SYBASE

Company

International Developers Guide

Open Client™ and Open Server™
15.7

DOCUMENT ID: DC30525-01-1570-01
LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http:/www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

CHAPTER 2

CHAPTER 3

.. vii
Understanding Internationalization and Localization.................. 1
Internationalization and localizationccccciiiiiiii e, 1
Advantages of internationalized applicationsc.ccccoecvvvveeeeeennn. 2
INternational SYSIEMScooiiviiiiiiee e 2
Open Client and Open Server support for international systems..... 3
How Localization WOrKSc.ciiiiiiiiiiiieee e 5
Deciding what localization values to US€...........cccvvveeeeeeiiiiiiiienneeenn, 5
Using initial localization Values............cccoviiiiiiiieiiiniiiiice e 6
Setting up an application to use initial localization values......... 7
Using custom localization Valuesccvvveeeieeiiiiiiieniee e, 8
Localization mechanism details.............ccceeiiiieiiiiicie e 8
The 10CaleS fileooiiiiiie e 8
Environment variables ... 9
The CS_LOCALE StrUCTUIEcccoeeiiiviiiee et 11
The €cs_locale roUtingeeveieeiiiiiiiiie e 11
Writing Internationalized
Open Client and Open Server Applications.........cccccvveeeeen.. 15
Writing internationalized Client-Library applications.............cc........ 16
Client-Library applications using initial values......................... 16
Client-Library applications using custom values 16
Customizing at the context level..........cccvvveevieiiiicciie e, 17
Customizing at the connection level..........cccccccoveiivieeeeeiiiinns 18
Customizing at the data element levelccoocivieeeieiniiinns 20
Client-Library localization value precedence.............ccccccovvunne 22
Client-Library localization propertiescccccccvvvviiieeieenninnnnns 22
Writing internationalized Open Server applications............ccccceee... 22
Localizing the applicationcccoocvvveiiiieeiiiiiiiiiiee e 23
Supporting localized Clients.........ccccceviiiiiiiiiiieee e 23

Responding to requests to change language and character set 28

International Developers Guide iii

Contents

CHAPTER 4

CHAPTER 5

CHAPTER 6

Server-Library localization properties........ccccovcvvveeveeeniiiiineenn. 29
Writing internationalized DB-Library applications............cccveeeeeenn. 30
Internationalizing with Embedded SQLccccccovviiiiiienieiiniiiiiieenn, 30

Localizing the precompiler..........cccvvvviieeiiiiiiiiiiee e 31

Localizing an Embedded SQL application.............cccuvvveeeneenn. 32
Localizing standalone UtilitieS..........coovviiiiiiiiiiee e 32
1T PSRRI 33

Make sure required files are installed............cccccccevviivieeneenn. 33

Using CS_NULLTERM with Open Client and Open Server routines

34
Coded Character Set Conversion SUPPOIt.....cccccoeviiiiiiiiiiiieenen. 37
DEfiNItIONS ..o 37
Supported CharacCter SEtScccvviiiieeiiiiie e 38
Understanding coded character set conversion.........ccccccovvvvvvveenn. 39

Establishing the language and character set for a connection 39

Disabling character set CONVErsioncccvvveeveeeiiniiiieeeneennn 40

Using Open Server as a conversion gatewayoocvvveeen. 41

Files used during character set conversion............occuvveeeeeenn. 41
Using custom coded character set conversionccccccovvveevvneenn. 42

Why install custom conversion routines?cccccveeeeeeeiiinnns 42

Writing a custom CoNversion routingcccceevveeivieeeeeeeesennns 42

Installing a custom conversion routingccccceeevvvcvvveeeeeenn, 44
Character set conversion in Adaptive Server Enterprise releases prior

10 4.0 44

MainNframe SUPPOITuvviriee ettt e e e e e 45
Editing the Locales File.......cii e a7
QUICK StAoieiiiiiiieeeeeeeeeeeeee e, 47
When to edit the locales file ..., 48
Locales file sections and entriesccoceeviveeiniiec e 48

Locale definition entries..........ccoceeriieeeniieieee e 48

Locales file example.......ccccveiiiiiiiii 49
Editing the 10cales filecccvviiiiiiiiii e, 50

Adding or changing entries.........cccccceeeiiiiiiiiiiee e 50

Deleting ENMIIES ..ovvieee i 51

Creating or Changing Collating Sequences............cccoeeecvvvvvvnnen. 53
QUICK STAM ...oeieiiiiiieeeeeeeeeeeeeee e 53
About collating SEQUENCESccceeviiiviiiiiee e 54

DEfiNItIONS.ceiiieeie e 54

TYPES OF SOMS..viiiiiiiciiiiie e 55

Open Client and Open Server

Contents

Determining case SeNSItIVILYcocciviiieeee e 56

When to create a custom collating sequence file...........ccccvveeeeenn. 57

About collating sequence fileS..........ccccvvviiei i, 58

Collating sequence file sections and entriesccuvveee.. 58

Writing characters in a collating sequence filecccceeee... 59

The preference keyword and the order by clause................... 60

Creating a custom collating sequence file............cccvvveeiiiiiiiiiinnenn. 61

Collating sequence file exampleocccvvviiiieeniiiiiiiiiie e 65

APPENDIX A Directories and Files Related to Internationalization 73
OVEIVIBW ...ttt ettt 73

The 10Cales dIr€CLONYc.uvviiiiieiiiiiiiie e 74

The 10Cales file ..o 74

Localized message fileS ... 75

The charsets dir€CIOrNY.........uuviieei i 75

Collating sequence filesccccveeeiiiiiiiiiiie e, 76

Unicode conversion files ... 76

The config and ini dir€CLOMESccvvvivieeee e 76

The global object identifiers filecccvvvevieiiiicii s 77

APPENDIX B External Localization File Syntaxccccccoeeiiiiiiiiiiiiiiiiieieeeeeeee, 79
Localization file syntax rulescccccoeeeciiiiiieee e, 79

Localization file SECHONSc.eveviiiiieiiee e 80

Example localization file............eeeeeiiiiiiiiii e, 81

(€10 177 LY OSSR 85
[[a Lo = PR RPTUUPROUPR 87

International Developers Guide %

Vi

Open Client and Open Server

About This Book

Audience

How to use this book

Related documents

International Developers Guide

This book iswritten for Open Client™ and Open Server™ application
developers. Readers are expected to have a basic knowledge of Client-
Library™, DB-Library™, Embedded SQL ™, or Server-Library.

This book contains these chapters:

Chapter 1, “Understanding Internationalization and L ocalization,”
defines internationalization and localization and discusses the
advantages of writing international applications.

Chapter 2, “How L ocalization Works,” explains how the Open Client
and Open Server localization mechanism works.

Chapter 3, “Writing Internationalized Open Client and Open Server
Applications,” explains how to write international Open Client and
Open Server applications.

Chapter 4, “ Coded Character Set Conversion Support,” explains how
character set conversion worksin Open Client and Open Server
products.

Chapter 5, “Editing the Locales File,” describeswhat isin thelocales
file and explains how to change it.

Chapter 6, “ Creating or Changing Collating Sequences,” explains
how to create and change collating sequence files.

Appendix A, “Directories and Files Rel ated to I nternationalization,”
describes the Open Client and Open Server directories and files that
are related to internationalization.

Appendix B, “External Localization File Syntax,” describesexternal
localization file syntax.

You can see these books for more information:

The Open Server and SDK New Features for Windows, Linux, and
UNIX, which describes new features available for Open Server and
the Software Developer’s Kit. This document is revised to include
new features as they become available.

Vii

Viii

The Open Server Release Bulletin for your platform contains important
last-minute information about Open Server.

The Software Devel oper’s Kit Release Bulletin for your platform contains
important |ast-minute information about Open Client™ and SDK.

The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

The Open Server DB-Library/C Reference Manual contains reference
information for the C version of Open Client DB-Library™.

The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

e Compiling and linking an application

¢ The sample programs that are included with Open Client and Open
Server

¢ Routinesthat have platform-specific behaviors

Thelnstallation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option containsinformation about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authenticationin
the Kerberos security mechanism.

Open Client and Open Server

About This Book

Other sources of
information

International Developers Guide

The Open Client Embedded SQL ™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

TheOpen Client Embedded SQL ™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

The jConnect for JIDBC Programmer s Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access datain Adaptive Server using any
language supported by .NET, such as C#, Visua Basic .NET, C++ with
managed extension, and J4.

The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNI X, providesinformation on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access datafrom
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide providesinformation for Perl developersto connect to an Adaptive
Server database and query or change information using a Perl script.

The Adaptive Server Enterprise extension module for PHP Programmers
Guide providesinformation for PHP devel opersto execute queries against
an Adaptive Server database.

The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Use the Sybase Getting Started CD and the Sybase Product Documentation
Web site to learn more about your product:

¢ The Getting Started CD contains release bulletins and installation guides
in PDF format. It isincluded with your software. To read or print
documents on the Getting Started CD, you need Adobe Acrobat Reader,
which you can download at no charge from the Adobe Web site using a
link provided on the CD.

e The Sybase Product Documentation Web siteis accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Sybﬁse ceLtifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[IFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 InthePartner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click aPartner Certification Report title to display the report.

[IFinding the latest information on component certifications
1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

X Open Client and Open Server

About This Book

Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFY/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance rel eases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions
Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for values that you fill in, are
initalics.
{1} Curly bracesindicate that you choose at |east one of the

enclosed options. Do not include the bracesin the command.

[Brackets mean choosing one or more of theenclosed itemsis
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| Thevertical bar meansyou can select only one of the options
shown.

/ The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

Accessibility This document is availablein an HTML version that is specialized for
features accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

International Developers Guide Xi

If you need help

Xii

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 A ccessibility requirements. Documentsthat
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

Open Client and Open Server

CHAPTER 1

Understanding
Internationalization and
Localization

This chapter defines internationalization and localization and discusses
the advantages of writing internationalized applications.

This chapter covers the following topics:
Topic Page
Internationalization and localization 1
Advantages of internationalized applications
International systems

WIN|N

Open Client and Open Server support for international systems

Internationalization and localization

International Developers Guide

Internationalization is the process of enabling an application to support
multiple languages and cultural conventions.

An internationalized application uses external files to provide language-
specific information at execution time. Because it contains no language-
specific code, an internationalized application can be deployed in any
native language environment without code changes.

Localization is the process of configuring an application to execute using
a specific language and related cultural conventions (such as datetime
representation).

A localized application adopts the look and feel of the native language
environment in which it is deployed. It generates messages in the local
language and character set and useslocal conventions for dates and times.

Open Client and Open Server products provide flexible, powerful
localization mechanisms that enable application programmersto design
and write internationalized applications.

Advantages of internationalized applications

Advantages of internationalized applications

The task of designing an application to work outside its country of origin can
seem daunting. Often, programmers think that internationalizing means hard-
coding dependencies based on cultural and linguistic conventions.

A better approach is to write an internationalized application, that is, one that
examinesthelocal computing environment to determine what language to use
and loads files containing language-specific information at runtime.

When you use an internationalized application, a single application can be
deployed in all countries. This has several advantages:

¢ You write and maintain one application, not half adozen (or more).

e The application can be deployed, without change, in new countries as
needed. You need only supply the correct localization files.

¢ All sites can expect standard features and behavior.

International systems

An international system may include internationalized client applications,
gateways, and servers running on different platformsin different native
language environments.

For example, aninternational system might include the following components:

e Order processing applicationsin New York City, Mexico City, and Paris
(Client-Library applications)

¢ Aninventory control server in Germany (Adaptive Server® Enterprise)
e Anorder fulfillment server in France (Adaptive Server Enterprise)

e A central accounting application in Japan (an Open Server application
working with an Adaptive Server Enterprise)

In this system, the order processing applications:

¢ Query theinventory control server to determine if requested itemsarein
stock

¢ Place orders with the order fulfillment server

¢ Send financial information to the accounting application

2 Open Client and Open Server

CHAPTER 1 Understanding Internationalization and Localization

The inventory control server and the order fulfillment server respond to
queries, and the accounting application collects financial data and generates
reports.

All applications and servers use the local language and character set to accept
input and generate messages.

In this system, the order processing applications and the Open Server gateway
arelocalized by means of the LC_ALL environment variable, which specifies
alocale name. At runtime, Open Client and Open Server applications match
the specified locale name to an entry in the Sybase locales file to determine
what language, character set, and collating sequence files to load.

The Adaptive Server Enterprisesin this system are localized by means of
language modules that are installed al ong with the server.

Open Client and Open Server support for international

systems

Open Client and Open Server products provide functionality to fully support
the development of international systems. Using Client-Library, Server-
Library, and CS-Library, an application can be localized on any supported
platform to use:

« A gspecific language and character set for error messages
» A specific character set when converting stringsfrom another character set
« A gspecific collating sequence to use when sorting or comparing strings

e Specific datetime formats and values

Note DB-Library supports one language and character set at atime for error
messages. For details, see “Writing internationalized DB-Library
applications” on page 30.

Both Adaptive Server Enterprise and Open Server applications support
localized Open Client applications. When a client connectsto a server, the
server determines whether or not it can support the required character set
conversion (if any).

International Developers Guide 3

Open Client and Open Server support for international systems

Because Open Client and Open Server support the Unicode Standard, an Open
Server application can support any client, regardless of what character set it
uses.

Adaptive Server Enterprise 12.5 and later support Unicode. You can use an
Open Server application to perform character set conversion for earlier
versions of Adaptive Server Enterprise. See “Using Open Server as a
conversion gateway” on page 41.

4 Open Client and Open Server

CHAPTER 2

How Localization Works

This chapter describes how the Open Client and Open Server localization
mechanism works.

This chapter covers the following topics:
Topic Page
Deciding what localization values to use 5
Using initial localization values
Using custom localization values
L ocalization mechanism details

| ol Oo

Note Theinformation in this chapter does not apply to DB-Library.

Deciding what localization values to use

International Developers Guide

Before writing an internationalized Open Client and Open Server
application, you must decide how the applicationwill localize, that is, how
it will determine which language, character set, and cultural conventions
to use in a given environment.

Open Client and Open Server applications can use initial localization
values, custom localization values, or both:

* Initial localization values are determined at runtime, when the
application allocates a context structure (cs_ctx_alloc):

e |IftheLC_ALL environment variableis set, the application will
use its value to localize the new context structure.

e Ifthe LC_ALL environment variableis not set but the LANG
environment variableis set, the application will use its value to
localize the new context structure.

Using initial localization values

e If neither environment variableis set, the application uses the
platform “default” entry in the localesfile to localize the new context
structure. The locaesfile, locales.dat is available in:

e $SYBASE/locales directory on UNIX platforms
¢ %SYBASE%\locales directory on Windows

An application sets up custom localization values by calling cs_locale to
fillaCS_LOCALE structure and then using the CS_LOCALE structureto
change localization values for a context, connection, thread, dataelement,
or routine.

Using initial localization values

A typical internationalized Open Client and Open Server application uses the
initial localization values determined by LC_ALL, LANG, or the “default”
entry in the locales.dat file to localize.

Initial localization values are determined at runtime, when the Open Client and
Open Server application callsthe CS-Library routine cs_ctx_alloc to allocate a
CS_CONTEXT structure. When an application makes this call, CS-Library
loads initial localization information into the new context structure.

The localization information includes:

Language
Character set
Collating sequence

Date and time formats

The loading process works as follows:

1
2

The application calls cs_ctx_alloc.

CS-Library searches the environment for the LC_ALL or LANG
environment variablesto determine alocale name. Table 2-1 describesthis
search:

Open Client and Open Server

CHAPTER 2 How Localization Works

Table 2-1: How CS-Library determines a locale name

IsLC_ALL Is LANG

defined? defined? CS-Library action

Yes N/A UseLC_ALL’svaue asthe locale name.

No Yes Use LANG's vaue as the locale name.

No No Use alocale name of “default,” which means
CS-Library loads one of the following:
e The shipped defaults for the platform
¢ The user-defined set assigned to the locale

name “default”
3 CS-Library looks up the locale namein the locales.dat file to determine

the associated language and character set (a collating sequence may or
may not be specified). If the locale name does not exist in the locales.dat
file, cs_ctx_alloc returns an error.

CS-Library loads the new context structure with the appropriate
localization information.

Setting up an application to use initial localization values

If your application will useinitia localization values, you should not include
any specia codeto internationalize your application, but you do need to make
sure that administrators and users know how to set environment variables for
your application.

When you distribute the application, make surethat systemsadministratorsand
users understand the following;:

International Developers Guide

If LC_ALL exists, its value must correspond to the correct entry in the
locales.dat file.

If LANG exists, its value must correspond to the correct entry in the
locales.dat file.

If neither environment variable exists, the “default” entry in the
locales.dat file must be correct (that is, it must list the language, character
set, and collating sequence that the application should use).

Using custom localization values

Using custom localization values

Client-Library and Open Server applications can use custom localization
values at the context, connection, thread, data element, and routine levels.

A Client-Library or Open Server application sets up custom |ocali zation values

by:

1 Calling cs_locale toload a CS_LOCALE structure with specific
localization values. See“The cs_locale routine” on page 11.

2 Usingtheloaded CS LOCALE structure to customize a context,
connection, thread, or dataelement. See“The CS_LOCALE structure” on

page 11.

You can use command line optionsto run the Embedded SQL precompiler with
custom localization values.

Embedded SQL applications cannot use custom values, that is, theinitial
localization valuesdetermined at runtimeby LC_ALL, LANG, or the“ default”
entry in the locales.dat file.

Localization mechanism details

The locales file

This section provides more detail about |ocalization mechanisms. It contains
information about the locales.dat file, localization environment variables, the
CS _LOCALE structure, and the cs_locale routine.

Thelocalesfile (locales.dat) provides platform-specific locale information in
a Sybase proprietary format. This file associates |ocale names with languages,
character sets, and collating sequences.

Thelocales.dat file directs Open Client and Open Server applicationsto
localization information, but it does not contain actual localized messages or
character set information. Open Client and Open Server applications use the
locales.dat file to determine what localization information to load.

See Chapter 5, “Editing the Locales File.”

Open Client and Open Server

CHAPTER 2 How Localization Works

Environment variables

On most platforms, Client-Library and Server-Library applications use
the following localization environment variables:

LC ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGE
LC_TIME
LANG

Note Some systems (typically UNIX systems) automatically set localization
environment variables to a specific value when a user logsin. If your system
doesthis, either make sure that the value matches alocale name in the
locales.dat file or reset the variables after logging in.

Table 2-2 describes how Open Client and Open Server applications use these
environment variables:

Table 2-2: Environment variables related to localization

Environment Setto alocale name that
variable indicates Used by When
LC ALL Language, character set, and A Client-Library or An application calls cs_ctx_alloc or
collating sequenceto usefor Open Server cs_ctx_global.
messages, datatype application. An application calls cs_locale with
conversions, and sorting. typeasCS LC_ALL and buffer as
NULL.
TheEmbedded SQL At application precompile time, to
precompiler. determine the default language and
character set to use for precompiler
messages.
A precompiled At application runtime, when a
Embedded SQL precompiled application first calls
application. cs_ctx_global.

International Developers Guide

The precompiler generates a
cs_ctx_global call for each Embedded
SQL statement.

Localization mechanism details

Environment

Set to alocale namethat

variable indicates Used by When
LC _COLLATE Collating sequence (sort A Client-Library or Anapplication calls cs_locale with
order) to use when sorting Open Server typeasCS_LC_COLLATE and buffer
and comparing character application. asNULL.
data.
LC CTYPE Character set to use for A Client-Library or ~ Anapplication calls cs_locale with
datatype conversions. Open Server typeasCS_LC_CTY PE and buffer as
application. NULL.
LC_MESSAGE Language and character set A Client-Library or ~ An application calls cs_locale with
to use for messages. Open Server typeasCS LC_MESSAGE and
application. buffer as NULL.

LC TIME Date and time data A Client-Library or ~ Anapplication calls cs_locale with
representation to use for a Open Server typeas CS_LC_TIME and buffer as
datetime string, such asdate application. NULL.
and time formats, namesin
the native language, and
month and day
abbreviations.

LANG Language, character set, and A Client-Library or If an application calls cs_ctx_alloc or

collating sequence to use for
messages, datatype
conversions, and sorting.
Open Client and Open Server
products search for LANG if
they cannot find LC_ALL.

Open Server cs_ctx_global, Client-Library

application. examines LANG if LC_ALL isnot
defined.
If an application calscs_locale,
Client-Library examines LANG if
cs_locale’sbuffer isNULL andtheLC
variable corresponding to typeis not
defined.

TheEmbedded SQL At application precompile time, if

precompiler. LC_ALL isnot defined.

A precompiled At application runtime, if LC_ALL is

Embedded SQL not defined.

application.

Platforms not using environment variables

This section providesinformation about platformsthat do not use environment

variables.

Desktop terminology

10

Some platforms use the term “environment values’ instead of “environment
variables.” The terms mean the same thing.

Open Client and Open Server

CHAPTER 2 How Localization Works

The CS_LOCALE structure

The CS_LOCALE structure stores a compl ete set of localization information,
including language, character set, collating sequence, and datetime formats.

Open Client and Open Server applications need to useaCS_LOCALE
structure to define custom localization valuesfor acontext, connection, thread,
data element, or routine.

[ITo use a CS_LOCALE structure

1
2

Call cs_loc_alloc to allocate aCS_LOCALE structure.

Call cs_locale to load the CS_LOCALE structure with the desired
localization values. See“ The cs_locale routine” on page 11.

If necessary, call cs_dt_info(CS_SET,CS_DT_CONVFMT) to change the
dateconversionformat inthe CS_L OCALE structure. Seethe Open Client
and Open Server Common Libraries Reference Manual .

Usethe loaded CS_LOCALE structure to customize a context,
connection, thread, data element, or routine:

* To customize a context, call cs_config.
e To customize a connection, call ct_con_props.
e To customize athread, call srv_thread_props.

» To define custom values for a data element, supply a pointer to the
CS LOCALE structurein aCS _DATAFMT structure.

To define custom values for aroutine, pass a pointer to the CS_L OCALE
structure to the routine.

The cs_locale routine
Open Client and Open Server applications use the cs_locale routine to load a

CS

LOCALE structure with custom localization information.

cs_locale is declared as follows:

International Developers Guide

CS_RETCODE cs_locale(context, action, locale, type,
buffer, buflen, outlen)

CS_CONTEXT *context;
CS_INT action;
CS_LOCALE *locale;
CS_INT type;

11

Localization mechanism details

CS_CHAR *buffer;
CS_INT buflen;
CS_INT *outlen;

When called, cs_locale performs as follows:

1

Determines what locale name to use.

If the cs_locale buffer parameter is supplied, this parameter isthe locale
name.

If the cs_locale buffer parameter isNULL, cs_locale checks for an
environment variable corresponding to its type parameter and uses the
value of this environment variable as the |locale name. Make sure that the
appropriate environment variables have values that correspond to entries
inthe locales.dat file.

If an environment variable corresponding to type is not set, cs_locale uses
alocale name of “default.”

L ooks up thelocale nameinthelocal es.dat file to determine the associated
language, character set, and collating sequence. If cs_locale cannot find a
matching entry, it returns CS_FAIL.

L oads the information specified by the cs_locale type parameter into the
CS_LOCALE structure. For instance, if typeisCS LC CTYPE, cs_locale
loads character set information.

See the Open Client and Open Server Common Libraries Reference Manual.

Example: Calling cs_locale to Load a CS_LOCALE structure

Suppose an application is running on a machine with alocales.dat file
containing the following entries:

locale

12

locale name,

locale = korean, korean, eucksc, korsrt
locale = C.korean, us_english, eucksc, ussrt
locale = default, us_english, iso 1, ussrt

where the format of an entry is:

language name, charset_name [,sort_order]

Suppose further that the environment variable LC_MESSAGE has a value of
“korean,” and that the environment variable LC_TIME is not defined. In this
environment, the application would need to make two callsto cs_locale toload
aCS_LOCALE structure with the following custom values:

“korean” asthe language and “eucksc” asthe character set for Client-
Library and server messages

Open Client and Open Server

CHAPTER 2 How Localization Works

e “us_english” asthe language and “eucksc” as the character set to use for
conversion of datetime values
Thetwo cs_locale calls are:
/ *
** You should not specify a locale name, because
** cs locale will use the value of the LC_MESSAGE
** environment variable as the locale name.
*/
cs_locale(ctx, CS_SET, mylocale, CS_LC MESSAGE,
NULL, CS UNUSED, NULL) ;

/* Do need to specify a locale name, because

** there’s no LC TIME environment variable set.

*/

cs_locale(ctx, CS_SET, mylocale, CS_LC TIME,
"C.korean", CS NULLTERM, NULL) ;

After loading the CS_LOCALE structure, the application can:

e Cadl cs_config to copy the custom localization val ues into a context
structure.

e Cdl ct_con_props to copy the custom localization valuesinto aconnection
structure.

e Cadl srv_thread_props to copy the custom localization values into athread
structure.

e Supply theCS_LOCALE structure as a parameter to aroutine that accepts
custom localization values (cs_strcmp, cs_time).

e Includethe CS LOCALE structurein aCS_DATAFMT structure
describing a source or destination program variable (cs_convert, ct_bind).

International Developers Guide 13

Localization mechanism details

14 Open Client and Open Server

CHAPTER 3 Writing Internationalized

Open Client and Open Server
Applications

This chapter explains how to write internationalized Open Client and
Open Server applications.

This chapter covers the following topics:

Topic Page
Writing internationalized Client-Library applications 16
Writing internationalized Open Server applications 22
Writing internationalized DB-Library applications 30
Internationalizing with Embedded SQL 30
Localizing standalone utilities 32

This chapter is not a comprehensive guide to writing Open Client and

Open Server applications. Other helpful resources include:

International Developers Guide

Open Client and Open Server Common Libraries Reference Manual

Open Client Client-Library/C Reference Manual
Open Server Server-Library/C Reference Manual

The sample international applications, i18n.c for Open Client and
intlchar.c for Open Server, shipped with Open Client and Open

Server products

See the Open Client and Open Server Programmers Supplement for

your platform.

15

Writing internationalized Client-Library applications

Writing internationalized Client-Library applications

Before writing an internationalized Client-Library application, you must
decide how the application will localize, that is, how it will determine which
language, character set, and cultural conventionsto usein agiven environment.

Client-Library applications can use initial localization values, custom
localization values, or both.

Most applications use initial localization values.

For information about how initial localization values are determined and how
to decide whether your application can use them, see “Deciding what
localization valuesto use” on page 5.

Client-Library applications using initial values

If your application will useinitial localization values, you should not include
any special code to internationalize your application.

When you distribute your application, make sure that systems administrators
know how to set environment variables. See “ Setting up an application to use
initial localization values’ on page 7.

Client-Library applications using custom values

16

Client-Library applications can use custom localization values at the context,
connection, and data element levels.

Open Client and Open Server applications sets up custom localization values
by:

e Cdling cs_locale toload aCS L OCALE structure with specific
localization values.

e Usingtheloaded CS L OCALE structure to customize a context,
connection, or data element.

Table 3-1 isintended to help you decide how to use custom localization values
in your application:

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Table 3-1: Using custom localization values in a Client-Library

application
For more

If Then information
The application needs just a Customize at the context level. “Customizing at
single set of custom You can use the same the context level”
localization values (but, for CS LOCALE structure to on page 17.
whatever reason, it cannot Use cystomize muiltiple contexts.
itsinitial localization values).
Different contextsin the Customize each context. “Customizing at
application require different Use different CS LOCALE the context level”
localization values. Sfructures to customize on page 17.

different contexts.
Specific connectionsneedto Customize those connections. “Customizing at
use localization values that the connection
differ from their parent level” on page 18.
context’s localization values.
Bind variables, conversion Customize the variables or “Customizing at
destination variables, or routines. the data element
specific routines need to use level” on page 20.

custom localization val ues.

Customizing at the context level

You need to install custom localization values at the context level if the
context’sinitial localization values are not acceptable.

Example

For example, you would need to install custom localization values at the
context level if different contexts in the same application required different
localization values, because not all of the contexts would be created with

correct initial values.

For information on how a context receivesitsinitial localization values, see
“Using initial localization values’ on page 6.

Suppose a Client-Library application needs to generate messages in Korean,
butitisrunning inan environmentinwhichtheLC_ALL environment variable
must be set to us_english to accommodate other applications. Because the
initial us_english localization values that the context uses are not acceptable,
the application needs to specify Korean localization values at the context level.

International Developers Guide 17

Writing internationalized Client-Library applications

Defining custom localization values for a context

Table 3-2 describes how to define custom localization values at the context

level:

Table 3-2: Installing custom values at the context level

Application

Step step Purpose Details

1 Call cs_loc_alloc. Allocate a This call copiesthe parent
CS LOCALE context’s current localization
structure. information into the

CS_LOCALE structure.

2 Call cs_locale. Overwrite the See“Thecs_localeroutine” on

CS LOCALE page 11.

structure with custom
localization values.

Open Server applications must
cal cs_locale with type as
CS LC_ALL.Thisensuresthat
Server-Library loadsthe
CS_LOCALE structure with
localization values that are
internally consistent.

3 Optionally, call
cs_dt_info.

Change datetime
conversion formatsin
the CS_LOCALE
structure.

See the Open Client and Open
Server Common Libraries
Reference Manual.

4 Cadl cs_config
with property as
CS_LOC_PROP

Customize a context.

5 Optionally, call
cs_loc_drop.

Deallocate the
CS LOCALE
structure.

An application can reuse the
CS_LOCALE structure before
deallocating it.

If necessary, the application can
cal cs_locale to change the
localization values in the
structure before reusing it.

Customizing at the connection level

A connection inherits default localization values from its parent context. You
need to install custom localization values at the connection level if the
connection’s default localization values are not acceptable.

18

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Example

A us_english/isol application that connects to a server in Spain needs to
process and sort roman8 character data. Because the us_english/isol
localization values that the connection inherits from its parent context are not
acceptable, the application needsto install roman8 localization values at the
connection level.

Defining custom localization values for a connection

Table 3-3 describes how to define custom localization values at the connection

level.

Table 3-3: Installing custom values at the connection level

Application
Step step Purpose Details
1 Call cs_loc_alloc. Allocatea This call copiesthe parent context’s current
CS LOCALE localization information into the CS_LOCALE
structure. structure.
2 Call cs_locale. Overwrite the See“The cs_localeroutine” on page 11.
CS LOCALE

structure with custom
localization values.

3 Optionally, call

Change datetime

See the Open Client and Open Server Common

cs_dt_info. conversionformatsin Libraries Reference Manual.
the CS_LOCALE
structure.
4 Call ct_con_props Customizea Notethat CS L OC_PROP isalogin property. An
with propertyas connection. application cannot changeitsval ue after aconnection
CS _LOC_PROP. is open.
If an application sends a request to the server to
change the language or character for the connection
after the connection is open, the change will not be
reflected in the value of CS_LOC_PROP. If the
application callsct_con_props to retrieve the value of
CS_LOC_PROP, theretrieved locale structure will
not contain the connection’s current localization
values.
5 Optionally, call Deallocate the An application can reuse the CS_LOCALE structure
cs_loc_drop. CS LOCALE before deallocating it.
structure.

If necessary, the application can call cs_locale to
change the localization values in the structure before
reusing it.

International Developers Guide

19

Writing internationalized Client-Library applications

When aclient application calls ct_connect to open a connection, the server
determineswhether it can support therequested localization. If it can, it accepts
the connection asis. If it cannot, it forces the connection to an alternate
language and/or character set. At this point, the client may either accept or
reject the altered connection.

Customizing at the data element level

Example

20

Data-element localization values can be used to customize the following:
e Bind variables (ct_bind)

If custom localization values are not specified, bind variables use
localization values from the connection with which they are associated.

e Conversion destination variables (cs_convert)

If custom localization values are not specified, conversion destination
variables use localization values from cs_convert’s context parameter.

e cs_time and cs_strcmp behavior

If custom localization values are not specified, these routines use the
localization values associated with their context parameter.

You need to set up custom localization values at the data element level if the
default values are not acceptable.

To generate areport, an application with aus_english connection selects book
titlesand publication dates from aus_english database. Because the report will
be sent to Paris, the publication dates must be in a standard French format.

Since the connection’s us_english formats are not acceptable for the date
column bind variable, the application needs to set up the bind variable to use
French datetime formats.

The application can set up the bind variable for the date column to use French
datetime formats as follows:

e Theapplication loads aCS L OCALE structure with French datetime
formats.

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

e Theapplication calls ct_bind to bind the date column to a character
variable. Inthe ct_bind call, the CS DATAFMT structure that describes
the bind variable references the CS_LOCALE structure containing the
French datetime formats.

When the application calls ct_fetch, the datetime value in the date column is
automatically converted to a character string containing French day and month
names and copied into the bound variable.

Defining custom localization values at the data element level
Table 3-4 describes how to define custom localization at the dataelement level.

Table 3-4: Installing custom values at the data element level
Application

Step step Purpose Details

1 Call Allocate a This call copiesthe parent context’s current
cs_loc_alloc. CS LOCALE localizationinformationintothe CS_LOCALE

structure. structure.

2 Call cs_locale. Overwritethe See“The cs_locale routing” on page 11.

CS LOCALE
structure with custom
localization values.

3 Optionally, call Change datetime Seethe Open Client and Open Server Common
cs_dt_info. conversionformatsin Libraries Reference Manual.

the CS_LOCALE
structure.

4 Usethe Customize abind » Customize abind variable by using the
CS LOCALE variable, destination CS_LOCALE structurein ct_bind’s datafmt
structure variable, or routine. parameter.

» Customize a destination variable by using
the CS_LOCALE structure in cs_convert's
destfmt parameter.

e Customize cs_strcmp or cs_time’s behavior
by supplying the CS_LOCALE structure as
a parameter to the routine.

5 Optionally call ~ Deallocate the The application must not deallocate the
cs_loc_drop. CS LOCALE CS_LOCALE structure until the

structure. CS DATAFMT structure no longer references

it.

International Developers Guide

21

Writing internationalized Open Server applications

Client-Library localization value precedence

Client-Library useslocalization values in the following order of precedence:
1 Vauesdefined at the data element level

2 Vauesdefined at the connection level

3 Valuesdefined at the context level

Client-Library localization properties

Table 3-5 lists Client-Library properties that are related to localization:

Table 3-5: Client-Library properties related to localization

For more
Property Description Appliesto information
CS_LOC_PROP A CS LOCALE Contexts, Open Client
structure that defines connections Client-Library/C
localization Reference Manual
information.
CS_CHARSETCNV Determineswhether or Connections ~ Open Client
not the server is Client-Library/C
performing character Reference Manual
set conversion.
CS _ NOCHARSETCNV Determineswhetheror Connections Open Client
not the server should Client-Library/C
perform character set Reference Manual
conversion.

Writing internationalized Open Server applications

22

When writing an internationalized Open Server application, you will need to
consider the following issues:

¢ How the application itself will localize
¢ How the application will support localized clients

« How theapplicationwill respondto client requeststo changelanguage and
character set

e What values Server-Library localization properties should have

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Localizing the application

An Open Server application’s localization values determine the language in
which error messages are generated and the character set and collating
sequence that are used for all data operations.

Note You canuse SRV_S USESRVLANG and SRV_T_USESRVLANG
properties to override the server’s language when it generates error messages.

An Open Server application can useinitial localization values, custom
localization vaues, or both.

Most applications use initial localization values.

Initial localization values are determined when the application allocates its
context structure. For information on how to decide whether your application
can useinitial localization values, see “Deciding what localization values to
use” on page 5.

Open Server applications using initial values

If your application will useinitia localization values, you should not include
any special code to internationalize your application.

When you distribute your application, make sure that systems administrators
know how to set environment variables. See* Setting up an application to use
initial localization values’ on page 7.

Open Server applications using custom values

If your application cannot use initial localization values, you need to install
custom localization information in the application-wide context structure
before calling srv_version. For information on how to do this, see Table 3-2 on

page 18.

Supporting localized clients

Open Server automatically provides some support for localized clients, but
your application may need to provide additional support.

International Developers Guide 23

Writing internationalized Open Server applications

Automatic support for localized clients

Open Server automatically handles some tasks associated with supporting
localized clients. These tasks include:

e Performing character set conversion, if required, of both incoming and
outgoing data.

« Providing Open Server error messages in the client’s language and
character set (provided that the SRV_T_USESRVLANG property for the
client'sthread structureis set to CS_FAL SE).

e Providing localization information to the client in response to a client
request. See “ Automatic response to requests for localization
information” on page 24.

For some Open Server applications, thisautomatic support for localized clients
is sufficient, as they do not need to take any additional stepsto support
localized clients. However, other Open Server applications need to provide
additional support for localized clients.

Automatic response to requests for localization information
After logging into an Open Server application, a client can request:

¢ The name of the server’s character set

e The name of the server’s collating sequence (sort order)

e The character set definition for the client’s character set

e The sort order definition for the client’s collating sequence

Clients make these reguests using the sp_serverinfo system registered
procedure, using Remote Procedure Call (RPC) commands.

In response, Open Server automatically returns the requested information by
means of the sp_serverinfo system registered procedure. An Open Server
application does not need to take any action at this point, and, in fact, is not
aware that the request ever occurred.

Additional support for localized clients

An Open Server application needs to take additional stepsto support localized
clients under the following circumstances:

e |If it passes CS-Library error messages back to clients

24 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

In this case, the Open Server application needs to ensure that CS-Library
generates messages in the client’s language and the Open Server
application’s character set. For information on how to do this, see
“Localizing CS-Library messages for clients’ on page 25.

e [Ifitisacting as agateway

In this case, the Open Server application needsto ensure that aconnection
to aremote server uses the client’s language and the Open Server’s
character set. For information on how to do this, see“ Creating localized
connections for Open Server gateways’ on page 27.

e |f aclient application asks to change its language or character set

In this case, the Open Server application needs to change the language or
character set for the client thread. For information on how to do this, see
“Responding to requests to change language and character set” on page
28.

Localizing CS-Library messages for clients

If an Open Server application calls a CS-Library routine with its own context
structure as a parameter, any error messages that CS-Library generates asthe
result of the call will be in the Open Server application’s language and
character set.

For example, if the context parameter for acs_convert call indicates
us_english/iso_1, CS-Library generatesaus_english/iso_1 message if the
cs_convert call fails.

Note If aCS-Library routinetakesa CS L OCALE structure as a parameter,
the localization values in this structure will override the localization valuesin
the context parameter.

Getting CS-Library messages in the Open Server application’s language and
character set is acceptable only if the Open Server application logs the CS-
Library messages or otherwise keeps them to itself.

However, if an Open Server application will be passing CS-Library error
messages back to aclient, it needs to ensure that CS-Library generates
messages in the client’s language and the Open Server application’s character
Set.

The messages need to be in the client’s language for the client to understand
them.

International Developers Guide 25

Writing internationalized Open Server applications

The messages need to bein the Open Server application’s character set for two
reasons:

e Open Server applications commonly record all messagesinthelogfile. It
isimportant that all logged messages use the same character set.

e Open Server automatically performs character set conversion on outgoing
data, including messages. Generating messagesin Open Server’scharacter
set ensures that they will be correctly converted to the client’s character
Set.

An application can ensure that messages are generated in the correct language
and character set by setting up a properly localized CS CONTEXT structure
for each client thread and then using these CS_CONTEXT structures when
caling CS-Library routines on behalf of clients.

Localizing a CS_CONTEXT structure for a client thread
Table 3-6 illustrates how to localizea CS_CONTEXT structure for aclient

thread:
Table 3-6: Localizing a CS_CONTEXT structure for a client thread
Step Application step Purpose Details
1 Cadl cs_ctx_alloc. AllocateaCS_CONTEXT The context structure is allocated with
structure for the client thread. initial localization values.
2 Call cs_loc_alloc. Allocateanew CS_LOCALE This call copiesthe parent context’'s
structure. current localization information into
the new CS_LOCALE structure.
3 Call Copy the client thread’s existing
srv_thread_props(GET) localization valuesinto the new
with property as CS _LOCALE structure.
SRV_T_LOCALE.
4 Call cs_locale withtype Replace the client thread's
as character set information in the

CS SYB_CHARSET. new CS_LOCALE structure with
the Open Server application’s
character set information.

5 Call cs_config with Customize the context structure. This call copies localization
property as information from the CS_LOCALE
CS LOC_PROP. structure into the CS_CONTEXT
structure.

26 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Step Application step Purpose Details
6 Optionally, call Deallocate the CS_LOCALE An application can reuse the
cs_loc_drop. structure. CS_LOCALE structure before
deallocating it.

If necessary, the application can call
cs_locale to change the localization
valuesin thestructure beforereusing it.

Creating localized connections for Open Server gateways

If an Open Server application is acting as a gateway, it needs to ensure that a
connection to aremote server uses the client’s language and the Open Server’s
character set.

Note The Open Server’'s character set does not need to be the same asthe
remote server’s character set, but it must be one that the remote server is
capable of converting to its own.

Adaptive Server Enterprise can convert between any two Western European
character sets and between any two Japanese character sets, but it cannot
convert a Western European character set to a Japanese one (and vice versa).
For example, Adaptive Server Enterprise can convert between | SO 8859-1 and
CP850, because both of these character sets are in the Western European
language group, but Adaptive Server Enterprise cannot convert between |SO
8859-1, which is Western European, and CP 1250, which is Eastern European.
When Adaptive Server Enterprise is converting between character setsin
different language groups, non-ASCI| characters may be lost.

The simplest way for an application to do thisisto set up a properly localized
CS_CONTEXT structure for each client thread and then allocate remote
connections for the client thread within the localized context.

See“LocalizingaCS_CONTEXT structure for a client thread” on page 26.

For information on how to allocate a connection, see the Open Client Client-
Library/C Reference Manual.

International Developers Guide 27

Writing internationalized Open Server applications

Responding to requests to change language and character set

28

When a client connects to an Open Server application, Open Server
automatically createsaCS_L OCALE structure reflecting the client’slanguage
and character set. (The client’s collating sequence is NOT included in the
CS_LOCALE structure: Collating sequence information is not transmitted to
the server at login time.)

For example, when a french/cp850 client logs into aus_english/iso_1 Open
Server application, the Open Server application creates a french/cp850
CS_LOCALE structure. The Open Server application usesthisCS L OCALE
structure to set up character set conversion routines for the client thread.

Note Theinformation inthis CS LOCALE structure is available to Open
Server programmers, who can call srv_thread_props to copy the information
into anewly allocated CS L OCALE structure.

After loggingin, if aclient sends arequest to change its language or character
set, the Open Server application must make the requested changesin the client
thread’'s CS L OCALE structure.

A client can request a change of language or character set in one of two ways:

e Using alanguage-based option command (sent with ct_command). This
type of command triggersaSRV_LANGUA GE event, so the Open Server
application processes the request inside a SRV_LANGUAGE event
handler.

e Using an option command (sent with ct_options). This type of command
triggersa SRV_OPTION event, so the Open Server application processes
the request inside a SRV_OPTION event handler.

Table 3-7 describes how to change the language or character set for a client
thread:

Table 3-7: Changing language or character set for a client thread

Step Application step Purpose Details
1 Call cs_loc_alloc. AllocateaCS LOCALE Thiscall copiesthe Open Server
structure. application context’s current

localization information into the
new CS_LOCALE structure.

Cadl srv_thread_props Copy theclient thread’s

(GET) with propertyas existing localization

SRV_T _LOCALE. valuesinto the new
CS _LOCALE structure.

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Step Application step Purpose Details
3 Call cs_locale. Overwrites the See“Thecs localerouting” on
CS LOCALE structure page 11.
with the requested
language or character set.
4 Call srv_thread_props Set up the client thread
(SET) with property as with the new language or
SRV_T_LOCALE. character set.
5 Optionally, call Deallocate the An application can reuse the
cs_loc_drop. CS LOCALE structure. CS_LOCALE structure before
deallocating it.

If necessary, the application can
cal cs_locale to change the
localization valuesin the
structure before reusing it.

Note Open Server and SDK support the same character sets as Adaptive
Server Enterprise.

Server-Library localization properties
Table 3-8 lists Server-Library properties that are related to localization:

Table 3-8: Server-Library properties related to localization

For more
Property Description Appliesto information

SRV_S USESRVLANG Whether or not to Application- Open Server
generate messagesin wide context Server-Library/C

the server’slanguage. Reference Manual
SRV_T_USESRVLANG Whether or not to Thread Open Server

generate messagesin Server-Library/C

the server’slanguage. Reference Manual

These properties determine whether Open Server generates error messages in
the Open Server application’s language or a client’s language:

SRV_S USESRVLANG is aserver-wide property, set using srv_props. Its
value serves as the default value for SRV_T_USESRVLANG.

International Developers Guide 29

Writing internationalized DB-Library applications

SRV_T_USESRVLANG isathread property, set using srv_thread_props.
When anew thread structureisallocated, SRV_T_USESRVLANG picksup a
default value from SRV_S USESRVLANG:

e IfSRV_T _USESRVLANG isCS TRUE, Open Server generates error
messages for the thread in the language of the server.

e IfSRV_T USESRVLANG isCS FALSE, Open Server generates error
messages for the thread in the language of the client.

Writing internationalized DB-Library applications

Whenwriting anew client application, programmers should use Client-Library
instead of DB-Library. Theinformation inthissectionisfor siteswith existing
DB-Library applications.

Unlike Client-Library, DB-Library does not examine environment variablesto
determineinitial localization values. Instead, in DB-Library, initial |ocalization
values are pre-defined on a per-platform basis.

An application can change these initial values for a specific connection by
changing the language name and character set name in the login record that is
used to open the connection:

e To change the language name, call DBSETLNATLANG
(login,Janguage_name).

e To change the character set name, call DBSETLCHARSET
(login,charset_name). An application can call DBSETLCHARSET
(login,NULL) to specify that the server should not perform character set
conversion.

An application can use a different language and character set for each server
connection.

See the Open Client DB-Library/C Reference Manual.

Internationalizing with Embedded SQL

As an Embedded SQL application programmer, you can localize:

30 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

The Embedded SQL precompiler
A precompiled Embedded SQL application

Localizing the precompiler

Precompiler users can either run the precompiler with default localization
values or custom localization values.

How default values are determined

If command line options are not specified, the precompiler’slocalization
values are determined at precompiler runtime as follows:

If the LC_ALL environment variableis set, the application usesits value
to localize, matching LC_ALL’svaueto an entry in the localesfileto
determine what language and character set to use.

If theLC_ALL environment variableisnot set but the LANG environment
variableis, the application usesits value to localize, matching LANG’s
value to an entry in the locales file to determine what language and
character set to use.

If neither environment variable is set, the application uses the “default”
entry in the localesfile to localize.

Specifying custom localization values

Precompiler users can use command line optionsto specify custom localization
values for the following:

International Developers Guide

Source file character sets

To specify the character set of the sourcefilethat isbeing precompiled, use
the following command line option:

-J locale for charset

wherelocale for_charset isalocale name that has an entry in the locales
file

If you do not specify -J, the precompiler interprets the source file as being
in the precompiler’s default character set.

Precompiler messages

31

Localizing standalone utilities

To specify the language and character set that the precompiler uses for
messages, use the following command line option:

-Z locale for messages

wherelocale for_messagesisalocale namethat hasan entry inthelocales
file.

If you do not specify -z, the precompiler uses its default language and
character set for messages.

Localizing an Embedded SQL application

An Embedded SQL application’s localization values are determined at
application runtime as follows:

e IftheLC_ALL environment variable is set, the application usesits value
tolocalize, matching LC_ALL’svaueto an entry in the localesfileto
determine what language and character set to use.

e IftheLC_ALL environment variableisnot set but the LANG environment
variableis, the application usesits value to localize, matching LANG's
value to an entry in the locales file to determine what language and
character set to use.

e If neither environment variableis set, the application uses the “ default”
entry in the localesfile to localize.

A typical Embedded SQL application localizes by settingthe LC_ALL
environment variable.

Localizing standalone utilities

32

Standalone utilities includeisgl, bep, and defncopy. Utilities that are built on
Client-Library and utilities that are built on DB-Library localize differently.

Utilities built on top of Client-Library examine environment variables to
determine default localization values. See “ Deciding what localization values
touse” on page 5 and “Using initial localization values’ on page 6.

Utilities built on top of DB-Library use platform-specific default localization
values. Pre-version 11.1 and PC utilities may be built on top of DB-Library.

Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Tips

All utilities provide a mechanism to enable users to specify custom values for
the following:

e Thedisplay character set
e Thelanguage to use for server messages
e The character set that the utility isusing

See the Open Client and Open Server Programmers Supplement for your
platform.

This section contains tips on writing and running internationalized
applications.

Make sure required files are installed

Some Open Client and Open Server routines require that certain localization
filesbeinstalled. If these files are not installed, Client-Library or Server-
Library generates an error message in English and writes it to standard error
output.

Table 3-9 lists Open Client and Open Server routines that require localization
files:

International Developers Guide 33

Tips

Table 3-9: Open Client and Open Server routines that require
localization files

Routine Required files File location

cs_ctx_alloc locales.dat locales/
objectid.dat ini (on Microsoft Windows)

config (On UNIX)

cslib.loc locales/message/language_name
common.loc locales/message/language_name
charset.loc charsets/charset_name
binary.srt or charsets/charset_name

the sort file specified in the
matching locales file entry

cs_locale charset.loc charsets/charset_name

binary.srt or charsets/charset_name
the sort file specified in the
matching locales file entry

ct_init ctlib.loc local es/message/language_name
srv_init srviib.loc locales/message/language_name

Using CS_NULLTERM with Open Client and Open Server routines

When passed to a Client-Library, Server-Library, or CS-Library routineas a
buffer’slength, CS_NULLTERM indicates that the value contained in the
buffer is null-terminated (terminated with a single byte with value 0).

Some character sets do not support unambiguous null-terminated strings. Do
not use CS_NULLTERM if your application needs to support these types of
character sets.

Table 3-10 lists CS-Library, Client-Library, and Server-Library routines that
allow the use of CS NULLTERM:

Table 3-10: Open Client and Open Server routines that use
CS_NULLTERM

Library Routine Description
CS cs_objects Save, retrieve, or clear objects and data associated with them.
Library cs_strbuild Construct native language message strings for character sets without NULL
bytes.
cs_stremp Compare two strings using a specified sort order.
34 Open Client and Open Server

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

Library Routine Description
Client- ct_connect Connect to aserver.
Library ct_cursor Initiate a cursor command.
ct_debug Manage debug library operations.
ct_dyndesc Perform operations on a dynamic SQL descriptor area.
ct_labels Define a security label or clear security labels.
ct_options Set or retrieve the values of server options.
ct_remote_pwd Define or clear passwords to be used for server-to-server connections.
Server- srv_config Set server configuration parameters.
Library srv_convert Convert data from one datatype to another.

International Developers Guide

srv_createmsgq

Create a message queue.

Srv_createmutex

Create a mutua exclusion semaphore.

srv_define_event

Define auser event.

srv_deletemsgq

Delete a message queue.

srv_deletemutex

Delete amutex created by srv_createmutex.

srv_describe

Describe aresult row column and its data source.

srv_envchange

Notify the client of an environment change.

srv_getobjid

Look up the object ID for a message queue or mutex with a specified name.

srv_getobjname

Get the name of a message queue or mutex with an identifier.

srv_init Initialize an Open Server.
srv_log Write a message to the Open Server log file.
srv_options Send option information to a client or receive option information from a client.

srv_paramnumber

Return the position number of a parameter for the current remote procedure call.

srv_regdefine

Initiate the process of registering a procedure.

srv_regdrop

Unregister a procedure.

Srv_reginit

Begin executing aregistered procedure.

srv_regnowatch

Remove a client thread from the notification list for aregistered procedure.

srv_regparam

Describe aparameter for aregistered procedure being defined, or supply datafor
the execution of aregistered procedure.

srv_regwatch

Add aclient thread to the notification list for a specified procedure.

srv_returnval

Define areturn value for a non-remote procedure call.

srv_sendmsg

Send a message to the client.

Srv_setustate

Set the user state field in the thread structure. The registered procedures sp_ps
and sp_who display thisfield.

srv_tabname

Provide the name of the table(s) associated with a set of browse mode results.

35

Tips

36 Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion
Support

This chapter explains how character set conversion worksin Open Client

and Open Server products.

This chapter covers the following topics:
Topic Page
Definitions 37
Supported character sets 38
Understanding coded character set conversion 39
Using custom coded character set conversion 42
Character set conversionin Adaptive Server Enterprisereleases | 44
priorto 4.9
Mainframe support 45

Definitions

The following definitions apply throughout this chapter:

e A character setisafinite set of characters or glyphs without
encoding.

« Encoding isthe process of uniquely identifying each character in a
character set with a numeric code.

e A coded character set isthe set of numeric codes that represents a
character set.

This chapter uses the term, “coded character set,” rather than
“character set,” since conversion relies on encoding.

e Character set conversion isthe process of mapping charactersin one
coded character set to charactersin another.

International Developers Guide 37

Supported character sets

A direct conversion is a conversion from one coded character set to
another. Adaptive Server Enterprise and Open Server support direct
conversion between character sets within the Western European and
Japanese language groups.

An indirect conversion is a conversion from one coded character set to
another by way of an intermediate coded character set.

Because indirect conversion allows any character set to be converted to
any other character set, regardless of whether the character setsarein the
same language group, it is sometimes called universal conversion.

Supported character sets

38

Note Open Server and SDK support the same character sets as Adaptive
Server Enterprise.

Adaptive Server Enterprise and Open Client and Open Server products
typically come with files to support the following character sets:

Apple Macintosh Roman (mac)

IBM Code Page 850 (cp850)

IBM Code Page 437 (cp437)

1SO 8859-1 (iso_1)

ISO 8859 15 (iso_15: Latin9 - western European)
Hewlett-Packard Roman 8 and Roman 9 (roman8 and roman9)
Unicode UTF-8 encoding (utf8)

Chinese following standard GB18030-2000

Korean Code Page 949 (cp949)

Kazakh (kz1048)

Files to support the following character sets are included with the Japanese
Language Module product:

DEC Kanji (deckanji)
EUC JIS (eucjis)

Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

. Shift-JS (i)

For acompletelist of supported languages and character sets, see the Adaptive
Server Enterprise System Administration Guide.

Understanding coded character set conversion

Character set conversion allows clients and servers that use different coded
character setsto communicate.

At the present time in Sybase systems, automatic character set conversion
occursonly onthe server. Adaptive Server Enterprise and Open Server support
direct coded character set conversion between character setsin the Western
European and Japanese language groups. Thesearetheonly direct character set
conversions that Adaptive Server Enterprise and Open Server support.
However, Open Server does support the conversion of any Sybase-supported
character set to or from the Unicode character set in UTF-8 form. This allows
Open Server to perform an indirect conversion (charset_1 to Unicodeto
charset_2) between any two Sybase character sets.

The Unicode standard (equivalent to |SO 10646 standard) is an international
character set. Unicode has the capacity to encode virtualy all characters used
in the world’s major written languages.

UTF-8 isamultibyte variable length encoding of Unicode that is compatible
with stream-based applications. It is recommended for data exchange and
storage by X/Open, POSIX, and X 11 standards.

Establishing the language and character set for a connection

When aclient application attemptsto connect to aserver, it sends a connection
reguest specifying the following:

* Whether or not character set conversion should be disabled for the
connection (through the CS_NOCHARSETCNV property for Client-
Library or the DBSETLCHARSET routine for DB-Library)

* The character set to use for the connection

» Thelanguage to use for the connection

International Developers Guide 39

Understanding coded character set conversion

Before accepting the connection, the server checks to see if it can support the
requested language and character set.

Table 4-1 summarizes Adaptive Server Enterprise and Open Server behavior
at connection time:

Table 4-1: Client and server conversion behavior

Server

supports Server

client’s supports

character client’'s

set language Server action ct_connect dbopen

Yes Yes Accepts the connection in the clients Returns Returns
language and character set. CS SUCCEED SUCCEED

No Yes If character set conversionisdisabled, it Returns Returns
accepts the connection but forcesittoits CS SUCCEED SUCCEED
own character set.
If character set conversionisnot disabled, Returns Returns
it rejects the connection. CS FAIL FAIL

Yes No Informsthe client that the connectionwill ~ Returns Returns
use: CS SUCCEED SUCCEED
» us_english language
e Theclient's character set

No No If character set conversionisdisabled, it Returns Returns

accepts the connection but forcesit to: CS SUCCEED SUCCEED
» us _english language
» Itsown character set

If character set conversionisnot disabled, Returns Returns
it rejects the connection. CS FAIL FAIL

Once aconnection is established, the server:

e Generates all messages in the connection’s negotiated language and
character set

e Performs all necessary character set conversion for both incoming and
outgoing data (provided that character set conversion is not disabled for
the connection)

Disabling character set conversion

40

Client applications typically disable character set conversion for one of the
following reasons:

Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

« Theclient application needsto storeand retrieve datain acharacter set that
the server does not support.

e Theclient application will perform any necessary character set
conversion.

When character set conversionisdisabled, Adaptive Server Enterprise doesnot
perform character set conversion on Transact-SQL® statements, procedure,
table, view and other names, or data. The server behaves as follows:

* It assumesthat Transact-SQL statements and names are in standard
Transact-SQL.

» |t storesdata values exactly as they are sent.
e |t generates messagesin its default character set.

Client-Library applications can disable character set conversion for a
connection by setting the CS_NOCHARSETCNV connection property to
CS TRUE before calling ct_connect to open the connection.

DB-Library applications can disable character set conversion for a connection
by calling DBSETLCHARSET with char_set asNULL before calling dbopen
to open the connection.

Using Open Server as a conversion gateway

As Open Server can convert all Sybase-supported character setsto and from
Unicode (equivalent to SO 10646 standard), UTF-8, an Open Server
application can perform indirect conversions between any two Sybase-
supported character sets. Asaresult, you can use an Open Server application
to enable communication between applications and servers that use character
sets in different language groups (note that loss of data may occur).

For information on how to set up an Open Server application as a conversion
gateway, see “ Creating localized connections for Open Server gateways’ on

page 27.

Files used during character set conversion

This section contains information about files used during character set
conversion.

International Developers Guide 41

Using custom coded character set conversion

Unilib library

The Unilib® library, libsybunic, contains Unicode-based routines that support
the conversion of any Sybase-supported character set to or from the Unicode
(equivalent to SO 10646 standard) character set in UTF-8 form.

Using custom coded character set conversion

Open Server allows applications to install custom conversion routines. Once
installed, Open Server uses the custom conversion routines automatically
whenever a conversion of the specified typeis required.

Why install custom conversion routines?

Install custom character set conversion routinesif the conversion functionality
supplied with Open Server does not meet your needs. The most common
reason for installing a custom conversion routineisto improve performance by
replacing an indirect conversion with a direct conversion.

For example, an Open Server application could install a custom routine to
convert between 1SO 8859-1 and EUC JIS. Thisdirect conversion may be
faster than the indirect conversion (SO 8859-1 to or from Unicode UTF-8
to/from EUC JIS) that is supplied with Open Server.

Writing a custom conversion routine

42

A custom character set conversion routine is defined as follows:

CS_RETCODE convfunc(context, srcfmt, srcdata,
destfmt, destdata, destlen)

CS_CONTEXT *context;

CS_DATAFMT *srcfmt;

CS_VOID *srcdata,;
CS_DATAFMT *destfmt;
CS_VOID *destdata;
CS_INT *destlen;

where:

context isa pointer to aCS_CONTEXT structure.

Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

« srcfmtisapointer toaCS DATAFMT structure describing the source
data. srcfmt— maxlength describestheactual length, in bytes, of the source
data.

e srcdataisapointer to the source data.

e destfmtisapointer toaCS DATAFMT structure describing the
destination data. destfmt—maxlength describesthe actual length, in bytes,
of the destination data space.

e destdata is a pointer to the destination data space.

« destlenisapointer to aninteger. If the conversionissuccessful, the custom
routine should set * destlen to the number of bytes placed in * destdata.

cs_config istheonly CS-Library, Client-Library, or Server-Library routine that
can be called from within a custom conversion routine.

CS-Library raisesa CS-Library error if the custom routine returns any value
other than CS_SUCCEED. Thetype of error that CS-Library rai sesdependson
the value that the custom routine returns.

Table 4-2 lists the legal return values for a custom conversion routine:

International Developers Guide 43

Character set conversion in Adaptive Server Enterprise releases prior to 4.9

Table 4-2: Return values for a custom conversion routine

Return value

Indicates

CS_SUCCEED

The conversion is successful.

CS_TRUNCATED

The conversion resulted in truncation.

CS MEM_ERROR

A memory allocation failure has occurred.

CS EBADXLT Some characters could not be converted.

CS ENOXLT The requested conversion is not supported.

CS EDOMAIN The source value is outside the domain of legal values for
the datatype.

CS EDIVZERO Division by zero is not allowed.

CS EOVERFLOW

The conversion resulted in overflow.

CS_EUNDERFLOW

The conversion resulted in underflow.

CS_EPRECISION

The conversion resulted in loss of precision.

CS ESCALE Anillegal scale value was encountered.

CS ESYNTAX The conversion resulted in avalue that is not syntactically
correct for the destination type.

CS ESTYLE The conversion operation was stopped due to a style error.

Installing a custom conversion routine

Anapplication callscs_manage_convert toinstall acustom conversion routine.
For information on cs_manage_convert, see the Open Client and Open Server
Common Libraries Reference Manual.

Character set conversion in Adaptive Server
Enterprise releases prior to 4.9

In releases earlier than 4.9, Adaptive Server Enterprise data servers do not
perform character set conversion. If your client application communicateswith
apre-release 4.9 Adaptive Server Enterprise but uses a different character set
from the server, international characters may not be represented correctly.

44

To solve the problem, you can:

¢ Changeyour client application’'s character set to match that of the
Adaptive Server Enterprise, or

Open Client and Open Server

CHAPTER 4 Coded Character Set Conversion Support

e Install custom character set conversion routines using cs_manage_convert
and call cs_convert to convert the data before sending it to the server.

Mainframe support

Mainframe systems commonly use run-encoded character encoding, which
provides escapesinto other character encoding within asingle character string.

Open Client and Open Server products do not support this mechanism.

International Developers Guide 45

Mainframe support

46

Open Client and Open Server

CHAPTER 5

Quick start

Editing the Locales File

This chapter describes the locales file and explains how to change it.

This chapter covers the following topics:

Topic Page
Quick start 47
When to edit the localesfile 48
Localesfile sections and entries 48
Editing the localesfile 50

The localesfileis named locales.dat and resides in the locales

subdirectory of the Sybase directory tree. See Appendix A, “Directories

and Files Related to I nternationalization.”

This section summarizes the process of adding or changing alocale

definition. For more detailed information on the locales file and how to

edit it, read the remainder of the chapter.

[TTo add or change a locale definition

International Developers Guide

1 Makeacopy of the localesfile (locales.dat), found in the locales

directory, in case problems occur with the edited version.

2 Editthelocalesfile: Add or change the desired entriesin the
appropriate platform-specific section.

3 Update localization environment variables (LC_ALL, LC_CTYPE,

LC _MESSAGE, LC TIME, LANG) as appropriate.

4 If you have added a new locale name and you want existing
applications to use this new namein cs_locale calls, edit and
recompile the applications as appropriate.

47

When to edit the locales file

When to edit the locales file

If the predefined |ocales file entries do not meet your needs, you can either
change them or add entries that define new locale names. For example, you
may want to edit the locales file to do the following:

¢ Changethe language, character set, or collating sequence specified in a
locale entry.

e Add locale definitions, such as those needed for new language modul es.

¢ Match locale names used by non-Sybase software. For example, one
Sybase predefined locale nameis “fr”;

locale = fr, french, iso 1

If anon-Sybase application requiresthe LC_ALL environment variableto
have avalue of “french” and you want your Open Client and Open Server
applicationsto use LC_ALL to localize with thislocales file entry, you
need to add anew entry or change thelocale name specified in the existing
entry asfollows:

locale = french, french, iso 1

Locales file sections and entries

Thelocalesfile resides in the Sybase rel ease directory under the locales
subdirectory.

Thelocalesfile contains:
e Standard sections (see Table B-2 on page 81)

« Platform-specific sections containing locale definition entries

Locale definition entries

48

The locales file has platform-specific sections, each of which contains
predefined locale definition entries. These entries vary by platform, but all
sectionsinclude an entry defining a“default” locale.

Local e definition entries have the form:

locale = locale name, language name, charset name
[, sortorder name]

Open Client and Open Server

CHAPTER 5 Editing the Locales File

where;

« locale_nameisthe name of the locale definition. locale nameisusualy
vendor-specified, based on POSI X terminology. Comments at the end of
the localesfilelist POSIX values for locale names.

e, (comma) isthelist separator character for thefile.

e language nameisthe subdirectory name by which Sybase products
recognize the language.

e charset_nameis the subdirectory name by which Sybase products
recognize the character set.

« sortorder_nameisthe file name by which Sybase products recognize the
collating sequence. sortorder_name is optional. If not specified, Open
Client and Open Server products use a binary collating sequence.

Thefollowinglocalesfile entry specifiesaFrenchlocale. Because no sort order
is specified, the default sort order “binary” will be used with thislocale:

locale = fr.FR.88591, french, iso 1

Locales file example

[aix]
locale
locale
locale
locale
locale
locale
locale
locale

[1inux]
locale
locale
locale
locale
locale
locale
locale
locale

Thefollowing fragment illustrates some platform-specific sectionsin alocales
file:

en US, us_english, iso_ 1
en_US.IS08859-1, us_english, iso_1
en JP, us_english, eucjis
FR_FR.IBM-850, french, cp850

fr FR.IS08859-1, french, iso 1

fr CA, french, iso 1

Fr CA.IBM-850, french, cp850

fr CA.IS08859-1, french, iso 1

GERMAN, german, iso 1

de, german, iso_ 1

de AT, german, iso_ 1

de AT.437, german, cp437

de AT.850, german, cp850
CHINESE, chinese, eucgb

zh CN, chinese, eucgb

zh CN.GB18030, chinese, gbl18030

International Developers Guide 49

Editing the locales file

locale
locale

zh CN.gbk, chinese, eucgb
zh TW, tchinese, big5s

Editing the locales file
Before editing the localesfile:

Review the entrieslisted for your platform to seeif asuitableentry already
exists. If so, you do not have to edit the localesfile.

Make a backup copy of the original localesfile, in case problems occur
with the edited version.

Adding or changing entries

To add a new entry to the locales file or to change an existing entry:

1

50

Choose avalue for locale_name.

locale_name can have any value. Sybase recommends names of the form
language.territory.

Determine the value to use for language_name.

When a Sybase language module is installed, a subdirectory for the
language is created in the local es/message directory of the Sybase
directory tree. language name must correspond to this subdirectory’s
name.

Determine the value to use for charset_name.

When a Sybase language module is installed, subdirectories for each
supported character set are created in the char sets directory of the Sybase
directory tree. charset_name must correspond to one of these subdirectory
names.

Determine the value to use for sortorder_name (if you want a sort order
other than binary).

The charsets/charset_name subdirectory contains the sort order (*.srt)
filesfor the character set. sortorder_name must correspond to one of these
file's names (without the .srt).

Open Client and Open Server

CHAPTER 5 Editing the Locales File

5 Inthe appropriate platform-specific section of the localesfile, typein or
change the appropriate entry.

After you make the change:

e Update localization environment variables (LC_ALL, LC CTYPE,
LC MESSAGE, LC TIME, LANG) as appropriate.

e |f you have added a new locale name and you want existing applications
tousethisnew nameincs_locale calls, edit, and recompiletheapplications
as appropriate.

Deleting entries

Itisnot necessary to delete entriesfrom thelocalesfile, evenif applicationsno
longer usethem. If you decideto delete an entry, make sure no application uses
it.

International Developers Guide 51

Editing the locales file

52 Open Client and Open Server

CHAPTER 6

Quick start

Creating or Changing Collating
Sequences

This chapter explains how to create and change collating sequence (sort
order) files.

This chapter covers the following topics:

Topic Page
Quick start 53
About collating sequences 54
When to create a custom collating sequence file 57
About collating sequence files 58
Creating a custom collating sequence file 61
Collating sequence file example 65

This section summarizes the process of creating and changing sort order
files. For more detailed information, read the remainder of the chapter.

[TTo create or change a sort order file

International Developers Guide

1 Copy one of the shipped *.srt files and rename it, keeping the .srt
suffix.

Note Do not modify the* .srt files shipped with the product. Instead,
make copy of the original *.srt file and then modify its copy.

2 Edit the newly created file, changing or adding entries as follows:

e Specify general entries for the [sortorder] section, including
“class,” “id,” “menuname,” “charset,” “preference,” and
“description.”

53

About collating sequences

e Listligatures, using the entry form “lig = value.” Group ligature
entries before character entries.

e Listall thecharacter set’scharactersand glyphsin the desired primary
sort order, using the entry form “char = value.”

e For the secondary sort order, add values horizontally to the primary
sort order entries, using the entry form “char = valuel, value2, ..."

e For sorting that is not case sensitive, put equal signs between
uppercase and lowercase counterparts.

3 Savethe new .srtfilein the charsets directory under the charset name
subdirectory.

4 Edit localesfile entries, as appropriate, to refer to the new collating
sequencefile.

About collating sequences

Definitions

54

The order in which a system sorts charactersis called its collating sequence or
sort order.

Collating sequence definitions are built on top of character set definitions, but
languages that use the same character set can order characters differently. For
example, in Spanish “Co” comes before “ Cho,” because “Ch” isconsidered to
be asingle letter; in English “Cho” alphabetically precedes “Co.”

Ordering conventions can also vary between languages for letter-diacritic
combinations. For instance, “A” might come after “z,” even though “a’
(without diacritics) comes before “b.”

This section discusses some common considerations in defining collating
sequences, but it is not intended to be comprehensive. Please refer to general
references on collating sequences.

If you are unfamiliar with Sybase collating sequences, the following
definitions may be useful:

e The collating sequence’s primary sort order isthe vertical sequence of
lines beginning with “char=".

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

e A primary entry’s secondary sort order isthe horizontal sequence of
characterson asingle “char =" line.

Types of sorts

There are many waysto sort characters. Open Client and Open Server collating
sequence file can use one or more of the types of sortslisted in Table 6-1:

International Developers Guide 55

About collating sequences

Table 6-1: Types of sort orders

Type of
sort

Description

Single-
level

Characters sort according to their primary sort order value.

A character that appears on aline higher in the vertical list of “char="
entries always sorts before a character that appearson alinelower inthe
list.

Two-
level

Characters sort according to their primary and secondary sort order
values. If al the charactersin two strings have the same primary sort
values, then the characters' secondary sort values are used to break the
ordering tie.

If two characters appear on the same*“ char =" line, the onefurthest to the
left sortsfirst.

For example, suppose a sort order file contains:
char =A,aA 4

char =B,b

char=C,c,Cc

Some strings using these characters would sort as follows:

ABC

ABC

abc

ach

acb

Because the strings ABC, ABC, and &bc have the same primary values,
they are ordered by their secondary sort values. ach and &cb are similarly
sorted according to secondary values. abc is ranked before ach because
b has an earlier primary value than c.

One-to-
two

A single character that is sorted as multiple charactersis caled a
ligature. For example, the German character “13" is sorted as “ss.”

Two-to-
one

A 2-character string that is sorted as 1 character is called a sort double.
For example, the Spanish character string “ch” is sorted as one character
that comes between “c” and “d”.

Determining case sensitivity

Most collating sequence fileslist all variants of asingle |etter on one char =
line.

A collating sequence that is case sensitive lists uppercase and |lowercase
variants of aletter in the order in which they areto be sorted and separatesthem
with acomma. For example:

56

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

char = 0x41,0x61,0xC0,0xE0,0xC1l,0xE1l,0xC2,0xE2, 0xC3,0xE3

;A, a, A-grave, a-grave, A-acute, a-acute, A-tilde, a-tilde,
;A-diaeresis, a-diaeresis

char = 0x42,0x62

;letter B, b

A collating sequencethat is not case sensitiveliststhe uppercase and lowercase
variants of aletter in any order and joins them with an equals sign. For
example;

char = 0x41=0x61,0xC0=0xE0, 0xC1=0xE1l, 0xC2=0xE2, 0xC3=0xE3

;A, a, A-grave, a-grave, A-acute, a-acute, A-tilde, a-tilde,
;A-diaeresis, a-diaeresis

char = 0x42=0x62

;letter B, b

When to create a custom collating sequence file

On most platforms, Open Client and Open Server productsinclude the standard
collating sequence files described in Table 6-2:

International Developers Guide 57

About collating sequence files

Table 6-2: Commonly-supplied collating sequences

File name

Description

binary.srt

Ordering corresponds to the internal binary value for each
character. binary.srt contains the entry “binary = true”.

No localization file is necessary for this sort order.

dictionary.srt

Dictionary order, case sensitive. Primary lexicographic ordering
with uppercase letters before their lowercase counterparts.
Secondary ordering for accented characters.

The file name varies according to language. For example, the
Spanish version is called espdict.srt.

noaccents.srt

Dictionary order, accent insensitive, not case sensitive.
Intermingles words that begin with an unaccented letter and words
that begin with the letter’s accented counterparts.

The file name varies according to language. For example, the
Spanish version is called espnoac.srt.

nocase.srt

Dictionary order, not case sensitive. Intermingles words that begin
with an uppercase |etter with words that begin with the lowercase
counterpart.

The file name varies according to language. For example, the
Spanish version is called espnocs.srt.

nocasepref.srt

Dictionary order, not case sensitive, with preference for uppercase
only when there is alowercase equivalent.

If alanguage you are using has further collating sequence requirements, you
can create a custom collating sequence file according to the guidelinesin
“About collating sequence files” on page 58.

About collating sequence files

Sybase collating sequence files are named *.srt and are located in the
charsets/charset_name/ directory. All collating sequence files use standard
Sybase external localization file syntax.

See Appendix B, “External Localization File Syntax.”

Collating sequence file sections and entries

All collating sequence files include the following elements:

58

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

e Thecomment line, copyright section, and file format section, described in
Table B-2 on page 81.

e Genera entries, described in Table 6-4 on page 62.

e Ligature entries, described in step 3 under “ Creating a custom collating
sequence file” on page 61.

e Character entries, described in steps 4, 5, 6, and 7 under “Creating a
custom collating sequence file” on page 61.

Writing characters in a collating sequence file
There are three ways to write charactersin a collating sequence file entry:

e By typing the hexadecimal character encoding for the character. For

example;
char = 0x20 ;() space
char = 0x3D ; (=) equals sign

e By typing the character, quoted. For example:

char = * “ ;() space
char = “=" ; (=) equals sign

e By typing the character itself. For example:

char
char

A, a
B, b

Table6-3 classifies characters according to how they can bewrittenincollating
sequence file entries:

International Developers Guide 59

About collating sequence files

Table 6-3: Writing characters in a collating sequence file entry

Can be Can be
written as Can be typed in
hexadecimal typedinwith without
Type of character numbers? guotes? quotes?
Non-printable charactersand Yes No No
characters that do not appear
on the keyboard
a)a(:e (H 71)
Equalssign (“=")
Comment character Yes Yes No
Escape character
List separator character
Backslash ("\") Yes Yes, butmust No
be doubled
inside of
quotes ("\\")
All other characters Yes Yes Yes

The preference keyword and the order by clause

A collating sequencefilethat isnot case sensitive can use apreference entry to
indicate whether lettersto the left of the equal sign should sort before lettersto
theright of the equal signwhen sorting output generated astheresult of aselect
statement with an order by clause.

For example, suppose that a collating sequence file contains the following
entries:

char = A=a, A=a
char B=b

If preference=true, then order by output will sort as follows:

Aab
alAb
Aadb
If preference=false, then order by output can sort either as:

alAb
Aab
Aadb

or

60 Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

Aab
alAb
Adb

The preference keyword:
« Appliesonly to sort orders that are not case sensitive
« Affectsonly sortsthat occur as the result of an order by clause

If preference=true, then charactersto the left of the equal sign sort first. If
preference=false, then charactersto the left of the equal sign may not sort first.

The preference keyword has adefault value of “true.” That is, if acollating file
doesnot contain apreference entry, order by sortsgive precedenceto characters
to the | eft of the equal sign.

Most typically, preference=true means that uppercase characters sort before
lowercase characters.

Creating a custom collating sequence file

This section explains how to create a custom collating sequence file. Before
you begin, please read this entire section and familiarize yourself with the
collating sequence files included with your Open Client and Open Server
products.

“Collating sequence file example” on page 65 illustrates a collating sequence
file.

Appendix B, “External Localization File Syntax” provides general
information about localization file syntax.

To create or change a collating sequencefile:

1 If youplantouseashipped .srt fileasamodel, be sureto copy and rename
it so you do not overwrite the original file. The new file's name must
includethe.srt suffix. In addition, adescriptive name hel psto associate the
file with the language it supports.

2 Determinethevaluesfor general entries. Table 6-4 describesthese entries:

International Developers Guide 61

Creating a custom collating sequence file

62

Table 6-4: .srt file general entries

Entry

keyword Description Required Entry value

class The sort order class. Yes 0x01d
Currently, class 1 for 8-
bit character setsisthe
only supported class.

id A unique hexadecimal Yes For user-defined collating
number that identifiesthe sequences, ID must have a
collating sequence. value of 0xC9 through

OxFF.

Sybase reserves
hexadecimal 0x00 through
0xCs8.

menuname Thenameof thecollating Yes A string no longer than 64
sequenceasit isto appear charactersisrecommended.
in the sybinit program. sybinit truncates strings to

64 characters.
Thisvalue is user-defined.

name Thenameof thecollating No A string no longer than 30
sequence. characters.

Thisvalue is user-defined.

charset The character set with Yes The value must match a
which this collating character set subdirectory
sequencefileisintended name in the Sybase
for use. directory tree.

Thisis also the name of
thedirectory inwhichthis
collating sequencefile
will reside.

preference For sort orders that are No False —no preference.
not case sensitive, True — preference for
whether to give characters to the left of the
preference to characters equals sign. A value of
to the left of the equals “true’ has a greater
sign when sorting output performance impact than
generated by aselect “falsa”
statement with an order The default is“true.”
by clause.

description Phrase that describesthe No A string no longer than 255

collating sequence.
Stored with the collating
sequence.

characters.
Thisvalue is user-defined.

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

3 Determinewhether thereareany ligatures. A ligatureisasingle character
that is sorted as multiple characters. If there are ligatures:

« Placetheligature (“lig") entries together, preceding the “char”
entries.

e Include both the uppercase and lowercase forms of aligature, if
applicable.

The syntax for a case-sensitive ligature is:
lig = value, after characters ;case-sensitive sort
where;

e charactersisastring representing the characters after which the
ligature will sort.

« valueisthe hexadecimal encoding for the ligature character, or the
typed or quoted ligature character.

The syntax for aligature that is not case sensitive:

lig = valuel=value2, after characters ;case-
insensitive sort

where:

* valuel and value? are the hexadecimal encodings for the uppercase
and lowercase ligature characters, or the typed or quoted ligature
characters.

e charactersisastring representing the characters after which the
ligature will sort.

The following example shows ligature entries in a collating sequencefile
that is not case sensitive for | SO 8859-1:

lig = 0xC6, after AE ;diphthong AE, A with E
lig = O0xE6, after ae ;diphthong ae, a with e
char = 0x41,0x61,0xC0,0xE0,0xCl,0xE1l, 0xC2, 0XE2x
;varieties of letter A

char = 0x42,0x62 ;B, b

4 Vertically list al the character entriesfor the sort order. Thisvertical listis
the primary sort order.

The syntax for a character entry is:

char = value

International Developers Guide 63

Creating a custom collating sequence file

64

where value is the hexadecimal code set encoding for the character, or the
typed or quoted character.

For example:
char = 0x41 ;ISO 8859-1 code set.
If applicable, add secondary sort order information to the file as follows;

e For acase-sensitive sort order, put the lowercase variant to the right
of the uppercase character (if you want the uppercase character to take
precedence). Separate the characters with the list separator character.

e Forasort order that isnot case sensitive, put equal signs between each
uppercase character and its lowercase equivalent (including accented
characters).

e Put acharacter and its variants in relative order to each other. For
example, the French “€&’ goesto theright of “e.” Make sure these
characters are not ligatures or separate primary sort order entries.
Separate variants with the list separator character.

Thefollowing exampl e shows secondary sort order information for aLatin
alphabet, case-sensitive sort order:

char = 0x41,0x61,0xC0,0xXE0,0xC1l,0xE1l, 0xC2,0xE2,
0xC3,0xE3, 0xC4,0xE4, 0xC5, 0XE5

;A, a, A-grave, a-grave, A-acute, a-acute,
;A-circumflex, a-circumflex, A-tilde, a-tilde,
;A-diaeresis, a-diaeresis, A-ring, a-ring

char = 0x4E,0x6E,0xD1l,0xF1 ;N, n, N-tilde, n-tilde

Determine whether there are any sort doubles. A sort double or digraphis
apair of charactersthat is sorted asasingle character. If there are any sort
doubles:;

e List each sort double as a separate “char” entry.

e For case-sensitive sorting, put all permutations of the sort double in
the desired sort order.

The syntax for asort doubleis:
char = valuelvalueZ2
where:

e valuel isthefirst character in the sort double pair,

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

« value2 isthe second character in the pair.

If valuel and value2 are written as hexadecimal numbers, use aleading
‘Ox” with valuel but not with value2. For example:

char = 0x4348,0x4368,0x6348,0x6368 ;CH,Ch,cH,ch
valuel and value2 can also be typed or quoted characters. For example;
char = CH, Ch, cH, ch
or
char = "CH", "Ch", "cH", "ch"

The following exampl e shows the placement of the Spanish sort double
“ch” in a case-sensitive .srt filefor theiso 1
(SO 8859-1) character set:

char = 0x41,0x61,0xC0,0xE0, 0xCl,0xE1l, 0xC2, 0xE2
;varieties of letter A

char = 0x42,0x62 ;B, b

char = 0x44,0x64,0xC7,0xE7 ;C, ¢, C-cedilla, c-
cedilla

char = 0x4348,0x4368,0x6348,0x6368 ;CH,Ch,cH,ch

7 Include all other charactersin the vertical list, such as non-printable
characters, characters not on a keyboard, symbols, and characters related
to linguistic style. Use “char” or “lig” entries, as appropriate. Be sure to
group al “lig” entries together before “ char” entries.

For information on how to write nonal phabetic charactersin a collating
sequence file, see Table 6-3 on page 60.

8 Savethenew .srt file in the charsets directory under the charset_name
subdirectory.

9 Edit localesfile entries, as appropriate, to refer to the new collating
sequence file. See Chapter 5, “Editing the Locales File.”

Collating sequence file example

This section contains an example of a case-sensitive collating sequencefile.

Actual collating sequence files are included in your Sybase directory tree as
charsets/charset_name/* .srt.

International Developers Guide 65

Collating sequence file example

; semi-colon is the comment character
[sortorder]

; @(#)dictionary.srt

; Sort Order Overview:

; Based on the ISO 8859-1 ("Latin 1") character set, this sort order is
; a case-sensitive ordering. Upper case letters always sort before their
; lower case counterparts.

; It is useful for at least the English, French and German languages,
; and may work for many others.

; Ligatures, Sort-Doubles, etc.:
; AE, ae ligatures
; German sharp-s ligature with "ss"

; The ordering:

; first all non-alphanumeric characters in binary order

; followed by all numeric digits

; then all alphabetic characters used in English, French and German
; and ended by all alphabetic characters not used in English, French
; or German

class = 0x01 ; Class ~1' sort order
id = 0x33 ; Unique ID # (51) for the sort order
name = dictionary iso 1

menuname = "General purpose dictionary ordering."
charset = iso 1
description = "General purpose dictionary sort order for use with several

Western-European languages including English, French, and German. Uses the
ISO 8859-1 character set and is case-sensitive."

; ligatures for English, French, and German

lig = 0xC6, after AE ;AE ligature

lig = OxE6, after ae ;ae ligature

lig 0xDF, after ss ;small german letter sharp s

; Control characters

char = 0x01 ; (SOH) start of heading
char 0x02 ; (STX) start of text
char = 0x03 ; (ETX) end of text

66 Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

char = 0x04 ;
char = 0x05 ;
char = 0x06 ;

EOT) end of transmission
ENQ) enquiry
ACK) acknowledge

char = 0x07 ; (BEL) bell

char = 0x08 ; (BS) backspace

char = 0x09 ; (HT) horizontal tab

char = 0x0A ; (LF) newline, or line feed
char = 0x0B ; (VT) vertical tab

char = 0x0C ; (FF) form feed

char = 0x0D ; (CR) carriage return

char = OxOE ; (SO) shift out

char = O0x0F ; (SI) shift in

char = 0x10 ;
char = 0x11 ;
char = 0x12 ;
char = 0x13 ;
char = 0x14 ;
char = 0x15 ;
char = 0x16 ;
char = 0x17 ;
char = 0x18 ;
char = 0x19 ;
char = 0x1A ;
char = 0x1B ;
char = 0x1C ;
char = 0x1D ;
char = O0x1E ;
char = 0x1F ;

DLE) data link escape

DC1l) device control 1

DC2) device control 2

DC3) device control 3

DC4) device control 4

NAK) negative acknowledge

SYN) synchronous idle

ETB) end transmission blk

CAN) cancel

EM) end of medium

SUB) substitute

ESC) escape

FS) file separator

S) group separator

S) record separator

S) unit separator

; All non-alphanumeric characters, including puntuation.

; These are sorted by their numerical ordering, based on the
; ISO 8859-1 standard, for clarity and consistency.

char = 0x20 ;
char = 0x21 ;
char = 0x22 ;

space
exclamation mark
quotation mark

()
(1)
(")
char = 0x23 ; (#) number sign
char = 0x24 ;($) dollar sign
char = 0x25 ; (%) percent sign
char = 0x26 ; (&) ampersand
char = 0x27 ; (') apostrophe
char = 0x28 ; (() left parenthesis
char = 0x29 ;()) right parenthesis
char = 0x2A ; (*) asterisk
char = 0x2B ; (+) plus sign
char = 0x2C ; (,) comma

International Developers Guide 67

Collating sequence file example

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

68

0x2D
0x2E
0x2F
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
0x40
0x5B
0x5C
0x5D
0x5E
0x5F
0x60
0x7B
0x7C
0x7D
0x7E
0x7F
0x80
0x81
0x82
0x83
0x84
0x85
0x86
0x87
0x88
0x89
0x8A
0x8B
0x8C
0x8D
0x8E
0x8F
0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97
0x98

) hyphen, minus sign
) full stop

) solidus

) colon

) semicolon

) less-than sign

) equals sign

) greater-than sign
) question mark

) commercial at
)

)

)

)

)

)

)

)

)

i
7
i/
7
i
i
i

7

7

i

left square bracket
reverse solidus
right square bracket
circumflex accent
low line

grave accent

{) left curly bracket
|) vertical line

}) right curly bracket
~) tilde

,delete, or rubout

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

; undefined

>
)
@
[
P (\
4
;

i

i

(-
(.
(
(:
(i
(<
(=
(
(2
i
(
(
(
(
P
P (7
(
(
(
i

Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

char = 0x99 ; undefined
char = 0x9A ; undefined
char = 0x9B ; undefined
char = 0x9C ; undefined

char = 0x9D ; undefined
char = 0x9E ; undefined
char = 0x9F ; undefined

char = 0xA0 ;no-break space

char = 0xAl ;inverted exclamation mark
char = 0xA2 ;cent sign

char = 0xA3 ;pound sign

char = 0xA4 ;currency sign

char = 0xA5 ;yen sign

char = 0xA6 ;broken bar

char = 0xA7 ;paragraph sign, section sign
char = 0xA8 ;diaeresis

char = 0xA9 ;copyright sign

char = 0xAA ;feminine ordinal indicator
char = OxAB ;left angle quotation mark
char = 0xAC ;not sign

char = 0xAD ;soft hyphen

char = 0xAE ;registered trade mark sign
char = O0xAF ;macron

char = 0xBO ;ring above or degree sign
char = 0xBl ;plus/minus (+/-) sign

char = 0xB2 ;superscript 2

char = 0xB3 ;superscript 3

char = 0xB4 ;acute accent

char = 0xB5 ;micro sign

char = 0xB6 ;pilcrow or paragraph sign
char = 0xB7 ;middle dot

char = 0xB8 ;cedilla

char = 0xB9 ;superscript 1

char = 0xBA ;masculine ordinal indicator
char = 0xBB ;right angle quotation mark
char = 0xBC ;vulgar fraction one quarter
char = 0xBD ;vulgar fraction one half
char = 0xBE ;vulgar fraction three quarter
char = 0xBF ;inverted question mark

char = 0xD7 ;multiplication sign

char = 0xF7 ;division sign

; Digits

char = 0x30 ; (0) digit zero
char 0x31 ; (1) digit one

char = 0x32 ; (2) digit two

International Developers Guide 69

Collating sequence file example

char = 0x33
char = 0x34 ;
char = 0x35 ;
char = 0x36 ;
char = 0x37 ;
char = 0x38 ;
char = 0x39

digit three
digit four
digit five
digit six
digit seven
digit eight
digit nine

O 0 J 0 Ul b W

; Latin Alphabet
char = 0x41,0x61,0xC0,0xE0,0xCl,0xXE1l, 0xC2,0xE2,0xC3,0xE3,0xC4, 0xE4, 0xC5, O0XES
; A, a, A-grave, a-grave, A-acute, a-acute, A-circumflex,
; a-circumflex, A-tilde, a-tilde, ;A-diaeresis, a-diaeresis,
; A-ring, a-ring
char = 0x42, 0x62 ;letter B, b
char = 0x43, 0x63, 0xC7, OxE7
; letters C, ¢, C-cedilla, c-cedilla
char = 0x44, 0x64 ;letter D, d
char = 0x45, 0x65, 0xC8, 0xE8, 0xC9, 0xE9, O0xCA, OxEA, 0xCB, OxEB
; E, e, E-grave, e-grave, E-acute, e-acute, E-circumflex,
; e-circumflex, E-diaeresis, e-diaeresis
char = 0x46, 0x66 ;letter F, f
char 0x47, 0x67 ;letter G, g
char = 0x48, 0x68 ;letter H, h
char = 0x49, 0x69, 0xCC, O0xEC, 0xCD, O0xED, O0xCE, OxEE, O0xCF, OXEF
; I, i, I-grave, i-grave, I-acute, i-acute, I-circumflex,
; i-circumflex, I-diaeresis, i-diaeresis
char = 0x4A, 0x6A ;letter J, j
char = 0x4B, 0x6B ;letter K, k
char = 0x4C, 0x6C ;letter L, 1
char = 0x4D, 0x6D ;letter M, m
char = 0x4E, 0x6E, 0xD1l, OxF1
;letters N, n, N-tilde, n-tilde
char = 0x4F,0x6F,0xD2, 0xF2,0xD3, 0xF3,0xD4, 0xF4, 0xD5, 0XF5, 0xD6, 0xF6, 0xD8, O0xXF8
; O, o, O-grave, o-grave, O-acute, o-acute, O-circumflex,
; o-circumflex,O-tilde, o-tilde, O-diaeresis, o-diaeresis,
; O-stroke, o-stroke
char = 0x50, 0x70 ;letter P,
char = 0x51, 0x71 ;letter Q,
char = 0x52, 0x72 ;letter R,
char = 0x53, 0x73 ;letter S,
char = 0x54, 0x74 ;letter T, t
char = 0x55,0x75,0xD9, 0xF9, 0xDA, 0xFA, 0xDB, 0XFB, 0xDC, 0XFC
; U, u, U-grave, u-grave, U-acute, u-acute,
; U-circumflex, u-circumflex, U-diaeresis, u-diaeresis
char = 0x56, 0x76 ;letter V, v
char = 0x57, 0x77 ;letter W, w

n K .Q '

70 Open Client and Open Server

CHAPTER 6 Creating or Changing Collating Sequences

char
char

0x58, 0x78 ;letter X, x

0x59, 0x79, 0xDD, OxFD, OxFF

; letters Y, y, Y-acute, y-acute, y-diaeresis

char = 0x5A, O0xX7A ;letter 7z, =z

; Alpha characters not used in English, French or German:

char = 0xD0, O0xFO ;icelandic capital letter Eth, small letter eth
char = 0xDE, OXFE ;icelandic capital letter Thorn, small letter thorn

International Developers Guide 71

Collating sequence file example

72 Open Client and Open Server

APPENDIX A Directories and Files Related
to Internationalization

This appendix describes the Open Client and Open Server directoriesand
filesthat arerelated to internationalization and localization.

This chapter covers the following topics:

Overview

Topic Page
Overview 73
Thelocales directory 74
The charsets directory 75
The config and ini directories 76

At runtime, Open Client and Open Server applications pick up
localization information from external files. The following three
directoriesin the Sybase release directory contain localization
information:

International Developers Guide

locales directory, which contains files that your application uses to
load localization information. It also contains language-specific

message files.

charsets directory, which contains conversion and collating sequence
filesfor each supported character set.

config directory on UNIX and ini directory on Microsoft Windows,
which contains the global object identifiersfile.

collate directory, which the Adaptive Server Enterprise uses for
sorting. Each character set comes with one or more sort orders that
Adaptive Server Enterprise uses to collate data.

73

The locales directory

All Open Client and Open Server products include files to support at least one
language and one or more character sets and collating sequences. During
installation, thesefiles are loaded into the Sybase rel ease directory structurein
the correct locations.

Note Theinstallation process automatically loads any additional Open Client
and Open Server Language Module for connectivity into the Sybase rel ease
directory in the correct locations.

The locales directory

The locales file

74

The locales directory contains:

e Thelocaesfile (locales.dat), which maps locale names to languages,
character sets, and collating sequences.

« The message directory, which containslocalized error messages for Open
Client and Open Server products, organized by language name.

¢ language name subdirectories, which are included to provide
compatibility with previous versions of Open Client and Open Server
software. These directories contain |ocalized message files organized by
character set.

¢ unicode directory, which contains error message files for system
management utilities.

Thelocalesfile (locales.dat) provides platform-specific locale informationin
a Sybase proprietary format. This file associates |ocale names with languages,
character sets, and collating sequences.

Thelocales file directs Open Client and Open Server applicationsto
localization information, but it does not contain actual localized messages or
character set information. Open Client and Open Server applications use the
locales file when determining what localization information to load.

See Chapter 5, “Editing the Locales File.”

Open Client and Open Server

APPENDIX A Directories and Files Related to Internationalization

Localized message files

L ocalized message files contain product messages in a particular language.
These message files (the *.loc files in the local es/message/language_name
directories) enable Open Client and Open Server applications to generate
messages in avariety of languages.

All Open Client and Open Server products include English (us_english)
message files. Your products may also include files to support additional
languages.

language _name subdirectories

Unicode directory

If you install a new language module, the installation process adds a
language_name subdirectory containing message filesin the new language.

Message file names sometimes vary by platform, but most resembl e the
following names:

e cslib.loc — CS-Library messages

e ctlib.loc — Client-Library messages
e odib.loc — Server-Library messages
e blklib.loc —Bulk Library messages
e bcp.loc —Bulk Copy messages

e esgl.loc — Embedded SQL messages

All Open Client and Open Server message files use the Unicode UTF-8
character set, converting messages from UTF-8 to other character sets as
needed.

The charsets directory

The charsets directory contains:

e A charset_name subdirectory for each character set. Each charset_name
subdirectory contains collating sequencefilesfor each supported character
set.

International Developers Guide 75

The config and ini directories

e unicode directory, which contains Unicode conversion files used by
Unilib.

Collating sequence files

The order in which a system sorts charactersis called its collating sequence or
sort order.

Open Client and Open Server products include files to support a variety of
collating sequences. Thesefiles can vary by platform but generally include the
following:

e binary.srt

e dictionary.srt

e noaccents.srt

* nocasesrt

e nocasepref.srt

If these files do not meet your needs, you can create a custom collating
sequence file. For information on how to do this, see “ Creating a custom
collating sequence file” on page 61.

Collating sequences are specified in locales file entries. If alocales file entry
does not specify a collating sequence, then abinary sort order is used with the
locale. See Chapter 6, “Creating or Changing Collating Sequences.”

Unicode conversion files

Unicode conversion files contain conversion configuration information in
Unicode (equivalent to 1SO 10646 standard) character set in UTF-8 form.
These conversion files are available for each Sybase-supported character set.

The config and ini directories

The config directory (on UNIX) and theini directory (on Microsoft Windows)
contain the global identifiers file (objectid.dat).

76 Open Client and Open Server

APPENDIX A Directories and Files Related to Internationalization

The global object identifiers file

Theglobal object identifiersfile, objectid.dat, associates aunique global object
identifier with all local names that might be used for the object.

An object identifier is a series of non-negative integer values separated by a
dot. It is based on a naming tree defined by the international standards bodies
CCITT and ISO.

Object identifiers file sections and entries
The objectid.dat file contains a section for each class of object.

Object class entries have the following form:

[Object Class]
object identifier local namel, ..., local namen

where;
* Object Classisthe section identifier.
* object_identifier isthe globally unique object identifier.

e local_namel,..., local_namen are the local names associated with the
object identifier, separated by a comma.

Object identifiers file example
The following sample illustrates sectionsin objectid.dat:

[charset]
1.3.6.1.4.1.897.4.9.1.1 = iso_ 1
1.3.6.1.4.1.897.4.9.1.2 = ¢cp850
1.3.6.1.4.1.897.4.9.1.3 = cp437
1.3.6.1.4.1.897.4.9.1.4 = roman8
1.3.6.1.4.1.897.4.9.1.5 = mac
[collatel]
1.3.6.1.4.1.897.4.9.3.50 = binary
1.3.6.1.4.1.897.4.9.3.51 = dictionary
1.3.6.1.4.1.897.4.9.3.52 = nocase
1.3.6.1.4.1.897.4.9.3.53 = nocasepref
1.3.6.1.4.1.897.4.9.3.54 = noaccents
[secmech]

1.3.6.1.4.1.897.4.6.6 = csfkrb5

International Developers Guide 77

The config and ini directories

Editing object identifiers file

Edit objectid.dat with an operating system editor such asvi if you change the
local name of an object.

78 Open Client and Open Server

APPENDIX B

External Localization File

Syntax

This appendix describes external localization file syntax and shows a
sample file. Use thisinformation when creating or updating external
localization files, such as the localesfile (locales.dat) and collating

sequence files (sort_order_name.srt).

This chapter covers the following topics:

Topic Page
Localization file syntax rules 79
Localization file sections 80
Example localization file 81

Localization file syntax rules

All external localization files observe the following basic syntax rules:

International Developers Guide

Comments start with a comment character and continue to the end of
theline. The first character in thefirst line of thefileis defined to be
the comment character for the file.

Sections begin with a section heading and contain entries. Section
headings use |eft and right delimiters. A section heading’s maximum
length is 63 bytes, including delimiters.

Thefirst linein the file that does not begin with acomment character
defines section heading delimiters for thefile. Itsfirst character is
defined to be left delimiter and its last character is defined to be the
right delimiter.

Entries take the following form:
keyword = value_list

where:

79

Localization file sections

keyword is the entry keyword and can be up to 63 bytes long.

value listisalist of one or morevalues separated by the list separator
character. Each value can be a quoted or unquoted string or a
hexadecimal number. If no value list is present, the entry keyword is
assigned asingle zero-length string (that is, astring that contains only
aNULL terminator) asits value.

value_list can span multiplelinesif each line except the last endswith
the escape character.

value list can be up to 511 byteslong.

Only one entry can appear on aline. An entry can be preceded by tabs and
spaces.

Values can be hexadecimal numbers or quoted or unquoted strings.

Unquoted strings beginning with “0x” areinterpreted as hexadecimal
numbers.

Strings do not require quotes unless they contain list separators or
spaces. List separators and spacesthat occur inside aquoted string are
treated as though they were preceded by the escape character.

You can use either apostrophes or quotation marks to quote strings.
Apostrophes (‘) can appear in strings delimited by quotation marks
(“string”) and quotation marks can appear in strings delimited by
apostrophes.

If either the apostrophe or quotation mark is repeated, then the two
charactersaretreated asasingleinstance of the character, not as string
delimiters, for example, “Jean’s book.”

Localization file sections

80

Different files have different types of sections, and different types of sections
have different entry keywords.

This section contains specific information about the sections that are common
to all localization files.

Table B-1 describeswhere to find informati on on sections specific to particular
files:

Open Client and Open Server

APPENDIX B External Localization File Syntax

Table B-1: References for sections specific to afile

File name See

Thelocalesfile (locales.dat) “Locaesfile sections and entries’ on page 48
Collating sequencefiles “Collating sequence file sections and entries” on
(sort_order_name.srt) page 58

Table B-2 describes sections that are common to all external localization files:

Table B-2: Standard sections in localization files

Section Description Example
File format This section is optional. [file format]
section If used, it has the form: version = 1

[file format])

} , list separator

version = version number -
list_separator =

list separator char

escape = escape char

’

escape = \

where:
e version_number isaversion number.

* list_separator_char isthelist separator
character to use for thefile.

» escape_char isthe escape character to use for the
file. If not specified, “list_separator” defaultsto“,”
(comma), and “escape” defaultsto “\” (backdash).
Copyrightsection This section is optional. [copyright]

If used, it has the form: copyright =
"Copyright\

[copyright]
copyright =
"copyright statement"

Excellent
Products, Inc."

where copyright_statement is a character string.

Example localization file

The partial collating sequence fileincluded in this section illustrates some of
the syntax rules discussed in “Localization file syntax rules’ on page 79.

When looking at the file, please note the following:

e Thefirst line defines the comment character as a semicolon. Any
subsequent lines or phrases beginning with a semicolon are comments.

International Developers Guide 81

Example localization file

e Thesecond line, [sortorder], isaheading for the sortorder section. Entries
in this section describe and define the collating sequence. Thisfile does
not contain copyright and file format sections, which are optional .

e Thelist separator for the file is a comma (the default).
e The escape character for the file is a backslash (the default).

¢ Vauesthat include spaces begin and end with quotation marks, such asthe
value for “description =".

Note Theeéllipsis®...” indicates deletion of actual file contents.

; semi-colon is the comment character
[sortorder]

; Case-sensitive sort order based on the ISO 8859-1 code set.
; Uppercase characters sort before lowercase counterparts.

; Ligatures and sort doubles
; AE, ae ligatures
; German sharp-s ligature with “ss”

; Sort order
1. non-alphanumeric characters in binary order
2. numeric digits
; 3. alphabetic characters used in English, French, German
4. Alphabetic characters not used in English, French, German

; Default formatting values. There is no [file format] section.

id = 0x33

menuname = “Case-sensitive dictionary sort order”

name = dictionary

charset = iso_ 1

description = “Dictionary sort order for use with English,\ French and German.
ISO 8859-1,case sensitive.”

; Ligatures for English, French, German

lig = 0xCé6, after AE

82 Open Client and Open Server

APPENDIX B External Localization File Syntax

lig = 0xE6, after ae
lig 0xDF, after ss

; Control characters
char = 0x01(SOH) start of heading

char = 0x1F; (US) unit separator
; All non-alphanumeric characters, including punctuation, sorted
; by numerical ordering

char = 0x20; () space
char = 0xF7;division sign
; Digits

char = 0x30; (0) digit zero

char = 0x39; (9) digit nine

; Latin alphabet

char = 0x41,0x61,0xC0,0xE0,0xCl,0xE1l, 0xC2,0xE2,0xC3,0xE3,0xC4,
0xE4, 0xC5, 0xXES5

; letter A, a, A-grave, a-grave, A-acute, a-acute, A-circumflex,
; a-circumflex, A-tilde, a-tilde, A-diaeresis, a-diaeresis,

; A-ring, a-ring

char = O0x5A,0x7A;letter 7,z
; Alphabetic characters not used in English, French, German
char = 0xDO0,0xF0;Icelandic letter Eth, eth

International Developers Guide 83

Example localization file

84 Open Client and Open Server

Glossary

case-sensitive
character

character set

coded character set

coded character set
conversion

collating sequence
digraph

encoding
glyph
ideograph

internationalization

ligature

International Developers Guide

When applied to acollating sequence, it meansthat the collating sequence
distinguishes between uppercase and |owercase characters.

A member in aset of elements that represents data in a native language,
g.j(:l,] % “e,” 113 é," “ 5’11 or 113 C.’"

A finite set of characters and glyphsthat can include letters, ideographs,
digits, symbols, and control functions. See also single-byte character set
and multibyte character set.

A character set in which each character is assigned a numeric code value.
Also called a code page.

Changing the encoding of characters from one set of numeric codes to
another.

When clients and servers use different character sets, coded character set
conversion them to interpret data the same way.

The order in which a system sorts text.
See ligature.

For character sets, the unique identification of each character with a
numeric code.

The graphic representation of a character. For example, the character “f”
can be represented by the glyph “f” or “f.”

A character or symbol that representsan idea, such asthose usedin written
Chinese and Japanese.

The process of enabling an application to support multiple languages and
cultural conventions. An internationalized application uses the language
and cultural conventions appropriate to the geographic areain which itis
running.

A single character that is sorted as multiple characters. For example, “ —”
issorted as“AE,” and “j,” sorted as“ss.”

85

Glossary

locale

locales file

locales structure
(CS_LOCALE)

localization

multibyte character
set

single-byte
character set

sort double

sort order

Unicode

UTF-8

UTF-16

86

1. A specific geographic or national language region. 2. A collection of
information related to a specific geographic or national language region.

A Sybase-specific file that maps|ocale namesto languages, character sets, and
collating sequences. Open Client and Open Server products examine the
locales file when loading localization information.

A CS-Library structure that is used to define custom localization valuesin
Client-Library and Server-Library applications. The CS-Library routines
cs_loc_alloc and cs_loc_drop allocate and drop alocale structure. The CS-
Library routine cs_locale loads alocale structure with information.

The process of setting up an application to execute using a specific language
and related cultural conventions.

A character set that includes characters that are encoded using more than one
byte, such as EUC JIS and Shift-JIS. A multibyte character set can include
characters of varying widths.

A character set in which all characters are encoded using a single byte.

In acollating sequence, apair of charactersthat is sorted as a single character.
For example, “ch” in Spanish.

See collating sequence.

A universal, 16-bit encoded character set, defined by the Unicode Standard.
Unicode version 1.1 is code-for-code identical to 1SO 10646, the international
standard universal character set.

An encoding that is the UCS Transformation Format, 8-bit form. It uses
multibyte characters up to 4 bytes long.

An encoding that isthe UCS Transformation Format, 16-bit form. In UTF-16,
each UCS-2 code value representsitself, where al of the characters currently
defined are 2 bytes long. Code values beyond the BMP (Basic Multilingual
Plane: 0..0xFFFF) are represented using pairs of special codes called surrogate
pairs.

Open Client and Open Server

Index

B
bep utility
localizing 32
message files 75
bind variables
defining custom locdization values 21
Bulk Library
message files 75
C

case sensitivity
determining 56
in collating sequence files 56
character set conversion
disabling 40
filesused 41
in pre-release 4.9 Adaptive Server 44
indirect 41
installing custom conversion routines 44
character set names
valuesinlocalesfile 49
character sets
client requeststo change 27
specified in locales file entries 49
supported 38
characters
in collating sequence files 59
charsets directory
contents 75
Client-Library
localization properties 22
message files 75
Client-Library applications
using custom localization values 16
using initial localization values 16
collating sequencefiles 58
character entries 63

International Developers Guide

contents 58
creating 61
entering characters 59
example 65
generd entries 61
ligature entries 63
sectionsand entries 58
shipped 57
collating sequence names
valuesinlocalesfile 49
collating sequences 54
specified in locales file entries 49
comments
localization files 79
connections
establishing the language and character set
copyright section
localization files 81
CS_CONNECTION structure
defining custom localization values 18
CS_CONTEXT structure
defining custom localization values 17
cs_ctx_alloc routine
required files 34
CS EBADXLT return 44
CS EDIVZEROreturn 44
CS EDOMAIN return 44
CS ENOXLT return 44
CS_EOVERFLOW return 44
CS EPRECISION return 44
CS ESCALEreturn 44
CS ESTYLEreturn 44
CS ESYNTAX return 44
CS_EUNDERFLOW return 44
cs locaeroutine 11
how it works 12
required files 34
CS _LOCALE structure
exampleof loading 12
howtouse 11

39

87

Index

CS_manage_convert routine 44 examples

CS MEM_ERRORreturn 44 collating sequencefile 65

cs_stremp routine loading aCS_LOCALE structure 12
defining custom localization values 21 localesfile 49

CS SUCCEED return 44
cs_timeroutine
defining custom locadization values 21

CS TRUNCATED return 44 F
CS-Library file format section
messagefiles 75 localization files 81
ct_init routine files
required files 34 collating sequence 58
custom collating sequence files 61 globa object identifiersfile 77
custom localization values 7 message 75
required 33
syntax 79
D

DB-Library applications
changing language and character sets 30 |

defncopy utility international applications
localizing 32 advantages 1
desktop platforms 10 writing Client-Library applications 15
destination variables writing DB-Library applications 30
defining custom localization values 21 writing Open Server applications 22
digraph 64 international systems
example 2

Open Client and Open Server support 3
internationalization

E definition 1
Embedded SQL isgl utility

messagefiles 75 localizing 32
Embedded SQL application

localizing 32
Embedded SQL precompiler

localizing 31 K
entries keywords

localization file 79 localization files 79

environment values 10
environment variables

LANG 10

LC ALL 9 L

LC_CTYPE 10 LANG environment variable 10
LC_MESSAGE 10 language module

LC_TIME 10 adding locale definition 48
related to localization 8 language names

88 Open Client and Open Server

valuesinlocalesfile 49
languages

client requeststo change 27

specified in localesfileentries 49
LC_ALL environment variable 9
LC_CTYPE environment variable 10
LC_MESSAGE environment variable 10
LC_TIME environment variable 10
ligature 63
locale names

matching non-Sybase names 48

valuesinlocalesfile 49
locales directory

contents 73,74
locaesfile 74

adding entries 50

contents 48

deleting entries 51

entries 48

entry syntax 48

example 49

introduction 8

when to edit 47
localization

definition 1

environment variables 8
localization files

example 81

specific sections 80

standard sections 81

syntax 79
localization properties

Client-Library 22

Server-Library 29
locdlization values

custom 6,7,8,17,19,21

defining at the connection level 19

defining at the context level 17

defining at the dataelement level 21

how loaded 6

howtosetup 8

howtouse 7

initial 5,6,7

initial or custom values 5

precedencein Client-Library applications

International Developers Guide

21

Index

M

mainframes
run-encoded character encodings 45
messagefiles 75

O

objectid.dat file
editing 78

Open Server applications
creating localized connections 27
localizing 22
localizing CS-Library messages for clients 25
localizing for client threads 26
localizing for gateway applications 27
processing arequest to change language 28
returning character set information to clients 24
returning localization information to clients 24
returning sort order information to clients 24
using asaconversion gateway 41
using custom localization values 23
using initial localization values 23

Open Server gateways
creating localized connections 27

order by clause 60

P

preference keyword 60

in collating sequence files 60
primary sort order 54
product messagefiles 75
properties

localization 22,29

R

required files 33

89

Index

S

secondary sort order 54
sections

localization file 79

specific 80

standard 81
Server-Library

localization properties 29

messagefiles 75
Server-Library applications 23
sort double 64
sortorder 54
sorts

types of character sorts 55
sp_serverinfo 24
srv_init routine

required files 34
SRV_S USERVLANG property 29
SRV_T_USERVLANG property 29
standalone utilities

localizing 32
strings

localization files 80

T

threads
localizing aCS_CONTEXT structure for aclient thread
26

U

Unicode directory
contents 76
Unilib library 42

utilities
localizing 32

Vv

values
localization files 80

90 Open Client and Open Server

	International Developers Guide
	About This Book
	CHAPTER 1 Understanding Internationalization and Localization
	Internationalization and localization
	Advantages of internationalized applications
	International systems
	Open Client and Open Server support for international systems

	CHAPTER 2 How Localization Works
	Deciding what localization values to use
	Using initial localization values
	Setting up an application to use initial localization values

	Using custom localization values
	Localization mechanism details
	The locales file
	Environment variables
	Platforms not using environment variables

	The CS_LOCALE structure
	The cs_locale routine
	Example: Calling cs_locale to Load a CS_LOCALE structure

	CHAPTER 3 Writing Internationalized Open Client and Open Server Applications
	Writing internationalized Client-Library applications
	Client-Library applications using initial values
	Client-Library applications using custom values
	Customizing at the context level
	Example
	Defining custom localization values for a context

	Customizing at the connection level
	Example
	Defining custom localization values for a connection

	Customizing at the data element level
	Example
	Defining custom localization values at the data element level

	Client-Library localization value precedence
	Client-Library localization properties

	Writing internationalized Open Server applications
	Localizing the application
	Open Server applications using initial values
	Open Server applications using custom values

	Supporting localized clients
	Automatic support for localized clients
	Additional support for localized clients

	Responding to requests to change language and character set
	Server-Library localization properties

	Writing internationalized DB-Library applications
	Internationalizing with Embedded SQL
	Localizing the precompiler
	How default values are determined
	Specifying custom localization values

	Localizing an Embedded SQL application

	Localizing standalone utilities
	Tips
	Make sure required files are installed
	Using CS_NULLTERM with Open Client and Open Server routines

	CHAPTER 4 Coded Character Set Conversion Support
	Definitions
	Supported character sets
	Understanding coded character set conversion
	Establishing the language and character set for a connection
	Disabling character set conversion
	Using Open Server as a conversion gateway
	Files used during character set conversion
	Unilib library

	Using custom coded character set conversion
	Why install custom conversion routines?
	Writing a custom conversion routine
	Installing a custom conversion routine

	Character set conversion in Adaptive Server Enterprise releases prior to 4.9
	Mainframe support

	CHAPTER 5 Editing the Locales File
	Quick start
	When to edit the locales file
	Locales file sections and entries
	Locale definition entries
	Locales file example

	Editing the locales file
	Adding or changing entries
	Deleting entries

	CHAPTER 6 Creating or Changing Collating Sequences
	Quick start
	About collating sequences
	Definitions
	Types of sorts
	Determining case sensitivity

	When to create a custom collating sequence file
	About collating sequence files
	Collating sequence file sections and entries
	Writing characters in a collating sequence file
	The preference keyword and the order by clause

	Creating a custom collating sequence file
	Collating sequence file example

	APPENDIX A Directories and Files Related to Internationalization
	Overview
	The locales directory
	The locales file
	Localized message files
	language_name subdirectories
	Unicode directory

	The charsets directory
	Collating sequence files
	Unicode conversion files

	The config and ini directories
	The global object identifiers file
	Object identifiers file sections and entries
	Object identifiers file example
	Editing object identifiers file

	APPENDIX B External Localization File Syntax
	Localization file syntax rules
	Localization file sections
	Example localization file

	Glossary
	Index

