
International Developers Guide

Open Client™ and Open Server™
15.5

DOCUMENT ID: DC30525-01-1550-01

LAST REVISED: November 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

International Developers Guide iii

About This Book .. vii

CHAPTER 1 Understanding Internationalization and Localization.................. 1
Internationalization and localization ... 1
Advantages of internationalized applications 2
International systems ... 2
Open Client and Open Server support for international systems..... 3

CHAPTER 2 How Localization Works... 5
Deciding what localization values to use.. 5
Using initial localization values... 6

Setting up an application to use initial localization values......... 7
Using custom localization values ... 8
Localization mechanism details.. 8

The locales file .. 8
Environment variables... 9
The CS_LOCALE structure ... 11
The cs_locale routine .. 11

CHAPTER 3 Writing Internationalized
Open Client and Open Server Applications 15
Writing internationalized Client-Library applications....................... 16

Client-Library applications using initial values......................... 16
Client-Library applications using custom values 16
Customizing at the context level.. 17
Customizing at the connection level.. 18
Customizing at the data element level 20
Client-Library localization value precedence........................... 22
Client-Library localization properties 22

Writing internationalized Open Server applications........................ 22
Localizing the application .. 23
Supporting localized clients... 23
Responding to requests to change language and character set 28

Contents

iv Open Client and Open Server

Server-Library localization properties...................................... 29
Writing internationalized DB-Library applications........................... 30
Internationalizing with Embedded SQL .. 30

Localizing the precompiler... 31
Localizing an Embedded SQL application............................... 32

Localizing standalone utilities... 32
Tips .. 33

Make sure required files are installed...................................... 33
Using CS_NULLTERM with Open Client and Open Server routines

34

CHAPTER 4 Coded Character Set Conversion Support.................................. 37
Definitions .. 37
Supported character sets ... 38
Understanding coded character set conversion............................. 39

Establishing the language and character set for a connection 39
Disabling character set conversion ... 40
Using Open Server as a conversion gateway 41
Files used during character set conversion............................. 41

Using custom coded character set conversion 42
Why install custom conversion routines? 42
Writing a custom conversion routine 42
Installing a custom conversion routine 44

Character set conversion in Adaptive Server Enterprise releases prior
to 4.9... 44

Mainframe support ... 45

CHAPTER 5 Editing the Locales File... 47
Quick start .. 47
When to edit the locales file ... 48
Locales file sections and entries .. 48

Locale definition entries... 48
Locales file example.. 49

Editing the locales file .. 50
Adding or changing entries.. 50
Deleting entries ... 51

CHAPTER 6 Creating or Changing Collating Sequences................................ 53
Quick start .. 53
About collating sequences ... 54

Definitions.. 54
Types of sorts.. 55

Contents

International Developers Guide v

Determining case sensitivity .. 56
When to create a custom collating sequence file........................... 57
About collating sequence files.. 58

Collating sequence file sections and entries 58
Writing characters in a collating sequence file 59
The preference keyword and the order by clause 60

Creating a custom collating sequence file...................................... 61
Collating sequence file example .. 65

APPENDIX A Directories and Files Related to Internationalization 73
Overview .. 73
The locales directory .. 74

The locales file .. 74
Localized message files .. 75

The charsets directory.. 75
Collating sequence files .. 76
Unicode conversion files ... 76

The config and ini directories ... 76
The global object identifiers file ... 77

APPENDIX B External Localization File Syntax .. 79
Localization file syntax rules .. 79
Localization file sections .. 80
Example localization file... 81

Glossary ... 85

Index ... 87

vi Open Client and Open Server

International Developers Guide vii

About This Book

Audience This book is written for Open Client and Open Server application
developers. Readers are expected to have a basic knowledge of Client-
Library™, DB-Library™, Embedded SQL™, or Server-Library.

How to use this book This book contains these chapters:

• Chapter 1, “Understanding Internationalization and Localization,”
defines internationalization and localization and discusses the
advantages of writing international applications.

• Chapter 2, “How Localization Works,” explains how the Open Client
and Open Server localization mechanism works.

• Chapter 3, “Writing Internationalized Open Client and Open Server
Applications,” explains how to write international Open Client and
Open Server applications.

• Chapter 4, “Coded Character Set Conversion Support,” explains how
character set conversion works in Open Client and Open Server
products.

• Chapter 5, “Editing the Locales File,” describes what is in the locales
file and explains how to change it.

• Chapter 6, “Creating or Changing Collating Sequences,” explains
how to create and change collating sequence files.

• Appendix A, “Directories and Files Related to Internationalization,”
describes the Open Client and Open Server directories and files that
are related to internationalization.

• Appendix B, “External Localization File Syntax,” describes external
localization file syntax.

Related documents You can see these books for more information:

• The Open Server Release Bulletin for Microsoft Windows contains
important last-minute information about Open Server.

viii Open Client and Open Server

• The Software Developer’s Kit Release Bulletin for Microsoft Windows
contains important last-minute information about Open Client™ and
SDK.

• The jConnect™ for JDBC™ Release Bulletin versions 6.05 and 7.0
contains important last-minute information about jConnect.

• The Open Client and Open Server Configuration Guide for Microsoft
Windows contains information about configuring your system to run Open
Client and Open Server.

• The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

• The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

• The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

• The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

• The Open Client and Open Server Programmers Supplement for Microsoft
Windows contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

• Compiling and linking an application

• The sample programs that are included with Open Client and Open
Server

• Routines that have platform-specific behaviors

• The jConnect for JDBC Installation Guide version 6.05 contains
installation instructions for jConnect for JDBC.

• The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

• The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access data in Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

 About This Book

International Developers Guide ix

• The Adaptive Server Enterprise ODBC Driver by Sybase Users Guide for
Windows and Linux, provides information on how to access data from
Adaptive Server on Microsoft Windows, Linux, and Apple Mac OS X
platforms, using the Open Database Connectivity (ODBC) Driver.

• The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

Other sources of
information

Use the Sybase® Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

x Open Client and Open Server

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

 About This Book

International Developers Guide xi

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include the braces in the command.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

xii Open Client and Open Server

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

International Developers Guide 1

C H A P T E R 1 Understanding
Internationalization and
Localization

This chapter defines internationalization and localization and discusses
the advantages of writing internationalized applications.

This chapter covers the following topics:

Internationalization and localization
Internationalization is the process of enabling an application to support
multiple languages and cultural conventions.

An internationalized application uses external files to provide language-
specific information at execution time. Because it contains no language-
specific code, an internationalized application can be deployed in any
native language environment without code changes.

Localization is the process of configuring an application to execute using
a specific language and related cultural conventions (such as datetime
representation).

A localized application adopts the look and feel of the native language
environment in which it is deployed. It generates messages in the local
language and character set and uses local conventions for dates and times.

Open Client and Open Server products provide flexible, powerful
localization mechanisms that enable application programmers to design
and write internationalized applications.

Topic Page
Internationalization and localization 1

Advantages of internationalized applications 2

International systems 2

Open Client and Open Server support for international systems 3

Advantages of internationalized applications

2 Open Client and Open Server

Advantages of internationalized applications
The task of designing an application to work outside its country of origin can
seem daunting. Often, programmers think that internationalizing means hard-
coding dependencies based on cultural and linguistic conventions.

A better approach is to write an internationalized application, that is, one that
examines the local computing environment to determine what language to use
and loads files containing language-specific information at runtime.

When you use an internationalized application, a single application can be
deployed in all countries. This has several advantages:

• You write and maintain one application, not half a dozen (or more).

• The application can be deployed, without change, in new countries as
needed. You need only supply the correct localization files.

• All sites can expect standard features and behavior.

International systems
An international system may include internationalized client applications,
gateways, and servers running on different platforms in different native
language environments.

For example, an international system might include the following components:

• Order processing applications in New York City, Mexico City, and Paris
(Client-Library applications)

• An inventory control server in Germany (Adaptive Server® Enterprise)

• An order fulfillment server in France (Adaptive Server Enterprise)

• A central accounting application in Japan (an Open Server application
working with an Adaptive Server Enterprise)

In this system, the order processing applications:

• Query the inventory control server to determine if requested items are in
stock

• Place orders with the order fulfillment server

• Send financial information to the accounting application

CHAPTER 1 Understanding Internationalization and Localization

International Developers Guide 3

The inventory control server and the order fulfillment server respond to
queries, and the accounting application collects financial data and generates
reports.

All applications and servers use the local language and character set to accept
input and generate messages.

In this system, the order processing applications and the Open Server gateway
are localized by means of the LC_ALL environment variable, which specifies
a locale name. At runtime, Open Client and Open Server applications match
the specified locale name to an entry in the Sybase locales file to determine
what language, character set, and collating sequence files to load.

The Adaptive Server Enterprises in this system are localized by means of
language modules that are installed along with the server.

Open Client and Open Server support for international
systems

Open Client and Open Server products provide functionality to fully support
the development of international systems. Using Client-Library, Server-
Library, and CS-Library, an application can be localized on any supported
platform to use:

• A specific language and character set for error messages

• A specific character set when converting strings from another character set

• A specific collating sequence to use when sorting or comparing strings

• Specific datetime formats and values

Note DB-Library supports one language and character set at a time for error
messages. For details, see “Writing internationalized DB-Library
applications” on page 30.

Both Adaptive Server Enterprise and Open Server applications support
localized Open Client applications. When a client connects to a server, the
server determines whether or not it can support the required character set
conversion (if any).

Open Client and Open Server support for international systems

4 Open Client and Open Server

Because Open Client and Open Server support the Unicode Standard, an Open
Server application can support any client, regardless of what character set it
uses.

Adaptive Server Enterprise 12.5 and later support Unicode. You can use an
Open Server application to perform character set conversion for earlier
versions of Adaptive Server Enterprise. See “Using Open Server as a
conversion gateway” on page 41.

International Developers Guide 5

C H A P T E R 2 How Localization Works

This chapter describes how the Open Client and Open Server localization
mechanism works.

This chapter covers the following topics:

Note The information in this chapter does not apply to DB-Library.

Deciding what localization values to use
Before writing an internationalized Open Client and Open Server
application, you must decide how the application will localize, that is, how
it will determine which language, character set, and cultural conventions
to use in a given environment.

Open Client and Open Server applications can use initial localization
values, custom localization values, or both:

• Initial localization values are determined at runtime, when the
application allocates a context structure (cs_ctx_alloc):

• If the LC_ALL environment variable is set, the application will
use its value to localize the new context structure.

• If the LC_ALL environment variable is not set but the LANG
environment variable is set, the application will use its value to
localize the new context structure.

Topic Page
Deciding what localization values to use 5

Using initial localization values 6

Using custom localization values 8

Localization mechanism details 8

Using initial localization values

6 Open Client and Open Server

• If neither environment variable is set, the application uses the
platform “default” entry in the locales file to localize the new context
structure. The locales file, locales.dat is available in:

• $SYBASE/locales directory on UNIX platforms

• %SYBASE%\locales directory on Windows

• An application sets up custom localization values by calling cs_locale to
fill a CS_LOCALE structure and then using the CS_LOCALE structure to
change localization values for a context, connection, thread, data element,
or routine.

Using initial localization values
A typical internationalized Open Client and Open Server application uses the
initial localization values determined by LC_ALL, LANG, or the “default”
entry in the locales.dat file to localize.

Initial localization values are determined at runtime, when the Open Client and
Open Server application calls the CS-Library routine cs_ctx_alloc to allocate a
CS_CONTEXT structure. When an application makes this call, CS-Library
loads initial localization information into the new context structure.

The localization information includes:

• Language

• Character set

• Collating sequence

• Date and time formats

The loading process works as follows:

1 The application calls cs_ctx_alloc.

2 CS-Library searches the environment for the LC_ALL or LANG
environment variables to determine a locale name. Table 2-1 describes this
search:

CHAPTER 2 How Localization Works

International Developers Guide 7

Table 2-1: How CS-Library determines a locale name

3 CS-Library looks up the locale name in the locales.dat file to determine
the associated language and character set (a collating sequence may or
may not be specified). If the locale name does not exist in the locales.dat
file, cs_ctx_alloc returns an error.

4 CS-Library loads the new context structure with the appropriate
localization information.

Setting up an application to use initial localization values
If your application will use initial localization values, you should not include
any special code to internationalize your application, but you do need to make
sure that administrators and users know how to set environment variables for
your application.

When you distribute the application, make sure that systems administrators and
users understand the following:

• If LC_ALL exists, its value must correspond to the correct entry in the
locales.dat file.

• If LANG exists, its value must correspond to the correct entry in the
locales.dat file.

• If neither environment variable exists, the “default” entry in the
locales.dat file must be correct (that is, it must list the language, character
set, and collating sequence that the application should use).

Is LC_ALL
defined?

Is LANG
defined? CS-Library action

Yes N/A Use LC_ALL’s value as the locale name.

No Yes Use LANG’s value as the locale name.

No No Use a locale name of “default,” which means
CS-Library loads one of the following:

• The shipped defaults for the platform

• The user-defined set assigned to the locale
name “default”

Using custom localization values

8 Open Client and Open Server

Using custom localization values
Client-Library and Open Server applications can use custom localization
values at the context, connection, thread, data element, and routine levels.

A Client-Library or Open Server application sets up custom localization values
by:

1 Calling cs_locale to load a CS_LOCALE structure with specific
localization values. See “The cs_locale routine” on page 11.

2 Using the loaded CS_LOCALE structure to customize a context,
connection, thread, or data element. See “The CS_LOCALE structure” on
page 11.

You can use command line options to run the Embedded SQL precompiler with
custom localization values.

Embedded SQL applications cannot use custom values, that is, the initial
localization values determined at runtime by LC_ALL, LANG, or the “default”
entry in the locales.dat file.

Localization mechanism details
This section provides more detail about localization mechanisms. It contains
information about the locales.dat file, localization environment variables, the
CS_LOCALE structure, and the cs_locale routine.

The locales file
The locales file (locales.dat) provides platform-specific locale information in
a Sybase proprietary format. This file associates locale names with languages,
character sets, and collating sequences.

The locales.dat file directs Open Client and Open Server applications to
localization information, but it does not contain actual localized messages or
character set information. Open Client and Open Server applications use the
locales.dat file to determine what localization information to load.

See Chapter 5, “Editing the Locales File.”

CHAPTER 2 How Localization Works

International Developers Guide 9

Environment variables
On most platforms, Client-Library and Server-Library applications use
the following localization environment variables:

• LC_ALL

• LC_COLLATE

• LC_CTYPE

• LC_MESSAGE

• LC_TIME

• LANG

Note Some systems (typically UNIX systems) automatically set localization
environment variables to a specific value when a user logs in. If your system
does this, either make sure that the value matches a locale name in the
locales.dat file or reset the variables after logging in.

Table 2-2 describes how Open Client and Open Server applications use these
environment variables:

Table 2-2: Environment variables related to localization

Environment
variable

Set to a locale name that
indicates Used by When

LC_ALL Language, character set, and
collating sequence to use for
messages, datatype
conversions, and sorting.

A Client-Library or
Open Server
application.

An application calls cs_ctx_alloc or
cs_ctx_global.

An application calls cs_locale with
type as CS_LC_ALL and buffer as
NULL.

The Embedded SQL
precompiler.

At application precompile time, to
determine the default language and
character set to use for precompiler
messages.

A precompiled
Embedded SQL
application.

At application runtime, when a
precompiled application first calls
cs_ctx_global.

The precompiler generates a
cs_ctx_global call for each Embedded
SQL statement.

Localization mechanism details

10 Open Client and Open Server

Platforms not using environment variables

This section provides information about platforms that do not use environment
variables.

Desktop terminology

Some platforms use the term “environment values” instead of “environment
variables.” The terms mean the same thing.

LC_COLLATE Collating sequence (sort
order) to use when sorting
and comparing character
data.

A Client-Library or
Open Server
application.

An application calls cs_locale with
type as CS_LC_COLLATE and buffer
as NULL.

LC_CTYPE Character set to use for
datatype conversions.

A Client-Library or
Open Server
application.

An application calls cs_locale with
type as CS_LC_CTYPE and buffer as
NULL.

LC_MESSAGE Language and character set
to use for messages.

A Client-Library or
Open Server
application.

An application calls cs_locale with
type as CS_LC_MESSAGE and
buffer as NULL.

 LC_TIME Date and time data
representation to use for a
datetime string, such as date
and time formats, names in
the native language, and
month and day
abbreviations.

A Client-Library or
Open Server
application.

An application calls cs_locale with
type as CS_LC_TIME and buffer as
NULL.

LANG Language, character set, and
collating sequence to use for
messages, datatype
conversions, and sorting.

Open Client and Open Server
products search for LANG if
they cannot find LC_ALL.

A Client-Library or
Open Server
application.

If an application calls cs_ctx_alloc or
cs_ctx_global, Client-Library
examines LANG if LC_ALL is not
defined.

If an application calls cs_locale,
Client-Library examines LANG if
cs_locale’s buffer is NULL and the LC
variable corresponding to type is not
defined.

The Embedded SQL
precompiler.

At application precompile time, if
LC_ALL is not defined.

A precompiled
Embedded SQL
application.

At application runtime, if LC_ALL is
not defined.

Environment
variable

Set to a locale name that
indicates Used by When

CHAPTER 2 How Localization Works

International Developers Guide 11

The CS_LOCALE structure
The CS_LOCALE structure stores a complete set of localization information,
including language, character set, collating sequence, and datetime formats.

Open Client and Open Server applications need to use a CS_LOCALE
structure to define custom localization values for a context, connection, thread,
data element, or routine.

❖ To use a CS_LOCALE structure

1 Call cs_loc_alloc to allocate a CS_LOCALE structure.

2 Call cs_locale to load the CS_LOCALE structure with the desired
localization values. See “The cs_locale routine” on page 11.

3 If necessary, call cs_dt_info(CS_SET,CS_DT_CONVFMT) to change the
date conversion format in the CS_LOCALE structure. See the Open Client
and Open Server Common Libraries Reference Manual.

4 Use the loaded CS_LOCALE structure to customize a context,
connection, thread, data element, or routine:

• To customize a context, call cs_config.

• To customize a connection, call ct_con_props.

• To customize a thread, call srv_thread_props.

• To define custom values for a data element, supply a pointer to the
CS_LOCALE structure in a CS_DATAFMT structure.

5 To define custom values for a routine, pass a pointer to the CS_LOCALE
structure to the routine.

The cs_locale routine
Open Client and Open Server applications use the cs_locale routine to load a
CS_LOCALE structure with custom localization information.

cs_locale is declared as follows:

CS_RETCODE cs_locale(context, action, locale, type,
buffer, buflen, outlen)

CS_CONTEXT *context;
CS_INT action;
CS_LOCALE *locale;
CS_INT type;

Localization mechanism details

12 Open Client and Open Server

CS_CHAR *buffer;
CS_INT buflen;
CS_INT *outlen;

When called, cs_locale performs as follows:

1 Determines what locale name to use.

If the cs_locale buffer parameter is supplied, this parameter is the locale
name.

If the cs_locale buffer parameter is NULL, cs_locale checks for an
environment variable corresponding to its type parameter and uses the
value of this environment variable as the locale name. Make sure that the
appropriate environment variables have values that correspond to entries
in the locales.dat file.

If an environment variable corresponding to type is not set, cs_locale uses
a locale name of “default.”

2 Looks up the locale name in the locales.dat file to determine the associated
language, character set, and collating sequence. If cs_locale cannot find a
matching entry, it returns CS_FAIL.

3 Loads the information specified by the cs_locale type parameter into the
CS_LOCALE structure. For instance, if type is CS_LC_CTYPE, cs_locale
loads character set information.

See the Open Client and Open Server Common Libraries Reference Manual.

Example: Calling cs_locale to Load a CS_LOCALE structure

Suppose an application is running on a machine with a locales.dat file
containing the following entries:

locale = korean, korean, eucksc, korsrt
locale = C.korean, us_english, eucksc, ussrt
locale = default, us_english, iso_1, ussrt

where the format of an entry is:

locale = locale_name, language_name, charset_name [,sort_order]

Suppose further that the environment variable LC_MESSAGE has a value of
“korean,” and that the environment variable LC_TIME is not defined. In this
environment, the application would need to make two calls to cs_locale to load
a CS_LOCALE structure with the following custom values:

• “korean” as the language and “eucksc” as the character set for Client-
Library and server messages

CHAPTER 2 How Localization Works

International Developers Guide 13

• “us_english” as the language and “eucksc” as the character set to use for
conversion of datetime values

The two cs_locale calls are:

/*
 ** You should not specify a locale name, because
 ** cs_locale will use the value of the LC_MESSAGE
 ** environment variable as the locale name.
 */
 cs_locale(ctx, CS_SET, mylocale, CS_LC_MESSAGE,
 NULL, CS_UNUSED, NULL);

 /* Do need to specify a locale name, because
 ** there’s no LC_TIME environment variable set.
 */
 cs_locale(ctx, CS_SET, mylocale, CS_LC_TIME,
 "C.korean", CS_NULLTERM, NULL);

After loading the CS_LOCALE structure, the application can:

• Call cs_config to copy the custom localization values into a context
structure.

• Call ct_con_props to copy the custom localization values into a connection
structure.

• Call srv_thread_props to copy the custom localization values into a thread
structure.

• Supply the CS_LOCALE structure as a parameter to a routine that accepts
custom localization values (cs_strcmp, cs_time).

• Include the CS_LOCALE structure in a CS_DATAFMT structure
describing a source or destination program variable (cs_convert, ct_bind).

Localization mechanism details

14 Open Client and Open Server

International Developers Guide 15

C H A P T E R 3 Writing Internationalized
Open Client and Open Server
Applications

This chapter explains how to write internationalized Open Client and
Open Server applications.

This chapter covers the following topics:

This chapter is not a comprehensive guide to writing Open Client and
Open Server applications. Other helpful resources include:

• Open Client and Open Server Common Libraries Reference Manual

• Open Client Client-Library/C Reference Manual

• Open Server Server-Library/C Reference Manual

• The sample international applications, i18n.c for Open Client and
intlchar.c for Open Server, shipped with Open Client and Open
Server products

See the Open Client and Open Server Programmers Supplement for
your platform.

Topic Page
Writing internationalized Client-Library applications 16

Writing internationalized Open Server applications 22

Writing internationalized DB-Library applications 30

Internationalizing with Embedded SQL 30

Localizing standalone utilities 32

Writing internationalized Client-Library applications

16 Open Client and Open Server

Writing internationalized Client-Library applications
Before writing an internationalized Client-Library application, you must
decide how the application will localize, that is, how it will determine which
language, character set, and cultural conventions to use in a given environment.

Client-Library applications can use initial localization values, custom
localization values, or both.

Most applications use initial localization values.

For information about how initial localization values are determined and how
to decide whether your application can use them, see “Deciding what
localization values to use” on page 5.

Client-Library applications using initial values
If your application will use initial localization values, you should not include
any special code to internationalize your application.

When you distribute your application, make sure that systems administrators
know how to set environment variables. See “Setting up an application to use
initial localization values” on page 7.

Client-Library applications using custom values
Client-Library applications can use custom localization values at the context,
connection, and data element levels.

Open Client and Open Server applications sets up custom localization values
by:

• Calling cs_locale to load a CS_LOCALE structure with specific
localization values.

• Using the loaded CS_LOCALE structure to customize a context,
connection, or data element.

Table 3-1 is intended to help you decide how to use custom localization values
in your application:

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 17

Table 3-1: Using custom localization values in a Client-Library
application

Customizing at the context level
You need to install custom localization values at the context level if the
context’s initial localization values are not acceptable.

For example, you would need to install custom localization values at the
context level if different contexts in the same application required different
localization values, because not all of the contexts would be created with
correct initial values.

For information on how a context receives its initial localization values, see
“Using initial localization values” on page 6.

Example

Suppose a Client-Library application needs to generate messages in Korean,
but it is running in an environment in which the LC_ALL environment variable
must be set to us_english to accommodate other applications. Because the
initial us_english localization values that the context uses are not acceptable,
the application needs to specify Korean localization values at the context level.

If Then
For more
information

The application needs just a
single set of custom
localization values (but, for
whatever reason, it cannot use
its initial localization values).

Customize at the context level.

You can use the same
CS_LOCALE structure to
customize multiple contexts.

“Customizing at
the context level”
on page 17.

Different contexts in the
application require different
localization values.

Customize each context.

Use different CS_LOCALE
structures to customize
different contexts.

“Customizing at
the context level”
on page 17.

Specific connections need to
use localization values that
differ from their parent
context’s localization values.

Customize those connections. “Customizing at
the connection
level” on page 18.

Bind variables, conversion
destination variables, or
specific routines need to use
custom localization values.

Customize the variables or
routines.

“Customizing at
the data element
level” on page 20.

Writing internationalized Client-Library applications

18 Open Client and Open Server

Defining custom localization values for a context

Table 3-2 describes how to define custom localization values at the context
level:

Table 3-2: Installing custom values at the context level

Customizing at the connection level
A connection inherits default localization values from its parent context. You
need to install custom localization values at the connection level if the
connection’s default localization values are not acceptable.

Step
Application
step Purpose Details

1 Call cs_loc_alloc. Allocate a
CS_LOCALE
structure.

This call copies the parent
context’s current localization
information into the
CS_LOCALE structure.

2 Call cs_locale. Overwrite the
CS_LOCALE
structure with custom
localization values.

See “The cs_locale routine” on
page 11.

Open Server applications must
call cs_locale with type as
CS_LC_ALL. This ensures that
Server-Library loads the
CS_LOCALE structure with
localization values that are
internally consistent.

3 Optionally, call
cs_dt_info.

Change datetime
conversion formats in
the CS_LOCALE
structure.

See the Open Client and Open
Server Common Libraries
Reference Manual.

4 Call cs_config
with property as
CS_LOC_PROP

Customize a context.

5 Optionally, call
cs_loc_drop.

Deallocate the
CS_LOCALE
structure.

An application can reuse the
CS_LOCALE structure before
deallocating it.

If necessary, the application can
call cs_locale to change the
localization values in the
structure before reusing it.

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 19

Example

A us_english/iso1 application that connects to a server in Spain needs to
process and sort roman8 character data. Because the us_english/iso1
localization values that the connection inherits from its parent context are not
acceptable, the application needs to install roman8 localization values at the
connection level.

Defining custom localization values for a connection

Table 3-3 describes how to define custom localization values at the connection
level.

Table 3-3: Installing custom values at the connection level

Step
Application
step Purpose Details

1 Call cs_loc_alloc. Allocate a
CS_LOCALE
structure.

This call copies the parent context’s current
localization information into the CS_LOCALE
structure.

2 Call cs_locale. Overwrite the
CS_LOCALE
structure with custom
localization values.

See “The cs_locale routine” on page 11.

3 Optionally, call
cs_dt_info.

Change datetime
conversion formats in
the CS_LOCALE
structure.

See the Open Client and Open Server Common
Libraries Reference Manual.

4 Call ct_con_props
with property as
CS_LOC_PROP.

Customize a
connection.

Note that CS_LOC_PROP is a login property. An
application cannot change its value after a connection
is open.

If an application sends a request to the server to
change the language or character for the connection
after the connection is open, the change will not be
reflected in the value of CS_LOC_PROP. If the
application calls ct_con_props to retrieve the value of
CS_LOC_PROP, the retrieved locale structure will
not contain the connection’s current localization
values.

5 Optionally, call
cs_loc_drop.

Deallocate the
CS_LOCALE
structure.

An application can reuse the CS_LOCALE structure
before deallocating it.

If necessary, the application can call cs_locale to
change the localization values in the structure before
reusing it.

Writing internationalized Client-Library applications

20 Open Client and Open Server

When a client application calls ct_connect to open a connection, the server
determines whether it can support the requested localization. If it can, it accepts
the connection as is. If it cannot, it forces the connection to an alternate
language and/or character set. At this point, the client may either accept or
reject the altered connection.

Customizing at the data element level
Data-element localization values can be used to customize the following:

• Bind variables (ct_bind)

If custom localization values are not specified, bind variables use
localization values from the connection with which they are associated.

• Conversion destination variables (cs_convert)

If custom localization values are not specified, conversion destination
variables use localization values from cs_convert’s context parameter.

• cs_time and cs_strcmp behavior

If custom localization values are not specified, these routines use the
localization values associated with their context parameter.

You need to set up custom localization values at the data element level if the
default values are not acceptable.

Example

To generate a report, an application with a us_english connection selects book
titles and publication dates from a us_english database. Because the report will
be sent to Paris, the publication dates must be in a standard French format.

Since the connection’s us_english formats are not acceptable for the date
column bind variable, the application needs to set up the bind variable to use
French datetime formats.

The application can set up the bind variable for the date column to use French
datetime formats as follows:

• The application loads a CS_LOCALE structure with French datetime
formats.

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 21

• The application calls ct_bind to bind the date column to a character
variable. In the ct_bind call, the CS_DATAFMT structure that describes
the bind variable references the CS_LOCALE structure containing the
French datetime formats.

When the application calls ct_fetch, the datetime value in the date column is
automatically converted to a character string containing French day and month
names and copied into the bound variable.

Defining custom localization values at the data element level

Table 3-4 describes how to define custom localization at the data element level.

Table 3-4: Installing custom values at the data element level

Step
Application
step Purpose Details

1 Call
cs_loc_alloc.

Allocate a
CS_LOCALE
structure.

This call copies the parent context’s current
localization information into the CS_LOCALE
structure.

2 Call cs_locale. Overwrite the
CS_LOCALE
structure with custom
localization values.

See “The cs_locale routine” on page 11.

3 Optionally, call
cs_dt_info.

Change datetime
conversion formats in
the CS_LOCALE
structure.

See the Open Client and Open Server Common
Libraries Reference Manual.

4 Use the
CS_LOCALE
structure

Customize a bind
variable, destination
variable, or routine.

• Customize a bind variable by using the
CS_LOCALE structure in ct_bind’s datafmt
parameter.

• Customize a destination variable by using
the CS_LOCALE structure in cs_convert’s
destfmt parameter.

• Customize cs_strcmp or cs_time’s behavior
by supplying the CS_LOCALE structure as
a parameter to the routine.

5 Optionally call
cs_loc_drop.

Deallocate the
CS_LOCALE
structure.

The application must not deallocate the
CS_LOCALE structure until the
CS_DATAFMT structure no longer references
it.

Writing internationalized Open Server applications

22 Open Client and Open Server

Client-Library localization value precedence
Client-Library uses localization values in the following order of precedence:

1 Values defined at the data element level

2 Values defined at the connection level

3 Values defined at the context level

Client-Library localization properties
Table 3-5 lists Client-Library properties that are related to localization:

Table 3-5: Client-Library properties related to localization

Writing internationalized Open Server applications
When writing an internationalized Open Server application, you will need to
consider the following issues:

• How the application itself will localize

• How the application will support localized clients

• How the application will respond to client requests to change language and
character set

• What values Server-Library localization properties should have

Property Description Applies to
For more
information

CS_LOC_PROP A CS_LOCALE
structure that defines
localization
information.

Contexts,
connections

Open Client
Client-Library/C
Reference Manual

CS_CHARSETCNV Determines whether or
not the server is
performing character
set conversion.

Connections Open Client
Client-Library/C
Reference Manual

CS_NOCHARSETCNV Determines whether or
not the server should
perform character set
conversion.

Connections Open Client
Client-Library/C
Reference Manual

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 23

Localizing the application
An Open Server application’s localization values determine the language in
which error messages are generated and the character set and collating
sequence that are used for all data operations.

Note You can use SRV_S_USESRVLANG and SRV_T_USESRVLANG
properties to override the server’s language when it generates error messages.

An Open Server application can use initial localization values, custom
localization values, or both.

Most applications use initial localization values.

Initial localization values are determined when the application allocates its
context structure. For information on how to decide whether your application
can use initial localization values, see “Deciding what localization values to
use” on page 5.

Open Server applications using initial values

If your application will use initial localization values, you should not include
any special code to internationalize your application.

When you distribute your application, make sure that systems administrators
know how to set environment variables. See “Setting up an application to use
initial localization values” on page 7.

Open Server applications using custom values

If your application cannot use initial localization values, you need to install
custom localization information in the application-wide context structure
before calling srv_version. For information on how to do this, see Table 3-2 on
page 18.

Supporting localized clients
Open Server automatically provides some support for localized clients, but
your application may need to provide additional support.

Writing internationalized Open Server applications

24 Open Client and Open Server

Automatic support for localized clients

Open Server automatically handles some tasks associated with supporting
localized clients. These tasks include:

• Performing character set conversion, if required, of both incoming and
outgoing data.

• Providing Open Server error messages in the client’s language and
character set (provided that the SRV_T_USESRVLANG property for the
client’s thread structure is set to CS_FALSE).

• Providing localization information to the client in response to a client
request. See “Automatic response to requests for localization
information” on page 24.

For some Open Server applications, this automatic support for localized clients
is sufficient, as they do not need to take any additional steps to support
localized clients. However, other Open Server applications need to provide
additional support for localized clients.

Automatic response to requests for localization information

After logging into an Open Server application, a client can request:

• The name of the server’s character set

• The name of the server’s collating sequence (sort order)

• The character set definition for the client’s character set

• The sort order definition for the client’s collating sequence

Clients make these requests using the sp_serverinfo system registered
procedure, using Remote Procedure Call (RPC) commands.

In response, Open Server automatically returns the requested information by
means of the sp_serverinfo system registered procedure. An Open Server
application does not need to take any action at this point, and, in fact, is not
aware that the request ever occurred.

Additional support for localized clients

An Open Server application needs to take additional steps to support localized
clients under the following circumstances:

• If it passes CS-Library error messages back to clients

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 25

In this case, the Open Server application needs to ensure that CS-Library
generates messages in the client’s language and the Open Server
application’s character set. For information on how to do this, see
“Localizing CS-Library messages for clients” on page 25.

• If it is acting as a gateway

In this case, the Open Server application needs to ensure that a connection
to a remote server uses the client’s language and the Open Server’s
character set. For information on how to do this, see “Creating localized
connections for Open Server gateways” on page 27.

• If a client application asks to change its language or character set

In this case, the Open Server application needs to change the language or
character set for the client thread. For information on how to do this, see
“Responding to requests to change language and character set” on page
28.

Localizing CS-Library messages for clients

If an Open Server application calls a CS-Library routine with its own context
structure as a parameter, any error messages that CS-Library generates as the
result of the call will be in the Open Server application’s language and
character set.

For example, if the context parameter for a cs_convert call indicates
us_english/iso_1, CS-Library generates a us_english/iso_1 message if the
cs_convert call fails.

Note If a CS-Library routine takes a CS_LOCALE structure as a parameter,
the localization values in this structure will override the localization values in
the context parameter.

Getting CS-Library messages in the Open Server application’s language and
character set is acceptable only if the Open Server application logs the CS-
Library messages or otherwise keeps them to itself.

However, if an Open Server application will be passing CS-Library error
messages back to a client, it needs to ensure that CS-Library generates
messages in the client’s language and the Open Server application’s character
set.

The messages need to be in the client’s language for the client to understand
them.

Writing internationalized Open Server applications

26 Open Client and Open Server

The messages need to be in the Open Server application’s character set for two
reasons:

• Open Server applications commonly record all messages in the log file. It
is important that all logged messages use the same character set.

• Open Server automatically performs character set conversion on outgoing
data, including messages. Generating messages in Open Server’s character
set ensures that they will be correctly converted to the client’s character
set.

An application can ensure that messages are generated in the correct language
and character set by setting up a properly localized CS_CONTEXT structure
for each client thread and then using these CS_CONTEXT structures when
calling CS-Library routines on behalf of clients.

Localizing a CS_CONTEXT structure for a client thread

Table 3-6 illustrates how to localize a CS_CONTEXT structure for a client
thread:

Table 3-6: Localizing a CS_CONTEXT structure for a client thread

Step Application step Purpose Details

1 Call cs_ctx_alloc. Allocate a CS_CONTEXT
structure for the client thread.

The context structure is allocated with
initial localization values.

2 Call cs_loc_alloc. Allocate a new CS_LOCALE
structure.

This call copies the parent context’s
current localization information into
the new CS_LOCALE structure.

3 Call
srv_thread_props(GET)
with property as
SRV_T_LOCALE.

Copy the client thread’s existing
localization values into the new
CS_LOCALE structure.

4 Call cs_locale with type
as
CS_SYB_CHARSET.

Replace the client thread’s
character set information in the
new CS_LOCALE structure with
the Open Server application’s
character set information.

5 Call cs_config with
property as
CS_LOC_PROP.

Customize the context structure. This call copies localization
information from the CS_LOCALE
structure into the CS_CONTEXT
structure.

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 27

Creating localized connections for Open Server gateways

If an Open Server application is acting as a gateway, it needs to ensure that a
connection to a remote server uses the client’s language and the Open Server’s
character set.

Note The Open Server’s character set does not need to be the same as the
remote server’s character set, but it must be one that the remote server is
capable of converting to its own.

Adaptive Server Enterprise can convert between any two Western European
character sets and between any two Japanese character sets, but it cannot
convert a Western European character set to a Japanese one (and vice versa).
For example, Adaptive Server Enterprise can convert between ISO 8859-1 and
CP850, because both of these character sets are in the Western European
language group, but Adaptive Server Enterprise cannot convert between ISO
8859-1, which is Western European, and CP 1250, which is Eastern European.
When Adaptive Server Enterprise is converting between character sets in
different language groups, non-ASCII characters may be lost.

The simplest way for an application to do this is to set up a properly localized
CS_CONTEXT structure for each client thread and then allocate remote
connections for the client thread within the localized context.

See “Localizing a CS_CONTEXT structure for a client thread” on page 26.

For information on how to allocate a connection, see the Open Client Client-
Library/C Reference Manual.

6 Optionally, call
cs_loc_drop.

Deallocate the CS_LOCALE
structure.

An application can reuse the
CS_LOCALE structure before
deallocating it.

If necessary, the application can call
cs_locale to change the localization
values in the structure before reusing it.

Step Application step Purpose Details

Writing internationalized Open Server applications

28 Open Client and Open Server

Responding to requests to change language and character set
When a client connects to an Open Server application, Open Server
automatically creates a CS_LOCALE structure reflecting the client’s language
and character set. (The client’s collating sequence is NOT included in the
CS_LOCALE structure: Collating sequence information is not transmitted to
the server at login time.)

For example, when a french/cp850 client logs into a us_english/iso_1 Open
Server application, the Open Server application creates a french/cp850
CS_LOCALE structure. The Open Server application uses this CS_LOCALE
structure to set up character set conversion routines for the client thread.

Note The information in this CS_LOCALE structure is available to Open
Server programmers, who can call srv_thread_props to copy the information
into a newly allocated CS_LOCALE structure.

After logging in, if a client sends a request to change its language or character
set, the Open Server application must make the requested changes in the client
thread’s CS_LOCALE structure.

A client can request a change of language or character set in one of two ways:

• Using a language-based option command (sent with ct_command). This
type of command triggers a SRV_LANGUAGE event, so the Open Server
application processes the request inside a SRV_LANGUAGE event
handler.

• Using an option command (sent with ct_options). This type of command
triggers a SRV_OPTION event, so the Open Server application processes
the request inside a SRV_OPTION event handler.

Table 3-7 describes how to change the language or character set for a client
thread:

Table 3-7: Changing language or character set for a client thread

Step Application step Purpose Details

1 Call cs_loc_alloc. Allocate a CS_LOCALE
structure.

This call copies the Open Server
application context’s current
localization information into the
new CS_LOCALE structure.

2 Call srv_thread_props
(GET) with property as
SRV_T_LOCALE.

Copy the client thread’s
existing localization
values into the new
CS_LOCALE structure.

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 29

Note Open Server and SDK support the same character sets as Adaptive
Server Enterprise.

Server-Library localization properties
Table 3-8 lists Server-Library properties that are related to localization:

Table 3-8: Server-Library properties related to localization

These properties determine whether Open Server generates error messages in
the Open Server application’s language or a client’s language:

SRV_S_USESRVLANG is a server-wide property, set using srv_props. Its
value serves as the default value for SRV_T_USESRVLANG.

3 Call cs_locale. Overwrites the
CS_LOCALE structure
with the requested
language or character set.

See “The cs_locale routine” on
page 11.

4 Call srv_thread_props
(SET) with property as
SRV_T_LOCALE.

Set up the client thread
with the new language or
character set.

5 Optionally, call
cs_loc_drop.

Deallocate the
CS_LOCALE structure.

An application can reuse the
CS_LOCALE structure before
deallocating it.

If necessary, the application can
call cs_locale to change the
localization values in the
structure before reusing it.

Step Application step Purpose Details

Property Description Applies to
For more
information

SRV_S_USESRVLANG Whether or not to
generate messages in
the server’s language.

Application-
wide context

Open Server
Server-Library/C
Reference Manual

SRV_T_USESRVLANG Whether or not to
generate messages in
the server’s language.

Thread Open Server
Server-Library/C
Reference Manual

Writing internationalized DB-Library applications

30 Open Client and Open Server

SRV_T_USESRVLANG is a thread property, set using srv_thread_props.
When a new thread structure is allocated, SRV_T_USESRVLANG picks up a
default value from SRV_S_USESRVLANG:

• If SRV_T_USESRVLANG is CS_TRUE, Open Server generates error
messages for the thread in the language of the server.

• If SRV_T_USESRVLANG is CS_FALSE, Open Server generates error
messages for the thread in the language of the client.

Writing internationalized DB-Library applications
When writing a new client application, programmers should use Client-Library
instead of DB-Library. The information in this section is for sites with existing
DB-Library applications.

Unlike Client-Library, DB-Library does not examine environment variables to
determine initial localization values. Instead, in DB-Library, initial localization
values are pre-defined on a per-platform basis.

An application can change these initial values for a specific connection by
changing the language name and character set name in the login record that is
used to open the connection:

• To change the language name, call DBSETLNATLANG
(login,language_name).

• To change the character set name, call DBSETLCHARSET
(login,charset_name). An application can call DBSETLCHARSET
(login,NULL) to specify that the server should not perform character set
conversion.

An application can use a different language and character set for each server
connection.

See the Open Client DB-Library/C Reference Manual.

Internationalizing with Embedded SQL
As an Embedded SQL application programmer, you can localize:

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 31

• The Embedded SQL precompiler

• A precompiled Embedded SQL application

Localizing the precompiler
Precompiler users can either run the precompiler with default localization
values or custom localization values.

How default values are determined

If command line options are not specified, the precompiler’s localization
values are determined at precompiler runtime as follows:

• If the LC_ALL environment variable is set, the application uses its value
to localize, matching LC_ALL’s value to an entry in the locales file to
determine what language and character set to use.

• If the LC_ALL environment variable is not set but the LANG environment
variable is, the application uses its value to localize, matching LANG’s
value to an entry in the locales file to determine what language and
character set to use.

• If neither environment variable is set, the application uses the “default”
entry in the locales file to localize.

Specifying custom localization values

Precompiler users can use command line options to specify custom localization
values for the following:

• Source file character sets

To specify the character set of the source file that is being precompiled, use
the following command line option:

-J locale_for_charset

where locale_for_charset is a locale name that has an entry in the locales
file.

If you do not specify -J, the precompiler interprets the source file as being
in the precompiler’s default character set.

• Precompiler messages

Localizing standalone utilities

32 Open Client and Open Server

To specify the language and character set that the precompiler uses for
messages, use the following command line option:

-Z locale_for_messages

where locale_for_messages is a locale name that has an entry in the locales
file.

If you do not specify -Z, the precompiler uses its default language and
character set for messages.

Localizing an Embedded SQL application
An Embedded SQL application’s localization values are determined at
application runtime as follows:

• If the LC_ALL environment variable is set, the application uses its value
to localize, matching LC_ALL’s value to an entry in the locales file to
determine what language and character set to use.

• If the LC_ALL environment variable is not set but the LANG environment
variable is, the application uses its value to localize, matching LANG’s
value to an entry in the locales file to determine what language and
character set to use.

• If neither environment variable is set, the application uses the “default”
entry in the locales file to localize.

A typical Embedded SQL application localizes by setting the LC_ALL
environment variable.

Localizing standalone utilities
Standalone utilities include isql, bcp, and defncopy. Utilities that are built on
Client-Library and utilities that are built on DB-Library localize differently.

Utilities built on top of Client-Library examine environment variables to
determine default localization values. See “Deciding what localization values
to use” on page 5 and “Using initial localization values” on page 6.

Utilities built on top of DB-Library use platform-specific default localization
values. Pre-version 11.1 and PC utilities may be built on top of DB-Library.

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 33

All utilities provide a mechanism to enable users to specify custom values for
the following:

• The display character set

• The language to use for server messages

• The character set that the utility is using

See the Open Client and Open Server Programmers Supplement for your
platform.

Tips
This section contains tips on writing and running internationalized
applications.

Make sure required files are installed
Some Open Client and Open Server routines require that certain localization
files be installed. If these files are not installed, Client-Library or Server-
Library generates an error message in English and writes it to standard error
output.

Table 3-9 lists Open Client and Open Server routines that require localization
files:

Tips

34 Open Client and Open Server

Table 3-9: Open Client and Open Server routines that require
localization files

Using CS_NULLTERM with Open Client and Open Server routines
When passed to a Client-Library, Server-Library, or CS-Library routine as a
buffer’s length, CS_NULLTERM indicates that the value contained in the
buffer is null-terminated (terminated with a single byte with value 0).

Some character sets do not support unambiguous null-terminated strings. Do
not use CS_NULLTERM if your application needs to support these types of
character sets.

Table 3-10 lists CS-Library, Client-Library, and Server-Library routines that
allow the use of CS_NULLTERM:

Table 3-10: Open Client and Open Server routines that use
CS_NULLTERM

Routine Required files File location

cs_ctx_alloc locales.dat locales/

objectid.dat ini (on Microsoft Windows)
config (On UNIX)

cslib.loc locales/message/language_name

common.loc locales/message/language_name

charset.loc charsets/charset_name

binary.srt or
the sort file specified in the
matching locales file entry

charsets/charset_name

cs_locale charset.loc charsets/charset_name

binary.srt or
the sort file specified in the
matching locales file entry

charsets/charset_name

ct_init ctlib.loc locales/message/language_name

srv_init srvlib.loc locales/message/language_name

Library Routine Description

CS-
Library

cs_objects Save, retrieve, or clear objects and data associated with them.

cs_strbuild Construct native language message strings for character sets without NULL
bytes.

cs_strcmp Compare two strings using a specified sort order.

CHAPTER 3 Writing Internationalized Open Client and Open Server Applications

International Developers Guide 35

Client-
Library

ct_connect Connect to a server.

ct_cursor Initiate a cursor command.

ct_debug Manage debug library operations.

ct_dyndesc Perform operations on a dynamic SQL descriptor area.

ct_labels Define a security label or clear security labels.

ct_options Set or retrieve the values of server options.

ct_remote_pwd Define or clear passwords to be used for server-to-server connections.

Server-
Library

srv_config Set server configuration parameters.

srv_convert Convert data from one datatype to another.

srv_createmsgq Create a message queue.

srv_createmutex Create a mutual exclusion semaphore.

srv_define_event Define a user event.

srv_deletemsgq Delete a message queue.

srv_deletemutex Delete a mutex created by srv_createmutex.

srv_describe Describe a result row column and its data source.

srv_envchange Notify the client of an environment change.

srv_getobjid Look up the object ID for a message queue or mutex with a specified name.

srv_getobjname Get the name of a message queue or mutex with an identifier.

srv_init Initialize an Open Server.

srv_log Write a message to the Open Server log file.

srv_options Send option information to a client or receive option information from a client.

srv_paramnumber Return the position number of a parameter for the current remote procedure call.

srv_regdefine Initiate the process of registering a procedure.

srv_regdrop Unregister a procedure.

srv_reginit Begin executing a registered procedure.

srv_regnowatch Remove a client thread from the notification list for a registered procedure.

srv_regparam Describe a parameter for a registered procedure being defined, or supply data for
the execution of a registered procedure.

srv_regwatch Add a client thread to the notification list for a specified procedure.

srv_returnval Define a return value for a non-remote procedure call.

srv_sendmsg Send a message to the client.

srv_setustate Set the user state field in the thread structure. The registered procedures sp_ps
and sp_who display this field.

srv_tabname Provide the name of the table(s) associated with a set of browse mode results.

Library Routine Description

Tips

36 Open Client and Open Server

International Developers Guide 37

C H A P T E R 4 Coded Character Set Conversion
Support

This chapter explains how character set conversion works in Open Client
and Open Server products.

This chapter covers the following topics:

Definitions
The following definitions apply throughout this chapter:

• A character set is a finite set of characters or glyphs without
encoding.

• Encoding is the process of uniquely identifying each character in a
character set with a numeric code.

• A coded character set is the set of numeric codes that represents a
character set.

This chapter uses the term, “coded character set,” rather than
“character set,” since conversion relies on encoding.

• Character set conversion is the process of mapping characters in one
coded character set to characters in another.

Topic Page
Definitions 37

Supported character sets 38

Understanding coded character set conversion 39

Using custom coded character set conversion 42

Character set conversion in Adaptive Server Enterprise releases
prior to 4.9

44

Mainframe support 45

Supported character sets

38 Open Client and Open Server

• A direct conversion is a conversion from one coded character set to
another. Adaptive Server Enterprise and Open Server support direct
conversion between character sets within the Western European and
Japanese language groups.

• An indirect conversion is a conversion from one coded character set to
another by way of an intermediate coded character set.

Because indirect conversion allows any character set to be converted to
any other character set, regardless of whether the character sets are in the
same language group, it is sometimes called universal conversion.

Supported character sets

Note Open Server and SDK support the same character sets as Adaptive
Server Enterprise.

Adaptive Server Enterprise and Open Client and Open Server products
typically come with files to support the following character sets:

• Apple Macintosh Roman (mac)

• IBM Code Page 850 (cp850)

• IBM Code Page 437 (cp437)

• ISO 8859-1 (iso_1)

• ISO 8859_15 (iso_15: Latin9 - western European)

• Hewlett-Packard Roman 8 and Roman 9 (roman8 and roman9)

• Unicode UTF-8 encoding (utf8)

• Chinese following standard GB18030-2000

• Korean Code Page 949 (cp949)

• Kazakh (kz1048)

Files to support the following character sets are included with the Japanese
Language Module product:

• DEC Kanji (deckanji)

• EUC JIS (eucjis)

CHAPTER 4 Coded Character Set Conversion Support

International Developers Guide 39

• Shift-JIS (sjis)

For a complete list of supported languages and character sets, see the Adaptive
Server Enterprise System Administration Guide.

Understanding coded character set conversion
Character set conversion allows clients and servers that use different coded
character sets to communicate.

At the present time in Sybase systems, automatic character set conversion
occurs only on the server. Adaptive Server Enterprise and Open Server support
direct coded character set conversion between character sets in the Western
European and Japanese language groups. These are the only direct character set
conversions that Adaptive Server Enterprise and Open Server support.
However, Open Server does support the conversion of any Sybase-supported
character set to or from the Unicode character set in UTF-8 form. This allows
Open Server to perform an indirect conversion (charset_1 to Unicode to
charset_2) between any two Sybase character sets.

The Unicode standard (equivalent to ISO 10646 standard) is an international
character set. Unicode has the capacity to encode virtually all characters used
in the world’s major written languages.

UTF-8 is a multibyte variable length encoding of Unicode that is compatible
with stream-based applications. It is recommended for data exchange and
storage by X/Open, POSIX, and X11 standards.

Establishing the language and character set for a connection
When a client application attempts to connect to a server, it sends a connection
request specifying the following:

• Whether or not character set conversion should be disabled for the
connection (through the CS_NOCHARSETCNV property for Client-
Library or the DBSETLCHARSET routine for DB-Library)

• The character set to use for the connection

• The language to use for the connection

Understanding coded character set conversion

40 Open Client and Open Server

Before accepting the connection, the server checks to see if it can support the
requested language and character set.

Table 4-1 summarizes Adaptive Server Enterprise and Open Server behavior
at connection time:

Table 4-1: Client and server conversion behavior

Once a connection is established, the server:

• Generates all messages in the connection’s negotiated language and
character set

• Performs all necessary character set conversion for both incoming and
outgoing data (provided that character set conversion is not disabled for
the connection)

Disabling character set conversion
Client applications typically disable character set conversion for one of the
following reasons:

Server
supports
client’s
character
set

Server
supports
client’s
language Server action ct_connect dbopen

Yes Yes Accepts the connection in the clients
language and character set.

Returns
CS_SUCCEED

Returns
SUCCEED

No Yes If character set conversion is disabled, it
accepts the connection but forces it to its
own character set.

Returns
CS_SUCCEED

Returns
SUCCEED

If character set conversion is not disabled,
it rejects the connection.

Returns
CS_FAIL

Returns
FAIL

Yes No Informs the client that the connection will
use:

• us_english language

• The client’s character set

Returns
CS_SUCCEED

Returns
SUCCEED

No No If character set conversion is disabled, it
accepts the connection but forces it to:

• us_english language

• Its own character set

Returns
CS_SUCCEED

Returns
SUCCEED

If character set conversion is not disabled,
it rejects the connection.

Returns
CS_FAIL

Returns
FAIL

CHAPTER 4 Coded Character Set Conversion Support

International Developers Guide 41

• The client application needs to store and retrieve data in a character set that
the server does not support.

• The client application will perform any necessary character set
conversion.

When character set conversion is disabled, Adaptive Server Enterprise does not
perform character set conversion on Transact-SQL® statements, procedure,
table, view and other names, or data. The server behaves as follows:

• It assumes that Transact-SQL statements and names are in standard
Transact-SQL.

• It stores data values exactly as they are sent.

• It generates messages in its default character set.

Client-Library applications can disable character set conversion for a
connection by setting the CS_NOCHARSETCNV connection property to
CS_TRUE before calling ct_connect to open the connection.

DB-Library applications can disable character set conversion for a connection
by calling DBSETLCHARSET with char_set as NULL before calling dbopen
to open the connection.

Using Open Server as a conversion gateway
As Open Server can convert all Sybase-supported character sets to and from
Unicode (equivalent to ISO 10646 standard), UTF-8, an Open Server
application can perform indirect conversions between any two Sybase-
supported character sets. As a result, you can use an Open Server application
to enable communication between applications and servers that use character
sets in different language groups (note that loss of data may occur).

For information on how to set up an Open Server application as a conversion
gateway, see “Creating localized connections for Open Server gateways” on
page 27.

Files used during character set conversion
This section contains information about files used during character set
conversion.

Using custom coded character set conversion

42 Open Client and Open Server

Unilib library

The Unilib® library, libsybunic, contains Unicode-based routines that support
the conversion of any Sybase-supported character set to or from the Unicode
(equivalent to ISO 10646 standard) character set in UTF-8 form.

Using custom coded character set conversion
Open Server allows applications to install custom conversion routines. Once
installed, Open Server uses the custom conversion routines automatically
whenever a conversion of the specified type is required.

Why install custom conversion routines?
Install custom character set conversion routines if the conversion functionality
supplied with Open Server does not meet your needs. The most common
reason for installing a custom conversion routine is to improve performance by
replacing an indirect conversion with a direct conversion.

For example, an Open Server application could install a custom routine to
convert between ISO 8859-1 and EUC JIS. This direct conversion may be
faster than the indirect conversion (ISO 8859-1 to or from Unicode UTF-8
to/from EUC JIS) that is supplied with Open Server.

Writing a custom conversion routine
A custom character set conversion routine is defined as follows:

CS_RETCODE convfunc(context, srcfmt, srcdata,
 destfmt, destdata, destlen)
 CS_CONTEXT *context;
 CS_DATAFMT *srcfmt;
 CS_VOID *srcdata;
 CS_DATAFMT *destfmt;
 CS_VOID *destdata;
 CS_INT *destlen;

where:

• context is a pointer to a CS_CONTEXT structure.

CHAPTER 4 Coded Character Set Conversion Support

International Developers Guide 43

• srcfmt is a pointer to a CS_DATAFMT structure describing the source
data. srcfmt→maxlength describes the actual length, in bytes, of the source
data.

• srcdata is a pointer to the source data.

• destfmt is a pointer to a CS_DATAFMT structure describing the
destination data. destfmt→maxlength describes the actual length, in bytes,
of the destination data space.

• destdata is a pointer to the destination data space.

• destlen is a pointer to an integer. If the conversion is successful, the custom
routine should set *destlen to the number of bytes placed in *destdata.

cs_config is the only CS-Library, Client-Library, or Server-Library routine that
can be called from within a custom conversion routine.

CS-Library raises a CS-Library error if the custom routine returns any value
other than CS_SUCCEED. The type of error that CS-Library raises depends on
the value that the custom routine returns.

Table 4-2 lists the legal return values for a custom conversion routine:

Character set conversion in Adaptive Server Enterprise releases prior to 4.9

44 Open Client and Open Server

Table 4-2: Return values for a custom conversion routine

Installing a custom conversion routine
An application calls cs_manage_convert to install a custom conversion routine.
For information on cs_manage_convert, see the Open Client and Open Server
Common Libraries Reference Manual.

Character set conversion in Adaptive Server
Enterprise releases prior to 4.9

In releases earlier than 4.9, Adaptive Server Enterprise data servers do not
perform character set conversion. If your client application communicates with
a pre-release 4.9 Adaptive Server Enterprise but uses a different character set
from the server, international characters may not be represented correctly.

To solve the problem, you can:

• Change your client application’s character set to match that of the
Adaptive Server Enterprise, or

Return value Indicates

CS_SUCCEED The conversion is successful.

CS_TRUNCATED The conversion resulted in truncation.

CS_MEM_ERROR A memory allocation failure has occurred.

CS_EBADXLT Some characters could not be converted.

CS_ENOXLT The requested conversion is not supported.

CS_EDOMAIN The source value is outside the domain of legal values for
the datatype.

CS_EDIVZERO Division by zero is not allowed.

CS_EOVERFLOW The conversion resulted in overflow.

CS_EUNDERFLOW The conversion resulted in underflow.

CS_EPRECISION The conversion resulted in loss of precision.

CS_ESCALE An illegal scale value was encountered.

CS_ESYNTAX The conversion resulted in a value that is not syntactically
correct for the destination type.

CS_ESTYLE The conversion operation was stopped due to a style error.

CHAPTER 4 Coded Character Set Conversion Support

International Developers Guide 45

• Install custom character set conversion routines using cs_manage_convert
and call cs_convert to convert the data before sending it to the server.

Mainframe support
Mainframe systems commonly use run-encoded character encoding, which
provides escapes into other character encoding within a single character string.

Open Client and Open Server products do not support this mechanism.

Mainframe support

46 Open Client and Open Server

International Developers Guide 47

C H A P T E R 5 Editing the Locales File

This chapter describes the locales file and explains how to change it.

This chapter covers the following topics:

The locales file is named locales.dat and resides in the locales
subdirectory of the Sybase directory tree. See Appendix A, “Directories
and Files Related to Internationalization.”

Quick start
This section summarizes the process of adding or changing a locale
definition. For more detailed information on the locales file and how to
edit it, read the remainder of the chapter.

❖ To add or change a locale definition

1 Make a copy of the locales file (locales.dat), found in the locales
directory, in case problems occur with the edited version.

2 Edit the locales file: Add or change the desired entries in the
appropriate platform-specific section.

3 Update localization environment variables (LC_ALL, LC_CTYPE,
LC_MESSAGE, LC_TIME, LANG) as appropriate.

4 If you have added a new locale name and you want existing
applications to use this new name in cs_locale calls, edit and
recompile the applications as appropriate.

Topic Page
Quick start 47

When to edit the locales file 48

Locales file sections and entries 48

Editing the locales file 50

When to edit the locales file

48 Open Client and Open Server

When to edit the locales file
If the predefined locales file entries do not meet your needs, you can either
change them or add entries that define new locale names. For example, you
may want to edit the locales file to do the following:

• Change the language, character set, or collating sequence specified in a
locale entry.

• Add locale definitions, such as those needed for new language modules.

• Match locale names used by non-Sybase software. For example, one
Sybase predefined locale name is “fr”:

locale = fr, french, iso_1

If a non-Sybase application requires the LC_ALL environment variable to
have a value of “french” and you want your Open Client and Open Server
applications to use LC_ALL to localize with this locales file entry, you
need to add a new entry or change the locale name specified in the existing
entry as follows:

locale = french, french, iso_1

Locales file sections and entries
The locales file resides in the Sybase release directory under the locales
subdirectory.

The locales file contains:

• Standard sections (see Table B-2 on page 81)

• Platform-specific sections containing locale definition entries

Locale definition entries
The locales file has platform-specific sections, each of which contains
predefined locale definition entries. These entries vary by platform, but all
sections include an entry defining a “default” locale.

Locale definition entries have the form:

locale = locale_name, language_name, charset_name
[,sortorder_name]

CHAPTER 5 Editing the Locales File

International Developers Guide 49

where:

• locale_name is the name of the locale definition. locale_name is usually
vendor-specified, based on POSIX terminology. Comments at the end of
the locales file list POSIX values for locale names.

• , (comma) is the list separator character for the file.

• language_name is the subdirectory name by which Sybase products
recognize the language.

• charset_name is the subdirectory name by which Sybase products
recognize the character set.

• sortorder_name is the file name by which Sybase products recognize the
collating sequence. sortorder_name is optional. If not specified, Open
Client and Open Server products use a binary collating sequence.

The following locales file entry specifies a French locale. Because no sort order
is specified, the default sort order “binary” will be used with this locale:

locale = fr.FR.88591, french, iso_1

Locales file example
The following fragment illustrates some platform-specific sections in a locales
file:

[aix]
 locale = en_US, us_english, iso_1
 locale = en_US.ISO8859-1, us_english, iso_1
 locale = en_JP, us_english, eucjis
 locale = FR_FR.IBM-850, french, cp850
 locale = fr_FR.ISO8859-1, french, iso_1
 locale = fr_CA, french, iso_1
 locale = Fr_CA.IBM-850, french, cp850
 locale = fr_CA.ISO8859-1, french, iso_1

[linux]
 locale = GERMAN, german, iso_1
 locale = de, german, iso_1
 locale = de_AT, german, iso_1
 locale = de_AT.437, german, cp437

locale = de_AT.850, german, cp850
locale = CHINESE, chinese, eucgb
locale = zh_CN, chinese, eucgb
locale = zh_CN.GB18030, chinese, gb18030

Editing the locales file

50 Open Client and Open Server

locale = zh_CN.gbk, chinese, eucgb
locale = zh_TW, tchinese, big5

Editing the locales file
Before editing the locales file:

• Review the entries listed for your platform to see if a suitable entry already
exists. If so, you do not have to edit the locales file.

• Make a backup copy of the original locales file, in case problems occur
with the edited version.

Adding or changing entries
To add a new entry to the locales file or to change an existing entry:

1 Choose a value for locale_name.

locale_name can have any value. Sybase recommends names of the form
language.territory.

2 Determine the value to use for language_name.

When a Sybase language module is installed, a subdirectory for the
language is created in the locales/message directory of the Sybase
directory tree. language_name must correspond to this subdirectory’s
name.

3 Determine the value to use for charset_name.

When a Sybase language module is installed, subdirectories for each
supported character set are created in the charsets directory of the Sybase
directory tree. charset_name must correspond to one of these subdirectory
names.

4 Determine the value to use for sortorder_name (if you want a sort order
other than binary).

The charsets/charset_name subdirectory contains the sort order (*.srt)
files for the character set. sortorder_name must correspond to one of these
file’s names (without the .srt).

CHAPTER 5 Editing the Locales File

International Developers Guide 51

5 In the appropriate platform-specific section of the locales file, type in or
change the appropriate entry.

After you make the change:

• Update localization environment variables (LC_ALL, LC_CTYPE,
LC_MESSAGE, LC_TIME, LANG) as appropriate.

• If you have added a new locale name and you want existing applications
to use this new name in cs_locale calls, edit, and recompile the applications
as appropriate.

Deleting entries
It is not necessary to delete entries from the locales file, even if applications no
longer use them. If you decide to delete an entry, make sure no application uses
it.

Editing the locales file

52 Open Client and Open Server

International Developers Guide 53

C H A P T E R 6 Creating or Changing Collating
Sequences

This chapter explains how to create and change collating sequence (sort
order) files.

This chapter covers the following topics:

Quick start
This section summarizes the process of creating and changing sort order
files. For more detailed information, read the remainder of the chapter.

❖ To create or change a sort order file

1 Copy one of the shipped *.srt files and rename it, keeping the .srt
suffix.

Note Do not modify the *.srt files shipped with the product. Instead,
make copy of the original *.srt file and then modify its copy.

2 Edit the newly created file, changing or adding entries as follows:

• Specify general entries for the [sortorder] section, including
“class,” “id,” “menuname,” “charset,” “preference,” and
“description.”

Topic Page
Quick start 53

About collating sequences 54

When to create a custom collating sequence file 57

About collating sequence files 58

Creating a custom collating sequence file 61

Collating sequence file example 65

About collating sequences

54 Open Client and Open Server

• List ligatures, using the entry form “lig = value.” Group ligature
entries before character entries.

• List all the character set’s characters and glyphs in the desired primary
sort order, using the entry form “char = value.”

• For the secondary sort order, add values horizontally to the primary
sort order entries, using the entry form “char = value1, value2, ...”

• For sorting that is not case sensitive, put equal signs between
uppercase and lowercase counterparts.

3 Save the new .srt file in the charsets directory under the charset_name
subdirectory.

4 Edit locales file entries, as appropriate, to refer to the new collating
sequence file.

About collating sequences
The order in which a system sorts characters is called its collating sequence or
sort order.

Collating sequence definitions are built on top of character set definitions, but
languages that use the same character set can order characters differently. For
example, in Spanish “Co” comes before “Cho,” because “Ch” is considered to
be a single letter; in English “Cho” alphabetically precedes “Co.”

Ordering conventions can also vary between languages for letter-diacritic
combinations. For instance, “Å” might come after “z,” even though “a”
(without diacritics) comes before “b.”

This section discusses some common considerations in defining collating
sequences, but it is not intended to be comprehensive. Please refer to general
references on collating sequences.

Definitions
If you are unfamiliar with Sybase collating sequences, the following
definitions may be useful:

• The collating sequence’s primary sort order is the vertical sequence of
lines beginning with “char=”.

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 55

• A primary entry’s secondary sort order is the horizontal sequence of
characters on a single “char =” line.

Types of sorts
There are many ways to sort characters. Open Client and Open Server collating
sequence file can use one or more of the types of sorts listed in Table 6-1:

About collating sequences

56 Open Client and Open Server

Table 6-1: Types of sort orders

Determining case sensitivity
Most collating sequence files list all variants of a single letter on one char =
line.

A collating sequence that is case sensitive lists uppercase and lowercase
variants of a letter in the order in which they are to be sorted and separates them
with a comma. For example:

Type of
sort Description

Single-
level

Characters sort according to their primary sort order value.

A character that appears on a line higher in the vertical list of “char=”
entries always sorts before a character that appears on a line lower in the
list.

Two-
level

Characters sort according to their primary and secondary sort order
values. If all the characters in two strings have the same primary sort
values, then the characters’ secondary sort values are used to break the
ordering tie.

If two characters appear on the same “char =” line, the one furthest to the
left sorts first.

For example, suppose a sort order file contains:

char = A,a,Ä,ä
char = B,b
char = C,c,Ç,ç

Some strings using these characters would sort as follows:

ABC
ÄBC
äbc
acb
äcb

Because the strings ABC, ÄBC, and äbc have the same primary values,
they are ordered by their secondary sort values. acb and äcb are similarly
sorted according to secondary values. äbc is ranked before acb because
b has an earlier primary value than c.

One-to-
two

A single character that is sorted as multiple characters is called a
ligature. For example, the German character “ß” is sorted as “ss.”

Two-to-
one

A 2-character string that is sorted as 1 character is called a sort double.
For example, the Spanish character string “ch” is sorted as one character
that comes between “c” and “d”.

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 57

char = 0x41,0x61,0xC0,0xE0,0xC1,0xE1,0xC2,0xE2,0xC3,0xE3
;A, a, A-grave, a-grave, A-acute, a-acute, A-tilde, a-tilde,
;A-diaeresis, a-diaeresis
;
char = 0x42,0x62
;letter B, b

A collating sequence that is not case sensitive lists the uppercase and lowercase
variants of a letter in any order and joins them with an equals sign. For
example:

char = 0x41=0x61,0xC0=0xE0,0xC1=0xE1,0xC2=0xE2,0xC3=0xE3
;A, a, A-grave, a-grave, A-acute, a-acute, A-tilde, a-tilde,
;A-diaeresis, a-diaeresis
;
char = 0x42=0x62
;letter B, b

When to create a custom collating sequence file
On most platforms, Open Client and Open Server products include the standard
collating sequence files described in Table 6-2:

About collating sequence files

58 Open Client and Open Server

Table 6-2: Commonly-supplied collating sequences

If a language you are using has further collating sequence requirements, you
can create a custom collating sequence file according to the guidelines in
“About collating sequence files” on page 58.

About collating sequence files
Sybase collating sequence files are named *.srt and are located in the
charsets/charset_name/ directory. All collating sequence files use standard
Sybase external localization file syntax.

See Appendix B, “External Localization File Syntax.”

Collating sequence file sections and entries
All collating sequence files include the following elements:

File name Description

binary.srt Ordering corresponds to the internal binary value for each
character. binary.srt contains the entry “binary = true”.

No localization file is necessary for this sort order.

dictionary.srt Dictionary order, case sensitive. Primary lexicographic ordering
with uppercase letters before their lowercase counterparts.
Secondary ordering for accented characters.

The file name varies according to language. For example, the
Spanish version is called espdict.srt.

noaccents.srt Dictionary order, accent insensitive, not case sensitive.
Intermingles words that begin with an unaccented letter and words
that begin with the letter’s accented counterparts.

The file name varies according to language. For example, the
Spanish version is called espnoac.srt.

nocase.srt Dictionary order, not case sensitive. Intermingles words that begin
with an uppercase letter with words that begin with the lowercase
counterpart.

The file name varies according to language. For example, the
Spanish version is called espnocs.srt.

nocasepref.srt Dictionary order, not case sensitive, with preference for uppercase
only when there is a lowercase equivalent.

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 59

• The comment line, copyright section, and file format section, described in
Table B-2 on page 81.

• General entries, described in Table 6-4 on page 62.

• Ligature entries, described in step 3 under “Creating a custom collating
sequence file” on page 61.

• Character entries, described in steps 4, 5, 6, and 7 under “Creating a
custom collating sequence file” on page 61.

Writing characters in a collating sequence file
There are three ways to write characters in a collating sequence file entry:

• By typing the hexadecimal character encoding for the character. For
example:

char = 0x20 ;() space
char = 0x3D ;(=) equals sign

• By typing the character, quoted. For example:

char = “ “ ;() space
char = “=“ ;(=) equals sign

• By typing the character itself. For example:

char = A, a
char = B, b

Table 6-3 classifies characters according to how they can be written in collating
sequence file entries:

About collating sequence files

60 Open Client and Open Server

Table 6-3: Writing characters in a collating sequence file entry

The preference keyword and the order by clause
A collating sequence file that is not case sensitive can use a preference entry to
indicate whether letters to the left of the equal sign should sort before letters to
the right of the equal sign when sorting output generated as the result of a select
statement with an order by clause.

For example, suppose that a collating sequence file contains the following
entries:

char = A=a, Á=á
char = B=b

If preference=true, then order by output will sort as follows:

Aab
aAb
Aáb

If preference=false, then order by output can sort either as:

aAb
Aab
Aáb

or

Type of character

Can be
written as
hexadecimal
numbers?

Can be
typed in with
quotes?

Can be
typed in
without
quotes?

Non-printable characters and
characters that do not appear
on the keyboard

Yes No No

Space (“ ”)

Equals sign (“=”)

Comment character

Escape character

List separator character

Yes Yes No

Backslash ("\") Yes Yes, but must
be doubled
inside of
quotes ("\\")

No

All other characters Yes Yes Yes

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 61

Aab
aAb
Aáb

The preference keyword:

• Applies only to sort orders that are not case sensitive

• Affects only sorts that occur as the result of an order by clause

If preference=true, then characters to the left of the equal sign sort first. If
preference=false, then characters to the left of the equal sign may not sort first.

The preference keyword has a default value of “true.” That is, if a collating file
does not contain a preference entry, order by sorts give precedence to characters
to the left of the equal sign.

Most typically, preference=true means that uppercase characters sort before
lowercase characters.

Creating a custom collating sequence file
This section explains how to create a custom collating sequence file. Before
you begin, please read this entire section and familiarize yourself with the
collating sequence files included with your Open Client and Open Server
products.

“Collating sequence file example” on page 65 illustrates a collating sequence
file.

Appendix B, “External Localization File Syntax” provides general
information about localization file syntax.

To create or change a collating sequence file:

1 If you plan to use a shipped .srt file as a model, be sure to copy and rename
it so you do not overwrite the original file. The new file’s name must
include the .srt suffix. In addition, a descriptive name helps to associate the
file with the language it supports.

2 Determine the values for general entries. Table 6-4 describes these entries:

Creating a custom collating sequence file

62 Open Client and Open Server

Table 6-4: .srt file general entries

Entry
keyword Description Required Entry value

class The sort order class.

Currently, class 1 for 8-
bit character sets is the
only supported class.

Yes 0x01d

id A unique hexadecimal
number that identifies the
collating sequence.

Yes For user-defined collating
sequences, ID must have a
value of 0xC9 through
0xFF.

Sybase reserves
hexadecimal 0x00 through
0xC8.

menuname The name of the collating
sequence as it is to appear
in the sybinit program.

Yes A string no longer than 64
characters is recommended.
sybinit truncates strings to
64 characters.

This value is user-defined.

name The name of the collating
sequence.

No A string no longer than 30
characters.

This value is user-defined.

charset The character set with
which this collating
sequence file is intended
for use.

This is also the name of
the directory in which this
collating sequence file
will reside.

Yes The value must match a
character set subdirectory
name in the Sybase
directory tree.

preference For sort orders that are
not case sensitive,
whether to give
preference to characters
to the left of the equals
sign when sorting output
generated by a select
statement with an order
by clause.

No False – no preference.

True – preference for
characters to the left of the
equals sign. A value of
“true” has a greater
performance impact than
“false.”

The default is “true.”

description Phrase that describes the
collating sequence.
Stored with the collating
sequence.

No A string no longer than 255
characters.

This value is user-defined.

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 63

3 Determine whether there are any ligatures. A ligature is a single character
that is sorted as multiple characters. If there are ligatures:

• Place the ligature (“lig”) entries together, preceding the “char”
entries.

• Include both the uppercase and lowercase forms of a ligature, if
applicable.

The syntax for a case-sensitive ligature is:

lig = value, after characters ;case-sensitive sort

where:

• characters is a string representing the characters after which the
ligature will sort.

• value is the hexadecimal encoding for the ligature character, or the
typed or quoted ligature character.

The syntax for a ligature that is not case sensitive:

lig = value1=value2, after characters ;case-
insensitive sort

where:

• value1 and value2 are the hexadecimal encodings for the uppercase
and lowercase ligature characters, or the typed or quoted ligature
characters.

• characters is a string representing the characters after which the
ligature will sort.

The following example shows ligature entries in a collating sequence file
that is not case sensitive for ISO 8859-1:

lig = 0xC6, after AE ;diphthong AE, A with E
lig = 0xE6, after ae ;diphthong ae, a with e
char = 0x41,0x61,0xC0,0xE0,0xC1,0xE1,0xC2,0xE2x
;varieties of letter A
char = 0x42,0x62 ;B, b
. . .

4 Vertically list all the character entries for the sort order. This vertical list is
the primary sort order.

The syntax for a character entry is:

char = value

Creating a custom collating sequence file

64 Open Client and Open Server

where value is the hexadecimal code set encoding for the character, or the
typed or quoted character.

For example:

char = 0x41 ;ISO 8859-1 code set.

5 If applicable, add secondary sort order information to the file as follows:

• For a case-sensitive sort order, put the lowercase variant to the right
of the uppercase character (if you want the uppercase character to take
precedence). Separate the characters with the list separator character.

• For a sort order that is not case sensitive, put equal signs between each
uppercase character and its lowercase equivalent (including accented
characters).

• Put a character and its variants in relative order to each other. For
example, the French “é” goes to the right of “e.” Make sure these
characters are not ligatures or separate primary sort order entries.
Separate variants with the list separator character.

The following example shows secondary sort order information for a Latin
alphabet, case-sensitive sort order:

char = 0x41,0x61,0xC0,0xE0,0xC1,0xE1,0xC2,0xE2,
0xC3,0xE3,0xC4,0xE4,0xC5,0xE5
;A, a, A-grave, a-grave, A-acute, a-acute,
;A-circumflex, a-circumflex, A-tilde, a-tilde,
;A-diaeresis, a-diaeresis, A-ring, a-ring
. . .
char = 0x4E,0x6E,0xD1,0xF1 ;N, n, N-tilde, n-tilde
. . .

6 Determine whether there are any sort doubles. A sort double or digraph is
a pair of characters that is sorted as a single character. If there are any sort
doubles:

• List each sort double as a separate “char” entry.

• For case-sensitive sorting, put all permutations of the sort double in
the desired sort order.

The syntax for a sort double is:

char = value1value2

where:

• value1 is the first character in the sort double pair,

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 65

• value2 is the second character in the pair.

If value1 and value2 are written as hexadecimal numbers, use a leading
‘0x’ with value1 but not with value2. For example:

char = 0x4348,0x4368,0x6348,0x6368 ;CH,Ch,cH,ch

value1 and value2 can also be typed or quoted characters. For example:

char = CH, Ch, cH, ch

or

char = "CH", "Ch", "cH", "ch"

The following example shows the placement of the Spanish sort double
“ch” in a case-sensitive .srt file for the iso_1
 (ISO 8859-1) character set:

char = 0x41,0x61,0xC0,0xE0,0xC1,0xE1,0xC2,0xE2
;varieties of letter A
char = 0x42,0x62 ;B, b
char = 0x44,0x64,0xC7,0xE7 ;C, c, C-cedilla, c-
cedilla
char = 0x4348,0x4368,0x6348,0x6368 ;CH,Ch,cH,ch
. . .

7 Include all other characters in the vertical list, such as non-printable
characters, characters not on a keyboard, symbols, and characters related
to linguistic style. Use “char” or “lig” entries, as appropriate. Be sure to
group all “lig” entries together before “char” entries.

For information on how to write nonalphabetic characters in a collating
sequence file, see Table 6-3 on page 60.

8 Save the new .srt file in the charsets directory under the charset_name
subdirectory.

9 Edit locales file entries, as appropriate, to refer to the new collating
sequence file. See Chapter 5, “Editing the Locales File.”

Collating sequence file example
This section contains an example of a case-sensitive collating sequence file.

Actual collating sequence files are included in your Sybase directory tree as
charsets/charset_name/*.srt.

Collating sequence file example

66 Open Client and Open Server

; semi-colon is the comment character
 [sortorder]
 ;===
 ;
 ; @(#)dictionary.srt
 ;
 ; Sort Order Overview:
 ; --------------------
 ; Based on the ISO 8859-1 ("Latin 1") character set, this sort order is
 ; a case-sensitive ordering. Upper case letters always sort before their
 ; lower case counterparts.
 ;
 ; It is useful for at least the English, French and German languages,
 ; and may work for many others.
 ;
; Ligatures, Sort-Doubles, etc.:
 ; ------------------------------
 ; AE, ae ligatures
 ; German sharp-s ligature with "ss"
 ;
 ; The ordering:
 ; --------------
 ; first all non-alphanumeric characters in binary order
 ; followed by all numeric digits
 ; then all alphabetic characters used in English, French and German
 ; and ended by all alphabetic characters not used in English, French
 ; or German
 ;===
 class = 0x01 ; Class `1' sort order
 id = 0x33 ; Unique ID # (51) for the sort order
 name = dictionary_iso_1
 menuname = "General purpose dictionary ordering."
 charset = iso_1
 description = "General purpose dictionary sort order for use with several
 Western-European languages including English, French, and German. Uses the
 ISO 8859-1 character set and is case-sensitive."
 ;
 ; ligatures for English, French, and German
 lig = 0xC6, after AE ;AE ligature
 lig = 0xE6, after ae ;ae ligature
 lig = 0xDF, after ss ;small german letter sharp s
 ;
 ; Control characters
 char = 0x01 ;(SOH) start of heading
 char = 0x02 ;(STX) start of text
 char = 0x03 ;(ETX) end of text

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 67

 char = 0x04 ;(EOT) end of transmission
 char = 0x05 ;(ENQ) enquiry
 char = 0x06 ;(ACK) acknowledge
 char = 0x07 ;(BEL) bell
 char = 0x08 ;(BS) backspace
 char = 0x09 ;(HT) horizontal tab
 char = 0x0A ;(LF) newline, or line feed
 char = 0x0B ;(VT) vertical tab
 char = 0x0C ;(FF) form feed
 char = 0x0D ;(CR) carriage return
 char = 0x0E ;(SO) shift out
 char = 0x0F ;(SI) shift in
 char = 0x10 ;(DLE) data link escape
 char = 0x11 ;(DC1) device control 1
 char = 0x12 ;(DC2) device control 2
 char = 0x13 ;(DC3) device control 3
 char = 0x14 ;(DC4) device control 4
 char = 0x15 ;(NAK) negative acknowledge
 char = 0x16 ;(SYN) synchronous idle
 char = 0x17 ;(ETB) end transmission blk
 char = 0x18 ;(CAN) cancel
 char = 0x19 ;(EM) end of medium
 char = 0x1A ;(SUB) substitute
 char = 0x1B ;(ESC) escape
 char = 0x1C ;(FS) file separator
 char = 0x1D ;(GS) group separator
 char = 0x1E ;(RS) record separator
 char = 0x1F ;(US) unit separator
 ;
 ; All non-alphanumeric characters, including puntuation.
 ; These are sorted by their numerical ordering, based on the
 ; ISO 8859-1 standard, for clarity and consistency.
 ;
 char = 0x20 ;() space
 char = 0x21 ;(!) exclamation mark
 char = 0x22 ;(") quotation mark
 char = 0x23 ;(#) number sign
 char = 0x24 ;($) dollar sign
 char = 0x25 ;(%) percent sign
 char = 0x26 ;(&) ampersand
 char = 0x27 ;(') apostrophe
 char = 0x28 ;(() left parenthesis
 char = 0x29 ;()) right parenthesis
 char = 0x2A ;(*) asterisk
 char = 0x2B ;(+) plus sign
 char = 0x2C ;(,) comma

Collating sequence file example

68 Open Client and Open Server

 char = 0x2D ;(-) hyphen, minus sign
 char = 0x2E ;(.) full stop
 char = 0x2F ;(/) solidus
 char = 0x3A ;(:) colon
 char = 0x3B ;(;) semicolon
 char = 0x3C ;(<) less-than sign
 char = 0x3D ;(=) equals sign
 char = 0x3E ;(>) greater-than sign
 char = 0x3F ;(?) question mark
 char = 0x40 ;(@) commercial at
 char = 0x5B ;([) left square bracket
 char = 0x5C ;(\) reverse solidus
 char = 0x5D ;(]) right square bracket
 char = 0x5E ;(^) circumflex accent
 char = 0x5F ;(_) low line
 char = 0x60 ;(`) grave accent
 char = 0x7B ;({) left curly bracket
 char = 0x7C ;(|) vertical line
 char = 0x7D ;(}) right curly bracket
 char = 0x7E ;(~) tilde
 char = 0x7F ;delete, or rubout
 char = 0x80 ; undefined
 char = 0x81 ; undefined
 char = 0x82 ; undefined
 char = 0x83 ; undefined
 char = 0x84 ; undefined
 char = 0x85 ; undefined
 char = 0x86 ; undefined
 char = 0x87 ; undefined
 char = 0x88 ; undefined
 char = 0x89 ; undefined
 char = 0x8A ; undefined
 char = 0x8B ; undefined
 char = 0x8C ; undefined
 char = 0x8D ; undefined
 char = 0x8E ; undefined
 char = 0x8F ; undefined
 char = 0x90 ; undefined
 char = 0x91 ; undefined
 char = 0x92 ; undefined
 char = 0x93 ; undefined
 char = 0x94 ; undefined
 char = 0x95 ; undefined
 char = 0x96 ; undefined
 char = 0x97 ; undefined
 char = 0x98 ; undefined

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 69

 char = 0x99 ; undefined
 char = 0x9A ; undefined
 char = 0x9B ; undefined
 char = 0x9C ; undefined
 char = 0x9D ; undefined
 char = 0x9E ; undefined
 char = 0x9F ; undefined
 char = 0xA0 ;no-break space
 char = 0xA1 ;inverted exclamation mark
 char = 0xA2 ;cent sign
 char = 0xA3 ;pound sign
 char = 0xA4 ;currency sign
 char = 0xA5 ;yen sign
 char = 0xA6 ;broken bar
 char = 0xA7 ;paragraph sign, section sign
 char = 0xA8 ;diaeresis
 char = 0xA9 ;copyright sign
 char = 0xAA ;feminine ordinal indicator
 char = 0xAB ;left angle quotation mark
 char = 0xAC ;not sign
 char = 0xAD ;soft hyphen
 char = 0xAE ;registered trade mark sign
 char = 0xAF ;macron
 char = 0xB0 ;ring above or degree sign
 char = 0xB1 ;plus/minus (+/-) sign
 char = 0xB2 ;superscript 2
 char = 0xB3 ;superscript 3
 char = 0xB4 ;acute accent
 char = 0xB5 ;micro sign
 char = 0xB6 ;pilcrow or paragraph sign
 char = 0xB7 ;middle dot
 char = 0xB8 ;cedilla
 char = 0xB9 ;superscript 1
 char = 0xBA ;masculine ordinal indicator
 char = 0xBB ;right angle quotation mark
 char = 0xBC ;vulgar fraction one quarter
 char = 0xBD ;vulgar fraction one half
 char = 0xBE ;vulgar fraction three quarter
 char = 0xBF ;inverted question mark
 char = 0xD7 ;multiplication sign
 char = 0xF7 ;division sign
 ;
 ; Digits
 char = 0x30 ;(0) digit zero
 char = 0x31 ;(1) digit one
 char = 0x32 ;(2) digit two

Collating sequence file example

70 Open Client and Open Server

 char = 0x33 ;(3) digit three
 char = 0x34 ;(4) digit four
 char = 0x35 ;(5) digit five
 char = 0x36 ;(6) digit six
 char = 0x37 ;(7) digit seven
 char = 0x38 ;(8) digit eight
 char = 0x39 ;(9) digit nine
 ;
 ; Latin Alphabet
 char = 0x41,0x61,0xC0,0xE0,0xC1,0xE1,0xC2,0xE2,0xC3,0xE3,0xC4,0xE4,0xC5,0xE5
 ; A, a, A-grave, a-grave, A-acute, a-acute, A-circumflex,
 ; a-circumflex, A-tilde, a-tilde, ;A-diaeresis, a-diaeresis,
 ; A-ring, a-ring
 char = 0x42, 0x62 ;letter B, b
 char = 0x43, 0x63, 0xC7, 0xE7
 ; letters C, c, C-cedilla, c-cedilla
 char = 0x44, 0x64 ;letter D, d
 char = 0x45, 0x65, 0xC8, 0xE8, 0xC9, 0xE9, 0xCA, 0xEA, 0xCB, 0xEB
 ; E, e, E-grave, e-grave, E-acute, e-acute, E-circumflex,
 ; e-circumflex, E-diaeresis, e-diaeresis
 char = 0x46, 0x66 ;letter F, f
 char = 0x47, 0x67 ;letter G, g
 char = 0x48, 0x68 ;letter H, h
 char = 0x49, 0x69, 0xCC, 0xEC, 0xCD, 0xED, 0xCE, 0xEE, 0xCF, 0xEF
 ; I, i, I-grave, i-grave, I-acute, i-acute, I-circumflex,
 ; i-circumflex, I-diaeresis, i-diaeresis
 char = 0x4A, 0x6A ;letter J, j
 char = 0x4B, 0x6B ;letter K, k
 char = 0x4C, 0x6C ;letter L, l
 char = 0x4D, 0x6D ;letter M, m
 char = 0x4E, 0x6E, 0xD1, 0xF1
 ;letters N, n, N-tilde, n-tilde
 char = 0x4F,0x6F,0xD2,0xF2,0xD3,0xF3,0xD4,0xF4,0xD5,0xF5,0xD6,0xF6,0xD8,0xF8
 ; O, o, O-grave, o-grave, O-acute, o-acute, O-circumflex,
 ; o-circumflex,O-tilde, o-tilde, O-diaeresis, o-diaeresis,
 ; O-stroke, o-stroke
 char = 0x50, 0x70 ;letter P, p
 char = 0x51, 0x71 ;letter Q, q
 char = 0x52, 0x72 ;letter R, r
 char = 0x53, 0x73 ;letter S, s
 char = 0x54, 0x74 ;letter T, t
 char = 0x55,0x75,0xD9,0xF9,0xDA,0xFA,0xDB,0xFB,0xDC,0xFC
 ; U, u, U-grave, u-grave, U-acute, u-acute,
 ; U-circumflex, u-circumflex, U-diaeresis, u-diaeresis
 char = 0x56, 0x76 ;letter V, v
 char = 0x57, 0x77 ;letter W, w

CHAPTER 6 Creating or Changing Collating Sequences

International Developers Guide 71

 char = 0x58, 0x78 ;letter X, x
 char = 0x59, 0x79, 0xDD, 0xFD, 0xFF
 ; letters Y, y, Y-acute, y-acute, y-diaeresis
 char = 0x5A, 0x7A ;letter Z, z
 ;
 ; Alpha characters not used in English, French or German:
 char = 0xD0, 0xF0 ;icelandic capital letter Eth, small letter eth
 char = 0xDE, 0xFE ;icelandic capital letter Thorn, small letter thorn

Collating sequence file example

72 Open Client and Open Server

International Developers Guide 73

A P P E N D I X A Directories and Files Related
to Internationalization

This appendix describes the Open Client and Open Server directories and
files that are related to internationalization and localization.

This chapter covers the following topics:

Overview
At runtime, Open Client and Open Server applications pick up
localization information from external files. The following three
directories in the Sybase release directory contain localization
information:

• locales directory, which contains files that your application uses to
load localization information. It also contains language-specific
message files.

• charsets directory, which contains conversion and collating sequence
files for each supported character set.

• config directory on UNIX and ini directory on Microsoft Windows,
which contains the global object identifiers file.

• collate directory, which the Adaptive Server Enterprise uses for
sorting. Each character set comes with one or more sort orders that
Adaptive Server Enterprise uses to collate data.

Topic Page
Overview 73

The locales directory 74

The charsets directory 75

The config and ini directories 76

The locales directory

74 Open Client and Open Server

All Open Client and Open Server products include files to support at least one
language and one or more character sets and collating sequences. During
installation, these files are loaded into the Sybase release directory structure in
the correct locations.

Note The installation process automatically loads any additional Open Client
and Open Server Language Module for connectivity into the Sybase release
directory in the correct locations.

The locales directory
The locales directory contains:

• The locales file (locales.dat), which maps locale names to languages,
character sets, and collating sequences.

• The message directory, which contains localized error messages for Open
Client and Open Server products, organized by language name.

• language_name subdirectories, which are included to provide
compatibility with previous versions of Open Client and Open Server
software. These directories contain localized message files organized by
character set.

• unicode directory, which contains error message files for system
management utilities.

The locales file
The locales file (locales.dat) provides platform-specific locale information in
a Sybase proprietary format. This file associates locale names with languages,
character sets, and collating sequences.

The locales file directs Open Client and Open Server applications to
localization information, but it does not contain actual localized messages or
character set information. Open Client and Open Server applications use the
locales file when determining what localization information to load.

See Chapter 5, “Editing the Locales File.”

APPENDIX A Directories and Files Related to Internationalization

International Developers Guide 75

Localized message files
Localized message files contain product messages in a particular language.
These message files (the *.loc files in the locales/message/language_name
directories) enable Open Client and Open Server applications to generate
messages in a variety of languages.

All Open Client and Open Server products include English (us_english)
message files. Your products may also include files to support additional
languages.

language_name subdirectories

If you install a new language module, the installation process adds a
language_name subdirectory containing message files in the new language.

Message file names sometimes vary by platform, but most resemble the
following names:

• cslib.loc – CS-Library messages

• ctlib.loc – Client-Library messages

• oslib.loc – Server-Library messages

• blklib.loc – Bulk Library messages

• bcp.loc – Bulk Copy messages

• esql.loc – Embedded SQL messages

Unicode directory

All Open Client and Open Server message files use the Unicode UTF-8
character set, converting messages from UTF-8 to other character sets as
needed.

The charsets directory
The charsets directory contains:

• A charset_name subdirectory for each character set. Each charset_name
subdirectory contains collating sequence files for each supported character
set.

The config and ini directories

76 Open Client and Open Server

• unicode directory, which contains Unicode conversion files used by
Unilib.

Collating sequence files
The order in which a system sorts characters is called its collating sequence or
sort order.

Open Client and Open Server products include files to support a variety of
collating sequences. These files can vary by platform but generally include the
following:

• binary.srt

• dictionary.srt

• noaccents.srt

• nocase.srt

• nocasepref.srt

If these files do not meet your needs, you can create a custom collating
sequence file. For information on how to do this, see “Creating a custom
collating sequence file” on page 61.

Collating sequences are specified in locales file entries. If a locales file entry
does not specify a collating sequence, then a binary sort order is used with the
locale. See Chapter 6, “Creating or Changing Collating Sequences.”

Unicode conversion files
Unicode conversion files contain conversion configuration information in
Unicode (equivalent to ISO 10646 standard) character set in UTF-8 form.
These conversion files are available for each Sybase-supported character set.

The config and ini directories
The config directory (on UNIX) and the ini directory (on Microsoft Windows)
contain the global identifiers file (objectid.dat).

APPENDIX A Directories and Files Related to Internationalization

International Developers Guide 77

The global object identifiers file
The global object identifiers file, objectid.dat, associates a unique global object
identifier with all local names that might be used for the object.

An object identifier is a series of non-negative integer values separated by a
dot. It is based on a naming tree defined by the international standards bodies
CCITT and ISO.

Object identifiers file sections and entries

The objectid.dat file contains a section for each class of object.

Object class entries have the following form:

[Object Class]
 object_identifier local_name1, ..., local_namen

where:

• Object Class is the section identifier.

• object_identifier is the globally unique object identifier.

• local_name1,..., local_namen are the local names associated with the
object identifier, separated by a comma.

Object identifiers file example

The following sample illustrates sections in objectid.dat:

[charset]
 1.3.6.1.4.1.897.4.9.1.1 = iso_1
 1.3.6.1.4.1.897.4.9.1.2 = cp850
 1.3.6.1.4.1.897.4.9.1.3 = cp437
 1.3.6.1.4.1.897.4.9.1.4 = roman8
 1.3.6.1.4.1.897.4.9.1.5 = mac

[collate]
 1.3.6.1.4.1.897.4.9.3.50 = binary
 1.3.6.1.4.1.897.4.9.3.51 = dictionary
 1.3.6.1.4.1.897.4.9.3.52 = nocase
 1.3.6.1.4.1.897.4.9.3.53 = nocasepref
 1.3.6.1.4.1.897.4.9.3.54 = noaccents

[secmech]
 1.3.6.1.4.1.897.4.6.6 = csfkrb5

The config and ini directories

78 Open Client and Open Server

Editing object identifiers file

Edit objectid.dat with an operating system editor such as vi if you change the
local name of an object.

International Developers Guide 79

A P P E N D I X B External Localization File
Syntax

This appendix describes external localization file syntax and shows a
sample file. Use this information when creating or updating external
localization files, such as the locales file (locales.dat) and collating
sequence files (sort_order_name.srt).

This chapter covers the following topics:

Localization file syntax rules
All external localization files observe the following basic syntax rules:

• Comments start with a comment character and continue to the end of
the line. The first character in the first line of the file is defined to be
the comment character for the file.

• Sections begin with a section heading and contain entries. Section
headings use left and right delimiters. A section heading’s maximum
length is 63 bytes, including delimiters.

The first line in the file that does not begin with a comment character
defines section heading delimiters for the file. Its first character is
defined to be left delimiter and its last character is defined to be the
right delimiter.

• Entries take the following form:

keyword = value_list

where:

Topic Page
Localization file syntax rules 79

Localization file sections 80

Example localization file 81

Localization file sections

80 Open Client and Open Server

• keyword is the entry keyword and can be up to 63 bytes long.

• value_list is a list of one or more values separated by the list separator
character. Each value can be a quoted or unquoted string or a
hexadecimal number. If no value_list is present, the entry keyword is
assigned a single zero-length string (that is, a string that contains only
a NULL terminator) as its value.

value_list can span multiple lines if each line except the last ends with
the escape character.

value_list can be up to 511 bytes long.

Only one entry can appear on a line. An entry can be preceded by tabs and
spaces.

• Values can be hexadecimal numbers or quoted or unquoted strings.

• Unquoted strings beginning with “0x” are interpreted as hexadecimal
numbers.

• Strings do not require quotes unless they contain list separators or
spaces. List separators and spaces that occur inside a quoted string are
treated as though they were preceded by the escape character.

• You can use either apostrophes or quotation marks to quote strings.
Apostrophes (‘) can appear in strings delimited by quotation marks
(“string”) and quotation marks can appear in strings delimited by
apostrophes.

If either the apostrophe or quotation mark is repeated, then the two
characters are treated as a single instance of the character, not as string
delimiters, for example, “Jean’s book.”

Localization file sections
Different files have different types of sections, and different types of sections
have different entry keywords.

This section contains specific information about the sections that are common
to all localization files.

Table B-1 describes where to find information on sections specific to particular
files:

APPENDIX B External Localization File Syntax

International Developers Guide 81

Table B-1: References for sections specific to a file

Table B-2 describes sections that are common to all external localization files:

Table B-2: Standard sections in localization files

Example localization file
The partial collating sequence file included in this section illustrates some of
the syntax rules discussed in “Localization file syntax rules” on page 79.

When looking at the file, please note the following:

• The first line defines the comment character as a semicolon. Any
subsequent lines or phrases beginning with a semicolon are comments.

File name See

The locales file (locales.dat) “Locales file sections and entries” on page 48

Collating sequence files
(sort_order_name.srt)

“Collating sequence file sections and entries” on
page 58

Section Description Example

File format
section

This section is optional.

If used, it has the form:

[file format]

 version = version_number
 list_separator =
list_separator_char
 escape = escape_char

where:

• version_number is a version number.

• list_separator_char is the list separator
 character to use for the file.

• escape_char is the escape character to use for the
file. If not specified, “list_separator” defaults to “,”
(comma), and “escape” defaults to “\” (backslash).

[file format]

 version = 1

list_separator
=,

 escape = \

Copyrightsection This section is optional.

If used, it has the form:
[copyright]

 copyright =
"copyright_statement"

where copyright_statement is a character string.

[copyright]

 copyright =
"Copyright\

 Excellent
Products, Inc."

Example localization file

82 Open Client and Open Server

• The second line, [sortorder], is a heading for the sortorder section. Entries
in this section describe and define the collating sequence. This file does
not contain copyright and file format sections, which are optional.

• The list separator for the file is a comma (the default).

• The escape character for the file is a backslash (the default).

• Values that include spaces begin and end with quotation marks, such as the
value for “description =”.

Note The ellipsis “...” indicates deletion of actual file contents.

 ; semi-colon is the comment character
 [sortorder]
 ;--
 ; Overview
 ; --------
 ; Case-sensitive sort order based on the ISO 8859-1 code set.
 ; Uppercase characters sort before lowercase counterparts.
 ;
 ; Ligatures and sort doubles
 ; --------------------------
 ; AE, ae ligatures
 ; German sharp-s ligature with “ss”
 ;
 ; Sort order
 ; ----------
 ; 1. non-alphanumeric characters in binary order
 ; 2. numeric digits
 ; 3. alphabetic characters used in English, French, German
 ; 4. Alphabetic characters not used in English, French, German
 ;
 ; Format
 ; ------
 ; Default formatting values. There is no [file format] section.
 ;--class = 0x01
 id = 0x33
 menuname = “Case-sensitive dictionary sort order”
 name = dictionary
 charset = iso_1
 description = “Dictionary sort order for use with English,\ French and German.
 ISO 8859-1,case sensitive.”
 ;
 ; Ligatures for English, French, German
 lig = 0xC6, after AE

APPENDIX B External Localization File Syntax

International Developers Guide 83

 lig = 0xE6, after ae
 lig = 0xDF, after ss
 ;
 ; Control characters
 char = 0x01(SOH) start of heading
 ...
 char = 0x1F;(US) unit separator
 ;
 ; All non-alphanumeric characters, including punctuation,sorted
 ; by numerical ordering
 char = 0x20;() space
 ...
 char = 0xF7;division sign
 ;
 ; Digits
 char = 0x30;(0) digit zero
 ...
 char = 0x39;(9) digit nine
 ;
 ; Latin alphabet
 char = 0x41,0x61,0xC0,0xE0,0xC1,0xE1,0xC2,0xE2,0xC3,0xE3,0xC4,
 0xE4,0xC5,0xE5
 ; letter A, a, A-grave, a-grave, A-acute, a-acute, A-circumflex,
 ; a-circumflex, A-tilde, a-tilde, A-diaeresis, a-diaeresis,
 ; A-ring, a-ring
 ...
 char = 0x5A,0x7A;letter Z,z
 ;
 ; Alphabetic characters not used in English, French, German
 char = 0xD0,0xF0;Icelandic letter Eth, eth
 ...

Example localization file

84 Open Client and Open Server

International Developers Guide 85

Glossary

case-sensitive When applied to a collating sequence, it means that the collating sequence
distinguishes between uppercase and lowercase characters.

character A member in a set of elements that represents data in a native language,
such as “e,” “ë,” “5,” or “¿.”

character set A finite set of characters and glyphs that can include letters, ideographs,
digits, symbols, and control functions. See also single-byte character set
and multibyte character set.

coded character set A character set in which each character is assigned a numeric code value.
Also called a code page.

coded character set
conversion

Changing the encoding of characters from one set of numeric codes to
another.

When clients and servers use different character sets, coded character set
conversion them to interpret data the same way.

collating sequence The order in which a system sorts text.

digraph See ligature.

encoding For character sets, the unique identification of each character with a
numeric code.

glyph The graphic representation of a character. For example, the character “f”
can be represented by the glyph “f” or “ƒ.”

ideograph A character or symbol that represents an idea, such as those used in written
Chinese and Japanese.

internationalization The process of enabling an application to support multiple languages and
cultural conventions. An internationalized application uses the language
and cultural conventions appropriate to the geographic area in which it is
running.

ligature A single character that is sorted as multiple characters. For example, “→”
is sorted as “AE,” and “β,” sorted as “ss.”

 Glossary

86 Open Client and Open Server

locale 1. A specific geographic or national language region. 2. A collection of
information related to a specific geographic or national language region.

locales file A Sybase-specific file that maps locale names to languages, character sets, and
collating sequences. Open Client and Open Server products examine the
locales file when loading localization information.

locales structure
(CS_LOCALE)

A CS-Library structure that is used to define custom localization values in
Client-Library and Server-Library applications. The CS-Library routines
cs_loc_alloc and cs_loc_drop allocate and drop a locale structure. The CS-
Library routine cs_locale loads a locale structure with information.

localization The process of setting up an application to execute using a specific language
and related cultural conventions.

multibyte character
set

A character set that includes characters that are encoded using more than one
byte, such as EUC JIS and Shift-JIS. A multibyte character set can include
characters of varying widths.

single-byte
character set

A character set in which all characters are encoded using a single byte.

sort double In a collating sequence, a pair of characters that is sorted as a single character.
For example, “ch” in Spanish.

sort order See collating sequence.

Unicode A universal, 16-bit encoded character set, defined by the Unicode Standard.
Unicode version 1.1 is code-for-code identical to ISO 10646, the international
standard universal character set.

UTF-8 An encoding that is the UCS Transformation Format, 8-bit form. It uses
multibyte characters up to 4 bytes long.

UTF-16 An encoding that is the UCS Transformation Format, 16-bit form. In UTF-16,
each UCS-2 code value represents itself, where all of the characters currently
defined are 2 bytes long. Code values beyond the BMP (Basic Multilingual
Plane: 0..0xFFFF) are represented using pairs of special codes called surrogate
pairs.

International Developers Guide 87

B
bcp utility

localizing 32
message files 75

bind variables
defining custom localization values 21

Bulk Library
message files 75

C
case sensitivity

determining 56
in collating sequence files 56

character set conversion
disabling 40
files used 41
in pre-release 4.9 Adaptive Server 44
indirect 41
installing custom conversion routines 44

character set names
values in locales file 49

character sets
client requests to change 27
specified in locales file entries 49
supported 38

characters
in collating sequence files 59

charsets directory
contents 75

Client-Library
localization properties 22
message files 75

Client-Library applications
using custom localization values 16
using initial localization values 16

collating sequence files 58
character entries 63

contents 58
creating 61
entering characters 59
example 65
general entries 61
ligature entries 63
sections and entries 58
shipped 57

collating sequence names
values in locales file 49

collating sequences 54
specified in locales file entries 49

comments
localization files 79

connections
establishing the language and character set 39

copyright section
localization files 81

CS_CONNECTION structure
defining custom localization values 18

CS_CONTEXT structure
defining custom localization values 17

cs_ctx_alloc routine
required files 34

CS_EBADXLT return 44
CS_EDIVZERO return 44
CS_EDOMAIN return 44
CS_ENOXLT return 44
CS_EOVERFLOW return 44
CS_EPRECISION return 44
CS_ESCALE return 44
CS_ESTYLE return 44
CS_ESYNTAX return 44
CS_EUNDERFLOW return 44
cs_locale routine 11

how it works 12
required files 34

CS_LOCALE structure
example of loading 12
how to use 11

Index

Index

88 Open Client and Open Server

cs_manage_convert routine 44
CS_MEM_ERROR return 44
cs_strcmp routine

defining custom localization values 21
CS_SUCCEED return 44
cs_time routine

defining custom localization values 21
CS_TRUNCATED return 44
CS-Library

message files 75
ct_init routine

required files 34
custom collating sequence files 61
custom localization values 7

D
DB-Library applications

changing language and character sets 30
defncopy utility

localizing 32
desktop platforms 10
destination variables

defining custom localization values 21
digraph 64

E
Embedded SQL

message files 75
Embedded SQL application

localizing 32
Embedded SQL precompiler

localizing 31
entries

localization file 79
environment values 10
environment variables

LANG 10
LC_ALL 9
LC_CTYPE 10
LC_MESSAGE 10
LC_TIME 10
related to localization 8

examples
collating sequence file 65
loading a CS_LOCALE structure 12
locales file 49

F
file format section

localization files 81
files

collating sequence 58
global object identifiers file 77
message 75
required 33
syntax 79

I
international applications

advantages 1
writing Client-Library applications 15
writing DB-Library applications 30
writing Open Server applications 22

international systems
example 2
Open Client and Open Server support 3

internationalization
definition 1

isql utility
localizing 32

K
keywords

localization files 79

L
LANG environment variable 10
language module

adding locale definition 48
language names

Index

International Developers Guide 89

values in locales file 49
languages

client requests to change 27
specified in locales file entries 49

LC_ALL environment variable 9
LC_CTYPE environment variable 10
LC_MESSAGE environment variable 10
LC_TIME environment variable 10
ligature 63
locale names

matching non-Sybase names 48
values in locales file 49

locales directory
contents 73, 74

locales file 74
adding entries 50
contents 48
deleting entries 51
entries 48
entry syntax 48
example 49
introduction 8
when to edit 47

localization
definition 1
environment variables 8

localization files
example 81
specific sections 80
standard sections 81
syntax 79

localization properties
Client-Library 22
Server-Library 29

localization values
custom 6, 7, 8, 17, 19, 21
defining at the connection level 19
defining at the context level 17
defining at the data element level 21
how loaded 6
how to set up 8
how to use 7
initial 5, 6, 7
initial or custom values 5
precedence in Client-Library applications 21

M
mainframes

run-encoded character encodings 45
message files 75

O
objectid.dat file

editing 78
Open Server applications

creating localized connections 27
localizing 22
localizing CS-Library messages for clients 25
localizing for client threads 26
localizing for gateway applications 27
processing a request to change language 28
returning character set information to clients 24
returning localization information to clients 24
returning sort order information to clients 24
using as a conversion gateway 41
using custom localization values 23
using initial localization values 23

Open Server gateways
creating localized connections 27

order by clause 60

P
preference keyword 60

in collating sequence files 60
primary sort order 54
product message files 75
properties

localization 22, 29

R
required files 33

Index

90 Open Client and Open Server

S
secondary sort order 54
sections

localization file 79
specific 80
standard 81

Server-Library
localization properties 29
message files 75

Server-Library applications 23
sort double 64
sort order 54
sorts

types of character sorts 55
sp_serverinfo 24
srv_init routine

required files 34
SRV_S_USERVLANG property 29
SRV_T_USERVLANG property 29
standalone utilities

localizing 32
strings

localization files 80

T
threads

localizing a CS_CONTEXT structure for a client thread
26

U
Unicode directory

contents 76
Unilib library 42
utilities

localizing 32

V
values

localization files 80

	International Developers Guide
	About This Book
	CHAPTER 1 Understanding Internationalization and Localization
	Internationalization and localization
	Advantages of internationalized applications
	International systems
	Open Client and Open Server support for international systems

	CHAPTER 2 How Localization Works
	Deciding what localization values to use
	Using initial localization values
	Setting up an application to use initial localization values

	Using custom localization values
	Localization mechanism details
	The locales file
	Environment variables
	Platforms not using environment variables

	The CS_LOCALE structure
	The cs_locale routine
	Example: Calling cs_locale to Load a CS_LOCALE structure

	CHAPTER 3 Writing Internationalized Open Client and Open Server Applications
	Writing internationalized Client-Library applications
	Client-Library applications using initial values
	Client-Library applications using custom values
	Customizing at the context level
	Example
	Defining custom localization values for a context

	Customizing at the connection level
	Example
	Defining custom localization values for a connection

	Customizing at the data element level
	Example
	Defining custom localization values at the data element level

	Client-Library localization value precedence
	Client-Library localization properties

	Writing internationalized Open Server applications
	Localizing the application
	Open Server applications using initial values
	Open Server applications using custom values

	Supporting localized clients
	Automatic support for localized clients
	Additional support for localized clients

	Responding to requests to change language and character set
	Server-Library localization properties

	Writing internationalized DB-Library applications
	Internationalizing with Embedded SQL
	Localizing the precompiler
	How default values are determined
	Specifying custom localization values

	Localizing an Embedded SQL application

	Localizing standalone utilities
	Tips
	Make sure required files are installed
	Using CS_NULLTERM with Open Client and Open Server routines

	CHAPTER 4 Coded Character Set Conversion Support
	Definitions
	Supported character sets
	Understanding coded character set conversion
	Establishing the language and character set for a connection
	Disabling character set conversion
	Using Open Server as a conversion gateway
	Files used during character set conversion
	Unilib library

	Using custom coded character set conversion
	Why install custom conversion routines?
	Writing a custom conversion routine
	Installing a custom conversion routine

	Character set conversion in Adaptive Server Enterprise releases prior to 4.9
	Mainframe support

	CHAPTER 5 Editing the Locales File
	Quick start
	When to edit the locales file
	Locales file sections and entries
	Locale definition entries
	Locales file example

	Editing the locales file
	Adding or changing entries
	Deleting entries

	CHAPTER 6 Creating or Changing Collating Sequences
	Quick start
	About collating sequences
	Definitions
	Types of sorts
	Determining case sensitivity

	When to create a custom collating sequence file
	About collating sequence files
	Collating sequence file sections and entries
	Writing characters in a collating sequence file
	The preference keyword and the order by clause

	Creating a custom collating sequence file
	Collating sequence file example

	APPENDIX A Directories and Files Related to Internationalization
	Overview
	The locales directory
	The locales file
	Localized message files
	language_name subdirectories
	Unicode directory

	The charsets directory
	Collating sequence files
	Unicode conversion files

	The config and ini directories
	The global object identifiers file
	Object identifiers file sections and entries
	Object identifiers file example
	Editing object identifiers file

	APPENDIX B External Localization File Syntax
	Localization file syntax rules
	Localization file sections
	Example localization file

	Glossary
	Index

