Topics Page
General concepts 35
Using Java classes as datatypes 37
Invoking Java methodsin SQL 41
Representing Java instances 43
Assignment properties of Java-SQL dataitems 44
Datatype mapping between Java and SQL fields 47
Character sets for dataand identifiers 48
Subtypesin Java-SQL data 48
Treatment of nullsin Java-SQL data 50
Java-SQL string data 54
Type and void methods 55
Equality and ordering operations 58
Evaluation order and Java method calls 59
Static variables in Java-SQL classes 62
Java classes in multiple databases 64
Java classes 67

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables

or as Java-SQL dataitems.

General concepts

This sections provides general Java and Java-SQL identifier information.

Java in Adaptive Server Enterprise

35

General concepts

Java considerations

Before you use Javain your Adaptive Server database, here are some general
considerations.

» Javaclasses contain:
» Fieldsthat have declared Java datatypes.
» Methods whose parameters and results have declared Java datatypes.

» Javadatatypes for which there are corresponding SQL datatypes are
defined in “ Datatype mapping between Javaand SQL” on page 157.

» Javaclasses can include classes, fields, and methods that are private,
protected, Or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private or protected cannot be
referenced in SQL, but they can be referenced in Java, and are subject to
normal Javarules.

» Javaclasses, fields, and methods all have various syntactic properties:
* Classes—the number of fields and their names
e Field —their datatypes

» Methods—the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic propertiesfrom the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL names

Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or lessif you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiersif you use them in Transact-SQL statements.

Class, field, and method names of 30 or more bytes must be surrounded by
guotation marks.

Thefirst character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore (_) symbol. Subsegquent characters
can include al phabetic characters, numbers, the dollar ($) symbol, or the
underscore (_) symbol.

36 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 159 for more information about identifiers.

Using Java classes as datatypes

After you have installed a set of Java classes, you can reference them as
datatypesin SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
javaio.Externalizable.

You can specify Java-SQL classes as:
e The datatypes of SQL columns

e Thedatatypesof Transact-SQL variables and parametersto Transact-SQL
stored procedures

e Default values for SQL columns

When you create atable, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar (30),
home_addr Address,
mailing Address2Line null)

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be aconstant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar (30),
home_addr Address default new Address

Java in Adaptive Server Enterprise 37

Using Java classes as datatypes

('Not known', ''),
mailing addr Address2Line

Creating and altering tables with Java-SQL columns

38

When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information inthe columnisto be stored. Your choice of storage options affects
the speed with which Adaptive Server references and updatesthefieldsin these
columns.

Columnvaluesfor arow typically arestored “in-row,” that is, consecutively on
the data pages all ocated to a table. However, you can also store Java-SQL
columns in a separate “ off-row” location in the same way that text and image
dataitems are stored. The default value for Java-SQL columnsis off-row.

If aJava-SQL columnis stored in-row:

» Objects stored in-row are processed more quickly than objects stored off-
row.

e Anobject stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includes its entire serialization, not just the valuesinitsfields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

If aJava-SQL columnisstored off-row, the columnissubject to therestrictions
that apply to text and image columns:;

» Objects stored off-row are processed more slowly than objects stored in-
row.

» Anobject stored off-row can be of any size—subject to normal limits on
text and image columns.

* An off-row column cannot be referenced in a check constraint.

Similarly, do not reference a table that contains an off-row columnin a
check constraint. Adaptive Server alows you to include the check
constraint when you create or ater thetable, but i ssues awarning message
at compile time and ignores the constraint at runtime.

* You cannot include an off-row columnin the column list of a select query
with select distinct.

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

e You cannot specify an off-row column in a comparison operator, in a
predicate, or in agroup by clause.

Partial syntax for create table with thein row/off row option is:

create table...column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
[off row | [in row [(size_in_bytes)]]...
size_in_bytes specifies the maximum size of the in-row column. The value can
be aslarge as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the valuesin its fields, plus minimum
valuesfor overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of arepresentative object you intend to storein the
column.

For example:
select datalength (new class name(...))
where class nameisan installed Java-SQL class.

Partial syntax for alter table is:

alter table...{add column_name datatype
[default {constant_expression | user | null}]
{identity | null} [off row | [in row]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

Altering partitioned tables

If atable containing Java columns is partitioned, you cannot alter the table
without first dropping the partitions. To change the table schema:

1 Remove the partitions.
2 Usethealter table command.

3 Repartition the table.

Java in Adaptive Server Enterprise 39

Using Java classes as datatypes

Selecting, inserting, updating, and deleting Java objects

After you specify Java-SQL columns, the values that you assign to those data
items must be Javainstances. Such instances are generated initially by callsto
Java constructors using the new operator. You can generate Javainstances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor isinvoked, the one with the proper number and
type of argumentsis used.

In the following example, Javainstances are generated for both columns and
variables:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = new Address()

select @AA = new Address('123 Main Street', '99123"'")

select @A2 = new Address2Line()

select @AA2 = new Address2Line('987 Front Street',
'Unit 2', '99543")

insert into emps values ('John Doe', new Address(),
new Address2Line())
insert into emps values('Bob Smith',
new Address('432 ElmStreet', '99654'),
new Address2Line ('PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = home_addr, @A2 = mailing addr from emps
where name = 'John Doe'
insert into emps values ('George Baker', @A, @A2)

select @AA2 = @A2
update emps

set home addr = new Address('456 Shoreline Drive', '99321'),
mailing addr = @AA2
where name = 'Bob Smith'

40 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
name char(30),
home_addr Address,
mailing addr Address2Line null

)

insert into trainees

select * from emps
where name in ('Don Green', 'Bob Smith',
'George Baker')

You can reference and update thefiel dsof Java-SQL columnsand of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL

use of dotsto qualify names, use adouble-angle (>>) to qualify Javafield and
method names when referencing them in SQL.

declare @name varchar (100), @street varchar (100),
@streetLine2 varchar(100), @zip char(10), @A Address

select @A = new Address()
select @A>>street = '789 Oak Lane'
select @street = @A>>street

select @street = home add>>street, @zip = home add>>zip from emps
where name = 'Bob Smith'

select @name = name from emps
where home addr>>street= '456 Shoreline Drive'

update emps

set home_addr>>street = '457 Shoreline Drive',
home_addr>>zip = '99323"
where home addr>>street = '456 Shoreline Drive'

Invoking Java methods in SQL

You can invoke Java methods in SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classesfor static methods.

Java in Adaptive Server Enterprise 41

Invoking Java methods in SQL

42

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not aparticular instance of the class. Static methods often apply to objects and
values from awide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be seriaizable.

One of the primary benefits of using Javawith Adaptive Server isthat you can
use static methods that return avalue to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, atrigger, a
where clause, or anywhere that you can use a built-in SQL function.

Javamethodsinvoked directly in SQL as UDFsare subject to these limitations:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

e Output parameters are not supported. A method can manipul ate the dataiit
receives from a JDBC connection, but the only valueit can return to its
caler isasinglereturn value declared as part of its definition.

» Cross-databaseinvocationsof static methods are supported only if you use
aclassinstance as a column value.

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the datais checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
tablet1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions’ on page 93.

To use Javastatic methodsto return result sets and output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQL J stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 94 for acomparison of thewaysyou can invoke Javamethodsin Adaptive
Server.

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Sample methods

declare
declare
declare
declare

The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

@name varchar(100)
@street varchar(100)
@streetnum int

@A2 Address2Line

select @name = Misc.stripLeadingBlanks (name),

@street = Misc.stripLeadingBlanks (home addr>>street),
@streetnum = Misc.getNumber (home addr>>street),
@A2 = mailing addr

from emps

where home addr>>toString() like '%Shoreline%'

For information about void methods (methods with no returned value) see
“Type and void methods’ on page 55.

Exceptions in Java-SQL methods

When the invocation of a Java-SQL method completes with unhandled
exceptions, a SQL exception israised, and this error message displays:

Unhandled Java method exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances

Non-Java clients such as isql cannot receive serialized Java objects from the
server. To allow you to view and use the abject, Adaptive Server must convert
the object to a viewable representation.

Java in Adaptive Server Enterprise 43

Assignment properties of Java-SQL data items

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address classis an example of such amethod. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java API does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use a toString() method, Adaptive Server imposes alimit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @ @stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include atoString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

* You can select aparticular field in the Java-SQL column, which
automatically invokes toString():

select home addr>>street from emps

* You can select the column and the toString() method, which listsin one
string all of the field values in the column:

select home addr>>toString() from emps

Assignment properties of Java-SQL data items

44

Thevalues assigned to Java-SQL dataitemsare derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and resultsis different from
the logical representation of Java-SQL columns.

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Java-SQL columns, which are persistent, are Javaserialized streamsstored
in the containing row of the table. They are stored values containing
representations of Javainstances.

Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Javainstances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examplesillustrate.

The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns areference toit.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line
select @A = new Address ('432 Post Lane', '99444')

Variable @A contains areference to a Javainstance in the Java VM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

This assignment modifies the zip field of the Address referenced by @A.
Thisis the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip='99222"

The Address constructor method with the new operator constructs an
Address instance and returns areferenceto it. However, since thetarget is
aJava-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copiesthe serialized valueinto the new row
of the emps table.

insert into emps
values ('Don Green', new Address('234 Stone
Road', '99777'), new Address2Line())

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and storesthe serialized valueinto the new row of
the emps table.

Java in Adaptive Server Enterprise 45

Assignment properties of Java-SQL data items

46

insert into emps

insert into emps

Theinsert statement specifiesno value for the mailing_addr column, so that
column will be set to null, in the same manner as any other column whose
value is not specified in aninsert. This null value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
JavaVM at all.

(name, home addr) values ('Frank Lee', @A)

Theinsert statement specifiesthat the value of the home_addr columnisto
be taken from the Java-SQL variable @A. That variable contains a
referenceto an Address instancein the JavaV M. SincethetargetisaJava
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

This statement inserts anew emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. Itisalso a
serialization of the Java instance referenced by @A.

(name, home addr) values ('Bob Brown', @A)

This update statement sets the zip field of the home_addr column of the
‘Frank Le€' row to ‘99777." This has no effect on the zip field in the ‘Bob
Brown’ row, whichis till ‘99444,

update emps
set home_add>>zip = '99777"'
where name = 'Frank Lee'

The Java-SQL column home_addr contains a serialized representation of
thevalue of an Address instance. The SQL system invokesthe JavaVM to
deserialize that representation as a Javainstance in the Java VM, and
return areference to the new deserialized copy. That referenceis assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home_addr from emps where name = 'Frank Lee'

This assignment modifies the zip field of the Address instance referenced
by @A. Thisinstanceisacopy of thehome_addr column of the'Frank Lee'
row, but isindependent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee'
row.

select @A>>zip = '95678'

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Datatype mapping between Java and SQL fields

When you transfer datain either direction between the JavaVVM and Adaptive
Server, you must take into account that the datatypes of the dataitems are
different in each system. Adaptive Server automatically maps SQL itemsto
Javaitems and vice versa according to the correspondence tablesin “ Datatype
mapping between Java and SQL” on page 157.

Thus, SQL type char translates to Java type String, the SQL type binary
trangdates to the Java type byte[1, and so on.

» For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

» For the datatype correspondences from Javato SQL:

e The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytesis defined
by Adaptive Server.

e The JavaBigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scal e are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes isjava.String, and they aretreated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression isused in a SQL
context. For example, if the field home_addr>>street for employee * Smith’ is
260 characters, and begins ‘6789 Main Street ...

Java in Adaptive Server Enterprise 47

Character sets for data and identifiers

select Misc.getStreet (home addr>>street) from emps where name='Smith'

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street....". That 255-character string isnow an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

Character sets for data and identifiers

The character set for both Java source code and for Java String datais Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Javaidentifiersused in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data

48

Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from aclass to one of its
superclassesis awidening conversion; a conversion from a classto one of its
subclasses is a narrowing conversion.

* Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

* Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Widening conversions

You do not need to use the convert function to specify awidening conversion.
For example, since the Address2Line classis a subclass of the Address class,
you can assign Address2Line valuesto Address data items. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

update emps
set home addr = mailing addr
where home addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions

update

update

update

You must use the convert function to convert an instance of aclassto an
instance of a subclass of the class. For example:

emps
set mailing addr = convert (Address2Line, home_ addr)
where mailing addr is null

The narrowing conversionsin the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause;

emps

set mailing addr = convert (Address2Line, home_ addr)
where mailing addr is null

and home addrs>>getClass()>>toString() = 'Address2Line’

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object classisimplicitly a
superclass of all classes, so the methods defined for it are available for al
classes.

You can also use a case EXpression:

emps
set mailing addr =

Java in Adaptive Server Enterprise 49

Treatment of nulls in Java-SQL data

case
when home addrs>>getClass()>>toString()
='Address2Line'
then convert (Address2Line, home addr)
else null
end
where mailing addr is null

Runtime versus compile-time datatypes

Neither widening nor narrowing conversions modify the actual instance value
or itsruntime datatype; they simply specify the classto be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
columninto the home_address column, those values still havethe runtimetype
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home addr>>toString() from emps

°

where home addr>>toString() not like '$Line2=[]'

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of thehome_addr valueis either Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address classisinvoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclassisinvoked.

See “Null values when using the SQL convert function” on page 53 for a
description of null values for widening and narrowing conversions.

Treatment of nulls in Java-SQL data

This section discusses the use of nullsin Java-SQL dataitems.

50 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

References to fields and methods of null instances

If the value of the instance specified in afield reference is null, then the field
referenceisnull. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rules for the effect of referencing afield or method of anull
instance. In Java, if you attempt to reference afield of anull instance, an
exception israised.

For example, suppose that the emps table has the following rows:

insert into emps (name, home_ addr)
values ("Al Adams",
new Address ("123 Main", "95321"))

insert into emps (name, home_ addr)
values ("Bob Baker",
new Address ("456 Side", "95123"))

insert into emps (name, home addr)
values ("Carl Carter", null)

Consider the following select:

select name, home addr>>zip from emps
where home addr>>zip in ('95123', '95125', '95128"')

If the Javarule were used for the referencesto “home_addr>>zip,” then those
references would cause an exception for the “ Carl Carter” row, whose
“home_addr” columnisnull. To avoid such an exception, you would need to
write such aselect as follows:

select name,
case when home_addr is not null then home_addr>>zip
else null end

from emps
where case when home addr is not null
then home addr>>zip

else
null end

in ('95123', '95125', '95128")

The SQL convention is therefore used for references to fields and methods of
null instances: if theinstanceisnull, then any field or method referenceisnull.
The effect of this SQL ruleis to make the above case statement implicit.

Java in Adaptive Server Enterprise 51

Treatment of nulls in Java-SQL data

However, this SQL rulefor field references with null instances only appliesto
field references in source (right-side) contexts, not to field references that are
targets (Ieft-side) of assignments or set clauses. For example:

update emps
set home addr>>zip D '99123"
where name D 'Charles Green'

Thiswhere clauseis obviously true for the “ Charles Green” row, so the update
statement triesto perform the set clause. This raises an exception, because you
cannot assign avalue to afield of anull instance as the null instance has no
field to which avalue can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

The same considerations apply to invocations of methods of null instances,
and the sameruleis applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column:

select name, home addr>>toString()from emps
where home addr>>toString() D
'StreetD234 Stone Road ZIPD 99777

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement isvalid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods

The outcome of passing null as aparameter isindependent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver anull value.

You cannot passthe null value asa parameter to aJavascalar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable ({
public static int identityl(int I) {return I;}
public static java.lang.Integer identity2
(java.lang.Integer I) {return I;}
public static Address identity3 (Address A) {return A;}

Consider these calls:

52 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

declare @I int
declare @A Address;

select @I = General.identityl (@I)
select @I = General.identity2 (new java.lang.Integer (@I))
select @A = General.identity3 (@A)

Thevaues of both variable @I and variable @A are null, since values have not
been assigned to them.

e Thecall of theidentityl() method raises an exception. The datatype of the
parameter @I of identity1() isthe Javaint type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

e Thecall of theidentity2() method succeeds. The datatype of the parameter
of identity2() isthe Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
@l.

* Thecadl of theidentity3() method succeeds.

A successful call of identity1() never returns anull result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function

You use the convert function to convert a Java object of one classto a Java
object of asuperclass or subclass of that class.

Asshownin“Subtypesin Java-SQL data’ on page 48, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home addr>>street, convert (Address2Line, home addr)s>>line2,
home addr>>zip from emps

the expression “ convert(Address2Line, home_addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

Java in Adaptive Server Enterprise 53

Java-SQL string data

» If theruntime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

e If theruntime value of the expression (home_addr) is a superclass of the
specified class (Address), then anull is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

e If thevalue of the home_addr column is an Address2Line, then convert
returnsthat value, and thefield reference extracts theline2 field. If convert
returns null, then the field reference itself is null.

* Whenaconvert returns null, thenthefield referenceitself evaluatesto null.

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column isan Address. Asdescribed in“ Treatment of nullsin Java-
SQL data” on page 50, the select also shows anull line2 value for those rows
in which the home_addr columniisnull.

Java-SQL string data

In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL dataitem whose typeis
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL dataitem whosetypeischar, varchar, nchar, or text isassigned to
aJava-SQL string field that is stored as Unicode, the character dataiis
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings

In Transact-SQL, a zero-length character string is treated as a null value, and
the empty string () istreated as a single space.

54 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

To be consistent with Transact-SQL , when a Java-SQL String value whose
lengthiszeroisassigned to a SQL dataitem whosetypeischar, varchar, nchar,
nvarchar, Or text, the Java-SQL String value is replaced with a single space.

For example:
1> declare @s varchar (20)
2> select @s = new java.lang.String/()
3> select @s, char length(@s)
4> go
(1 row affected)
1

Otherwise, the zero-length value would be treated in SQL as a SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Javanull.

Type and void methods

insert

select

Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with a result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:
e ThetoString() method is atype method whose type is String.
* TheremoveLeadingBlanks() method is avoid method.

e The Address constructor method is a type method whose typeis the
Address class.

Youinvoketype methods asfunctions and use the new keyword when invoking
a constructor method:

into emps
values ('Don Green', new Address('234 Stone Road', '99777'),
new Address2Line())

name, home addr>>toString() from emps
where home addr>>toString() like ‘%Baker%’

Java in Adaptive Server Enterprise 55

Type and void methods

The removeLeadingBlanks() method of the Address classis avoid instance
method that modifies the street and zip fields of agiven instance. You can
invoke removelLeadingBlanks() for the home_addr column of each row of the
emps table. For example:

update emps
set home addr =
home_addr>>removeLeadingBlanks ()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide aframework or syntax for such an action. It simply replaces column
values.

Java void instance methods

update emps

set home addr

To usethe“update-in-place” actions of Javavoid instance methodsin the SQL
system, Javain Adaptive Server treatsacall of a Javavoid instance method as
follows:

For avoid instance method M() of an instance ClI of aclass C, written
“CLM(.)":

* InSQL, thecall istreated as atype method call. The result typeis
implicitly class C, and the result value is areference to CI. That reference
identifies a copy of the instance Cl after the actions of the void instance
method call.

* InJava, thiscall isavoid method call, which performsits actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows:

= home addr>>removeLeadingBlanks()

where home addr>>removeLeadingBlanks()>>street like “123%”

56

1 Inthewhere clause, “home_addr>>removel eadingBlanks()" callsthe
removeLeadingBlanks() method for the home_addr column of arow of the
emps table. removeLeadingBlanks() strips the leading blanks from the
street and zip fields of a copy of the column. The SQL system then returns
areference to the modified copy of the home_addr column. The
subsequent field reference:

home addr>>removeLeadingBlanks()>>street

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

update emps

set home addr
where ...

returnsthestreet field that hasthe leading blanksremoved. The references
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

The update statement performs the set clause for each row of emps in
which the where clauseistrue.

On theright-side of the set clause, the invocation of
“home_addr>>removel eadingBlanks()" is performed as it was for the
where clause: removelLeadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns areference to the
modified copy of the home_addr column.

The Address instance denoted by the result of the right side of the set
clauseisserialized and copied into the column specified on the | eft-side of
the set clause: theresult of the expression on theright side of the set clause
isacopy of thehome_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy isthen assigned
back to the home_addr column as the new value of that column.

The expressions of the right and |eft side of the set clause are independent, as
is normal for the update statement.

Thefollowing update statement shows an invocation of avoidinstance method
of the mailing_addr column on theright side of the set clause being assigned to
the home_address column on the | eft side.

mailing addr>>removeLeadingBlanks()

In this set clause, the void method removeLeadingBlanks() of the mailing_addr
column yields areference to amodified copy of the Address2Line instancein
the mailing_addr column. The instance denoted by that referenceis then
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods

You cannot invoke avoid static method using asimple SQL execute command.
Rather, you must place the invocation of the void static method in a select
statement.

Java in Adaptive Server Enterprise 57

Equality and ordering operations

For example, suppose that a Java class C has avoid static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC callsto perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for avoid
method.

You must invoke the void static method in a select command, such as;
select C.M(...)

To alow void static methods to be invoked using aselect, void static methods
aretreated in SQL as returning a value of datatype int with avalue of null.

Equality and ordering operations

You can use equality and ordering operators when you use Javain the database.
You cannot:

» Reference Java-SQL dataitemsin ordering operations.

» Reference Java-SQL dataitemsin equality operationsif they are stored in
an off-row column.

» Usethe order by clause, which requires that you determine the sort order.
* Makedirect comparisons using the“>", “<”, “<=", or “>=" operator.
These equality operations are allowed for in-row columns:

» Useof thedistinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

» Direct comparisonsusing the“=" and “!=" operators.

» Useof the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

» Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

58 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Evaluation order and Java method calls

Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server eval uates each
query and chooses an evaluation order based on the most rapid rate of
execution.

Thissection describes how different eval uation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examplesin
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable {
public static int F (Address A) {
if (A.zip.length() > 5) return 0;
else {A.zip = A.zip + "-1234"; return 1;}

}

public static int G (Address A) {
if (A.zip.length() > 5) return 0;
else {A.zip = A.zip + "-1234"; return 1;}

Columns

In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at least one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home addr) > Utility.F(E.home addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for arow whose
home_addr column has a 5-character zip, such as“95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

Java in Adaptive Server Enterprise 59

Evaluation order and Java method calls

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparison is
1>0, and the where clauseistrue; if the right operand is evaluated first, the
comparison is 0>1, and the where clauseis false.

Variables and parameters

Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar (20)

select @A = new Address('95444', '123 Port Avenue')
select case when Utility.F(@A)>Utility.G (@A)
then ‘Left’ else ‘Right’ end
select @Order = case when utility.F(@A) > utility.G (@A)
then 'Left' else 'Right' end

Thenew Address hasafive-character zip code field. When the case expression
isevaluated, depending on whether the left or right operand of the comparison
isevaluated first, the comparison iseither 1>0 or 0>1, and the @Order variable
issetto ‘Left’ or ‘Right’ accordingly.

Asfor column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparisonis
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321" or “95444-1234."

Deterministic Java functions in expressions

Deterministic expressions and functions always return the same result if they
are evaluated with the same set of input values. All Javafunctionsin Adaptive
Server are deterministic. As aresult, if the parameters and input valuesin an
expression involving a Javafunction do not change, Adaptive Server treatsthe
entire expression as deterministic.

When Adaptive Server encounters a Javafunction in an expression, Adaptive
Server calculates the expression immediately so that the calculation is
performed only once and not repeated for each row. Thisimproves
performance, but may cause unexpected behavior.

60 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Consider this example:

1> create table CaseTest
2> (TestValue varchar (50))

3> go

1> insert into CaseTest values(’07")

2> go
(1 row affected)

1> declare @IntArray sybase.cpp.value.client/common.IntArray

2> select @IntArray

3> SELECT CASE

= new sybase.cpp.value.client.common.IntArray ()

4> WHEN CT.TestValue = ‘07’
5> THEN @IntArray >> setlInt (new java.lang.Integer(10))
6> ELSE @IntArray >> setInt(new java.lang.Integer (11))

7> END

8> FROM CaseTest CT

9> select @IntArray >> getInt(0) as GetObjAfter0
10> select @IntArray >> getInt(l) as GetObjAfterl
11> select @IntArray >> getArraySize() as NumObjectsOnArray

12> go

sybase.cpp.value.client.common.IntArray@22cc0£30

(1 row affected)
GetObjAfter0

(1 row affected)
NumObjectsOnArray

(1 row affected)

You might expect one branch of the case statement to evaluate to true and thus
have only one value (10) inserted into the integer array, but because the
exm1§§0nSsetInt(new java.lang.Integer(lO))andsetInt(new
java.lang.Integer (11)) aredeterministic, Adaptive Server
“precalculates’ the result, and populates the array with both values.

Java in Adaptive Server Enterprise 61

Static variables in Java-SQL classes

You can make expressions nondeterministic by adding a reference to columns
so that Adaptive Server does not know that the expressions produce the same
result for each execution. For example, make these changes to the Transact-
SQL statementsin the example:

1> declare @IntArray Sybase.cpp.value.client.common.IntArray
2> select @IntArray = new sybase.cpp.value.client.common.IntArray ()
3> SELECT CASE

4> WHEN CT.TestValue = ‘07’

5> THEN @IntArray >> setInt(new java.lang.Integer (10 +
convert (int, CT.TestValue) - convert (int,CT.TestValue)))
6> ELSE @IntArray >> setInt (new java.lang.Integer (11l +
convert (int, CT.TestValue) - convert (int,CT.TestValue)))
7> END

8> FROM CaseTest CT

9> select @IntArray >> getInt(0) as GetObjAfter0

10> select @IntArray >> getInt(l) as GetObjAfterl

11> select @IntArray >> getArraySize() as NumObjectsOnArray
12> go

By including the column referencesin the THEN and ELSE portions of the case
statement, the optimizer no longer treats the statements as constants and does
not precal cul ate the Java insert statement.

Static variables in Java-SQL classes

A Javavariable that is declared static is associated with the Java class, rather
than with each instance of the class. Thevariableisallocated oncefor theentire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable ({

public static int recommendedLimit;
public String street;
public String zip;

//

You can specify that a static variable is final, which indicates that it is not
updatable:

62 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

public static final int recommendedLimit;
Otherwise, you can update the variable.

You reference a static variable of aJavaclassin SQL by qualifying the static
variable with an instance of the class. For example:

declare @a Address
select @a>>recommendedLimit

If you don't have an instance of the class, you can use the following technique:
select convert (Address, null) >>recommendedLimit

The expression “(convert(null, Address))” converts anull valueto an Address
type; that is, it generates a null Address instance, which you can then qualify
with the static variable name. You cannot reference a static variable of aJava
classin SQL by qualifying the static variable with the classname. For example,
the following are both incorrect:

select Address.recommendedLimit
select Address>>recommendedLimit

Values assigned to nonfinal static variables are accessible only within the
current session.

Changes for static variables for Adaptive Server 15.0.3 and later

In Adaptive Server 15.0.2 and earlier, each task was assigned its own internal
JVM. Each VM was associated with aunique set of ClassL oaders. Asaresult,
class variables were available only to a single Adaptive Server task.

With Adaptive Server 15.0.3 and later, and the introduction of the PCA/JVM,
Adaptive Server uses a separate VM thread for each Adaptive Server task
within the same JVM. All user classes are loaded by Classl oaders associated
only with the specific Adaptive Server task executing the particular Java
method. Because ClasslL oaders associated with user classes are not shared
across Adaptive Server tasks, user classes are not considered the same.
Therefore, class variables from user classes are not visible across Adaptive
Server tasks.

However, class variables from classes |oaded by the system ClassL oader are
visibleacrossall Adaptive Server tasksbecause all user ClassL oaderssharethe
system ClassLoader as a parent. Thisistrue for al standard JVMs. Class
variablesin these classes do not endanger functionality or security when they
are used across multiple tasks.

Java in Adaptive Server Enterprise 63

Java classes in multiple databases

Changes for static variables for the Cluster Edition

In the Cluster Edition, Adaptive Server handles class variables from user
classesand classes|oaded by the system ClassL oader asdescribed in“ Changes
for static variablesfor Adaptive Server 15.0.3 and later” on page 63: however,
each node has a separate, unrelated PCA/JVM instance running. If you set a
class variable on one node, that value is not automatically changed on all other
nodes in the cluster. Because an Adaptive Server task can run across multiple
nodes, if user classes rely on class variables, you must explicitly set that same
classvariable on all nodes.

Java classes in multiple databases

Scope

64

You can store Java classes of the same namein different databases in the same
Adaptive Server system. This section describes how you can use these classes.

When you install a Java class or set of classes, it isinstalled in the current
database. When you dump or load a database, the Java-SQL classesthat are
currently installed in that database are alwaysincluded—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

* ldentical classes that have been instaled in different databases.

» Different classesthat are intended to be mutually compatible. Thus, a
serialized value generated by either classis acceptable to the other.

» Different classesthat are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptableto the
other, but not vice versa.

» Different classesthat are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Cross-database references

You can reference obj ects stored in table columnsin one database from another
database.

For example, assume the following configuration:
e TheAddress classisinstalled in db1 and db2.

* Theemps table hasbeen created in both db1 with owner Smith, and in db2,
with owner Jones.

In these examples, the current database is db1. You can invoke ajoin or a
method across databases. For example;

e A join across databases might look like this:

declare @count int
select @count (*)
from db2.Jones.emps, dbl.Smith.emps
where db2.Jones.emps.home addr>>zip =
dbl.Smith.emps.home addr>>zip

e A method invocation across databases might ook like this:

select db2.Jones.emps.home addr>>toString()
from db2.Jones.emps
where db2.Jones.emps.name = 'John Stone'

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by aroutine in db1. Thus,
for across-database joins and method invocations:

* dbl need not contain an Address class.

* If dbl does contain an Address class, it can have completely different
properties than the Address classin db2.

Inter-class transfers

You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the classin the
source database are transferred into columns or variables whose declared type
isthe classin the current (target) database.

You can insert or update from atable in one database to a table in another
database. For example:

insert into dbl.Smith.emps select * from

Java in Adaptive Server Enterprise 65

Java classes in multiple databases

db2.Jones.emps

update dbl.Smith.emps
set home_addr = (select db2.Jones.emps.home_ addr
from db2.Jones.emps
where db2.Jones.emps.name =
dbl.Smith.emps.name)

You can insert or update from avariable in one database to another database.
(The following fragment isin a stored procedure on db2.) For example:

declare @home_ addr Address

select @home addr = new Address('94608', ‘222 Baker
Street’)

insert into dbl.Janes.emps(name, home addr)
values (‘Jone Stone’, @home addr)

In these examples, instance values are transferred between databases. You can:
* Transfer instances between two local databases.

* Transfer instances between alocal database and aremote database.

e Transfer instances between a SQL client and an Adaptive Server.

* Replace classes using install and update statements or remove and update
statements.

In an inter-classtransfer, the Java serialization istransferred from the sourceto
thetarget. If the classin the source database is not compatible with the classin
the target database, then the Java exception InvalidClassException is raised.

Passing inter-class arguments

66

You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

* A Java-SQL column is associated with the version of the specified Java
classin the database that contains the column.

* A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

* A Java-SQL intermediate result of class C isassociated with the version of
class C in the same database as the Java method that returned the result.

Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

* When aJavainstance value JI is assigned to atarget variable or column,
or passed to a Javamethod, JI is converted from its associated classto the
class associated with the receiving target or method.

Temporary and work databases

All rulesfor Java classes and databases al so apply to temporary databases and
the model database:

* Java-SQL columns of temporary tables contain byte string serializations
of the Javainstances.

e A Java-SQL columnisassociated with the version of the specified classin
the temporary database.

You can install Java classes in atemporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Javaclasses for referencein temporary databases
istoinstall Java classes in the model database. They are then present in any
temporary database derived from the model.

Java classes

This section shows the simple Java classes that this chapter uses to illustrate
Javain Adaptive Server.

Thisisthe Address class:

//

// Copyright (c) 2005

// Sybase, Inc

// Dublin, CA 94568

// All Rights Reserved

//

/**

* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.

*/

Java in Adaptive Server Enterprise 67

Java classes

public class Address implements java.io.Serializable ({

/**
* The street data for the address.
* @serial A simple String wvalue.
*/

public String street;

/**
* The zipcode data for the address.
* @serial A simple String value.
*/
String zip;

/** A default constructor.

*/
public Address () {
street = "Unknown";
zip = "None";
/** }
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
public Address (String S, String Z) {
street = S;
zip = Z;
/** }

* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
public String toString() ({
return "Street= " + street + " ZIP= " + zip;
}

/**

* A void method to remove leading blanks.

* This method uses the static method

* <code>Misc.stripLeadingBlanks</codes>.

*/
public void removeLeadingBlanks() {
street = Misc.stripLeadingBlanks (street) ;
zip = Misc.stripLeadingBlanks (street) ;

}

68 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

Thisisthe Address2Line class, which is a subclass of the Address class:

//

// Copyright (c) 2005

// Sybase, Inc

// Dublin, CA 94568

// All Rights Reserved

//

/**

* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass
* as a SQL datatype.

*/

public class Address2Line extends Address implements java.io.Serializable

/**
* The second line of street data for the address.
* @serial a simple String value

*/
String line2;
/**
* A default constructor
*/
public Address2Line ()
street = "Unknown";
line2 = " ";
zip = "None'";
}
/**

* A constructor with parameters.
* @param S a string with the street information
* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information
*/
public Address2Line (String S, String L2, String 2z) {
street = S;
line2 = L2;
zip = Z;

}

/**
* A method to return a display of the address data
* @returns a string with a display version of the address data

*/

public String toString()
return "Street= " + street + " Line2= " 4+ line2 + " ZIP= " + zip;

Java in Adaptive Server Enterprise

69

Java classes

}
/**

* A voild method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</codes>.

*/

public void removeLeadingBlanks() {
line2 = Misc.stripLeadingBlanks(line2) ;
super.removeLeadingBlanks () ;

The Misc class contains sets of miscellaneous routines:
//
// Copyright (c) 2005
// Sybase, Inc
// Dublin, CA 94568
// All Rights Reserved
//
/**
* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.
*/

public class Misc{

/**
* The Misc class contains only static methods and cannot be instantiated.

*/

private Misc() { }
/**
* Removes leading blanks from a String
*/
public static String stripLeadingBlanks (String s) {
if (s == null) return null;
for (int scan=0; scan<s.length(); scan++)
if (!java.lang.Character.isWhitespace (s.charAt (scan)))
break;
} else if (scan == s.length()){
return "";

} else return s.substring(scan) ;

}

70 Adaptive Server Enterprise 15.5

CHAPTER 4 Using Java Classes in SQL

}

return "";
}
/**
* Extracts the street number from an address line.
* e.g., Misc.getNumber (" 123 Main Street") == 123
* Misc.getNumber (" Main Street") == 0
* Misc.getNumber ("") == 0
* Misc.getNumber (" 123 ")y == 123
* Misc.getNumber (" Main 123 ") == 0
* @param s a string assumed to have address data
* @return a string with the extracted street number
*/
public static int getNumber (String s) {
String stripped = stripLeadingBlanks(s) ;
if (s==null) return -1;
for (int right=0; right < stripped.length(); right++) {
if (!java.lang.Character.isDigit (stripped.charAt (right))) {
break;
} else if (right==0) {
return 0;
} else {
return java.lang.Integer.parselnt
(stripped.substring (0, right), 10);
}
}
return -1;
}
/**

* Extract the "street" from an address line.

* e.g., Misc.getStreet (" 123 Main Street") == "Main Street"
* Misc.getStreet (" Main Street") == "Main Street"
* Misc.getStreet ("") == """
* Misc.getStreet (" 123 " == o
* Misc.getStreet (" Main 123 ") == "Main 123"
* @param s a string assumed to have address data
* @return a string with the extracted street name
*/
public static String getStreet (String s) {

int left;

if (s==null) return null;

for (left=0; left<s.length(); left++){

if (java.lang.Character.isLetter
break;

Java in Adaptive Server Enterprise

(s.charAt (left)))

{

71

Java classes

} else if (left == s.length()) {
return "";
} else {
return s.substring(left) ;
}
}

return "";

72 Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to

access data.
Topics Page
Overview 73
JDBC concepts and terminol ogy 74
Differences between client- and server-side JDBC 74
Permissions 75
Using JDBC to access data 75
Error handling in the native JDBC driver 82
The JDBCExamples class 84

Overview

JDBC provides a SQL interface for Java applications. If you want to

access relational datafrom Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of

two ways:

« JDBC ontheclient—Javaclient applications can make JDBC callsto

Adaptive Server using the Sybase jConnect JDBC driver.

+ JDBC ontheserver —Javaclassesinstalled in the database can make
JDBC callsto the database using the JDBC driver native to Adaptive

Server.

The use of JIDBC callsto perform SQL operationsis essentially the same

in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods

are not intended to serve as templates, but as general guidelines.

Java in Adaptive Server Enterprise

73

JDBC concepts and terminology

JDBC concepts and terminology

JDBC isaJava APl and a standard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of eventsistypical of a JDBC application:

1

Create a Connection object — call the getConnection() static method of the
DriverManager class to create a Connection object. This establishes a
database connection.

Generate a Satement object — use the Connection object to generate a
Satement object.

Pass a SQL statement to the Satement object —if the statement isa query,
this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at atime (similar to the way a cursor works).

L oop over the rows of the results set — call the next() method of the
ResultSet object to:

» Advancethe current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

» Return aBoolean value (true/false) to indicate whether thereis arow
to advanceto.

For each row, retrieve the values for columnsin the ResultSet object —use
the getint(), getString(), or Similar method to identify either the name or
position of the column.

Differences between client- and server-side JDBC

Thedifference between JDBC on the client and in the database server isin how
aconnection is established with the database environment.

74

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the server.

For client-side JDBC, you use the Sybase jConnect JDBC driver, and call
the Drivermanager.getConnection() method with the identification of the
server. This establishes a connection to the designated server.

Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

e For server-side JDBC, you use the Adaptive Server native JIDBC driver,
and call the Drivermanager.getConnection() method with one of the
following values:

¢ jdbc:default:connection
* jdbc:sybase:ase

* jdbc:default

e empty string

This establishes aconnection to the current server. Only thefirst call tothe
getConnection() method creates a new connection to the current server.
Subsequent calls return awrapper of that connection with all connection
properties unchanged.

You can write JDBC classes to run at both the client and the server by using a
conditional statement to set the URL.

Permissions

e Java execution permissions— like all Java classesin the database, classes
containing JDBC statements can be accessed by any user. Thereisno
equivalent of the grant execute statement that grants permission to execute
procedures in Java methods, and there is no need to qualify the name of a
class with the name of its owner.

e SQL execution permissions — Java classes are executed with the
permissions of the connection executing them. This behavior is different
from that of stored procedures, which execute with granted permission by
the database owner.

Using JDBC to access data

This section describeshow you can use JDBC to perform thetypical operations
of aSQL application. The examples are extracted from the class
JDBCExamples, which isdescribed in“ The IDBCExamplesclass’ on page 84.

JDBCExamples illustrates the basics of a user interface and showsthe internal
coding techniques for SQL operations.

Java in Adaptive Server Enterprise 75

Using JDBC to access data

Overview of the JIDBCExamples class

To execute these examples on your machine, install the Address class on the
server and include it in the Java CLASSPATH of the jConnect client.

You can call the methods of JDBCExamples from either ajConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server native driver does not support create procedure and drop
procedure statements.

JDBCExamples static methods perform the following SQL operations:
e Create and drop an example table, xmp:

create table xmp (id int, name varchar (50), home Address)
e Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @id int, @newname varchar (50),
@newhome Address, @oldname varchar (50) output, @oldhome
Address output as

select @oldname = name, @oldhome = home from xmp
where id=@id

update xmp set name=@newname, home = @newhome
where id=@id

* Insert arow into the xmp table.
» Select arow from the xmp table.
» Update arow of the xmp table.

» Cadll the stored procedure inoutproc, which has both input parameters and
output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

The main() and serverMain() methods
JDBCExamples has two primary methods:
e main() —isinvoked from the command line of the jConnect client.

e serverMain() —performsthe same actions as main(), but isinvoked within
Adaptive Server.

76 Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

All actions of the IDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()

e You can invoke the main() method from ajConnect command line as
follows:

java JDBCExamples
“server-name:port-number?user=user-name&password=password” action

You can determine server-name and port-number from your interfacesfile,
using the dsedit tool. user-name and password are your user name and
password. If you omit &password=password, the default isthe empty password.
Here are two examples:

"antibes:4000?user=smith&password=1x2x3"
"antibes:4000?user=sa"

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is caseinsensitive.

You can invoke JDBCExamples from ajConnect command line to create the
table xmp and the stored procedure inoutproc as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions as
follows:

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call

java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “ Action performed.”
To drop the table xmp and the stored procedure inoutproc, enter:

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Java in Adaptive Server Enterprise 77

Using JDBC to access data

Using serverMain()

Note Because the server-side JDBC driver does not support create procedure
or drop procedure, create the table xmp and the example stored procedure
inoutproc with client-side calls of the main() method before executing these
examples. Refer to “ Overview of the JDBCExamples class’ on page 76.

After creating xmp and inoutproc, you can invoke the serverMain() method as
follows:

select JDBCExamples.serverMain('insert')
go

select JDBCExamples.serverMain('select')
go

select JDBCExamples.serverMain ('update')
go

select JDBCExamples.serverMain('call')
go

Note Server-side calls of serverMain() do not require a server-name: port-
number parameter; Adaptive Server simply connectsto itself.

Obtaining a JDBC connection: the Connecter() method

Both main() and serverMain() call the connecter() method, which returns a
JDBC Connection object. The Connection object isthe basisfor all subsequent
SQL operations.

Both main() and serverMain() call connecter() with a parameter that specifies
the JDBC driver for the server- or client-side environment. The returned
Connection object is then passed as an argument to the other methods of the
JDBCExamples class. By isolating the connection actions in the connecter()
method, JDBCExamples’ other methods are independent of their server- or
client-side environment.

Routing the action to other methods: the doAction() method

78

ThedoAction() method routesthe call to one of the other methods, based on the
action parameter.

Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

doAction() has the Connection parameter, which it simply relays to the target
method. It aso has a parameter locale, which indicates whether the call is
server- or client-side. Connection raises an exception if either create procedure
or drop procedure isinvoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method

The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters: the Connection object and the SQL statement it
isto perform. doSQL() creates a JDBC Satement object and usesit to execute
the specified SQL statement.

Executing an update statement: the updater() method
The updater() method performs a Transact-SQL update statement. The update
actionis:
String sql = "update xmp set name = ?, home = ? where id = ?";
It updates the name and home columns for all rows with agiven id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updater() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the IDBC setString(),

setObject(), and setint() methods with these parameters:

e Theordinal parameter marker to be substituted
* Thevalueto be substituted
For example:

pstmt.setString (1, name)
pstmt.setObject (2, home)
pstmt.setInt (3, id);

1
1

After making these substitutions, updater() executes the update statement.

To simplify updater(), the substituted values in the example are fixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Java in Adaptive Server Enterprise 79

Using JDBC to access data

Executing a select statement: the selecter() method

80

if

The selecter() method executes a Transact-SQL select Sstatement:
String sgl = "select name, home from xmp where id=?";

The where clause uses a parameter marker (?) for the row to be selected. Using
the JIDBC setint() method, selecter() suppliesavaluefor the parameter marker
after preparing the SQL statement:

PreparedStatement pstmt =
con.prepareStatement (sql) ;
pstmt.setInt (1, id);

selecter() then executes the select statement:

ResultSet rs = pstmt.executeQuery () ;

Note For SQL statements that return no results, use doSQL() and updater().
They execute SQL statements with the executeUpdate() method.

For SQL statements that do return results, use the executeQuery() method,
which returns a JIDBC ResultSet object.

The ResultSet object issimilar toaSQL cursor. Initially, it is positioned before
the first row of results. Each call of the next() method advances the ResultSet
object to the next row, until there are no more rows.

selecter() requiresthat the ResultSet object have exactly onerow. The selecter(
) method invokes the next method, and checks for the case where ResultSet has
no rows or more than one row.

(rs.next ()) {

name = rs.getString(l);

home = (Address)rs.getObject(2);
if (rs.next()) {

throw new Exception("Error: Select returned multiple rows") ;
} else { // No action

}

} else { throw new Exception ("Error: Select returned no rows");

}

In the above code, the call of methods getString() and getObject() retrieve the
two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object, and
then coerces that object to the Address class. If the returned object is not an
Address, then an exception is raised.

Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

Executing in batch
mode

selecter() retrieves asingle row and checks for the cases of no rows or more
than one row. An application that processes a multiple row ResultSet would
simply loop on the calls of the next() method, and process each row as for a
single row.

If you want to execute a batch of SQL statements, make sure that you use the
execute() method. If you use executeQuery() for batch mode:

e |f the batch operation does not return aresult set (contains no select
statements), the batch executes without error.

e | the batch operation returns one result set, all statements after the
statement that returnsthe result areignored. If getxxX() iscalled to get an
output parameter, the remaining statements execute and the current result
set is closed.

e |If the batch operation returns more than one result set, an exceptionis
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the caller() method

The caller() method calls the stored procedure inoutproc:

create proc inoutproc @id int, @newname varchar (50), @newhome Address,
@oldname varchar (50) output, @oldhome Address output as

select @oldname = name, @oldhome = home from xmp where id=@id
update xmp set name=@newname, home = @newhome where id=@id

CallableStatement cs

Thisprocedure hasthreeinput parameters (@id, @newname, and @newhome)
and two output parameters (@ol dname and @oldhome). caller() setsthe name
and home columns of the row of table xmp with the ID value of @id to the
values @newname and @newhome, and returns the former values of those
columns in the output parameters @oldname and @oldhome.

Theinoutproc procedure illustrates how to supply input and output parameters
inaJDBC call.

caller() executes the following call statement, which prepares the call
Statement:

= con.prepareCall("{call inoutproc (?, ?, ?, ?, ?)}");

All of the parameters of the call are specified as parameter markers (?).

Java in Adaptive Server Enterprise 81

Error handling in the native JDBC driver

caller() suppliesvaluesfor the input parameters using JDBC setint(), setString(
), and setObject() methods that were used in the doSQL(), updatAction(), and
selecter() methods:

cs.setInt (1, id);
cs.setString (2, newName) ;
cs.setObject (3, newHome) ;

These set methods are not suitable for the output parameters. Before executing
the call statement, caller() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

cs.registerOutParameter (4, java.sql.Types.VARCHAR) ;
cs.registerOutParameter (5, java.sql.Types.JAVA OBJECT) ;

caller() then executes the call statement and obtains the output values using the
same getString() and getObject() methods that the selecter() method used:

int res = cs.executeUpdate() ;
String oldName = cs.getString(4) ;
Address oldHome = (Address)cs.getObject (5);

Error handling in the native JDBC driver

82

Sybase supports and implements all methods from the java.sql. SQLException
and java.sql.SQLWarning classes. SQLException provides information on
database access errors. SQLWarning extends SQLException and provides
information on database access warnings.

Errors raised by Adaptive Server are numbered according to severity. Lower
numbers are less severe; higher numbers are more severe. Errors are grouped
according to severity:

* Warnings (EX_INFO: severity 10) — are converted to SQL Warnings.
» Exceptions (severity 11 to18) — are converted to SQLExceptions.
» Fatal errors (severity 19 to 24) — are converted to fatal SQL Exceptions.

SQL Exceptions can be raised through JDBC, Adaptive Server, or the native
JDBC driver. Raising a SqlException aborts the JDBC query that caused the
error. Subsequent system behavior differs depending on where the error is
caught:

» Iftheerror iscaught in Java—a“try” block and subsequent “ catch” block
process the error.

Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and can
always be caught. There are no driver-specific SQLWarning messages.

e Iftheerror isnot caughtin Java—the JavaVM returns control to Adaptive
Server, Adaptive Server catchesthe error, and an unhandled SQLException
error israised.

Theraiserror command is used typically with stored proceduresto raise an
error and to print a user-defined error message. When a stored procedure
that calls the raiserror command is executed via JDBC, the error is treated
asaninternal error of severity EX_USER, and anonfatal SQLException is
raised.

Note You cannot access extended error data using the raiserror command,;
the with errordata clause is not implemented for SQLException.

If an error causesatransaction to abort, the outcome depends on the transaction
context in which the Java method is invoked:

« Ifthetransaction contains multiple statements—the transaction aborts and
control returnsto the server, which rolls back the entire transaction. The
JDBC driver ceasesto process queriesuntil control returnsfrom the server.

« If thetransaction contains a single statement — the transaction aborts, the
SQL statement it contains rolls back, and the JDBC driver continues to
process queries.

The following scenariosillustrate the different outcomes. Consider a Java
method jdbcTests.Errorexample() that contai ns these statements:

stmt .executeUpdate ("delete from parts where partno = 0"); Q2
stmt .executeQuery ("select 1/0"); Q3
stmt .executeUpdate ("delete from parts where partno = 10"); Q4

A transaction containing multiple statements includes these SQL commands:

begin transaction
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample ()

In this case, these actions result from an aborted transaction:
e A divide-by-zero exception israised in Q3.
e Changesfrom Q1 and Q2 are rolled back.

¢ The entire transaction aborts.

Java in Adaptive Server Enterprise 83

The JDBCExamples class

A transaction containing a single statement includes these SQL commands:

set chained off
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample ()

In this case:
* A divide-by-zero exceptionisraised in Q3.
e Changesfrom Q1 and Q2 are not rolled back

» Theexceptioniscaught in “catch” and “try” blocksin
JDBCTests.Errorexample.

» Thedeletion specified in Q4 does not execute because it is handled in the
same “try” and “catch” blocks as Q3.

» JDBC queries outside of the current “try” and “catch” blocks can be
executed.

The JDBCExamples class

// An example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.

// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,

// using the main method, or from the SQL server, using

// the serverMain method.

//

import java.sql.*; // JDBC

public class JDBCExamples

{

The main() method

// The main method, to be called from a client-side command line
//
public static void main(String args[]) {
if (args.length!=2) {
System.out.println("\n Usage: "
+ "java ExternalConnect server-name:port-number

84 Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

action ") ;
System.out.println(" The action is connect, createtable,
" 4+ "createproc, drop, "
+ "insert, select, update, or call \n");
return;
}
try{
String server = args[0];
String action = args[l].toLowerCase() ;
Connection con = connecter (server) ;
String workString = doAction(action, con, client);
System.out.println("\n" + workString + "\n");
} catch (Exception e)
System.out.println("\n Exception: ");
e.printStackTrace() ;

The serverMain() method

// A JDBCExamples method equivalent to 'main’,
// to be called from SQL or Java in the server

public static String serverMain (String action) ({
try {
Connection con = connecter ("default") ;
String workString = doAction(action, con, server);
return workString;

} catch (Exception e) {
if (e.getMessage () .equals(null)) {
return "Exc: " + e.toString();
} else {
return "Exc - " + e.getMessage() ;

}

The connecter() method

// A JDBCExamples method to get a connection.
// It can be called from the server with argument 'default',
// or from a client, with an argument that is the server name.

Java in Adaptive Server Enterprise 85

The JDBCExamples class

public static Connection connecter (String server)
throws Exception, SQLException, ClassNotFoundException {

String forName="";
String url="";

if (server=="default") { // server connection to current server
forName = "sybase.asejdbc.ASEDriver";
url = "jdbc:default:connection";

} else if (server!="default") { //client connection to server
forName= "com.sybase.jdbc.SybDriver";
url = "jdbc:sybase:Tds:"+ server;

}

String user = "sa";

String password = "";

// Load the driver

Class.forName (forName) ;

// Get a connection

Connection con = DriverManager.getConnection (url,
user, password) ;

return con;

The doAction() method

// A JDBCExamples method to route to the 'action' to be performed

public static String doAction(String action, Connection con,
String locale)
throws Exception {

String createProcScript =
" create proc inoutproc @id int, @newname varchar (50),
@newhome Address, "

+ " @oldname varchar (50) output, @oldhome Address
output as "
+ " select @oldname = name, @oldhome = home from xmp

where id=@id "
+ " update xmp set name=@newname, home = @newhome
where id=e@id ";
String createTableScript =
" create table xmp (id int, name varchar (50),
home Address)" ;

86 Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

String dropTableScript = "drop table xmp ";
String dropProcScript = "drop proc inoutproc ";
String insertScript = "insert into xmp "
+ "values (1, 'Joe Smith', new Address('987 Shore',
112345'))";
String workString = "Action (" + action +) ;
if (action.equals("connect")) {
workString += "performed";
} else if (action.equals("createtable")) {
workString += doSQL(con, createTableScript);
} else if (action.equals ("createproc"))
if (locale.equals(server))

throw new exception (CreateProc cannot be performed
in the server) ;

} else {
workString += doSQL(con, createProcScript);

}

} else if (action.equals("droptable")) {
workString += doSQL(con, dropTableScript);
} else if (action.equals("dropproc")) {
if (locale.equals (server)) {

throw new exception (CreateProc cannot be performed
in the server);

} else {
workString += doSQL(con, dropProcScript);

}

} else if (action.equals("insert")) ({
workString += doSQL(con, insertScript);

} else if (action.equals ("update"))
workString += updater (con) ;

} else if (action.equals("select")) {
workString += selecter (con) ;

} else if (action.equals("call")) {
workString += caller (con) ;

} else { return "Invalid action: " + action ;

}

return workString;

The doSQL() method

// A JDBCExamples method to execute an SQL statement.

Java in Adaptive Server Enterprise 87

The JDBCExamples class

public static String doSQL (Connection con, String action)
throws Exception {

Statement stmt = con.createStatement () ;
int res = stmt.executeUpdate (action) ;
return "performed";

The updater() method

// A method that updates a certain row of the 'xmp' table.
// This method illustrates prepared statements and parameter markers.

public static String updater (Connection con)
throws Exception {

String sgl = "update xmp set name = ?, home = ? where id = ?";
int id=1;

Address home = new Address("123 Main", "98765");

String name = "Sam Brown';

PreparedStatement pstmt = con.prepareStatement (sql) ;

pstmt.setString(1l, name) ;
pstmt.setObject (2, home) ;
pstmt.setInt (3, id);

int res = pstmt.executeUpdate() ;
return "performed";

The selecter() method

// A JDBCExamples method to retrieve a certain row

// of the 'xmp' table.

// This method illustrates prepared statements, parameter markers,
// and result sets.

public static String selecter (Connection con)
throws Exception {

String sgl = "select name, home from xmp where id=?";
int id=1;

Address home = null;

String name = "";

String street = "";

88 Adaptive Server Enterprise 15.5

CHAPTER 5 Data Access Using JDBC

String zip = "";
PreparedStatement pstmt =
pstmt.setInt (1, id);
ResultSet rs = pstmt.executeQuery () ;

if (rs.next()) {
name = rs.getString(l) ;
home = (Address)rs.getObject(2);

if (rs.next())

throw new Exception("Error:
multiple rows") ;

} else { // No action

}

} else { throw new Exception ("Error:

}

return "-
+ n

Row with id=1:
street (" + home.street +

The caller() method

)

con.prepareStatement (sql) ;

Select returned

Select returned no rows") ;

name ("+ name +)

zip("+ home.zip +);

// A JDBCExamples method to call a stored procedure,
// passing input and output parameters of datatype String

// and Address.

// This method illustrates callable statements,

// and result sets.

parameter markers,

public static String caller (Connection con)

throws Exception {
CallableStatement cs =

(2, 2, 2, 2, 2)}I");
int id = 1;
String newName =
Address newHome =
cs.setInt (1, id);
cs.setString (2, newName) ;
cs.setObject (3, newHome) ;
cs.registerOutParameter (4,
cs.registerOutParameter (5,
int res = cs.executeUpdate() ;
String oldName = cs.getString(4) ;
Address oldHome =
return "-

street ("

"Frank Farr";

Il)

+ oldHome.street +

Java in Adaptive Server Enterprise

new Address ("123 Farr Lane",

0ld values of row with id=1:
zip("+ oldHome.zip +);

con.prepareCall ("{call inoutproc

"87654") ;

java.sqgl.Types.VARCHAR) ;
java.sql.Types.JAVA_OBJECT) ;

(Address) cs.getObject (5) ;

name ("+oldName+)

89

The JDBCExamples class

90 Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use

them as Adaptive Server functions and stored procedures.

Name Page
Overview 91
Invoking Java methods in Adaptive Server 94
Using Sybase Central to manage SQL J functions and procedures 96
SQL J user-defined functions 97
SQLJ stored procedures 102
Viewing information about SQL J functions and procedures 113
Advanced topics 113
SQLJ and Sybase implementation: a comparison 118
SQL JExamples class 120

Overview

You can enclose Java static methods in SQL wrappers and use them

exactly as you would Transact-SQL stored procedures or built-in

functions. This functionality:

* AllowsJavamethodsto return output parametersand result setsto the

calling environment.

e Complieswith Part 1 of the ANSI SQL J standard specification.

* Allowsyou to take advantage of traditional SQL syntax, metadata,

and permission capabilities.

* Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant,

third-party database.

Java in Adaptive Server Enterprise

91

Overview

[ICreating a SQLJ stored procedure or function

Perform these stepsto create and execute a SQL J stored procedure or function.

1 Create and compile the Java method. Install the method classin the
database using the installjava utility.

Refer to Chapter 3, “ Preparing for and Maintaining Javain the Database,”
for information on creating, compiling, and installing Java methodsin
Adaptive Server.

2 Using the SQLJ create procedure or create function statement, define a SQL
name for the method.

3 Executethe procedureor function. The examplesin this chapter use JDBC
method calls or isqgl. You can also execute the method using Embedded
SQL or ODBC.

Compliance with SQLJ Part 1 specifications

General issues

92

Adaptive Server SQL Jstored procedures and functions comply with SQL J Part
1 of the standard specifications for using Java with SQL. See “ Standards’ on
page 7 for adescription of the SQLJ standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features are
listed in Table 6-3 on page 119; partially supported features are listed in
Table 6-4 on page 119. Sybase-defined features—those not defined by the
standard but left to the implementation—are listed in Table 6-5 on page 119.

In those instances where Sybase proprietary implementation differs from the
SQLJ specifications, Sybase supports the SQL J standard. For example, non-
Java Sybase SQL stored procedures support two parameter modes: in and inout.
The SQLJ standard supports three parameter modes: in, out, and inout. The
Sybase syntax for creating SQLJ stored procedures supports all three
parameter modes.

This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Security and permissions

Sybase provides different security models for SQL J stored procedures and
SQLJ functions.

SQLJ functions and user-defined functions (UDFS) (see “Invoking Java
methods in SQL” on page 41) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queries via JDBC, permission to access the datais
checked against the invoker of the function. Thus, if user A invokes afunction
that accessestabletl, user A must have select permission on t1 or the query fails.

SQLJ stored procedures use the same security model as Transact-SQL stored
procedures. The user must be granted explicit permission to executea SQL Jor
Transact-SQL stored procedure. If a SQLJ procedure performs SQL queries
viaJDBC, implicit permission grant support is applied. This security model
allows the owner of the stored procedure, if the owner owns all SQL objects
referenced by the procedure, to grant execute permission on the procedure to
another user. The user who has execute permission can execute all SQL queries
in the stored procedure, even if the user does not have permission to access
those objects.

In general, after the VM is configured and running, any user able to access
Java classes from the database can run them. However, the following
operations are restricted:

e Thread operations except those required to create and join

e System operations that affect the server such as exit() and abort()
e Changesto the class loader hierarchy

e Override of the installed SecurityManager

For a more detailed description of security for stored procedures, see the
System Administration Guide.

SQLJ Examples

The examples used in this chapter assume a SQL table called sales_emps with
these columns:

e name — the employee's name
e id —the employee's identification number

* state —the state in which the employeeislocated

Java in Adaptive Server Enterprise 93

Invoking Java methods in Adaptive Server

sales —amount of the employee’s sales

jobcode — the employee’s job code

The table definition is:

create table sales_ emps
(name varchar (50), id char(5),
state char(20), sales decimal (6,2),
jobcode integer null)

The example classis SQLJExamples, and the methods are:

region() —mapsaU.S. state code to aregion number. The method does not

use SQL.

correctStates() — performs a SQL update command to correct the spelling
of state codes. Old and new spellings are specified by input parameters.

bestTwoEmps() — determines the top two employees by their sales records
and returns those values as output parameters.

SQLJExamplesorderedEmps() — creates a SQL result set consisting of
selected employeerows ordered by valuesin the sales column, and returns
the result set to the client.

job() —returns a string value corresponding to an integer job code value.

See “SQL JExamples class’ on page 120 for the text of each method.

Invoking Java methods in Adaptive Server

You can invoke Java methods in two different waysin Adaptive Server:

94

Invoke Javamethods directly in SQL. Directionsfor invoking methodsin
thisway are presented in Chapter 4, “Using Java Classesin SQL.”

Invoke Java methods indirectly using SQLJ stored procedures and
functions that provide Transact-SQL aliases for the method name. This
chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Javamethodsand install
them in the Adaptive Server database using the installjava utility. See Chapter
3, “Preparing for and Maintaining Java in the Database,” for more
information.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Invoking Java _ You can invoke Java methods in SQL by referencing them with their fully
methods directly with qualified Java names. Reference instances for instance methods, and either
their Java names . .

instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
valueto the calling environment. You can use aJava static method asa UDF in
stored procedures, triggers, where clauses, select statements, or anywhere that
you can use a built-in SQL function.

When you call a Java method using its name, you cannot use methods that
return output parameters or result setsto the calling environment. A method
can manipulate the data it receives from a JDBC connection, but the method
can only return the single return value declared in its definition to the calling
environment.

You cannot use cross-database invocations of UDF functions.

See Chapter 4, “Using JavaClassesin SQL,” for information about using Java
methods in this way.

Invoking Java You can invoke Java methods as SQL J functions or stored procedures. By
methods indirectly wrapping the Java method in a SQL wrapper, you take advantage of these
using SQL) capabilities:

e You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

e You can take advantage of SQL metadata capabilities. For example, you
can view alist of al stored procedures or functionsin the database.

e SQLJprovidesaSQL namefor amethod, which allows you to protect the
method invocation with standard SQL permissions.

e Sybase SQLJ conforms to the recognized SQLJ Part 1 standard, which
allows you to use Sybase SQL J procedures and functions in conforming
non-Sybase environments.

e You can invoke SQLJfunctions and SQL J stored procedures across
databases.

« Because Adaptive Server checks datatype mapping when the SQLJ
routineiscreated, you need not be concerned with datatype mapping when
executing the routines.

You must reference static methods in a SQL J routine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQL J stored
procedures and functions.

Java in Adaptive Server Enterprise 95

Using Sybase Central to manage SQLJ functions and procedures

Using Sybase Central to manage SQLJ functions and

procedures

You can manage SQL Jfunctions and procedures from the command line using
isgl and from the Adaptive Server plug-into Sybase Central. From the Adaptive
Server plug-in you can:

Create a SQLJ function or procedure

Execute a SQL Jfunction or procedure

View and modify the properties of a SQL J function or procedure
Delete a SQL J function or procedure

View the dependencies of a SQLJ function or procedure

Create permissions for a SQL J procedure

Thefollowing procedures describes how to create and view the properties of a
SQLJroutine. You can view dependencies and create and view permissions
from the routine’s property sheet.

[ICreating a SQLJ function/procedure

First, create and compile the Java method. Install the method classin the
database using installjava. Then follow these steps:

1

2
3
4
5

96

Start the Adaptive Server plug-in and connect to Adaptive Server.
Double-click on the database in which you want to create the routine.
Open the SQL J Procedures/SQL J Functions folder.

Double-click the Add new Java Stored Procedure/Function icon.

Use the Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-in
displays the SQLJ routine you have created in an edit screen, where you
can modify the routine and execute it.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

[TTo view the properties of a SQLJ function or procedure
Start the Adaptive Server plug-in and connect to Adaptive Server.

Double-click on the database in which the routine is stored.
Open the SQL J Procedures/SQL J Functions folder.

Highlight a function or procedure icon.

a A W N B

Select File | Properties.

SQLJ user-defined functions

Thecreate function command specifies a SQL Jfunction name and signature for
a Java method. You can use SQL J functions to read and modify SQL and to
return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sgl function name
([sgl _parameter name sqgl datatype

[(length)| (precision[, scale])]
[, sgl parameter name sqgl datatype
[(length) | (precision[, scalel) 1]

D)
returns sgl datatype
[(length)| (precision[, scalel)]
[modifies sqgl datal
[returns null on null input |
called on null input]
[deterministic | not deterministic]
[exportable]
language java
parameter style java
external name 'java method name
[([java_datatypel {, java_datatype }
1D

When creating a SQL J function:

e The SQL function signatureisthe SQL datatype sgl_datatype of each
function parameter.

e To comply with the ANSI standard, do not include an @ sign before
parameter names.

Java in Adaptive Server Enterprise 97

SQLJ user-defined functions

98

Sybase adds an @ signinternally to support parameter name binding. You
will seethe @ sign when using sp_help to print out information about the
SQLJ stored procedure.

When creating a SQL J function, you must include the parentheses that
surround the sgl_parameter_name and sgl_datatype information—even if
you do not include that information.

For example:

create function sqglj fc()
language java
parameter style java
external name 'SQLJExamples.method'

The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. Thisisthedefault value. You
do not need to include it except for syntactic compatibility with the SQLJ
Part 1 standard.

esreturns null on null input and called on null input specify how Adaptive
Server handles null arguments of a function call. returns null on null input
specifiesthat if the value of any argument is null at runtime, the return
value of the function is set to null and the function body is not invoked.
called on null input is the default. It specifies that the function isinvoked
regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nullsin the function call” on page 101.

You can include the deterministic or not deterministic keywords, but Adaptive
Server does not use them. They are included for syntactic compatibility
with the SQLJ Part 1 standard.

Clauses exportable keyword specifies that the functionistorun on a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

Clauseslanguage java and parameter style java specify that the referenced
method iswritten in Javaand that the parameters are Java parameters. You
must include these phrases when creating a SQL J function.

The external name clause specifies that the routine is not written in SQL
and identifies the Java method, class and, package name (if any).

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

e The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signatureis optional. If it isnot
specified, Adaptive Server infersthe Java method signature from the SQL
function signature.

Sybase recommendsthat you include the method signature asthis practice
handles all datatype translations. See* Mapping Javaand SQL datatypes’
on page 113.

e You can define different SQL names for the same Java method using
create function and then use them in the same way.

Writing the Java Before you can create a SQL J function, you must write the Java method that it
method references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to aregion number
and returns that number to the user.

public static int region(String s)
throws SQLException {

s = s.trim() ;

if (s.equals "MN") || s.equals("VT") ||
s.equals ("NH")) return 1;

if (s.equals("FL") || s.equals("GA") ||
s.equals ("AL")) return 2;

if (s.equals("CA") || s.equals("az") ||
s.equals ("NV")) return 3;

else throw new SQLException
("Invalid state code", "X2001");

}
Creating the SQLJ After writing and installing the method, you can create the SQL J function. For

function example:

create function region of (state char(20))
returns integer

language java parameter style java

external name
'SQLJExamples.region(java.lang.String) '

The SQLJ create function statement specifies an input parameter (state
char (20)) and aninteger return value. The SQL function signatureischar(20).
The Java method signature is java.lang.String.

Calling the function You can call a SQLJfunction directly, asif it were a built-in function. For
example:

Java in Adaptive Server Enterprise 99

SQLJ user-defined functions

select name, region of (state) as region
from sales_emps
where region of (state)=3

Note The search sequence for functions in Adaptive Server is:
1 Built-in functions

2 SQLJfunctions

3 Java-SQL functionsthat are called directly

Handling null argument values

100

Java class datatypes and Java primitive datatypes handle null argument values
in different ways.

» Javaobject datatypesthat are classes—such asjava.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql. Timestamp—can hold both
actual values and null reference values.

e Javaprimitivedatatypes—such asboolean, byte, short, and int—have no
representation for anull value. They can hold only non-null values.

When a Java method is invoked that causes a SQL null value to be passed as

an argument to a Java parameter whose datatype isa Javaclass, it is passed as
aJavanull reference value.When a SQL null valueis passed as an argument to
aJava parameter of a Java primitive datatype, however, an exception israised
because the Java primitive datatype has no representation for a null value.

Typicaly, you will write Java methods that specify Java parameter datatypes

that are classes. In this case, nulls are handled without raising an exception. If
you choose to write Java functions that use Java parameters that cannot handle
null values, you can either:

* Include the returns null on null input clause when you create the SQLJ
function, or

* Invoke the SQLJfunction using a case or other conditional expression to
test for null values and call the SQL J function only for the non-null vaues.

You can handle expected nullswhen you create the SQL Jfunction or when you
call it. The following sections describe both scenarios, and reference this
method:

public static String job(int jc)

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

throws SQLException {
if (jc==1) return “Admin”;
else 1f (jc==2) return “Sales”;
else 1f (jc==3) return “Clerk”;
else return “unknown jobcode”;

}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input clause
when you create the function. For example:

create function job of (jc integer)
returns wvarchar (20)

returns null on null input

language java parameter style java

external name 'SQLJExamples.job(int)''

You can then call job_of in thisway:

select name, job_of (jobcode)
from sales_emp
where job of (jobcode) <> "Admin"

When the SQL system evaluates the call job_of(jobcode) for arow of
sales_emps in which the jobcode column is null, the value of the call is set to
null without actually calling the Javamethod SQLJExamples.job. For rowswith
non-null values of the jobcode column, the call is performed normally.

Thus, when a SQL Jfunction created using the returns null on null input clause
encounters anull argument, the result of the function call is set to null and the
function is not invoked.

Note If youinclude the returns null on null input clause when creating a SQLJ
function, the returns null on null input clause appliesto all function parameters,
including nullable parameters.

If you include the called on null input clause (the default), null arguments for
non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-nullable
parameters. The following example uses a case expression:

Java in Adaptive Server Enterprise 101

SQLJ stored procedures

select name,
case when jobcode is not null
then job of (jobcode)
else null end
from sales_emps where
case when jobcode is not null
then job_ of (jobcode)
else null end <> "Admin"

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name

You can delete the SQL J function name for a Java method using the drop
function command. For example, enter:

drop function region of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect thereferenced Java
method or class.

See the Reference Manual for complete syntax and usage information.

SQLJ stored procedures

102

Using Java-SQL capabilities, you can install Java classes in the database and
then invoke those methods from a client or from within the SQL system. You
can also invoke Java static (class) methods in another way—as SQL J stored
procedures.

SQLJ stored procedures:

e Canreturn result sets and/or output parameters to the client

e Behave exactly as Transact-SQL stored procedures when executed
e Can becalled from the client using ODBC, isql, or JDBC

e Can be called within the server from other stored procedures or native
Adaptive Server IDBC

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

The end user need not know whether the procedure being called isa SQLJ
stored procedure or a Transact-SQL stored procedure. They are both invoked
in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sqgl procedure name
([[in | out | inout] sgl parameter name
sgl datatype [(length) |
(precision([, scale])]
[, [in | out | inout] sgl parameter name
sqgl datatype [(length) |
(precision[, scale]l) 1]
.1)
[modifies sgl datal
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java method name
[([java datatypel, java datatype
1D

Note Tocomply withthe ANSI standard, the SQL Jcreate procedure command
syntax is different from syntax used to create Sybase Transact-SQL stored
procedures.

Refer to the Reference Manual for a detailed description of each keyword and
option in this command.

When creating SQL J stored procedures:

« TheSQL proceduresignatureisthe SQL datatype sql_datatype of each
procedure parameter.

e When creating a SQL J stored procedure, do not include an @ sign before
parameter names. This practise is compliant with the ANSI standard.

Sybase addsan @ sign internally to support parameter name binding. You
will seethe @ sign when using sp_help to print out information about the
SQLJ stored procedure.

Java in Adaptive Server Enterprise 103

SQLJ stored procedures

104

When creating a SQL Jstored procedure, you must include the parentheses
that surround the sgl_parameter_name and sgl_datatype information—
even if you do not include that information.

For example:

create procedure sglj sproc ()
language java
parameter style java

external name "SQLJExamples.methodl"

You can include the keywords modifies sgl data to indicate that the method
invokes SQL operations and reads and modifies SQL data. Thisisthe
default value.

You must include the dynamic result sets integer option when result sets
are to be returned to the calling environment. Use the integer variable to
specify the maximum number of result sets expected.

You can include the keywords deterministic or not deterministic for
compatibility with the SQL Jstandard. However, Adaptive Server does not
make use of this option.

You must include the language java parameter and style java keywords,
which tell Adaptive Server that the external routineis written in Javaand
the runtime conventions for arguments passed to the externa routine are
Java conventions.

The external name clause indicates that the external routine is writtenin
Javaand identifies the Java method, class, and package name (if any).

The Java method signature specifies the Java datatype java_datatype of
each method parameter. The Java method signature is optional. If oneis
not specified, Adaptive Server infers one from the SQL procedure
signature.

Sybase recommends that you include the method signature asthis practice
handlesall datatype translations. See “Mapping Java and SQL datatypes’
on page 113 for more information.

You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Modifying SQL data

You can use a SQL J stored procedure to modify information in the database.
The method referenced by the SQL J procedure must be either:

e A method of type void, or

« A method with an int return type (incorporation of theint return typeisa
Sybase extension of the SQLJ standard).

Writing the Java Themethod SQLJExamples.correctStates() performsaSQL update statement to
method correct the spelling of state codes. Input parameters specify the old and new
spellings. correctStates() is a void method; no valueis returned to the caller.

public static void correctStates(String oldSpelling,
String newSpelling) throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {
Class.forName ("sybase.asejdbc.ASEDriver") ;
conn = DriverManager.getConnection
("jdbc:default:connection") ;
}
catch (Exception e)
System.err.println(e.getMessage () +
“:error in connection”) ;
}
try {
pstmt = conn.prepareStatement
("UPDATE sales emps SET state = ?
WHERE state = ?");
pstmt.set.String (1, newSpelling) ;
pstmt.set.String (2, oldSpelling);
pstmt.executeUpdate () ;
}
catch (SQLException e) ({
System.err.println(“SQLException: "+

e.getErrorCode () + e.getMessage()) ;
}
return;
}
Creating the stored Before you can call aJJavamethod with a SQL name, you must create the SQL

procedure name for it using the SQL J create procedure command. The modifies sql data

clauseis optional.

create procedure correct states(old char(20),

Java in Adaptive Server Enterprise 105

SQLJ stored procedures

Calling the stored
procedure

not old char(20))

modifies sqgl data

language java parameter style java

external name
'SQLJExamples.correctStates
(java.lang.String, java.lang.String)'

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature isjava.lang.String, java.lang.String.

You can execute the SQL J procedure exactly as you would a Transact-SQL
procedure. In this example, the procedure executes from isqgl:

execute correct states 'GEO', 'GA'

Using input and output parameters

106

Javamethods do not support output parameters. When you wrap a Javamethod
in SQL, however, you can take advantage of Sybase SQLJ capabilities that
allow input, output, and input/output parameters for SQL J stored procedures.

When you create a SQL J procedure, you identify the mode for each parameter
asin, out, Or inout.

» Forinput parameters, use thein keyword to qualify the parameter. in isthe
default; Adaptive Server assumes an input parameter if you do not enter a
parameter mode.

» For output parameters, use the out keyword.

» For parameters that can pass val ues both to and from the referenced Java
method, use the inout keyword.

Note You create Transact-SQL stored procedures using only the in and out
keywords. The out keyword corresponds to the SQL Jinout keyword. See the
create procedure reference pagesin the Adaptive Server Reference Manual for
more information.

To create a SQL J stored procedure that defines output parameters, you must:

» Definethe output parameter(s) using either the out or inout option when
you create the SQL J stored procedure.

» Declare those parameters as Java arrays in the Java method. SQL J uses
arrays as containers for the method’s output parameter values.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

For example, if you want an Integer parameter to return avalue to the
caller, you must specify the parameter type asinteger|[] (an array of Integer)
in the method.

The array object for an out or inout parameter is created implicitly by the
system. It has asingle element. The input value (if any) is placed in the
first (and only) element of the array before the Java method is called.
When the Java method returns, the first element is removed and assigned
tothe output variable. Typically, thiselement will be assigned anew value
by the called method.

The following examples illustrate the use of output parameters using a Java
method bestTwoEmps() and a stored procedure best2 that references that

method.
Writing the Java The SQLJExamples.bestTwoEmps() method returns the name, ID, region, and
method sales of the two employees with the highest sales performance records. The

first eight parameters are output parameters requiring a containing array. The
ninth parameter is an input parameter and does not require an array.

public static void bestTwoEmps (String[] nl,
String[] idl, int[] r1,
BigDecimal[] sl1, Stringl[] n2,
String[] id2, int[] r2, BigDecimall[] s2,
int regionParm) throws SQLException {

nl[o] = "****";

idi[o] = "";

rl[0] 0;

s1[0] = new BigDecimal (0) :
n2[0] = "kkkxn,

id2[0] = "";

r2[0] 0;

s2[0] = new BigDecimal (0) ;

try {
Connection conn = DriverManager.getConnection
("jdbc:default:connection") ;
java.sql.PreparedStatement stmt =
conn.prepareStatement ("SELECT name, id,"
+ "region of (state) as region, sales FROM"
+ "sales_emps WHERE"
+ "region of (state)>? AND"
+ "sales IS NOT NULL ORDER BY sales DESC") ;
stmt.setInteger (1, regionParm) ;
ResultSet r = stmt.executeQuery() ;

Java in Adaptive Server Enterprise 107

SQLJ stored procedures

if (r.next())
nl[0] = r.getString("name") ;
id1[0] = r.getString("id") ;
r1[0] = r.getInt("region") ;

s1[0]

r.getBigDecimalL ("sales") ;

}

else return;

if (r.next()) {
n2[0] = r.getString("name") ;
id2[0] = r.getString("id") ;
r2[0] = r.getInt("region");

s2[0] r.getBigDecimal ("sales") ;

}

else return;
}
catch (SQLException e) ({
System.err.println("SQLException: "+
e.getErrorCode () + e.getMessage()) ;
}

Creating the SQLJ Create a SQL name for the bestTwoEmps method. The first eight parameters
procedure are output parameters; the ninth is an input parameter.

create procedure best2

(out nl varchar(50), out idl varchar(5),

out sl decimal (6,2), out rl integer,

out n2 varchar(50), out id2 wvarchar (50),

out r2 integer, out s2 decimal(6,2),

in region integer)

language java

parameter style java

external name
'SQLJExamples.bestTwoEmps (java.lang.String,
java.lang.String, int, java.math.BigDecimal,
java.lang.String, java.lang.String, int,
java.math.BigDecimal, int)'

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal (6,2)
and so on. The Javamethod signatureis String, String, int, BigDecimal and so on.

Calling the procedure After the method isinstalled in the database and the SQLJ procedure
referencing the method has been created, you can call the SQLJ procedure.

At runtime, the SQL system:

108 Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

1 Createsthe needed arraysfor the out and inout parameters when the SQL J
procedureis called.

2 Copiesthe contents of the parameter arrays into the out and inout target
variables when returning from the SQL J procedure.

The following example calls the best2 procedure from isql. The value for
the region input parameter specifies the region number.

declare @nl varchar(50), @idl varchar(5),

@sl decimal (6,2), @rl integer, @n2 varchar (50),
@id2 varchar(50), @r2 integer, @s2 decimal(6,2),
@region integer

select @region = 3

execute best2 @nl out, @idl out, @sl out, @rl out,
@n2 out, @id2 out, @r2 out, @s2 out, @region

Note Adaptive Server calls SQLJ stored procedures exactly asit calls
Transact-SQL stored procedures. Thus, when using isql or any other non-Java
client, you must precede parameter names by the @ sign.

Returning result sets

A SQL result set is a sequence of SQL rowsthat is delivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets, those
result sets areimplicit output from the procedure call. That is, they are not
declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as explicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap the
Javamethod in a SQL J stored procedure. When you call the method asa SQLJ
stored procedure, the result sets, which are returned by the Javamethod as Java
result set objects, are transformed by the server to SQL result sets.

When writing the Java method to be invoked as a SQL J procedure that returns
aSQL-styleresult set, you must specify an additional parameter to the method
for each result set that the method can return. Each such parameter isa single-
element array of the Java ResultSet class.

Java in Adaptive Server Enterprise 109

SQLJ stored procedures

This section describesthe basi c process of writing amethod, creating the SQLJ
stored procedure, and calling the method. See “ Specifying Java method
signatures explicitly or implicitly” on page 115 for more information about
returning result sets.

Writing the Java The following method, SQL JExamples.orderedEmps, invokes SQL, includes a

method ; ; i
ResultSet parameter, and uses JDBC callsfor securing aconnection and opening
a statement.

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class. forName
("sybase.asejdbc.ASEDriver") ;
Connection conn =
DriverManager.getConnection
("jdbc:default:connection") ;
}
catch (Exception e) {
System.err.println(e.getMessage ()

+ ":error in connection") ;
try {
java.sqgl.PreparedStatement
stmt = conn.prepareStatement

("SELECT name, region of (state)"
"as region, sales FROM sales emps"
"WHERE region of (state) > ? AND"
"sales IS NOT NULL"
"ORDER BY sales DESC") ;
stmt.setInt (1, regionParm) ;
rs[0] = stmt.executeQuery() ;
return;
}
catch (SQLException e)
System.err.println ("SQLException:"
+ e.getErrorCode () + e.getMessage()) ;

}

return;

110 Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Creating the SQLJ
stored procedure

orderedEmps returns asingle result set. You can also write methods that return
multiple result sets. For each result set returned, you must:

* Include a separate ResultSet array parameter in the method signature.
« Create a Statement object for each result set.
e Assign each result set to the first element of its ResultSet array.

Adaptive Server always returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

« Create a Statement object for each result set that isto be returned to the
client.

« Do not explicitly close ResultSet and Statement objects. Adaptive Server
closes them automatically.

Note Adaptive Server ensuresthat ResultSet and Statement objectsare hot
closed by garbage collection unless and until the affected result sets have
been processed and returned to the client.

« If somerowsof theresult set arefetched by calls of the Javanext() method,
only the remaining rows of the result set are returned to the client.

When you create a SQL J stored procedure that returns result sets, you must
specify the maximum number of result sets that can be returned. In this
example, the ranked_emps procedure returns a single result set.

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps (int,
ResultSet []'

If ranked_emps generates more result sets than are specified by create
procedure, awarning displays and the procedure returns only the number of
result sets specified. As written, the ranked_emps SQL J stored procedures
matches only one Java method.

Note Somerestrictionsapply to method overloading when you infer amethod
signature involving result sets. See “Mapping Java and SQL datatypes’ on
page 113 for more information.

Java in Adaptive Server Enterprise 111

SQLJ stored procedures

Calling the procedure

After you have installed the method's class in the database and created the
SQL J stored procedure that references the method, you can call the procedure.
You can write the call using any mechanism that processes SQL result sets.

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sgl.CallableStatement stmt =
conn.prepareCall ("{call ranked emps(?)}");
stmt.setInt (1,3);

ResultSet rs = stmt.executeQuery () ;

while (rs.next()) ({
String name = rs.getString(l) ;
int.region = rs.getInt(2);
BigDecimal sales = rs.get.BigDecimal (3) ;
System.out.print ("Name = " + name) ;
System.out.print ("Region = "+ region);
System.out.print ("Sales = "+ sales);

System.out.printIn() :

}

Theranked_emps procedure supplies only the parameter declared in the create
procedure statement. The SQL system supplies an empty array of ResultSet
parameters and calls the Java method, which assigns the output result set to the
array parameter. When the Java method compl etes, the SQL system returnsthe
result set in the output array element asa SQL result set.

Note You can return result sets from atemporary table only when using an
external JDBC driver such asjConnect. You cannot use the Adaptive Server
native JDBC driver for thistask.

Deleting a SQLJ stored procedure name

112

You can delete the SQL J stored procedure name for a Java method using the
drop procedure command. For example, enter:

drop procedure correct states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the Java
class and method referenced by the procedure.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Viewing information about SQLJ functions and
procedures

Several system stored procedures can provide information about SQL J
routines:

* sp_depends lists database objects referenced by the SQL J routine and
database objects that reference the SQL J routine.

* sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQLJ routine.

e sp_helpjava lists information about Java classes and JARs installed in the
database. The depends parameter lists dependencies of specified classes
that are named in the external name clause of the SQLJ create function or
SQLJ create procedure statement.

e sp_helprotect reportsthe permissionsof SQLJstored proceduresand SQLJ
functions.

See the Adaptive Server Reference Manual for complete syntax and usage
information for these system procedures.

Advanced topics

The following topics present a detailed description of SQLJ topics for
advanced users.

Mapping Java and SQL datatypes

When you create a stored procedure or function that references a Java method,
the datatypes of input and output parameters or result sets must not conflict
when values are converted from the SQL environment to the Java environment
and back again. The rulesfor how this mapping takes place are consistent with
the JDBC standard implementation. They are shown below and in Table 6-1 on
page 114.

Each SQL parameter and its corresponding Java parameter must be mappable.
SQL and Java datatypes are mappable in these ways:

Java in Adaptive Server Enterprise 113

Advanced topics

114

* A SQL datatype and a primitive Java datatype are simply mappable if so
specified in Table 6-1.

* A SQL datatype and anon-primitive Java datatype are object mappable if
so specified in Table 6-1.

e A SQL abstract datatype (ADT) and a non-primitive Java datatype are
ADT mappable if both are the same class or interface.

e A SQL datatype and a Java datatype are output mappable if the Java
datatype is an array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example, character
and String[] are output mappable.

* A Javadatatypeisresult-set mappableif it isan array of the result set-
oriented class: java.sql.ResultSet.

In general, a Java method is mappable to SQL if each of its parametersis
mappable to SQL and itsresult set parameters are result-set mappable and the
return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored procedures is a Sybase extension
of the SQLJ Part 1 standard.

Table 6-1: Simply and object mappable SQL and Java datatypes

Corresponding Java datatypes
SQL datatype Simply mappable Object mappable
char/unichar javalang.String
nchar javalang.String
varchar/univarchar javalang.String
nvarchar javalang.String
text javalang.String
numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney java.math.BigDecimal
bit boolean Boolean
tinyint byte Integer
smallint short Integer
integer int Integer
bigint long java.math.Biglnteger
unsigned smallint int Integer
unsigned int long Integer

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Specifying Java
method signatures
explicitly or implicitly

Corresponding Java datatypes
SQL datatype Simply mappable Object mappable
unsigned bigint java.math.Biglnteger
real float Float
float double Double
double precision double Double
binary byte[]
varbinary byte[]
datetime java.sgl.Timestamp
smalldatetime java.sgl. Timestamp
date javasgl.Date
time javasgl.Time

When you create a SQL J function or stored procedure, you typically specify a
Java method signature. You can also allow Adaptive Server to infer the Java
method signature from the routine's SQL signature according to standard
JDBC datatype correspondence rules described earlier in this section and in
Table 6-1.

Sybase recommendsthat you include the Javamethod signature asthis practise
ensuresthat all datatype translations are handled as specified.

You can allow Adaptive Server to infer the method signature for datatypesthat
are

e Simply mappable

« ADT mappable

e Output mappable

e Result-set mappable

For example, if you want Adaptive Server to infer the method signature for
correct_states, the create procedure statement is:

create procedure correct states(old char(20),
not old char(20))
modifies sqgl data
language java parameter style java
external name ‘'SQLJExamples.correctStates’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks likethis:

Java in Adaptive Server Enterprise 115

Advanced topics

Returning result sets
and method
overloading

116

create procedure correct states(old char(20),
not old char(20))
modifies sqgl data
language java parameter style java
external name ‘SQLJExamples.correctStates
(java.lang.String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that are
object mappable. Otherwise, Adaptive Server infers the primitive, simply
mappabl e datatype.

For example, the SQLJExamples.job method contains a parameter of type int.
(See“Handling null argument values’ on page 100.) When creating afunction
referencing that method, Adaptive Server infersaJavasignature of int, and you
need not specify it.

However, suppose the parameter of SQLJExamples.job was Java Integer, which
is the object-mappabl e type. For example:

public class SQLJExamples
public static String job(Integer jc)
throws SQLException ...

Then, you must specify the Java method signature when you create afunction
that referencesit:

create function job of(jc integer)
external name
'SQLJExamples.job (java.lang.Integer) '

When you create a SQL J stored procedure that returns result sets, you specify
the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the single
method that matches the method name and signature. For example:

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps
(int, java.sgl.ResultSet[])'

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked emps (region integer)
dynamic result sets 1

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

language java parameter style java
external name 'SQLJExamples.orderedEmps'

If two methods exist, onewith asignature of int, RS[], the other with asignature
of int, RS[1, RS[], Application Server cannot distinguish between the two
methods and the procedurefails. If you allow Adaptive Server to infer the Java
method signature when returning result sets, make sure that only one method
satisfies the inferred conditions.

Note The number of dynamic result sets specified only affects the maximum
number of results that can be returned. It does not affect method overloading.

Ensuring signature If an installed class has been modified, Adaptive Server checks to make sure

validity that the method signature is valid when you invoke a SQL J procedure or
function that referencesthat class. If the signature of amodified method is still
valid, the execution of the SQLJ routine succeeds.

Using the command main method

In aJavaclient, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of aclass. The
JDBCExamplesclass, for example, containsamain method. It isthe command
main method that executes when you execute the class from the command line
asin the following:

java JDBCExamples

Note You cannot reference a Java main method in a SQL J create function
statement.

If you reference a Javamain method in a SQL J create procedure statement, the
command main method must have the Java method signature string[] asin:

public static void main(java.lang.String[]) {

If the Java method signature is specified in the create procedure statement, it
must be specified as (java.lang.string[]). If the Javamethod signatureis
not specified, itisassumed to be (java.lang.string[]) .

Java in Adaptive Server Enterprise 117

SQLJ and Sybase implementation: a comparison

If the SQL procedure signature contains parameters, those parameters must be
char, unichar, varchar, or univarchar. At runtime, they are passed asa Javaarray
of javalang.String.

Each argument you provide to the SQLJ procedure must be char, unichar,

varchar, univarchar, or aliteral string becauseit is passed to the main method as
an element of thejava.lang.String array. You cannot use the dynamic result sets
clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison

This section describes differences between SQL JPart 1 standard specifications
and the Sybase proprietary implementation for SQL J stored procedures and
functions.

Table 6-2 describes Adaptive Server enhancements to the SQLJ
implementation.

Table 6-2: Sybase enhancements

Category

SQLJ standard

Sybase implementation

create procedure command

Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Javamethodsthat allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return
types.

create procedure and create function
commands

Supports only SQL datatypesin
create procedure Or create function
parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract data types (ADTS).

SQLJ function and SQLJ procedure
invocation

Does not support implicit SQL
conversion to SQLJ datatypes.

Supportsimplicit SQL conversionto
SQL J datatypes.

SQLJfunctions

Does not alow SQLJ functions to
run on remote servers.

Allows SQLJ functionsto run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

Table 6-3 describes SQL J standard features not included in the Sybase
implementation.

118

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Table 6-3: SQLJ features not supported

SQLJ category

SQLJ standard

Sybase implementation

create function command

Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique namesfor all stored
procedure and functions.

utilities

Supports sqlj.install_jar,
sglj.replace_jar, sglj.remove_jar, and
similar utilitiesto install, replace,
and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

Table 6-4 describesthe SQL J standard features supported in part by the Sybase
implementation.

Table 6-4: SQLJ features partially supported

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Allows usersto install different
classes with the same name in the
samedatabaseif they arein different
JAR files.

Requires unique class namesin the
same database.

create procedure and create function
commands

Supports the key wordsno sql,
contains sql, reads sql data, and
modifies sgl data to specify the SQL
operations the Java method can
perform.

Supports modifies sgl data only.

create procedure command

Supportsjava.sgl.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sql.ResultSet only.

drop procedure and drop function
commands

Supportsthekey wordrestrict, which
requiresthe user to drop all SQL
objects (tables, views, and routines)
that invoketheprocedure or function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

Table 6-5 describes the SQL Jimplementation-defined features in the Sybase
implementation.

Table 6-5: SQLJ features defined by the implementation

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Java in Adaptive Server Enterprise

Supports the deterministic |

not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

119

SQLJExamples class

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function isinvoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs al validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

Can specify the create procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Invoking SQLJroutines

When aJavamethod executesaSQL
statement, any exception conditions
areraised in the Java method as a
Java exception of the
Exception.sqlException subclass.
Theeffect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server JDBC.

Invoking SQLJroutines

Theimplementation defineswhether
aJavamethod called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of theinvoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

drop procedure and drop function
commands

Can specify the drop procedure or
drop function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

SQLJExamples class

This section displays the SQLJExamples class used to illustrate SQL J stored
procedures and functions.

120

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

import
import
import
static

public

java.lang. *;
java.sqgl.*;
java.math.*;

String url = “jdbc:default:connection”;

class SQLExamples {

public static int region(String s)

}

throws SQLException {

s = s.trim() ;

if (s.equals("MN") || s.equals("VT") ||
s.equals ("NH")) return 1;

if (s.equals("FL") || s.equals("GA") ||
s.equals ("AL")) return 2;

if (s.equals("CA") || s.equals("az") ||
s.equals ("NV")) return 3;

else throw new SQLException
("Invalid state code", "X2001");

public static void correctStates

Java in Adaptive Server Enterprise

(String oldSpelling,
throws SQLException {

String newSpelling)

Connection conn = null;
PreparedStatement pstmt =
try {
Class.forName
("sybase.asejdbc.ASEDriver") ;
conn = DriverManager.getConnection(url) ;

null;

}

catch (Exception e) {
System.err.println(e.getMessage () +
":error in connection") ;
}
try {
pstmt = conn.prepareStatement
("UPDATE sales _emps SET state = ?
WHERE state = ?");
pstmt.setString (1, newSpelling) ;
pstmt.setString(2, oldSpelling);
pstmt .executeUpdate () ;
}
catch (SQLException e) ({
System.err.println ("SQLException:
e.getErrorCode () + e.getMessage());

"y

121

SQLJExamples class

122

}
public static String job (int jc)
throws SQLException {
if (jc==1) return "Admin";
else if (jc==2) return "Sales";
else if (jc==3) return "Clerk";
else return "unknown jobcode";
}
public static String job (int jc)
throws SQLException {
if (jc==1) return "Admin";
else if (jc==2) return "Sales";
else if (jc==3) return "Clerk";
else return "unknown jobcode';

}

public static void bestTwoEmps (String[] nl,
String[] idl, int[] r1,
BigDecimal[] sl1, Stringl[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException ({

nl[0] = "Hkx*kn,

idif[o] = "";

rl[0] 0;

s1[o0] new BigDecimal (0) :
n2[0] = "HkEkxkv,

id2[o] = nn,;

r2[0] = 0;

s2[0] = new BigDecimal (0) ;

try {
Connection conn = DriverManager.getConnection

("jdbc:default:connection") ;
java.sqgl.PreparedStatement stmt =

conn.prepareStatement ("SELECT name, id,"

+ "region of (state) as region, sales FROM"

+ "sales _emps WHERE"

+ "region of (state)>? AND"

+ "sales IS NOT NULL ORDER BY sales DESC");
stmt.setInteger(l, regionParm) ;
ResultSet r = stmt.executeQuery () ;

if (r.next())
nl[0] = r.getString("name") ;

Adaptive Server Enterprise 15.5

CHAPTER 6 SQLJ Functions and Stored Procedures

Java in Adaptive Server Enterprise

}

catch

id1[0] = r.getString("id");
rl1[0] = r.getInt("region");
s1[0] = r.getBigDecimal ("sales") ;

}

else return;

if (r.next())
n2[0] = r.getString("name") ;

id2[0] = r.getString("id");
r2[0] = r.getInt("region");
s2[0] = r.getBigDecimal ("sales") ;

}

else return;

(SQLException e) {
System.err.println("SQLException: "+

e.getErrorCode () + e.getMessage()) ;
}

public static void orderedEmps

(int regionParm, ResultSet/[] throws

SQLException {

rs)

Connection conn = null;
PreparedStatement pstmt = null;
try {
Class.forName
("sybase.asejdbc.ASEDriver") ;
Connection conn =
DriverManager.getConnection
("jdbc:default:connection") ;
}
catch (Exception e)
System.err.println(e.getMessage ()
+ ":error in connection") ;

}

try {
java.sql.PreparedStatement
stmt = conn.prepareStatement
("SELECT name, region of (state)"
"as region, sales FROM sales emps"
"WHERE region of (state) > ? AND"
"sales IS NOT NULL"

123

SQLJExamples class

"ORDER BY sales DESC") ;
stmt.setInt (1, regionParm) ;
rs[0] = stmt.executeQuery() ;
return;
catch (SQLException e) ({
System.err.println ("SQLException:"
+ e.getErrorCode () + e.getMessage());
return;
} return;

124 Adaptive Server Enterprise 15.5

CHAPTER 7 Debugging Java in the Database

Topic Page
Supported Java debuggers 125
Setting up Java debugging 126

All PCA /JVMs include built-in support for the Java Platform Debugger
Architecture (JPDA). The JPDA lets you debug Java code running on
Adaptive Server. The JPDA consists of:

e Theuser interface controlling the debugging, that is, the debugger

e The JVM running the classes to be debugged, and the debug agent
providing accessto the VM

e A communication channel between the debug agent and the debugger

The JPDA allows users to debug Java classes either from the command
ling, by starting the VM within a debugger application, or remotely, by
attaching a debugger to the debug agent on arunning VM. Because users
do not have accessto the VM command line in the server, all debugging
for Javain the Adaptive Server database is done remotely.

Supported Java debuggers

Every JDK provides an implementation of the basic, command line
debugger “jdb” in its development tools package. You can also use an
integrated development environment (IDE) for Java development and
debugging, for example, Sun Java Studio, IBM WebSphere Studio,
JBuilder, and Eclipse. In addition, there are standalone JPDA debuggers
such as JSwat and JDebugTool.

Java in Adaptive Server Enterprise 125

Setting up Java debugging

If you use an IDE or standal one debugger tool, consult the documentation
provided by the vendor for specific JDK requirements.

Note Thejdb debugger isnot included inthe JRE distribution. To usejdb, you
must install the JDK, which lets you access the jdb debugger.

Setting up Java debugging
Whether you use an IDE, a standal one debugger, or a jdb debugger, you must:
1 Configure the server to support debugging
2 Attach the remote debugger to the VM debugging agent

Configuring the server to support debugging

Start the debug agent for the IV M using auser-supplied or default port number.
Use sp_jreconfig with these configuration parameters to enable debugging,
choose aport number, and specify whether the VM isimmediately suspended:

* pca_jvm_java_dbg_agent_port —enables or disables debugging and
establishes the port number on which the debug agent in the JVM listens.
If you enable this parameter, the JVM starts with the debug agent running
inamanner that allows aremote debugger to attach. By default, the debug
agent listens on port 8000. To enable the debug agent and allow debugging
using the default port, enter:

sp_jreconfig "enable", "pca jvm java_ dbg agent port"

To use adifferent port, change the port number prior to starting the VM.
Once the VM is started with the debug agent running, the debug agent
listens on that port until the VM shuts down. To enable debugging and
change the port on which the debug agent listens, enter:

sp_jreconfig "update", "pca jvm java dbg agent port", new port number

e pca_jvm_java_dbg_agent_suspend — controls whether the VM suspends
on startup when the debug agent is running. By default,
pca_jvm_java_dbg_agent_suspend is disabled.

126 Adaptive Server Enterprise 15.5

CHAPTER 7 Debugging Java in the Database

When pca_jvm_java_dbg_agent_suspend is enabled, no Java method can
execute until adebugger is attached and the VM isrestarted. Suspending
the VM lets you examine the early initialization of the VM before any
classes are loaded. In general, suspending the VM is not necessary for
debugging user classes.

To enable pca_jvm_java_dbg_agent_suspend, enter:

sp_jreconfig "enable", "pca jvm java dbg agent suspend"

Note Usepca_jvm_java_dbg_agent_suspend with caution. Enabling
pca_jvm_java_dbg_agent_suspend causes the VM to suspend and all
Adaptive Server Javatasksto wait until you attach and instruct the VM
to continue via the debugger. Sybase recommends that you start the VM
and run asimple Javacommand to allow you to attach the debugger rather
than enabling pca_jvm_java_dbg_agent_suspend. This alowsthe JVM to
boot, and lets you attach the debugger before executing the classthat isto
be debugged.

Once the configuration values enabling the debug agent inthe VM are set, the
next timethe VM is started the debug agent is available. To disable the debug
agent the debug agent, disable the configuration parameters and restart the
JVM (the agent cannot be turned off once the VM has started with the agent
running).

Note Do not run the debug agent by default. When the debug agent isrunning,
any debug application with network accessto the host can potentially connect
with the VM and gain access to object internal data.

Attaching the remote debugger to the JVM debug agent

A debug session begins when the remote debugger attaches to the debug agent
running in Adaptive Server. In addition to the connection information supplied
using sp_jreconfig, you must enter thelocation of the sourcefilesfor the classes
that are to be debugged.

If you are using an IDE or standalone debugger, consult the vendor
documentation for instruction on how to attach the remote debugger to the
debug agent.

Java in Adaptive Server Enterprise 127

Setting up Java debugging

This example assumes you are using ajdb command line debugger. You
connect to the debug agent on the machine “myhost” on port 8000 and specify
Java source filesin the JAR archive mysource.jar in your home directory.

jdb -attach myhost:8000 -source .:${HOME}/mysource.jar

The syntax varies for other debugger tools, but you must always supply
connection information and source file locations.

128 Adaptive Server Enterprise 15.5

CHAPTER 8 File and Network Access Using
Java

This chapter describes and provides examples of file and network access

using Java.
Topic Page
File access using java.io 129
File access using java.net 137

Adaptive Server supports both file and network 1/0 capabilities using
java.io, java.net, and java.nio packages.

Note If both file and network 1/0 are streaming large text documentsin
and out of the server, you may need to increase the amount of memory
availableto the VM. If you are handling large documents, you may need
to increase the value of the pci memory size configuration parameter to
accommodate larger memory requirements. See“ The PCI memory pool”
on page 16.

File access using java.io

The PCA/JVM supports direct file I/O through the java.io and java.nio
packages. These packages allow usersto read and write files both to and
from the file system.

A clear distinction must be made between the user identity used by the
operating system and the user identity used by Adaptive Server.

Java in Adaptive Server Enterprise 129

File access using java.io

User identity and permissions

When Adaptive Server starts, the server process executes using the system user
ID that started the process. For example, if Adaptive Server is started by a
system user ID “sybase”:

)

% ps -Usybase -o user,pid, command

USER PID CMD
sybase 20405 /sybase/ASE-15-0/bin/dataserver ...

Thus, all interactions between the Adaptive Server process and the operating
system are associated with the system user ID that started Adaptive Server.

In the server, however, the situation is different. As each user logsin to the
server, the user does so with auser ID defined on the Adaptive Server server.
This user ID isdistinct from the user 1D defined on the host machine—even
though it might be expected that a user 1D represents the same person on both
Adaptive Server and the operating system.

Within the database, users may perform different actions based on the roles
assigned tothem. Itislikely that usersloggedinto Adaptive Server do not have
user accounts on the host machine. Thus, the user account that started the
server may be acting asaproxy for any number of database users. For example,
supposetwo files are to be read by the Adaptive Server users (file permissions
are strictly read-only for the user).

“fm-mmm - 1 sybase sybuser 1263 Aug 19 18:54 myfilel.dat

“r---------- 1 jdoe

130

sybuser 952 Aug 7 9:02 myfile2.dat

If userslog in to Adaptive Server to run a Java method that attempts to read
thesefiles, the Javafile I/O eventually comes down to the functions managed
by the host interface:

isgl -Usa -P...
isqgl -Ujdoe -P...
isqgl -Ujanedoe -P...

The behavior of the underlying read() runtime function is the same for each
user. Every user can read myfilel.dat, which is owned by the system user 1D
“sybase” because the server isidentified to the operating system as owned by
that user. However, no user can read myfile2.dat, even though it appearsto be
owned by one of the database users, because all database user identities are
compressed into a single operating system identity “sybase,” which is
associated with the process owner. Thus, file accessis denied.

Adaptive Server Enterprise 15.5

CHAPTER 8 File and Network Access Using Java

Specifying directories for file I/0: UNIX platforms

Mask syntax

You can specify optional, additional permission restrictions on the path using
traditional UNIX notation. For example, “u+rw” givesthe user read-write
access, the group read-only access, and all others are denied access. These
restrictions do not affect operating system permissions; a user who allowed
read-write access in the configuration statement does not gain write accessto
adirectory that has read-only operating system permissions.

When amask isnot provided, the default mask of 0666 isused for the directory
for all write operationsincluding file creation. The mask is not used for read-
only operations.

When amask is provided, adefault mask of all zeroesisassumed. Thisensures
that a mask specified as (u+rw) resultsin a mask of 0600.

The work_dir (trusted directory) permission mask:
e Must be placed immediately after the path with no intervening spaces.

e Candefine[u]ser, [g]roup, [o]ther, and [a]all masks using the leading
character (u, g, 0, and a) followed by +, —, =, r, w, and x.

For example:

e (u=rw,go=r) equals 0644

e (ugotr,u+w) equals 0644

e (ugotr,u+wx) equals 0755

e (ugo=rwx,go-wx) equals 0755

There are many ways to define masks, but they are always evaluated from left
toright. For example, suppose the mask isinitially defined as 0777 (ugo=rwx).
If you later remove w(rite) and x(ecute) for g(roup) and o(ther), the octal
equivalent becomes 0744 and the mask (ugo=rwx,go—wx).

If no mask is specified (when the mask portion is optional), the directory uses
the default write mask of 0666.

Valid syntax values are:

Java in Adaptive Server Enterprise 131

File access using java.io

U ... user (or owner).
g ... group.
0 ... other (or world).
a... al (setsu, g, and 0). For example: (a+rw) turns on read and writefor u, g,
and o.
+ ... turn on bits.
— ... turn off bits.
=... replace bits. For example: (u=rw) replaces user.
r... read bit.
w ... write bit.
X ... execute bit.
Examples
» Toadd anew working directory path to the pca_jvm_work_dir array,
enter:
sp_jreconfig "add", "work_dir", "/some/path (u+rw)
or,
sp_jreconfig "add", "work_dir", "/some/path (u=rw)
* Todelete an existing working directory path from the pca_jvm_work_dir
array, enter:
sp_jreconfig "delete", "work dir", "/some/path"
When deleting or updating awork_dir array element or path entry, only the
path portion is required in the supplied string.
* Tomodify an existing working directory path in the pca_jvm_work_dir
array, enter:
sp_jreconfig "update", "work dir", "/old", "/new"
» To change the path and update permissions, enter:
sp_jreconfig "update", "work dir", "/some/path(u+rw)", "/some/path (u+w)"
» Todisable an existing working directory path in the pca_jvm_work_dir
array, enter:
sp_jreconfig "disable", "work dir", "/some/path"
Thelast argument isafull or partial string value that identifies an
individual work_dir array element, and must be supplied even if thereis
only one element in the array.
132 Adaptive Server Enterprise 15.5

CHAPTER 8 File and Network Access Using Java

e Toclear theentire set of working directory pathsinthepca jvm_work_dir
array, enter:

sp_jreconfig "array clear", "work dir"
e Toenablethe entire array, enter:

sp_jreconfig "array enable", "work dir"
e Todisable the entire array, enter:

sp_jreconfig "array disable", "work dir"

Specifying directories for file I/0: Windows platforms

You can specify optional, additional permission restrictions on the path using
the following notation.

Mask syntax

In a Windows environment, the following syntax can be added to the end of a
working directory definition to define the permission mask:

e /RW —defines read/write permission
¢ /RO —defines read-only permission

*« /NA —defines no access

Examples
e Todefine D:\my_work_dir astrusted with full access, enter:

sp_jreconfig "add", "work dir", "C:\my work dir/RW"
e Todefine D:\my_read only as trusted with read-only access, enter:
sp_jreconfig "add", "work dir","D:\my read only dir/RO"

* Todefine E:\general astrusted with full access, but disallow accessto a
subdirectory of E:\general called TOP_SECRET, enter:

sp_jreconfig "add", "work dir","E:\general/RW;E:\general\TOP_ SECRET/NA"

Delimit individual directory entries with a semi-colon.

Java in Adaptive Server Enterprise 133

File access using java.io

File I/O changes

Filel/Ointhe VM iscontrolled primarily through file-open operations. After
afile has been opened successfully, additional 1/0 operations on the file are
generally permitted. For security reasons, all file-open requests must be made
with an absolute path to the physical file; soft links are not supported. Relative
paths are converted to absolute paths before any file 1/0O operations are
attempted. For thisreason, it isnot possibleto set up the $SYBASE directory as
asoft link. Doing so preventsthe VM from initializing because it cannot open
filesin $SYBASE/shared.

If afile-open operation does not conform to a specific set of rules, thefile
cannot open. File-open rules are based on:

» Whether or not the file already exists
» Whether or not the fileis to be opened for read-only or read-write access

e Thelocation of thefile to be opened

Rules for opening existing files

UNIX platforms

134

This section describes the rules and checks for opening files on UNIX and
Windows platforms.

Note If any check fails, the open file request is denied and an error isreported
to the caller.

If the user ID associated with the server has permission to access the file, the
file can be opened for read-only accessif it isinthe $SYBASE/shared directory.
Read accessis not allowed for any other $SY BASE directory.

Note Writeaccess, including file creation, isnever allowed for any $SYBASE
directory.

Files opened for write access are given additional checks before the file open
request is granted. Adaptive Server checks that:

e Theuser issuing the file-open request is the file owner.

Adaptive Server Enterprise 15.5

CHAPTER 8 File and Network Access Using Java

Windows platforms

The number of hard links is no more than one. If greater than one, the
request fails.

Thefileto be openedisin avalid directory location. The request fails if
thefileisin the $SYBASE directory or not in one of the configured
working directories.

The working directory has been configured with an access mask that
allowsfilesto be opened with write access. The default mask is0666. The
mask is not required unless you want a mask other than the defaullt.

If the user ID associated with the server has permission to access thefile,
access is granted if:

The file already existsin the %SY BASE% directory structure, read-only
access is alowed, and open-for-write requests receive an
ERROR_ACCESS DENIED error, or

Thefileexistsor isbeing created in the Windows % TEM P% directory and
read-write accessis allowed, or

Thefileexistsor isbeing created in aconfigured work directory (atrusted
directory). The access allowed is that defined for the work directory, or

The file exists or is being created in any subdirectory under atrusted
directory. The access allowed is that defined for the parent directory.

If onetrusted directory is nested inside another, then the system examines
access to each trusted parent in the target file path and the most restricted
accessisapplied. Thusitispossibleto allow read-write accessto atrusted
directory tree, but then specify read-only or no access for specified
directories below it. This behavior is similar to Windows behavior when
applying ACLsto files.

Java in Adaptive Server Enterprise 135

File access using java.io

Rules for creating files with a file open operation

An open request for afile that does not exist is essentially afile-create
operation, and must be handled differently than for afile that already exists.
The same location constraints that apply to an existing file being opened for
write access apply to anewly created file: if the newly created fileisto bein
either the $SYBASE directory structure or is not contained in a configured
working directory, the request fails. In addition, the access mask for the
directory must allow the user 1D associated with the server process to writeto
the target directory.

Note Write access, including file creation, is always allowed in the /tmp
directory.

On UNIX platforms —files created with an open request must specify write
access and are always opened using thefile open flags (O-CREAT | O-EXCL |
O-RDWR) and an access mask of (0600). For security reasons, thesefile open
flags and this access mask is always used—without regard to the flags and
access mask specified by the file open request. You cannot create files using
file openflagsthat specify thefileisto be opened for read-only access. To limit
the file size or set disk usage quotas, you must do so at the operating system
level.

Final file check

After afile open has passed al file checksand thefileisallowed to open, afinal
check ensures that the opened file matches the file originally requested. This
prevents attempts to open files not otherwise allowed that attempt to
circumvent the checks. If afile open request fails, an annotation is added to the
audit trace and a java.lang.|OException is raised to the calling method.

M ethod-specific handling of the |OException determines whether the
exception is visible to the user or handled by an alternate mechanism in the
Java code.

136 Adaptive Server Enterprise 15.5

CHAPTER 8 File and Network Access Using Java

File access using java.net

Adaptive Server support for java.net and java.nio lets you create client-side
Javanetworking applicationsinthe server. You can create anetwork Javaclient
application that connectsto any server, which effectively enables Adaptive
Server to function as a client to external servers.

You can use java.net and java.nio to:
* Download documents from any URL on the Internet.
e Send e-mail messages from inside the server.

e Connect to an external server to save a document and perform file
functions such as saving or editing a document.

e Accessdocuments using XML.

Note Usejava.net with caution:

* Most objects associated with java.net are not serializable; they cannot be
inserted into tables.

e Most I/O-related methods use buffered 1/0 and are not automatically
flushed. These methods, such as PrintWriter, must be flushed explicitly.

Examples

This section provides examplesfor using socket classes and the URL class. You
can:

e Accessan externa document with XML Query Language (XQL), using
the URL class.

¢ Usethe MailTo class to mail adocument.

Using socket classes

The Java socket classes allow more sophisticated network transfers than the
URL classes. The socket classes | et you connect to a specified port on any
network host, and use the InputStream and OutputStream classesto read and
write the data.

Java in Adaptive Server Enterprise 137

File access using java.net

Using the URL classes

138

You can use the URL classes to:
* Send an e-mail message.

* Download an HTTP document from a Web server. The HT TP document
can be a static file or can be dynamically constructed by the Web server.

e Access an external document with XQL.
e Usethe mailto:URL class to mail a document.

For example, you can mail a document using the URL class. Your client must
be connected to a mail server so that the machine referenced by System
Properties (in this example, it is salsa.sybase.com), is running a mail server
such as sendmail.

For this example, the steps are:

1 Create a URL object.

2 Set aURLConnection object.

3 Create an OutputStream object from the URL object.

4 Write the mail. For example:

import java.io.*;
import java.net.*;
public class MailTo {
public static void sendIt ()

throws Exception({

System.getProperty("mail.host", "salsa.sybase.com");

URL url = new URL("mailto:name@sybase.com") ;

URLConnection conn = url.openConnection() ;

PrintStream out = new PrintStream(conn.getOutputStream(), true) ;
out.println ("From janedoes@sybase.com") ;

out.println ("Subject: Works Great!");

out.println ("Thanks for the example - it works great!");
out.close() ;

System.out.println("Message Sent");

5 Install mailto:URL for sending e-mail messages from within the database:

select MailTo.sendIt ()

Adaptive Server Enterprise 15.5

CHAPTER 8 File and Network Access Using Java

You can also use the URL class to download a document froman HTTP URL.
When you start, the client connects to a Web server. The steps are:

1 Create a URL object.
2 Create an InputStream object from the URL object.
3 Useread on the InputStream object to read in the document.

The following code sample reads the entire document into Adaptive Server
memory and creates a new InputStream on the document in memory.

import java.io.*;
import java.net.*;
public class URLprovess {
public static InputStream readURL()
throws Exception {
URL u = newURL ("http://www.xxxx.con") ;
InputStream in = u.openStream") ;
//This is the same as creating URLConnection, then calling
//getInputStream(). In Adaptive Server, you must read the entire
//document into memory, and then create an InputStream on the
//in-memory copy.

int n = 0;
int off = 0;
byte b() = new byte(50000) ;
for)off = 0; (off<b.length512) &&

((n = in.read (b.off,512)! = 1);0ff+=n) {}
System.out.prinln ("Number of bytes read :" + off);
in.close () ;

ByteArrayInputStream test = new ByteArrayInputStream(b,-,off);
return (InputStream) test;

Java in Adaptive Server Enterprise 139

File access using java.net

After you create the new InputStream class, you can install this class and useit
to read atext file into the database. The following exampleinserts datainto

table mytable.
create table mytable (cl text)
go
insert into mytable values (URLprocess.readURL())
go

Number of bytes read :40867
select datalength(cl) from mytable

go

140 Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

This chapter presents information on several reference topics.

Topic Page
JDK requirement for Java classes in the server 141
Assignments 142
Allowed conversions 143
Transferring Java-SQL objectsto clients 144
Suggestions for improving performance 144
Controlling access to native methods in the PCA/JVM 147
Unsupported Java APl packages, classes, and methods 148
Invoking SQL from Java 152
Transact-SQL commands from Java methods 153
Datatype mapping between Java and SQL 157
Java-SQL identifiers 159
Java-SQL class and package names 160
Java-SQL column declarations 161
Java-SQL variable declarations 162
Java-SQL column references 162
Java-SQL member references 163
Java-SQL method calls 164

JDK requirement for Java classes in the server

Javaclasses that you install and usein the server must be at or below the
version of the VM plugged into Adaptive Server through the PCA/JVM.
The PCA/JVM supports Java 6 and later.

Java in Adaptive Server Enterprise 141

Assignments

Assignments

This section defines the rules for assignment between SQL data items whose
datatypes are Java-SQL classes.

Each assignment transfers a source instance to atarget data item:

For an insert statement specifying atable that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert value
as the source instance.

For an update statement that updates a Java-SQL column, refer to the Java-
SQL column as the target data item and the update value as the source
instance.

For aselect or fetch statement that assignsto avariable or parameter, refer
to the variable or parameter as the target dataitem and the retrieved value
as the source instance.

Note If the sourceisavariable or parameter, then it isareferenceto an object
inthe Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 162) yield areference to an object in the Java VM. Thus,
the source is areference to an object in the Java VM.

Assignment rules at compile-time

1

Define SC and TC as compile-time class names of the source and target.
Define SC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

SC_T must bethesameas TC_T or asubclass of TC_T.

Assignment rules at runtime
Assume that DT_SC isthe same as DT_TC or its subclass.

142

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

Define RSC asthe runtime class name of the source value. DefineRSC_S
asthe class named RSC in the database associated with the source. Define
RSC_T asthe name of aclassRSC_T installed in the database associated
with the target. If thereis no class RSC_T, then an exception israised. If
RSC_T isneither the sasme as TC_T nor asubclassof TC_T, thenan
exception israised.

If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the classRSC_T that it will be
associated with in the database associated with the target.

If the target isa SQL variable or parameter, then the sourceis copied by
reference to the target.

If the target is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Allowed conversions

Y ou can use convert to change the expression datatype in these ways:

Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “ Datatype mapping between Javaand SQL” on
page 157. The action of the convert function isthe mapping implied by the
Java-SQL mapping.

Convert SQL datatypes to Javatypes shown in “ Datatype mapping
between Javaand SQL"” on page 157. The action of the convert function
is the mapping implied by the SQL -Java mapping.

Convert any Java-SQL classinstalled in the SQL system to any other Java-
SQL classinstalled in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Java in Adaptive Server Enterprise 143

Transferring Java-SQL objects to clients

Transferring Java-SQL objects to clients

When a value whose datatype is a Java-SQL object type istransferred from
Adaptive Server to aclient, the data conversion of the object depends on the
client type:

» If theclientisanisgl client, the toString() or similar method of the object
isinvoked and theresult istruncated to varchar, which istransferred to the
client.

Note The number of bytes transferred to the client is dependent on the
value of the @ @stringsize global variable. The default value is 50 bytes.
See “Representing Java instances’ on page 43 for more information.

» If theclient isaJavaclient that usesjConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

 Iftheclientisab client:

» If the object isa column declared as in row, the serialized value
contained in the column istransferred to the client asavarbinary value
of length determined by the size of the column.

» Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client asan
image value.

Suggestions for improving performance

This section provides guidelines for improving performance when using Java
in Adaptive Server.

Minimize the number of calls from SQL to the JVM

144

Off-the-shelf JVMs, and thus the PCA/IVM, benefit from advancesin VM
capabilities and significant optimizations so that they are considerably faster
than theinternal VM in Adaptive Server 15.0.2 and earlier. However,
propagating a SQL call into Java can till create a bottleneck that can be even
more pronounced with the PCA/IVM.

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

To take advantage of the speed of the PCA/JVM, minimize the number of calls
from SQL to the VM.

Consider the simple Address class:

public class Address implements java.io.Serializable {
private int state;
private String street;
private String zip;

//

public Address|()

{
}

//

public Address (String street, String zip, int state)

{
this () ;
this.setStreet (street) ;
this.setZip(zip) ;
this.setState(state) ;

}
/I

public void setStreet (String street)

(

}

//

public void setZip(String zip)

{
}

!/

}

Because of the overhead associated with calls into the VM, it is significantly
faster to use the three-argument constructor from SQL than the zero-argument
constructor followed by the set methods for the data members. Thus, this
Statement:

1> declare @a Address
2> gselect @a=new Address("123 Elm Street", "12345", 10)

is more efficient than:

Java in Adaptive Server Enterprise 145

Suggestions for improving performance

1> declare @a Adress

2> select @a = new Address ()

3> select @a >> setStreet ("123 Elm Street")
4> select @a >> setZip("12345")

5> select @a >> setState(10)

Pushing as much processing as possible into the Java without requiring
repeated crossing of the SQL -Java interface reduces overhead and more fully
exploits the improved capabilities of the VM.

Use the java.lang.Thread class with care

The PCA/JVM supportsthe java.lang.Thread class, which allows you to create
classes that use multithreaded methods in Adaptive Server. Threads created
within a Java method compete with Adaptive Server for CPU and other
resources. Large numbers or resource-intensive threads can impact overall
server performance.

Determine if you are running within the PCA/JVM

146

In general, it makeslittle difference whether a classis running under the
PCA/JVM or a standalone JVM. You can use boolean logic to verify whether
the classis |oaded via the Sybase ContextClassL oader. For example:

boolean running_ in ase = false;

running in ase =
this.getClass () .getClassLoader () .getName () .equals
("sybase.aseutils.ContextClassLoader") ;

if (running in ase)

{

//in ASE

}

else

{

//in a standalone JVM

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

Avoid SQL loops in a multi-engine environment

In a multi-engine environment, certain Java/SQL commands can negatively
affect performance. This typically happens when the same Java method
executes multiple times within a SQL loop. To avoid this, write Java/SQL
commands so that the method and the loop are executed in the VM context:

1 Writeloopin Java.
2 Cadll method from Java-coded loop.

Controlling access to native methods in the PCA/JVM

The Java language lets you use functionality implemented in non-Java
languages through the Java Native Interface (JNI) via native methods. Classes
using native methods must explicitly load the native library using either the
load(String filename) or loadLibrary(String libname) method as described in both
the java.lang.System and java.langRuntime classes. Because these libraries are
not stored as controlled objectsin the database, some users may consider them
less secure.

To prevent unexpected accessto nativelibraries, the PCA/JVM hasintroduced
a system property sybase.allow.native.lib to control the loading of native
libraries.

Many Java properties can be set either on the command line or from within the
application viathe java.lang.System setProperty(String key, String value)
method. However, thisis forbidden by the SecurityManager to prevent users
from overriding system policy. By default, users cannot load nativelibraries. If
an attempt ismadeto load anativelibrary or alter the existing property setting,
a SecurityException is raised and the load attempt fails.

For example, if you try to load the java.net.ServerSocket class without setting
the sybase.allow.native.lib property, the initializer fails because it requires the
Socket library to be loaded. The actual Java stack varies. However, it or the

client message displays:

java.lang.SecurityException: Cannot load native
libraries from within a user Task!

Thisindicates that a required native library has been unable to load.

To enableloading of native libraries, set this property in the sybpcidb database
prior to starting the VM:

Java in Adaptive Server Enterprise 147

Unsupported Java API packages, classes, and methods

1> sp jreconfig "add", "pca jvm java option",
"-Dsybase.allow.native.lib=true"

2> go

Once sybase.allow.native.lib is set true, the additional property ispassed into
the VM on thecommand lineat VM startup. This property cannot be changed
while the JVM is running. If you no longer need to load libraries, use
sp_jreconfig to delete or disable pca_jvm_java_option.

Unsupported Java API packages, classes, and

methods

148

Adaptive Server supportsmany but not all classes and methodsinthe JavaAPI.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread manipulation facilities of java.lang. Thread.

Warning! Take care when using methods that spawn child threads.
java.lang.Thread objects started within a Java method are scheduled by
runtime rather than the Adaptive Server scheduler. If these threads are
processor intensive or if large numbers of threads are spawned, server
performance can degrade due to competition for processor time by greedy user
threads.

Because the PCA/JVM uses a standard Java plug-in, the full class distribution
isavailableto you. In general, methods are supported unless their use risks
interference with the operation of the server or other Java tasks.

Javain Adaptive Server does not support the native methods invoked through
the Java Native Interface (INI).

This section lists:
e Unsupported Java methods
e Unsupported java.sgl methods

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

Restricted Java packages, classes, and methods

e Becausethe JVM runsin headless mode, Java methods requiring user
input or output are disabled

e Operationsthat could interfere with the operations of the server or other
JVM tasks are not permitted

e Thesejava.lang.Thread methods are not permitted:

interrupt()

setPriority ()

setName()

enumerate()

setDaemon()

checkAccess()
getContextClassLoader()
setDefaultExceptionHandler()
setContextClassLoader()
getStackTrace()

getAllStarkTraces()
setDefaultUncaughtExceptionHandler()
stop()

destroy()

suspend()

resume()

Deprecated methods are allowed, but may be unsafe

e countStackFrames()

e Thesejava.lang.ThreadGroup methods are not permitted:

Java in Adaptive Server Enterprise

getParent()
setDaemon()
setMaxPriority()

checkAccess()

149

Unsupported Java API packages, classes, and methods

* enumerate()
* interrupt()
* stop()
e destroy()
e suspend()
* resume()
e Deprecated methods are allowed, but may be unsafe
* allowThreadSuspension()
e Security issues:

* You can not override the existing SecurityManager or instantiate
other class loaders.

e Theexit() methods in java.lang.System and java.lang.Runtime are not
permitted.

Unsupported java.sql methods and interfaces

150

For the Java 6 class distribution, thejava.sgl package conformswith the JDBC
4.x specification. However, the underlying Sybase implementation is at the
JDBC 2.0 level. All IDBC methods included since the JIDBC 2.0 specification
are not supported. In addition, thefollowing methods specifiedin JDBC 2.0 are
not supported.

* Connection.commit()

* Connection.getMetaData()

* Connection.nativeSQL()

* Connection.rollback()

* Connection.setAutoCommit()

* Connection.setCatalog()

* Connection.setReadOnly()

* Connection.setTransactionlsolation()

» DatabaseMetaData.* — DatabaseMetaData is supported except for these
methods:

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

* deletesAreDetected()

e getUDTs()

. insertsAreDetected()

* updatesAreDetected()

* othersDeletesAreVisible()

e othersinsertsAreVisible()

* othersUpdatesAreVisible()

* ownDeletesAreVisible()

* ownlnsertsAreVisible()

* ownUpdatesAreVisible()
* PreparedStatement.setAsciiStream()
* PreparedStatement.setUnicodeStream()
* PreparedStatement.setBinaryStream()
* ResultSetMetaData.getCatalogName()
* ResultSetMetaData.getSchemaName()
* ResultSetMetaData.getTableName()
* ResultSetMetaData.isCaseSensitive()
* ResultSetMetaData.isReadOnly()
* ResultSetMetaData.isSearchable()
* ResultSetMetaData.isWritable()
* Statement.getMaxFieldSize()
* Statement.setMaxFieldSize()
* Statement.setCursorName()
* Statement.setEscapeProcessing()
e Statement.getQueryTimeout()

* Statement.setQueryTimeoutt()

Java in Adaptive Server Enterprise 151

Invoking SQL from Java

Invoking SQL from Java

Adaptive Server suppliesanative JDBC driver, java.sgl, that implements JDBC
1.1 and 1.2 specifications, and is compliant with version 2.0. java.sgl enables
Java methods executing in Adaptive Server to perform SQL operations.

Special considerations
java.sgl.DriverManager.getConnection() accepts these URLs:
* null
e “" (thenull string)
* jdbc:default:connection
When invoking SQL from Java some restrictions apply:

* A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sql to invoke other SQL operations that
also perform update actions.

» Triggersthat are fired by SQL using the facilities of java.sql cannot
generate result sets.

* java.sgl cannot be used to execute extended stored procedures or remote
stored procedures.

152 Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

Transact-SQL commands from Java methods

You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 9-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Adaptive Server Enterprise Reference

Manual.

Table 9-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors’ are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

Java in Adaptive Server Enterprise

153

Transact-SQL commands from Java methods

154

Command Status
declare Supported.
disk init Not supported.
disk mirror Not supported.
disk refit Not supported.
disk reinit Not supported.
disk remirror Not supported.
disk unmirror Not supported.
drop database Not supported.
drop default Not supported.
drop function Supported.
drop index Not supported.
drop procedure Not supported.
drop role Not supported.
drop rule Not supported.
drop table Supported.
drop trigger Not supported.
drop view Not supported.
dump database Not supported.
dump transaction Not supported.
execute Supported.
goto Supported.
grant Not supported.
group by and having clauses Supported.
if...else Supported.
insert table Supported.

kill Not supported.
load database Not supported.
load transaction Not supported.
online database Not supported.
order by Clause Supported.
prepare transaction Not supported.
print Not supported.
raiserror Supported.
readtext Not supported.
return Supported.
revoke Not supported.
rollback trigger Not supported.

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics
Command Status
rollback Not supported.
save transaction Not supported.
set See Table 12-2 for set
options.
setuser Not supported.
shutdown Not supported.
truncate table Supported.
union Operator Supported.
update statistics Not supported.
update Supported.
use Not supported.
waitfor Supported.
where Clause Supported.
while Supported.
writetext Not supported.

Table 9-2 lists set command options and whether or not you can use them in

Java methods.

Table 9-2: Support status of set command options

set command option Status
ansinull Supported.
ansi_permissions Supported.
arithabort Supported.
arithignore Supported.
chained Not supported. See Note 1.
char_convert Not supported.
cis_rpc_handling Not supported
close on endtran Not supported
cursor rows Not supported
datefirst Supported
dateformat Supported
fipsflagger Not supported
flushmessage Not supported
forceplan Supported
identity_insert Supported
language Not supported
lock Supported

Java in Adaptive Server Enterprise

155

Transact-SQL commands from Java methods

156

set command option Status

nocount Supported

noexec Not supported

offsets Not supported
or_strategy Supported
parallel_degree Supported. See Note 2.
parseonly Not supported

prefetch Supported
process_limit_action Supported. See Note 2.
procid Not supported

proxy Not supported
quoted_identifier Supported

replication Not supported

role Not supported
rowcount Supported
scan_parallel_degree Supported. See Note2.
self_recursion Supported
session_authorization Not supported
showplan Supported
sort_resources Not supported
statistics io Not supported
statistics subquerycache Not supported
statistics time Not supported
string_rtruncation Supported

stringsize Supported

table count Supported

textsize Not supported
transaction iso level Not supported. See Note 1.
transactional_rpc Not supported

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

set command option Status

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify isaready in effect. That is, thiskind of
set command isalowed if it has no affect. Thisisdoneto
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no affect. This supportsthe use of stored
procedures that set the parallel degree for other contexts.

Datatype mapping between Java and SQL

Adaptive Server maps SQL datatypes to Java types (SQL -Java datatype
mapping) and Java scalar typesto SQL datatypes (Java-SQL datatype
mapping). Table 9-3 shows SQL -Java datatype mapping.

Java in Adaptive Server Enterprise 157

Datatype mapping between Java and SQL

158

Table 9-3: Mapping SQL datatypes to Java types

SQL type Java type

char String

varchar String

nchar String

nvarchar String

unichar String

univarchar String

unitext String

text String

numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney Java.math.BigDecimal
bit boolean

tinyint byte

smallint short

integer int

bigint long

unsigned smallint int

unsigned int long

unsigned bigint

java.math.Biginteger

bigint java.math.Biglnteger
real float

float double

double precision double

binary byte[]

varbinary byte[]

image java.io.InputStream
datetime java.sql.Timestamp

smalldatetime

java.sql.Timestamp

bigdatetime java.sql.Timestamp
bigtime java.sql.Time
date java.sql.Date
time java.sql.Time

Note The mapping of unsigned bigint to double isan approximation; it will not

Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

provide exact values. For exact values, convert the unsigned bigint value to a
string value when passing it to a Java method.

Table 9-4 shows Java-SQL datatype mapping.
Table 9-4: Mapping Java scalar types to SQL datatypes

Java scalar type SQL type
boolean bit

byte tinyint
short smallint

int integer
long bigint

float real

double double

Java-SQL identifiers

Description Java-SQL identifiers are a subset of Javaidentifiers that can be referenced in
SQL.
Syntax java_sql_identifier ::= alphabetic character | underscore (_) symbol

[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]

Usage e Java-SQL identifiers can be amaximum of 255 bytesin length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

e Thefirst character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore () symbol. Subsequent
characters can include al phabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

e Java-SQL identifiers are always case sensitive.

Java in Adaptive Server Enterprise 159

Java-SQL class and package names

Delimited Identifiers

» Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option ison or off.

» Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

create table tl
(cl1 char(12)
c2 pl.”"select” .p2.”jar")

» Doublequotessurround only individual Java-SQL identifiers, not thefully
qualified name.

See also For additional information about identifiers, see Chapter 5, “Transact-SQL
Topics,” in the Reference Manual.

Java-SQL class and package names
Description To reference a Java-SQL class or package, use the following syntax:

Syntax java_sql_class_name ::= [java_sql_package_name.]java_sql_identifier

java_sgl_package_name ::=
[lava_sql_package_name.]java_sql_identifier

Parameters java_sql_class _name
The fully qualified name of a Java-SQL classin the current database.

java_sql_package name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

Usage For Java-SQL class names:;

e A classnamereference dwaysrefersto aclassin the current database.

160 Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

e If you specify aJava-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

e If aSQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

e If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

e UseJava-SQL package names only as quaifiers for class names or
subpackage names and to del ete packages from the database using the
remove java command.

Java-SQL column declarations

Description To declare a Java-SQL column when you create or alter atable, use the
following syntax:

Syntax java_sgl_column ::= column_name java_sql_class_name

Parameters java_sgl_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sgl_class name
The name of aJava-SQL classin the current database. Thisisthe“declared
class’ of the column.

Usage e Thedeclared class must implement either the Serializable or Externalizable
interface.

e A Java-SQL column is always associated with the current database.
e A Java-SQL column cannot be specified as:

e notnull

* unique

e A primary key

Java in Adaptive Server Enterprise 161

Java-SQL variable declarations

See also You use aJava-SQL column declaration only when you create or ater atable.
See the create table and alter table information in the Reference Manual.

Java-SQL variable declarations

Description Use Java-SQL variable declarations to declare variables and stored procedure
parameters for datatypes that are Java-SQL classes.

Syntax java_sqgl_variable ::= @variable_name java_sql_class_name
java_sql_parameter ::= @parameter_name java_sql_class_name
Parameters java_sql_variable

Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sgl_class_name
The name of a Java-SQL classin the current database.

Usage A java_sql_variable or java_sql_parameter is always associated with the
database containing the stored procedure.

See also Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references

Description To reference a Java-SQL column, use the following syntax:

Syntax column_reference ::=
[[[database_name.]Jowner.]table_name.]Jcolumn_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.

Usage » If thevalue of the column is null, then the column reference is also null.

» If thevaue of the column is aJava serialization, S, and the name of its
classisCs, then:

162 Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

+ |ftheclassCs doesnot exist in the current database or if CS isnot the
name of aclass in the database associated with the serialization, then
an exception is raised.

Note The database associated with the seriaization is normally the
database that contains the column. Serializations contained in work
tables and in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originaly.

¢ Thevaue of the column referenceis:
CSC.readObject(S)

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields areference to an object in the Java VM, which
is associated with the database associated with the serialization.

Java-SQL member references

Description

Syntax

Parameters

References afield or method of a class or class instance.

member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name
instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name
member_reference
An expression that describes afield or method of a class or object.

class member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL classinstance.

Java in Adaptive Server Enterprise 163

Java-SQL method calls

java_sql_class name

A fully qualified name of a Java-SQL class in the current database.
instance_expression

An expression whose datatype is a Java-SQL class.

member_name
The name of afield or method of the class or class instance.

Usage » If amember references afield of aclassinstance, the instance has anull
value, and the Java-SQL member reference is the target of afetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

* Thedoubleangle (>>) and dot (.) qualification take precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

X>>A1>>B1l + X>>Al1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

» Thefield or method designated by a member reference is associated with
the same database asthat of its Java-SQL classor instance of its Java-SQL
class.

If the Javatype of amember referenceisone of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
referenceis obtained by mapping the Javatypeto its equivalent SQL type.

If the Javatype of amember reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls

Description Toinvoke aJava-SQL method, which returns asingle value, use the following
syntax:
Syntax method_call ::= member_reference ([parameters])

| new java_sgl_class_name ([parameters])
parameters ::= parameter [(, parameter)...]

parameter ::= expression

164 Adaptive Server Enterprise 15.5

CHAPTER 9 Additional Topics

Parameters

Usage

method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
Thelist of parametersto be passed to the method. If there are no parameters,
include empty parentheses.

Method overloading

e Whenthere are methods with the same namein the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of method calls

e The datatype of amethod call is determined as follows:

e If amethod call specifies new, its datatype isthat of its Java-SQL
class.

e If amethod call specifies amember reference that denotes atype-
valued method, then the datatype of the method call isthat type.

e If amethod call specifies amember reference that denotes avoid
static method, then the datatype of the method call is SQL integer.

e If amethod call specifies amember reference that denotes avoid
instance method of aclass, then the datatype of the method call isthat
of the class.

e Toinclude a parameter in a member reference when the parameter isa
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance isincluded in both
databases. Otherwise, an exception is raised.

Runtime results
¢ Theruntimeresult of amethod call is as follows:

« If amethod call specifiesamember reference whose runtime valueis
null (that is, areferenceto amember of anull instance), then theresult
isnull.

« If amethod call specifies amember reference that denotes atype-
valued method, then the result is the value returned by the method.

Java in Adaptive Server Enterprise 165

Java-SQL method calls

166

If amethod call specifies amember reference that denotes avoid
static method, then the result is the null value.

If amethod call specifies amember reference that denotes avoid
instance method of an instance of aclass, thentheresult isareference
to that instance.

The method call and result of the method call are associated with the
same database.

Adaptive Server does not pass the null value as the value of a
parameter to a method whose Javatypeis scalar.

Adaptive Server Enterprise 15.5

Glossary

assignment
associated JAR

bytecode

class

class method

class file
class instance

datatype mapping

declared class

externalization

Java in Adaptive Server Enterprise

Thisglossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
atarget dataitem.

If aclass’/JAR isinstalled with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated JAR. Seeretained JAR.

The compiled form of Java source code that is executed by the Java VM.

A class isthe basic element of Java programs, containing a set of field
declarations and methods. A classisthe master copy that determines the
behavior and attributes of each instance of that class. classdefinitionisthe
definition of an active data type, that specifies alegal set of values and
defines a set of methods that handle the values. See class instance.

See static method.

A file of type “class’ (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

Value of the class datatypethat contains avaluefor each field of the class
and that accepts all methods of the class.

Conversions between Java and SQL datatypes.

The declared datatype of aJava-SQL dataitem. It iseither the datatype of
the runtime value or a supertype of it.

An externalization of a Javainstance is a byte stream that contains
sufficient information for the class to reconstruct the instance.
Externalization is defined by the externalizable interface. All Java-SQL
classes must be either externalizable or serializable. See serialization.

167

Glossary

installed classes

instance method

interface

Java archive (JAR)

Java Database
Connectivity (JDBC)

Java datatypes

Java Development
Kit (JDK)

Java file

Java method
sighature

Java object

Java-SQL column

Java-SQL class

Java-SQL datatype
mapping

Java-SQL variable

168

Java classes and methods that have been placed in the Adaptive Server system
by theinstalljava utility.

A invoked method that references a specific instance of aclass.

A named collection of method declarations. A classcanimplement aninterface
if the class defines all methods declared in the interface.

A platform-independent format for collecting classesin asinglefile.

A Java-SQL API that isastandard part of the Java Class Libraries that control
Java application development. JDBC provides capabilities similar to those of
ODBC.

Java classes, either user-defined or from the JavaSoft API, or Java primitive
datatypes, such as boolean, byte, short, and int.

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Afileof type“java’ (for example, myfilejava) that contains Java source code.
Seeclass file and Java archive (JAR).

The Java datatype of each parameter of a Java method.

Aninstance of aJavaclassthat iscontained in the storage of the JavaV M. Java
instancesthat are referenced in SQL are either values of Java columns or Java
objects.

A SQL column whose datatype is a Java-SQL class.

A public Java class that has been installed in the Adaptive Server system. It
consists of a set of variable definitions and methods.

A classinstance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclassisaclassthat isdeclared to extend (at most) to one other class. That
other classis called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Javaand SQL” on page 157.

A SQL variable whose datatype is a Java-SQL class.

Adaptive Server Enterprise 15.5

Glossary

Java Virtual Machine
(JVM)

mappable

method

narrowing
conversion

package

pluggable
component adaptor/
JVM

pluggable
component interface
(PCI)

pluggable
component interface
(PCI) Bridge
procedure

public

The Javainterpreter that processes Javain the server. It isinvoked by the SQL
implementation.

A Java datatype is mappableif itis either:

e Listedinthefirst column of Table 9-3 on page 158, or

e A public Java-SQL classthat isinstalled in the Adaptive Server system.
A SQL datatype is mappableif it is either:

e Listedinthefirst column of Table 9-4 on page 159, or

e A public Java-SQL classthat isbuilt-in or installed in the Adaptive Server
system.

A Javamethod is mappableif al of its parameter and result datatypes are
mappable.

A set of instructions, contained in aJavaclass, for performing atask. A method
can be declared static, in which caseit is called aclass method. Otherwisg, itis
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance.

A Javaoperation for converting areference to aclassinstanceto areferenceto
an instance of asubclass of that class. Thisoperationiswrittenin SQL with the
convert function. See also widening conversion.

A packageisaset of related classes. A classeither specifiesapackage or ispart
of an anonymous default package. A class can use Javaimport statements to
specify other packages whose classes can then be referenced.

A Sybase component that manages service requests between Adaptive Server
and the VM.

The Adaptive Server Java framework, which lets you, with the help of the
PCA/IVM, use acommercialy available VM with Adaptive Server.

An Adaptive Server component, and part of the PCI, that enables interaction
between the VM plug-in and Adaptive Server.

An SQL stored procedure, or a Java method with a void result type.
Public fields and methods, as defined in Java.

Java in Adaptive Server Enterprise 169

Glossary

retained JAR

serialization

SQL function
sighature

SQL-Java datatype
mapping

SQL procedure
sighature

static method

subclass

superclass

synonymous
classes

Unicode

variable

visible

well-formed
document

170

See associated JAR.

A seridization of a Javainstanceis a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or seriaizable. See externalization.

The SQL datatype of each parameter of a SQLJ function.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Javaand SQL” on page 157.

The SQL datatype of each parameter of a SQLJ procedure.

A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also called a class method.

A class below another classin ahierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclassisits direct superclass. See
superclass, narrowing conversion, and widening conversion.

A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. See subclass, narrowing conversion, and widening conversion.

Java-SQL classes that have the same fully qualified name but areinstalled in
different databases.

A 16-bit character set defined by 1SO 10646 that supports many languages.

In Java, avariableislocal to aclass, to instances of the class, or to a method.
A variablethat is declared static islocal to the class. Other variables declared
inthe class arelocal to instances of the class. Those variables are called fields
of theclass. A variable declared in amethod is local to the method.

A Java classthat has been installed in a SQL system isvisiblein SQL if itis
declared public; afield or method of a Javainstanceisvisiblein SQL if itis
both public and mappable. Visible classes, fields, and methods can be
referencedin SQL . Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

In XML, the necessary characteristics of awell-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

Adaptive Server Enterprise 15.5

Glossary

widening conversion A Javaoperation for converting areferenceto aclassinstanceto areferenceto
an instance of a superclass of that class. This operation iswrittenin SQL with
the convert function. See also narrowing conversion.

Java in Adaptive Server Enterprise 171

Glossary

172 Adaptive Server Enterprise 15.5

Index

Symbols
::= (BNF notation)

in SQL statements xvi
, (comma)

in SQL statements xvi
{} (curly braces)

in SQL statements xvi
() (parentheses)

in SQL statements xvi
[1 (square brackets)

in SQL statements xvi
>> (double angle)

to qualify Javafields and methods 164
@sign 97

A

Adaptive Server
plug-in 39, 96
additional information
about Java 11
ADT mappable datatypes 114
alter table
command 39
syntax 39
ANS| standards 7
array arguments 19
assignment properties
Java-SQL dataitems 44
assignments 142

B

Backus Naur Form (BNF) notation xv, xvi
BNF notation in SQL statements xv, xvi
brackets. See square brackets| |

Java in Adaptive Server Enterprise

C

caled on null input parameter 98
caseexpressions 49, 101
case sensitivity
inSQL xvii
changes for Adaptive Server 15.0.3 and later
character sets
Adaptive server plug-in 96
unicode 39, 48, 96
classnames 160
classsubtypes 48-50
classes. See Java classes
ClassLoader behavior 6

clients
bep 144
isg 144
column

declarations 161

referencing 162
column datatypes, requirements 37
column declarations 161
column references 162
comma (,)

in SQL statements xvi
command main method 117
commands

create procedure SQLJ 105

createtable 38, 39

drop function 102

SQLJcreatefunction 97

SQLJ create procedure 103
compile-time datatypes 50
configuration options

changing valuesin arunning server 21

PCA/JVM 20

PCI Bridge 20

restoring default values 23
constructor method 40
constructors 40, 55

4

173

Index

conventions

See also syntax

Transact-SQL syntax xv

used in the Reference Manua xv
conversions 143

narrowing 49

widening 49
convert function 48, 143
create procedure (SQLJ) command 103, 105
create table command, syntax 38, 39
creating

tables 38
curly braces ({}) in SQL statements xvi

D

datatype conversions 143
datatype mapping 47, 113, 157-159
datatypes
compile-time 50
conversions 143
Javaclasses 3
method calls 165
runtime 50
debugger
attaching 127
settingup 126
debugging
Java 125-128
debugging Java 125
deleting 40, 112
Javaobjects 40
delimited identifiers 160
deterministic parameter 98, 104
distinct keyword 58
double angle
qualifying Javafields and methods 164
to qualify Javafields and methods 41
downloading
installed classes 33
installed JARs 33
drop function command 102
dynamic result sets parameter 104

174

E

enabling Java 29
equality operations 58
examples

for SQLJroutines 93
exceptions 43
explicit Java method signatures 115
external name parameter 104
externalization 161
extractjava utility 33

F

file access
rulesfor creating files 136
rulesfor opening files 134
specifying directories 131
user identity and permissions 130
usingjava.io 129
using java.net 137

G

group by clause 58

H

headlessmode 5,9

identifiers 159
delimited 160
implicit Java method signatures 115
in parameter 106
inout parameter 106
inserting
Javaobjects 40
installing
Javaclasses 29, 32
uncompressed JARS 30

Adaptive Server Enterprise 15.5

installjava utility 28, 29
-f option 30
-j option 31
-new option 31
syntax 30
update option 31
instance methods 56
inter-class arguments 66
invoking
Javamethod, using SQLJ 95
Javamethods 41, 94
Java methods, invoking directly 94
Javamethods, using SQLJ 94
SQL fromJava 152, 157

J

JAR files
creating 30
retaining 31

JARS

uncompressed, installing 30
JavaAPl 9

supported packages 148-151

Sybase support for 10
Javaarrays 106
Java class datatypes 100
Javaclassdistribution 5

Java classes
asdatatypes 3, 37
installing 29-32

referencing other classes 32
retained 34
runtime 28
SQLJexamples 94
subtypes 48
supported 10
updating 31
user-defined 10, 28
Java datatypes
ADT mappable 114
object mappable 114
output mappable 114
result-set mappable 114
simply mappable 114

Java in Adaptive Server Enterprise

Index

Java Development Kit 8
Java environment

componentsof 13

JVM pluggable component 14

pluggable component adapter (PCA/IVM) 15

pluggable component interface (PCI) 16

pluggable component interface (PCI) Bridge 16
Javain the database

advantagesof 1

capabilities 2

key features 7

preparing for 27-34

questions and answers 7
Javainstances, representing 44
Javamethod signature 99, 104
Java methods

cal by reference 43,59

command main 117

exceptions 43

instance 56

invoking 41, 94

static 57

type 54,55

void 55
Javaobjects 40
Java operations, invoked fromSQL 9
Java primitive datatypes 100
Javaruntime environment 27
JavaVirtual Machine,

support for 8,29
Java, SQL, using together 9
javalang.Thread class, cautionusing 146
java.net, for network access 129
javasgl 152
java.sgl methods, unsupported 150
Java-SQL

classnames 160

column declarations 161

column references 162

columns 45,59

creating tables 38

function results 45

identifiers 159

member references 163

method calls 164

names 36

175

Index

package names 160
parameters 45, 60
dtatic variables 62
transferring objects 144
transferring objectsto clients 143
unsupported methods 150
variable declarations 162
variables 45, 60
Java-SQL classes
in multiple databases 62
installing 29-32
Java-SQL columns
storage options 38
jdb debugger 127
JOBC 73-89
accessingdata 75
client-side 74
concepts 74
connection defaults 75
connections 78
interfface 10
JDBCExamplesclass 76
obtaining a connection 78
permissions 75
server-side 74
terminology 74
version support 28
JDBC drivers 28, 152
client-sde 74
server-side 74
JDBC standard datatype mapping 113
JDBCExamplesclass 84-89
methods 76-82
overview 76

L

language java parameter 104

M

mapping datatypes 157-159

mapping Java and SQL datatypes 113
member references 163

176

method calls 164
datatype of 165
method overloading 116, 165
methods
exceptions 43
runtimeresults 165
See also XQL methods
SQLJExamples.bestTwoEmps() 94
SQLJExamples.correctStates() 94, 105
SQLJExamplesjob() 94
SQLJExamples.region() 94
modifies sql dataparameter 98, 104
multiple databases 64

N

namesinJavaSQL 36

case 37

length 36
narrowing conversions 49
native methodsin PCA/JVM 147
network access, java.net 129
null values

case statements 101

in SQLJfunctions 100
nullsinJavaSQL 50-54

argumentsto methods 52

using convert functions 53
number arguments 18

O

object mappable datatypes 114
obtaining connections 78
options
external name 98
languagejava 98
parameter stylejava 98
order by clauses 58
ordering operations 58
out parameter 106
output mappable datatypes 114

Adaptive Server Enterprise 15.5

P

package names 160
parameter style javaparameter 104
parameters
deterministic 104
external name 104
inout 106
input 106
languagejava 104
modifiessgl data 104
not deterministic 104
output 106
parameter stylejava 104
parentheses ()
in SQL statements xvi
PCA/IVM 15
PCI Bridge 16
PCI memory pool 16
changing thesizeof 17
inamulti-engine environment 17
performance, improving 144
permissions
Java 36
JBC 75
SQLJroutines 93
persistent dataitems 45
procedure
creating SQLJroutine 92

Q

questions and answers 7

R

rearranging installed classes 34
referencing

fields 41
remove javacommand 34, 161
removing classes 34
removing JARs 34
restrictions on Javain the database 11
result sets 116
ResultSet

Java in Adaptive Server Enterprise

Index

mappable datatypes 114
returns null on null input parameter, Javaclause 98
runtime
datatypes 50
Runtime environment 27
Runtime Java classes
locationof 28
runtime Javaclasses 28

S

sampleclasses 67-70
address 67
address2Line 69
JDBCExamples 76-89
misc 70
search order
function types 100
security
SQLJroutines 93
selecting Javaobjects 40
seridlization 161, 163
set commands
allowed in Javamethods 155
updating 57
simply mappable datatypes 114
sp_depends system procedure 113
sp_help system procedure 113
sp_helpjava
syntax 33
utilitysp_helpjava 33
sp_helpjava system procedure 113
sp_helprotect system procedure 113
SQL
expressions, include Java objects 9
function signature 97
procedure signature 103
wrappers 91, 95
SQL loops, avoiding 147
SQLJ create procedure command 103
SQLJfunctions 97-102
dropping 102
viewing information about 113
SQLJimplementation
features not supported 119

177

Index

features partially supported 119
SQLJand Sybase differences 118
Sybase defined 119
SQLJstandards 92
SQLJ stored procedures 102-104, 112
capabilitiesof 102
deleting 112
modifying SQL data 105
using input and output parameters 106
viewing information about 113
SQLJExamplesclass 120
SQL JExampl es.best TwoEmps() method 94
SQL JExamples.correctStates() method 94, 105
SQLJExamples.job() method 94
SQLJExamples.region() method 94, 99
square brackets| |
in SQL statements xvi
standardsfor SQL 7
standards specifications 7
static methods 57, 95, 102
dtatic variables 62
storage options
inrow 38
string arguments 18
String data
zerolength 54
stringdata 54
stylejavakeyword 104
subtypes 48
supertypes 48
switch arguments 18
Sybase Central
creating a SQLJ function or procedure from 96
managing SQLJ procedures and functions from 96
viewing SQLJ routine propertiesfrom 97
sybpcidb database 18
changing values 19
configuration valuesin 18
restoring default values 23
systemtablesin 18
symbols
in SQL statements xv, xvi
syntax conventions, Transact-SQL ~ xv
system procedures
helpjava 33
sp_depends 113

178

sp_help 113
sp_helpjava 113
sp_helprotect 113

T

table definition 94
temporary databases 67
transact-SQL

commands, in Javamethods 153
transient dataitems 45

U

unicode 54
union operator 58
updating Java objects 40
using
Javaand SQL together 9
Javaclasses 35, 67

Vv

variable declarations 162
variables 162

datatypesof 37

static 62

valuesassignedto 40
viewing information

about installed classes 33

about installed JARs 33
void methods 105

W

whereclause 49, 56, 59
work databases 67

Z

zero-length strings 54

Adaptive Server Enterprise 15.5

	Java in Adaptive Server Enterprise
	About This Book
	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Storing Java classes as datatypes
	Storing and querying XML in the database

	Java components
	Functional changes in Adaptive Server 15.0.3 and later
	Changes in class distribution
	The PCA/JVM runs in headless mode
	Changes in memory management
	Changes in ClassLoader behavior

	Standards
	Java in the database: questions and answers
	What are the key features?
	How are Java instructions stored in the database?
	How is Java executed in the database?
	Which Java Virtual Machines (JVMs) are supported?
	What is headless mode?
	What about JDBC?
	How can Java and SQL be used together?
	What is the Java API?
	Which Java classes are supported in the Java API?
	Can user-defined classes be installed in the database?
	Can data be accessed using Java?
	Can the same classes be used on the client and the server?
	How to use Java classes in SQL
	Where can information about Java in the database be found?
	What you cannot do with Java in the database

	CHAPTER 2 Managing the Java Environment
	Components of the Java environment
	The JVM pluggable component
	Pluggable component adapter JVM (PCA/JVM)
	Pluggable component interface (PCI) and the PCI Bridge
	The PCI memory pool
	The sybpcidb database
	How configuration values are organized in sybpcidb

	When to change configuration values
	Server-level options
	Configuration options for the PCI Bridge
	Configuration options for the PCA/JVM

	Changing configuration values in a running server
	Changing configuration values by restarting Adaptive Server
	Changing configuration values before the JVM is initialized
	Changing configuration values after the JVM is initialized

	Restoring default configuration values to sybpcidb
	Using monitor tables to display information about the PCI Bridge

	CHAPTER 3 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The JVM

	Enabling Java
	Installing Java classes in the database
	Using installjava
	Installing uncompressed JARs
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 4 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	Treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters
	Deterministic Java functions in expressions

	Static variables in Java-SQL classes
	Changes for static variables for Adaptive Server 15.0.3 and later
	Changes for static variables for the Cluster Edition

	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 5 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the updater() method
	Executing a select statement: the selecter() method
	Calling a SQL stored procedure: the caller() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The serverMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updater() method
	The selecter() method
	The caller() method

	CHAPTER 6 SQLJ Functions and Stored Procedures
	Overview
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJ Examples

	Invoking Java methods in Adaptive Server
	Using Sybase Central to manage SQLJ functions and procedures
	SQLJ user-defined functions
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Using input and output parameters
	Returning result sets
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Using the command main method

	SQLJ and Sybase implementation: a comparison
	SQLJExamples class

	CHAPTER 7 Debugging Java in the Database
	Supported Java debuggers
	Setting up Java debugging
	Configuring the server to support debugging
	Attaching the remote debugger to the JVM debug agent

	CHAPTER 8 File and Network Access Using Java
	File access using java.io
	User identity and permissions
	Specifying directories for file I/O: UNIX platforms
	Mask syntax
	Examples

	Specifying directories for file I/O: Windows platforms
	Mask syntax
	Examples

	File I/O changes
	Rules for opening existing files
	UNIX platforms
	Windows platforms

	Rules for creating files with a file open operation
	Final file check

	File access using java.net
	Examples
	Using socket classes
	Using the URL classes

	CHAPTER 9 Additional Topics
	JDK requirement for Java classes in the server
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Suggestions for improving performance
	Minimize the number of calls from SQL to the JVM
	Use the java.lang.Thread class with care
	Determine if you are running within the PCA/JVM
	Avoid SQL loops in a multi-engine environment

	Controlling access to native methods in the PCA/JVM
	Unsupported Java API packages, classes, and methods
	Restricted Java packages, classes, and methods
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Datatype mapping between Java and SQL
	Java-SQL identifiers
	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls

	Glossary
	Index

