Utility Guide

Adaptive Server® Enterprise
15.7 ESD #3
CHAPTER 2 Transferring Data to and from Adaptive Server with bcp ... 193

Methods for Moving Data ... 194
Import and Export Data with bcp ... 194
bcp Modes ... 195
bcp Requirements ... 196
Basic Requirements ... 197
Permissions .. 197
Pretransfer Tasks ... 197
Copy Data to a File .. 198
Examples... 198
bcp Performance.. 199
Using Fast, Fast-logged, or Slow bcp 199
Copying in Data with Fast and Fast-logged bcp................. 203
Bulk Copying Data into Partitioned Tables 203
Using Parallel Bulk Copy to Copy Data into a Specific Partition .. 206
Bulk Copying Encrypted Data .. 212
Using the bcp Options ... 214
Using the Default Formats ... 214
Change Terminators from the Command Line 216
Change the Defaults in Interactive bcp 217
Respond to bcp Prompts .. 218
File Storage Type ... 219
Prefix Length .. 221
Field length .. 222
Field and Row Terminators ... 224
Format Files .. 227
Examples of Copying Out Data Interactively 230
Copy Out Data with Field Lengths... 231
Contents

Copy Out Data with Delimiters .. 232
Examples of Copying In Data Interactively 233
Copy In Data with Field Lengths .. 234
Copy In Data with Delimiters .. 236
Copy In Data with a Format File 236
bcp and Alternate Languages .. 237
Support for Initialization Strings ... 238
bcp and Row-Level Access Rules 238
Copy In and Batch Files ... 238
 Improve Recoverability ... 239
 Batches and Partitioned Tables .. 239
Copy Out and Text and Image Data 240
Specify a Network Packet Size .. 241
Copy In and Error Files .. 241
Copy Out and Error Files .. 242
Data Integrity for Defaults, Rules, and Triggers 243
 Defaults and Datatypes .. 243
 Rules and Triggers .. 243
How bcp Differs from Other Utilities 243

CHAPTER 3 Building Servers Using dataserver 245
 Introduction .. 245
 Building a new master device ... 246
 Environments when using dataserver 247
 Specifying device and logical page sizes when building a new
 Adaptive Server ... 247
 Starting an existing Adaptive Server 250
 Upgrading to a server with larger page sizes 251
 Viewing the current server limits 251

CHAPTER 4 Using dscp to View and Edit Server Entries 253
 Getting Started with dscp ... 253
 Using a dscp Session ... 254
 Working with Server Entries ... 255
 Adding and Modifying Server Entries 255
 Copy Server Entries .. 257
 List and view contents of server entries 259
 Delete server entries .. 259
 Exiting dscp .. 260

CHAPTER 5 Using dsedit to View and Edit Server Entries 261
 Starting dsedit in Windows .. 261
Contents

Starting dsedit in UNIX ... 262
Open an Editing Session in Windows .. 263
Open an Editing Session in UNIX .. 264
Add, View, and Edit Server Entries ... 265
 Modify Server Entries in Windows 266
 Modify Server Entries in UNIX ... 268
Copy Server Entries .. 270
Troubleshooting dsedit ... 272

CHAPTER 6 Using Interactive isql from the Command Line 273
Starting and stopping isql ... 273
How to use Transact-SQL in isql ... 274
 Formatting isql output .. 274
 Correcting input ... 276
 set options that affect output ... 276
Changing the command terminator ... 277
Performance statistics interaction with command terminator values .
Input and output files .. 279
UNIX command line redirection .. 279

CHAPTER 7 Using Interactive SQL in Graphics Mode 281
Starting Interactive SQL ... 282
The main Interactive SQL window ... 283
 Plan dialog tab ... 283
The Interactive SQL toolbar ... 285
Open multiple windows ... 285
Keyboard shortcuts .. 285
Using Interactive SQL to display data .. 286
Edit table values in Interactive SQL .. 287
 Copy rows from the Interactive SQL result set 288
 Edit table values from the Interactive SQL result set 288
Insert rows into the database from the Interactive SQL result set
 Delete rows from the database using Interactive SQL 289
SQL statements in Interactive SQL .. 290
 Canceling an Interactive SQL command 290
 Combining multiple statements ... 291
Looking up tables, columns, and procedures 292
Recall commands ... 293
Log commands ... 293
Configure Interactive SQL ... 294
General dialog box ... 294
Result dialog box ... 295
Import/Export dialog box .. 296
Messages dialog tab .. 297
Editor .. 297
Query Editor .. 298
Processing command files ... 299
Writing output to a file ... 299
Executing command files .. 299
Saving, loading, and running command files 300
The SQL escape syntax in Interactive SQL 301
Interactive SQL commands .. 302

CHAPTER 8 sybcluster Interactive Commands Reference 305
Commands active before connecting to a cluster 305
Commands active after connecting to a cluster 306
add backupserver .. 308
add instance .. 309
connect .. 311
create backupserver .. 313
create cluster .. 315
create xpserver .. 317
deploy plugin .. 318
diagnose cluster .. 320
diagnose instance ... 322
disconnect ... 323
drop backupserver ... 324
drop cluster ... 325
drop instance ... 326
drop xpserver ... 327
exit ... 328
help ... 329
localize .. 330
quit .. 332
set backupserver ... 333
set cluster .. 334
set instance ... 335
set xpserver port ... 336
show agents ... 337
show backupserver config .. 339
show cluster .. 340
show instance ... 343
show membership mode .. 346
show session ... 347
show xpserver ... 349
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility geometry check</td>
<td>406</td>
</tr>
<tr>
<td>sybrestore syntax</td>
<td>406</td>
</tr>
<tr>
<td>Restoring a database in noninteractive mode</td>
<td>407</td>
</tr>
<tr>
<td>Restoring a database in interactive mode</td>
<td>407</td>
</tr>
<tr>
<td>Providing a mapping directory</td>
<td>409</td>
</tr>
<tr>
<td>Using the interactive command line</td>
<td>410</td>
</tr>
<tr>
<td>Restore to a point-in-time example</td>
<td>413</td>
</tr>
</tbody>
</table>

Index.. 415
CHAPTER 1

Utility Commands Reference

This chapter contains reference pages for the Adaptive Server® utility program commands.

Getting Started

(UNIX) You enter a utility program command at the system prompt in a UNIX shell.

(Windows) If a utility:

- Has an icon in the Sybase® for Windows or Sybase for the Windows program group, double-click the icon to launch the utility program.
- Does not have an icon in the program group, enter the utility program command at the Windows command prompt to launch the utility program.

Place characters with special meaning to the shell (the command prompt in Windows), such as the backslash (\), asterisk (*), slash (/), and spaces, in quotes. Precede some special characters with the backslash (\) to “escape” them to prevent the shell (command prompt) from interpreting the special characters.

The utility programs available with Adaptive Server are:

- **backupserver** – executable form of the Backup Server™ program.
- **bcp** – copies rows in a database table to or from an operating system file in a user-specified format.
- **certauth** – converts a server-certificate request into a certificate authority-signed certificate.
- **certpk12** – export or import a PKCS#12 file.
- **certreq** – creates a server certificate request and corresponding private key in two ways:
Getting Started

- **charset** – loads the character sets and sort order files.
- **cobpre** – precompiler for COBOL.
- **cpre** – precompiler for C.
- **dataserver** – executable form of the Adaptive Server program.
- **ddlgen** – generates data definition language for server- and database-level objects in ASE.
- **defncopy** – copies definitions for specified views, rules, defaults, triggers, procedures, or reports from a database to an operating system file or from an operating system file to a database.
- **dscp** – allows you to view and edit server entries in the interfaces file in command-line mode.
- **dsedit** – allows you to view and edit server entries in the interfaces file using a graphical user interface.
- **extractjava** – copies a retained JAR from an Adaptive Server to a client file.
- **installjava** – installs a JAR from a client file into an Adaptive Server.
- **isql** – interactive SQL parser to Adaptive Server.
- **langinstall** – installs a new language on the Adaptive Server.
- **optdiag** – displays optimizer statistics or loads updated statistics into system tables.
- **preupgrade** – performs tests on an installation or database to determine its readiness for upgrade.
- **pwdcrypt** – creates and prints an encrypted LDAP password in the libtcl.cfg file.
- **qmutil** – (Cluster Edition only) allows you to back up, restore, and reconfigure the quorum device.
- **qptune** – enables you to fix missing statistics and identify the best query plan, optimization goal, or other configuration settings, and apply them at the query or server level.
- **showserver** – shows Adaptive Servers and Backup Servers that are currently running on the local machine.
- **sqldbg** – debugs stored procedures and triggers.
• sqlloc – installs and modifies languages, character sets, and sort order defaults for Adaptive Server in GUI mode.
• sqllocres – installs and modifies languages, character sets, and sort order defaults for Adaptive Server in command-line mode.
• sqlsrvr – executable form of the Adaptive Server program.
• sqlupgrade – upgrades your currently installed release of Adaptive Server to the newest release in GUI mode.
• sqlupgraderes – upgrades your currently installed release of Adaptive Server to the newest release in command-line mode.
• srvbuild – creates a new Adaptive Server, Backup Server, or XP Server in GUI mode with default or user-specified values for key configuration attributes.
• srvbuildres – creates a new Adaptive Server, Backup Server, or XP Server in command-line mode with default or user-specified values for key configuration attributes.
• startserver – starts an Adaptive Server or a Backup Server.
• sybcluster – manages a shared-disk cluster.
• sybdiag – collects comprehensive configuration and environment data for Adaptive Server.
• sybmigrate – enables you to migrate database from a server using 2K logical pages to a server using 4, 8, or 16K logical pages.
• sybrestore – enables you restore an Adaptive Server database to the time of failure from the most current full database backup dump files.
• sybtsmpasswd – records or changes the user password and creates the Tivoli Storage Manager (TSM) encrypted password file, TSM.PWD, on the TSM client machine.
• xpserver – starts XP Server manually.

Note These utility programs may allow you to use a -P parameter to enter your password. If security is an issue, do not use -P to specify your password; another user may have an opportunity to see it. Instead, log in as usual without the -P parameter, and let Adaptive Server prompt you for your password.
Installation or Configuration Utilities

* _r Utilities

Sybase includes the _r versions of some of the utilities for use with threaded drivers.

The utilities that have _r versions are:

- bcp
- cobpre
- cpre
- defnstrcpy
- dscp
- isql

Installation or Configuration Utilities

Adaptive Server includes various utilities for installation and configuration. Use these to install or configure databases:

- dataserver – allows you to build a new Adaptive Server.
- dscp – allows you to view and edit server entries in the interfaces file from the command line.
- dsedit – allows you to view and edit server entries in the interfaces file using a GUI.
 In Windows, allows you to create and modify network connection information in the interfaces file.
- preupgrade – performs tests on an installation or database to determine its readiness for upgrade, and reports problems found.
- sqlupgrade – upgrades your currently installed release of Adaptive Server to the newest release.
- sqlupgraderes – upgrades your currently installed release of Adaptive Server to the newest release using resource files in UNIX platforms.
- srvbuild – creates a new Adaptive Server, Backup Server, or XP Server with default or user-specified values for key configuration attributes using a graphical user interface.
• **srvbuildres** – creates a new Adaptive Server, Backup Server, or XP Server, using resource files to specify values for key configuration attributes in UNIX platforms.

Utilities for Languages, Character Sets, and Sort Orders

Use these utilities to set languages, character sets and sort orders:

• **charset** – loads the character sets and sort order files in Windows.

• **langinstall** – installs a new language on an Adaptive Server.

• **sqlloc** – installs and modifies languages, character sets, and sort order defaults for Adaptive Server.

• **sqllocres** – installs and modifies languages, character sets, and sort order defaults for Adaptive Server, using a resource file in UNIX platforms.

Utilities to Start Servers

Use these utilities to start servers manually:

• **backupserver** – starts the Backup Server executable. Use the `startserver` command instead of this utility to start Backup Server manually. In Windows, use the `srvmgr` utility instead to start Backup Server manually.

• **dataserver** – starts the Adaptive Server executable. Use the `startserver` command instead of this utility to start Adaptive Server manually.

• **sqlsrvr** – starts the Adaptive Server executable in Windows. Use the `services manager` utility instead of this utility to start Adaptive Server manually.

• **srvmgr** – starts, pauses, and stops Adaptive Server, Backup Server, and Adaptive Server Monitor™ as Windows services.

• **startserver** – starts an Adaptive Server and a Backup Server in UNIX platforms.
Database Creation and Manipulation Utilities

Use these utilities to create and manipulate databases:

- **bcp** – copies a database table to or from an operating system file in a user-specified format.
- **ddlgen** – generates data definition language for server- and database-level objects in ASE.
- **defncopy** – copies definitions for specified views, rules, defaults, triggers, or procedures from a database to an operating system file or from an operating system file to a database.
- **extractjava** – copies a retained JAR and the classes it contains from an Adaptive Server to a client file.
- **installjava** – installs a JAR from a client file into an Adaptive Server database.
- **isql** – interactive SQL parser to Adaptive Server.
- **optdiag** – displays optimizer statistics or loads updated statistics into system table.

Utilities to Gather Information

Use these utilities to gather information:

- **showserver** – shows the Adaptive Servers and Backup Servers that are currently running on the local machine in UNIX platforms.
- **sybdiaq** – collects comprehensive Adaptive Server configuration and environment data to help Sybase Technical Support diagnose server issues.
- **wdllvers** – provides information about the Sybase DLLs (dynamic link libraries) that are loaded into memory in Windows.
Tuning Utility

qptune enables you to fix missing statistics and identify the best query plan, optimization goal, or other configuration settings, and apply them at the query or server level.

Utility to Manage a Cluster

(Cluster Edition only) Use this utility to manage an Adaptive Server shared-disk cluster. sybcluster provides a set of interactive, command line options for creating and managing a cluster.
backupserver

Description
The executable form of the Backup Server program.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_ASE/bin.
- (Windows) the utility is bcksrvr.exe, located in %SYBASE%\%SYBASE_ASE%\bin.

Syntax
backupserver
[-C server_connections]
[-S b_servername]
[-I interfaces_file]
[-e error_log_file]
[-M sybmultbuf_binary]
[-N network_connections]
[-T trace_value]
[-L Sybase_language_name]
[-J Sybase_character_set_name]
[-c tape_config_file]
[-D n]
[-A pathname]
[-P active_service_threads]
[-V level_number]
[-p n]
[-m max_shared_memory]

Or
backupserver -v

Parameters
-C server_connections
specifies the number of server connections for the Backup Server. The Backup Server requires:

- Two connections for each dump session
- One connection for each load session
- One connection for volume change messages

Allow a maximum of three times the number of expected concurrent dump and load sessions. The default value is 30 server connections.

-S b_servername
specifies the name of the Backup Server to start. The default is SYB_BACKUP. This entry must specify the name of a Backup Server in the interfaces file.
-I interfaces_file
 specifies the name and location of the interfaces file to search when
 connecting to Backup Server. If -I is omitted, backupserver looks for a file
 named interfaces in the directory pointed to by your SYBASE environment
 variable.

-v
 prints the version number and copyright message of the backupserver
 software and then exits.

-e error_log_file
 specifies the name and location of the Backup Server error log file used to
 report Open Server internal errors, sybmultbuf errors, errors that halt the
 Backup Server, and errors for disconnected sessions. All other errors are
 sent to the notify destination specified in the dump database, dump
 transaction, load database, and load transaction commands.

-M sybmultbuf_binary
 specifies the full path name of the sybmultbuf executable. Use this parameter
 only when starting Backup Server from a directory other than the bin
 directory of the Sybase installation directory, or when using a diagnostic
 version of sybmultbuf.

-N network_connections
 specifies the number of total network connections (DBPROCESSes) that the
 master Backup Server can originate. The default value is 25.

-T trace_value
 interprets trace_value as a bitmask (base-2 number). The 1 bits in
 trace_value correspond to Open Server Trace flags to turn on. If you specify
 more than one -T parameter on the command line, the final -T value
 overrides the values from earlier -T parameters. The trace_value must be a
 positive integer.

-L Sybase_language_name
 specifies the default language for Backup Server. If not specified, Backup
 Server uses the locale specified by the LC_ALL or LANG environment
 variables. If these variables are not set, Backup Server searches for the
 “default” entry in locales.dat.

 Note The -L parameter does not override the value set in the LANG
 environment variable.

-J Sybase_character_set_name
 specifies the default character set for Backup Server.
-c tape_config_file
 specifies the name and location of the tape configuration file to search for
tape device configuration information before doing a dump database or a
dump transaction. If you do not specify -c, the default path name for the tape
configuration file is $SYBASE/backup_tape.cfg.

-D n
 specifies the bitmap (base 10 number) of the diagnostic flags used within
Backup Server.

-A pathname
 specifies the pathname to the directory of the Archive API dynamically
loadable library.

-P active_service_threads
 allows you to increase the number of stripes during multiple dump/load
operations (with a maximum of 12286 stripes per single operation).
-V level_number
limits the messages that are printed to the Backup Server error log. The
level_number variable determines the degree of error verbosity (-V) for
Backup Server:

• -V4 – displays all -V0 messages except “Connection from Server”
 messages printed for each connection event.

• -V3 – displays only completion messages from a normal dump or load
 command and these types of messages:
 • Error messages from Backup Server and sybmultbuf
 • Other sybmultbuf messages
 • Volume change messages
 • Open Server™ messages
 • Trace print messages
 • Informational messages from the System & Tape Auto Config
 modules

• -V2 – displays:
 • All -V3 messages plus
 • File creation and file mount messages

• -V1 – displays:
 • All -V2 messages plus
 • Phase messages

• -V0 (default) – displays all messages, including backup progress

This limitation does not involve the messages that are sent to the client or
console as determined by the NOTIFY= parameter in a dump or load
command.

This option also does not affect logging for these message types:

• Open Server messages
• Trace printing messages from bs_traceprint
• sybmultbuf messages
backupserver

-p n
 specifies the TDS packet size in bytes that the local Backup Server requests from the remote Backup Server during network dumps. The actual packet size used is limited to the -p parameter value of the remote Backup Server. If you do not specify -p, the default is 2048 bytes. The packet size should be an integer greater than, or equal to 256.

-m max_shared_memory
 specifies the maximum amount of shared memory in megabytes that Backup Server can use for all of its dump or load sessions.

Usage

• In Adaptive Server version 15.5 and later, both Adaptive Server and Backup Server can bypass the operating system buffer cache when you enable the directio parameter for the device using disk init, disk reinit, or sp_deviceattr. Adaptive Server passes the device options to Backup Server, which enables Backup Server to access the database device with the appropriate directio option.

• Backup Server versions 15.0.3 and earlier do not work with Adaptive Server 15.5 and later.

• Start Backup Server with the startserver command rather than by directly executing the backupserver program.
 • To change default values in UNIX, edit the RUN_servername file in your Sybase installation directory. See the startserver reference page for details.
 • To change default values in Windows, use Server Config to change the command-line parameters of the Backup Server. See the Configuration Guide for details.

• Make sure that the device driver options you include with the dump command are accurate. Backupserver does not verify any device driver options you include during a dump command. For example, if you include a option that forces Backupserver to rewind a tape before use, it will always rewind the tape to the beginning instead of reading the tape from the point of the dump.

• If you do not specify a Backup Server name with the -S parameter, and you have not set the environment variable DSLISTEN, backupserver uses the default Backup Server name SYB_BACKUP in UNIX.

(WINDOWS) bcksrvr uses the default Backup Server name server_name_BS. The value of the DSLISTEN environment variable overrides this default value, and the -S parameter overrides both the default and the value specified in DSLISTEN.
• Whenever possible, the Backup Server and any Adaptive Servers that
dump or load directly through the Backup Server should share the same
interfaces file (`sql.ini` in UNIX). The interfaces file that Backup Server
uses must contain entries for:
 • Backup Server
 • Any other Backup Servers with which this Backup Server
 communicates
• Trace flags cause the Backup Server to print information regarding its
 operation while it is running, for debugging problems in the Backup
 Server.
• If Backup Server cannot find the `locales` and `charsets` directories specified
 by the `-L` and `-J` parameters, or if these parameters specify an incorrect
 language and character set combination, Backup Server issues an error
 message and uses the default language and character set. Backup Server
does not support use of the Open Server-defined SRV_TR symbols for `-T`.
• Backup Server cannot perform loads or dumps between servers that use
different logical page sizes. For example, load a 4K logical page sized
database dump into another server using a 4K logical page size. But
Backup Server does not support dumping a 4K logical page sized database
and loading it into a database that uses 16K logical page size.

Permissions
Anyone with execute permission on the binary, and who has read/write access
to all the files.

See also
Documentation Open Server Server-Library/C Reference Manual for more
details on trace flags.
Utilities `startserver`
bcp

Description
Copies a database table to or from an operating system file in a user-specified format.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is bcp.exe, located in %SYBASE%/%SYBASE_OCS%bin.

Syntax
bcp [[(database_name.)owner.]table_name [: | partition_id | slice_number] | partition partition_name] {in | out} [datafile]
[-a display_charset]
[-A packet_size]
[-b batch_size]
[-c]
[-C]
[-d discardfileprefix]
[-e errfile]
[-E]
[-f formatfile]
[-F firstrow]
[-g id_start_value]
[-i input_file]
[-l interfaces_file]
[-L client_character_set]
[-K keytab_file]
[-L lastrow]
[-m maxerrors]
[-M LabelName LabelValue] [-labeled]
[-n]
[-N]
[-o output_file]
[-P password]
[-Q]
[-r row_terminator]
[-R remote_server_principal]
[-S server]
[-T field_terminator]
[-T text_or_image_size]
[-U username]
[-v]
[-V [security_options]]
[-W]
[-x trusted.txt_file]
[-X]
[-y alternate_home_directory]
[-Y]
[-z language]
Parameters

database_name

is optional if the table being copied is in your default database or in master. Otherwise, specify a database name.

owner

is optional if you or the database owner owns the table being copied. If you do not specify an owner, bcp looks first for a table of that name that you own, and then looks for one owned by the database owner. If another user owns the table, specify the owner name or the command fails.

table_name

specifies the name of the database table to copy. The table name cannot be a Transact-SQL reserved word.

partition_id

specifies the partition number into which data is to be copied. Supported only for bcp in, partition_id is the equivalent of slice_number in Adaptive Server 12.5.x.

slice_number

specifies the number of the slice of the database table into which data is to be copied. It is supported only for bcp in and only for round-robin partitioned tables in Adaptive Server 15.0 and later.

partition partition_name

specifies the name of the partition in Adaptive Server. For multiple partitions, use a comma-separated list of partition names.

in | out

specifies the direction of the copy. in indicates a copy from a file into the database table; out indicates a copy to a file from the database table or view.

datafile

specifies the full path name of an operating system file. The path name can be 1 to 255 characters long. For multiple files, use a comma-separated list of file names. If you enter more than one data file and partition name, the number of files and partitions must be the same.
-a display_charset
allows you to run bcp from a terminal where the character set differs from
that of the machine on which bcp is running. Using -a in conjunction with -J
specifies the character set translation file (.xlt file) required for the
conversion. Use -a without -J only if the client character set is the same as
the default character set.

You see this error message if the character translation file(s) named with the
-a parameter is missing, or you mistype the name(s):

Error in attempting to determine the size of a pair of
translation tables. : 'stat' utility failed.

-A packet_size
specifies the network packet size to use for this bcp session. For example,
this sets the packet size to 4096 bytes for this bcp session:

 bcp pubs2..titles out table_out -A 4096

packet_size must be:
- Between the values of the default network packet size and maximum
 network packet size configuration variables,
- A multiple of 512.

Use network packet sizes larger than the default to improve the performance
of large bulk-copy operations.

-b batchsize
specifies the number of rows per batch of data copied. By default, bcp in
copies n rows in one batch, where n is equal to the batch size. Batch size
applies only when you are bulk copying in; it has no effect on bulk copying
out. The smallest number bcp accepts for batchsize is 1. The largest number
bcp accepts for batchsize is 2147483647L.

Note Setting the batch size to 1 causes Adaptive Server to allocate one data
page to one row copied in. This option only applies to fast bcp, and is only
useful in locating corrupt rows of data. Use -b1 with care—doing so causes a
new page to be allocated for each row, and is a poor use of space.

-c
performs the copy operation using the char datatype as the default. This
option does not prompt for each field; it uses char as the default storage type,
no prefixes, \t (tab) as the default field terminator, and \n (newline) as the
default row terminator.
-C
supports bulk copy of encrypted columns if Adaptive Server supports encrypted columns. -C enables the ciphertext option before initiating the bulk copy operation.

-d discardfileprefix
logs the rejected rows into a dedicated discard file. The discard file has the same format as the host file and is created by appending the input file name to the discard file prefix supplied. You can correct the rows in this file and use the file to reload the corrected rows.

Sybase recommends that you use -d discardfileprefix in conjunction with -e errorfile to help identify and diagnose the problem rows logged in the discard file.

-e errorfile
specifies the full path name of an error file where bcp stores any rows that it was unable to transfer from the file to the database. Error messages from bcp appear on your terminal. bcp creates an error file only when you specify this parameter.

Sybase recommends that you use -e errorfile in conjunction with -d discardfileprefix to help identify and diagnose the problem rows logged in the discard file.
explicitly specifies the value of a table’s IDENTITY column.

By default, when you bulk copy data into a table with an IDENTITY column, bcp assigns each row a temporary IDENTITY column value of 0. This is effective only when copying data into a table. bcp reads the value of the ID column from the data file, but does not send it to the server. Instead, as bcp inserts each row into the table, the server assigns the row a unique, sequential IDENTITY column value, beginning with the value 1. If you specify the -E flag when copying data into a table, bcp reads the value from the data file and sends it to the server, which inserts the value into the table. If the number of inserted rows exceeds the maximum possible IDENTITY column value, Adaptive Server returns an error.

By default, when you bulk copy data from a table with an IDENTITY column, bcp excludes all information about the column from the output file. If you specify the -E flag, bcp copies the existing IDENTITY column values into the output file.

The -E parameter has no effect when you are bulk copying data out. Adaptive Server copies the ID column to the data file, unless you use the -N parameter.

You cannot use the -E and -g flags together.

-f formatfile
specifies the full path name of a file with stored responses from a previous use of bcp on the same table. After you answer bcp’s format questions, it prompts you to save your answers in a format file. Creation of the format file is optional. The default file name is bcp.fmt. The bcp program can refer to a format file when you are copying data so that you do not have to duplicate your previous format responses interactively. Use the -f parameter only if you previously created a format file that you want to use now for a copy in or copy out. If you do not specify this parameter, bcp interactively queries you for format information.

-F firstrow
specifies the number of the first row to copy (default is the first row). If you use multiple files, this option applies to each file.

Do not use -F when performing heavy-duty, multi-process copying, as it causes bcp to generally spend more effort to run, and does not provide you with a faster process. Instead, use -F for single-process, ad-hoc copying.

You cannot use -F with --skiprows.
-g id_start_value
 specifies the value of the IDENTITY column to use as a starting point for copying data in.

 You cannot use the -g and -E flags together.

-i input_file
 specifies the name of the input file. Standard input (stdin) is used as the default.

-I interfaces_file
 specifies the name and location of the interfaces file to search when connecting to Adaptive Server. If you do not specify -I, bcp looks for an interfaces file (sql.ini in Windows) in the SYBASE release directory.

-J client_charset
 specifies the character set to use on the client. bcp uses a filter to convert input between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from client_charset, the character set used on the client.

-J with no argument disables character set conversion. No conversion takes place. Use this if the client and server use the same character set.

Omitting -J sets the character set to a default for the platform, which may not necessarily be the character set that the client is using. For more information about character sets and associated flags, see the Adaptive Server Enterprise System Administration Guide.

-K keytab_file
 (Used only with DCE security). Specifies a DCE keytab file that contains the security key for the user name specified with -U option. Create keytab with the DCE dcecp utility. See your DCE documentation.

 If you do not supply the -K option, the bcp user must be logged in to DCE with the same user name as specified with the -U option.

-L lastrow
 specifies the number of the last row to copy from an input file (default is the last row). If you use multiple files, this option applies to each file.

-m maxerrors
 specifies the maximum number of errors permitted before bcp aborts the copy. bcp discards each row that it cannot insert (due to a data conversion error, or an attempt to insert a null value into a column that does not allow them), counting each rejected row as one error. If you do not include this option, bcp uses a default value of 10.
-M LabelName LabelValue

(secure Adaptive Server only) enables multilevel users to set the session labels for the bulk copy. Value values for LabelName are:

- **curread** (current reading level) – is the initial level of data that you can read during this session, curread must dominate curwrite.
- **curwrite** (current write level) – is the initial sensitivity level that will be applied to any data that you write during this session.
- **maxread** (maximum read level) – is the maximum level at which you can read data. This is the upper bound to which you as a multilevel user can set your curread during the session. maxread must dominate maxwrite.
- **maxwrite** (maximum write level) – is the maximum level at which you can write data. This is the upper bound to which you as a multilevel user can set your curwrite during a session. maxwrite must dominate minwrite and curwrite.
- **minwrite** (minimum write level) – is the minimum level at which you can write data. This is the lower bound to which you as a multilevel user can set curwrite during a session. minwrite must be dominated by maxwrite and curwrite.

LabelValue is the actual value of the label, expressed in the human-readable format used on your system (for example, “Company Confidential Personnel”).

-labeled

(secure Adaptive Server only) indicates that the data you are importing already has labels in the first field of every record.

For exporting data, this option indicates that you want the sensitivity label of every row to be copied out as the first field.
-n
performs the copy operation using native (operating system) formats. Specifying the -n parameter means bcp will not prompt for each field. Files in native data format are not human-readable.

Warning! Do not use:

- bcp in native format for data recovery or salvage or to resolve an emergency situation.
- bcp in native format to transport data between different hardware platforms, different operating systems, or different major releases of Adaptive Server.
- Field terminators (-t) or row terminators (-r) with bcp in native format. Results are unpredictable and data may become corrupted.

Using bcp in native format can create flat files that cannot be reloaded into Adaptive Server and it may be impossible to recover the data. If you cannot rerun bcp in character format (for example, a table was truncated or dropped, hardware damage occurred, a database was dropped, and so on) the data is unrecoverable.

-N
skips the IDENTITY column. Use this option when copying data in if your host data file does not include a placeholder for the IDENTITY column values, or when copying data out, if you do not want to include the IDENTITY column information in the host file.

You cannot use both -N and -E parameters when copying data in.

-o *output_file*
specifies the name of the output file. Standard output (stdout) is used as the default.

-P *password*
specifies an Adaptive Server password. If you do not specify -P password, bcp prompts for a password. Leave out the -P flag if your password is NULL.

-Q
provides backward compatibility with bcp for copying operations involving nullable columns.

-r *row_terminator*
specifies the row terminator.
-R remote_server_principal
 specifies the principal name for the server. By default, a server’s principal
 name matches the server’s network name (which is specified with the -S
 option or the DSQUERY environment variable). Use the -R option when the
 server’s principal name and network name are not the same.

-S server
 specifies the name of the Adaptive Server to connect to. If you specify -S
 with no argument, bcp uses the server specified by the DSQUERY
 environment variable.

-t field_terminator
 specifies the default field terminator.

-T text_or_image_size
 allows you to specify, in bytes, the maximum length of text or image data
 that Adaptive Server sends. The default is 32K. If a text or an image field is
 larger than the value of -T or the default, bcp does not send the overflow.

-U username
 specifies an Adaptive Server login name. If you do not specify this option,
 bcp uses the current user’s operating system login name.

-v
 displays the version number of bcp and a copyright message and returns to
 the operating system.

SDK binaries like bcp have the same names in both the 32-bit and 64-bit
products. Installing Adaptive Server, the SDK, or Open Server 64-bit
products with other Sybase 32-bit products overwrites the 32-bit binaries.
Starting with Adaptive Server 15.0.2 and SDK/Open Server 15.0 ESD #9,
the 64-bit binaries have been replaced with 32-bit binaries on all 64-bit
UNIX platforms. Since 32-bit binaries are included in the 64-bit EBF, the -v
option of bcp is no longer a valid way to check the EBF number for 64-bit
products. Instead, use the UNIX strings and grep commands to confirm the
EBF numbers for Adaptive Server.

For example, to find the string containing the EBF number in the
libsybct64.a library, enter:

 strings -a libsybct64.a | grep Sybase

This returns a string similar to:

 Sybase Client-Library/15.5/P/DRV.15.5.0/SPARC/Solaris
To find the string containing the EBF number in the libsybsrv64.a library, enter the following:

```
strings -a libsybsrv64.a | grep Sybase
```

This returns a string like the following:

```
Sybase Server-Library/15.5/P/DRV.15.5.0/SPARC/Solaris 8/BUILD1550-001/64bit/OPT/Mon Aug 10 23:06:27 2009
```

-V security_options

specifies network-based authentication. With this option, the user must log in to the network’s security system before running the utility. In this case, users must supply their network user name with the -U option; any password supplied with the -P option is ignored.

To enable additional security services, follow -V with a `security_options` string of key-letter options:

- `c` – enables data confidentiality service
- `i` – enables data integrity service
- `m` – enables mutual authentication for connection establishment
- `o` – enables data origin stamping service
- `r` – enables data replay detection
- `q` – enables out-of-sequence detection

-W

specifies that if the server to which bcp is attempting to connect supports neither normal password encryption nor extended password encryption, plain text password retries are disabled.

If you use this option, the `CS_SEC_NON_ENCRYPTION_RETRY` connection property is set to `CS_FALSE`, and plain text (unencrypted) passwords are used in retrying the connection.

-x trusted.txt_file

specifies an alternate `trusted.txt` file.
-X
specifies that, in this connection to the server, the application initiates the
login with client-side password encryption. bcp (the client) specifies to the
server that password encryption is desired. The server sends back an
encryption key, which bcp uses to encrypt your password, and the server
uses the key to authenticate your password when it arrives.

This option can result in normal or extended password encryption,
depending on connection property settings at the server. If
CS_SEC_ENCRYPTION is set to CS_TRUE, normal password encryption
is used. If CS_SEC_EXTENDED_ENCRYPTION is set to CS_TRUE,
extended password encryption is used. If both CS_SEC_ENCRYPTION and
CS_SEC_EXTENDED_ENCRYPTION are set to CS_TRUE, extended
password encryption is used as the first preference.

If bcp fails, the system creates a core file that contains your password. If you
did not use the encryption option, the password appears in plain text in the
file. If you used the encryption option, your password is not readable.

-y sybase_directory
sets an alternate Sybase home directory.

-Y
specifies that character-set conversion is disabled in the server, and is
instead performed by bcp on the client side when using bcp out

Note A client-side Unicode conversion is supported only for Adaptive Server
15.0 and later.

All character-set conversion is done in the server during bcp out.

-z language
is the official name of an alternate language the server uses to display bcp
prompts and messages. Without the -z flag, bcp uses the server's default
language.

Add languages to an Adaptive Server during installation or afterwards,
using either the langinstall utility (langinst in Windows) or the
sp_addlanguage system procedure.

You see this error message if an incorrect or unrecognized language is
named with the -z parameter:

```
Unrecognized localization object. Using default value 'us_english'.
Starting copy...
```
=> warning.

-Z security_mechanism
specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the SYBASE/install/libtcl.cfg configuration file. The default mechanism is used if do not supply security_mechanism name.

--colpasswd [[database_name [owner].]table_name.]column_name [password]]
sets the passwords for encrypted columns by sending set encryption passwd password for column column_name to Adaptive Server. This does not automatically apply passwords to other encrypted columns, even if the second column is encrypted with the same key. Supply the password a second time to access the second column.

--hide-vcc
instructs bcp not to copy virtual computed columns (VCC) either to or from a datafile. When you use this option in bcp out, the data file contains no data for VCC. When you use it in bcp in, the data file may contain no data for a VCC.

If you use this option, Adaptive Server does not calculate or send virtual computed column data.

--initstring "Transact-SQL_command"
sends Transact-SQL commands to Adaptive Server before data is transferred.

Result sets issued by the initialization string are silently ignored, unless an error occurs. If Adaptive Server returns an error, bcp stops before data is transferred, and displays an error message.

--keypasswd [[database_name [owner].]key_name [password]]
sets passwords for all columns accessed by a key by sending set encryption passwd password for key key_name to Adaptive Server.

--maxconn maximum_connections
is the maximum number of parallel connections permitted for each bulk copy operation. You must use bcp_r, the threaded version of the bcp utility, to copy multiple files in parallel. For example, the following example sets the maximum number of parallel connection permitted for each operation to 2:

 bcp_r --maxconn 2

If you do not include this option, bcp uses the default value of 10.
--show-fi
instructs bcp to copy functional indexes, while using either bcp in or bcp out.
If you do not specify this option, Adaptive Server generates the value for the
functional index.

--skiprows nSkipRows
instructs bcp to skip a specified number of rows before starting to copy from
an input file. The valid range for --skiprows is between 0 and the actual
number of rows in the input file. If you provide an invalid value, you see an
error message.

Note You cannot use --skiprows with the -F option.

Examples

Example 1 The -c option copies data out of the publishers table in character
format (using char for all fields). The -t field_terminator option ends each field
with a comma, and the -r row_terminator option ends each line with a Return.
bcp prompts only for a password. The first backslash before the final “r”
escapes the second so that only one backslash prints:

In UNIX, the first backslash before the final “r” escapes the second so that only
one backslash is printed:

 bcp pubs2..publishers out pub_out -c -t , -r \r

In Windows:

 bcp pubs2..publishers out pub_out -c -t , -r \r

Example 2 The -C parameter copies data out of the publishers table (with
encrypted columns) in cipher-text format instead of plain text. Press Return to
accept the defaults specified by the prompts. The same prompts appear when
copying data into the publishers table:

 bcp pubs2..publishers out pub_out
Password:
Enter the file storage type of field pub_id [char]:
Enter prefix length of field pub_id [0]:
Enter length of field pub_id [4]:
Enter field terminator [none]:
Enter the file storage type of field pub_name [char]:
Enter prefix length of field pub_name [1]:
Enter length of field pub_name [40]:
Enter field terminator [none]:
Enter the file storage type of field city [char]:
Enter prefix length of field city [1]:
Enter length of field city [20]:
Enter field terminator [none]:
Enter the file storage type of field state [char]:
Enter prefix length of field state [1]:
Enter length of field state [2]:
Enter field terminator [none]:

In UNIX, you are then asked:

Do you want to save this format information in a file? [Y-n] y
Host filename [bcp.fmt]: pub_form
Starting copy...
3 rows copied.
Clock Time (ms.): total = 1 Avg = 0 (3000.00 rows per sec.)

Example 3 Copies data from the publishers table to a file named pub_out for later reloading into Adaptive Server. Press Return to accept the defaults that the prompts specify. The same prompts appear when copying data into the publishers table:

```
bcp pubs2..publishers out pub_out
Password
```

Enter the file storage type of field pub_id [char]:
Enter prefix length of field pub_id [0]:
Enter length of field pub_id [4]:
Enter field terminator [none]:
Enter the file storage type of field pub_name [char]:
Enter prefix length of field pub_name [1]:
Enter length of field pub_name [40]:
Enter field terminator [none]:
Enter the file storage type of field city [char]:
Enter prefix length of field city [1]:
Enter length of field city [20]:
Enter field terminator [none]

Enter the file storage type of field state [char]:
Enter prefix length of field state [1]:
Enter length of field state [2]:
Enter field terminator [none]:

You are then asked:

Do you want to save this format information in a file? [Y-n]

Host filename [bcp.fmt]: pub_form
Starting copy...
3 rows copied.

Clock time (ms.): total = 1 Avg = 0 (3000.00 rows per sec.)

Example 4 Copies data out of partition p1 of table t1 to the mypart.dat file in the current directory:

```bash
bcp t1 partition p1 out mypart.dat
```

Example 5 Copies data back into Adaptive Server using the saved format file, `pub_form`:

```bash
bcp pubs2..publishers in pub_out -f pub_form
```

Example 6 Copies a data file created with a character set used on a VT200 terminal into the pubs2..publishers table. The -z flag displays bcp messages in French:

```bash
bcp pubs2..publishers in vt200_data -J iso_1 -z french
```

Example 7 Copies files data.first, data.last and data.other into partitions p1, p2, and p3, respectively:

```bash
bcp t1 partition p1, p2, p3 in data.first, data.last, data.other
```

Example 8 Copies the mypart.dat file of the current directory to partition p1 of table t1.

```bash
bcp t1 partition p1 in mypart.dat
```

Example 9 Copies partition p1, p2, and p3 to files a, b, and c respectively, into the \work2\data directory.

```bash
bcp t1 partition p1, p2, p3 out \work2\data\1, \work2\data\b, \work2\data\c
```

Example 10 Disables replication when `titles.txt` data is transferred into the pubs2 titles table:

```bash
bcp pubs2..titles in titles.txt -- initstring "set replication off"
```

Note Because the `set replication off` command in this example is limited to the current session in Adaptive Server, there is no need to explicitly reset the configuration option when `bcp` is finished.

Example 11 Sets the password to pwd1 for the encrypted column `col1`:
bcp mydb..mytable out myfile -U uuu -P ppp --colpasswd
db..tbl.col1 pwd1

Example 12 Sets a prompt to enter the password for encrypted column col1:

```
bcp mydb..mytable out myfile -U uuu -P ppp --colpasswd
db..tbl.col1
Enter column db..tbl.col1’s password: ***?
```

Example 13 Reads the password for encrypted column col1 from an external OS file named “passwordfile”:

```
bcp mydb..mytable out myfile -U uuu -P ppp --colpasswd
db..tbl.col1 < passwordfile
```

Example 14 Sets password pwd1 for encryption key key1:

```
bcp mydb..mytable in myfile -U uuu -p ppp --keypasswd
db..key1 pwd1
```

Example 15 Creates the discard file reject_titlesfile.txt:

```
bcp pubs2..titles in titlesfile.txt -d reject_
```

Example 16 For MIT Kerberos, requests credential delegation and forwards the client credentials to MY_GATEWAY:

```
bcp -Vd -SMY_GATEWAY
```

Example 17 bcp ignores the first two rows of the input file titles.txt, and starts to copy from the third row:

```
bcp pubs2..titles in titles.txt -U username -P password
--skiprows 2
```

Example 18 Sets an alternate Sybase home directory:

```
bcp tempdb..T1 out T1.out -y/work/NewSybase -Uuser1
-Psecret -SMYSERVER
```

Example 19 (UNIX) Specifies that you are using a Macintosh, running bcp on a workstation that is using roman8:

```
bcp pubs2..publishers in -a mac -J roman8
```

Example 20 Specifies that Adaptive Server send 40K of text or image data using a packet size of 4096 bytes:

```
bcp pubs2..publishers out -T 40960 -A 4096
```

Example 21 Sets 2 as the maximum number of parallel connections permitted for each operation.

```
bcp_r --maxconn 2
```
Example 22 Limits this to the current session, disabling replication for the bcp connection during the transfer of data from titles.txt data into pubs2..titles.

bcp pubs2..titles in titles.txt --initstring 'set replication off'

You need not explicitly reset the configuration option after bcp is finished. If Adaptive Server returns an error, bcp stops the data transfer and displays an error message.

Example 23 Copies out database db_1, which includes table t1 with materialized computed column c1:

bcp db_1..t1 out db_1.dat -Usa -P -S big_db -I./interfaces -f ./bcp.fmt

The following then copies in the data file (db_1.dat) containing table t1 with materialized computed column c1:

bcp db_1..t1 in db_1.dat -Usa -P -S big_db -I./interfaces -f ./bcp.fmt

Example 24 Enables fast-logged bcp when you transfer the titles.txt data into the pubs2..titles table:

bcp pubs2..titles in titles.txt --initstring 'set logbulkcopy on'

Usage

- Use this syntax for bcp if you are using threaded drivers.
- You cannot use named pipes to copy files in or out.
- Use bcp to copy encrypted data in and out of the server.
- Although you can use any Transact-SQL command with --initstring as an initialization string for bcp, reset possible permanent changes to the server configuration after running bcp. You can, for example, reset changes in a separate isql session.
- bcp versions 15.7 and later allow you to copy data into tables that contain nonmaterialized columns.
- Error message format is different than earlier versions of bcp. If you have scripts that perform routines based on the values of these messages you may need to rewrite them, for example:

 The display message that indicates the number of rows transferred has been changed. During a session, this version of bcp periodically reports a running total of rows transferred. This message replaces the "1000 rows transferred" message displayed by the previous bcp.

- Using --hide-vcc improves performance because Adaptive Server does not transfer and calculate data from virtual computed columns.
• `slice_number` is included for backward compatibility with Adaptive Server 12.5.x and earlier, and can be used only with round-robin partitioned tables.

• Specify either `partition_id` or `partition_name`, but not both.

• Specify multiple partitions and data files. Separate each partition name or data file name with commas.

• If you provide no partition name, `bcp` copies to the entire table.

• When using `bcp` out:
 • If `partition_name` and `datafile` are both specified, then either `datafile` must specify a single data file, or specify a one-to-one mapping between partition names and data files.
 • If `datafile` is not specified, data from each partition is copied to a file named for the named partition with a `.dat` extension. For example, if the partition name is `ptn1`, the data file is `ptn1.dat`.

• You may use `initstring` to run any Transact-SQL command, but you must reset any permanent changes to the server `initstring` causes after `bcp` finishes. For instance, as in Example 11 above, if the Adaptive Server account does not have the appropriate permissions, Adaptive Server returns an error message for the initialization string. `bcp` displays the server error message and stops before any data is transferred.

 Result sets issued by the initialization string are silently ignored unless an error occurs.

• When using `bcp` in, if `partition_name` is specified, `datafile` must specify a corresponding number of data files

Using `bcp` with compressed data

Pages in a compressed table may have a combination of row-, page- or uncompressed rows. Tables and partitions listed as not compressed may contain a mixture of rows in different states of compression because you created them at times when the table’s compression level was different.

• `bcp` out
 • Decompresses compressed rows and returns them to the client, either in native or character form.
 • Supports IDENTITY, encrypted columns, and so on.
 • Returns text data as uncompressed.
bcp

- bcp in compresses uncompressed data received from the client according to the table or partition’s compression level.

Using bcp to copy data out and then bcp it back in to a table configured for compression results in compressed data, even if the data was originally uncompressed.

Permissions

You must have an Adaptive Server account and the appropriate permissions on the database tables or views, as well as the operating system files to use in the transfer to use bcp.

- To copy data into a table, you must have insert permission on the table.
- To copy a table to an operating system file, you must have select permission on these tables:
 - The table to copy
 - sysobjects
 - syscolumns
 - sysindexes

Auditing

Values in event and extrainfo columns are:

<table>
<thead>
<tr>
<th>Event</th>
<th>Audit option</th>
<th>Command or access audited</th>
<th>Information in extrainfo</th>
</tr>
</thead>
</table>
| 4 | bcp | bcp in | • Roles – Current active roles
| | | | • Keywords or options – NULL
| | | | • Previous value – NULL
| | | | • Current value – NULL
| | | | • Other information – NULL
| | | | • Proxy information – Original login name, if set proxy in effect

Tables used

sysaudits_01 – sysaudits_08

See also

Command or access audited

Information in extrainfo

- **Roles** – Current active roles
- **Keywords or options** – NULL
- **Previous value** – NULL
- **Current value** – NULL
- **Other information** – NULL
- **Proxy information** – Original login name, if set proxy in effect

Events

4: bcp

Audit option

bcp

Command or access audited

bcp in

Information in extrainfo

- Roles – Current active roles
- Keywords or options – NULL
- Previous value – NULL
- Current value – NULL
- Other information – NULL
- Proxy information – Original login name, if set proxy in effect

Tables used

sysaudits_01 – sysaudits_08

See also

Documentation

Chapter 2, “Transferring Data to and from Adaptive Server with bcp” for an in-depth discussion of bcp, and the *Performance and Tuning Guide* for more information on how changing certain parameters can affect bcp for large batches.

See “Bulk Copying Encrypted Data” on page 212.

System Administration Guide for more information about character sets and associated flags, see the.
The description for libtcl.cfg in the Open Client and Open Server Configuration Guide for more information on security mechanism names.

System procedures sp_audit, sp_dboption, sp_displayaudit
`buildmaster`

<table>
<thead>
<tr>
<th>Description</th>
<th>Adaptive Server version 12.5 and later no longer uses the <code>buildmaster</code> binary to build the master device. Instead, Sybase has incorporated the <code>buildmaster</code> functionality in the <code>dataserver</code> binary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>See Chapter 3, “Building Servers Using <code>dataserver</code>” for more information, and <code>dataserver</code> on page 49 for syntax.</td>
</tr>
</tbody>
</table>
CERTAUTH

Description

Converts a server certificate request to a CA- (certificate authority) signed certificate.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is certarthr.exe, located in %SYBASE%\%SYBASE_OCS%\bin.

Syntax

certauth

[-r]
[-C caCert_file]
[-Q request_filename]
[-K caKey_filename]
[-N serial_number]
[-O SignedCert_filename]
[-P caPassword]
[-s start_time]
[-T valid_time]

Or

certauth -v

Parameters

-r
when specified, creates a self-signed root certificate for the test environment.

-C caCert_file
specifies the name of the CA’s certificate request file when -r is specified, or specifies the name of the CA’s root certificate.

-Q request_filename
specifies the name of certificate request file.

-K caKey_filename
specifies the name of the CA’s private key.

-N serial_number
specifies the serial number in the signed certificate. If -N is not specified, certauth generates a pseudo-random serial number.

The maximum length of the serial number in the -N option is 20 hexadecimal characters. If the specified serial number is longer, certauth truncates the serial number to the maximum length.
-O SignedCert_filename
specifies the name to use for the output when creating a signed certificate
file. If -r is specified, SignedCert_filename is the self-signed root certificate.
If -r option is not used, SignedCert_filename is the certificate signed by the
cacert_file.

-P caPassword
specifies the CA's password that is used to decrypt its private key.

-s start_time
specifies the start of the valid time range, measured in days from the current
time. The default is the current time.

-T valid_time
specifies the length of the valid time range for a signed certificate. The valid
time range is in units of days.

-v
prints the version number and copyright message of the certauth tool, then
exits.

Examples

Example 1 Converts the CA's certificate request (ca_req.txt) to a certificate,
using the private key (ca_pkey.txt). The private key is protected using
password. This example sets the valid time range to 365 days, self-signs the
certificate, and outputs it as a root certificate (trusted.txt):

certauth -r -C ca_req.txt -Q ca_req.txt
-K ca_pkey.txt -P password -T 365 -O trusted.txt

The utility returns this message:

-- Sybase Test Certificate Authority --
Certificate Validity:
startDate = Tue Sep 5 10:34:43 2000
endDate = Wed Sep 5 10:34:43 2001
CA sign certificate SUCCEED (0)

Note You need to create a trusted root certificate for the test CA only once,
after which you can use it to sign many server certificates in your test
environment.

Example 2 Converts a server certificate request (srv5_req.txt) to a certificate,
and sets the valid time range to 180 days. It signs the certificate with a CA's
certificate and private key (trusted.txt and ca_pkey.txt), uses password
protection, and outputs the signed certificate as sybase_srv5.crt

certauth -C trusted.txt -Q srv5_req.txt
-K ca_pkey.txt -P password -T 180 -O sybase_srv5.crt

36 Adaptive Server Enterprise
The utility returns this message:

```
-- Sybase Test Certificate Authority --
Certificate Validity:
    startDate = Tue Sep  5 10:38:32  2000
    endDate = Sun Mar  4 09:38:32  2001
CA sign certificate SUCCEED (0)
```

Note If you do not set valid time, the default is 365 days.

This is a sample certificate. See the `certauth` Usage section for additional steps to take to create a server certificate that the server can use.

```
-----BEGIN CERTIFICATE-----
MIICSTCCAgUCAwUxHko2IznjBAwUAMG8xCzAJBgNVBAYTA1VTMRMwEQYDVQQI
EwpDYWxqZm9ybmlhMRMwEQYDVQHEwpFbWVyeXZpbgGx1MQ8wDQYDVQQLFhAF
c2UxDDAKBgNVBAoUA0RTVDEXMBUGA1UExQQc3liYXN1X3Rlc3RsY28wHhcNM
DAwODE4MTkxM0NhcmNMeOD4MTkxM0NhcmNhMjMwMioBgcqhkjooAQBxMG
AcGkEA+6xG7Xci1xbP968HhBqTlTcjHlcyQ8Hilkw90lqG
EMG9AJJLxj6VckPD75vqVMeKpaPjocIBXJExeE/aYXQIAVApYvY1+89dcC2e2YFc7
rEcCvSNxakHT7rOGZJ1DnLQ0tDwdiw41oc/E20eZS4CJrK0KgD1hNQG
GypsWcWTh2rNgBX1DXAn5g4OCgrYA0MAAaA70uNEL90Kh4t3RISiceCMG0f
1J8d7WF15mHeS8oOmF9s/vqPAR5NaVkJL7kk7qwXUBY+8LMUqmpFj/TYMAaG
ByqGSM44BAMFAAmxADAuAhAmH2Icn1pSwQzXFxJUCoOmNLpkCFQdE8RUGuo8
ZdxnQtPu9uJDoBiUQ==
-----END CERTIFICATE-----
```

Usage

Running `certauth` requires that you place the entry for `$SYBASE/$SYBASE_OCS/lib3p` before the entry for `$SYBASE/$SYBASE_OCS/libp364` in the dynamic library search path.

Accomplish certificate management tasks using open source utility

Adaptive Server includes the `openssl` open source utility in `$SYBASE/$SYBASE_OCS/bin` (`%SYBASE%/$SYBASE_OCS%/bin` in Windows). Use `openssl` to accomplish all certificate management tasks implemented by `certreq`, `certauth` and `certpk12`. Sybase includes this binary as a convenience, and is not responsible for any issues incurred using the binary. See the OpenSSL Web site at http://www.openssl.org for details.
Creating a server certificate file that Adaptive Server understands

To create a server certificate file that Adaptive Server understands, append the certificate requestor’s private key to the end of the signed certificate file. Using example 2 above, you would cut and paste `srv5_pkey.txt` to the end of the signed certificate file, `sybase_srv5.crt`.

To create a trusted roots file that the server can load upon start-up:

1. Rename `trusted.txt` to `sybase_srv5.txt`, where `sybase_srv5.txt` is the common name of the server.

2. Copy the `sybase_srv5.txt` file into the Adaptive Server installation directory; for example, `SYBASE/SSYBASE_ASE/certificates`.

The options `-s` and `-T` together specify the time range for the certificate.

Use the file, which is required for an SSL-based session, to start the SSL-enabled Adaptive Server.

After the CA’s root certificate is created, use it to sign multiple server certificates.

See also

Utilities certpk12, certreq
certpk12

Description
Export or import a PKCS #12 file into a certificates file and a private key.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is `certpk12.exe`, located in `%SYBASE%\%SYBASE_OCS%\bin`.

Syntax
```
certpk12
   {-O Pkcs12_file | -I Pkcs12_file}
   [-C Cert_file]
   [-K Key_file]
   [-P key_password]
   [-E Pkcs12_password]
```

Or
```
certpk12 -v
```

Parameters

- `-O Pkcs12_file`
 specifies the name of a PKCS #12 file to be exported. The file can contain a certificate plus a private key, a single certificate, or a single private key. Either `-O` or `-I` needs to be on.

- `-I Pkcs12_file`
 specifies the name of a PKCS #12 file to be imported. The file can contain a certificate plus a private key, a single certificate, or a single private key. Either `-I` or `-O` needs to be on.

- `-C Cert_file`
 specifies the name of certificate file to be exported to a PKCS #12 file if `-O` is on; or the name of certificate file to be imported from a PKCS #12 file if `-I` is on.

- `-K Key_file`
 specifies the name of private key file to be exported to a PKCS #12 file if `-O` is on; or the name of private key file to be imported from a PKCS #12 file if `-I` is on.

- `-P key_password`
 specifies the password which is used to protect the private key specified by `-K`. If `-O` is on, the password is required to export the private key to a PKCS #12 file; if `-I` is on, the password is required to output the private key to a text file after it is imported from a PKCS #12 file.
-E _Pkcs12_password_

specifies the password used to protect the PKCS #12 file. If -O is on, the password is used to encrypt the PKCS #12 file to be exported; if -I is on, the password is used to decrypt the PKCS #12 file to be imported. The password is also called “transport password.”

-v

prints the version number and copyright message of the certpk12 tool and exits.

Examples

Example 1 Exports _caRSA.crt_, the certificate file and _caRSApkey.txt_, the private key file, to a PKCS#12 file (_caRSA.p12_). _password_ is the password used to decrypt _caRSApkey.txt_. _pk12password_ is the password used to encrypt the final _caRSA.p12_:

certpk12 -O caRSA.p12 -C caRSA.crt -K caRSApkey.txt -P password -E pk12password
-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9 16:55:51 2000--

Example 2 Imports _caRSA.p12_, a PKCS #12 file that contains a certificate and a private key. Output the embedded certificate to a text file (_caRSA_new.crt_) and the embedded private key to a text file (_caRSApkey_new.txt_):

certpk12 -I caRSA.p12 -C caRSA_new.crt -K caRSApkey_new.txt -P new_password -E pk12password
-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9 16:55:51 2000--

新_password_ is used to protect _caRSApkey_new.txt_, and _pk12password_ is required to decrypt _caRSA.p12_ file.

Note After you run examples 1 and 2, _caRSA.crt_ and _caRSA_new.crt_ are identical. _caRSApkey.txt_ and _caRSApkey_new.txt_ are different because they are encrypted randomly.

Example 3 Exports the certificate file (_caRSA.crt_) to a PKCS#12 file (_caRSAcert.p12_). _pkcs12password_ is used to encrypt _caRSAcert.p12_.

certpk12 -O caRSAcert.p12 -C caRSA.crt -E pk12password
-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9 16:55:51 2000--

Example 4 Imports a PKCS#12 file (_caRSAcert.p12_) that contains a certificate. Output the embedded certificate to a text file (_caRSAcert.txt_).

certpk12 -I caRSAcert.p12 -C caRSAcert.txt -E pk12password
-- Sybase PKCS#12 Conversion Utility certpk12 Thu Nov 9 16:55:51 2000--
pk12password is required to decrypt caRSAcert.p12 file.

Note After you run Examples 3 and 4, the caRSA.crt and caRSAcert.txt, are identical.

Usage

- Adaptive Server includes the openssl open source utility in $SYBASE/$SYBASE_OCS/bin (%SYBASE%\%SYBASE_OCS%\bin in Windows). Use openssl to accomplish all certificate management tasks implemented by certreq, certauth and certpk12. Sybase includes this binary as a convenience, and is not responsible for any issues incurred using the binary. See the OpenSSL Web site at http://www.openssl.org for details.

- certpk12 only supports triple-DES encrypted PKCS #12 file.

- Running certpk12 requires that you place the entry for $SYBASE/$SYBASE_OCS/lib3p before the entry for $SYBASE/$SYBASE_OCS/libp364 in the dynamic library search path.

- Append certificate requestor’s private key to the end of its signed certificate file.

- Name the file servername.crt, where servername is the name of the server. Place it in the certificates directory under $SYBASE/$SYBASE_ASE (%SYBASE%\%SYBASE_ASE% on Windows).

 This file is needed to start the SSL-enabled Adaptive Server.

See also

Utilities certauth, certreq
certreq

Description

Creates a server certificate request and corresponding private key. Use certreq in interactive mode, or provide all optional parameters on the command line.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is certreq.exe, located in %SYBASE%/%SYBASE_OCS%\bin.

Syntax

certreq
 [-F input_file]
 [-R request_filename]
 [-K PK_filename]
 [-P password]

Or

certreq -v

Parameters

-F input_file
specifies the file name that contains attribute information to build a certificate request. If you do not specify an input_file name, the required information must be interactively entered by a user.

The input_file needs an entry for each of these:

req_certtype={Server,Client}
req_keytype={RSA,DSA}
req_keylength={for RSA: 512-4096; for DSA: 512,768,1024}
req_country={string}
req_state={string}
req_locality={string}
req_organization={string}
req_orgunit={string}
req_commonname={string}

Note The common name must be the same as the server name.

See the Examples section for a sample file called input_file.

-R request_filename
specifies the name for the certificate-request file.

-K PK_filename
specifies the name for the private-key file.
-P password
 specifies the password used to protect the private key.

-v
 displays the version number and copyright message, then exits.

Examples

Example 1 This example does not use the -F input_file parameter, and is therefore in interactive mode. To create a server certificate request (server_req.txt) and its private key (server_pkey.txt), enter:

 certreq
 Choose certificate request type:
 S - Server certificate request
 C - Client certificate request (not supported)
 Q - Quit
 Enter your request [Q] : s

 Choose key type:
 R - RSA key pair
 D - DSA/DHE key pair
 Q - Quit
 Enter your request [Q] : r

 Enter key length (512, 768, 1024 for DSA; 512-2048 for RSA) : 512

 Country: US
 State: california
 Locality: dublin
 Organization: sybase
 Organizational Unit: dst
 Common Name: server

 The utility returns the message:
 Generating key pair (please wait) . . .

 After the key pair is generated, the certreq utility prompts you for more information.

 Enter password for private key : password
Enter file path to save request: server_req.txt

Enter file path to save private key: server_pkey.txt

Example 2 In this sample text file, the format, **tag=value**, is used for noninteractive entry for a certificate request. Use the `-F` option for noninteractive mode, making sure to use valid values and following the format described above to ensure that the certificate builds correctly.

```
certreq -F input_file
req_certtype=server
req_keytype=RSA
req_keylength=512
req_country=us
req_state=california
req_locality=dublin
req_organization=sybase
req_orgunit=dst
req_commonname=server
```

After you create and save this file, enter on the command line, where `path_and_file` is the location of the text file:

```
certreq -F path_and_file -R server_req.txt -K server_pkey.txt -P password
```

This file creates a server certificate request, `server_req.txt`, and its private key, `server_pkey.txt` which is protected by `password`.

Edit the server certificate file with any standard ASCII text editor.

Usage

- Adaptive Server includes the `openssl` open source utility in `$SYBASE/$SYBASE_OCS/bin` (`%SYBASE%/%SYBASE_OCS%bin` in Windows). Use `openssl` to accomplish all certificate management tasks implemented by `certreq`, `certauth` and `certpk12`. Sybase includes this binary as a convenience, and is not responsible for any issues incurred using the binary. See the OpenSSL Web site at http://www.openssl.org for details.

- The input file uses the format of `tag=value`. `tag` is case-sensitive and should be the same as described above.

- Running `certreq` requires that you place the entry for `$SYBASE/$SYBASE_OCS/lib3p` before the entry for `$SYBASE/$SYBASE_OCS/libp364` in the dynamic library search path.

- The “=” is required. Valid `value` should start with a letter or digit, must be a single word, and there should not be any spaces within `value`.

- `value` is required for `req_certtype`, `req_keytype`, `req_keylength` and `req_commonname`.
• The space or tab around <tag>, = and value is allowed. Blank lines are also allowed.
• Each comment line should start with #.
• The certificate request file is in PKCS #10 format and used as acceptable input for the certauth tool to convert the request to a CA-signed certificate.

See also Utilities certauth, certpk12
charset

Description
(UNIX only) Loads the character sets and sort order files in Adaptive Server. The utility is located in $SYBASE/$SYBASE_ASE/bin.

Syntax
charset
 [-P password]
 [-S server]
 [-I interface]
 sort_order
 [charset]

Or
 charset -v

Parameters
-P password
 specifies your password. If you do not specify -P, charset prompts for your password.

-S server
 specifies the name of the server on which to change the character set and sort order.

-I interface
 specifies the network interface used by the server.

sort_order
 specifies the name of the sort order file Adaptive Server will use.

charset
 specifies the character set Adaptive Server will use.

-v
 displays the version number and copyright message for charset.

Usage
Before using charset, set your SYBASE environment variable to point to the current release directory.

Permissions
You must be a system administrator to use charset.

See also
Commands set
Utilities langinstall
cobpre

Description

Precompiler for COBOL.

The utility is located in:

- (UNIX) `$SYBASE/$SYBASE_OCS/bin`.
- (Windows) `%SYBASE%\%SYBASE_OCS%\bin`.

Syntax

See below.

See also

For a full description of `cobpre`, see the *Open Client and Open Server Programmer's Supplement*.
<table>
<thead>
<tr>
<th>Description</th>
<th>Precompiler for C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The utility is located in:</td>
</tr>
<tr>
<td></td>
<td>• (UNIX) $SYBASE/$SYBASE_OCS/bin.</td>
</tr>
<tr>
<td></td>
<td>• (Windows) %SYBASE%%SYBASE_OCS%\bin.</td>
</tr>
<tr>
<td>Syntax</td>
<td>See below.</td>
</tr>
<tr>
<td>See also</td>
<td>For a full description of cpre, see Appendix A of the Open Client and Open Server Programmer’s Supplement.</td>
</tr>
</tbody>
</table>
dataserver

Description
(UNIX only) The executable form of the Adaptive Server program, located in $SYBASE/$SYBASE_ASE/bin.

See Chapter 3, “Building Servers Using dataserver” for more information.

Syntax

dataserver [-f] [-g] [-H] [-m] [-q] [-v] [-X]
 [-A system_role]
 [-a path_to_CAPs_directive_file]
 [-b master_device_size [k | K | m | M | g | G | t | T]]
 [-c config_file_for_server]
 [-d device_name]
 [-e path_to_error_log]
 [-i interfaces_file_directory]
 [-K keytab_file]
 [-L config_file_name_for_connectivity]
 [-M shared_memory_repository_directory]
 [-N licinstant]
 [-n system_privileges]
 [-p sa_login_name]
 [-r mirror_disk_name]
 [-s server_name]
 [-T trace_flag]
 [-u sa/sso_name]
 [-w master | model database]
 [-y [password]]
 [-z page_size [k | K]]

Syntax for the Cluster Edition:

dataserver
 -u, --admin-name=sa/sso_name
 --buildquorum=[force]
 -a, --caps-file=filename
 -F, --cluster-input=filename
 --cluster-takeover
 -L, --conn-config-file=filename
 --create-cluster-id [=quorum]
 -D, --default-db-size=size_spec
 -e, --error-log=filename
 -G, --event-log-server=logserv_name
 -f, --forcebuild
 -H, --ha-server
 -h, --help=[{0|1|2|3}],display_width]
 --instance=instance_name
 -y, --key-password=[key_password]
 -K, --keytab-file=filename
 -N, --license-prop-file=filename
 -z, --logical-page-size=page_size
 -Z, --master-db-size=size_spec
 -d, --master-dev=master_device_name
-b, --master-dev-size=[size_spec]
 --master_key_password [=password]
-r, --master-mirror=filename
-m, --masterrecovery
-g, --no-event-logging
-n, --permission-login=system_privilege
-Q, --quorum-dev=quorum_dev
-o, --recover-criedef
-w, --rewrite-db=database_name
-A, --role-logins=system_role
-p, --sa-name={SSO_login_account | sso_role | sa_role}
-k, --server-principal=principal
-M, --shared-mem-dir=directory_name
-X, --sybmon
-T, --trace=trace_flag
-v, --version

Or

dataserver -v

Parameters

-A system_role
 when enable granular permissions is set to 0, and all users are unable to log
 into Adaptive Server, provides the server administrator with a login account
 with sso_role.

-a path_to_CAPs_directive_file
 specifies the path to the CAPs directive file.

-b master_device_size [k | K | m | M | g | G | t | T]
 specifies the size of the master device or database you want to build. The
 server calculates the sizes, so you can use “K”, “M”, “G”, and “T” instead
 of exact byte numbers.

-c config_file_for_server
 specifies the full path name of an Adaptive Server configuration file. Use
 this parameter to start Adaptive Server with the configuration values in the
 specified configuration file.

If you specify a configuration file with the dataserver -c parameter, make
sure all the parameters in this configuration file are compatible before you
boot the server. If some of the configuration parameters are incompatible,
the server may not boot. To avoid this, do not specify a configuration file
when you build the master device. The build phase uses all default settings
when you do not specify a configuration file.

For more information, see the System Administration Guide.
-d device_name
 is the full path name of the device for the master database. The master
database device must be writable by the user who starts Adaptive Server. If
you do not use the -d parameter, the default master database device name is
d_master.

-e errorlogfile
 is the full path name of the error log file for Adaptive Server system-level
error messages.

-f
 forces initialization of a device or database. -f is valid only when used with
-b and/or -w. The server fails to boot if you use -f without either -b or -w. -f
forces the server in different ways, depending whether -w is present. See
“Potential issues of using -f and -w options together” on page 56 and
“Dependencies and conditions of -b and -w options” on page 56 for more
information.

-G logserv_name
 specifies the name of the event log server.

-g
 turns off event-logging.

-H
 starts the High Availability (HA) server, if you have the HA feature installed
on your Adaptive Server.

-h
 prints this help message, then exists.

-i interfaces_file_directory
 specifies the directory location of the interfaces file to search when
connecting Adaptive Server. If -i is omitted, dataserver looks for a file
named interfaces in the directory pointed to by your SYBASE environment
variable.

-K keytab_file
 specifies the path to the keytab file used for authentication in DCE.

-k, --server-principal=s_principal
 specifies the server principal name.

-L config_file_name_for_connectivity
 specifies the name the configuration file for connectivity.
-M sharedmem_directory
places shared memory files in the specified directory instead of in the default location, $SYBASE. If `sharedmem_directory` starts with “/”, the directory name is assumed to be absolute. Otherwise, the directory name is interpreted relative to $SYBASE.

--master_key_password [=password]
specifies the master key password when you provide the `password` on the command line or prompts for a master key password during Adaptive Server startup. The password characters are not displayed, and the password is not validated until later in the Adaptive Server startup sequence.
If you include the password on the command line, it is visible until the memory is read and used.

-m
starts Adaptive Server in single-user mode.

-N licinstant
specifies a nondefault directory location for the license cache file. The default location is $SYBASE/$SYBASE_ASE/sysam/server_name.properties.

-n system_privileges
when enable granular permissions is set to 1, and all users are unable to log into Adaptive Server, provides the server administrator with a login account with change password privilege.

-p sso_login_name
specifies the login name of a system security officer when starting Adaptive Server, for the purposes of getting a new password for that account. Adaptive Server generates a random password, displays it, encrypts it, and saves it in master..syslogins as that account’s new password.
Because Adaptive Server passwords are encrypted, you cannot recover forgotten passwords. If all system security officers lose their passwords, the -p parameter generates a new password for a system security officer account. Start Adaptive Server with -p, immediately log in to Adaptive Server with the new random password, and execute `sp_password` to reset your password to a more secure one.

-q
treats quiesced databases as “in recovery.”

-r mastermirror
starts the mirror of the master device. Use this parameter to start Adaptive Server if the master device has been damaged.
-s servername
 specifies the name of the Adaptive Server to start.

If you do not specify an Adaptive Server name with the -s parameter, and you have not set the DSLISTEN environment variable, dataserver uses the default Adaptive Server name SYBASE. The value of the DSLISTEN environment variable overrides this default value, and the -s parameter overrides both the default and the DSLISTEN environment variable.

-T trace_flag

-u sa/sso_name
 specifies the system administrator or system security officer’s name you want to unlock.

-v
 prints the version number and copyright message for dataserver, then exits.

-w [master | model]
 specifies whether you want to write a master or model database.

When you use the -w parameter, dataserver uses the ascii-8 character set instead of the iso_1 character set. If you require the iso_8 character set for master, load a dump of the master database or change the character set with sqlloc (sqlloc requires the sybsystemprocs database.)

-X
 starts this server as sybmon, not dataserver.

-y [password]
 allows you to assign a password for the encrypted private key, so that the server prompts the user for a password. This password should match the password you used to encrypt the private key when it was created. You cannot use this parameter when you are running the server in the background.

Note Although you can set a password with -y, for security reasons Sybase strongly discourages you from doing so.

A private key is included with your server’s digital certificate. By default, the certificate file located at /usr/local/sybase/certificates/<servername>.crt.

The location of the certificate file changes if you invoke the sp_ssladmin addcert command.
-Z [size_spec]
specifies the size of the initial master database.

-z page_size [k | K]
specifies the page size of the server. Use -b and -w to use this flag, and name an even power of two between 2K and 16K, or else the server does not boot.

Examples

Example 1 Creates a new installation with a 100MB master device and a 4K page:

dataserver -d my_master_device -z 4k -b 100.02M

The spaces between options and their following arguments are optional and acceptable. This example specifies “100.02M” for a 100MB master device because the server requires 16K of overhead for its configuration area.

Example 2 Rewrites a corrupt model database:

dataserver -d d_master -w model -s server_name

Example 3 Specifies the “aseprincipal@MYREALM.COM” principal name:

$SYBASE/$SYBASE_ASE/bin/dataserver -dmaster.dat -s secure_ase -k aseprincipal@MYREALM.COM

Example 4 Rewrites a corrupt master database, specifying device size:

dataserver -d my_master_device -w master -z 4k

Example 5 Rewrites a corrupt master database, specifying device and page sizes, forcing the server to accept these values in preference to what it may find in the config block:

dataserver -d my_master_device -w master -z 4k -b 100.02M -f

Example 6 Rewrites a corrupt master database, specifying a page size that does not match what the server finds in its config block. This produces a failure:

dataserver -d my_master_device -w master -z 4k 00:00000:00000:2001/01/19 12:01:26.94 server The configured server page size does not match that specified on the command line. To use the configured size, omit the command line size; to use the command line size, specify ‘force’ (-f).

Example 7 Rewrites a corrupt master database, specifying an incorrect page size, even in a normal restart. This produces a failure:

dataserver -d my_master_device -z4000

dataserver: the 'z' flag may not be used without 'b' or
'w'. dataserver: server will ignore the 'z' flag.
dataserver: the 'z' flag contained an invalid page size.
dataserver: the page size must be an even power of two
between 2048 and 16384 bytes, inclusive.

Example 8 Prompts for a master key password:
 dataserver --master_key_passwd -dd_master -eerrorlog

Example 9 List account names with role sso_role:
 $SYBASE/$SYBASE_ASE/bin/dataserver
 -d master.dat
 -s server_name
 -A sso_role

Example 10 List account names with role sso_role:
 $SYBASE/$SYBASE_ASE/bin/dataserver
 -d master.dat
 -s server_name
 --role-logins sso_role

Example 11 List account names with privilege change password:
 $SYBASE/$SYBASE_ASE/bin/dataserver
 -d master.dat
 -s server_name
 -n "change password"

Example 12 List account names with privilege change password:
 $SYBASE/$SYBASE_ASE/bin/dataserver
 -d master.dat
 -s server_name
 --permission-logins "change password"

Usage
• dataserver allows you to create devices and databases that are up to 32Gb
in size, depending on the limitation of your operating system. For more
information on size limits, see the installation guide for your platform.

• Start Adaptive Server with the startserver command rather than by directly
executing the dataserver program. If you need to change any of the default
values, edit the RUN_servername file in your Sybase installation
directory. See the startserver reference page for details.
Automatic login lockouts can cause a site to end up in a situation in which all accounts capable of unlocking logins (system administrators and system security officers) are locked. If this occurs, use the `dataserver` utility with the `-u` parameter to check the specified login for system administrator or system security officer authorization, unlock the account, and reset the value of the current failed logins counter to zero.

Potential issues of using `-f` and `-w` options together

Be particularly careful when using the `-f` and `-w` options together. When rewriting master database using the `-w` option, the server requires that the configuration block page size and device size are correct. If you do not provide them on the command line they must agree. The server refits the master device, and puts master and all other included databases back in their proper places.

When you use the `-f` option to force initialization, your page size and master device size override those in the configuration block. In addition, `-f` assigns all other unknown spaces—allocation blocks that are either unused or are corrupted—to the master database.

Dependencies and conditions of `-b` and `-w` options

The effect of `-b` changes depending on whether `-w` is present:

- `-b` without `-w` creates a new master device as named by `-d` (the default is `d_master`) and with the page size as specified by `-z` (the default is 2048). If the named device:
 - Already exists as an OS file – the attempt fails, and you see a message such as:

 File already exists. You must remove the existing file before attempting to create a new one using the server's `-b` option.

 Unable to create master device.

 - Names an existing raw partition – the attempt fails unless you include the `-f` flag. This reinitializes the raw partition as a server master device.
- `-b` with `-w master` tells `dataserver` to use the size specified in `-z` for the master device when re-creating the master database. It implies nothing about creating a new device.

- `-w` may or may not require additional flags if you use:
 - `-w model` – the `-z` and `-b` flags are accepted but ignored.
 - `-w master` for new installations – `-z` and `-b` are not required because the device size information is stored in the `config_block`.

56

Adaptive Server Enterprise
• -w master to **upgrade** older installations:
 • The server requires -b and/or -z if the `config_block` does not contain a valid entry for the associated size(s). The command fails if it cannot get valid data for the page size or device size.
 • Provide -b and/or -z when the `config_block` contains valid entries for the size(s) they represent. However if the sizes do not match what is in the `config_block`, add -f to force your new size preferences.

Permissions
Anyone with execute permission on the binary, and who has read/write access to all the files.

After you have finished running the Adaptive Server installation program, set the file permissions on the `dataserver` executable to limit who can execute it.

See also

- **Commands** disk mirror, disk remirror, disk unmirror
- **Documentation** Chapter 3, “Building Servers Using dataserver”
- **System procedures** `sp_ssladmin`, `addcert`
- **Utilities** `startserver`
ddlgen

Description
A Java-based tool that generates definitions for server- and database-level objects in Adaptive Server.

You must have either an sa_role or sso_role to generate DDL for:

- Encryption keys
- Logins
- Roles

For all other objects, users do not need any specific permissions or roles to generate DDL.

The command-line version of ddlgen is located in:

- (UNIX) $SYBASE/$SYBASE_ASE/bin.
- (Windows) %SYBASE%\%SYBASE_ASE%\bin.

Syntax
```
ddlgen
    -U login
    -P password
    -S[ssl:]server | host_name : port_number
    [-I interfaces_file]
    [-T object_type]
    [-N object_name]
    [-D dbname]
    [-X extended_object_type]
    [-O output_file]
    [-E error_file]
    [-L progress_log_file]
    [-J client_charset]
    [-LC -N logical_cluster_name]
    -F [ % | SGM | GRP | USR | R | D | UDD | U | V | P | XP | I | RI | KC | TR | PC ]
```

Or
```
ddlgen -v
```

Parameters
```
-U login
    specifies a login name, and is case-sensitive.

-P password
    specifies your password.
```

If you do not include the -P parameter in your ddlgen statement, ddlgen prompts you to specify a password.
-S [[ssl:] server | host_name : port_number]
specifies the name of the Adaptive Server. ddlgen looks this name up in the interfaces file or LDAP configuration file. If you specify:

- [ssl:] – allows you to generate DDL for objects in SSL-enabled servers. This parameter is optional.
- -S [host_name:port_number] – ddlgen uses the host_name and port_number provided, and neither interfaces nor LDAP configuration files are read or parsed.
- -S[server] -I – ddlgen parses the interfaces file specified at the user location for the server name (see the -I parameter description for more information).
- -S[server] – without specifying an interfaces file, ddlgen does:
 a ddlgen first tries to read the LDAP configuration file from the standard location
 b If the LDAP file does not exist, or exists but does not contain an Adaptive Server entry, then the interfaces file is parsed at its standard location for the server name
 c If the LDAP file exists, then ddlgen uses it to search the server name. The interfaces file is not parsed, and the LDAP configuration file is parsed.

Note You must use the -S option because ddlgen does not connect to a default server.

-I
specifies the interfaces file name, and corresponds to $SYBASE/interfaces for UNIX, and %SYBASE%\ini\sql.ini for Windows. Use this optional parameter with -S.
-object_type
specifies the type of object you are creating. If you do not use -T, ddlgen generates DDL for the default database of login. The object types for -T are:

- C – cache
- D – default
- DB – database
- DBD – database device
- DPD – dump device
- EC – execution class
- EG – engine group
- EK – encrypted keys
- GRP – group
- I – index
- KC – key constraints
- L – login
- LK – logical key
- P – stored procedure
- PN – partition name
- R – rule
- RI – referential integrity
- RO – role
- RS – remote server
- SGM – segment
- TR – trigger
- U – table
- UDD – user-defined datatype
- USR – user
- V – view
- WS – user-defined Web service
• WSC – Web service consumer
• XOD – local caches
• XOU – global caches
• XP – extended stored procedure

-Nobject_name
specifies the fully qualified name of the object you are creating, such as
-Ndb_name.owner_name.table_name.object_name. The -N option:
• Is required if you specify any object_type other than DB (database) in the
 -T parameter.
• Accepts wildcards with the use of %.
• Generates DDL for a trigger for a table, using the
 -Ndb_name.table_owner.table_name.trigger_name format.
To generate all triggers for a table, substitute trigger_name with % using the
-Ndb_name.table_owner.table_name.% format.
• Generates DDL for an encrypted key with -Ndb_name.owner.key_name.
• Generates DDL for all items of a specific object type on your server.
• Enforces strict order in which it parses the names in the
 -Ndb_name.owner_name.table_name.object_name format. If you only
 provide three arguments, ddlgen assumes they are owner_name,
 table_name, and object_name, in that order. Alternatively, you can also
 use -Nowner_name.table_name -Ddb_name. ddlgen does not impose this
 restriction if object_name is an index (I).

-Ddbname
specifies the name of the database for the object you specify in the -N option.
The default is the user’s default database.
You cannot use the -D parameter when generating DDL for all triggers of a
table.
-X extended_object_type
differentiates:

• User tables (OU) from proxy tables (OD) when you specify a table as your object type (-TU).

• Temporary databases (OD) from normal databases (OU) or archive databases (OA) when you specify database as your object type (-TDB).

• SQLJ procedures (OD) from stored procedures (OU) when you specify procedure as your object type (-TP).

If object_type (-T) is U (table) and -X is not specified, ddlgen generates DDL for both user tables and proxy tables. To generate DDL only for:

• user tables – use the OU extended object type with the -X option.

• proxy tables – use the OD extended object type with the -X option.

• in-memory databases, caches, and devices – use the OI extended object type with the -X option.

• in-memory temporary databases – use the OIT extended object type with the -X option.

Note ddlgen does not support schema generation for system tables.

-O output_file
specifies an output file for the generated DDL. If you do not specify -O, the DDL you create appears in a console window.

-E error_file
specifies a log file for recording errors. If you do not specify -E, the generated errors appear in a console window.

-L progress_log_file
specifies a log file for recording the progress of ddlgen. If you do not specify -L, the progress is not recorded.
-Jclient_charset
specifies the character set to use on the client. -Jclient_charset requests that Adaptive Server convert to and from client_charset, the character set used on the client. A filter converts input between client_charset and the Adaptive Server character set.

Omitting -J sets the character set to a default for the platform. The default may not necessarily be the character set that the client is using.

Note For HP platforms – you must use -Jiso_1 to specify the correct character set.

-LC
generate DDL for one or all logical clusters on a server.
-F

filters out indexes, triggers, and constraints out of table and database
definitions in the DDL of table- and database-level objects. The valid filters
are:

- **For tables** – [% | I | RI | KC | TR | PC]
- **For databases** – [% | SGM | GRP | USR | R | D | UDD | U | V | P | XP | I
 | RI | KC | TR]

The filter options are:

- % – everything. Retrieves the schema-only definition of a database or
table.
- SGM – segments
- GRP – groups
- USR – users
- R – rules
- D – defaults
- UDD – user-defined datatypes
- U – user tables
- V – views
- P – stored procedures
- PC – partition condition
- XP – extended stored procedures
- I – indexes
- RI – referential integrity constraints
- KC – primary- and unique-key constraints
- TR – triggers

If you use an invalid filter parameter, `ddlgen` generates a warning, ignores
that parameter, and continues with the rest of the valid parameters you
specify.

If you specify % along with other filter parameters, `ddlgen` ignores all other
filterable parameters, and only shows schema-only definitions. `ddlgen` then
continues to evaluate the dependencies within the subset of the applied as
the filterable parameters for the database.
-v

displays the version and copyright message of ddlgen and returns to the
operating system.

Examples

Example 1 (Archive database) To generate DDL for all archive databases, use
the extended filter option "OA."

 ddlgen -Uroy -Proy123 -SHARBOR:1955 -TDB -N% -XOA

To generate DDL for a single archive database, use the syntax for normal
databases. This example creates DDL for the archive database adb1.

 ddlgen -Uroy -Proy123 -SHARBOR:1955 -TDB -Nadb1

Example 2 (Caches) Generates DDL for a cache called *default data cache* on
a machine named HARBOR using port 1955:

 ddlgen -Uroy -Proy123 -SHARBOR:1955 -TC -N"default data cache"

To generate DDL for all caches:

 ddlgen -U login -P password -S server:port -TC -N%

Example 3 (Databases) Generates DDL for a database called pubs2 on a
machine named HARBOR using port 1955:

 ddlgen -Uroy -Proy123 -SHARBOR:1955 -TDB -Npubs2

If you do not specify a *dbname*, *ddlgen* generates DDL for the default database
of *login*:

 ddlgen -Ulogin -Ppassword -Sserver:port

If you do not use the -T parameter, *ddlgen* generates DDL for a default-type
database:

 ddlgen -Ulogin -Ppassword -Sserver:port -Ndbname

To generate DDL for all databases:

 ddlgen -U login -P password -S server:port -TDB -N%

Example 4 (Defaults) Generates DDL for a default called "phondflt" owned
by jones in the pubs2 database on a machine named HARBOR using port 1955:

 ddlgen -Uroy -Proy123 -SHARBOR:1955 -TD -Njones.phonedflt -Dpubs2

Alternatively, because *ddlgen* allows you to use a fully qualified name in the -N
flag, omit the -Ddbname and include the database name in the -N option:

 ddlgen -Ulogin -Ppassword -Sserver:port -TD -Ndbname.owner.defaultname

To generate DDL for all defaults in a database owned by "owner":

ddlgen

```plaintext
ddlgen -U login -P password -S server:port -TD -N owner.% -D dbname
```

Example 5 (Database device) Generates DDL for a database device called master running on a machine named HARBOR using port 1955:

```plaintext
ddlgen -U roy -P roy123 -S HARBOR:1955 -TDBD -N master
```

To generate DDL for all database devices:

```plaintext
ddlgen -U login -P password -S server:port -TDBD -N%
```

Example 6 (Dump device) Generates DDL for a dump device called tapedump1 running on a machine named HARBOR using port 1955:

```plaintext
ddlgen -U roy -P roy123 -S HARBOR:1955 -DPD -N tapedump1
```

To generate DDL for all dump devices:

```plaintext
ddlgen -U login -P password -S server:port -DPD -N%
```

Example 7 (Encrypted keys) Generates system encryption passwords along with DDLs for encryption keys when you include the extended option -XOD. The output generates the sp_encryption statement followed by DDL statements for all encrypted keys. This generates DDL for the login “george” on a machine named HARBOR using port 1955:

```plaintext
ddlgen -U roy -P roy123 -S HARBOR:1955 -TEK -N george -XOD
```

To generate DDL for all the encrypted keys in the authors database on a machine named HARBOR using port 1955:

```plaintext
ddlgen -U roy -P roy123 -S HARBOR:1955 -TEK -N authors.dbo.%
```

Example 8 (Encrypted keys) Generates DDL for all encryption keys in the accounts database on a machine named “HARBOR” using port 1955:

```plaintext
ddlgen -U roy -P roy123 -S HARBOR:1955 -TEK -N accounts.dbo.%
```

Alternatively, you use the -D option to specify the database name.

Example 9 (Encrypted keys) Generate DDL for an encryption key “ssn_key” in a the SampleKeysDB database:

```plaintext
ddlgen -U sa -P -S server -TEK -NSampleKeysDB.dbo.ssn_key
```

Example 10 (Encrypted keys) Uses -FEKC to avoid creating DDL for key copies when generating DDL for the “ssn_key” encryption key:

```plaintext
ddlgen -U sa -P -S server -TEK -NSampleKeysDB.dbo.ssn_key -FEKC
```
Example 11 (Encrypted keys) Generates DDL for “ssn_key” and its key copies:
```
ddlgen -Usa -P -Sserver -TEK -NSampleKeysDB.dbo.ssn_key
```

Example 12 (Encrypted keys) Issues a ddlgen command on a table called `employee`, which has an “ssn” column that is encrypted with encryption key “ssn_key,” and a decrypt default value that is set to 100:
```
ddlgen -Usa -P -Sserver -TU -N db1.dbo.employee
```

Example 13 (Engine groups) Generates DDL for an engine group called LASTONLINE running on a machine named HARBOR using port 1955:
```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TEG -NLASTONLINE
```
To generate DDL for all engine groups:
```
ddlgen -Ulogin -Ppassword -Sserver:port -TEG -N%
```

Example 14 (Execution class) Generates DDL for an execution class called EC2 running on a machine named HARBOR using port 1955:
```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TEC -NEC2
```
To generate DDL for all execution classes:
```
ddlgen -Ulogin -Ppassword -Sserver:port -TEC -N%
```

Example 15 (Extended stored procedures) Generates DDL for the `xp_cmdshell` extended stored procedure in the pubs2 database, owned by Jones and running on a machine named HARBOR using port 1955, by using the fully qualified `dbname.owner.extendedstoredprocedure` format with the -N option:
```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TXP -Npubs2.jones.xp_cmdshell
```
Alternatively, use the -D option instead of using the fully qualified name:
```
ddlgen -Ulogin -Ppassword -Sserver:port -TXP
-Nowner.extendedstoredprocedure -Ddbname
```
To generate DDL for all extended stored procedures:
```
ddlgen -Ulogin -Ppassword -Sserver:port -TXP -Ndbname.owner.%
```

Example 16 (Filters) Generates DDL for the authors table in the pubs2 database, filtering for all indexes (I), and referential integrity constraints (RI), primary and unique key constraints (KC), triggers (TR), and partition condition (PC) from the DDL of a table:
```
ddlgen -Uroy -Proy123 -TU -Nauthors -Dpubs2 -F%
```
Alternatively, specify each of the filters individually:
ddlgen

 ddlgen -U login -P password -TU -N db_name.owner.table
 -FI,RI,KC,TR

This generates the definition of table_name while filtering out foreign keys and primary-unique keys:

 ddlgen -U login -P password -TU -N table_name -D db_name
 -FRI,KC

Both of these generate foreign keys for a specified user in the entire database:

 ddlgen -U login -P password -TRI -N%.%%.% -D db_name

Or:

 ddlgen -U login -P password -TRI -N db_name%.%%.%

Both of these generate DDL for the primary and unique keys of all the tables in a database that begin with “PK”:

 ddlgen -U login -P password -TKC -N db_name%.%%.PK%

Or:

 ddlgen -U login -P password -TKC -N%.%%.PK% -D db_name

This generates schema-only definition of a database:

 ddlgen -U login -P password -S server:port -TF -N db_name
 -F%

Alternatively, specify each of the filters individually:

 ddlgen -U login -P password -S server:port -TDB -N db_name
 -FSGM,GRP,USR,RI,R,UDD,V,P,XP,I,R,KC,TR

This generates the database DDL skipping the compiled object:

 ddlgen -U login -P password -S server:port -TDB -N db_name
 -FTR,D,XP,V,R

This generates database definition without a table definition:

 ddlgen -U login -P password -S server:port -TDB -N db_name
 -FU

Example 17 (Groups) Generates DDL for a group called “public” in the pubs2 database, running on a machine named HARBOR using port 1955, by using the fully qualified dbname.groupname format in the -N option:

 ddlgen -U roy -P roy123 -S HARBOR:1955 -TGRP -N pubs2.public

Alternatively, use the -D option to specify the dbname:

 ddlgen -U login -P password -S server:port -TGRP -N groupname -D db_name
CHAPTER 1 Utility Commands Reference

To generate DDL for all groups:

```
ddlgen -U login -P password -S server:port -TGRP -N dbname.%
```

Example 18 (In-memory databases) Generates DDL for an in-memory database:

```
ddlgen -U roy -P roy123 -S SHARBOR:1955 -TDB -N imdb_1
```

Example 19 (In-memory databases) Generates DDL for an in-memory temporary database:

```
ddlgen -U roy -P roy123 -S SHARBOR:1955 -TDB -N imdb_temp1
```

Example 20 (Indexes) Generates DDL for an index called `au_lname` for the table `authors` owned by dbo, in the pubs2 database:

```
ddlgen -U roy -P roy123 -S SHARBOR:1955 -TI -N dbo.authors.au_lname -D pubs2
```

Alternatively, because `ddlgen` allows you to use a fully qualified name in the `-N` flag, omit the `-D` flag and include the database name in the `-N` option:

```
ddlgen -U login -P password -S server:port -TI -N dbname.owner.tablename.indexname
```

If you use a fully qualified name, you may omit the `-D` option.

To generate DDL for all indexes for a single table:

```
ddlgen -U login -P password -S server:port -TI -N dbname.owner.tablename.%
```

To generate DDL for all indexes of all tables in a database:

```
ddlgen -U login -P password -S server:port -TI -N dbname.%.%.%
```

For example, this generates DDL for all indexes for all tables in the pubs2 database:

```
ddlgen -Usa -P -S SHARBOR:1955 -TI -N pubs2.%.%.%
```

Example 21 (Keys) Both of these generate DDL for the primary and unique keys of all the tables in a database that begin with “PK”:

```
ddlgen -Usa -P -TKC -N dbname.%.%.PK%
```

Or:

```
ddlgen -Usa -P -TKC -N%.%.PK% -D dbname
```

Example 22 (Logical cluster) Generates DDL for “my_lcluster” on server “ase1”, enter:

```
ddlgen -Usa -P -S ase1 -TLC -N my_lcluster
```
Example 23 (Logical cluster) Generates DDL for all logical clusters on server “ase1”, enter:

```
ddlgen -U sa -P Sase1 -TLC -N%
```

Example 24 (Logical keys) LK generates logical keys of table defined by `sp_primarykey`, `sp_commonkey`, `sp_foreignkey` statements. Since these keys do not have a name, the name of the object in this case would be the name of the table. This example generate a DDL for logical keys of table authors in database pubs2 running on a machine named HARBOR using port 1955:

```
dlgen -U roy -P roy123 -S HARBOR:1955 -TLK -N pubs2.dbo.authors
```

To generate DDL for all logical keys in database pubs2 use:

```
dlgen -U roy -P roy123 -S HARBOR:1955 -TLK -N pubs2.%.%
```

To filter out logical keys definition from DDL of table authors use LK in -F argument, use:

```
dlgen -U roy -P roy123 -S HARBOR:1955 -TLK -N pubs2.dbo.authors -FLK
```

Example 25 (Logins) TL generates DDL for one or all logins. This example generates DDL for all logins on a machine named HARBOR using port 1955:

```
dlgen -U roy -P roy123 -S HARBOR:1955 -TL -N%
```

Note The password in the DDL generated for all logins is “password”.

Alternatively, specify an individual login by using `-Username` instead of `-N%`:

```
dlgen -U login -P password -S server:port -TL -Username
```

If server-wide password complexity options have been specified for the login or logins, all `sp_addlogin` and `sp_loglogin` DDL statements are generated first, followed by DDL statements for the password options. This example generates DDL for the login “george” on a machine named HARBOR using port 1955:

```
dlgen -U roy -P roy123 -S HARBOR:1955 -TL -N george
```

Example 26 (Remote servers) Generates DDL for a remote server called ORANGE on a machine named HARBOR using port 1955:

```
dlgen -U roy -P roy123 -S HARBOR:1955 -TRS -N ORANGE
```

To generate DDL for all remote servers:

```
dlgen -U login -P password -S server:port -TRS -N%
```

Example 27 (Roles) Generates DDL for the sa_role on a machine named HARBOR using port 1955:
To generate DDL for all roles:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TRO -N%
```

Note The password in the DDL generated for all roles is “password”.

Example 28 (Rules) Generates DDL for all rules associated with authors on a machine named HARBOR using port 1955:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TR -Nauthors.dbo.%
```

The % symbol tells `ddlgen` to create DDLs for all rules that exist on the server.

You can also give the fully qualified name of the rule:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TR -Ndbname.owner.rulename
```

Alternatively, also use the -D parameter:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TR -Nowner.rulename -Ddbname
```

Example 29 (Segments) Generates DDL using the fully qualified `dbname.segmentname` format in the -N option for a segment called logsegment for the pubs2 database, on a machine named HARBOR using port 1955:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TSGM -Npubs2.logsegment
```

Alternatively, specify the `dbname` using the -D option:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TSGM -Nsegmentname -Ddbname
```

To generate DDL for all segments:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TSGM -Ndbname.%
```

Example 30 (SQLJ functions) Generates DDL for a SQLJ function named `region_of` owned by `dbo` in database `master`:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TF -Nmaster.dbo.region_of
```

Alternatively also use the -D parameter:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TF -Ndbo.region_of -Dmaster
```

To generate DDL for all SQLJ functions in a database, use object type F:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TF -Ndbname.owner.%
```
Example 31 (SQLJ procedures) Are a kind of stored procedure. You generate DDL for SQL procedures along with DDL for stored procedures. This generates DDL for all stored procedures—including SQLJ procedures—owned by dbo in the master database:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TP -Nmaster.dbo.%
```

To generate DDL for all SQLJ procedures that are only owned by dbo in the master database, use this, where the extended type OD refers to SQLJ procedures:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TP -Nmaster.dbo.% -XOD
```

To generate DDL for all procedures except SQLJ procedures owned by dbo in the master database, use this, where the extended type OU refers to all stored procedures except SQLJ procedures:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TP -Nmaster.dbo.% -XOU
```

Example 32 (Stored procedures) Generates DDL for the `sp_monitor` stored procedure for the `pubs2` database on a machine named HARBOR using port 1955, using the fully qualified dbname.owner.procedure_name format for the -N option:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TP -Npubs2.dbo.sp_monitor
```

Alternatively, specify the `dbname` using the -D option:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TP -Nowner.procedure_name -Ddbname
```

To generate DDL for all stored procedures:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TP -Ndbname.owner.%
```

Example 33 (SSL-enabled servers) Generates DDL for objects in the `pubs2` database for an SSL-enabled Adaptive Server running on a machine named HARBOR using port 1955:

```
ddlgen -Uroy -Proy123 -Sssl:HARBOR:1955 -TDB -Npubs2
```

Example 34 (Tables) Generates DDL for all user tables in the `pubs2` database owned by “dbo” and running on a machine named HARBOR using port 1955:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TU -Ndbo.% -Dpubs2
```

You can also use the -N parameter to give the fully qualified name of the table:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TU -Nddbname.tableowner.tablename
```

Alternatively, also use the -D parameter to specify the database:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TU
```
To generate DDL for all proxy tables, which uses the value OD, use -XOD instead, where X is the extended type, and OD denotes proxy tables:

```
ddlgen -U login -P password -S server:port -TU -N tableowner.% -D dbname -XOD
```

To generate DDL for all user tables, which uses the value OU, use -XOU instead, where X is the extended type, and OU denotes user tables:

```
ddlgen -U login -P password -S server:port -TU -N tableowner.% -D dbname -XOU
```

To generate DDL for all tables, including user tables and proxy tables:

```
ddlgen -U login -P password -S server:port -TU -N dbname.tableowner.%
```

Example 35 (Temporary databases) Generates DDL for all databases, including tempdb:

```
ddlgen -U login -P password -S server:port -TDB -N%
```

To generate DDL for all temporary databases, use the OD extended database type:

```
ddlgen -U login -P password -S server:port -TDB -XOD -N%
```

Although you can use the OD extended type in Adaptive Server versions 12.5.0.3 and later, versions earlier than 12.5.0.3 issue warning messages. Safely ignore this message; `ddlgen` continues processing the command. To generate DDL for all databases except temporary databases, use the OU extended type:

```
ddlgen -U login -P password -S server:port -TDB -XOU -N%
```

This generates DDL for a temporary database named tempdb1:

```
ddlgen -U login -P password -S server:port -TDB -N tempdb1
```

The output includes:

- A create temporary database statement:
  ```
  create temporary database tempdb1 on master = 4,
  asdas = 2
  go
  ```

- An `sp_tempdb` bind statement where the `isql` application is bound to tempdb1:
  ```
  sp_tempdb 'bind', 'ap', 'isql', 'DB', 'tempdb1'
  ```
Note DDL for objects such as views, stored procedures, and tables is not generated along with DDL for a temporary database because these objects are temporary, and are re-created when the server restarts.

When you use the -F parameter to filter a table while generating DDL for a database object, then indexes, referential integrity, key constraints and triggers automatically get filtered, as they are a subset of the table object.

Example 36 (Triggers) Generates DDL for the trigger checksum for the pubs2 database on a machine named HARBOR using port 1955, using the fully qualified dbname.owner.trigger_name format for the -N option:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TTR -Npubs2.dbo.checksum
```

Alternatively, specify the database_name using the -D option:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TTR -Nowner.triggername -Ddbname
```

You can also generate DDL for a trigger for a table, using:

```
-N$dbname.table_owner.table_name.trigger_name
```

To generate DDL for all triggers of a database:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TTR -N$dbname.owner.%
```

You can also use this format to generate DDL for all triggers of a table:

```
-N$dbname.table_owner.table_name.%
```

Note You cannot use the -D parameter when generating DDL for all triggers of a table.

Example 37 (User-defined datatypes) Generates DDL for the user-defined datatype “Identype” for the pubs2 database on a machine named HARBOR using port 1955 using the fully qualified dbname.userdefined_datatype format for the -N option:

```
ddlgen -Uroy -Proy123 -SHARBOR:1955 -TUDD -Npubs2.Identype
```

Alternatively, use the -D option to specify the dbname:

```
ddlgen -Ulogin -Ppassword -Sserver:port -TUDD -Nuserdefined_datatype -Ddbname
```

To generate DDL for all user-defined datatypes:
Example 38 (Views) Generates DDL for a view named retail owned by Miller
in the pubs2 database running on a machine named HARBOR using port 1955,
by using the fully qualified dbname.owner.viewname format with the -N option:

ddlgen -Ulogin -Ppassword -Sserver:port -TUDD -N dbname.

Alternatively, use the -D option instead of using the fully qualified name:

ddlgen -Ulogin -Ppassword -Sserver:port -T -N dbname.owner.

To generate DDL for all views:

ddlgen -Ulogin -Ppassword -Sserver:port -T -N dbname.

Example 39 (User-defined Web services) Generates DDL for a named
user-defined Web service, sp_who_service, in the pubs2 database running on a
machine named HARBOR using port 1995, by using a fully qualified
dbname.username.webservice_name format with the -N and -T options:

ddlgen -Uroy -Proy123 -S HARBOR:1995 -TWS -N pubs2.dbo.sp_who_service

The syntax for generating DDL for a named user-defined Web service is:

ddlgen -Ulogin -Ppassword -S host_name:port -TWS -N dbname.owner.webservice_name

To generate DDL for all user-defined Web services owned by all users in
database dbname:

ddlgen -Ulogin -Ppassword -S host_name:port -TWS -N dbname.

Note An sp_webservices 'addalias' statement is only generated if the DDL is
to be generated for all user-defined web services or for a database.

Example 40 (Users) Generates DDL for a user named Smith in the pubs2
database running on a machine named HARBOR using port 1955, by using a
fully qualified dbname.username format with the -N option:

ddlgen -Uroy -Proy123 -S HARBOR:1955 -TUSR -N pubs2.smith

Alternatively, use both the -N and -D options instead of using a fully qualified
name in -N:

ddlgen -Ulogin -Ppassword -S host_name:port -TUSR -N dbname.

To generate DDL for all users:

ddlgen -Ulogin -Ppassword -S server:port -TUSR -N dbname.
Usage

- `ddlgen` does not identify existing sequences within views, stored procedures or triggers. For this reason, when generating DDL for a database, first run `ddlgen` on those views, stored procedures and triggers that are independent, before running `ddlgen` on those with dependencies. For example, if view B depends on view A, first run `ddlgen` on view A, before running it on view B.

- The default information for `ddlgen` is:

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter</th>
<th>Required</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>-U</td>
<td>username</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>-P</td>
<td>password</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>-S</td>
<td>host_name:port_number</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>-T</td>
<td>object_type</td>
<td>No</td>
<td>Database</td>
</tr>
<tr>
<td>-N</td>
<td>object_name</td>
<td>Yes, if object_type for -T is not DB (database)</td>
<td>Default database name of username, if -Tobject_type is db or if -T is not specified</td>
</tr>
<tr>
<td>-D</td>
<td>database_name</td>
<td>No</td>
<td>Default database of username</td>
</tr>
<tr>
<td>-X</td>
<td>extended_object_type</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>-O</td>
<td>output_file_name</td>
<td>No</td>
<td>Standard out</td>
</tr>
<tr>
<td>-E</td>
<td>error_file_name</td>
<td>No</td>
<td>Standard out</td>
</tr>
<tr>
<td>-L</td>
<td>log_file_name</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>-V</td>
<td>version_number of ddlgen</td>
<td>No</td>
<td>None</td>
</tr>
</tbody>
</table>

- At the command line, invoke `ddlgen` using the `ddlgen` shell script file (`ddlgen.bat` for Windows), included in your Adaptive Server installation. The main class in `DDLGen.jar` is `com.sybase.ddlgen.DDLGenerator`.

Adaptive Server Enterprise
• To start `ddlgen` in the Sybase Central plug-in for Adaptive Server:
 a Right-click on the object for which you want to generate DDL.
 b Select Generate DDL.
• In the output DDL of `create table`, bind statements are generated as independent DLL instead of dependent DLL.
• The PN type allows you to generate DDL for tables with partition names. Use partition names and the optdiag utility to analyze optimizer behavior by creating empty partitioned tables with simulated metadata.

 Use this syntax to generate names for local index partitions
  ```
  ddlgen -T U -XPN
  ```

 Use this syntax to generate DDL for all user tables with partition names:
  ```
  ddlgen -T U -XPN,OU
  ```
  ```
  ddlgen -T U -XOU,PN
  ```

 Hiding passwords in `ddlgen`

 When you issue the `ddlgen` utility in a UNIX command-line environment, other users on that UNIX machine can see your `ddlgen` command—including its password—if they issue the `ps` process management command, which shows the status of processes that are running on that machine.

 The `ddlgen -P` password parameter option lets you to invoke `ddlgen` from a script so that the password is hidden from other users.

 To achieve this, set the `$PSWD` environment variable to point to your Adaptive Server login password, and include the string “ext” in the `-P` parameter. ext acts as a pseudo password, allowing you to supply the actual password in the next line. Set `$PSWD` at the command line or a Bourne shell script, but not from the C-shell.

 To run `ddlgen` using `$PSWD`:

 1. Set the `$PSWD` environment variable:
     ```
     setenv PSWD pass_word
     ```
 2. Run `ddlgen`:
     ```
     ddlgen -U login -Pext -S server:port -T type -N name << END
     $PSWD
     END
     ```

 If you prefer to keep your password in a file, replace `$PSWD` with `cat filename`, where `filename` is the location of your password file. For example:
Using `ddlgen` for encrypted columns

You can use the `ddlgen` utility with encrypted columns.

- The `ddlgen` utility supports pre-15.0.2 encryption. Pre-15.0.2 `ddlgen` support includes generating DDL for an encryption key in a database, and generating DDL to synchronize encryption keys across servers.

 If you use `ddlgen` to generate DDL for encryption keys on Adaptive Server version 15.0.2 or later, the DDL may cause errors on a pre-15.0.2 version Adaptive Server, specifically if an encryption key is encrypted by a user specified-password or has key copies.

- The type `EK`, used for encryption key, generates the DDL to create an encryption key and to grant permissions on it. `ddlgen` generates encrypted column information and a grant decrypt statement, along with the table definition.

- If you do not specify the `-XOD` option, and the key to be migrated has been created in the source database using the `with passwd` clause, `ddlgen` generates a create encryption key command with password as its explicit password. This is similar to what `ddlgen` does for roles and login passwords.

- The `-XOD` generates the create encryption key that specifies the key’s encrypted value as represented in `sysencryptkeys`. Use the `-XOD` to synchronize encryption keys across servers for data movement.

`ddlgen` `-XOD` generates DDL that includes a system encryption password (if it was set and DDL is generated for a key encrypted with a system encryption password) and DDL for keys.

Encrypted columns, and specifying the `-XOD` flag in `ddlgen`

If you do not specify the `-XOD` flag in `ddlgen`, and you:

- **Did not** specify a password when the encryption key was created – `ddlgen` generates DDL with no password.

- Specified a password when the encryption key was first created – `ddlgen` generates the default password of ‘password’. This is similar to what `ddlgen` does for roles and login passwords, and its output looks similar to:

```bash
-- DDL for EncryptedKey 'ssn_key'
```
print 'ssn_key'

--The DDL is generated with a default password - 'password' as
--a password was specified when this key was created.

create encryption key SampleKeysDB.dbo.ssn_key for AES
 with keylength 128
 passwd 'password'
 init_vector random
 go

When you specify the -XOD flag in ddlgen, ddlgen generates DDL that includes
a system encryption password (if it has been set and DDL is generated for a key
encrypted with a system encryption password) and DDL for keys.

Use this syntax to generate a system encryption password:

 ddlgen -Usa -P -Sserver -TEK -NsampleKeysdb.dbo.ek1 -XOD

The output would look like:

-- System Encryption Password
use SampleKeysDB
 go
 sp_encryption 'system_encr_passwd',
 '0x8e050e3bb607225c60c7cb9f59124e998666ca22e677b2c9d9a4d09775850f4721',
 NULL, 2, 0
 go

-- DDL for EncryptedKey 'ek1'

print '<<<<<<< CREATING EncryptedKey - "ek1" >>>>>>'
 go

create encryption key SampleKeysDB.dbo.ek1 for AES
 with keylength 128
 passwd 0x0000C7BC28C3020AC21401
 init_vector NULL
 keyvalue 0xCE74DB1E028FF15D908CD06D380AB4AD3AA88284D6F7742DFCCADCAEBE4100D01
 keystatus 32
Note. When migrating keys from a source to a target server using `ddlgen`, set the system encryption password to NULL (if it exists) in the target server if you want to run the `ddlgen` output (from the source server) for encryption keys generated using “-XOD” parameter. Failure to do this results in errors when you try to execute the `ddlgen` output against the target server.

Key copy support
The `ddlgen` utility also generates DDL for key copies along with the DDL for base key. For example, this syntax would generate DDL for “ssn_key” and its key copies:

```
ddlgen -Usa -P -S server -TEK -NSampleKeysDB.dbo.ssn_key
```

The output from `ddlgen` would look like:

```
-- DDL for EncryptedKey 'ssn_key'
-------------------------------------------------------------------
print 'ssn_key'
--The DDL is generated with a default password – 'password' as
--a password was specified when this key was created.
create encryption key SampleKeysDB.dbo.ssn_key for AES
  with keylength 128
  passwd 'password'
  init_vector random
go

print 'Key Copies for ssn_key'
-- Generating DDL for Key Copies for 'ssn_key'
alter encryption key 'ssn_key'
  with passwd 'password'
  add encryption with passwd 'passwd'
  for user 'dbo'.
```

If you include the -XOD flag, the DDL for key copy would look like:

```
alter encryption key SampleKeysDB.dbo.ssn_key add encryption
  with keyvalue 0x84A7360AA0B28801D6D4CBF2F8219F634EE641E1082F221A2C58C9BBEC9F49B501
  passwd 0x000062DF4B8DA5709E5E01
  keystatus 257
```
for user 'user1'
go

EKC encryption key copy filter

The `ddlgen` utility supports the EKC (encryption key copy) extended type for its `-F` filter argument, to suppress the generation of key copies for encryption keys.

This example uses `-FEKC` to avoid creating DDL for key copies when generating DDL for the “ssn_key” encryption key:

```
ddlgen -Usa -P -Sserver -TEK -NSampleKeysDB.dbo.ssn_key -FEKC
```

The output from `ddlgen` would look like:

```
CREATE TABLE DDL
```

Create table DDL

`ddlgen` can generate `decrypt_default` statements (if set for an encrypted column) along with DDL of a table.

This example issues a `ddlgen` command on a table called `employee` which has an “ssn” column that is encrypted with encryption key “ssn_key,” and a decrypt default value that is set to “100”:

```
ddlgen -Usa -P -Sserver -TU -Nemployee
```

The DDL output would look like:

```
CREATE TABLE employee (  
  ssn int not null encrypt with ssn_key decrypt_default 100 ,
  last_name int not null ,
  first_name int not null
)
```

Permissions

Users must have either sa_role or sso_role to generate DDL for:
For all other objects, users do not need any specific permissions or roles to generate DDL.

See also Documentation “Hiding passwords in ddlgen” on page 77 for instructions on how to hide passwords
defncopy

Description
Copies definitions for specified views, rules, defaults, triggers, or procedures from a database to an operating-system file or from an operating-system file to a database.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is defncopy.exe, located in %SYBASE%\%SYBASE_OCS%\bin.

Syntax
defncopy
[-X]
[-a display_charset]
[-I interfaces_file]
[-J [client_charset]]
[-K keytab_file]
[-P password]
[-R remote_server_principal]
[-S [server_name]]
[-U username]
[-V security_options]
[-Z security_mechanism]
[-z language]
{ in file_name database_name |
 out file_name database_name [owner.]object_name
 [[owner.]object_name...] }

Or
defncopy -v

Parameters
-X initiates the login with client-side password encryption in this connection to the server. defncopy (the client) specifies to the server that password encryption is desired. The server sends back an encryption key, which defncopy uses to encrypt your password, and the server uses to authenticate your password when it arrives.

If defncopy crashes, the system creates a core file which contains your password. If you did not use the encryption option, the password appears in plain text in the file. If you used the encryption option, your password is not readable.
-a display_charset
 runs defncopy from a terminal whose character set differs from that of the
 machine on which defncopy is running. Use -a in conjunction with -J to
 specify the character set translation file (.xlt file) required for the
 conversion. Use -a without -J only if the client character set is the same as
 the default character set.

Note The ascii_7 character set is compatible with all character sets. If either
the Adaptive Server character set or the client character set is set to ascii_7, any
7-bit ASCII character can pass unaltered between client and server. Other
characters produce conversion errors. See the System Administration Guide for
more information on character set conversion.

-I interfaces_file
 specifies the name and location of the interfaces file to search when
 connecting to Adaptive Server. If you do not specify -I, defncopy looks for a
 file named interfaces in the directory specified by the SYBASE
 environment variable in UNIX platforms, and sql.ini in the ini subdirectory
 for your Sybase release directory in Windows.

-J client_charset
 specifies the character set to use on the client. A filter converts input
 between client_charset and the Adaptive Server character set.

 -J client_charset requests that Adaptive Server convert to and from
 client_charset, the client’s character set.

 -J with no argument sets character set conversion to NULL. No conversion
 takes place. Use this if the client and server are using the same character set.

Omitting -J sets the character set to a default for the platform. The default
may not be the character set that the client is using. For more information
about character sets and their associated flags, see the System
Administration Guide and Configuration Guide for your platform.

-K keytab_file
 specifies the path to the keytab file used for authentication in DCE.

-P password
 specifies your password. If you do not specify -P, defncopy prompts for your
 password.
-R remote_server_principal

 specifies the principal name for the server. By default, a server’s principal name matches the server’s network name (which is specified with the -S parameter or the DSQUERY environment variable). Use the -R parameter when the server’s principal name and network name are not the same.

-S server_name

 specifies the name of the Adaptive Server to which to connect. If you specify -S with no argument, defncopy looks for a server named SYBASE. If you do not specify -S, defncopy uses the server specified by your DSQUERY environment variable.

-U username

 specifies a login name. Login names are case sensitive. If you do not specify username, defncopy uses the current user’s operating system login name.

-V security_options

 specifies network-based user authentication. With this option, the user must log in to the network’s security system before running the utility. In this case, users must supply their network user name with the -U option; any password supplied with the -P option is ignored.

 -V can be followed by a security_options string of key-letter options to enable additional security services. These key letters are:

 • c – Enable data confidentiality service
 • i – Enable data integrity service
 • m – Enable mutual authentication for connection establishment
 • o – Enable data origin stamping service
 • r – Enable data replay detection
 • q – Enable out-of-sequence detection

-Z security_mechanism

 specifies the name of a security mechanism to use on the connection.

 Security mechanism names are defined in the $SYBASE/install/libtcl.cfg configuration file. If no security_mechanism name is supplied, the default mechanism is used. For more information on security mechanism names, see the description of the libtcl.cfg file in the Open Client and Open Server Configuration Guide.
-z language
is the official name of an alternate language that the server uses to display
defncopy prompts and messages. Without the -z flag, defncopy uses the
server’s default language.

Add languages to an Adaptive Server at installation, or afterwards with the
utility langinstall (langinst in Windows) or the stored procedure
sp_addlanguage.

in | out
specifies the direction of definition copy.

file_name
specifies the name of the operating system file destination or source for the
definition copy. The copy out overwrites any existing file.

database_name
specifies the name of the database to copy the definitions from or to.

owner
is optional if you or the database owner own the table being copied. If you
do not specify an owner, defncopy first looks for a table of that name that you
own, and then looks for one owned by the database owner. If another user
owns the table, specify the owner name or the command fails.

object_name
specifies name(s) of database object(s) for defncopy to copy out. Do not use
objectname when copying definitions in.

-v
 displays the version and copyright message of defncopy and returns to the
operating system.

Examples

Example 1 Copies definitions from the file new_proc into the database stagedb
on server MERCURY. The connection with MERCURY is established with a
user of name “sa” and a NULL password:

defncopy -Usa -P -SMERCURY in new_proc stagedb

Example 2 Copies definitions for objects sp_calccomp and sp_vacation from
the employees database on the SYBASE server to the file dc.out. Messages and
prompts display in french. The user is prompted for a password:

defncopy -S -z french out dc.out employees sp_calccomp sp_vacation

Usage

• Use this syntax for defncopy_r if you are using threaded drivers.
• Use this syntax for defncopy you are using threaded drivers in the IBM
 platform.
• Set the SYBASE environment variable to the location of the current version of Adaptive Server before using defncopy.

• Invoke the defncopy program directly from the operating system. defncopy provides a noninteractive way to copy out definitions (create statements) for views, rules, defaults, triggers, or procedures from a database to an operating system file. Alternatively, it copies in all the definitions from a specified file.

• The in filename or out filename and the database name are required and must be stated unambiguously. For copying out, use file names that reflect both the object’s name and its owner.

• defncopy ends each definition that it copies out with the comment:

```
/* ### DEFNCOPY: END OF DEFINITION */
```

Definitions created as text must end with this comment so that defncopy can copy them in successfully.

• Enclose values specified to defncopy in quotation marks, if they contain characters that could be significant to the shell.

Warning! Long comments of more than 100 characters that are placed before a create statement may cause defncopy to fail.

Permissions

• You must have select permission on the sysobjects and syscomments tables to copy out definitions; you do not need permission on the object itself.
defncopy

- You may not have select permission on the text column of the syscomments table if the system security officer has reset the allow select on syscomments.text column parameter with the system procedure `sp_configure`. This reset restricts select permission to the object owner and the system administrator. This restriction is required in order to run Adaptive Server in the **evaluated configuration**, as described in the installation and configuration documentation for your platform. In this case, the object owner or a system administrator must execute `defncopy` to copy out definitions.

Note If the text has been encrypted, it may be hidden from you even if you have all the required permissions. See “Verifying and Encrypting Source Text” in the Transact-SQL User’s Guide for more information.

- You must have the appropriate create permission for the type of object you are copying in. Objects copied in belong to the copier. A system administrator copying in definitions on behalf of a user must log in as that user to give the user proper access to the reconstructed database objects.

Tables used
- syscomments, sysobjects

See also
- **Commands** create, select
- **System procedures** `sp_addlanguage`, `sp_checkreswords`, `sp_configure`, `sp_proctime`, `sp_remap`
- **Utilities** langinstall
dscp

Description

(UNIX only) Allows you to view and edit server entries in the interfaces file from the command line in UNIX platforms.

The utility is located in `SSYBASE/SSYBASE_OCS/bin`.

Syntax

```
dscp [-p]
```

or

```
dscp -v
```

To exit from dscp:

```
quit
```

or

```
exit
```

Parameters

- `-p` suppresses command-line prompts.

- `-v` displays the version and copyright message of dscp and returns to the operating system.

Examples

Opens the default interfaces file for editing and suppresses the command-line prompt:

```
dscp -p
```

Usage

- Set the SYBASE environment variable to the location of the current version of Adaptive Server before using dscp.

- The dscp utility program is a text-based utility.

Available commands in dscp

You can perform various functions by entering commands at the dscp prompt:

- `add servername` – adds server entry `servername` in the current session. dscp prompts you for information about `servername`. Press Return to accept the default value, which is shown in square brackets `[]`. Enter “#done” to exit add mode.

- `addattr servername` – adds an attribute to the server entry `servername` in the current session.

- `close [sess]` – closes a session identified by the `sess` number. If you do not specify `sess`, closes the current session.
dscp

- **config** – displays configuration information related to your Sybase environment.

- **copy** name1 to (name2 | sess | sess name2) – copies server entry name1 in the current session to:
 - Server entry name2 in the current session,
 - Session sess, or
 - Server entry name2 in session sess.

- **copyall** to sess – copies all server entries in the current session to session sess.

- **del** surname – deletes server entry surname in the current session.

- **delete-all** – deletes all server entries in the current session.

- **exit** – exits dscp.

- **help**, ?, h – displays the online help.

- **list** [all] – lists the server entries for the current session. To list the names of the entries, use the list command. To list the attributes for each entry, use the list all command.

- **mod** surname – modifies server entry surname in the current session. dscp prompts you for information about surname. Press Return to accept the default value, which is shown in square brackets []. Enter “#done” to exit modify mode.

- **open** [dsname] – opens a session for the specified directory service, where dsname is the directory service name. If you do not specify a value for dsname, this command opens a session for the default directory service. To open a session, specify the value “InterfacesDriver” for dsname.

- **quit** – exits dscp.

- **read** surname – displays the contents of server entry surname.

- **sess** – lists all open sessions.

- [switch] sess – makes session number sess the current session.

See also

Documentation Chapter 4, “Using dscp to View and Edit Server Entries”

Utilities dsedit
dsedit

Description

The dsedit utility allows you to view and edit server entries in the interfaces file using a GUI.

The utility is located in:

• (UNIX) $SYBASE/$SYBASE_OCS/bin.

• (Windows) The dsedit.exe utility creates and modifies network connection information in the interfaces file. The utility is located in %SYBASE%\%SYBASE_OCS%\bin.

Syntax

dsedit

or

dsedit -v

Parameters

-v displays the version and copyright message of dsedit.

Usage

• Set the SYBASE environment variable to the location of the current version of Adaptive Server before using dsedit.

• Set the DISPLAY environment variable before invoking dsedit, unless you are only using the -v parameter to display the version number.

See also

Documentation Chapter 5, “Using dsedit to View and Edit Server Entries.” Also see the installation guide, and the configuration guide for your platform.

Utilities dscp
extractjava

Description
Copies a retained JAR and the classes it contains from an Adaptive Server into a client file.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is extrjava.exe, located in %SYBASE%/%SYBASE_OCS%\bin.

Syntax
extractjava (extrjava in Windows)

-\textit{-j jar_name}
-\textit{-f file_name}
-\textit{[-S server_name]}
-\textit{[-U user_name]}
-\textit{[-P password]}
-\textit{[-D database_name]}
-\textit{[-I interfaces_file]}
-\textit{[-a display_charset]}
-\textit{[-J client_charset]}
-\textit{[-z language]}
-\textit{[-t timeout]}
-\textit{[-v]}

Or

extractjava -v

Parameters

-\textit{-j jar_name}
 specifies the name assigned to the retained JAR in the database that is the source of the transfer.

-\textit{-f file_name}
 specifies the name of the client file that is the target of the transfer.

-\textit{-S server_name}
 specifies the name of the server.

-\textit{-U user_name}
 specifies an Adaptive Server login name. If you omit the -U flag and parameter, or if you specify the -U flag with no parameter, Adaptive Server uses the current user’s operating system login name.

-\textit{-P password}
 specifies an Adaptive Server password. If you omit the -P flag and parameter, extractjava prompts for a password. If you specify the -P flag with no password, the null password is used.
-D database_name
 specifies the name of the database in which to install the JAR. If you omit the -D flag, or if you specify the -D flag with no parameter, the user’s default database is used.

-I interfaces_file
 specifies the name and location of the interfaces file to search when connecting to Adaptive Server. If you omit the -I flag and parameter, or if you specify the -I flag with no parameter, the interfaces file in the directory designated by your SYBASE environment variable is used.

-a display_charset
 allows you to use extractjava from a machine where the character set differs that of the server. Use -a in conjunction with -J to specify the character set translation file (.xlt file) required for the conversion. Use -a without -J only if the client character set is the same as the default character set.

-J client_charset
 specifies the character set to use on the client. extractjava uses a filter to convert input between client_charset and the Adaptive Server character set.

-J client_charset requests that Adaptive Server convert to and from client_charset, the character set used on the client.

-J with no argument disables character set conversion. Use this if the client and server use the same character set.

Omitting -J sets the character set to a default for the platform, which may not necessarily be the character set that the client is using. See the System Administration Guide for more information about character sets and associated flags.

-z language
 specifies the name of an alternate language for displaying extractjava prompts and messages. Without the -z flag, extractjava uses the server’s default language. Add languages to an Adaptive Server during installation or afterward, using the langinstall utility or the sp_addlanguage stored procedure.

-t timeout
 specifies the number of seconds before a SQL command times out. If you do not specify a timeout, the command runs indefinitely. This affects commands issued from within extractjava, not the connection time. The default timeout for logging into extractjava is 60 seconds.
-v
 prints the version number and copyright message for `extractjava` and then exits.

Examples
 Downloads the classes associated with the employees JAR to the client file `newaddr.jar`.
 • On UNIX:
 `extractjava -j employees -f '/home/usera/jars/addr.jar' -new`
 • On Windows:
 `extrjava -j employees -f '\home\usera\jars\addr.jar' -new`

Usage
 • Set the SYBASE environment variable to the location of the current version of Adaptive Server before you use `extractjava`.
 • If the target client file already exists, `extractjava` overwrites its contents.
 • The parameter flags `-f`, `-j`, `-S`, `-U`, `-P`, `-D`, and `-I` can be written with or without a space between the flag letter and the following parameter.
 • When you execute `extractjava`, an exclusive lock is placed on `sysxtypes`.
 • If `-jar` is specified, an exclusive table lock is placed on `sysjars`.

Permissions
 You need to be a system administrator or database owner to use `extractjava`.

Tables used
 `sysjars`, `sysxtypes`

See also
 Commands
 remove java
 Documentation
 Java in Adaptive Server Enterprise for more information about how this utility is used when Java is enabled in the database.
 System procedures
 `sp_helpjava`
 Utilities
 `installjava`, `langinstall`
installjava

Description
Installs a JAR from a client file into an Adaptive Server.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is instjava.exe, located in %SYBASE%\%SYBASE_OCS%\bin.

Syntax
installjava
 -f file_name
 [-new | -update]
 [-j jar_name]
 [-S server_name]
 [-U user_name]
 [-P password]
 [-D database_name]
 [-l interfaces_file]
 [-a display_charset]
 [-J client_charset]
 [-z language]
 [-t timeout]
 [-v]

Or
installjava -v

Parameters
-f file_name
 is the name of the source file containing the classes to be installed in the database.

-new | -update
 specifies whether the classes in the file already exist in the database. If you specify:
 - -new – you cannot install a class with the same name as an existing class
 - -update – install a class with the same name as an existing class, and the newly installed class replaces the existing class

-j jar_name
 is the name of the JAR containing the classes to be installed in the database. Indicates that the JAR file should be saved in the database and associated with the classes it contains.

-S server_name
 is the name of the server.
installjava

-U user_name
 is an Adaptive Server login name. If you omit the -U flag and parameter, or if you specify the -U flag with no parameter, Adaptive Server uses the current user’s operating system login name.

-P password
 is an Adaptive Server password. If you omit the -P flag and parameter, installjava prompts for a password. If you specify the -P flag with no password, the null password is used.

-D database_name
 is the name of the database in which to install the JAR. If you omit the -D flag, or if you specify the -D flag with no parameter, the user’s default database is used.

-I interfaces_file
 is the name and location of the interfaces file to search when connecting to Adaptive Server. If you omit the -I flag and parameter, or if you specify the -I flag with no parameter, the interfaces file in the directory designated by your SYBASE environment variable is used.

-a display_charset
 allows you to use installjava from a machine where the character set differs that of the server. Use -a in conjunction with -J to specify the character set translation file (.xlt file) required for the conversion. Use -a without -J only if the client character set is the same as the default character set.

-J client_charset
 specifies the character set to use on the client. installjava uses a filter to convert input between client_charset and the Adaptive Server character set.

 -J client_charset requests that Adaptive Server convert to and from client_charset, the character set used on the client.

 -J with no argument disables character set conversion. Use this if the client and server use the same character set.

 Omitting -J sets the character set to a default for the platform, which may not necessarily be the character set that the client is using. See the System Administration Guide for more information about character sets and associated flags.

-z language
 is the name of an alternate language for displaying installjava prompts and messages. Without the -z flag, installjava uses the server’s default language. Add languages to an Adaptive Server during installation or afterward, using the langinstall utility or the sp_addlanguage stored procedure.
-t timeout
 specifies the number of seconds before a SQL command times out. If you do not specify a timeout, the command runs indefinitely. This affects commands issued from within installjava, not the connection time. The default timeout for logging into installjava is 60 seconds.

-v
 prints the version number and copyright message for installjava and then exits.

Examples

Example 1 Installs addr.jar and its classes, but does not retain the association between the JAR and classes:

installjava -f '/home/usera/jars/addr.jar' -new

In Windows:

instjava -f '\home\usera\jars\addr.jar' -new

Example 2 Reinstalls addr.jar and associates its classes with the employees JAR name:

installjava -f '/home/usera/jars/addr.jar' -update -j employees

In Windows:

instjava -f '\home\usera\jars\addr.jar' -update -j employees

Usage

• Set the SYBASE environment variable to the location of the current version of Adaptive Server before you can use installjava.

• Any user can reference installed classes.

• The parameter flags -f, -j, -S, -U, -P, -D, and -I can be written with or without a space between the flag letter and the following parameter.

Adding new JARs

An exception is raised if:

• You use new with the -jar option and a JAR of that name already exists in the database.

• Any classes of the same name as those in the source JAR already exist in the database, an exception is raised.
Updating JARs and classes

Warning! If you alter a class used as a column datatype by reinstalling a modified version of the class, make sure that the modified class can read and use existing objects (rows) in tables using that class as a datatype. Otherwise, you may be unable to access those objects without reinstalling the class.

If you use `-update`:

- With the `-jar` option:
 - All classes in the database associated with the target JAR are deleted from the database and the classes in the source JAR file installed in their place.
 - If a class in the source JAR file is already installed in the database but is not attached to a JAR, the class in the source JAR is installed in the database and the unattached class is deleted.

- Without the `-jar` option:
 - Classes in the source JAR file replace unattached classes of the same name.
 - Classes in the source JAR that do not correspond to an installed class are installed as unattached classes in the database.

If you install a new JAR with a replacement for an installed class that is referenced by a SQLJ procedure or function, make sure that the newly installed class has a valid signature for the SQLJ routine. If the signature is invalid, an exception is raised when the SQLJ routine is invoked.

Locks

- When you execute `installjava`, an exclusive lock is placed on `sysxtypes`.
- If `-jar` is specified, an exclusive table lock is placed on `sysjars`.

Permissions

You need to be a system administrator or database owner to use `installjava`.

Tables used

- `sysjars`, `sysxtypes`

See also

- **Commands** `remove java`
- **Documentation** *Java in Adaptive Server Enterprise* for more information about how this utility is used when Java is enabled in the database.
- **System procedures** `sp_helpjava`
- **Utilities** `extractjava`, `langinstall`
isql

Description

Interactive SQL parser to Adaptive Server.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_OCS/bin.
- (Windows) the utility is isql.exe, located in %SYBASE%\%SYBASE_OCS%\bin.

Syntax

```
```

Parameters

- **-b**

 disables the display of the table headers output.

- **-e**

 echoes input.

Note

See “Commands available within interactive isql” on page 109 for a list and description of commands that can be executed from within isql.
-F
 enables the FIPS flagger. When you specify the -F parameter, the server
 returns a message when it encounters a non-standard SQL command. This
 option does not disable SQL extensions. Processing completes when you
 issue the non-ANSI SQL command.

-p
 prints performance statistics.

-n
 removes numbering and the prompt symbol (>) from the echoed input lines
 in the output file when used in conjunction with -e.

-v
 prints the version number and copyright message for isql and then exits.

-X
 initiates the login connection to the server with client-side password
 encryption. -X enables both extended password encrypted connections and
 password encrypted connections without plain text password reconnection.
 isql (the client) specifies to the server that password encryption is desired.
 The server sends back an encryption key, which isql uses to encrypt your
 password, and the server uses the key to authenticate your password when it
 arrives.

 If isql crashes, the system creates a core file that contains your password. If
 you did not use the encryption option, the password appears in plain text in
 the file. If you used the encryption option, your password is not readable.

-W
 disables both extended password and password encrypted negotiations

-Y
 tells the Adaptive Server to use chained transactions.

-Q
 provides clients with failover property. See Using Sybase Failover in a High
 Availability System for more information.
-a display_charset
runs isql from a terminal whose character set differs from that of the machine on which isql is running. Use -a in conjunction with -J to specify the character set translation file (.xlt file) required for the conversion. Use -a without -J only if the client character set is the same as the default character set.

Note The ascii_7 character set is compatible with all character sets. If either the Adaptive Server character set or the client character set is set to ascii_7, any 7-bit ASCII character can pass unaltered between client and server. Other characters produce conversion errors. For more information on character set conversion, see the System Administration Guide.

-A packet_size
specifies the network packet size to use for this isql session.

-c cmdend
changes the command terminator. By default, you terminate commands and send them to by typing “go” on a line by itself. When you change the command terminator, do not use SQL reserved words or control characters.

-D database
selects the database in which the isql session begins.

-E editor
specifies an editor other than the default editor vi. To invoke the editor, enter its name as the first word of a line in isql.

-h headers
specifies the number of rows to print between column headings. The default prints headings only once for each set of query results.

-H hostname
sets the client host name.

-i inputfile
specifies the name of the operating system file to use for input to isql. The file must contain command terminators (“go” is the default).

- Specifying the parameter is equivalent to < inputfile:
If you use `-i` and do not specify your password on the command line, `isql` prompts you for it.

If you use `< inputfile` and do not specify your password on the command line, specify your password as the first line of the input file.

```
-i inputfile
```

- `-i inputfile` specifies the name and location of the interfaces file to search when connecting to Adaptive Server. If you do not specify `-i`, `isql` looks for a file named `interfaces` in the directory specified by your SYBASE environment variable.

```
-I interfaces_file
```

- `-I interfaces_file` specifies the character set to use on the client. `-J client_charset` requests that Adaptive Server convert to and from `client_charset`, the character set used on the client. A filter converts input between `client_charset` and the Adaptive Server character set.

- `-J client_charset` with no argument sets character set conversion to NULL. No conversion takes place. Use this if the client and server use the same character set.

Omitting `-J` sets the character set to a default for the platform. The default may not necessarily be the character set that the client is using. For more information about character sets and the associated flags, see “Configuring Client/Server Character Set Conversions,” in the System Administration Guide, Volume One.

```
-K keytab_file
```

- `-K keytab_file` specifies the path to the keytab file used for authentication in DCE.

```
-l login_timeout
```

- `-l login_timeout` specifies the maximum timeout value allowed when connecting to Adaptive Server. The default is 60 seconds. This value affects only the time that `isql` waits for the server to respond to a login attempt. To specify a timeout period for command processing, use the `-t timeout` parameter.

```
-m errorlevel
```

- `-m errorlevel` customizes the error message display. For errors of the severity level specified or higher, only the message number, state, and error level are displayed; no error text appears. For error levels lower than the specified level, nothing appears.

```
-o outputfile
```

- `-o outputfile` specifies the name of an operating system file to store the output from `isql`. Specifying the parameter as `-o outputfile` is similar to `> outputfile`
-P password
specifies your Adaptive Server password. If you do not specify the -P flag, isql prompts for a password. If your password is NULL, use the -P flag without any password.

-R remote_server_principal
specifies the principal name for the server as defined to the security mechanism. By default, a server’s principal name matches the server’s network name (which is specified with the -S parameter or the DSQUERY environment variable). Use the -R parameter when the server’s principal name and network name are not the same.

-s colseparator
resets the column separator character, which is blank by default. To use characters that have special meaning to the operating system (for example, “|”, “;”, “&”, “<”, “>”), enclose them in quotes or precede them with a backslash.

The column separator appears at the beginning and the end of each column of each row.

-S server_name
specifies the name of the Adaptive Server to which to connect. isql looks this name up in the interfaces file. If you specify -S with no argument, isql looks for a server named SYBASE. If you do not specify -S, isql looks for the server specified by your DSQUERY environment variable.

-t timeout
specifies the number of seconds before a SQL command times out. If you do not specify a timeout, the command runs indefinitely. This affects commands issued from within isql, not the connection time. The default timeout for logging into isql is 60 seconds.

-U username
specifies a login name. Login names are case sensitive.
-V security_options
specifies network-based user authentication. With this option, the user must log in to the network’s security system before running the utility. In this case, users must supply their network user name with the -U option; any password supplied with the -P option is ignored.

Follow -V with a security_options string of key-letter options to enable additional security services. These key letters are:

- • c – Enable data confidentiality service
- • i – Enable data integrity service
- • m – Enable mutual authentication for connection establishment
- • o – Enable data origin stamping service
- • q – Enable out-of-sequence detection
- • r – Enable data replay detection

-w columnwidth
sets the screen width for output. The default is 80 characters. When an output line reaches its maximum screen width, it breaks into multiple lines.

-z locale_name
specifies the official name of an alternate language to display isql prompts and messages. Without -z, isql uses the server’s default language. Add languages to an Adaptive Server during installation or afterward, using the langinstall utility (langinst in Windows) or the sp_addlanguage stored procedure.

-Z security_mechanism
specifies the name of a security mechanism to use on the connection.

Security mechanism names are defined in the libtcl.cfg configuration file located in the ini subdirectory below the Sybase installation directory. If no security_mechanism name is supplied, the default mechanism is used. For more information on security mechanism names, see the description of the libtcl.cfg file in the Open Client and Open Server Configuration Guide.

--conceal
Hides your input during an isql session. The --conceal option is useful when entering sensitive information, such as passwords. The syntax for the --conceal option is:
isql --conceal ['?:' | 'wildcard']

The maximum length of wildcard, a 32-byte variable, is 80 characters.

Note --conceal is silently ignored in batch mode.

Examples

Example 1 Puts you in a text file where you can edit the query. When you write and save the file, you are returned to isql. The query appears; type “go” on a line by itself to execute it:

```
isql -Ujoe -Pabracadabra
1> select *
2> from authors
3> where city = "Oakland"
4> vi
```

Example 2 The reset command clears the query buffer, and quit returns you to the operating system:

```
isql -Ualma
Password:
1> select *
2> from authors
3> where city = "Oakland"
4> reset
1> quit
```

Example 3 Specifies that you are running isql from a Macintosh against a server that is using the roman8 character set:

```
isql -a mac -J roman8
```

Example 4 Creates column separators using the “#” character in the output in the pubs2 database for store ID 7896:

```
isql -Usa -P -s#
1> use pubs2
2> go
1> select * from sales where stor_id = "7896"
#stor_id#ord_num #date#
#----------#----------------#
#7896 #124152 Aug 14 1986 12:00AM#
#7896 #234518 Feb 14 1991 12:00AM#

(2 rows affected)
```

Example 5 Changes password without displaying the password entered. This example uses “old” and “new” as prompt labels:
 Example 6 Activates a role for the current user. This example uses a custom wildcard and the prompt labels “role” and “password:”

```
$ isql -UmyAccount --conceal '*'
Password: set role * role with passwd ** password on go
```

Usage

- Use this syntax for isql_r if you are using threaded drivers.
- Use this syntax for isql if you are using threaded drivers in the IBM platform.
- Set the SYBASE environment variable to the location of the current version of Adaptive Server before use isql.
- The 5701 (“changed database”) server message is no longer displayed after login or issuing a use database command.
- Error message format differs from earlier versions of isql. If you have scripts that perform routines based on the values of these messages you may need to rewrite them.
- When you include the -X parameter, the password-enabled connection proceeds according to server capabilities:
 - If the server can handle both extended password and password encryption, extended password encryption negotiations are used.
• If the server can handle password encryption only, password encryption negotiations are used.

• If the server cannot handle password encryption or extended password encryption, the first connection attempt fails and the client attempts to reconnect using a plain text password.

• To use isql interactively, give the command isql (and any of the optional parameters) at your operating system prompt. The isql program accepts SQL commands and sends them to Adaptive Server. The results are formatted and printed on standard output. Exit isql with quit or exit.

• Terminate a command by typing a line beginning with the default command terminator go or another command terminator, if the -c parameter is used. Follow the command terminator with an integer to specify how many times to run the command. For example, to execute this command 100 times, type:

```
select x = 1
go 100
```

The results display once at the end of execution.

• If you enter an option more than once on the command line, isql uses the last value. For example, if you enter this command, "send", the second value for -c, overrides ".", the first value:

```
isql -c."." -csend
```

This enables you to override any aliases you set up.

• To call an editor on the current query buffer, enter its name as the first word on a line. Define your preferred callable editor by specifying it with the EDITOR environment variable. If EDITOR is not defined, the default is vi on UNIX and edit on Windows.

For example, if your EDITOR environment variable is set to “emacs,” then invoke it from within isql with “emacs” as the first word on the line.

• To clear the existing query buffer, type reset on a line by itself. isql discards any pending input. Press Ctrl-c anywhere on a line to cancel the current query and return to the isql prompt.

• Read in an operating system file containing a query for execution by isql:

```
isql -U alma -P password < input_file
```

The file must include a command terminator. The results appear on your terminal. Read in an operating system file containing a query and direct the results to another file:
isql -U alma -P password < input_file > output_file

- Case is significant for the isql flags.
- isql displays only six digits of float or real data after the decimal point, rounding off the remainder.
- You can include comments in a Transact-SQL statement submitted to Adaptive Server by isql. Open a comment with “/*”. Close it with “*/”, as shown in this example:

  ```sql
  select au_lname, au_fname
  /*retrieve authors’ last and first names*/
  from authors, titles, titleauthor
  where authors.au_id = titleauthor.au_id
  and titles.title_id = titleauthor.title_id
  /*this is a three-way join that links authors
  **to the books they have written.*/
  ```

 If you want to comment out a go command, it should not be at the beginning of a line. For example, use this to comment out the go command:

  ```sql
  /*
  **go
  */
  ```

 Do not use this:

  ```sql
  /*
  go
  */
  ```

- isql defines the order of the date format as month, date, and year (mm dd yyyy hh:mmAM (or PM)) regardless of the locale environment. To change this default order, use the convert function.
• In an isql session, the default prompt label is either the default wildcard :? or the value of wildcard. Customize the prompt label by providing a one-word character string, with a maximum length of 80 characters after a wildcard. If you specify a prompt label that is more than one word, the characters after the first word are ignored.

Note In an isql session, isql recognizes :?, or the value of wildcard, as wildcards only when these characters are placed at the beginning of an isql line.

Setting the network packet size

Setting the correct network packet size can greatly increase the performance of Adaptive Server.

The -A size option specifies the network packet size to use for an isql session. The default value is 2048 bytes.

This sets the packet size to 4096 bytes for this isql session:

```sql
isql -A 4096
```

To check your network packet size, enter:

```sql
select * from sysprocesses
```

The value is displayed under the network_pktsz heading in the sysprocesses table.

size must be between the values of the default network packet size and maximum network packet size configuration parameters, and must be a multiple of 512.

Use larger-than-default packet sizes to perform I/O-intensive operations, such as readtext or writetext operations.

Setting or changing Adaptive Server packet size does not affect the packet size of remote procedure calls.

Commands available within interactive isql

The commands you execute from within interactive isql are:

• :r filename

Reads an operating system file into the command buffer.

Do not include the command terminator in the file; once you have finished editing, enter the terminator interactively on a line by itself.

• :R filename
Reads an operating system file into the command buffer and then displays it.
Do not include the command terminator in the file; once you have finished editing, enter the terminator interactively on a line by itself.

- **use database_name**
 Changes the current database.

- **!! os_command**
 Executes an operating system command. Place at the start of a line.

- **> file_name**
 Redirects the output of the T-SQL command to file_name. This example inserts the server version into file_name:
  ```sql
  select @@version
  go > file_name
  ```

- **>> file_name**
 Appends the output of the T-SQL command to file_name. This example appends the server version to file_name:
  ```sql
  select @@version
  go >> file_name
  ```

- **| command**
 Pipes the output of the T-SQL command to an external command. This example finds all instances of “sa” in the listing produced by sp_who:
  ```sql
  sp_who
  go | grep sa
  ```

- **vi (UNIX)**
 edit (Windows)
 Calls the default editor.

- **reset**
 Clears the query buffer.

- **quit or exit**
 Exits isql.

See also

Commands create schema, set

Datatype exact numeric datatypes
CHAPTER 1 Utility Commands Reference

Documentation Chapter 6, “Using Interactive isql from the Command Line” for details on isql, and the Reference Manual for more information regarding default network packet size and maximum network packet size configuration parameters.

Functions convert

System ESP xp_sendmail

System procedures sp_addlanguage, sp_addlogin, sp_addremotelogin, sp_add_resource_limit, sp_bindexeclass, sp_configure, sp_defaultlanguage, sp_droplanguage, sp_helplanguage, sp_processmail, sp_remoteoption, sp_serveroption, sp_showcontrolinfo, sp_unbindexeclass, sp_volchanged
langinstall

Description
Installs a new language in an Adaptive Server.

The utility is located in:
- (UNIX) `$SYBASE/$SYBASE_ASE/bin`.
- (Windows) the utility is `langinst.exe`, located in `%SYBASE%/%SYBASE_ASE%\bin`.

Syntax
```
langinstall
[-S server]
[-U user]
[-P password]
[-R release_number]
[-I path]
language
character_set
```

Or
```
langinstall -v
```

Parameters

- **-S server**
specifies the name of the Adaptive Server to which to connect. If you do not specify -S, `langinstall` uses the server specified by your DSQUERY environment variable. If DSQUERY is not set, `langinstall` attempts to connect to a server named SYBASE.

- **-U user**
specifies a login name. Login names are case sensitive.

- **-P password**
specifies the system administrator’s ("sa" account) password. If you omit -P, `langinstall` prompts for the "sa" account password.
specifies the release number, in the format n.n.n, to use to upgrade messages in master.sysmessages. Use -R only in failure conditions, such as if langinstall (langinst in Windows) fails, in case of user error, or when you think that messages in sysmessages are out of date.

The -R parameter forces langinstall to collect messages from a release previous to the current one. langinstall compares the existing messages with the ones to be installed and replaces any that have changed.

For example, if the current version is 15.0, and the previous version was 12.5, and you think sysmessages may not be correct, include the messages from the earlier version in the syslanguages.upgrade column (12.5 in this case) by specifying -R 12.5. langinstall then installs all messages from Adaptive Server 12.5.

path
specifies the name and location of the interfaces file (sql.ini file in Windows) that langinstall searches when connecting to Adaptive Server. If you do not specify -I, langinstall uses the interfaces file in the directory specified by the SYBASE environment variable. If SYBASE is not set, langinstall looks for the default SYBASE directory.

language
is the official name of the language to be installed. You must specify a language.

character_set
is the name of Adaptive Server default character set, and indicates the directory name of the localization files for the language. The common.loc and server.loc localization files for an official language reside in the character set directory $SYBASE/locales/language/character_set in UNIX platforms, or %SYBASE%\locales\language\character_set in Windows. You must specify a character set.

-v
prints the version number and copyright message for langinstall and then exits.

Usage
The Adaptive Server installation program runs langinstall automatically for a new installation as well as for customers who are upgrading from an earlier version.

langinstall:
langinstall

- Adds the specified language-specific information to master..syslanguages using sp_addlanguage. If the language already exists, langinstall updates the appropriate row in syslanguages.
- Adds to, updates, and deletes error messages as necessary from master..sysmessages.
- Updates syslanguages.update, inserting the new release number.
- Validates the entries in the localization file sections that it uses. If anything is missing, langinstall prints an error message and does not add the language to syslanguages.
- Compares the version numbers of each localization file it uses, common.loc and server.loc. If they are not the same, it prints a warning message. syslanguages.upgrade is always set according to the version number in server.loc.

Permissions
Only a system administrator using the “sa” account can run langinstall.

Tables used
master.dbo.syslanguages, master.dbo.sysmessages

See also
System procedures sp_addlanguage, sp_addlogin, sp_configure, sp_defaultlanguage, sp_droplanguage, sp_helplanguage
Utilities defncopy, srvbuild
Utility Guide

CHAPTER 1 Utility Commands Reference

optdiag

Description
Displays optimizer statistics or loads updated statistics into system tables.

The utility is located in:

- (UNIX) `$SYBASE/$SYBASE_ASE/bin`.
- (Windows) the utility is `optdiag.exe`, located in `%SYBASE%\%SYBASE_ASE%\bin`.

Syntax

```bash
optdiag [binary] [simulate] statistics
   { -i input_file | database[.owner[.table[.column]]] } ]
   [-o output_file] ]
   [-U user_name]
   [-P password]
   [-T trace_value]
   [-I interfaces_file]
   [-S server]
   [-v]
   [-h]
   [-s]
   [-z language]
   [-J client_character_set]
   [-a display_charset]
```

Parameters

- **binary**
 extracts statistics in human-readable form and in binary form. When used with an input file (`-i input_file`), loads binary statistics into system tables.

- **simulate**
 specifies that `optdiag` display or load simulated statistics. See the *Performance and Tuning Guide*.

- **-i input_file**
 specifies the name of the operating system file to use for `optdiag` input. Specifying an input file causes `optdiag` to update optimizer statistics for the table or column by using the values in the specified file (also called “input mode”).

- **database**
 is the name of the database whose statistics you want displayed. In input mode, `optdiag` uses the database name as specified in the file, and does not accept a database name from the command line.
owner
is the name of a table owner. In:
 • Display mode – if you do not specify an owner, but do specify a table
 name, optdiag displays output for all of the owners of a table.
 • Input mode – optdiag ignores the table owner specified on the command
 line and uses the value in the input file.

table
is the name of the table to survey for statistics. If the command:
 • Does not include an owner name or a table name – optdiag displays
 statistics for all tables in the database.
 • Includes an owner name, but no table name – optdiag displays all of the
 tables that belong to the specified owner.
In input mode, optdiag ignores the table name specified on the command line
and uses the value from the input file.
column
is the name of the column to survey. If the command does not include a
column name, optdiag displays all statistics for a table.
In input mode, optdiag ignores the column name on the command line and
uses the values from the input file.
-o output_file
specifies the name of an operating system file to store the output from
optdiag. If a file with the same name already exists, optdiag overwrites that
file without warning.
-U user_name
specifies an Adaptive Server login name.
-P password
specifies your Adaptive Server password. If you do not specify the -P flag,
optdiag prompts for a password.
-T trace_value
 sets trace flags for the optdiag session. The optdiag trace flags and their meanings are:

 • 1 – do not stop with a warning if the optdiag version of Adaptive Server in use does not match the Adaptive Server version in the input file.
 • 2 – display status message “Next table is table_name” when in input mode.
 • 4 – skip consistency checking for step numbers while loading histograms in input mode.
 • 6 – display lines of input file during input mode. This flag has no effect in display mode.
 • 7 – do not stop with a warning if the optdiag input file does not include sampling percent information.

-I interfaces_file
 specifies the name and location of the interfaces file to use when connecting to Adaptive Server.

 If you do not use -I and specify an interfaces file name, optdiag looks for the interfaces file (interfaces in UNIX), in the directory specified by the SYBASE environment variable. In Windows, optdiag looks for a file named sql.ini in the ini subdirectory in the Sybase installation directory (d:\sybase). Then, if SYBASE is not set, optdiag looks for the file in the default $SYBASE directory (%SYBASE% in Windows).

-S server
 specifies the name of the Adaptive Server to which to connect. optdiag looks for this name in the interfaces file (sql.ini in Windows).

 If you use -S without specifying a server name, optdiag looks for a server named SYBASE.

 When you do not use -S, optdiag looks for the server that your DSQUERY environment variable specifies.

-v
 displays the version number of and a copyright message for optdiag and exits.

-h
 displays the optdiag syntax help.
-s
includes system tables in optdiag output. By default, only user tables are included.

-z language
is the official name of an alternate language that the server uses both for date formats and to display optdiag prompts and messages. Without the -z flag, optdiag uses the server’s default language.

Add languages to Adaptive Server either during or after installation. After Adaptive Server installation, use either the langinstall utility or the sp_addlanguage stored procedure to add a language.

-J client_charset
specifies the character set to use on the client. A filter converts input between client_charset and the Adaptive Server character set.

By using -J client_charset, you request that Adaptive Server convert data to and from client_charset, the client’s character set.

By using -J without a character set name, you specify character set conversion as NULL; no conversion takes place. Use this -J alone when the client and server are using the same character set.

By omitting -J, you set the character set to the default set for the platform. A filter converts input between the default set and the Adaptive Server character set. Keep in mind that the default may not necessarily be the character set that the client is using.

For more information about character sets and their associated flags, see the System Administration Guide.
-a *display_charset*

runs optdiag from a terminal with a character set that differs from that of the machine on which optdiag is running. Use -a:

- In conjunction with -J to specify the character set translation (.xlt) file required for the conversion.
- Without -J only if the client character set is the same as the default character set.

Note The ascii_7 character set is compatible with all character sets. If either the Adaptive Server character set or the client character set is set to ascii_7, any 7-bit ASCII character can pass unaltered between client and server. Any other characters produce conversion errors. For more information on character-set conversion, see the *System Administration Guide*.

On some Linux platforms, the LANG environment variable might be set by default to “en_US.UTF-8,” which can cause unnecessary LONGCHAR conversion between the client and server. If your server and client have different charsets, Sybase recommends that you bypass the conversion using one of these methods:

- unsetenv LANG
- setenv LANG C
- optdiag -J
- optdiag -Jiso-1 (if your server uses iso-1)

Examples

Example 1 Displays statistics for all user tables in the pubs2 database and places the output in the pubs2.opt file:

```
    optdiag statistics pubs2 -Usa -Ppasswd -o pubs2.opt
```

Example 2 Displays statistics for the titles table:

```
    optdiag statistics pubs2.titles -Usa -Ppasswd -o titles.opt
```

Example 3 Displays statistics using the roman8 character set and row labels and error messages in French:

```
    optdiag statistics pubs2.titles -Usa -Ppasswd -o titles.opt -J roman8 -z french
```

Example 4 Displays binary statistics for the price column in the titles table:

```
    optdiag binary statistics pubs2.titles.price
```
Example 5 Loads edited statistics from the price.opt file:

optdiag statistics -i price.opt -Usa -Ppasswd

Usage

- Set the SYBASE environment variable to the location of the current version of Adaptive Server before using optdiag.

- By default, optdiag does not include the system tables when you display statistics for a database. To include the system tables in the output, use the -s flag.

- You cannot specify a particular partition on the optdiag command line; optdiag displays statistics for all partitions of a specified table.

- When you use binary mode, optdiag displays the human-readable values with comment marks (#s) at the beginning of the lines, as shown in this example:

 Statistics for column: "price"
 Last update of column statistics: Jan 20 1998 7:16PM
 Statistics loaded from Optdiag.
 # Range cell density: 0x3f8b9cfefec26bf
 # Total density: 0x3f8b9cfefec26bf
 # Range selectivity: default used (0.33)
 # In between selectivity: default used (0.25)

- When you use optdiag with an input file to change statistics, it ignores all characters after the "#" in a line.

- Converting floating-point values may lead to rounding errors when you use files for input.

 When you are loading statistics on the same hardware platform, edit the statistics using the binary values to provide greater precision.

- optdiag displays:
 - The statistic sampling percent last used, which indicates that statistics are gathered with a user-specified sampling percent.
 - Statistics for each partition of a multi-partitioned table or index.
• Global- and partition-level statistics for each column in a table with multiple partitions.

• Use ddgen partition names and the optdiag utility to analyze optimizer behavior by creating empty partitioned tables with simulated metadata.

Byte ordering and binary optdiag files
Do not use the binary mode option to move statistics between Adaptive Servers on machines that use different byte ordering. On:

• An incompatible architecture server – always comment out binary statistics and load the human-readable statistics.

• A compatible architecture server – load either binary statistics or human-readable statistics.

optdiag Input mode
When you use the -i input_file syntax, optdiag reads the file as named and updates statistics in sysstatistics.

optdiag input mode changes the allow update to system tables configuration parameter by setting the parameter to 1 at the beginning of the session, and then to 0 at the end of the session.

During histogram input, the process checks these rules and displays error messages for any violated rules:

• The step numbers must increase monotonically, unless the command includes the -T4 trace flag.

• The column values for the steps must increase monotonically.

• The weight for each cell must be between 0.0 and 1.0.

• The total of weights for a column must be close to 1.0.

• The first cell represents null values, and it must be present, even in columns that do not allow null values. There must be only one cell to represent the null value.

• Two adjacent cells must not both use the < (less than) operator.

See also

Commands create index, delete statistics, set, update statistics

Documentation Performance and Tuning Guide for more information about the optdiag command and an explanation of the optdiag output, and Performance and Tuning Guide for more information on changing statistics using optdiag.
System procedures sp_addlogin, sp_configure, sp_defaultlanguage,
sp_droplanguage, sp_flushstats, sp_helplanguage

Utilities ddlgen
preupgrade

Description
Performs tests on an installation or database to determine its readiness for upgrade, and reports found problems.

The utility is located in:

- (UNIX) $SYBASE/$SYBASE_ASE/upgrade.
- (Windows) the utility is preupgrd.exe, located in %SYBASE%\%SYBASE_ASE%\upgrade.

Syntax
preupgrade [-v] [-h] [-N]
 [-p [skip_sybprocs]
 -D database_name]
 [-I interfaces_file]
 [-P password]
 [-S server_name]
 [-U user_name]
 [-X option[,option][...]]

Parameters
-D database_name
limits checking to the named database and a subset of possible checks. Use this parameter to check newly loaded databases before bringing them online.

-h
prints help text and then exits.

-I interfaces_file
specifies an interfaces file for the server. The default is $SYBASE/interfaces.

-N
specifies preupgrade is to run in noninteractive mode. Thus, if preupgrade determines that any database is too small, the utility exits immediately.

-p [skip_sybprocs]
specifies whether you want to skip the parsing validity test on stored procedures.

During the upgrade process, stored procedures are automatically re-created internally from the text source, requiring that they be parsed correctly. The valid options for preupgrade -p are:

- -p – skips the parsing in all databases
- -p skip_procs – skips parsing in sybsystemprocs while parsing the other databases
- Not using -p – parses text everywhere. This is the default.
-P password
specifies the password for connecting to the server. Sybase recommends that you do not use this option on the command line as the password is then visible to other users when they view displays of system information. Rather, wait until Adaptive Server prompts for a password, and enter the information then.

-S server_name
specifies the name of the server to which you want to connect. This server must be listed in the interfaces file specified by the -I parameter. The default is $DSQUERY.

-U user_name
specifies the user name to use when connecting to the server. The default is “sa.” user_name must have “sa_role” privileges on the server being checked.

Note If you use the -D option, which limits checking to a named database, and that database is offline, enter “sa” or accept the default as the user name.

-v
prints version information and exits.

-X option[, option...]
specifies a list of checks to be made. The default is all checks, except when using the -D option, which uses only a subset of available checks. If you specify the -X option more than once on the command line, preupgrade performs only those checks in the last entered -X parameter.

When using the -X parameter with an options list, either:
• List options without a space between the comma and the next option, or
• Surround the options list with quotes.

Valid check options are:

<table>
<thead>
<tr>
<th>Check options</th>
<th>Options used with the -D parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td></td>
<td>Performs all permitted checks. When used with the -D option, only checks subset of options. Otherwise, all options are checked.</td>
</tr>
<tr>
<td>cache</td>
<td></td>
<td>Checks the definition of default cache size. If the definition is DEFAULT, enter its current value in the configuration file as its actual value. This ensures that its size does not change because the new server’s default value is different from the current server’s default value.</td>
</tr>
<tr>
<td>Check options</td>
<td>Options used with the -D parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td>Checks the server’s configuration parameters to see if they are consistent with new requirements, and reports discrepancies. Discrepancies can cause errors or warnings for certain parameters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Errors – occur when the current value of a parameter is outside the new server’s range, or when its value is too low for upgrade.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Warnings – occur when the current value of a parameter is between the maximum and minimum values, but less than the default value</td>
</tr>
<tr>
<td>data_mods</td>
<td></td>
<td>Performs updates to system tables, including clearing certain system table columns that are non-zero. Applies primarily to older Adaptive Servers, and will make no changes to newer systems.</td>
</tr>
<tr>
<td>datatype</td>
<td>X</td>
<td>Checks the systypes table to make sure that if existing datatypes use a system-defined name, type, or user type, they match what the new server expects. Reports discrepancies and suggests remedies.</td>
</tr>
<tr>
<td>db_size</td>
<td></td>
<td>Checks that certain system databases meet the minimum size requirements for installation.</td>
</tr>
<tr>
<td>free_space</td>
<td>X</td>
<td>Checks for free space in the named database or in all databases. Makes sure that there is sufficient free data and log space to perform the necessary upgrade steps.</td>
</tr>
<tr>
<td>object_id</td>
<td>X</td>
<td>Checks that object IDs of user-defined objects are not reserved for system objects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adaptive Server 15.0 and later reserves objects IDs 1 – 255.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adaptive Server 12.5.x and earlier reserves object IDs 1 – 99. Does not issue an error. If you receive a warning that a user object ID is reserved, contact Sybase Technical support for directions for changing the user object ID after upgrade.</td>
</tr>
<tr>
<td>required_dbs</td>
<td></td>
<td>Checks that required system databases exist. Some versions of Adaptive Server may require specialized databases such as sybsystemdb.</td>
</tr>
<tr>
<td>sproc_text</td>
<td>X</td>
<td>Checks for the existence of stored procedure text in the named database or in all databases. After upgrade, Adaptive Server must recompile stored procedures from their source text. This check makes sure that all of the source text is both available and valid.</td>
</tr>
<tr>
<td>srvclass</td>
<td></td>
<td>Checks for servers classed as “generic” in master.dbo.sysservers. This class is deprecated by Adaptive Server 12.0 and later.</td>
</tr>
<tr>
<td>statistics</td>
<td></td>
<td>Checks for duplicate rows in sysstatistics. Duplicate rows may occur when upgrading from Adaptive Server 12.0 to Adaptive Server 15.0 and later due to schema changes in the sysstatistics table.</td>
</tr>
</tbody>
</table>

Sybase may occasionally change valid options for the -X parameter; use the -h parameter to view the current set of valid options.
Example 1 Runs `preupgrade` and specifies checks for the default cache size, minimum database size, and duplicate rows in `sysstatistics` for the installation.

```
preupgrade -X cache,db_size,statistics
```

Example 2 Runs `preupgrade` to check a newly loaded, offline database. `preupgrade` checks datatypes, free space, object IDs, and stored procedure text.

```
preupgrade -Dmy_db -Usa
```

Example 3 Shows how the `sqlupgrade` utility uses `preupgrade`. When used in this way, `preupgrade` checks all databases, runs noninteractively, and exits with a failing status if any database is too small.

```
preadjustment -N
```

Usage

- When `preupgrade` finds no errors, it exits with status 0 (zero).
- `preupgrade` is primarily used before upgrading an installation to ensure the procedure will run smoothly. You can also run `preupgrade` after loading a database created by a previous version of Adaptive Server to check for problems that might prevent that database from upgrading while being brought online.
- `sqlupgrade` calls `preupgrade` as part of its normal procedure.

Using the `preupgrade` `-D` parameter

Use the `-D` parameter primarily to check newly loaded databases before bringing them online. To do so, `preupgrade` must force access to offline databases, which requires that `preupgrade` log in as user “sa”. The “sa_role” privilege alone is insufficient. The default is `-Usa`.

When run as part of a normal upgrade, the `-D` parameter is optional, and you can choose a system administrator login other than “sa.”

Unless the `-D` parameter is included, `preupgrade` checks all databases in the system, and runs only on previous server versions.

`sqlupgrade` always runs the full set of `preupgrade` checks. Correct problems and run `preupgrade` to ensure that the problems are indeed corrected before letting `sqlupgrade` repeat the full `preupgrade` procedure.

If the `-D` parameter is included, `preupgrade`:

- Checks only the named database.
- Can run be run against server of the same version number as the `preupgrade` utility.
- Limits checking to a subset of possible checks. See `-X` parameter for a list of checks that are valid when used in conjunction with this parameter.
When running `preupgrade` after an upgrade to check a newly loaded but offline database, use the `-D` parameter and either specify the “sa” login or omit the `-U` parameter.

When you specify the `-D` option, or specify a partial list of options with the `-X` parameter, `preupgrade` performs the specified checks and, if there are no errors, displays a list of checks performed in the exit message.

You may want to use the `-D` and the `-X` parameters as part of the normal upgrade if `preupgrade` reports warnings or errors for a particular database or area. Using these parameters allows you to focus on problem areas without repeating unnecessary checks.

Permissions

The user login specified by the `-U` parameter must have system administrator privileges to run `preupgrade` on the server specified by the `-S` parameter.

When using the `-D` parameter to check an offline database, `preupgrade` must log in as user “sa.” The “sa_role” privilege is insufficient.

See also

Utilities `sqlupgrade`, `sqlupgraderes`
pwdcrypt

Description
Creates and prints an encrypted LDAP password in the libtcl.cfg file.
The utility is located in:

• (UNIX) $SYBASE/$SYBASE_OCS/bin.
• (Windows) %SYBASE%\%SYBASE_OCS%\bin, as pwdcrypt.exe.

Syntax
pwdcrypt

Parameters
None

Examples
Typing pwdcrypt at the prompt returns a request to enter your password twice, after which pwdcrypt returns the LDAP password:

pwdcrypt
Enter password please: password
Enter password again: password
The encrypted password:
0x01312a775ab9d5c71f99f05f7712d2ced288d0ae1ce79268d0e8669313d1bc4c706

Replace the last part of the LDAP URL in libtcl.cfg with this encrypted password:

ldap=libsybdldap.so
ldap://dolly:389/dc=sybase,dc=com??bindname=cn=Manager,dc=sybase,dc=com?
0x01312a775ab9d5c71f99f05f7712d2ced288d0ae1ce79268d0e8669313d1bc4c706

An unencrypted password looks like:

ldap=libsybdldap.so
ldap://dolly:389/dc=sybase,dc=com??bindname=cn=Manager,dc=sybase,dc=com?
secret

Usage
Set the SYBASE environment variable to the location of the current version of Adaptive Server before using pwdcrypt.

Permissions
Use file system permissions to prevent unauthorized access to this encrypted password in your libtcl.cfg file.
qrmutil

Description

qrmutil is a command line utility that allows you to back up, restore, and reconfigure the quorum device.

The utility is located in $SYBASE/$SYBASE_ASE/bin.

Syntax

--additional-run-parameters=parameter_list
--ase-config-extract=file_name
--ase-config-info
--ase-config-store=file_name
--ase-config-version=version_number
--buildquorum=[force]--cluster-take-over
--config-file=file_name
--diag={all | boot | toc | nodes | locks | config | cms}
--display={boot | nodes | heartbeat | master | cluster | instance | config | state}
--drop-cluster=[force]
--drop-instance=instance_name
--errorlog=file_name
--extract-config=file_name
-h, --help
-F, --cluster-input=file_name
--fence-capable=device_path
--installation=installation_mode
-s, --instance=instance_name
--instance-node=node_name
--interfaces-dir=path_to_interfaces_file
--max-instances=number_of_instances
--master-dev=master_device
--membership-mode=membership_mode
--primary-address=interconnect_address
--primary-port=port_number
--primary-protocol=protocol
-Q, --quorum-dev=quorum_device
--register-node=node_name
--secondary-address=interconnect_address
--secondary-port=port_number
--secondary-protocol=protocol
--traceflags=traceflag_list
-- unregister-node=node_name
--verify-node=node_name
-v, --version]
Parameters

--additional-run-parameters=parameter_list
parameters that Unified Agent uses to start the data server. Unlike other settings, dataserver does not read the additional run parameters. They are read by the unified agent and passed to the dataserver command line. If you include the --instance parameter, the additional run parameters apply to the specified instance. Otherwise, the additional run parameters apply to all instances in the cluster.

--ase-config-extract=file_name
extracts the Adaptive Server configuration file stored on the quorum device to the named file.

--ase-config-info
displays information about the Adaptive Server configuration file stored on the quorum device.

--ase-config-store=file_name
stores the named file in the quorum device as the Adaptive Server configuration file.

--ase-config-version=[version_number]
displays or sets the version of the master Adaptive Server configuration file stored on the quorum device.

--buildquorum[=force]
builds a new quorum device. Use =force to overwrite an exiting file or an existing quorum device on a raw partition. You must include the --cluster-input parameter with --buildquorum.

--config-file=config_file_name
if used with -instance, sets this path to the Adaptive Server configuration file for the specified instance. If you do not include -instance, sets the path to the cluster-wide configuration file.

--diag={all | boot | toc | nodes | locks | config | cms}
for internal use only.
--display={boot | nodes | heartbeat | master | cluster | instance | config | state}
displays the current state of cluster or instance:

- **boot** – displays start-up information for the cluster, including the
 version of the quorum device, any trace flags issued at start-up, the boot
 ID of the cluster, and any messages displayed at start-up.

- **nodes** – displays the registered management nodes.

- **heartbeat** – displays heartbeat information for all nodes in the cluster.

- **master** – displays master device information.

- **cluster** – displays the cluster configuration.

- **instance** – displays the instance configuration. You must include
 --instance=instance_name with this parameter.

- **config** – displays configuration for the cluster and for all instances in the
 cluster.

- **state** – displays the current state for the cluster and for all instances in
 the cluster.

--drop-cluster=[force]
drops a cluster and removes the quorum device. Use =force to force the drop
if the quorum indicates the cluster is running.

Warning! --drop-cluster removes the cluster.

--drop-instance=instance_name
Sybase internal use only.

Warning! Use the sybcluster utility to drop an instance from the cluster.

--errorlog=log_file_name
full path to the error log for the specified instance. You must include the
-instance-name parameter. Takes effect at next restart of the instance.

--extract-config=file_name
extracts the configuration area of the quorum device to the specified file.

-h | --help
displays the full syntax of qrmutil.

-F | cluster-input=file_name
loads the cluster configuration from the specified cluster input file.
--fence-capable=\texttt{device_path}
 tests if specified device can be used for I/O fencing. Returns either “Device
 is fence capable” or “Device is not fence capable”.

--installation=\texttt{installation_mode}
 changes the installation mode for the cluster. Values are:
 \begin{itemize}
 \item shared (default)
 \item private
 \end{itemize}

-instance=\texttt{instance_name}
 applies \texttt{qrmutil} parameters to a specified instance.

--interfaces-dir=\texttt{interfaces_path}
 the path to a directory that contains a file named interfaces. If this parameter
 is used with --instance, it sets the path to the interfaces file for the specified
 instance. If --instance is not included, sets the path to the cluster-wide
 interfaces file.

--max-instances=\texttt{number_of_instances}
 sets the maximum number of instances for the cluster configuration.

--master-dev=\texttt{master_device_name}
 changes the master device the cluster uses.

--membership-mode=\texttt{membership_mode}
 sets the membership mode. Values are:
 \begin{itemize}
 \item native (default)
 \item vcs
 \end{itemize}

--primary-address=\texttt{interconnect_address}
 changes the primary interconnect address for a given instance.

--primary-port=\texttt{port_number}
 changes the starting port number for the primary interconnect for a given
 instance.

--primary-protocol=\texttt{protocol}
 changes the protocol used for the primary cluster interconnect.

-Q | --quorum-dev=\texttt{quorum_path}
 specifies the full path to the quorum device.

--register-node=\texttt{node_name}
 registers a node for quorum management.
--secondary-address=inteconnect_address
changes the secondary interconnect address for a given instance.

--secondary-port=port_number
changes the starting port number for the secondary interconnect for a given instance.

--secondary-protocol=protocol
changes the protocol used for the secondary cluster interconnect.

--traceflags=trace_flag, trace_flag
changes the cluster-wide or the instance-specific trace flags for start-up. If you do not include a list of trace flags, qrmutil clears the trace flags for the cluster instance.

--unregister-node=node_name
unregisters a node from quorum management.

--verify-node=node_name
indicates that the specified node is registered on the quorum device.

-v | --version
displays the version information for the qrmutil utility.

Examples

Example 1 Changes the path to the error log to /sybase/opt/cluster/ASE-15_0/ase1.log:

qrmutil --quorum_dev=/dev/raw/raw101 --instance=ase1
 --errorlog=/sybase/cluster/ASE-15_0/ASE-15_0/ase1.log

Example 2 Registers the node “blade5” for mycluster:

qrmutil --quorum_dev=/dev/raw/raw101 --register-node=blade5

Example 3 Creates a new quorum device for the cluster “mycluster”:

qrmutil --quorum-dev=/dev/raw/raw101 --cluster-
input=/sybase/cluster/ase1.inp -buildquorum

Example 4 Vacks up the quorum device to /sybase/cluster_bak/quorum.bak:

qrmutil --quorum-dev=/dev/raw/raw101
 --extract-config=/sybase/cluster_bak/quorum.bak

Example 5 Restores the quorum device from the backup created in
 /sybase/cluster_bak/quorum.bak:

qrmutil --quorum-dev=/dev/raw/raw101 --cluster-
input=/sybase/cluster_bak/quorum.bak --buildquorum=force

Example 6 Displays the cluster configuration stored on the quorum device:
qrmutil

qrmutil --quorum-dev=/dev/raw/raw101 --display=config

Example 7 Rests whether the named device can be fenced:
qrmutil --quorum-dev=/dev/raw/raw101 --fence-capable=/dev/raw/raw106

Usage
• qrmutil is primarily a diagnostic utility. Sybase recommends that you use sybcluster to make configuration changes to the cluster.
• You may pass as many as 20 commands to qrmutil. However, you can specify the --instance= parameter only once.
• If you specify --buildquorum, the quorum is built and qrmutil exits without running any commands other than --cluster-input.
• qrmutil exits after it executes the --drop-cluster parameter.
• This is an example of using multiple commands:

 qrmutil --quorum-dev=/dev/raw/raw101 --display=cluster
 --register-node=blade1 --unregister-node=blade2 --verify-node=blade3

Permissions
To run qrmutil, you must be the same sybase user that started the instance, with execute priveledges on the qrmutil binary, have direct access to the quorum device, and at least read permissions on the quorum file.
qptune

Description
QPTune is an Adaptive Server utility written in Java/XML. It enables users to fix missing statistics and identify the best query plan, optimization goals, or other configuration settings, and apply them at the query or server level. This results in optimal performance of subsequent query executions.

Syntax
```
qptune
[-U username]
[-P password]
[-S hostname:port/database]
[-A action]
[-M mode]
[-T appTime]
[-i inputFile]
[-o outputFile]
[-f fileList(,)]
[-c configFile]
[-l limit]
[-e evalField]
[-d <diff%(,diff_abs)>]
[-m missingCount]
[-n login]
[-J charset>]
[-N (noexec)]
[-g (applyOptgoal)]
[-v (verbose)]
[-s (sort)]
[-h (help)]
```

Parameters
- **-U username**
 specifies the database user name.

- **-P password**
 specifies the database password.

- **-S server**
 specifies the database server. The database server is denoted by host:port/database.

Note Specify the -S option while using any QPTune action.
-A action
 specifies the action to be taken. Valid actions are:
 • start
 • collect
 • collect_full
 • compare
 • fix
 • start_stats
 • collect_stats
 • fix_stats
 • undo_fix_stats

-J charset
 specifies the character set used to connect to Adaptive Server. If this option
 is not specified, the Adaptive Server uses the server’s default character set.

 Note If the installed JRE does not support the server's default charset
 encoding, you see an error message during the login process. Use the -J option
 to specify a more generic character set, such as -J utf8.

-M mode
 specifies the optimization goal or custom mode for an application. One of:
 allrows_oltp, allrows_dss, allrows_mix. You may also define custom modes;
 basic is a system reserved custom mode.

-T appTime
 specifies the application running time, in minutes.

-o outputFile
 specifies the output file.

-i inputFile
 specifies the input file for the fix, fix_stats, and undo_fix_stats actions. You
 can also use -i to apply special rules to the specified queries for start for
 custom modes.

-f fileList
 compares a list of files to get the best plans; use commas to separate
 filenames.
-c configFile
 specifies the configuration file.

-l limit
 specifies a limit on the number of queries that should be analyzed and applied with special rules.

-e evalField
 is the evaluation field used for performance comparison.

-d difference
 specifies the percentage and absolute value difference for performance improvement to be considered outstanding.

-N used along with fix_stats and undo_fix_stats, -N generates a SQL script with update statistics or delete statistics statements. The update or delete statements are not executed through QPTune. The statements are written into a SQL script that is specified by the -o option.

-n login
 specifies the user's login whose query executions are collected and analyzed.

-m missingCount
 specifies the threshold value for missing statistics. The default value is 5.

-v specifies verbose mode.

-g when used along with the fix action, applies the default goal. The default goal is the best optgoal setting that most queries used as the best plan using QPTune's fix action. This option only generates plans for queries that do not currently use the server's default optimization goal.

Examples

Example 1 Fixes missing statistics, start the utility with the start_stats action:

QPTune -A start_stats -S my_host:4816/my_database -v
Executing : QPTune -U sa -P [unshown]
-S jdbc:sybase:Tds:my_host:4816/my_database
-A start_stats -M allrows_dss -T 0 -i null
-o metrics.xml -f null -c config.xml -l 5
-e elap_avg -d 5,5 -m 5 -n null -v
You are now connected to database: my_database
[INFO] Config: sp_configure 'capture missing statistics', 1
[INFO] Config: sp_configure 'system table', 1
[INFO] Config: delete sysstatistics where formatid =110
Example 2 Uses collect_stats to retrieve missing statistics information from
the sysstatistics table for statistics that exceed a specified threshold for count of
missing statistics:

QPTune -A collect_stats -m 1 -o missingstats.xml -v
 -S my_host:4816/my_database
Executing : QPTune -U sa -P [unshown] -S
jdbc:sybase:Tds:my_host:4816/my_database -A collect_stats -M allrows_dss -
T 0 -i null -o missingstats.xml -f null -c config.xml -l 5 -e elap_avg -d
5,5 -m 1 -n null -v
You are now connected to database: my_database
Now collecting missing statistics information from sysstatistics on "Fri Sep
26 10:08:06 PDT 2008".
<?xml version="1.0" encoding="UTF-8"?>
<server url="jdbc:sybase:Tds:my_host:4816/my_database"
file="missingstats.xml"
type="missing stats" datetime="Fri Sep 26 10:08:06 PDT 2008">
 <missingStat id="1">
 <id>1068527809</id>
 <stats>Y(y4,y2)</stats>
 <count>2</count>
 </missingStat>
 <missingStat id="2">
 <id>1068527809</id>
 <stats>Y(y3)</stats>
 <count>1</count>
 </missingStat>
 <missingStat id="3">
 <id>1068527809</id>
 <stats>Y(y2,y1)</stats>
 <count>1</count>
 </missingStat>
 <missingStat id="4">
 <id>1068527809</id>
 <stats>Y(y1)</stats>
 <count>1</count>
 </missingStat>
</server>
The missing statistics information is written into XML file:
missingstats.xml
[INFO] End config: sp_configure 'enable metrics capture', 0
[INFO] End config: sp_configure 'abstract plan dump', 0
[INFO] End config: sp_configure 'system table', 0
[INFO] End config: sp_configure 'capture missing statistics', 0
Program has restored the data source for metrics collection.
----- QPTune finished executing. ------
Example 3 After collecting missing statistics information into an XML file called missingstats.xml, updates the statistics using the fix_stats action:

QPTune -A fix_stats -m 1 -i missingstats.xml
-v -S my_host:4816/my_database

You are now connected to database: my_database
Fix statistics on "Fri Sep 26 10:14:59 PDT 2008"

Details of statements(s) fixed:

Fixed statistics: [Update] Y(y4,y2)
[INFO] Fix Statement = update statistics Y(y4,y2)
Fixed statistics: [Update] Y(y3)
[INFO] Fix Statement = update statistics Y(y3)
Fixed statistics: [Update] Y(y2,y1)
[INFO] Fix Statement = update statistics Y(y2,y1)
Fixed statistics: [Update] Y(y1)
[INFO] Fix Statement = update statistics Y(y1)
----- QPTune finished executing. -----}

Generates a SQL script for updating statistics, without executing the actual updates, by using the -N option to indicate “noexec”, and the -o option to indicate the output script file:

QPTune -U sa -P -S my_host:5000/my_database
-A fix_stats -m 5 -i missingstats.xml
-N -o missingstats.sql

Example 4 Starts QPTune to apply standard optimization goal settings to queries:

QPTune -S host:port/database -A start
[-M {allrows_oltp, allrows_dss, allrows_mix}]

Start QPTune to apply custom rules to specified queries:

QPTune -S host:port/database -A start -M custom_1
-1 input.xml -l 3 [-v]

Example 5 Runs your application and collect metrics into an XML file named a2.xml:

QPTune -S host:port/database -A collect -T 0
-o a2.xml -v
Program has configured the data source for metrics collection. Now collecting information from sysquerymetrics on "Tue Feb 19 22:16:04 PST 2008".

```xml
<?xml version="1.0" encoding="UTF-8"?>
<server url="jdbc:sybase:Tds:SHANGHI:5000" type="ASE" mode="custom_1"
datetime="Tue Feb 19 22:16:04 PST 2008">
<query id="1">
<qtext>select count(T.title_id) from authors A, titleauthor T
where A.au_id = T.au_id </qtext>
<elap_avg>300</elap_avg>
<bestmode> custom_1</bestmode>
</query>
</server>
```

Example 6

Once metrics are collected, compares different XML files to get the best query optimization goal or criteria for each of the queries:

```bash
QPTune -A compare -f a1.xml,a2.xml -d 51,10
-o best.xml -S my_host:5000/my_database
```

This result shows a comparison between two XML metrics files: `a1.xml` has six queries, and `a2.xml` has seven queries. Comparisons can only be made between the queries that are common to both files. There are three queries that ran faster in `a2.xml`:

Compare all the files: [a1.xml, a2.xml]

File #1: [name= a1.xml : mode=allrows_mix]

File #2: [name= a2.xml : mode=custom_1]

Query count in File #1: [mode=allrows_mix] 6

Query count in File #2: [mode=custom_1] 7

Query count improved in File #2: [mode=allrows_mix] 3

Total performance improved [from 422 to 129]: 69 %

Following queries run better in File #2:

[mode=allrows_mix]

Group 1: improved by no more than 25% [0 queries]

Group 2: improved by 25% to 50% [1 queries]

Query: select count(T.title_id) from authors A, titleauthors T where A.au_id = T.au_id

Average elapsed time (ms): File #1=100 File #2=50 Improvement=50.0% Outstanding=No

Group 3: improved by 50% to 75% [0 queries]

Group 4: improved by 75% to 100% [2 queries]

Query: select count(*) from titles T, titleauthors TA where T.title_id = TA.title_id

Average elapsed time (ms): File #1=34 File #2=7 Improvement=79.0% Outstanding=Yes

Query: select au_lname, au_fname from authors where state in ("CA", "AZ")
Average elapsed time (ms): File #1=9 File #2=0 Improvement=100.0% Outstanding=No

Usage

If specific values are not indicated for the parameters, these defaults are used:

- `-A`: collect
- `-M`: allrows_dss
- `-T`: 0
- `-o`: metrics.xml
- `-c`: config.xml
- `-e`: elap_avg
- `-d`: 5,5. If percentage is specified but not the absolute value, then absolute value defaults to 0.
- `-l` `limit`
- `-m` 5

Permissions

QP Tune’s compare action may be run by any user. All other actions of QPTune may only be run by users with sa_role and sso_role.

See also

For more information about the QPTune utility or the QPTune GUI, see the Migration Technology Guide.
showserver

Description
(UNIX only) Shows the Adaptive Servers and Backup Servers that are currently running on the local machine, available only in UNIX platforms. The utility is located in `SYBASE/SYBASE_ASE/install`.

Syntax
`showserver`

Parameters
None

Examples
Shows the Adaptive Servers and Backup Servers that are currently running on the local machine:

```
showserver
USER   PID   %CPU %MEM  SZ  RSS  TT  STAT START  TIME COMMAND
user114276  0.0  1.7  712 1000  ?  S   Apr  5514:05 dataserver
   -d greensrv.dat -sgreensrv -einstall/greensrv+_errorlog
sybase    1071  0.0  1.4  408  820  ?  S   Mar 28895:38
   /usr/local/sybase/bin/dataserver -d/dev/rsd1f -e/install/errorlog
user128493  0.0  0.0 3692    0  ?  IW  Apr  1  0:10 backupserver -SYB_BACKUP
   -e/install/backup.log -Tinterfaces -Mbin/sybmultbuf -Lus_english -Jiso_1
```

Usage
`showserver` displays process information about Adaptive Server or Backup Server. If no servers are running, only the header appears.

See also

- Commands: dataserver, startserver
- Function: host_name
- Utilities: langinstall
sqldbgr

Description
sqldbgr is a command line utility that debugs stored procedures and triggers. The utility is located in:

- (UNIX) $SYBASE/$SYBASE_ASE/bin.
- (Windows) %SYBASE%\%SYBASE_ASE%\bin, as sqldbgr.exe.

As with many source-level debuggers, you can:

- Attach sqldbgr to a task
- Set, enable, and disable breakpoints
- Step through a task one line at a time
- Step into and out of procedures
- Detach sqldbgr from stored procedures or triggers once the debugging is complete.

Note You do not have the ability to view sqldbgr version strings.

Syntax
sqldbgr

- **-U username**
 specifies the user name. Insert a space between -U and username.

- **-P password**
 specifies the user password. Insert a space between -P and password.

- **-S host:port**
 specifies the machine name and the port number. Insert a space between -S and host:port.

Parameters

Examples
Example 1 Shows sqldbgr debugging stored procedures and triggers on host MERCURY:

```bash
$SYBASE/$SYBASE_ASE/bin/sqldbgr -U sa -P -S MERCURY:16896
(sqldb) stop in sp_who
Breakpoint moved to line 20
(sqldb) run sp_who
(sp_who::20)if @@trancount = 0
(sqldb) next
(sp_who::22) set chained off
```
Example 2 In this example, the system administrator first logs in to Adaptive Server using isql, then starts sqldbgr from the command line to debug a stored procedure that is running in another task:

```
$SYBASE/$SYBASE_OCS/bin/isql -U sa -P
1> select @@spid
2> go
------
12
1>

$SYBASE/$SYBASE_ASE/bin/sqldbgr -U sa -P -S MERCURY:16896
(sqldbgr) attach 13
The spid is invalid
(sqldbgr) attach 12
(sqldbgr) show breakpoints
(sqldbgr) stop in sp_who
Breakpoint moved to line 20
(sqldbgr) /* at this point run the sp_who procedure from spid 12 */
(sqldbgr) where
(sp_who::20::@loginname = <NULL>)
(ADHOC::1::null)
(sqldbgr) next
(sp_who::22) set chained off
(sqldbgr) next
(sp_who::25) set transaction isolation level 1
(sqldbgr) cont
(sqldbgr) /* at this point the sp_who result will show up in the isql screen */
(sqldbgr) detach 12
```
Usage

• The sql command is executed in the context of debugged task, while the mysql command is executed in the context of debugger task. Setting session-specific information, such as for set quoted_identifier on through sql does not work.

• By default, the Sybase jConnect JDBC driver uses set quoted_identifier on. Since the sqldbgr utility is built using jConnect arguments that need quotes, use single quotes instead of double quotes when entering options. For example, use sp_configure 'allow update' instead of sp_configure "allow update".

• Before running sqldbgr, set either the SYBASE_JRE or JAVA_HOME environments to the location containing the Java run environment.

• When you invoke sqldbgr at the command prompt, the utility starts and the prompt changes to a sqldbgr prompt:

 (sqldbgr)

Once you see the (sqldbgr) prompt, enter these sqldbgr commands to perform your tasks:

sqldbgr commands and their descriptions

• attach spid – attaches a task to sqldbgr when you are already logged in to Adaptive Server.

 Note Do not use attach spid to attach to a procedure that is not running.

sqldbgr cannot debug multiple tasks in the same session. If you try to attach the utility to multiple tasks, the first spid continues to be marked as attached. Since you cannot attach to a spid that is already attached, use the detach command, and then attach to another spid.

• run procname – debugs stored procedures and triggers without attaching sqldbgr to an existing task.

 If you attempt to use run proname while you are already debugging an existing task with attach spid, run proname fails and you see:

 Cannot run a procedure while debugging another task

• stop in proname [at line #] – sets a breakpoint to stop the stored procedure or trigger being debugged at the beginning of the specified procedure name.

 stop in proname at line # sets a breakpoint to stop the stored procedure or trigger being debugged at a designated line within the specified procedure.
If you enter an invalid line number, sqldbgr moves the breakpoint to the next valid line number, and displays:

Invalid line number

You can also use this command to set multiple breakpoints.

• show breakpoints – displays the breakpoint handle in the form of a unique number, as well as the breakpoint statements given by the user during the sqldbgr session.

If you specify a breakpoint line number that does not contain a valid SQL statement, Adaptive Server moves the breakpoint to the next valid line number. However, Adaptive Server does not change the command you entered. This is why show breakpoints can return a breakpoint handle and a breakpoint statement given during the sqldbgr session that can be different.

An asterisk (*) in the breakpoint line indicates that the breakpoint is set, but currently disabled.

• use dbname – tells sqldbgr what database to use in order to debug that database's stored procedures or triggers.

• show variables [at level #] – displays all the variables and their values in the current SQL stored procedure or trigger.

show variables at level # displays the variables and their values in the current SQL stored procedure or trigger at the specified level.

show @varname [at level #]

show @varname displays the indicated variable and its value in the current SQL stored procedure or trigger.

show @varname at level # displays the indicated variable and its value in the current SQL stored procedure or trigger at the specified level.

Note sqldbgr does not support Java variables.

• show where – displays the call stack of the stored procedures and triggers that exist in the task being debugged.

• step or next – instructs sqldbgr to move to the next statement in the current stored procedure or trigger.
• step into – instructs sqldbgr to move into a procedure if the current statement is an execute statement. If the current statement is an update, delete, or insert statement, and if there are triggers in it, step into instructs sqldbgr to move into the update, delete, or insert triggers.

• step out – instructs sqldbgr to move out of the current stored procedure or trigger, and to stop at the next line in the calling procedure.

• set @varname = VALUE – sets the value of the indicated variable to the variable value declared in the command in the current stored procedure or trigger. The values for the variables set using set @varname = VALUE are valid only for the current session sqldbgr.

• cont[inue] – instructs sqldbgr to continue debugging, and to stop at the next breakpoint (if any).

• delete # – deletes the indicated breakpoint set in the current instance of sqldbgr.

• enable # – enables the indicated breakpoints, while disable # does the opposite.

• sql any_sql_statement – executes ad hoc SQL statements. Use this command to select and analyze data from temp tables created by the task being debugged.

sql any_sql_statement returns a result set and any errors that occurred.

• detach spid – detaches sqldbgr from the indicated spid, and releases the task being debugged.

It deletes the breakpoints that were set for the task being debugged during the current sqldbgr session.

• help [all] – display sqldbgr commands.

Error messages in sqldbgr

The sqldbgr error messages and their meanings are:

• Cannot allocate resource in ASE – indicates that Adaptive Server does not have sufficient memory resources to execute sqldbgr. Increase procedure cache size and restart sqldbgr.

• Cannot create Debugger handle in ASE – indicates that Adaptive Server does not have sufficient memory resources to create a debugger handle. Increase procedure cache size and restart sqldbgr.

• The spid is invalid – displays when you attempt to attach sqldbgr to an invalid spid. Double check the spid and try again.
- You cannot debug a task that is not owned by you – displays when you try to debug a task that you do not own. You must log in to the server as the owner of the task to be debugged.

- Spid is already being debugged – displays when you execute `attach spid` and attempt to attach to a `spid` that is already being debugged.

- Spid is not debugged currently – displays when you execute `detach spid` and attempt to detach from a `spid` that is not attached to sqldbgr.

- Invalid command – displays when you enter an invalid command.

- Invalid procedure name – displays when you enter an invalid procedure name in `stop procname`.

- Invalid line number – displays when you enter an invalid line number in `stop procname at line #`.

- Variable not found – displays when you enter an invalid variable in `show @varname`, `show @varname` at level #, or `set @varname = VALUE`.

- Illegal conversion attempted – displays when you execute `set @varname = VALUE` and attempt to convert the variable to an invalid value.

- Conversion from text to datatype failed – displays when `set @varname = VALUE` is unsuccessful.

- Cannot run a procedure while debugging another task – displays if you use `run procname` while already debugging an existing task with `attach spid`.
sqlloc

Description

(UNIX only) Installs and modifies languages, character sets, and sort order
defaults for Adaptive Server using a GUI.

The utility is located in $SYBASE/SSYBASE_ASE/bin.

Syntax

sqlloc

[-S server]
[-U user]
[-P password]
[-s sybase dir]
[-l interfaces file]
[-r resource file]

Or

sqlloc -v

Parameters

-S server
specifies the name of the Adaptive Server to which to connect.

-U user
specifies a login name. Logins are case sensitive.

-P password
specifies the “sa” account password.

-s sybase dir
specifies the value to use for the SYBASE environment variable.

-l interfaces file
specifies the name and location of the interfaces file to search when
connecting to Adaptive Server.

-r resource file
executes the specified resource file.

-v
prints the version number and copyright message for sqlloc and then exits.

Usage

Set the:

• SYBASE environment variable to the location of the current version of
 Adaptive Server before using sqlloc.

• DISPLAY environment variable before invoking sqlloc, unless you are
 only using the -v parameter to display the version number.

Permissions

You must be a Sybase system administrator to use sqlloc.
See also

Documentation *Installation Guide for UNIX Platforms* for more information about sqlloc.

Utilities langinstall, sqllocres
sqllocres

Description

(UNIX only) Installs and modifies languages, character sets, and sort order defaults for Adaptive Server, using a resource file.

The utility is located in $SYBASE/$SYBASE_OCS/bin.

Syntax

sqllocres

[-S server]
[-U user]
[-P password]
[-s sybase dir]
[-I interfaces file]
[-r resource file]

Or

sqllocres -v

Parameters

-S server
specifies the name of the Adaptive Server to which to connect.

-U user
specifies a login name.

-P password
specifies the “sa” account password.

-s sybase dir
specifies the value to use for the SYBASE environment variable.

-I interfaces file
specifies the name and location of the interfaces file to search when connecting to Adaptive Server.

-r resource file
executes the specified resource file.

-v
prints the version number and copyright message for sqllocres, then exits.

Usage

Set the SYBASE environment variable to the location of the current version of Adaptive Server before using sqllocres.

Permissions

You must be a Sybase system administrator to use the sqllocres utility.

See also

For more information about the sqllocres utility program, see the Installation Guide for UNIX Platforms.

Utilities langinstall, sqlloc
sqlsrvr

Description
(Windows only) The executable form of the Adaptive Server program.

The utility is located in %SYBASE%\%SYBASE_ASE%\bin.

Syntax
 [-a path_to_CAPs_directive_file]
 [-b master_device_size] [k | K | m | M | g | G | t | T]
 [-c config_file_for_server]
 [-d device_name]
 [-e path_to_error_log]
 [-i interfaces_file_directory]
 [-K keytab_file]
 [-L config_file_name_for_connectivity]
 [--master_key_password [=password]]
 [-M shared_memory_repository_directory]
 [-p sa_login_name]
 [-r mirror_disk_name]
 [-s server_name]
 [-T trace_flag]
 [-u sa|ssso_name]
 [-w master | model database]
 [-y [password]]
 [-z page_size [k | K]]

Parameters
-f forces initialization of a device or database. You must use both -b and -w to use -f.
-g turns off event-logging.
-G specifies the name of the event log server.
-h prints this help message, then exits.
-H starts the High Availability (HA) server, if you have the HA feature installed on your Adaptive Server.
-m starts Adaptive Server in single-user mode.
-q treats quiessed databases as “in recovery.”
-v prints the version number and copyright message for sqlsrvr and then exits.
starts this server as sybmon, not dataserver.

-a path_to_CAPs_directive_file
specifies the path to the CAPs directive file.

-b master_device_size [k | K | m | M | g | G | t | T]
specifies the size of the master device.

c config_file_for_server
specifies the full path name of an Adaptive Server configuration file. Use this parameter to start Adaptive Server with the configuration values in the specified configuration file.

If you specify a configuration file with the sqlsrvr -c parameter, make sure all the parameters in this configuration file are compatible before you boot the server. If some of the configuration parameters are incompatible, the server may not start. To avoid this, do not specify a configuration file when you build the master device. The build phase uses all default settings when you do not specify a configuration file.

For more information, see the System Administration Guide: Volume 1.

d device_name
is the full path name of the device for the master database. The master database device must be writable by the user who starts Adaptive Server. The default master database device name is d_master.

e errorlogfile
is the full path name of the error log file for Adaptive Server system-level error messages.

-i interfaces_file_directory
specifies the directory location of the interfaces file to search when connecting Adaptive Server. If -i is omitted, sqlsrvr looks for a file named interfaces in the directory pointed to by your SYBASE environment variable.

-K keytab_file
specifies the path to the keytab file used for authentication in DCE.

-L config_file_name_for_connectivity
specifies the name the configuration file for connectivity.
--master_key_password [=password]
specifies the master key password when you provide the password on the
command line or prompts for a master key password during Adaptive Server
startup. The password characters are not displayed, and the password is not
validated until later in the Adaptive Server startup sequence.

If you include the password on the command line, it is visible until the
memory is read and used.

-M sharedmem_directory
places shared memory files in the specified directory instead of in the default
location, %SYBASE%. If sharedmem_directory starts with “\”, the directory
name is assumed to be absolute. Otherwise, the directory name is interpreted
relative to %SYBASE%.

-p sso_login_name
specifies the login name of a system security officer when starting Adaptive
Server, for the purposes of getting a new password for that account.
Adaptive Server generates a random password, displays it, encrypts it, and
saves it in master..syslogins as that account’s new password.

-r mastermirror
starts the mirror of the master device. Use this parameter to start Adaptive
Server if the master device has been damaged.

-s servername
specifies the name of the Adaptive Server to start. If -s is omitted, a server
named SYBASE is started.

-T trace_flag

-u sa/sso_name
specifies the system administrator or system security officer’s name you
want to unlock.

-w master | model_database
specifies whether you want to write a master or model database.
-y [password]
allows you to assign a password for the encrypted private key, so that the
server prompt the user for a password. This password should match the
password you used to encrypt the private key when it was created. You
cannot use this parameter when you are running the server in the
background.

Note Although you can a password with -y, for security reasons Sybase
strongly discourages you from doing so.

A private key is included with your server’s digital certificate. By default,
the certificate file located:

%SYBASE\%SYBASE_ASE\%certificates\servername.crt

The location of the certificate file changes if you invoke the sp_ssladmin
addcert command.

-z page_size
specifies the page size of the server. Use -b and -w to use this flag, and name
an even power of two between 2k and 16k, or else the server does not boot.

Examples

Example 1 Creates a new installation with a 100MB master device and a 4k
page:

sqlsrvr -d d_master -z 4k -b 100.02M

The spaces between options and their following arguments are optional and
acceptable. This example specifies “100.02M” for a 100MB master device
because the server requires 16KB of overhead for its configuration area.

Example 2 Rewrites a corrupt model database:

sqlsrvr -d d_master -w model

Example 3 Rewrites a corrupt master database, specifying device size:

sqlsrvr -d d_master -w master -z 4k

Example 4 Rewrites a corrupt master database, specifying device and page
sizes, forcing the server to accept these values in preference to what it may find
in the config block:

sqlsrvr -d d_master -w master -z 4k -b 100.02M -f

Example 5 Rewrites a corrupt master database, specifying a page size that
does not match what the server finds in its config block. This produces a
failure:
sqlsrvr -d d_master -w master -z 8k
00:0000:0000:0000:2001/01/19 12:01:26.94 server The configured server page size does not match that specified on the command line. To use the configured size, omit the command line size; to use the command line size, specify 'force' (-f).

Example 6 Rewrites a corrupt master database, specifying an incorrect page size, even in a normal boot. This produces a failure:

sqlsrvr -d d_master -z4000
sqlsrvr: the 'z' flag may not be used without 'b' or 'w'. sqlsrvr: server will ignore the 'z' flag. sqlsrvr: the 'z' flag contained an invalid page size. sqlsrvr: the page size must be an even power of two between 2048 and 16384 bytes, inclusive.

Usage
• The sqlsrvr utility is referred to as dataserver in other Sybase documents.
• Start Adaptive Server using the services manager utility rather than by executing the sqlsrvr program directly. If you need to change any of the default parameters, edit the Adaptive Server Registry keys. See the configuration guide for your platform for details.
• Adaptive Server derives its running environment from values in the sysconfigures system table. Run sp_configure to see the configuration values; use sp_configure and reconfigure to change the configuration.
• Because Adaptive Server passwords are encrypted, you cannot recover forgotten passwords. If all system security officers lose their passwords, the -p parameter generates a new password for a system security officer’s account. Start Adaptive Server with -p, immediately log in to Adaptive Server with the new random password, and execute sp_password to reset your password to a more secure one.
• By default, Adaptive Server logs error messages in both the local error log file and the local Windows event log. You can disable Windows event logging by including the -g parameter and specifying a different event-logging machine with -G machine_name. Use standard Windows conventions when entering the machine_name. For example, to designate a PC named “LOGSITE”, substitute “\LOGSITE” for the machine_name. See the configuration guide for your platform for details on logging error messages.
• After you have finished running the installer, set the file permissions on the sqlsrvr executable to limit who can execute it.
• If you do not specify an Adaptive Server name with the -s parameter, and you have not set the DSLISTEN environment variable, sqlsrvr uses the default Adaptive Server name SYBASE. The value of the DSLISTEN environment variable overrides this default value, and the -s parameter overrides both the default and the DSLISTEN environment variable.

• Automatic login lockouts can cause a site to end up in a situation in which all accounts capable of unlocking logins (system administrators and system security officers) are locked. If this occurs, use the sqlsrvr utility with the -u parameter to check the specified login for system administrator or system security officer authorization, unlock the account, and reset the value of the current failed logins counter to zero.

• -f is only valid when used with -b and/or -w. The server fails to boot if you use -f without either -b or -w. -f forces the server in different ways, depending whether -w is present. See -b and -w below.

Starting Adaptive Server
Use either of these methods to start Adaptive Server with a specified configuration file:

• Use Server Config to configure the server to have the -c parameter. In the Configure Adaptive Server window, select the Command Line option, and in the Command Line Parameters window, enter:

 -C configuration_file_pathname

 For example, entering “-chaze.cfg ” starts the server using the haze.cfg configuration file.

• Start Adaptive Server from the command line and provide the -c parameter.

startsrvr dependencies and conditions with -b and -w
The effect of -b changes depending on whether -w is present:

• -b without -w creates a new master device as named by -d (the default is d_master) and with the page size as specified by -z (the default is 2048):
 • If the named device already exists as an OS file, the attempt fails, and you must remove the existing file and try again.
 • If the named device names an existing raw partition, the attempt fails unless you include the -f flag. This reinitializes the raw partition as a server master device.
-b with -w master tells dataserver to use the size specified in -z for the master device when recreating the master database. It implies nothing about creating a new device.

-w may or may not require additional flags. If you use:

- -w model – the -z and -b flags are accepted but ignored.
- -w master for new installations – the -z and -b parameters are not required because the device size information is stored in the config_block.
- -w master to upgrade older installations:
 - The server requires -b and/or -z if the config_block does not contain a valid entry for the associated size(s). The command fails if it can't get valid data for the page size or device size.
 - You may provide -b and/or -z when the config_block contains valid entries for the size(s) they represent. However if the sizes do not match what is in the config_block, add -f to force your new size preferences.
 - -f may appear without either -b or -z, because -f also instructs the server to accept damaged allocation pages as belonging to the master database. This is useful for restoring badly corrupted databases. If you specify -w master -f, the server assigns to the master database every allocation page on the named master device that does not belong to some other database than master.

Permissions
Anyone with execute permission on the binary, and who has read/write access to all the files.

Tables used
sysconfigures

See also

- Commands disk mirror, disk remirror, reconfigure
- System procedures sp_configure, sp_password
- Utilities startserver
sqlupgrade

Description
(UNIX only) Upgrades your currently installed version of Adaptive Server to the newest release using a GUI.

The utility is located in $SYBASE/$SYBASE_ASE/bin.

Syntax
sqlupgrade
 [-s sybase dir]
 [-r resource file]

Or
sqlupgrade -v

Parameters
-s sybase dir
 specifies the value to use for the SYBASE environment variable.

-r resource file
 executes the specified resource file.

-v
 prints the version number and copyright message for sqlupgrade and then exits.

Usage
Set the:
 • SYBASE environment variable to the location of the current version of Adaptive Server before using sqlupgrade.
 • DISPLAY environment variable before invoking sqlupgrade, unless you are only using the -v parameter to display the version number.

Permissions
You must be a Sybase system administrator to use sqlupgrade.

See also
Documentation Installation Guide for UNIX Platforms for more information about sqlupgrade.

Utilities preupgrade, sqlupgraderes
sqlupgraderes

Description
(UNIX only) Upgrades your currently installed release of Adaptive Server to the newest release using resource files.

The utility is located in $SYBASE/$SYBASE_OCS/bin.

Syntax
sqlupgraderes
[-s sybase dir]
[-r resource file]

Or
sqlupgraderes -v

Parameters
-s sybase_dir
specifies the value to use for the SYBASE environment variable.

-r resource_file
executes the specified resource file.

-v
prints the version number and copyright message for sqlupgraderes and then exits.

Usage
Set the SYBASE environment variable to the location of the current version of Adaptive Server before using sqlupgraderes.

Permissions
You must be a Sybase system administrator to use sqlupgraderes.

See also
Documentation Installation Guide for UNIX Platforms for more information about sqlupgraderes.

Utilities sqlupgrade
srvbuild

Description

(UNIX only) Creates a new Adaptive Server, Backup Server, or XP Server with default or user-specified values for key configuration attributes. Use `srvbuild` in either GUI or non-GUI mode.

The utility is located in `$SYBASE/$SYBASE_ASE/bin`.

Syntax

```
srvbuild
  [-s sybase_dir]
  [-I interfaces_file]
  [-r resource_file]
```

Or

```
srvbuild -v
```

Parameters

- `-s sybase_dir`

 specifies the value to use for the SYBASE environment variable.

- `-I interfaces_file`

 specifies the name and location of the interfaces file to search when connecting to Adaptive Server.

- `-r resource_file`

 executes the specified resource file.

- `-v`

 prints the version number and copyright message for `srvbuild` and then exits.

Usage

Set the SYBASE environment variable:

- To the location of the current version of Adaptive Server before using `srvbuild`.
- Before invoking `srvbuild`, unless you are only using the `-v` parameter to display the version number.

Using LDAP with `srvbuild` in a 64-bit environment

When you use `srvbuild` to build a new server using a Lightweight Directory Access Protocol (LDAP) service in a 64-bit environment, edit the LDAP server entry.

`srvbuild` is a 32-bit application and uses the LDAP server entry from the `$SYBASE/$SYBASE_OCS/config/libtcl.cfg` file. Adaptive Server is a 64-bit application and uses the LDAP server information from the `$SYBASE/$SYBASE_OCS/config/libtcl64.cfg` file.
Do not include any blank spaces after the LDAP server entry in the `libtcl.cfg` or `libtcl64.cfg` files; these prevent `srvbuild` from connecting to the LDAP server.

Permissions
You must be a Sybase system administrator to use `srvbuild`.

See also

- **Utilities** `srvbuildres`
srvbuildres

Description (UNIX only) Creates, using resource files, a new Adaptive Server, Backup Server, or XP Server with default or user-specified values for key configuration attributes.

The utility is located in `$SYBASE/$SYBASE_ASE/bin`.

Syntax

```
srvbuildres
    [-s sybase_dir]
    [-l interfaces_file]
    [-r resource_file]
```

Or

```
srvbuildres -v
```

Parameters

- `-s sybase_dir`
 specifies the value to use for the SYBASE environment variable.

- `-l interfaces_file`
 specifies the name and location of the interfaces file to search when connecting to Adaptive Server.

- `-r resource_file`
 executes the specified resource file. The `$SYBASE/$SYBASE_ASE/init/sample_resource_files` directory contains these sample resource files:

 - `sqlloc.rs*`
 - `sqlupgrade.adaptive_server.rs*`
 - `sqlupgrade.backup_server.rs*`
 - `sqlupgrade.monitor_server.rs*`
 - `srvbuild.adaptive_server.rs*`
 - `srvbuild.backup_server.rs*`
 - `srvbuild.job_scheduler.rs*`
 - `srvbuild.monitor_server.rs*`
 - `srvbuild.text_server.rs*`
 - `srvbuild.xp_server.rs*`

- `-v`
 prints the version number and copyright message for srvbuildres and then exits.
srvbuildres

Usage
Set the SYBASE environment variable to the location of the current version of Adaptive Server before using `srvbuildres`.

Permissions
You must be a Sybase system administrator to use `srvbuildres`.

See also
- **Documentation** *Installation Guide for UNIX Platforms* for more information about `srvbuildres`.
- **Utilities** `srvbuild`
startserver

Description

(UNIX only) starts an Adaptive Server or a Backup Server.

The utility is located in $SYBASE/$SYBASE_ASE/bin.

Syntax

```
startserver [-f runserverfile] [-m] ...
```

Parameters

- `-f runserverfile`

 specifies the relative path name of a runserver file, which is used as a reference each time you start an Adaptive Server or Backup Server. By default, the runserver file is in the current directory and is named `RUN_servername`. If you start a second Adaptive Server on the same machine, `startserver` creates a new runserver file named `RUN_servername`.

- `-m`

 starts Adaptive Server in single-user mode, allowing only one system administrator to log in, and turns the allow updates to system tables configuration parameter on. Use this mode to restore the master database. The system administrator can use the `dbo use only` parameter of `sp_dboption` for system administration activities that require more than one process, such as bulk copying or using the data dictionary. `startserver` normally starts up only one server per node.

 The `-m` parameter creates an `m_RUNSERVER` file and overwrites any existing `m_RUNSERVER` file.

Examples

Example 1 Starts an Adaptive Server named SYBASE from the runserver file named `RUN_servername` in the current directory:

```
startserver
```

Example 2 Starts an Adaptive Server named MYSERVER and a Backup Server named SYB_BACKUP:

```
startserver -f RUN_MYSERVER -f RUN_SYB_BACKUP
```

Example 3 Starts only the Backup Server SYB_BACKUP:

```
startserver -f RUN_SYB_BACKUP
```

Usage

- `startserver` uses the information in the runserver file to start an Adaptive Server or Backup Server. The master device must be writable by the user who starts Adaptive Server.
The `startserver` command creates the Adaptive Server error log file (named `errorlog`) in the directory where the server is started, and adds this information as part of the `-e` parameter in the Adaptive Server executable line in the runserver file. If a second Adaptive Server is started on the same machine, a new error log named `errorlog_servername` is created; this information is added to that server’s runserver file. The user must have execute permission on the specified runserver file.

- Start multiple servers by specifying more than one runserver file, as shown in example 2. Specify `-m` after each `-f runserverfile`
- Adaptive Server derives its running environment from values in the `config` file. Run `sp_configure` or edit the `config` file to see or change configuration parameters.
- To ensure the integrity of your Adaptive Server, it is important that you apply appropriate operating-system protections to the `startserver` executable and the runserver file.

The `runserver` file

The runserver file, which is created by `srvbuild` during installation, contains the `dataserver` command to start Adaptive Server or the `backupserver` command to start Backup Server. By default, the file is in the current directory and is named `RUN_servername`. Edit the runserver file to correct the options and parameters for the commands. This example shows two sample runserver files.

Runserver file for server MYSERVER:

```sh
#!/bin/sh
#
# Adaptive Server Information:
#  name: /MYSERVER
#  master device: /remote/Masters/myserver_dat
#  master device size: 10752
#  errorlog: /remote/serverdev/install/errorlog
#  interfaces: /remote/serverdev/
#
#$SYBASE/$SYBASE_ASE/bin/dataserver -d/remote/Masters/myserver_dat
   -sMYSERVER -e/remote/serverdev/install/MYSERVER_errorlog
   -i/remote/serverdev &
```

Runserver file for backup server SYB_BACKUP:

```sh
#!/bin/sh
#
# Backup Server Information:
#  name: SYB_BACKUP
```
errorlog: /remote/serverdev/install/backup.log
interfaces: /remote/serverdev/interfaces
location of multibuf: /remote/serverdev/bin/sybmultbuf
language: us_english
character set: iso_1
tape configuration file: /remote/serverdev/backup_tape.cfg
#
#/remote/serverdev/bin/backupserver -SSYB_BACKUP \
-e/remote/serverdev/install/backup.log \
-I/remote/serverdev/interfaces \
-M/remote/serverdev/bin/sybmultbuf -Lus_english -Jiso_1 \
-c/remote/serverdev/backup_tape.cfg

See also

Commands disk mirror, disk remirror, disk unmirror

Utilities backupserver, dataserver
sybcluster

Description
Manages a Sybase shared-disk cluster. sybcluster lets you create, start, stop, and manage a cluster or any instance in a cluster.
sybcluster is only available in a shared-disk cluster environment. For information about how to use sybcluster, see the Clusters Users Guide.

Syntax
sybcluster
[-C cluster_name]
[-d discovery_list]
[-F agent_connection]
[-h]
[-l instance_name]
[-I input_file_path]
[-L]
[-m message_level]
[-P [password]]
[-U user_name] (the default value is "uafadmin")
[-v]

Parameters
-Cluster_name
is the unique name of the Sybase shared-disk cluster to be managed.
sybcluster looks up the name in the cluster directory or uses agent discovery services.

discovery_list
specifies the discovery services to be used to discover a shared-disk cluster agent and the discovery order. The format is:

"method[(method_specification)[,...]]"

For example:
The supported discovery methods are:

- **UDP** – performs a UDP broadcast and listens for a response from listening Unified Agents. UDP discovery does not cross subnet boundaries.

- **JINI** – specifies the JINI servers used to look up the locations of nodes in the cluster. The specification form is: `host-name[port_num]`. Indicate multiple JINI servers by placing a semicolon between each specification. By default, `sybcluster` uses port number 4160 to attach to a JINI server.

 The JINI server must be running, and the management agents (UAF) must be registered with the JINI server. The locations of the nodes, and status of the instances are stored on the JINI server.

- **LDAP** – specifies an LDAP server that will be used to look up the locations of the nodes in the cluster. The specification form is: `host_name[port_num][registry]`. Indicate multiple LDAP servers by placing a semicolon between each specification. By default, `sybcluster` uses port number 389 to attach to an LDAP server and the LDAP directory at “cn=ua-registry,ou=ua,dc=sybase,dc=com”.

-F agent_connection

specifies the agent to be used to access the cluster. The format is:

`host_name[:port_num] [, host_name[:port_num]]`

For example:

```
-F "node1,node2,node3,node4:9999"
```

The default port number is 9999.

-h

displays `sybcluster` syntax and lists supported interactive commands.
-l instance_name
specifies the instance to be accessed. If you do not specify the -l option when
you execute sybcluster, you may need to specify it when entering certain
interactive commands. sybcluster uses this name to discover the remote host,
and as a default when executing interactive commands. If an interactive
command affects multiple instances, the instance identified by -l, if
available, is used as the priority connection.

To override the instance specified by -l, execute the use command in
interactive mode.

-i
specifies an operating system file for input to sybcluster. This file contains
sybcluster commands, one command per line. The final command in the file
should be quit.

-L
creates a sybcluster.log file. sybcluster writes all messages to this file
irrespective of the message level set by the -m option.

-m message_level
specifies which sybcluster and unified agent messages are displayed on the
client console. Message levels are:
 • 0 – off (no messages to log file or console)
 • 1 – fatal
 • 2 – error
 • 3 – warning
 • 4 – information
 • 5 – debug
sybcluster displays all messages of the level you choose and all messages of
greater severity (with lower numbers). That is, if you select message level 3,
sybcluster displays messages of level 3, 2, and 1. The default level is 4.
-P [password]
is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password. This is the Simple Login Module in the Agent configuration. The user and password can be configured to use several different mechanisms for authentication and authorization, including using the running instance and the operating system logins.

If you do not specify the -P option, sybcluster prompts for a password. For a blank or null password, use the -P option without a value or enter a set of quotation marks without content.

You can encrypt the password using the Sybase passencrypt utility. See the Clusters Users Guide.

-U user_name
is the management agent login name. The default login after installation is “uafadmin.” See the -P description for more information.

-v
displays the sybcluster version number and other information.

Examples

Example 1 Starts sybcluster using direct connect and default port numbers.

```bash
sybcluster -U uafadmin -P -C mycluster -F "blade1,blade2,blade3"
```

Example 2 Starts sybcluster using direct connect and port numbers.

```bash
sybcluster -U uafadmin -P -C mycluster -F "blade1:9100,blade2:9292,blade3:9393"
```

Example 3 You can also start sybcluster using discovery.

```bash
sybcluster -U uafadmin -P -C mycluster -d "JINI(myjiniserver:4564)"
```

Usage
Starting sybcluster
The recommended method for starting sybcluster and connecting to a cluster is:

```bash
sybcluster -U login_name -P password -C cluster_name -F agent_spec
```
The `-C cluster_name`, `-P password`, `-I instance_name`, `-F agent_connection`, and `-d discovery_list` parameters are default values that can be changed using subsequent sybcluster interactive commands. If you do not specify these values on the sybcluster command line, sybcluster prompts for them as they are required.

You can also start sybcluster and then use the interactive connect command to connect to the cluster. For example:

```
sybcluster
  > connect to mycluster login uafadmin password " "
  agent "blade1,blade2,blade3"
```

Note See Chapter 8, “sybcluster Interactive Commands Reference,” for syntax and usage descriptions of the sybcluster interactive commands.
sybdiag

Description

sybdiag is a Java-based tool that collects comprehensive Adaptive Server configuration and environment data. Sybase Technical Support uses this information to diagnose server issues, thus expediting customer cases.

Note

Run sybdiag on the same machine as the monitored Adaptive Server.

Syntax

sybdiag -U username [-P password] -S [server_name | host:port]
 [-I interfaces_file]
 [-L log_file]
 [-N num_threads]
 [-O output_directory]
 [-R resource_file]
 [-T feature_list]
 [-h]
 [-m message_level]
 [-v]

Parameters

-1 interfaces_file
 (optional) specifies the name of the interfaces file. If -I is specified, sybdiag uses the interfaces_file specified and displays an error if that file is not found. If -I is not specified, sybdiag first checks the LDAP server for the server entry, and if the entry is not found, sybdiag uses the default interfaces file in the directory specified by the SYBASE environment variable.

-L log_file
 (optional) specifies the name of the log file that sybdiag creates. If log_file is not an absolute path, the log file is created in the directory where sybdiag is executed.

Whether you specify this parameter or not, sybdiag creates a default log file called sybdiag.log in the .zip output file.

-N num_threads
 (optional) specifies the maximum number of parallel threads that sybdiag executes in parallel. The default value is 5. Do not change the default value unless you cannot execute parallel collections.

-O output_directory
 (optional) specifies the name of a local directory in which to store sybdiag output. If not specified, sybdiag creates the output .zip file in the directory where the command was executed. The output file is named “sybdiag-<server name>-<datetime stamp>.zip”.

Utility Guide 173
-R resource_file
 (optional) specifies the resource file that sybdiag uses on start-up. Use this option only at the direction of Sybase Technical Support.

-P password
 specifies your Adaptive Server password. If you do not specify the -P flag, sybdiag prompts for a password. If your password is NULL, use the -P flag without any password.

-S server_name | host:port
 server_name specifies the name of the Adaptive Server to which sybdiag connects. sybdiag looks for this name in the interfaces file or the LDAP directory.

 If you specify -S with no argument, sybdiag looks for a server named SYBASE. If you do not specify -S, sybdiag looks for the server specified by your DSQUERY environment variable.

 host:port specifies the machine name and the port number.

-T feature_list
 (optional) specifies the type of diagnostic data that sybdiag gathers, based on these feature_list values:

 • osdata – operating system data.
 • asecore – Adaptive Server configuration data.
 • aseadd – Adaptive Server monitoring data.
 • keyfile – information about Adaptive Server and operating system files.

 All diagnostic data is collected if you do not specify -T. See “Viewing sybdiag output” on page 177.

-U username
 specifies a case-sensitive login name.

-h
 (optional) displays all help options.
-m message_level
 (optional) displays different levels of error messages depending on the value of message_level:
 • 0 – no messages.
 • 1 – fatal errors only.
 • 2 – all errors.
 • 3 – warnings and all errors.
 • 4 – informational messages, warnings, and all errors.
 • 5 – debug and informational messages, warnings, and all errors.
 By default, the error message display level is set to 4.

-v
 (optional) displays version information.

Examples

Example 1 Collects all Adaptive Server diagnostics from
/work/ASEInstall/ASE-15_0/bin, and creates an output file called
sybdiag-testserver-20110312024652.zip in the same directory:

 sybdiag -Usa -P -Stestserver

Note For readability, some lines have been omitted from this sample output.
Collecting data for "CPU Statistics" (os_mpstat) ...
Completed data collection for "Virtual Memory Statistics" (os_vmstat).
Completed data collection for "I/O Statistics" (os_iostat).
Completed data collection for "CPU Statistics" (os_mpstat).
Completed data collection for "Adaptive Server General Performance Information" (ase_sysmon).
Data collection statistics: 43 task(s) succeeded, 0 task(s) skipped, and 0 task(s) failed.
The collected data is stored as /work/ASEInstall/ASE-15_0/bin/sybdiag-testserver-20110312024652.zip
Data collection completed.

Example 2 Collects basic Adaptive Server configuration data from /work/ASEInstall/ASE-15_0/bin, and creates an output file called sybdiag-smmdi_9966-20110502202909.zip in the same directory:

```
sybdiag -Usa -P -Ssmmdi:9966 -Tasecore
Collecting data for "Adaptive Server Version" (ase_version) ...  
Collecting data for "Server License" (ase_license) ...  
Completed data collection for "Server License" (ase_license).  
Collecting data for "Adaptive Server Configuration" (ase_cfg) ...  
Completed data collection for "Adaptive Server Configuration" (ase_cfg).  
Collecting data for "Adaptive Server Non-default Configuration" (ase_nondefault_cfg) ...  
Completed data collection for "Adaptive Server Non-default Configuration" (ase_nondefault_cfg).  
Collecting data for "Remote Server Configuration" (ase_remote_server) ...  
Completed data collection for "Remote Server Configuration" (ase_remote_server).  
Collecting data for "Adaptive Server Script Version" (ase_script_version) ...  
Collecting data for "Adaptive Server Configuration Monitor" (ase_mon_cfg) ...  
Completed data collection for "Adaptive Server Configuration Monitor" (ase_mon_cfg).  
Collecting data for "Adaptive Server Cache Configuration" (ase_cache_cfg) ...  
Completed data collection for "Adaptive Server Cache Configuration" (ase_cache_cfg).  
Collecting data for "Adaptive Server Pool Configuration" (ase_pool_cfg) ...  
Completed data collection for "Adaptive Server Pool Configuration" (ase_pool_cfg).  
Collecting data for "Adaptive Server Shared Memory Dump Configuration" (ase_shmdumpconfig) ...  
Completed data collection for "Adaptive Server Shared Memory Dump Configuration" (ase_shmdumpconfig).  
Collecting data for "Adaptive Server Traceflags and Switches" (ase_switches) ...  
Completed data collection for "Adaptive Server Traceflags and Switches" (ase_switches).  
Data collection statistics: 11 task(s) succeeded, 0 task(s) skipped, and 0 task(s) failed.  
The collected data is stored as /work/ASEInstall/ASE-15_0/bin/sybdiag-smmdi_9966-20110502202909.zip  
Data collection completed.
```
CHAPTER 1 Utility Commands Reference

Usage

sybdiag connects to an Adaptive Server and executes stored procedures such as sp_configure, and queries to tables like monLicense. It collects operating system and platform diagnostic information by executing commands such as ps, vmstat, and netstat.

The output of sybdiag is a compressed ZIP file containing HTML and data files that can be uncompressed and viewed in a Web browser. The information collected includes operating system and environment data, Adaptive Server configuration and monitoring data, and Adaptive Server files and scripts.

sybdiag does not collect Adaptive Server or operating system data for logins, passwords, or user lists, and does not collect information from application database tables.

Configuring options for sybdiag

To generate certain reports, you must enable corresponding configuration options using sp_configure, or by editing the server configuration file. If configuration options are set incorrectly, sybdiag skips the related reports.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>sybdiag Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable monitoring</td>
<td>1</td>
<td>Adaptive Server Wait Events</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaptive Server Locks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaptive Server Deadlock History</td>
</tr>
<tr>
<td>wait event timing</td>
<td>1</td>
<td>Adaptive Server Wait Events</td>
</tr>
<tr>
<td>deadlock pipe active</td>
<td>1</td>
<td>Adaptive Server Deadlock History</td>
</tr>
<tr>
<td>deadlock pipe max messages</td>
<td>Nonzero value; must be large enough to capture all relevant deadlock rows</td>
<td>Adaptive Server Deadlock History</td>
</tr>
</tbody>
</table>

Viewing sybdiag output

The sybdiag output is in a compressed file in this format:
sybdiag-servername-datetime_stamp.zip. To generate individual output files, uncompress the zip file.

The ZIP file contains these HTML, data, and log files:

- sybdiag_start.html – an HTML file with links to diagnostic data files in the output directory. To view sybdiag output, open this file in any Web browser.

sybdiag displays information in these categories:

- Operating system information, including process status, physical and virtual memory, interprocess communication, disk usage, I/O, and network information.
• Adaptive Server configuration data, including server version, platform and license information, configuration values, remote server configuration data, and so on. For the Cluster Edition, this also includes the cluster overview, cluster instances, and logical cluster information.

• Adaptive Server monitoring data about processes, databases, devices, locks, and so on. For the Cluster Edition, this also includes cluster interprocess communication protocol information, cluster lock usage, and cluster quorum device dump information.

• Adaptive Server files such as `errorlog`, `interfaces`, configuration file, SySAM properties file, and environment configuration scripts. For the Cluster Edition, a single report may contain information from many external files for several cluster instances.

• Diagnostic data files – collected Adaptive Server and environment information organized under different directories. These are the files that `sybdiag_start.html` accesses.

• Log file – by default, the ZIP file includes a log file called `sybdiag.log` that provides a log of the activities `sybdiag` performed.

Permissions

To gather all Adaptive Server data, you must have permission to access all datasources used by `sybdiag`. In a default Adaptive Server configuration, you must have `sa_role` and `mon_role` to collect Adaptive Server configuration and monitoring data. Use `sp_role` to grant `sa_role` and `mon_role` to the `sybdiag` user:

```
sp_role "grant", sa_role, sybdiag_user
  go
sp_role "grant", mon_role, sybdiag_user
  go
```

You may need other permissions to access database objects if your system administrator has changed the default access restrictions. If you have insufficient permission to access certain database objects, you see an error message that lists the database objects that you cannot access.

• To gather all environment data, you must have authorized access to operating system and device files.

Note On Linux, you must have read permission to access operating system messages in `/var/log/messages`.

• You must have read permissions on these files:
• Adaptive Server error log
• Adaptive Server configuration file
• Environment scripts such as SYBASE.csh, SYBASE.sh or SYBASE.bat
• You must have write permissions on an output directory specified by the -O parameter.

Note If you do not have the required permissions on a file, sybdiag displays an error message does not process that file.
sybmigrate

Description
sybmigrate allows you to convert an Adaptive Server from one page size to another page size, and to migrate between platforms.

The utility is located in:

- (UNIX platforms) $SYBASE/$SYBASE_ASE/bin/
- (Windows) %SYBASE%\%SYBASE_ASE%\bin\sybmigrate.bat as sybmigrate.bat.

Warning! sybmigrate assumes that the source and target Adaptive Servers will not have any activity during the migration. If objects are created, modified, or deleted during the migration process (setup, migrate, and validate), Sybase cannot guarantee migration integrity.

Syntax
```
sybmigrate [-v] [-h] [-f]
[-D 1 | 2 | 3 | 4]
[-I interfaces_file]
[-r input_resource_file]
[-m setup | migrate | validate | report]
[-l log_file]
[-t output_template_resource_file]
[-J client_charset]
[-z language]
[-T trace_flags]
[-Tase trace_flags]
[-f]
```

Parameters

- **-v**
 prints the version string and exits.

- **-h**
 prints the help information and syntax usage and exits.

- **-f**
 overrides the locking session.

 If sybmigrate exited a session inappropriately, use -f to override the source and target database binding that is created so that only one session of sybmigrate can run on a source and target database path.

- **-D**
 sets the debug level for sybmigrate. The default debug level is 2.
identifies a specific interfaces file to find server names. If no interfaces file location is designated, sybmigrate uses:

- (UNIX) $SYBASE/interfaces
- (Windows) %SYBASE%\ini\sql.ini

Note You can override sybmigrate, and use the interfaces file by providing the -I argument if the LDAP entry is defined in $SYBASE/$SYBASE_OCS/config/libtcl.cfg on Unix or in %SYBASE%\%SYBASE_OCS%\ini\libtcl.cfg on Windows.

-r specifies that the resource file mode is to be used in the migration process. If the input resource file is not specified by using the -r parameter, sybmigrate operates in GUI mode.

If you use the -r parameter, then you also need to use the -m argument to specify the type of operation to perform: setup, migrate, validate, or report. You can run the entire migration process in the resource file mode, or you can choose to run only parts of it in this fashion.

-m designates the types of operations that are performed:

- setup – to set up the repository and migration working database, and to migrate the server-wide data.
- migrate – to perform data and object migration.
- validate – to validate the migrated objects.
- report – to run any of the five reports. The reports can be run in the GUI and resource file mode. The available reports are:
 - status – the migrate object status report gives information about objects that have been migrated. To run this report, issue:
 `sybmigrate -r resource file -m report -rn status`
 - space_est – use the target database space estimation report to verify that you have sufficient resources allocated to your target database. In the resource file mode, issue the following command to run the space_est report:
 `sybmigrate -r resource file -m report -rn`
The migrate command creates a report that documents the objects that have been migrated and their characteristics. The report can be used to determine if the objects have been migrated properly and to generate SQL commands for users to execute on the target Adaptive Server and the Replication Server.

The migrate command uses the following options:

- **space_est**
 - repl – use the replication report to check any explicitly replicated objects that have been migrated, determine the type of replication system, and to produce SQL commands for users to execute on the target Adaptive Server and the Replication Server. To run the repl report, issue:
    ```
    sybmigrate -r resource file -m report -rn repl
    ```
 - diff – checks the objects between the source and target databases. Users can run the report on individual objects, or the entire database, except for server and database information or metadata. You can run the diff report at any time. You do not need to run a setup session to run the diff report. The source and target database name do not need to be the same when running the diff report.
 The diff report provides the following information for the following object types:
 - Server information – compares the master database system catalogs row count between the source and target Adaptive Server. This task is similar to the validation session.
 - Database information – compares the user database system catalogs row count between the source and target Adaptive Server. This task is similar to the validation session.
 - DDL objects – the report displays whether the objects exist on the source or the target Adaptive Servers. If the objects exists in both databases, that object is not displayed in the report.
 - User table data – compares the row count of the user tables in the source and target Adaptive Server. If the table only exists in the source or target databases, the table is not displayed in the report.
 - password – creates a file for the changed passwords.

- **-rn** indicates what type of report to generate. If -rn is not specified, all five reports are run.

- **-l** indicates a user-defined log file where the output of the migration process is stored. If -l is not used, the logs are stored in $SYBASE/$SYBASE_ASE/init/logs or the working directory.
-t directs sybmigrate to generate an output template resource file, to be used for subsequent migrations in the resource file mode.

-t requires that you start sybmigrate using the -r argument specifying the login information. This argument also requires -m to specify what type of resource file is to be generated.

Note You can use -t only in the resource file mode.

-J specifies the character set to be used for the Adaptive Server connection.

-z specifies the language to be used for the Adaptive Server connection.

-T sets these command line trace flags:

- **DUMP_SQL** – specifies that every query issued by sybmigrate is output to the log file.

- **NO_SORTED_DATA** – overrides the default, which specifies that tables with clustered indexes are copied to the target server in order, and the clustered index is recreated using the with_sorted_data option.

- **LEAVE_PTBL_ON_ERROR** – specifies that proxy tables are not deleted on failure.

- **SKIP_CONFIG_CHECK** – specifies that configuration compatibility checks are not to be performed.

- **SKIP_PARTITION_CHECK** – specifies that partition compatibility checks are not to be performed.

- **DUMP_DDL** – specifies that DDL commands are to be output to the log file.

- **DUMP_DEPEND_OBJECT** – specifies that when the auto_select_dependent_objects option is used, sybmigrate outputs a list of objects added as dependents.

- **ONE_WORK_THREAD** – specifies that one work thread is to be used, overriding the current setting for schema creation threads.

- **ALLOW_DATA_AND_INDEX** – overrides default behavior, in which indexes are created after all tables are created. Indexes are created as resources become available.
-Tase

is used to run Adaptive Server trace flags (turned on using dbcc traceon) for all Adaptive Server connections opened by sybmigrate. The trace flags should be specified in a comma-separated list.

Examples

Example 1 Runs the status report:

```bash
sybmigrate -r resource file -m report -rn status
```

Example 2 Runs the space_est report in the resource file mode:

```bash
sybmigrate -r resource file -m report -rn space_est
```

Example 3 Runs the repl report, issue:

```bash
sybmigrate -r resource file -m report -rn repl
```

Usage

- Make sure the allow resource limits configuration parameter is set to 0 before running sybmigrate.
- You cannot migrate server data if metadata already exists on the target Adaptive Server.
- If sybmigrate exited a session inappropriately, use -f to override the source and target database binding that is created so that only one session of sybmigrate can run on a source and target database path.
- If you use the -r parameter, then you also need to use the -m argument to specify the type of operation to perform: setup, migrate, validate, or report. Run the entire migration process in the resource file mode, or run only parts in this fashion.
- Use -t only in the resource file mode. -t requires that you start sybmigrate using the -r argument specifying the login information. This argument also requires -m to specify what type of resource file is to be generated.
- You may specify the size and location of a work database on your target server.
- Sybase does not support Adaptive Server version 12.5.1. Sybase recommends that you upgrade from 12.5.1 to 12.5.4, then from 12.5.4 to 15.5 and later versions. To make the 12.5.1 server visible to the 12.5.4 or later server, use:

```bash
sp_addserver 'servername', local
```

Restart Adaptive Server to recognize the 12.5.1 server.
- You can override sybmigrate, and use the interfaces file by providing the -i argument if the LDAP entry is defined in:
• UNIX – $SYBASE/$SYBASE_OCS/config/libtcl.cfg
• Windows – %SYBASE%\%SYBASE_OCS%\ini\libtcl.cfg
• sybmigrate automatically migrates predicated privileges when:
 • ddlgen is called to generate the scheme definitions, including grants, denies, and revokes
 • Data is migrated using CIS and proxy tables.

sybmigrate Reports
• status – the migrate object status report gives information about objects that have been migrated.
• space_est – use the target database space estimation report to verify that you have sufficient resources allocated to your target database.
• repl – use the replication report to check any explicitly replicated objects that have been migrated, determine the type of replication system, and to produce SQL commands for users to execute on the target Adaptive Server and the Replication Server.
• diff – checks the objects between the source and target databases. Users can run the report on individual objects, or the entire database, except for server and database information or metadata. Run the diff report at any time. You do not need to run a setup session to run the diff report. The source and target database name do not need to be the same when running the diff report.

The diff report provides this information for these object types:
• Server information – compares the master database system catalogs row count between the source and target Adaptive Server. This task is similar to the validation session.
• Database information – compares the user database system catalogs row count between the source and target Adaptive Server. This task is similar to the validation session.
• DDL objects – the report displays whether the objects exist on the source or the target Adaptive Servers. If the objects exists in both databases, that object is not displayed in the report.
• User table data – compares the row count of the user tables in the source and target Adaptive Server. If the table only exists in the source or target databases, the table is not displayed in the report.
sybmigrate

<table>
<thead>
<tr>
<th>Permissions</th>
<th>You must be a Sybase system administrator or log in with the sa_role to use sybmigrate. If you want any user other than the SA to use sybmigrate, set the cis rpc handling configuration parameter to “1”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also</td>
<td>Documentation Chapter 9, “Migrating Data Using sybmigrate” for detailed information on sybmigrate.</td>
</tr>
</tbody>
</table>
sybrestore

Description
sybrestore allows you to restore an Adaptive Server database to the time of failure from the most current full database backup dump files.

Syntax
sybrestore [-v] [-h]
 [-S server_name | host_name:port_number]
 [-t restore database to point in time]
 [-D database_name]
 [-d dump_directory]
 [-i interfaces_file]
 [-J character_set]
 [-P password]
 [-U username]
 [-z language]

Parameters
- **-v**
 prints the version string and exits.
- **-h**
 prints the help information and syntax usage and exits.
- **-S**
 specifies the name of the source Adaptive Server. sybrestore looks for this name in the interfaces file.
 -host_name:port_number specifies the machine name and the port number.
- **-t**
 restores the specified database to a point in time.
- **-D**
 specifies the source database name.
- **-d**
 specifies the dump directory for dumping the last log.
- **-i**
 identifies a specific interfaces file in which to look for server names. If you do not specify this parameter, sybrestore uses:
 - UNIX – $SYBASE/interfaces
 - Windows – %SYBASE%\ini\sql.ini
- **-J**
 specifies the character set to be used for the Adaptive Server connection.
- **-P**
 specifies your Adaptive Server password. If you do not specify the -P flag, sybrestore prompts for a password.
-U
 specifies a case-sensitive login name.

-z
 specifies the language to be used for the Adaptive Server connection.

Examples

Example 1 Invokes the command line interactive Restore Database menu. Use single-key entries to navigate through the menu options to specify options for restoring a database:

```
sybrestore -Usa -P -SlinuxData
<<<<<<<<<====Restore Database Menu ==========>>>>>>>>
s : Select Database
t : Target Server
r : Recreate Database
e : Use External Dump
c : Check Geometry
d : Dump Directory
o : Online Database
p : Preview
g : Go
```

Example 2 Invokes sybrestore in noninteractive mode using Adaptive Server 15.7 ESD #2 and later. Executes the SQL statements for restoring the database and exits:

```
sybrestore -Usa -P -SaseServer1 -Ddba_db
```

Example 3 Invokes the interactive command line Restore Database menu. Executes the SQL statements for restoring the database to a point in time:

```
sybrestore -Usa -P -SaseServer1 -t
```

Usage

Before using sybrestore, verify that:

- Adaptive Server and Backup Server are running for both the target and source.
- The master database is available.
- The log segment of the source database is available for dumping and then loading back the most recent transaction logs that have not been dumped.
- Either history files or external dump files are available.

Permissions

To use sybrestore, you must be logged in with the sa_role, or as the database owner.

See also **Documentation** Chapter 10, “Restoring a Database Using sybrestore”.
sybtsmpasswd

Description
Records or changes the user password and creates the Tivoli Storage Manager (TSM) encrypted password file, *TSM.PWD*, on the TSM client machine. The location of the file is the directory specified by the *PASSWORDDIR* configuration parameter in the TSM configuration file.

Note
sybtsmpasswd is supported when the IBM Tivoli Storage Manager is licensed at your site.

Syntax
sybtsmpasswd

Examples
sybtsmpasswd prompts for password information.

```
sybtsmpasswd
Enter your current password:
Enter your new password:
Enter your new password again:

Your new password has been accepted and updated.
```

Usage
Execute sybtsmpasswd when you record or change the user password. Make sure the same user name and password are present in the *TSM.PWD* file on the TSM client node.

Permissions
Only the operating system “root” user can execute sybtsmpasswd.
xpserver

Description
Starts XP Server manually.

Syntax
xpserver -S XP_Server

Parameters
-S XP_Server
 specifies the name of the XP Server to start. The format of the XP server name is SQLSERVERNAME_XP, where SQLSERVERNAME is the name of the Adaptive Server to which the XP Server is dedicated. For example, the XP Server for an Adaptive Server named SMOKE would be named SMOKE_XP. The XP Server name must be in uppercase.

-I interfaces_file
 specifies the name and location of the directory containing the interfaces file (sql.ini) that Adaptive Server searches when connecting to XP Server. If you do not specify -I, xpserver uses the ini subdirectory of the %SYBASE% release directory.

-p priority
 specifies the priority of the Open Server process. Values between 0 (lowest) and 15 (highest) are valid. Overrides the esp execution priority configuration parameter. The default is 8.

-s stack_size
 specifies (in bytes) the stack size of the process used to execute an extended stored procedure (ESP). Overrides the esp execution stacksize configuration parameter if it is set. The default is 34816 bytes.

-u
 specifies that the functions be automatically unloaded from XP Server memory after the ESP request terminates. Overrides the esp unload dll configuration parameter if it is set. The default is not to unload the function.

-v
 prints the version number and copyright message for XP Server and then exits.
-x
specifies that the client security context be used to execute operating system commands using the system ESP, xp_cmdshell. Overrides the xp_cmdshell context configuration parameter if it is set. The default is to use the security context of the operating system account of the Adaptive Server session.

Usage

• XP Server is normally started automatically by Adaptive Server. Use the manual command to start XP Server only when instructed to do so in an “XP Server Failed to Start” error message.

• There can be only one XP Server per Adaptive Server. An Adaptive Server running ESPs communicates with a single XP Server, and the ESPs execute synchronously.

• The -p parameter affects the priority used by the Open Server scheduler. If -p is set to a high number, the scheduler can run XP Server before running the other threads in its run queue. If -p is set to a low number, the scheduler can run XP Server only when there are no other Open Server threads in its run queue. This parameter is unrelated to the application queue priorities within Adaptive Server, which are set by sp_bindexeclass.

See the discussion of multithread programming in the Open Server Server Library/C Reference Manual for information about scheduling Open Server threads.

• If automatic unloading of ESP functions is not set by the -u parameter or by the esp unload dll configuration parameter, unload them at runtime using sp_freedll.

• Unlike Adaptive Server and Backup Server, XP Server does not have a runserver file.

• When configuring an XP Server, the directory service entry name must end with “_XP” in upper case, such as “abcdef_XP” or “ABCDEF_XP.”

Permissions

No special permissions are required to run xpserver.

See also

System ESP xp_cmdshell
System procedures sp_configure, sp_freedll
CHAPTER 2

Transferring Data to and from Adaptive Server with \textit{bcp}

\texttt{bcp} provides a convenient, high-speed method for transferring data between a database table or view and an operating system file. \texttt{bcp} can read or write files in a wide variety of formats. When copying in from a file, \texttt{bcp} inserts data into an existing database table; when copying out to a file, \texttt{bcp} overwrites any previous contents of the file.

For a detailed description of \texttt{bcp} syntax, see \texttt{bcp} on page 14.
Versions earlier than 15.0.3 did not allow you to run fast bcp on tables with non-clustered indexes or triggers. Cluster Edition version 15.0.3 and later removes this restriction.

Methods for Moving Data

Use the following methods to move data to and from your Adaptive Server databases.

The methods are:

- **bcp** as a standalone program from the operating system. This chapter provides instructions for this method.
- Client-Library, which calls bulk library routines. For more information about the Client-Library, see the *Open Client and Open Server Common Libraries Reference Manual*.

Import and Export Data with bcp

Transact-SQL commands cannot transfer data in bulk. For this reason, use bcp for any large transfers.

Use bcp to:

- Import data that was previously associated with another program, such as the records from another database management system. This is the most common use for bcp.

Before using bcp, create a file of the records you want to import. The general steps are:

a. Put the data to transfer into an operating system file.

b. Run bcp from the operating system command line.

- Move tables between Adaptive Servers or between Adaptive Server and other data sources that can produce an operating-system file.
• Copy out data from a view. See bcp on page 14 for a description of the syntax for using bcp to copy out from a view.

Note You cannot use bcp to copy in data to a view.

• Transfer data for use with other programs, for example, with a spreadsheet program. The general steps to transfer data are:

 a Use bcp to move the data from Adaptive Server into an operating-system file from which the other program imports the data.

 b When you finish using your data with the other program, copy it into an operating-system file, and then use bcp to copy it into Adaptive Server.

Adaptive Server can accept data in any character or binary format, as long as the data file describes either the length of the fields or the **terminators**, the characters that separate columns.

The structures in the tables involved in the transfer need not be identical, because when bcp:

• Imports **from** a file, it appends data to an existing database table.
• Exports **to** a file, it overwrites the previous contents of the file.

When the transfer is complete, bcp informs you of the:

• Number of rows of data successfully copied
• Number of rows (if any) that it could not copy
• Total time the copy took
• Average amount of time, in milliseconds, that it took to copy one row
• Number of rows copied per second.

If bcp runs successfully, you see a return status of 0. The return status generally reflects errors from the operating system level and correspond to the ones listed in the *errno.h* file in the */usr/include/sys/* directory.

bcp Modes

bcp in works in one of three modes.
bcp Requirements

- Slow bcp – logs each row insert that it makes, used for tables that have one or more indexes.
- Fast bcp – logs only page allocations, copying data into tables without indexes or at the fastest speed possible. Use fast bcp on tables with nonclustered indexes.
- Fully-logged fast bcp – provides a full log for each row. Allows you to use fast bcp on indexed and replicated tables.

Although fast bcp might enhance performance, slow bcp gives you greater data recoverability. Fully-logged fast bcp provides a combination of both.

To determine the bcp mode that is best for your copying task, consider:

- Size of the table into which you are copying data
- Amount of data that you are copying in
- Number of indexes on the table
- Whether the table is replicated
- Amount of spare database device space that you have for re-creating indexes

The modes bcp uses depending on index type:

<table>
<thead>
<tr>
<th>Table properties</th>
<th>bcp mode for bulkcopy on, with logging</th>
<th>bcp mode for bulkcopy on without logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustered index</td>
<td>Slow mode</td>
<td>Slow mode</td>
</tr>
<tr>
<td>Replicated table with indexes or triggers, but no clustered index</td>
<td>Fast mode</td>
<td>Slow mode</td>
</tr>
<tr>
<td>Nonclustered index and no triggers</td>
<td>Fast mode</td>
<td>Slow mode</td>
</tr>
<tr>
<td>Triggers, and no indexes</td>
<td>Fast mode</td>
<td>Fast mode</td>
</tr>
<tr>
<td>Nonclustered index with triggers</td>
<td>Fast mode</td>
<td>Fast mode</td>
</tr>
<tr>
<td>No indexes, no triggers, and no replication</td>
<td>Fast mode</td>
<td>Fast mode</td>
</tr>
</tbody>
</table>

bcp Requirements

Before using bcp, provide it with basic data information and prepare both the data for transfer and the command to access the data.
CHAPTER 2 Transferring Data to and from Adaptive Server with bcp

Basic Requirements

To transfer data successfully to and from Adaptive Server, supply:

- Name of the database and table or view
- Name of the operating system file
- Direction of the transfer (in or out)

Optionally, you may also use bcp to modify the storage type, storage length, and terminator for each column.

Permissions

You need an Adaptive Server account and the appropriate permissions on the database tables or views, as well as the operating system files to use in the transfer to use bcp.

- To copy data into a table, have insert and select permission on the table.
- To copy a table to an operating system file, have select permission on the following tables:
 - The table to copy
 - sysobjects
 - syscolumns
 - sysindexes

Pretransfer Tasks

Prepare the command and the data for transfer before using bcp in:

- To use either fast or fast-logged bcp, set select into/bulkcopy/pllsort to true.
 For example, to turn on this option for the pubs2 database, enter:

```
sp_dboption pubs2, "select into/bulkcopy/pllsort", true
```

 For more information, see “bcp Modes” on page 195.

 In addition:
 - If you are running Open Client version 11.1 or later and are using an external Sybase configuration file, enable bcp by adding:
Copy Data to a File

Use bcp to copy data from a table to an operating system file. Specify a table name and one or more partitions as the source.

You can copy data:
- To a single file for all partitions
- To a single file for each partition

If you do not specify a destination file name, Adaptive Server creates file names based on the partition names.

Examples

These examples show the copying of data from bigtable, which is partitioned three ways: ptn1, ptn2, and ptn3, to various operating system files.

This example copies the data in bigtable to file1:

```bash
bcp mydb..bigtable out file1
```

This example copies the data from ptn1, ptn2, and ptn3 to file2:

```bash
bcp mydb..bigtable partition ptn1, ptn2, ptn3 out file2
```

This example copies the data from ptn1 and ptn2 to data files ptn1.dat and ptn2.dat:

```bash
bcp mydb..bigtable partition ptn1, ptn2 out ptn1.dat, ptn2.dat
```
This example also copies the data from ptn1 and ptn2 to ptn1.dat and ptn2.dat. Enter:

```
bcp mydb..bigtable partition ptn1, ptn2 out
```

See Chapter 1, “Utility Commands Reference,” for complete syntax and usage information for bcp.

bcp Performance

To improve the performance of bcp:

- Use fast-logged bcp
- Use partitioned tables – several bcp sessions with a partitioned table can dramatically reduce the time required to copy the data. However, such performance improvements are more noticeable in fast and fast-logged bcp than in slow bcp.
- Use bcp in parallel to increase performance dramatically – parallel bulk copy can provide balanced data distribution across partitions. For more information, see “Using Parallel Bulk Copy to Copy Data into a Specific Partition” on page 206.

Note bcp does not fire any trigger that exists on the target table.

Using Fast, Fast-logged, or Slow bcp

The existence of indexes on tables affects transfer speed. Unless you explicitly specify fast-logged bcp on tables with indexes, bcp automatically uses slow mode, which logs data inserts in the transaction log. These logged inserts can cause the transaction log to become very large.

To control this data excess and ensure that the database is fully recoverable in the event of a failure, back up the log with dump transaction.
By default, the `select into/bulkcopy/pllsort` option is false (disabled) in newly created databases. When this option is disabled, `bcp` automatically uses slow mode. Fast and fast-logged `bcp` both require that `select into/bulkcopy/pllsort` option is set to true. To change the default setting for future databases, turn this option on in the model database.

Note You need not set the `select into/bulkcopy/pllsort` option to true to copy out data from, or to copy in data to a table that has indexes. Slow `bcp` always copies tables with indexes and logs all inserts.

While the `select into/bulkcopy/pllsort` option is on, you cannot dump the transaction log. Issuing `dump transaction` produces an error message instructing you to use `dump database` instead.

Warning! Be certain that you dump your database before you turn off the `select into/bulkcopy/pllsort` flag. If you have inserted unlogged data into your database, and you then perform a `dump transaction` before performing a `dump database`, you will not be able to recover your data.

Adaptive Server prohibits `dump transaction` after running fast `bcp`. Instead, use `dump database`. Because slow `bcp` is a minimally logged operation, Adaptive Server allows you to issue `dump transaction` after running slow `bcp` whether `select into/bulkcopy/pllsort` is set to true or false in the database.

When Does Adaptive Server Use Slow bcp?

Adaptive Server uses slow `bcp` when:

- `sp_dboption 'select into/bulkcopy/pllsort'` is off.
- `sp_dboption 'select into/bulkcopy/pllsort'` is on, but the table uses the allpages locking scheme and has a clustered index.
- `sp_dboption 'select into/bulkcopy/pllsort'` is on, but the table has a unique nonclustered index.

If the option `ignore_dup_key` option is enabled on the unique index, performing fast `bcp` can put the table and index in an inconsistent state if rows with duplicate keys are inserted. To avoid the inconsistency, Adaptive Server performs slow `bcp`.

- If the table has nonclustered indexes or triggers, and the table is marked for replication or the database is used as a warm standby.
Because fast bcp does not log inserts, if Adaptive Server uses fast bcp, the rows bcp copies cannot be recovered on the replication site if there is a problem. Adaptive Server uses slow bcp in these situations to maintain compatibility with applications that were written to use the old behavior.

When Does Adaptive Server Use Fast bcp?

Adaptive Server uses fast bcp when (in all cases sp_dboption 'select into/bulkcopy/pllsort' is enabled and the table does not have a clustered index):

- You do not explicitly specify fast-logged bcp.
- The table has a non-unique, nonclustered index. Adaptive Server logs the index updates and the page allocations only. It does not log inserts into the table.
- A table has triggers. However, bcp does not fire any triggers in the target table.
- A table has datarows or datapage locking scheme with a clustered index.

If the table includes nonclustered indexes or triggers, but sp_dboption 'select into/bulkcopy/pllsort' is not enabled, Adaptive Server uses slow bcp.

Fast bcp runs more slowly while a dump database is taking place.

Fast bcp logs only the page allocations. For copying data in, bcp is fastest if your database table has no indexes.

If you use fast bcp to make data inserts, which fast bcp does not log, you cannot back up (dump) the transaction log to a device. The changes are not in the log, and a restore cannot recover nonexistent backup data. The requested backup (dump transaction) produces an error message that instructs you to use dump database instead. This restriction remains in force until a dump database successfully completes. For more information about dump database and dump transaction, see the System Administration Guide, and the Reference Manual.

bcp optimization is performed by Adaptive Server and does not require that you use Open Client version 15.0 or later.

When Can Adaptive Server Use Fast-logged bcp?

Use fast-logged bcp on any table the includes indexes and triggers (bcp does not fire any triggers in the target table). Fast-logged bcp logs inserts to tables.
Use the `set logbulkcopy {on | off}` command to configure fast-logged `bcp` for the session. You may include the `set logbulkcopy {on | off}` with the `--initstring` 'Transact-SQL_command' parameter, which sends Transact-SQL commands to Adaptive Server before transferring the data. For example, this enables logging when you transfer the `titles.txt` data into the `pubs2..titles` table:

```
bcp pubs2..titles in titles.txt --initstring 'set logbulkcopy on'
```

Copying Tables with Indexes

The `bcp` program is optimized to load data into tables that do not have indexes associated with them. It loads data into tables without indexes at the fastest possible speed. Fast-logged `bcp` logs any data changes to the table.

When you copy data into a table that has one or more indexes, use fast and fast-logged `bcp`. This includes indexes implicitly created using the unique integrity constraint of a `create table` statement. However, `bcp` does not enforce the other integrity constraints defined for a table.

Note The log can grow very large during slow `bcp` because `bcp` logs inserts into a table that has indexes. After the bulk copy completes, back up your database with `dump database`, then truncate the log with `dump transaction` after the bulk copy completes and after you have backed up your database with `dump database`.

The performance penalty for copying data into a table that has indexes in place can be severe. If you are copying in a very large number of rows, it may be faster to drop all the indexes beforehand with `drop index` (or `alter table`, for indexes created as a unique constraint); set the database option; copy the data into the table; re-create the indexes; and then dump the database. Remember to allocate disk space for the construction of indexes: about 2.2 times the amount of space needed for the data.

Dropping Indexes

If you are copying a very large number of rows, you must have 1.2 times the amount of space needed for the data and enough space for the server to reconstruct a clustered index.

- If space is available, use `drop index` to drop all the indexes beforehand.
- If you do not have enough space for the server to sort the data and build the index or indexes, use slow `bcp`.

202

Adaptive Server Enterprise
Copying in Data with Fast and Fast-logged bcp

Table 2-1 summarizes the steps for copying in data to Adaptive Server using fast and fast-logged \textit{bcp}.

<table>
<thead>
<tr>
<th>Step</th>
<th>Who can do it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use \texttt{sp_dboption} to set \texttt{select into/bulkcopy/pllsort to true}.</td>
<td>System administrator or database owner</td>
</tr>
<tr>
<td>Have enough space to re-create any indexes on the table.</td>
<td>Table owner</td>
</tr>
<tr>
<td>Drop the indexes on the table.</td>
<td></td>
</tr>
<tr>
<td>Have insert permission on the table.</td>
<td>Granted by the table owner</td>
</tr>
<tr>
<td>Perform the copy with \textit{bcp}.</td>
<td>Any user with insert permission</td>
</tr>
<tr>
<td>Re-create the indexes.</td>
<td>Table owner</td>
</tr>
<tr>
<td>Reset \texttt{sp_dboption}, if required.</td>
<td>System administrator or database owner</td>
</tr>
<tr>
<td>Use \texttt{dump database} to back up the newly inserted data.</td>
<td>System administrator, operator, or database owner</td>
</tr>
<tr>
<td>Run stored procedures or queries to determine whether any of the newly loaded data violates rules.</td>
<td>Table owner or stored procedure owner</td>
</tr>
</tbody>
</table>

Bulk Copying Data into Partitioned Tables

In certain circumstances, you can improve \textit{bcp} performance dramatically by executing several \textit{bcp} sessions with a partitioned table.

Partitioned tables improve insert performance by reducing lock contention and by distributing I/O over multiple devices. \textit{bcp} performance with partitioned tables is improved primarily because of this distributed I/O.

When you execute a \textit{bcp} session on a partitioned table, consider:

- A partitioned table improves performance when you are bulk copying \texttt{in} to the table.
- The performance of slow \textit{bcp} does not improve as much with partitioned tables. Instead, drop all indexes and use fast or fast-logged \textit{bcp}, as described in Table 2-1 on page 203, to increase performance.
- Network traffic can quickly become a bottleneck when multiple \textit{bcp} sessions are being executed. If possible, use a local connection to the Adaptive Server to avoid this bottleneck.

When copying data into a partitioned table, you can:

- Copy the data randomly without regard to the partition to which data is copied. For example, to copy data from \texttt{file1} to \texttt{bigtable}, enter:
bcp mydb..bigtable in file1
To copy data from file1, file2, and file3 to bigtable, enter:
 bcp mydb..bigtable in file1, file2, file3

- Copy the data into a specific partition For example, to copy data from file1 to ptn1, file2 to ptn2, and file3 to ptn3, enter:
 bcp mydb..bigtable partition ptn1, ptn2, ptn3 in file1, file2, file3

To copy data from file1 to the first partition of bigtable, enter:
 bcp mydb..bigtable:1 in file1

If the table has a clustered index, bcp runs in slow mode and allows the index to control the placement of rows.

See Chapter 1, “Utility Commands Reference,” for complete syntax and usage information for bcp.

❖ Copying data randomly into partitions
To copy data randomly into partitioned tables when using multiple bcp sessions, you must:

1 Configure the table with as many partitions and physical devices as you require for your system.
 For more information, see the Performance and Tuning Guide, and “Using Parallel Bulk Copy to Copy Data into a Specific Partition” on page 206 of this manual.

2 Make sure Adaptive Server is configured with enough locks to support multiple bcp sessions. For information on configuring locks, see the System Administration Guide.

3 Remove the indexes on the table and enable fast or fast-logged bcp. See “Using Fast, Fast-logged, or Slow bcp” on page 199 for instructions.

 Note If you use slow bcp, performance may improve significantly after you remove the indexes.

4 Divide the bcp input file into as many files of equal size as the number of planned simultaneous bcp sessions.
 You also can use the -F first_row and -L last_row options to specify the start and end of each “input file.”
5 Execute the bcp sessions with separate files in parallel on the local Adaptive Server machine.

For example, on UNIX platforms, execute different sessions in different shell windows or start individual bcp sessions in the background.

See “Using Parallel Bulk Copy to Copy Data into a Specific Partition” on page 206 for a detailed description of copying data into partitioned tables.

Monitoring bcp Sessions with dbcc checktable and sp_helpsegment

If you do not specify which partition the bcp sessions should use, Adaptive Server randomly assigns the multiple bcp sessions to the table’s available partitions. If this random assignment occurs, be sure to monitor the partitions to ensure that the process has evenly distributed the inserts by using either of the following:

- `dbcc checktable` – to periodically to check the total page counts for each partition
- `sp_helpsegment` or `sp_helppartition` – to perform a similar check, but without locking the database objects

For more information about `dbcc checktable`, see the *System Administration Guide*. For more information about `sp_helpsegment` and `sp_helppartition`, see the *Reference Manual*.

For more information about table partitions, see the *Performance and Tuning Guide*.

Reducing Logging by Increasing Page Allocations

If you are using fast or fast-logged bcp, consider that each bcp in batch requires the page manager to allocate one or more extents. Each such allocation generates a single log record.

Use the number of pre-allocated extents configuration parameter to specify how many extents Adaptive Server is to allocate through the page manager.

- Valid values for the number of pre-allocated extents configuration parameter are from 0 to 32; the default value is 2.
- When performing large bcp operations, increase this number to prevent the page allocations from filling the log.
- Set this value to 0 to prevent large extent allocations, so that the page manager performs only single-page allocations.
Adaptive Server may allocate more pages than are actually needed, so keep the value small when space is limited. These pages are deallocated at the end of the batch.

In Adaptive Server version 15.5 and later, the maximum values of preallocated extents has been increased from 31 to 32.

Using a value of 32 for the number of pre-allocated extents parameter has a special significance for configuration, and impacts the space allocations Adaptive Server performs internally. If you set the number of preallocated extents to 32, Adaptive Server attempts to reserve an entire allocation unit of extents for utility operations that use a large-scale allocation scheme of space reservation, such as `bcp in` and `select into`.

Using the maximum number of preallocated extents can greatly improve the performance of these utilities, particularly when you run them in parallel. Using a value of 32 greatly increases the likelihood that each engine running the utility can work independently on its own allocation unit without interference from other engines.

For more information, see “Setting Configuration Parameters” in the *System Administration Guide: Volume 1*.

Using Parallel Bulk Copy to Copy Data into a Specific Partition

Use parallel bulk copy to copy data in parallel to a specific partition. Parallel bulk copy substantially increases performance during `bcp` sessions because it can split large bulk copy jobs into multiple sessions and run the sessions concurrently.

To use parallel bulk copy:

- The destination table must be partitioned.
 - Use `sp_helppartition` to see the number of partitions on the table.
 - Use `alter table ... partition` to partition the table, if the table is not already partitioned.
- The destination table should not contain indexes because:
 - If the table has a clustered index, this index determines the physical placement of the data, causing the partition specification in the `bcp` command to be ignored.
 - If any indexes exist, `bcp` automatically uses its slow bulk copy instead of its fast bulk copy mode.
• If nonclustered indexes exist on the tables, parallel bulk copy is likely to lead to deadlocks on index pages.
• Each partition should reside on a separate physical disk for the best performance.
• Before you copy data into your database, partition the table destined to contain the data.
• Parallel bulk copy can copy in to a table from multiple operating system files.

For all types of partitioned tables, use:
```
bcp tablename partition partition_name in file_name
```
For round-robin partitioned tables only, use:
```
bcp tablename partition_number in file_name
```

Figure 2-1 illustrates the parallel bulk copy process.

Figure 2-1: Copying data into a round-robin partitioned table using parallel bulk copy

Large file divided into four smaller files

File 1
```
bcp mydb..bigtable:1 in file 2 &
```
Copies into Partition 1

File 2
```
bcp mydb..bigtable:2 in file 2 &
```
Copies into Partition 2

File 3
```
bcp mydb..bigtable:3 in file 2 &
```
Copies into Partition 3

File 4
```
bcp mydb..bigtable:4 in file 2 &
```
Copies into Partition 4

Partitioned table
bcp Performance

See the *Transact-SQL Users Guide* for information about partitioning a table.

Note When using parallel bulk copy to copy data out, you cannot specify a partition number. You can, however, specify a partition name.

bcp in and Locks

When you copy in to a table using `bcp`—particularly when you copy in to a table using parallel `bcp`—the copy process acquires the following locks:

- An exclusive intent lock on the table
- An exclusive page lock on each data page or data row
- An exclusive lock on index pages, if any indexes exist

If you are copying in very large tables—especially if you are using simultaneous copies into a partitioned table—this can involve a very large number of locks.

To avoid running out of locks, increase the number of locks.

- To estimate the number of locks needed, use:
 \[
 \text{# of simultaneous batches} \times \left(\frac{\text{rows per batch}}{2016/\text{row length}} \right)
 \]

- To see the row length for a table, use:

  ```sql
  1> select maxlen
  2> from sysindexes
  3> where id = object_id("tablename") and (indid = 0 or indid = 1)
  ```

 See the *System Administration Guide* for more information about setting the number of locks.

- Use the `-b batchsize` flag to copy smaller batches; the default batch size is 1000 rows. The smallest batch size `bcp` can process is 1; the largest is 2147483647L.

- Run fewer batches concurrently.

Parallel Bulk Copy Methods

Use one of these methods to copy in data using parallel bulk copy:

- Start multiple `bcp` sessions in the background, and:
 - Specify the password at the command line.
• Use native mode, character mode, or a format file.
You can start bcp as many times as the table is partitioned.

• Create and use a format file:
 a Start bcp in interactive mode.
 b Answer the prompts.
 c Create a format file that stores your responses.
 d Put the process in the background when the copy begins.
 e Issue the next bcp command, and specify the format file created with
 the first bcp command.

• Start bcp sessions in multiple windows.
• Specify a partition to file mapping in a single bcp in command.
The client can execute independent bcp in sessions in parallel. The user can
 alternately specify the --maxconn option to control the maximum number
 of parallel connections that the bcp client can open to the server.

Parallel Bulk Copy Syntax

The syntax for parallel bulk copy is:

```
bcp table_name[;partition_number | partition_name] in file_name
   -Pmypassword
```

where:

• `table_name` – is the name of the table into which you are copying the data
• `partition_name` – is the name of the partition into which you are copying
• `file_name` – is the host file that contains the data
• `mypassword` – is your password

Using Parallel Bulk Copy on Round-robin Partitioned Tables

To copy sorted data in parallel into a specific partition:

• Specify the partition by appending a colon (:) plus the partition number to
 the table name. For example:
Note: The partition you specify must exist before you issue the bcp command.

- Split the sorted data into separate files, or delineate the “files” by specifying the first row (-F first_row) and the last row (-L last_row) of the host file.

- Note the number of partitions in the table, as this number limits the number of parallel bulk copy sessions that you can start.

For example, if a table has four partitions, and you start five parallel bulk copy jobs, only the first four jobs can run in parallel; the fifth job does not start until one of the first four jobs finish.

bcp copies each file or set of line numbers to a separate partition. For example, to use parallel bulk copy to copy in sorted data to mydb..bigtable from four files into four partitions, enter:

```
bcp mydb..bigtable:1 in file1 -Pmypassword -c &
bcp mydb..bigtable:2 in file2 -Pmypassword -c &
bcp mydb..bigtable:3 in file3 -Pmypassword -c &
bcp mydb..bigtable:4 in file4 -Pmypassword -c &
```

Parallel Bulk Copy and IDENTITY Columns

When you use parallel bulk copy, IDENTITY columns can cause a bottleneck. As bcp reads in the data, the utility both generates the values of the IDENTITY column and updates the IDENTITY column’s maximum value for each row. This extra work may adversely affect the performance improvement that you expected to receive from using parallel bulk copy.

To avoid this bottleneck, explicitly specify the IDENTITY starting point for each session.

Retaining Sort Order

If you copy sorted data into the table without explicitly specifying the IDENTITY starting point, bcp might not generate the IDENTITY column values in sorted order. Parallel bulk copy reads the information into all the partitions simultaneously and updates the values of the IDENTITY column as it reads in the data.

A bcp statement with no explicit starting point would produce IDENTITY column numbers similar to those shown in Figure 2-2:
The table has a maximum IDENTITY column number of 119, but the order is no longer meaningful.

To enforce unique IDENTITY column values in Adaptive Server, run bcp with either the -g or -E parameter.

Use `-g id_start_value` to specify an IDENTITY starting point for a session in the command line.

The -g parameter instructs Adaptive Server to generate a sequence of IDENTITY column values for the bcp session without checking and updating the maximum value of the table’s IDENTITY column for each row. Instead of checking, Adaptive Server updates the maximum value at the end of each batch.

Warning! Be cautious about inadvertently creating duplicate identity values when specifying overlapping identity value ranges.

To specify a starting IDENTITY value, enter:

```
bcp [-gid_start_value]
```

For example, to copy in four files, each of which has 100 rows, enter:

```
bcp mydb..bigtable in file1 -g100
bcp mydb..bigtable in file2 -g200
bcp mydb..bigtable in file3 -g300
bcp mydb..bigtable in file4 -g400
```

Using the -g parameter does not guarantee that the IDENTITY column values are unique. To ensure uniqueness:
Bulk Copying Encrypted Data

- Know how many rows are in the input files and what the highest existing value is. Use this information to set the starting values with the `-g` parameter and generate ranges that do not overlap.

 In the example above, if any file contains more than 100 rows, the identity values overlap into the next 100 rows of data, creating duplicate identity values.

- Verify that no one else is inserting data that can produce conflicting IDENTITY values.

Specifying the Value of a Table’s IDENTITY Column

By default, when you bulk copy data into a table with an IDENTITY column, `bcp` assigns each row a temporary IDENTITY column value of 0. This is effective only when copying data into a table. `bcp` reads the value of the ID column from the data file, but does not send it to the server. Instead, as `bcp` inserts each row into the table, the server assigns the row a unique, sequential IDENTITY column value, beginning with the value 1.

If you specify the `-E` flag when copying data into a table, `bcp` reads the value from the data file and sends it to the server which inserts the value into the table. If the number of rows inserted exceeds the maximum possible IDENTITY column value, Adaptive Server returns an error.

The `-E` parameter has no effect when you are bulk copying data out. Adaptive Server copies the ID column to the data file, unless you use the `-N` parameter. You cannot use the `-E` and `-g` flags together.

Bulk Copying Encrypted Data

`bcp` transfers encrypted data in and out of databases in either plain text or cipher text form. By default, `bcp` copies plain text data, data is automatically:

- Encrypted by Adaptive Server before insertion when executing `bcp in`. Slow `bcp` is used. The user must have `insert` and `select` permission on all columns.
- Decrypted by Adaptive Server when executing `bcp out`. `select` permission is required on all columns; in addition, `decrypt` permission is required on the encrypted columns.

This example copies the `customer` table out as plain text data in native machine format:

```
bcp uksales.dbo.customer out uk_customers -n -Uroy -Proy123
```
If the data to be copied out as plain text is encrypted by a key that uses an explicit password, supply that password to `bcp` using the `--c password` or `--colpasswd` options.

For example, if the salary column in the `employee` table is encrypted by a key that is protected by an explicit password, copy out only the salary data as plain text by providing `bcp` with the password, such as:

```
bcp hr.dbo.employee out -c -Upjones -PX15tgol --
colpasswd hr.dbo.employee.salary '4mIneIsonly'
```

Alternatively, if you know the name of the key that encrypts the salary column, use:

```
bcp hr.dbo.employee out -c -Upjones -PX15tgol --
keypasswd keydb.dbo.hr_key '4mIneIsonly'
```

`bcp` uses the password to issue a `set encryption passwd` command before selecting the data.

Use the `--keypasswd` and `--colpasswd` options in a similar way on the `bcp` command line when copying the data back in.

Use the `-C` option for `bcp` to copy the data as cipher text. When copying cipher text, you may copy data out and in across different operating systems. If you are copying character data as cipher text, both platforms must support the same character set.

The `-C` option for `bcp` allows administrators to run `bcp` when they lack `decrypt` permission on the data. When you use the `-C` option:

- Data is assumed to be in cipher text format during execution of `bcp in`, and Adaptive Server performs no encryption.

 Use the `-C` option only if the file being copied into Adaptive Server was created using the `-C` option on `bcp out`. The cipher text must have been copied from a column with exactly the same column attributes and encrypted by the same key as the column into which the data is being copied. Fast `bcp` is used. The user must have `insert` and `select` permission on the table.

- `bcp in -C` bypasses the domain rule and check constraint for encrypted columns if either exist on an encrypted column because, in this situation, Adaptive Server uses fast `bcp`. Domain rules and check constraints do not affect `bcp out -C`.

- If an access rule exists on an encrypted column, using `bcp out -C` results in a 2929 error. Access rules do not affect `bcp in -C`.
Using the bcp Options

- Data is copied out of Adaptive Server without decryption on bcp out. The cipher text data is in hexadecimal format. The user must have select permission on all columns. For copying cipher text, decrypt is not required on the encrypted columns.

- Encrypted char or varchar data retains the character set used by Adaptive Server at the time of encryption. If the data is copied in cipher text format to another server, the character set used on the target server must match that of the encrypted data copied from the source. The character set associated with the data on the source server when it was encrypted is not stored with the encrypted data and is not known or converted on the target server.

 You can also perform bcp without the -C option to avoid the character set issue.

 You cannot use the -J option (for character set conversion) with the -C option.

This example copies the customer table:

```
bcp uksales.dbo.customer out uk_customers -C -c -Uroy -Proy123
```

The cc_card column is copied out as human-readable cipher text. Other columns are copied in character format. User “roy” is not required to have decrypt permission on customer cc_card.

When copying data as cipher text, ensure that the same keys are available in the database when the data is copied back in. If necessary, use the ddlgen utility to move keys from one database to another.

Using the bcp Options

The information in this section clarifies some of the more complex options of the bcp syntax. For a complete description of the syntax, see bcp on page 14.

Using the Default Formats

bcp provides two command line options that create files with frequently used default formats. These options provide the easiest way to copy data in and out from Adaptive Server.
CHAPTER 2 Transferring Data to and from Adaptive Server with bcp

- The -n option uses “native” (operating system) formats.
- The -c option uses “character” (char datatype) for all columns. This datatype supplies tabs between fields on a row and a newline terminator, such as a carriage return, at the end of each row.

When you use the native or character options, bcp operates noninteractively and only asks you for your Adaptive Server password.

Native Format

The -n option creates files using native (operating system-specific) formats. Native formats usually create a more compact operating system file. For example, this command copies the publishers table to the file called pub_out, using native data format:

```
bcp pubs2..publishers out pub_out -n
```

The contents of `pub_out` are:

```
0736^MNew Age Books^FBoston^BMA0877^PBinnet  & Hardley^J
Washington^BDC1389^TAlgodata Infosystems^HBerkeley^BCA
```

bcp prefixed each field, except the pub_id, which is a char(4) datatype, with an ASCII character equal to the data length in the field. For example, “New Age Books” is 13 characters long, and ^M (Ctrl-m) is ASCII 13.

All the table data stored in `pub_out` is in the form of human-readable char or varchar data. In a table with numeric data, bcp writes the information to the file in the operating system’s data representation format, which may not be human-readable.
Using the bcp Options

bcp can copy data out to a file either as its native (database) datatype or as any datatype for which implicit conversion is supported for the datatype in question. bcp copies user-defined datatypes as their base datatype or as any datatype for which implicit conversion is supported. For more information on datatype conversions, see dbconvert in the Open Client DB-Library/C Reference Manual or the Adaptive Server Enterprise Reference Manual.

Note The bcp utility does not support copying data in native format from different operating systems; for example, copying from Windows to UNIX. Use the -c flag if you need to use bcp to copy files from one operating system to another.

Warning! Do not use row terminator (-t) or field terminator (-r) parameters with bcp in native format. Results are unpredictable and data may be corrupted.

Character Format

Character format (-c) uses the char datatype for all columns. It inserts tabs between fields in each row and a newline terminator at the end of each row.

For example, this command copies out the data from the publishers table in character format to the file pub_out:

bcp pubs2..publishers out pub_out -c
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

Change Terminators from the Command Line

Terminators are the characters that separate data fields (field terminators). The row terminator is the field terminator of the last field in the table or file. Use the -field_terminator and -row_terminator command line options with the character format option (-c) to change the terminators from the command line.

This example uses the comma (,) as the field terminator, and returns (\r) as the row terminator.

• In UNIX platforms:
bcp pubs2..publishers out pub_out -c -t , -r \\
If necessary, “escape” the backslash for your operating system command shell.

• In Windows:
 bcp pubs2..publishers out pub_out -c -t , -r \\
This bcp command line produces the following information:
 0736,New Age Books,Boston,MA
 0877,Binnet & Hardley,Washington,DC
 1389,Algodata Infosystems, Berkeley,CA

Note You can use the -t and -r options to change the default terminators without including the character option (-c).

Change the Defaults in Interactive bcp

If you do not specify native (-n) or character (-c) format, bcp prompts you interactively for:

• The file storage type
• The prefix length
• The terminator for each column of data to be copied
• A field length for fields that are to be stored as char or binary

The default values for these prompts produce the same results as using the native format, and provide a simple means for copying data out of a database for reloading into Adaptive Server later.

If you are copying data to or from Adaptive Server for use with other programs, base your answers to the prompts on the format required by the other software.

These four prompts provide an extremely flexible system that allows you either to read a file from other software or to create a file that requires little or no editing to conform to many other data formats.
Change the Defaults in Interactive bcp

Respond to bcp Prompts

Unless you supplied `bcp` with the `-P` parameter, it prompts you for your password when you copy data in or out using the `-n` (native format) or `-c` (character format) parameters. If you do not supply either the `-n`, `-c` or `-f formatfile` parameter, `bcp` prompts you for information for each field in the table or view.

Each prompt displays a default value, in brackets, which you can accept by pressing Return. The prompts include:

- The file storage type, which can be character or any valid Adaptive Server datatype
- The prefix length, which is an integer indicating the length in bytes of the following data
- The storage length of the data in the file for non-NULL fields
- The field terminator, which can be any character string
- (Windows) Scale and precision for numeric and decimal datatypes

The row terminator is the field terminator of the last field in the table, view, or file.

The bracketed defaults represent reasonable values for the datatypes of the field in question. For the most efficient use of space when copying out to a file:

- Use the default prompts
- Copy all data in the datatypes defined by their table
- Use prefixes as indicated
- Do not use terminators
- Accept the default lengths

Table 2-2 shows the `bcp` prompts, defaults, and the possible alternate user responses:

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Default provided</th>
<th>Possible user response</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Storage Type</td>
<td>Use database storage type for most fields except:</td>
<td>char to create or read a human-readable file;</td>
</tr>
<tr>
<td></td>
<td>• char for varchar</td>
<td>any Adaptive Server datatype where implicit conversion is</td>
</tr>
<tr>
<td></td>
<td>• binary for varbinary</td>
<td>supported.</td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise
File Storage Type

The file storage type prompt offers you choices about how to store the data in the file.

Copy data into a file as:
- Its database table type,
- A character string, or
- Any datatype for which implicit conversion is supported.

Note bcp copies user-defined datatypes as their base types.

Table 2-3 shows the default storage type for each Adaptive Server datatype and the abbreviations that are acceptable to bcp.
- For the most compact storage, use the default value.
- For character files, use char.
- The date storage type is the Adaptive Server internal storage format of datetime, not the host operating system format of the date.
timestamp data is treated as binary(8).

In Table 2-3, brackets [] indicate that you can use the initial character or the beginning characters of the word. For example, for “bit” use “b,” “bi,” or “bit.”

Table 2-3: File storage datatypes for bcp

<table>
<thead>
<tr>
<th>Table datatype</th>
<th>Storage type</th>
</tr>
</thead>
<tbody>
<tr>
<td>char, varchar</td>
<td>[char]</td>
</tr>
<tr>
<td>text</td>
<td>[ext]</td>
</tr>
<tr>
<td>int</td>
<td>[nt]</td>
</tr>
<tr>
<td>smallint</td>
<td>[mallint]</td>
</tr>
<tr>
<td>tinyint</td>
<td>[tinyint]</td>
</tr>
<tr>
<td>float</td>
<td>[loat]</td>
</tr>
<tr>
<td>money</td>
<td>[oney]</td>
</tr>
<tr>
<td>bit</td>
<td>[it]</td>
</tr>
<tr>
<td>datetime</td>
<td>[atetime]</td>
</tr>
<tr>
<td>binary, varbinary, timestamp</td>
<td>[x]</td>
</tr>
<tr>
<td>image</td>
<td>[mage]</td>
</tr>
<tr>
<td>smalldatetime</td>
<td>[D]</td>
</tr>
<tr>
<td>real</td>
<td>[r]</td>
</tr>
<tr>
<td>smallmoney</td>
<td>[M]</td>
</tr>
<tr>
<td>numeric</td>
<td>[n]</td>
</tr>
<tr>
<td>decimal</td>
<td>[e]</td>
</tr>
</tbody>
</table>

To display this list while using bcp interactively, type a question mark (?) in response to the prompt “Enter the file storage type”.

The values that appear in the prompts are the defaults. Your response determines how the data is stored in the output file; you need not indicate the column’s type in the database table.

bcp fails if you enter a type that is neither implicitly convertible or char. For example, you may not be able to use smallint for int data (you may get overflow errors), but you can use int for smallint.

When storing noncharacter datatypes as their database types, bcp writes the data to the file in Adaptive Server’s internal data representation format for the host operating system, rather than in human-readable form.
Before copying data that is in character format from a file into a database table, check the datatype entry rules in the Reference Manual: Building Blocks. Character data copied into the database with bcp must conform to those rules. If you do not specify the year first, dates in the undelimited \((yy)ymmdd\) format may result in overflow errors.

When you send host data files to sites that use terminals different from your own, inform them of the `datafile_charset` that you used to create the files.

Prefix Length

By default, bcp precedes each field that has a variable storage length with a string of one or more bytes indicating the length of the field, which enables the most compact file storage.

The default values in the prompts indicate the most efficient prefix length. For:

- Fixed-length fields – the prefix length should be 0.
- Fields of 255 bytes or less – the default prefix length is 1.
- text or image datatypes – the default prefix length is 4.
- binary and varbinary datatypes being converted to char storage types – the default prefix length is 2, since each byte of table data requires 2 bytes of file storage.
- binary, varbinary, and image data – use even numbers for the prefix and length. This maintains consistency with Adaptive Server, which stores data as an even number of hexadecimal digits.
- Any data column that permits null values – use a prefix length, other than 0, or a terminator to denote the length of each row’s data. bcp considers such columns, including columns with integer datatypes that might ordinarily be considered fixed-length columns, to be of variable length.
- Data with no prefix before its column – use a prefix length of 0.

A prefix length is a 1-, 2-, or 4-byte integer that represents the length of each data value in bytes, and it immediately precedes the data value in the host file. Unless you supply a terminator, bcp pads each stored field with spaces to the full length specified at the next prompt, “length.”
Because prefix lengths consist of native format integers, the resulting host file contains nonprintable characters, which could prevent you from printing the host file or from transmitting it through a communications program that cannot handle non-human-readable characters.

Field length

In almost all cases, use the bcp default value for the storage length while copying data out.

Note The terms “length” and “storage length” in this section refer to the operating system file, not to Adaptive Server field lengths.

If you are creating:

- A file to reload into Adaptive Server – the default prefixes and length keep the storage space needed to a minimum.
- A human-readable file – the default length prevents the truncation of data or the creation of overflow errors that cause bcp to fail.

Be familiar with the data to transfer, since you can change the default length by supplying another value. If you are copying character data in from other software, examine the source file carefully before choosing length values.

Note If the storage type is noncharacter, bcp stores the data in the operating system’s native data representation and does not prompt for a length.

When bcp converts noncharacter data to character storage, it suggests a default field length large enough to store the data without truncating datetime data or causing an overflow of numeric data.

- The default lengths are the number of bytes needed to display the longest value for the Adaptive Server datatype. Table 2-4 lists the default field lengths for data conversion to character storage.

Table 2-4: Default field lengths for noncharacter to character datatypes

<table>
<thead>
<tr>
<th>Datatype</th>
<th>Default size</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>12 bytes</td>
</tr>
<tr>
<td>smallint</td>
<td>6 bytes</td>
</tr>
<tr>
<td>tinyint</td>
<td>3 bytes</td>
</tr>
</tbody>
</table>
• If you specify a field length that is too short for numeric data when copying data out, `bcp` prints an overflow message and does not copy the data.

• The default length for binary and varbinary fields is twice the length defined for the column, since each byte of the field requires 2 bytes of file storage.

• If you accept the default storage length, the actual amount of storage space allocated depends on whether you specify a prefix length and terminators. If you specify a prefix length of:
 • 1, 2, or 4 – `bcp` uses a storage space of the actual length of the data, plus the length of the prefix, plus any terminators.
 • 0 and no terminator – `bcp` allocates the maximum amount of space shown in the prompt, which is the maximum space that may be needed for the datatype in question. `bcp` treats the field as if it were fixed length to determine where one field ends and the next begins.

 For example, if the field is defined as `varchar(30)`, `bcp` uses 30 bytes for each value, even if some of the values are only 1 character long.

• Fields defined in the database as `char`, `nchar`, and `binary`, and those that do not permit null values, are always padded with spaces (null bytes for binary) to the full length defined in the database. `timestamp` data is treated as `binary(8)`.

• If data in the `varchar` and `varbinary` fields is longer than the length specified for copy out, `bcp` silently truncates the data in the file at the specified length.

• `bcp` does not know how large any one data value will be before copying all the data, so it always pads `char` datatypes to their full specified length.
Change the Defaults in Interactive bcp

- The file storage type and length of a column need not be the same as the type and length of the column in the database table. The copy fails if the types and formats copied in are incompatible with the structure of the database table.

- File storage length generally indicates the maximum amount of transferable data for the column, excluding terminators and/or prefixes.

- When copying data into a table, bcp observes any defaults defined for columns and user-defined datatypes, but ignores rules in order to load data at the fastest possible speed.

- bcp considers any data column that can contain a null value to be variable length, so use either a length prefix or a terminator to denote the length of each row of data.

- The file storage type and length of a column need not be the same as the type and length of the column in the database table. (If types and formats copied in are incompatible with the structure of the database table, the copy fails.)

Field and Row Terminators

Use a terminator to mark the end of a column or row, separating one from the next. The default is no terminator.

- Field terminators separate table columns.

- A row terminator is a field terminator for the last field in the row of the table or file.

Terminators are very useful for dealing with character data because you can choose human-readable terminators. The bcp character option, which uses tabs between each column with a newline terminator at the end of each row, is an example of using terminators that enhance the readability of a data file.

Supply your own terminators when you prepare data for use with other programs, and you want to use bcp to prepare tabular data. The available terminators are:

- Tabs, indicated by \t
- New lines, indicated by \n
- Carriage returns, indicated by \r
- Backslash, indicated by \

Adaptive Server Enterprise
• Null terminators (no visible terminator), indicated by \0
• Any printable character, for example, *, A, t, |
• Strings of up to 10 printable characters, including some or all of the terminators listed above (for example, **\t**, end, !!!!!!!!!!, and \t--\n)

Note Control characters (ASCII 0–25) cannot be printed.

Choose Terminators

Choose terminators with patterns that do not appear in any of the data.

For example, using a tab terminator with a string of data that also contains a tab creates ambiguity: which tab represents the end of the string? bcp always looks for the first possible terminator, which in this case would be incorrect, since the first tab it would encounter would be part of the data string.

Data in native format can also conflict with terminators. If the values of these integers are not strictly limited in a column containing a 4-byte integer in native format, it is impossible to choose a terminator that is guaranteed not to appear inside the data. Use bcp’s native format option for data in native format.

Note “No terminator” differs from a “null terminator,” which is an invisible—but real—character.

• A field terminator string can be up to 30 characters long. The most common terminators are a tab (entered as \t and used for all columns except the last one), and a newline (entered as \n and used for the last field in a row). Other terminators are: \0 (the null terminator), \ (backslash), and \r (Return). When choosing a terminator, its pattern cannot appear in any of your character data, since bcp always looks for the first possible terminator.

For example, if you used tab terminators with a string that contained a tab, bcp cannot identify which tab represents the end of the string. bcp always looks for the first possible terminator, so, in this example it would find the wrong one.

A terminator or prefix affects the actual length of data transferred:
When a terminator or prefix is present, it affects the length of data transferred. If the length of an entry being copied out to a file is less than the storage length, it is immediately followed by the terminator or the prefix for the next field. The entry is not padded to the full storage length (char, nchar, and binary data is returned from Adaptive Server already padded to the full length).

When bcp is copying in from a file, data is transferred until either the number of bytes indicated in the “Length” prompt has been copied or the terminator is encountered. Once the number of bytes equal to the specified length has been transferred, the rest of the data is flushed until the terminator is encountered. When no terminator is used, the table storage length is strictly observed.

- Fields stored as char (except char, nchar, and binary fields) instead of their database datatypes take less file storage space with the default length and prefix or a terminator. bcp can use either a terminator or a prefix to determine the most efficient use of storage space. bcp suggests the maximum amount of storage space required for each field as the default. For char or varchar data, bcp accepts any length.

- Table 2-5 and Table 2-6 show the interaction of prefix lengths, terminators, and field length on the information in the file. “P” indicates the prefix in the stored table; “T” indicates the terminator; and dashes, (--) show appended spaces. An ellipsis (…) indicates that the pattern repeats for each field. The field length is 8 bytes for each column; “string” represents the 6-character field each time.
FORMAT FILES

After gathering information about each field in the table, bcp asks if you want to save the information to a format file and prompts for the file name.

Using a format file created for the data to be copied with bcp allows you to copy data in or out noninteractively without being prompted by bcp for information, since the format file supplies the information that bcp needs. Use this newly created format file at any other time to copy the data back into Adaptive Server or to copy data out from the table.

Figure 2-3 illustrates the format of the bcp format files. It shows the publishers table from the pubs2 database, with all the host file columns in character format, with no prefix, and using the default data length, a newline terminator at the end of the final column of a row, and tabs as terminators for all other columns.

Table 2-5: Adaptive Server char data

<table>
<thead>
<tr>
<th></th>
<th>Prefix length = 0</th>
<th>Prefix length = 1, 2, or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No terminator</td>
<td>string--string--...</td>
<td>Pstring--Pstring--...</td>
</tr>
<tr>
<td>Terminator</td>
<td>string--Tstring--T...</td>
<td>Pstring--TPstring--T...</td>
</tr>
</tbody>
</table>

Table 2-6: Other datatypes converted to char storage

<table>
<thead>
<tr>
<th></th>
<th>Prefix length = 0</th>
<th>Prefix length = 1, 2, or 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No terminator</td>
<td>string--string--...</td>
<td>PstringPstring...</td>
</tr>
<tr>
<td>Terminator</td>
<td>stringTstringT...</td>
<td>PstringTPstringT...</td>
</tr>
</tbody>
</table>
Using Figure 2-3 as the format file example, the names of the various elements of a bcp format file are:

- The Tabular Data Stream (TDS) version is always the first line of the file. It specifies the version of TDS that you are using, not the Adaptive Server version, and appears as a literal string without quotation marks. In Figure 2-3, the version is 10.0.

- The second line of a bcp format file is the number of columns, which refers to the number of records in the format file, not including lines 1 and 2. Each column in the host table has one line.

- One line for each column follows the first and second lines in the database table. Each line consists of elements that are usually separated by tabs, except for the host file datatype and the prefix length which are usually separated by a space. These elements are:

<table>
<thead>
<tr>
<th>Elements</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host file column order</td>
<td>The host file column order is the sequential number of the field in the host data file, which begins numbering at 1.</td>
</tr>
</tbody>
</table>
Elements

<table>
<thead>
<tr>
<th>Host file datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptions</td>
</tr>
<tr>
<td>The host file datatype refers to the storage format of the field in the host data file, not the datatype of the database table column. The host file datatypes and their storage formats are:</td>
</tr>
<tr>
<td>• SYBCHAR – char, chavarchar (ASCII), nchar, nvarchar</td>
</tr>
<tr>
<td>• SYBTEXT – text</td>
</tr>
<tr>
<td>• SYBBINARY – binary, timestamp, unichar, univarchar, varbinary</td>
</tr>
<tr>
<td>• SYBIMAGE – image</td>
</tr>
<tr>
<td>• SYBINT1 – tinyint</td>
</tr>
<tr>
<td>• SYBINT2 – smallint</td>
</tr>
<tr>
<td>• SYBINT4 – int</td>
</tr>
<tr>
<td>• SYBINT8 – bigint</td>
</tr>
<tr>
<td>• SYBFLT8 – float</td>
</tr>
<tr>
<td>• SYBREAL – real</td>
</tr>
<tr>
<td>• SYBBIT – bit</td>
</tr>
<tr>
<td>• SYBNUMERIC – numeric</td>
</tr>
<tr>
<td>• SYBDECIMAL – decimal</td>
</tr>
<tr>
<td>• SYBMONEY – money</td>
</tr>
<tr>
<td>• SYBMONEY4 – smallmoney</td>
</tr>
<tr>
<td>• SYBDATETIME – datetime</td>
</tr>
<tr>
<td>• SYBDATETIME4 – smalldatetime</td>
</tr>
<tr>
<td>• SYBDATE – date</td>
</tr>
<tr>
<td>• SYBTIME – time</td>
</tr>
<tr>
<td>• SYBUINT8 – unsigned bigint</td>
</tr>
<tr>
<td>• SYBUINT4 – unsigned int</td>
</tr>
<tr>
<td>• SYBUINT2 – unsigned smallint</td>
</tr>
<tr>
<td>• SYBUNIEXT – unitext</td>
</tr>
<tr>
<td>• SYBFLT8 – double</td>
</tr>
</tbody>
</table>

Data written to a host file in its native format preserves all of its precision. datetime and float values preserve all of their precision, even when they are converted to character format. Adaptive Server stores money values to a precision of one ten-thousandth of a monetary unit. However, when money values are converted to character format, their character format values are recorded only to the nearest two places.

Examples of Copying Out Data Interactively

By changing the default values of the prompts to `bcp`, you can prepare data for use with other software.

To create a human-readable file, respond to the `bcp` prompts:

- File storage type, enter 0.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Descriptions</th>
</tr>
</thead>
</table>
| Prefix length | Prefix length indicates the number of bytes in the field length prefix. The prefix length is a 0-, 1-, 2-, or 4-byte unsigned integer value embedded in the host data file that specifies the actual length of data contained in the field. Some fields may have a length prefix while others do not. The allowable prefix length values in bytes, and their ranges are:
 • 0. Range: No prefix
 • 1. Range: $2^8 - 1$; 0-255
 • 2. Range: $2^{16} - 1$; 0-65535
 • 4. Range: $2^{32} - 1$; 0-4,294,967,295 |
| Host file data length | Host file data length refers to the maximum number of bytes to copy for the field. To decide how much data to copy in or out, `bcp` uses one of:
 • The maximum field length
 • The prefix length, if any
 • The field terminator string, if any
 If more than one method of field length specification is given, `bcp` chooses the one that copies the least amount of data. |
| Terminator | The terminator can be up to 30 bytes of characters enclosed in quotation marks (" "). The terminator designates the end of data for the host data file. |
| Server column order | The server column order represents the colid (column ID) of the `syscolumns` column into which the host data file column is to be loaded. Together with the host file column order, this element maps host data file fields to the database table columns. |
| Server column name | The server column name is the name of the database table column into which this field is to be loaded. |
| Column precision | The column precision is the precision of the database table column into which this field is to be loaded. This element is present only if the storage format is numeric or decimal. |
| Column scale | The column scale is the scale of the database table column into which this field is to be loaded. This element is present only if the storage format is numeric or decimal. |
• Prefix length, enter 0.
• Field length, accept the default.
• Terminator – the field terminator you enter depends on the software that you plan to use.
 • Choose between delimited fields or fixed-length fields. Always use \(\backslash n\), the newline terminator, to terminate the last field.

 For fixed-length fields, do not use a terminator. Each field has a fixed length, with spaces to pad the fields. Adjacent fields, where the data completely fills the first field seem to run together, since there are no field separators on each line of output. See the example below.
 • For comma-delimited output, use a comma (,) as the terminator for each field. To create tabular output, use the tab character (\(\backslash t\)).

Copy Out Data with Field Lengths

The following example uses fixed-length fields to create output in the personal computer format called SDF (system data format). This format can be easily read or produced by other software.

Note For information about format files, see “Format Files” on page 227.

```
bcp pubs2..sales out sal_out
```

The results as stored in the sal_out file are:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5023</td>
<td>AB-123</td>
<td>DEF-425</td>
<td>1Z3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oct 31 1985</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>AB-872</td>
<td>DEF-732</td>
<td>2Z1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nov 6 1985</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>AX-532</td>
<td>FED-452</td>
<td>2Z7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dec 1 1990</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>BS-345</td>
<td>DSE-860</td>
<td>1F2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dec 12 1986</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>GH-542</td>
<td>NAD-713</td>
<td>9F9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 15 1987</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>NF-123</td>
<td>ADS-642</td>
<td>9G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jul 18 1987</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>XS-135</td>
<td>DER-432</td>
<td>8J2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 21 1991</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>ZA-000</td>
<td>ASD-324</td>
<td>4D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jul 27 1988</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>ZD-123</td>
<td>DFG-752</td>
<td>9G8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 21 1991</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>ZS-645</td>
<td>CAT-415</td>
<td>1B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 21 1991</td>
<td>12:00AM</td>
</tr>
<tr>
<td>5023</td>
<td>ZZ-999</td>
<td>ZZZ-999</td>
<td>0A0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 21 1991</td>
<td>12:00AM</td>
</tr>
<tr>
<td>6380</td>
<td>234518</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sep 30 1987</td>
<td>12:00AM</td>
</tr>
<tr>
<td>6380</td>
<td>342157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dec 13 1985</td>
<td>12:00AM</td>
</tr>
<tr>
<td>6380</td>
<td>356921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feb 17 1991</td>
<td>12:00AM</td>
</tr>
<tr>
<td>7066</td>
<td>BA27618</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oct 12 1985</td>
<td>12:00AM</td>
</tr>
</tbody>
</table>
Examples of Copying Out Data Interactively

The contents of the sal_fmt format file are:

```
10.0
3
1  SYBCHAR 04 "" 1  stor_id
2  SYBCHAR 020 "" 2  ord_num
3  SYBCHAR 026 "" 3  date
```

For information about format files, see “Format Files” on page 227.

Copy Out Data with Delimiters

In the following examples, bcp copies data interactively from the publishers table to a file.

Note For information about format files, see “Format Files” on page 227.

Comma-delimited, Newline-delimited with Format File

The first example creates an output file with commas between all fields in a row and a newline terminator at the end of each row. This example creates a format file (pub_fmt) that you can use later to copy the same or similar data back into Adaptive Server.

```
bcp pubs2..publishers out pub_out
```
CHAPTER 2 Transferring Data to and from Adaptive Server with bcp

The results as stored in the pub_out file are:

0736,New Age Books,Boston,MA
0877,Binnet & Hardley,Washington,DC
1389,Algodata Infosystems,Berkeley,CA

The contents of the pub_fmt format file are:

```
10.0
4
1  SYBCHAR 0 4 ""," 1  pub_id
2  SYBCHAR 0 40 ""," 2  pub_name
3  SYBCHAR 0 20 "", 3  city
4  SYBCHAR 0 2 "\n" 4  state
```

Tab-delimited with Format File

Similarly, the following example creates tab-delimited output from the table pubs2..publishers in the pub_out file.

```
bcp pubs2..publishers out pub_out
```

The results as stored in the pub_out file are:

| | | | |
|------|------------------|------------|
| 0736 | New Age Books | Boston | MA |
| 0877 | Binnet & Hardley | Washington | DC |
| 1389 | Algodata Infosystems | Berkeley | CA |

The contents of the pub_fmt format file are:

```
10.0
4
1  SYBCHAR 04 "\t" 1  pub_id
2  SYBCHAR 040 "\t" 2  pub_name
3  SYBCHAR 020 "\t" 3  city
4  SYBCHAR 02 "\n" 4  state
```

Examples of Copying In Data Interactively

To copy in data successfully to a table from a file, know what the terminators in the file are or what the field lengths are and specify them when you use bcp.
Examples of Copying In Data Interactively

The following examples show how to copy data in, either with fixed field lengths or with delimiters, using `bcp` with or without a format file.

Copy In Data with Field Lengths

In this example, `bcp` copies data from the `salesnew` file into the `pubs2..sales` table.

In the `salesnew` file are three fields: the first is 4 characters long, the second is 20, and the third is 26 characters long. Each row ends with a newline terminator (`\n`):

```
5023ZS-731-AAB-780-2B9 May 24 1993 12:00:00:000AM
5023XC-362-CFB-387-3Z5 May 24 1993 12:00:00:000AM
6380837206 May 24 1993 12:00:00:000AM
6380838441 May 24 1993 12:00:00:000AM
```

Use the following command to copy in the data interactively from `salesnew`:

```
bcp pubs2..sales in salesnew
```

The system responds to the `bcp` command:

Password:
Enter the file storage type of field stor_id [char]:
Enter prefix-length of field stor_id [0]:
Enter length of field stor_id [4]:
Enter field terminator [none]:
Enter the file storage type of field ord_num [char]:
Enter prefix-length of field ord_num [1]: 0
Enter length of field ord_num [20]:
Enter field terminator [none]:
Enter the file storage type of field date [datetime]: char
Enter prefix-length of field date [1]: 0
Enter length of field date [26]:
Enter field terminator [none]: \n
Do you want to save this format information in a file? [Y/n] y

Host filename [bcp.fmt]: `salesin_fmt`
Starting copy...
4 rows copied.
Clock Time (ms.): total = 1 Avg = 0 (116000.00 rows per sec.)

When you log in to Adaptive Server and access `sales`, you see the following data from `salesnew` appended to the table:

```
select * from sales
```
Since there is a unique clustered index on the `stor_id` and `ord_num` columns of `sales`, the new rows were sorted in order.

A conflict or violation can affect the copy process:

- Had there been any violations of the unique index on the columns in the data being copied from the file, `bcp` would have discarded the entire batch in which the violating row was encountered.
Examples of Copying In Data Interactively

A batch size of 1 evaluates each row individually, but loads more slowly and creates a separate data page for each row during a fast or fast-logged bcp session.

- If the types copied in are incompatible with the database types, the entire copy fails.

Copy In Data with Delimiters

In the following example, bcp copies data from the file newpubs into the table pubs2..publishers. In the newpubs file, each field in a row ends with a tab character (\t) and each row ends with a newline terminator (\n):

1111 Stone Age Books Boston MA
2222 Harley & Davidson Washington DC
3333 Infodata Algosystems Berkeley CA

Since newpubs contains all character data, use the character command-line flag and specify the terminators with command line options:

- In UNIX platforms:

bcp pubs2..publishers in newpubs -c -t\t -r\n
- In Windows:

bcp pubs2..publishers in newpubs -c -t\t -r\n
Copy In Data with a Format File

To copy data back into Adaptive Server using the saved pub_fmt format file, run:

 bcp pubs2..publishers in pub_out -fpub_fmt

Use the pub_fmt file to copy any data with the same format into Adaptive Server. If you have a similar data file with different delimiters, change the delimiters in the format file.

Similarly, edit the format file to reflect any changes to the field lengths, as long as all fields have the same length. For example, the moresales file contains:

804213-L-9 Jan 21 1993 12:00AM
804255-N-8 Mar 12 1993 12:00AM
804291-T-4 Mar 23 1993 12:00AM
Edit the sal_fmt format file to read:

```
10.0
3
1  SYBCHAR 0 4 "" 1 stor_id
2  SYBCHAR 0 7 "" 2 ord_num
3  SYBCHAR 0 21 "\n" 3 date
```

Then enter:

- For UNIX platforms:
  ```
  bcp pubs2..sales in moresales -fsal_fmt
  ```
- For Windows:
  ```
  bcp pubs2..sales in moresale -fsal_fmt
  ```

The system responds:

```
Starting copy...
4 rows copied.
Clock Time (ms.): total = 1 Avg = 0 (116000.00 rows per sec.)
```

bcp and Alternate Languages

Adaptive Server stores data using its default character set, which is configured during installation. If your terminal does not support that default character set, it may send confusing characters to bcp when you respond to prompts either by typing or by using host file scripts.

Omitting all character-set options causes bcp to use the character set that was named as the default for the platform. This default can cause communications problems:

- The default is not necessarily the same character set that was configured for Adaptive Server.
- The default may not necessarily be the character set that the client is using.

For more information about character sets and the associated flags, see Chapter 8, “Configuring Client/Server Character Set Conversions,” in the *System Administration Guide*.
Support for Initialization Strings

The `bcp` utility supports sending Transact-SQL commands, such as `set replication off`, to Adaptive Server before data is transferred.

Although you may use any Transact-SQL command as an initialization string for `bcp`, reset possible permanent changes to the server configuration after running `bcp`. For example, reset changes in a separate `isql` session.

bcp and Row-Level Access Rules

If Adaptive Server is enabled for row-level access, and you bulk-copy-out data, `bcp` copies out only the rows of data to which you have access. To copy out the entire table, first drop the access rules, then `bcp` out. Reinstate the access rules after you are done, if applicable.

If you bulk-copy-in data to a table that has access rules enabled, Adaptive Server may issue “uniqueness violation” errors. For example, if you load data from a `bcp` data file that was generated before the access rules were created on the table, and the `bcp` data file contains rows that were previously inserted into the table, you may receive this type of error.

If this happens, the table may look to the user like it does not include the rows that failed the `bcp` insert because of the uniqueness violation, but the user does not have access to the “missing” rows because of the access rules.

To copy in the entire table, drop the access rules, load the data, address any errors, then reinstate the access rules.

Copy In and Batch Files

Batching applies only to bulk copying in; it has no effect when copying out. By default, Adaptive Server copies all the rows in batches of 1000 lines. To specify a different batch size, use the command-line option `-b`.
bcp copies each batch in a single transaction. If Adaptive Server rejects any row in the batch, the entire transaction is rolled back. By default, bcp copies all rows in a single batch; use the -b parameter to change the default batch size. Adaptive Server considers each batch a single bcp operation, writes each batch to a separate data page, and continues to the next batch, regardless of whether the previous transaction succeeded.

When data is being copied in, it can be rejected by either Adaptive Server or bcp.

- Adaptive Server treats each batch as a separate transaction. If the server rejects any row in the batch, it rolls back the entire transaction.
- When bcp rejects a batch, it then continues to the next batch. Only fatal errors roll back the transaction.
- Adaptive Server generates error messages on a batch-by-batch basis, instead of row-by-row, and rejects each batch in which it finds an error. Error messages appear on your terminal and in the error file.

Improve Recoverability

To ensure better recoverability:

- Break large input files into smaller units.

 For example, if you use bcp with a batch size of 100,000 rows to bulk copy in 300,000 rows, and a fatal error occurs after row 200,000, bcp would have successfully copied in the first two batches—200,000 rows—to Adaptive Server. If you had not used batching, bcp would not have been able to copy in any rows to Adaptive Server.

- Set the trunc log on chkpt to true (on).

 The log entry for the transaction is available for truncation after the batch completes. If you copy into a database that has the trunc log on chkpt database option set on (true), the next automatic checkpoint removes the log entries for completed batches. This log cleaning breaks up large bcp operations and keeps the log from filling.

- Set -b batch_size to 10.

 The batch size parameter set to 10 causes bcp to reject the batch of 10 rows, including the defective row. The error log from this setting allows you to identify exactly which row failed.
A batch size of 1 is the smallest that bcp processes.

Note
bcp creates 1 data page per batch, and setting `b batch_size to 10` creates data pages with 10 rows on each page. If you set `-b batch_size to 1`, the setting creates data pages with 1 row on each page. This setting causes the data to load slowly and takes up storage space.

Batches and Partitioned Tables

When you bulk copy data into a partitioned table without specifying a partition number, Adaptive Server randomly assigns each batch to an available partition. Copying rows in a single batch places all those rows in a single partition, which can lead to load imbalance in the partitioned table.

To help keep partitioned tables balanced, use a small batch size when bulk copying data or specify the partition ID during the bcp session. For information about partitioning tables, see the *Performance and Tuning Guide*.

Copy Out and Text and Image Data

When you copy out text or image data, Adaptive Server, by default, copies only the first 32K of data in a text or image field. The `-T text_or_image_size` parameter allows you to specify a different value. For example, if the text field to copy out contains up to 40K of data, use the following command to copy out all 40K:

```plaintext
bcp pubs2..publishers out -T40960
```

Note
If a text or image field is larger than the given value or the default, bcp does not copy out the remaining data.
CHAPTER 2 Transferring Data to and from Adaptive Server with bcp

Specify a Network Packet Size

To improve the performance of large bulk copy operations, you may want to use larger network packet sizes than the defaults. The -A size option specifies the network packet size to use for the bcp session that you are beginning.

The value of size must be:

• Between the values of the default network packet size and max network packet size configuration parameters, and

• A multiple of 512.

Note The new packet size remains in effect for the current bcp session only.

For example, this command specifies that Adaptive Server send 40K of text or image data using a packet size of 4096 bytes for the bcp session:

 bcp pubs2..authors out -A 4096 -T40960

Copy In and Error Files

When you specify the -e error_file option with copy in, bcp stores the rows that it cannot copy in to Adaptive Server in the specified error file.

• The error file stores a line that:
 • Indicates which row failed and the error that occurred, and
 • Is an exact copy of the row in the host file.

• If the file name specified after -e already exists, bcp overwrites the existing file.

• If bcp does not encounter any errors, it does not create the file.

bcp in detects two types of errors:

• Data conversion errors

• Errors in building the row – for example, attempts to insert a NULL into columns that do not accept null values or to use invalid data formats, such as a 3-byte integer

The copy in process displays error messages on your monitor.
This example loads the `newpubs` file into the `publishers` database, storing any error rows in the `pub_err` file:

```
  bcp pubs2..publishers in newpubs -epub_err
```

When working with error files generated by `copy in`, note that:

- `bcp` stores rows in an error file only when the `bcp` program itself detects the error.
- `bcp` continues to copy rows until `bcp` encounters the maximum number of error rows, at which point `bcp` stops the copy.
- `bcp` sends rows to Adaptive Server in batches, so `bcp` cannot save copies of rows that are rejected by Adaptive Server, for example, a duplicate row for a table that has a unique index.
- Adaptive Server generates error messages on a batch-by-batch basis, instead of row-by-row, and rejects the entire batch if it finds an error.
- It is not considered an error for Adaptive Server to reject duplicate rows if either `allow_dup_row` or `ignore_dup_key` was set when a table’s index was created. The copy proceeds normally, but the duplicate rows are neither stored in the table nor in the `bcp` error file.

Copy Out and Error Files

During the copy out process, as with `copy in`, `bcp` overwrites any file of the same name and does not create an error file if no errors occurred.

There are two situations that cause rows to be logged in the error file during a copy out:

- A data conversion error in one of the row’s columns
- An I/O error in writing to the host file

When working with error files generated by `copy out`, note that:

- `bcp` logs rows in the error file in the default character format.
- All data values print as characters with tabs between the columns and a newline terminator at the end of each row.
Data Integrity for Defaults, Rules, and Triggers

To ensure integrity, bcp handles data to copy depending upon its element.

Defaults and Datatypes

When copying data into a table, bcp observes any defaults defined for the columns and datatypes. That is, if there is a null field in the data in a file, bcp loads the default value instead of the null value during the copy.

For example, here are two rows in a file to be loaded into authors:

```
409-56-7008,Bennet,David,415 658-9932,622 Pine St.,Berkeley,CA,USA,94705
213-46-8915,Green,Marjorie,,309 63rd St. #411,Oakland,CA,USA,94618
```

Commas separate the fields; a newline terminator separates the rows. There is no phone number for Marjorie Green. Because the phone column of the authors table has a default of “unknown,” the rows in the loaded table look like this:

```
409-56-7008 Bennet David 415 658-9932 622 Pine St.
213-46-8915 Green Marjorie unknown 309 63rd St. #411
```

Rules and Triggers

bcp, to enable its maximum speed for loading data, does not fire rules and triggers.

To find any rows that violate rules and triggers, copy the data into the table and run queries or stored procedures that test the rule or trigger conditions.

How bcp Differs from Other Utilities

The bcp utility, which copies entire tables or portions of a single table, is distinct from the other utilities that move data from one place to another.

The following list names these other utilities and their commands, and describes how best to use them to move data:
How bcp Differs from Other Utilities

• For dump database, load database, dump transaction, and load transaction – use the SQL commands dump database, load database, dump transaction, and load transaction for backup purposes only. Unlike bcp, the dump commands create a physical image of the entire database.

Use load database or load transaction to read data backed up with dump database or dump transaction.

For information on using the SQL dump and load commands, see the System Administration Guide and the Reference Manual.

• For insert, update, and delete – use the data modification commands insert, update, and delete, respectively, to add new rows to, change existing rows in, or remove rows from a table or view.

 • Use the insert command with a select statement to move data between tables.

 • Use the select statement with an into clause to create a new table, based on:

 • the columns named in the select statement,

 • the tables named in the from clause, and

 • data in the rows named in the where clause.

For details on adding, changing, and deleting data, see insert, update, and delete in the Reference Manual.
Building Servers Using dataserver

.dataserver is the executable form of the Adaptive Server program.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>245</td>
</tr>
<tr>
<td>Building a new master device</td>
<td>246</td>
</tr>
</tbody>
</table>

Adaptive Server does not use the buildmaster binary to build the master device. Instead, Sybase has incorporated the buildmaster functionality in the dataserver binary. This chapter discusses how to use dataserver to build your server.

Note The dataserver binary in Windows is called sqlsrv.exe. If you are using the Windows platform, substitute all reference to dataserver in this chapter with sqlsrv.

For a detailed description of dataserver syntax, see dataserver on page 49. For a detailed description of sqlsrv syntax, see sqlsrv on page 152.

Introduction

The dataserver command allows you to create master devices and databases with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pages allow you to create larger rows, which can improve your performance because Adaptive Server accesses more data each time it reads a page. For example, a 16K page can hold eight times the amount of data as a 2K page, an 8K page holds four times as much data as a 2K page, and so on, for all the sizes for logical pages.
Building a new master device

The logical page size is a server-wide setting; you cannot have databases with varying size logical pages within the same server. All tables are appropriately sized so that the row size does not exceed the current page size of the server. That is, rows cannot span multiple pages.

Building a new master device

You can create a new master device using the dataserver utility. The master device is built using the build mode in dataserver. After the master device is built, the server shuts down. You must then manually start the server in the start mode. After this you can start, stop, and restart Adaptive Server whenever necessary without having to rebuild the master device.

Note When you are building a master device you should allow an additional 8K for the config block.

Adaptive Server uses:

- Logical page size – these are the pages that the database objects are built with. A databases and any of its related objects must use the same logical page size. Logical page sizes come in sizes of 2K, 4K, 8K, and 16K.

- Virtual page size – this is the physical page allocation at the disk level, and is always done in 2K pages. All disk I/O is done in multiples of virtual page size.

- Memory page size – the memory allocated and managed within Adaptive Server. The memory page size is always in units of 2K pages.

To create a new master device with dataserver, use:

\[\text{dataserver -d device_name} \ldots\]

\[b [\text{master_device_size [k|K|m|M|g|G]}\]

\[-z \text{logical_page_size [k|K]}\]

\[-h\]

where:

- \text{-d device_name} – is the full path name of the device for the master database. The master database device must be writable by the user who starts Adaptive Server. The default master database device name is d_master.
-b – indicates that dataserver is in build mode and creating a new master device, and indicates the size of the master device. If you do not provide a unit specifier (k, m, g) for the size of the device, dataserver assumes a size in virtual pages. The size of a virtual page is always 2K. For example:

• -b 51204 – specifies a device of 51,204 virtual pages (100.0078125MB).
• -b 100M – specifies a device of 100MB

-z – specifies the logical page size, which is always 2K, 4K, 8K, or 16K. This parameter is optional during the build phase and is ignored during the start mode. If you do not include the -z parameter during the build mode, the master device is built with 2K logical pages.

-h – prints the syntax for the dataserver command.

See dataserver on page 49 for a full list of dataserver parameters and their definitions.

Environments when using dataserver

When you start an Adaptive Server with dataserver, Adaptive Server derives its running environment from:

• The configuration file you specify in -c configuration_file
• The default configuration file, servername.cfg, if you did not specify the -c parameter
• Default values if you did not specify either -c configuration_file or servername.cfg

Specifying device and logical page sizes when building a new Adaptive Server

To create a new Adaptive Server, issue dataserver using the -b and -z options. For example, to:

• Build a 100MB master device using the default logical page size (2K) and start the server:

```bash
dataserver -d /var/sybase/masterdb.dat -b100M -sMASTER2K
```
Building a new master device

- Build a 100MB master device with a logical page size of size 4K:

  ```
  dataserver -d /var/sybase/masterdb.dat -b100M -z4K -sMASTER4K
  ```

- Build a master device of 102,400 virtual pages of size 2K, create databases using a logical page size of 8K, and boot the server:

  ```
  dataserver -d /var/sybase/masterdb.dat -b102400 -z8K -sMASTER8K
  ```

 If the total requested space (102,400 x 2K = 200 MB) is insufficient to build all the required system databases using the specified logical page size, then an error message is reported, and the process fails.

Example

The following is a sample output of `dataserver` building a 200MB device with a 2K logical page size, called `personnel2k`:

```
dataserver -d /var/sybase/personnel2k.dat -b200M -z2k -sPERSONNEL2K
```

dataserver uses a default configuration file if you do not specify one:

```
00:0000:0000:2001/04/16 10:24:31.73 kernel Warning: Using default file '/var/sybase/PERSONNEL2K.cfg' since a configuration file was not specified. Specify a configuration file name in the RUNSERVER file to avoid this message.
```

To specify your own configuration file, use the `dataserver` `-c` parameter. See Chapter 11, “Setting Configuration Parameters” in the System Administration Guide for more information.

Adaptive Server treats all installations as an upgrade, regardless of whether you have an existing version of Adaptive Server or not. For this reason, you see the following output when running `dataserver`:

```
00:0000:000001:2001/04/16 10:24:32.63 server Database 'master' appears to be at an older revision than the present installation; SQL Server will assess it, and upgrade it as required.
```

```
00:0000:000001:2001/04/16 10:24:32.66 server Database 'master': beginning upgrade step [ID 1]: Initialize disk and create empty allocation units on master device.
```

```
00:0000:000001:2001/04/16 10:24:34.74 server Database 'master': beginning upgrade step [ID 2]: Bootstrap basic system catalogs in database.
```

dataserver continues creating the master database, including all of its tables such as `systypes`, `sysobjects` and `sysusages`:

```
00:0000:000001:2001/04/16 10:24:35.21 server Database 'master': beginning upgrade step [ID 3]: creating index (table systypes, index ncsystypes)
```

```
00:0000:000001:2001/04/16 10:24:35.36 server Database 'master': beginning
```
When dataserver has created the master database, it creates the model database:

When dataserver has created the model database, it creates the tempdb and sybsystemdb databases:

dataserver is successful when the server changes the default sort order and shuts down:
Building a new master device

00:0000:00001:2001/04/16 10:24:47.23 server Now loading SQL Server's new default sort order and character set

[...]
00:0000:00001:2001/04/16 10:24:47.31 server Default Sort Order successfully changed.

00:0000:00001:2001/04/16 10:24:47.37 server SQL Server shutdown after verifying System Indexes.

00:0000:00001:2001/04/16 10:24:47.37 kernel ueshutdown: exiting

Error messages If dataserver is not successful, you cannot start the server on that master device, and you see the following error message:

00:0000:00001:2001/04/16 19:02:39.53 kernel Use license file /var/sybase/SYSAM-1_0/licenses/license.dat.

00:0000:00001:2001/04/16 19:02:39.54 kernel The master device's configuration area appears to be corrupt. The server needs this data to boot, and so cannot continue. The server will shut down.

If you run dataserver with a user-specified configuration file that includes options that make it impossible to allocate a shared segment and start up a server, dataserver fails with an error message, and you cannot boot the server on that master device:

00:0000:00001:2001/04/16 19:04:01.11 kernel Use license file /var/sybase/SYSAM-1_0/licenses/license.dat.

00:0000:00000:2001/02/09 19:04:01.25 kernel Using config area from primary master device.

00:00000:00001:2001/04/16 19:04:01.36 server The value of the 'max total_memory' parameter (33792) defined in the configuration file is not high enough to set the other parameter values specified in the configuration file. 'max total_memory' should be greater than the logical memory '34343'.

Starting an existing Adaptive Server

To start an existing Adaptive Server, issue dataserver without the -b and -z options:

dataserver -d /sybase/masterdb.dat
Upgrading to a server with larger page sizes

Adaptive Servers earlier than version 12.5 used 2K logical page sizes. You cannot change an installation’s page size by upgrading. That is, if your current Adaptive Server uses 2K logical pages, you can upgrade only to an Adaptive Server that uses 2K logical pages.

However, you can migrate databases with 2K logical pages from earlier versions of Adaptive Server. For information on how to use the sybmigrate data migration tool, see Chapter 9, “Migrating Data Using sybmigrate.”

Viewing the current server limits

To display information about Adaptive Server’s limits:

- Run dbcc serverlimits, which includes the size of your server’s logical page size in its output. For example, enter:

 dbcc serverlimits

- Search for the string “logical page size” in the error log.
- Run select using the @@maxpagesize global variable, which displays the server’s logical page size:

 select @@maxpagesize

 8192
Building a new master device
dscp is a utility program that you use to view and edit server entries in the interfaces file.

Note \textit{dscp} is not available for Windows.

For a detailed description of \textit{dscp} syntax, see \textit{dscp} on page 89.

\section*{Getting Started with dscp}

\begin{itemize}
 \item \textbf{Starting dscp}
 \begin{itemize}
 \item Enter:
 \begin{verbatim}
 $SYBASE/$SYBASE_OCS/bin/dscp
 \end{verbatim}
 \end{itemize}
 \end{itemize}

 The dscp prompt, >>, appears.

\begin{itemize}
 \item \textbf{Getting help with dscp}
 \begin{itemize}
 \item To view the dscp help screen, enter one of the following commands:
 \begin{verbatim}
 help
 h
 ?
 \end{verbatim}
 \end{itemize}
\end{itemize}
Using a dscp Session

Before you can view, add, or modify server entries, you must open a session so that you can interact with the interfaces file.

You can have multiple sessions open at one time.

❖ Opening a session with the interfaces file

• Enter:

 open InterfacesDriver

 When you open a session, dscp provides the session’s number. For example, if you open a session using the open InterfacesDriver command, dscp displays the following message:

 ok

 Session 1 InterfacesDriver>>

❖ Listing all open sessions

• Enter:

 sess

❖ Switching to another open session

• Enter the following, where sess is the session number:

 switch sess

 For example, you are switched to session 3 if you enter:

 switch 3

 The switch keyword is optional. For example, entering “3” also switches you to session 3.

❖ Closing a session

• Enter the following, where sess is the session number:

 close sess

 For example, session 3 closes if you enter:

 close 3

 If you do not specify a session number, dscp closes the current session.
CHAPTER 4 Using dscp to View and Edit Server Entries

Working with Server Entries

Use dscp to add or modify server entries.

Adding and Modifying Server Entries

After you open a session, you can add or modify server entries associated with that session.

Note When you add or modify a server entry, dscp automatically creates or modifies both master and query lines. The master line and the query line of an interfaces file entry contain identical information.

Each server entry is made up of a set of attributes. When you add or modify a server entry, dscp prompts you for information about each attribute. Table 4-1 describes each attribute.

Table 4-1: Server attributes

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Type of value</th>
<th>Default value and valid values</th>
<th>Can be edited when adding or modifying a server entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Object</td>
<td>Integer</td>
<td>110</td>
<td>Adding No Modifying No</td>
</tr>
<tr>
<td>Version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Name</td>
<td>Character string</td>
<td>N/A</td>
<td>Adding N/A Modifying No</td>
</tr>
<tr>
<td>Server Service</td>
<td>Character string</td>
<td>SQL SERVER</td>
<td>Adding Yes Modifying No</td>
</tr>
<tr>
<td>Server Status</td>
<td>Integer</td>
<td>4
Valid values are:
1 Active
2 Stopped
3 Failed
4 Unknown</td>
<td>Adding No Modifying No</td>
</tr>
<tr>
<td>Transport Type</td>
<td>Character string</td>
<td>tcp, decnet, spx, tli, tcp</td>
<td>Adding Yes Modifying Yes</td>
</tr>
</tbody>
</table>

Note Adaptive Server does not support the TLI interface in threaded mode.
Adding a server entry

1 Enter:

 add servername

 You are now in add mode. You can continue to add server entries, but you
 cannot execute any other dscp commands until you exit this mode. While
 in add mode, dscp prompts you for information about servername.

2 Either:

 • Enter a value for each attribute, or
 • Press Return to accept the default value, which is shown in brackets
 []

 For example, dscp prompts for this information when you enter:

 add myserver

 Service: [SQL Server]
 Transport Type: [tcp] tcp
 Transport Address: victory 8001
 Security Mechanism []:

 A server entry can have up to 20 transport type/address combinations
 associated with it.

 For a description of the server attributes, see Table 4-1 on page 255.

3 To exit add mode:

 #done
Modifying a server entry
You cannot use dscp to modify the Version, Service, and Status entries in the interfaces file.

1 Enter:
 mod servername

 You are now in modify mode. You can continue to modify server entries, but you cannot execute any other dscp commands until you exit this mode. In modify mode, dscp prompts you for information about servername.

2 Either:
 • Enter a value for each attribute, or
 • Press Return to accept the default value, which is shown in brackets []

For example, dscp prompts for the following information when you enter:
 mod myserver

 Version: [1]
 Service: [SQL Server] Open Server
 Status: [4]
 Address:
 Transport Type: [tcp]
 Transport Address: [victory 1824] victory 1826
 Transport Type: [tcp]
 Transport Address: [victory 1828]
 Transport Type: []
 Security Mechanism []:

For a description of the server attributes, see Table 4-1 on page 255.

3 To delete an address:
 #del

4 To exit modify mode:
 #done

Copy Server Entries

dscp allows you to copy server entries within a session and between two sessions. You have four options when copying a server entry.

You can copy:
Working with Server Entries

- A server entry to a new name in the current session
- A server entry to a different session
- A server entry to a new name in a different session
- All entries in the current session to a different session

❖ Creating a new server entry within a session by copying
 - Enter:

    ```
    copy name1 to name2
    ```

 For example, dscp creates a new entry, “my_server,” that is identical to “myserver” when you enter:

    ```
    copy myserver to my_server
    ```

 You can then modify the new entry and leave the original intact.

❖ Copying a server entry without changing the name
 - Enter:

    ```
    copy name1 to sess
    ```

 For example, dscp copies the “myserver” entry in the current session to session 2 when you enter:

    ```
    copy myserver to 2
    ```

❖ Copying a server entry and rename it
 - Enter:

    ```
    copy name1 to sess name2
    ```

 For example, dscp copies the “myserver” entry in the current session to session 2 and renames it “my_server” when you enter:

    ```
    copy myserver to 2 my_server
    ```

❖ Copying all entries in the current session to a different session
 - Enter:

    ```
    copyall sess
    ```

 For example, dscp copies all entries in the current session to session 2 when you enter:

    ```
    copyall 2
List and view contents of server entries

You can list names and attributes associated with a session.

❖ **Listing names of server entries**

• Enter:

  list

❖ **Listing the attributes of server entries**

• Enter:

  list all

For a description of server attributes, see Table 4-1 on page 255.

❖ **Viewing the contents of a server entry**

• Enter:

  read servername

For example, the following information is displayed when you enter:

  read myserver

DIT base for object: interfaces
Distinguish name: myserver
Server Version: 1
Server Name: myserver
Server Service: SQL Server
Server Status: 4 (Unknown)
Server Address:
Transport Type: tcp
Transport Addr: victory 1824
Transport Type: tcp
Transport Addr: victory 1828

For a description of the server attributes, see Table 4-1 on page 255.

Delete server entries

You can delete one entry or all entries associated with a session.

❖ **Deleting entries associated with a session**

• Enter:

  del servername
Exiting dscp

For example, dscp deletes the entry for “myserver” when you enter:

```
 del myserver
```

❖ Deleting all entries associated with a session
  • Enter:

```
 delete-all
```

Exiting dscp

To exit dscp, enter either of the following:

```
 exit
 quit
```
CHAPTER 5

Using dsedit to View and Edit Server Entries

dsedit is a graphical utility that lets you view and edit server entries in the interfaces file (sql.ini in Windows).

For a detailed description of dsedit syntax, see dsedit on page 91.

Topic	Page
Starting dsedit in Windows | 261
Starting dsedit in UNIX | 262
Open an Editing Session in Windows | 263
Open an Editing Session in UNIX | 264
Add, View, and Edit Server Entries | 265
Troubleshooting dsedit | 272

Note UNIX users: If your system does not have X-Windows, use dscp to configure server entries in the interfaces file. See Chapter 4, “Using dscp to View and Edit Server Entries” for more information.

Starting dsedit in Windows

Start dsedit from the command prompt, the Windows Explorer, or the Sybase for Windows program group.

❖ Starting dsedit from the command prompt
• Enter:
  
  dsedit

  Specify these command-line arguments:
Starting dsedit in UNIX

- **-dsname** — specifies which directory service to connect to. dsname is the local name of the directory service, as listed in the libtcl.cfg file. If you do not specify -dsname, dsedit presents a list of directory service options in the first dialog box.

- **-path** — specifies the path to the libtcl.cfg file, if other than $SYBASE_home\INI. Use this only if you want to use a libtcl.cfg file other than the one located in $SYBASE_home\INI.

Starting dsedit through the Windows Explorer
1. Go to the %SYBASE%\bin directory.
2. Double-click on the DSEdIT.exe file.

Starting dsedit from the Sybase for Windows program group
2. Choose dsedit. The Select Directory Service dialog box appears.

Starting dsedit in UNIX
Before starting dsedit, verify that you have write permission on the interfaces file.

If you are running dsedit from a remote machine, verify that the DISPLAY environment variable is set so the dsedit screens display on your machine instead of on the remote machine.

Setting the DISPLAY environment variable
1. Log in to the remote machine.
2. Enter:

   ```
 setenv DISPLAY your_machine_name:0.0
   ```

Starting dsedit
- Enter:

   ```
 $SYBASE/bin/dsedit
   ```
The Select a Directory Service window appears, letting you open editing sessions for the interfaces file. The full path name of the default interfaces file is shown in the Interfaces File to Edit box, and the full path name of the configuration file is shown below it.

Open an Editing Session in Windows

The Select Directory Service dialog box allows you to open a session with a directory service.

Open a session with:

- Any directory service that has a driver listed in the libtcl.cfg file
- The sql.ini file

Opening a session

- Double-click on the local name of the directory service you want to connect to, as listed in the DS Name box, or
- Click on the local name of the directory service you want to connect to, as listed in the DS Name box, and click the OK button.

Note dsedit uses the SYBASE environment variable to locate the libtcl.cfg file. If the SYBASE environment variable is not set correctly, dsedit cannot locate the libtcl.cfg file.

The session number and local name of the directory service appear in the header bar.

Opening additional sessions

dsedit allows you to have multiple sessions open at one time.

1. Choose Open Directory Service from the File menu.
   The Select Directory Service box appears.

2. Double-click the local name of the directory service to which you want to be connected (or click on the directory service name and click OK).

Opening multiple sessions allows you to copy entries between directory services. See “Copy Server Entries” on page 270.
Switching between sessions

If you have multiple sessions open at one time, activate a session before you can work in it, by either:

• Clicking in the session window
• Choosing the session from the Windows menu

The dsedit title bar shows which session is active.

Open an Editing Session in UNIX

Opening the default interfaces file for editing

• Select Sybase Interfaces File, then click OK.

Opening a file other than the default interfaces file

1 Select Sybase Interfaces File.
2 Edit the displayed file name, then click OK.

The Directory Service Session window appears.

You can open multiple interfaces file sessions with different files.

The Directory Service Session screen displays the full path name of the interfaces file and lists the server entries contained within it.

• Add new server entry – displays the Server Entry Editor window, where you specify the name and network addresses for a new server entry.

• Modify server entry – lets you view and modify the network addresses for a selected server entry. To view or modify a server entry, select the server in the list, then click Modify server entry to display the server’s attributes in the Server Entry Editor window.

• Copy server entry – lets you copy one or more entries to another interfaces file.

• Close Session – closes the session window and writes changes to the interfaces file.

For procedures on using these buttons, see “Modify Server Entries in Windows” on page 266.
Clicking the Add new server entry or Modify server entry button in the Session screen displays the Server Entry Editor window.

You use the Server Entry Editor window to view or edit server entries in an interfaces file:

- **Server name** – if you are adding a server entry, type the name of the new server. If you are editing a server entry, you can edit the name field to rename the server. The new name cannot already exist in the interfaces file.

- **Available network transports** – a list of the network addresses where the server accepts client connections.
  - To create a new address, click Add network transport. See “Modify Server Entries in Windows” on page 266.
  - To edit an existing address, click Modify network transport. See “Modify Server Entries in Windows” on page 266.
  - To remove a selected network address, click Delete network transport.
  - To rearrange the order of addresses in the list, click Move network transport up or Move network transport down.

- **OK** – commits your changes and closes the window. Changes to the interfaces file are not applied until you close the session using the Close Session button in the Directory Service Session screen.

- **Cancel** – closes the window and discards any edits.

### Add, View, and Edit Server Entries

Once you are in an open session, you can add, modify, rename and delete server entries associated with that session, as well as copy server entries within a session and between sessions.

Each server entry is made up of a set of attributes. The attributes are described in Table 5-1.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Type of value</th>
<th>Description</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Version</td>
<td>Integer</td>
<td>Version level of the server object definition. Sybase provides this attribute to identify future changes to the object definition.</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 5-1: Server attributes
## Add, View, and Edit Server Entries

### Attribute name | Type of value | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Name</td>
<td>Character string</td>
<td>Server name.</td>
</tr>
<tr>
<td>Server Service</td>
<td>Character string</td>
<td>A description of the service provided by the server. This value can be any meaningful description.</td>
</tr>
</tbody>
</table>
| Server Status   | Integer       | The operating status of the server. Values are:  
  • Active  
  • Stopped  
  • Failed  
  • Unknown  |
| Security Mechanism | Character string | Object identifier strings (OID) that specify the security mechanisms supported by the server. This attribute is optional. If it is omitted, Open Server allows clients to connect with any security mechanism for which Open Server has a corresponding security driver. |
| Server Address  | Character string | One or more addresses for the server.  
  The format of the address varies by protocol, and some protocols allow more than one format. The options are:  
  • TCP/IP – two formats:  
    • `computer name.port number`  
    • `ip-address.portnumber`  
  • Named Pipe – `pipe name`: “pipe” is a required prefix to all pipe names. Server pipes can be only local.  
    • `Local` – `\pipe\sql\query`  
    • `Remote` – `\computer_name\pipe\sql\query`  
  • IPX/SPX – three formats:  
    • `server name`  
    • `net number, node number, socket number`  
    • `server name, socket number`  
  • DECnet – four formats:  
    • `area number.node number.object name`  
    • `area number.node number.object number`  
    • `node name.object name`  
    • `node name.object number` |
|                |              | Default value |
|                |              | N/A |
|                |              | Adaptive Server |
|                |              | 4 |
|                |              | N/A |
|                |              | N/A |

## Modify Server Entries in Windows

The server entries associated with the session appear in the Server box. Click on a server entry to select it.
CHAPTER 5 Using dsedit to View and Edit Server Entries

❖ Adding a server entry
  1 Choose Server Object | Add.
  2 Type a server name in the Server Name box, then click OK.
  
  The server entry appears in the Server box. To specify an address for the server, you must modify the entry.

❖ Modifying a server attribute
  Modify any attribute of a server entry.
  1 Click on a server entry in the Server box.
  2 Choose Server Object | Modify Attribute.
  3 Click on the attribute to modify in the Attributes box. A dialog box appears that shows the current value of the attribute.
  4 Type a new value for the attribute, or select a value from the drop-down list, then click OK.
  
  See Table 5-1 on page 265 for a description of each attribute.

❖ Renaming a server entry
  1 Click on a server entry in the Server box.
  2 Choose Server Object | Rename.
  3 Type a new name for the server entry in the Server Name box, then click OK.

❖ Deleting a server entry
  1 Click on a server entry in the Server box.
  2 Choose Server Object | Delete.

❖ Copying server entries within the current session
  1 Click on one or more server entries in the Server box. To select multiple entries, use the Shift key.
  2 Click Copy (below the menu bar), or choose Edit | Copy.
  3 Click Paste (below the menu bar), or choose Edit | Paste. dsedit appends the copied server entries with a version number of n. You can rename the copied server entries Server Object | Rename option on. See “Renaming a server entry” on page 267.
Add, View, and Edit Server Entries

❖ Copying server entries between sessions
1. Open a session with the directory service or sql.ini file you want the entries copied to.
2. To open a session, choose File | Open Directory Service. See “Opening additional sessions” on page 263.
3. Click one or more server entries in the Server box of the session you want the entries copied from. To select multiple entries, use the Shift key.
4. To copy the server entries, click Copy (below the menu bar), or choose Edit | Copy.
   To cut the server entries, click Cut (below the menu bar), or choose Edit | Cut.
5. Activate the session where you want to paste the server entries. See “Switching between sessions” on page 264.
6. Click Paste (below the menu bar), or choose Edit | Paste.
   You can rename the copied server entries using Server Object | Rename. See “Switching between sessions” on page 264.

Modify Server Entries in UNIX
To modify server entries, open the interfaces session window using the instructions in “Open an Editing Session in Windows” on page 263.

Note After performing each procedure in this section, click Close Session to apply your edits to the interfaces file. Clicking this button also closes the interfaces session window.

❖ Adding a new server entry
1. Click Add new server entry.
2. Specify the name and network addresses for a new server entry.

❖ Viewing or modifying a server entry
1. Click Modify server entry.
2. Modify the attributes as desired.
CHAPTER 5  Using dsedit to View and Edit Server Entries

❖ Copying a server entry to another interfaces file

1 Select the entries to copy. You can:
   • Clicking once to copy a single entry.
   • Copying a range of consecutive entries by click the first entry in the range, then pressing and holding Shift key, and clicking the last entry in the range.
   • Select multiple, nonconsecutive entries by pressing and holding down the Ctrl key while you click each entry.

2 Click Copy server entry.

3 Select the Sybase interfaces file from the list.

4 Edit the displayed file name, then click OK.

Add or Edit Network Transport Addresses

You can view, edit, or create the transport addresses at which a server accepts client connections in the Network Transport Editor window.

This window displays the name of the server entry for the address and allows you to configure the following items:

• Transport type – specifies the protocol and interface for the address.
• Address information – depending on the transport type, different address components are required. The following sections discuss address formats in detail.

TCP/IP Addresses

The address information for a TCP/IP entry consists of a host name (or IP address) and a port number (entered as a decimal number). For tli tcp-formatted interfaces entries, the host’s IP address and the port number are converted to the 16-byte hexadecimal representation required for tli tcp-formatted interfaces entries.

Note  Adaptive Server does not support the TLI interface in threaded mode.

In interfaces entries, use tli tcp for:

• All pre-10.0 clients on platforms that use tli-formatted interfaces entries
Add, View, and Edit Server Entries

- Adaptive Server or Replication Server version 11.0.x or earlier on platforms that use tli-formatted interfaces entries

Use tcp for other clients and servers.

To indicate a TCP/IP address, choose tcp or tli tcp from the Transport Type menu.

SPX/IPX Addresses

SPX/IPX addresses allow Adaptive Server to listen for connections from client applications running on a Novell network. SPX/IPX addresses consist of the following information:

- Host address – an eight digit hexadecimal value representing the IP address of the computer on which the server runs. Each component of the dot-separated decimal IP address format maps to one byte in the hex address format. For example, if your host’s IP address is 128.15.15.14, enter “800F0F0E” as the SPX/IPX host address value.

- Port number – the port number, expressed as a four-digit hexadecimal number.

- Endpoint – the path for the device file that points to the SPX device driver. Defaults to /dev/mspx on Solaris and /dev/nspx on any other platform. If necessary, adjust the path so that it is correct for the machine on which the server runs. The default path is based on the platform on which you are running dsedit.

To indicate an SPX/IPX address, choose tli spx or spx from the Transport Type menu.

Copy Server Entries

dsedit allows you to copy server entries within a session and between sessions. This includes copying entries from a sql.ini file to a directory service.

❖ Copying server entries within the current session in Windows

1. Click one or more server entries in the Server box. Use the Shift key to select multiple entries.

2. Click Copy (below the menu bar), or choose Edit | Copy.
3 Click Paste (below the menu bar), or choose Edit | Paste. dsedit appends the copied server entries with a version number of \_n. You can rename the copied server entries using Server Object | Rename. See “Renaming a server entry” on page 267 for more information.

❖ Copying server entries between sessions in Windows

1 Open a session with the directory service or sql.ini file that you want the entries copied to.

2 To open a session, choose File | Open Directory Service. See “Opening additional sessions” on page 263.

3 Click one or more server entries in the Server box of the session that you want the entries copied from. Use the Shift key to select multiple entries.

4 To copy the server entries, click Copy (below the menu bar), or choose Edit | Copy.

   To cut the server entries, click Cut (below the menu bar), or choose Edit | Cut.

5 Activate the session where you want to paste the server entries. See “Switching to another open session” on page 254.

6 Click Paste (below the menu bar), or choose Edit | Paste.

   You can rename the copied server entries using the Rename command in the Server Object menu. See “Renaming a server entry” on page 267.

❖ Copying a server entry to another interfaces file in UNIX

1 To select the entries to copy:
   • Click it once to copy a single entry.
   • To copy a range of consecutive entries – click the first entry in the range, press and hold down Shift, and click the last entry in the range.
   • To select multiple, nonconsecutive entries, press and hold down the Ctrl key while you click each entry.

2 Click Copy server entry.

3 Select the Sybase interfaces file from the list.

4 Edit the displayed file name, then click OK.
### Troubleshooting dsedit

This section lists some common dsedit problems and describes how to correct them.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The <strong>dsedit</strong> utility does not start</td>
<td>Check for the following:</td>
</tr>
<tr>
<td></td>
<td>• The SYBASE environment variable is not set or points to the wrong directory.</td>
</tr>
<tr>
<td></td>
<td>• (UNIX platforms) X-Windows is not configured correctly. If you are running</td>
</tr>
<tr>
<td></td>
<td>dsedit on a remote host, make sure that X-Windows clients on the remote host can</td>
</tr>
<tr>
<td></td>
<td>connect to the X-Windows server on your own machine. See your X-Windows</td>
</tr>
<tr>
<td></td>
<td>documentation for more troubleshooting information. If X-Windows is not</td>
</tr>
<tr>
<td></td>
<td>available, use <strong>dscp</strong> instead of <strong>dsedit</strong>.</td>
</tr>
<tr>
<td>Error message: “Unable to open X display”</td>
<td>(UNIX platforms) <strong>dsedit</strong> might not work if the display machine is set up to reject</td>
</tr>
<tr>
<td></td>
<td>X-Windows connections from remote hosts. If this is the problem, you see a message similar to the following:</td>
</tr>
<tr>
<td></td>
<td>Unable to open X display. Check the value of your $DISPLAY variable. If it is set correctly, use the</td>
</tr>
<tr>
<td></td>
<td>'xhost +' command on the display machine to authorize use of the X display. If no X display is available, run</td>
</tr>
<tr>
<td></td>
<td><strong>dscp</strong> instead of <strong>dsedit</strong>.</td>
</tr>
<tr>
<td></td>
<td>This error may be caused by either of the following situations:</td>
</tr>
<tr>
<td></td>
<td>• The value for the DISPLAY environment variable is not entered correctly or is not set.</td>
</tr>
<tr>
<td></td>
<td><strong>Solution</strong>: Enter the DISPLAY environment variable correctly.</td>
</tr>
<tr>
<td></td>
<td>• You are not authorized to open windows on the machine to which DISPLAY refers.</td>
</tr>
<tr>
<td></td>
<td><strong>Solution</strong>: Run the command <code>xhost +</code> on the display machine.</td>
</tr>
<tr>
<td>Cannot add, modify, or delete server entries</td>
<td>Check for permissions problems with the interfaces file. To edit interfaces entries, you must have write permission on both the interfaces file and the Sybase installation directory.</td>
</tr>
</tbody>
</table>

**Troubleshooting dsedit**
isql is a command line interactive SQL parser to Adaptive Server.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting and stopping isql</td>
<td>273</td>
</tr>
<tr>
<td>How to use Transact-SQL in isql</td>
<td>274</td>
</tr>
<tr>
<td>Changing the command terminator</td>
<td>277</td>
</tr>
<tr>
<td>Performance statistics interaction with command terminator values</td>
<td>278</td>
</tr>
<tr>
<td>Input and output files</td>
<td>279</td>
</tr>
</tbody>
</table>

For a detailed description of isql syntax, see isql on page 99.

If you are running Open Client version 11.1 or later and are using an external Sybase configuration file, add the following in your configuration file to enable isql:

```
[isql]
```

### Starting and stopping isql

#### Starting isql

1. Enter this command at the operating-system prompt:
   
isql

2. When the prompt appears, enter your password.

   The password does not appear on the screen as you type. The isql prompt appears:
   
   1>

   You can now issue Transact-SQL commands.
How to use Transact-SQL in isql

❖ Stopping isql

- Enter either of these commands on a line by itself:

  quit
  exit

How to use Transact-SQL in isql

isql sends Transact-SQL commands to Adaptive Server, formatting the results and printing them to standard output. There is no maximum size for an isql statement. For more information about using Transact-SQL, see the Transact-SQL User’s Guide.

Note To use Transact-SQL directly from the operating system with the isql utility program, you must have an account, or login, on Adaptive Server.

To execute a Transact-SQL command, type the default command terminator “go” on a new line.

For example:

    isql
    Password:

    1> use pubs2
    2> go
    1> select *
    2> from authors
    3> where city = "Oakland"
    4> go

Formatting isql output

The width for isql output is adjusted according to the character-set expansion or the character width, and displays a output column of the maximum possible bytes.
For example, for the UTF8 character set, each character may use at most 4 bytes, so the output column width is the character number multiplied by 4. However, the output column width cannot be larger than the column defined value, and the column width is calculated using this formula:

\[
\text{Min}(\text{character_number} \times \text{max_character_width}, \text{column_defined_width})
\]

For example, if a column \texttt{col1} is defined as \texttt{varchar(10)}, then \texttt{left(col1, 2)} returns a width of eight, or four bytes per character. A value of \texttt{left(col1, 5)} returns a width of 10, and cannot be larger than the defined length, even though, according to the formula, \(5 \times 4 = 20\).

The options that change the format of \texttt{isql} output are:

- \texttt{-h headers} – the number of rows to print between column headings. The default is 1.
- \texttt{-s colseparator} – changes the column separator character. The default is single space.
- \texttt{-w columnwidth} – changes the line width. The default is 80 characters.
- \texttt{-e} – Includes each command issued to \texttt{isql} in the output
- \texttt{-n} – Removes numbering and prompt symbols

In this example, the query’s results are placed in a file called \texttt{output}:

```
isql -U user_name -P password -S server -e -n -o output
use pubs2
select * from authors
 where city = "Oakland"
go
quit
```

To view the contents of \texttt{output}, enter:

- (Windows) `type output`
- (UNIX) `cat output`

```
select *
from authors
 where city = "Oakland"
u_id au_lname au_fname phone address
```
How to use Transact-SQL in isql

<table>
<thead>
<tr>
<th>city</th>
<th>state</th>
<th>country</th>
<th>postalcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>213-46-8915</td>
<td>Green</td>
<td>Marjorie</td>
<td>415 986-7020 309 63rd St. #411</td>
</tr>
<tr>
<td>Oakland</td>
<td>CA</td>
<td>USA</td>
<td>94618</td>
</tr>
<tr>
<td>274-80-9391</td>
<td>Straight</td>
<td>Dick</td>
<td>415 834-2919 5420 College Av.</td>
</tr>
<tr>
<td>Oakland</td>
<td>CA</td>
<td>USA</td>
<td>94609</td>
</tr>
<tr>
<td>724-08-9931</td>
<td>Stringer</td>
<td>Dirk</td>
<td>415 843-2991 5420 Telegraph Av.</td>
</tr>
<tr>
<td>Oakland</td>
<td>CA</td>
<td>USA</td>
<td>94609</td>
</tr>
<tr>
<td>724-80-9391</td>
<td>MacFeather</td>
<td>Stearns</td>
<td>415 354-7128 44 Upland Hts.</td>
</tr>
<tr>
<td>Oakland</td>
<td>CA</td>
<td>USA</td>
<td>94612</td>
</tr>
<tr>
<td>756-30-7391</td>
<td>Karsen</td>
<td>Livia</td>
<td>415 534-9219 5720 McAuley St.</td>
</tr>
<tr>
<td>Oakland</td>
<td>CA</td>
<td>USA</td>
<td>94609</td>
</tr>
</tbody>
</table>

Note: The output file does not include the command terminator.

Correcting input

You can correct input when you make an error when typing a Transact-SQL command.

You can:

- Press Ctrl-c or type the word “reset” on a line by itself – this clears the query buffer and returns the isql prompt.
- Type the name of your text editor on a line by itself – this opens a text file where you can edit the query. When you write and save the file, you are returned to isql and the corrected query appears. Type “go” to execute it.

set options that affect output

A number of set options affect Transact-SQL output.

- char_convert – Turns character-set conversion off and on between Adaptive Server and a client; also starts a conversion between the server character set and a different client character set. The default is off.
- fipsflagger – Warns when any Transact-SQL extensions to entry-level SQL92 are used. This option does not disable the SQL extensions. Processing completes when you issue the non-ANSI SQL command. The default is off.
flushmessage – Sends messages as they are generated. The default is off.
language – Sets the language for system messages. The default is us_english.
nocount – Turns off report of number of rows affected. The default is off.
noreexec – Compiles each query but does not execute it; often used with showplan. The default is off.
parseonly – Checks the syntax of queries and returns error messages without compiling or executing the queries. The default is off.
showplan – Generates a description of the processing plan for a query; does not print results when used inside a stored procedure or trigger. The default is off.
statistics io, statistics time – Displays performance statistics after each execution. The default is off.
statistics subquerycache – Displays the number of cache hits, misses, and rows in the subquery cache for each subquery. The default is off.
textsize – Controls the number of bytes of text or image data returned. The default is 32K.

For more information, see set in the Reference Manual

Changing the command terminator

If you include the command terminator argument (-c), you can choose your own terminator symbol; go is the default value for this option. Always enter the command terminator without blanks or tabs in front of it.

For example, to use a period as the command terminator, invoke isql:

isql -c.

A sample isql session with this command terminator looks like:

1> select name from sysusers
2> .
name
----------
sandy
kim
leslie
(3 rows affected)
Using the isql command terminator option with scripts requires advance planning:

- When Adaptive Server supplies scripts, such as installmaster, use “go”. Do not change the command terminator for any session that uses these scripts.
- Your own scripts may already have “go” in them. Remember to update your scripts to include the terminator you plan to use.

Performance statistics interaction with command terminator values

isql provides a performance statistics option (-p).

For example, this syntax returns the following statistics:

```
isql -p
1> select * from sysobjects
2> go
```

```
Execution Time (ms.): 1000 Clock Time (ms.): 1000
1 xact:
```

This means that a single transaction took 100 milliseconds. The clock time value reflects the entire transaction, which starts when Client-Library™ builds the query and ends when Client-Library returns the information from Adaptive Server.

You can gather performance statistics based on the execution of one or more transactions. To gather statistics on more than one transaction, specify a number after the command terminator.

For example, the following command instructs Adaptive Server to execute three `select *` transactions and report the performance statistics:

```
isql -p

1> select * from sysobjects
2> go 3
```

```
Execution Time (ms.): 1000 Clock Time (ms.): 1000
Execution Time (ms.): 1000 Clock Time (ms.): 2000
Execution Time (ms.): 1000 Clock Time (ms.): 1000
Execution Time (ms.): 1000 Clock Time (ms.): 4000
```
Input and output files

You can specify input and output files on the command line with the -i and -o options.

isql does not provide formatting options for the output. However, you can use the -n option to eliminate the isql prompts and other tools to reformat the output.

If you use the -o option, isql echoes the input to output. The resulting output file contains both the queries and their results.

UNIX command line redirection

The UNIX redirection symbols, “<” and “>”, provide a similar mechanism to the -i and -o options.

For example:

```
isql -Usa < input > output
```

You can direct isql to take input from the terminal, as shown in this example:

```
isql -Usa -Ppassword -Sserver_name << EOF > output
use pubs2
 go
select * from table
 go
EOF
```

“<<EOF” instructs isql to take input from the terminal up to the string “EOF.”

You can replace “EOF” with any character string. Similarly, the following example signals the end of input with Ctrl-d:

```
isql -Usa << > output
```
Input and output files
Interactive SQL is the GUI-based sql utility, and allows you to execute SQL statements, build scripts, and display database data to the server.

You can use Interactive SQL to:

• Browse the information in a database.
• Test SQL statements that you plan to include in an application.
• Load data into a database and carrying out administrative tasks.

In addition, Interactive SQL can run command files or script files. For example, you can build repeatable scripts to run against a database and then use Interactive SQL to execute these scripts as batches.
Starting Interactive SQL

The menu item Open Interactive SQL opens a connection to a server. However, when you select the menu item for a server, Interactive SQL opens a connection to the default database for that server. When you select a specific database from the Open Interactive SQL menu, Interactive SQL opens to the selected database.

❖ Starting Interactive SQL from Sybase Central

There are two ways to start Interactive SQL:

• Select a database in Sybase Central and select File | Open Interactive SQL. Interactive SQL connects to the database. You can also right-click on the database and select Open Interactive SQL.

• Start Interactive SQL without a connection to a server, select Tools | Adaptive Server Enterprise | Open Interactive SQL. The Connect dialog appears.

❖ Starting Interactive SQL from the command line

How you start Interactive SQL from the command line depends on your operating system.

If you start Interactive SQL independently, the Connect dialog appears, which lets you connect to a database just as you would in Sybase Central.

• For UNIX, Sybase Central and Interactive SQL do not have to be installed under $SYBASE ($SYBASE does not even need to exist for them to start). Instead, they are installed under $SYBROOT, an environment variable set by the installer. Move to $SYBROOT and enter:

  dbisql

  On Windows, change to the %SYBROOT directory and enter:

  dbisql.bat

• In the Connection dialog, enter the information to connect to a database in the Connect dialog box and click OK.

To open a new Interactive SQL window:

1 Choose Window | New Window. The Connect dialog appears.

2 In the Connect dialog, enter connection options, and click OK to connect. The connection information (including the database name, your user ID, and the database server) appears on the title bar above the SQL Statements pane.
You can also connect to or disconnect from a database with the Connect and Disconnect commands in the SQL menu, or by executing a `connect` or `disconnect` statement in the SQL Statements pane.

**The main Interactive SQL window**

The Interactive SQL window includes four panes.

The panes are:

- **SQL Statement** – provides a place for you to type SQL statements.
- **Results** – displays the results of commands that you execute. For example, if you use SQL statements to search for specific data in the database, the Results tab in this pane displays the columns and rows that match the search criteria. If the information exceeds the size of the pane, scroll bars automatically appear. You can edit the result set on the Results tab.
- **Messages** – displays messages from the database server.
- **Plan** – displays the query optimizer’s execution plan for a SQL statement. For more information, see “Plan dialog tab.”

The window title displays the connection name. For Adaptive Server, the connection name is either the server name (determined by the server’s interfaces file entry) or the host name and port number the user enters at the time of connection.

**Plan dialog tab**

The Plan tab displays a GUI representation of execution engine’s plan for the currently running SQL text, and helps you understand the performance and statistic characteristics of the currently running query.

---

**Note** The Plan tab only appears if you connect to Adaptive Server version 15.0 and later.
The top half of the Plan tab shows the logical flow of the operators used in the plan in a tree-based, hierarchal structure, with each operator a separate node of the tree. The cost of each operator is based on the cost model used by the query processor. Each operator node in the tree is costed relative to other nodes, which makes it easier to identify operators based on their costs.

Each node includes tooltip text (text that appears when you move your mouse over the node) that provides details about each operator, so you do not have to select the nodes to compare details between operators.

The Plan tab includes:

- **Details** – shows the details of the operator statistics as:
  - Node Statistics table – shown for all the operators, and includes statistics like row count, logical I/O, and physical I/O.
  - Subtree Statistics table – the aggregate sum of all the operators below, and are shown for the non-leaf operators, and include statistics on row count, logical I/O, and physical I/O.
- **XML** – shows the result set as XML output.
- **Text** – shows the text version of the query plan (the same as the output of showplan).
- **Advanced** – includes:
  - Abstract query plan – shows the abstract query plan used by the query.
  - Resource utilization – describes the resources used by the plan, including number of threads and the auxiliary session descriptors (SDESs; every table scan requires one session descriptor to track the scan).
  - Cost – lists costs associated with the plan, including logical I/O, Physical I/O, and CPU usage.
  - Optimizer Metrics – lists the query-plan statistics, including query run time, run time for the first plan, number of plans evaluated, number of plans that were valid, and amount of procedure cache used.
  - Optimizer Statistics – lists the last time you ran update statistics on the table, any missing histogram steps, and the density of the steps.
CHAPTER 7  Using Interactive SQL in Graphics Mode

The Interactive SQL toolbar

The Interactive SQL toolbar appears at the top of the Interactive SQL window. Use the buttons on this toolbar to:

- Recall the executed SQL statement immediately before your current position in the history list.
- View a list of up to 50 previously executed SQL statements.
- Recall the executed SQL statement immediately after your current position in the history list.
- Execute the SQL statement that appears in the SQL Statements pane.
- Interrupt the execution of the current SQL statement.

Open multiple windows

You can open multiple Interactive SQL windows. Each window corresponds to a separate connection. You can connect simultaneously to two (or more) databases on different servers, or you can open concurrent connections to a single database.

Keyboard shortcuts

Interactive SQL provides these keyboard shortcuts.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT+F4</td>
<td>Exits Interactive SQL.</td>
</tr>
<tr>
<td>ALT+LEFT CURSOR</td>
<td>Displays the previous SQL statement in the history list.</td>
</tr>
<tr>
<td>ALT+RIGHT CURSOR</td>
<td>Displays the next SQL statement in the history list</td>
</tr>
<tr>
<td>CTRL+C</td>
<td>Copies the selected row(s) and column headings to the clipboard.</td>
</tr>
<tr>
<td>CTRL+END</td>
<td>Moves to the bottom of the current pane.</td>
</tr>
<tr>
<td>CTRL+F6</td>
<td>Cycles through the open Interactive SQL windows.</td>
</tr>
<tr>
<td>CTRL+H</td>
<td>Displays the history of your executed SQL statements during the current session.</td>
</tr>
<tr>
<td>CTRL+HOME</td>
<td>Moves to the top of the current pane.</td>
</tr>
<tr>
<td>CTRL+N</td>
<td>Clears the contents of the Interactive SQL window.</td>
</tr>
</tbody>
</table>
Using Interactive SQL to display data

Interactive SQL allows you to browse the information in databases.

You can display database information using the `SELECT` statement in Interactive SQL. Once you enter the statement, click the Execute SQL Statement button on the toolbar.

After you execute the statement, the result set appears in the Results pane. You can use the scroll bars to see areas of the table that are outside your current view of the pane.

- **Listing all the columns and rows of the authors table**
  1. Start Interactive SQL and connect to the pubs2 database.
  2. Enter this in the SQL Statements pane:
select * from authors

3 On the toolbar, click the Execute SQL Statement button.

You can add, delete, and update rows within the result set.

Edit table values in Interactive SQL

Once you execute a query in Interactive SQL, you can edit the result set to modify the database. You can also select rows from the result set and copy them for use in other applications. Interactive SQL supports editing, inserting, and deleting rows. These actions have the same result as executing update, insert, and delete statements.

Before you can copy, edit, insert, or delete rows, you must execute a query in Interactive SQL that returns a result set on the Results tab in the Results pane. When you edit the result set directly, Interactive SQL creates and executes a SQL statement that makes your change to the database table.

To edit a row or value in the result set, you must have the proper permissions on the table or column you want to modify values from. For example, to delete a row, you must have delete permission for the table the row belongs to.

Editing the result set may fail if you:

• Attempt to edit a row or column you do not have permission on.
• Select columns from a table with a primary key, but do not select all of the primary key columns.
• Attempt to edit the result set of a join (for example, there is data from more than one table in the result set).
• Enter an invalid value (for example, a string in a numeric column or a NULL in a column that does not allow NULLs).

When editing fails, an Interactive SQL error message appears explaining the error, and the database table values remain unchanged.

Once you make changes to table values, you must enter a commit statement to make the changes permanent. To undo your changes, you must execute a rollback statement.
Copy rows from the Interactive SQL result set

You can copy rows directly from the result set in Interactive SQL and then paste them into other applications. Copying rows also copies the column headings. Copied data is comma-delimited, which allows other applications, such as Microsoft Excel, to format the copied data correctly. By default, copied data is in ASCII format, and all strings are enclosed in single quotes. You can select only consecutive rows in the result set.

❖ Copying rows from the Interactive SQL result set

1. Select the rows you want to copy. To select a row(s):
   - Press and hold the Shift key while clicking the row(s), or
   - Press and hold the Shift key while using the Up or Down arrow.

2. Right-click the result set and select Copy from the pop-up menu. You can also copy the selected row(s) by pressing CTRL+C.

   The selected row(s), including their column headings, are copied to the clipboard. You can paste them into other applications by selecting Edit | Paste or by pressing CTRL+V.

Edit table values from the Interactive SQL result set

The Edit command allows you to change individual values within a row. You can change any or all of the values within existing rows in database tables. You must have update permission on the columns being modified. When you edit the result set, you can make changes to the values in only one row at a time.

❖ Editing a row in the result set

1. Select the row to edit

2. Right-click the result set and choose Edit from the pop-up menu. You can also press F2 to edit the result set.

3. A blinking cursor appears in the first value in the row.

4. Press Tab to move the cursor from column to column across the row. You can also edit a value by clicking the value in the selected row.

5. Enter the new value.

6. You cannot enter invalid datatypes into a column. For example, you cannot enter a string datatype into a column that is configured for the int datatype.
7 Execute a commit statement to make your changes to the table permanent.

**Insert rows into the database from the Interactive SQL result set**

The Insert command adds a new blank row to the database table. Use the Tab key to move between columns in the result set to add values to the row. When you add values to the table, characters are stored in the same case as they are entered. You must have insert permission on the table to add new rows (for information about insert permissions, see insert in Reference Manual: Commands).

❖ **Inserting a new row into the result set**
1 Right-click the result set and choose Add from the pop-up menu.

   A new blank row appears in the result set with a blinking cursor in the first value in the row.

   Press Tab to move the cursor from column to column across the row. You can also insert a value by clicking on the appropriate field in the selected row.

2 Enter the new value.

   You cannot enter invalid datatypes into a column. For example, you cannot enter a string into a column that accepts the int datatype.

3 Execute a commit statement to make your changes to the table permanent.

**Delete rows from the database using Interactive SQL**

The Delete command removes the selected rows from a database table. You must have delete permission on the table to delete rows.

❖ **Deleting a row from the result set**
1 Select the row(s) you want to delete. To select a rows:
   • Press and hold the Shift key while clicking the rows.
   • Press and hold the Shift key while using the Up or Down arrow.

   To delete non-consecutive rows, you must delete each row individually.
2 Right-click the result set and choose Delete from the pop-up menu. You can also delete the selected row(s) by pressing the Delete key. The selected row(s) are removed from the database table.

3 Execute a commit statement to make your changes to the table permanent.

SQL statements in Interactive SQL

You can enter all SQL statements as commands in the top pane of the Interactive SQL window. When you are finished typing, execute the statement to run it.

❖ Executing a SQL statement

1 Press the Execute SQL Statement button, or
2 Select F5.

To clear the SQL Statements pane, choose Edit | Clear SQL or press ESCAPE.

Note If you are running a long-running query, Interactive SQL displays a splash screen that describes some diagnostic tips.

Canceling an Interactive SQL command

Use the Interrupt button on the Interactive SQL toolbar to cancel a command.

A Stop operation stops current processing and prompts for the next command. If a command file was being processed, you are prompted for an action to take (Stop Command File, Continue, or Exit Interactive SQL). You can control these actions with the Interactive SQL ON_ERROR option.

When an interruption is detected, one of three different errors is reported, depending on when the interruption is detected. If the interruption is detected:

- When Interactive SQL is processing the request (as opposed to the database server), this message appears

    ISQL command terminated by user
Interactive SQL stops processing immediately and the current database transaction is not updated.

- By the database server while processing a data manipulation command (select, insert, delete, or update), this message appears:

  Statement interrupted by user.

  The effects of the current command are left unfinished, but the rest of the transaction is left intact.

- While the database server is processing a data definition command (create object, drop object, alter object, and so on.), this message appears:

  Terminated by user -- transaction rolled back

  Since data definition commands all perform a commit automatically before the command starts, rollback simply cancels the current command.

  This message also occurs when the database server is running in bulk operations mode executing a command that modifies the database (insert, update, and delete). In this case, rollback cancels not only the current command, but everything that has been done since the last commit. In some cases, it may take a considerable amount of time for the database server to perform the automatic rollback.

**Combining multiple statements**

Interactive SQL allows you to enter multiple statements at the same time. End each statement with the Transact-SQL command, go.

1 Enter multiple statements in the SQL Statements pane separated by go:

    update titles
    set price = 21.95
    where pub_id = "1389"
    go
    update titles
    set price = price + 2.05
    where pub_id = "0736"
    go
    update titles
    set price = price+2.0
    where pub_id = "0877"
    go
SQL statements in Interactive SQL

2 On the toolbar, click the Execute SQL Statement button (or select F9). All three statements are executed. After execution, the commands remain in the SQL Statements pane. To clear this pane, press the Esc key.

You can roll back your changes by entering rollback and executing the statement.

Looking up tables, columns, and procedures

Use Tools | Lookup Table Name and Tools | Lookup Procedure Name to look up the names of tables, columns, or procedures stored in the current database and insert them at your cursor position.

Note You must have jConnect for JDBC installed to use the functionality described in this section.

Enter the first characters of a table, column, or procedure in the Lookup Table Name and Lookup Procedure Name dialogs. This list narrows to display only those items that start with the text you entered.

You can use the standard SQL wildcard character % to mean “match anything”. Clear the search area to display all items.

❖ Looking up names of tables in the database
1 Choose Tools | Lookup Table Name.
2 Find and select the table.
3 Click OK to insert the table name into the SQL Statements pane.

❖ Looking up column names in the database
1 Choose Tools | Lookup Table Name.
2 Find and select the table containing the column.
3 Click Show Columns.
4 Select the column and click OK to insert the column name into the SQL Statements pane.

❖ Looking up procedure names in the database
1 Choose Tools | Lookup Procedure Name.
2 Find and select the procedure.
3 Click OK to insert the procedure name into the SQL Statements pane.

Recall commands

When you execute a command, Interactive SQL automatically saves it in a history list that lasts for the duration of your current session. Interactive SQL maintains a record of as many as 50 of the most recent commands.

You can view the entire list of commands in the Command History dialog by pressing Ctrl+H, or by selecting the book icon in the toolbar.

The most recent commands appear at the bottom of the list. To recall a command, highlight it and click OK. It appears in the SQL Statements pane.

You can also recall commands without the Command History dialog. Use the arrows in the toolbar to scroll back and forward through your commands, or press Alt+Right Arrow and Alt+Left Arrow.

You can save commands in text files and use them in a subsequent Interactive SQL session.

Log commands

With the Interactive SQL logging feature, you can record commands as you execute them. Interactive SQL continues to record until you stop the logging process, or until you end the current session. The recorded commands are stored in a log file.

❖ Beginning to log Interactive SQL commands
1 Choose SQL | Start Logging.
2 In the Save dialog, specify a location and name for the log file.
3 Click Save when finished.

To stop logging Interactive SQL commands, select SQL | Stop Logging.
To start logging by typing in the SQL Statements pane, enter and execute start logging "c:\file_name.sql", where c:\file_name.sql is the path, name, and extension of the log file. A log file must have the .sql extension. Include the single quotation marks if the path contains embedded spaces. To stop logging, enter and execute stop logging.

**Note** The commands start logging and stop logging are not Transact-SQL commands, and are not supported by Adaptive Server outside the Interactive SQL dialog box.

Once you start logging, all commands that you try to execute are logged, including ones that do not execute properly.

### Configure Interactive SQL

You can configure Interactive SQL in the Options dialog, which provides settings for commands, appearance, import/export features, and messages.

After you have made your selections, select either OK or Make Permanent. If you select Make Permanent, Interactive SQL starts with the configuration you selected.

You can set each option either by using the GUI, or by using the set option statement.

To access the Options dialog, choose Tools | Options.

### General dialog box

The General dialog box components that let you select when to commit transactions, how Interactive SQL acts when an error occurs, and whether to make a copy of scripts or commands into a log.

The components are:

- Commit – lets you select when transactions are committed. You can commit transactions automatically after each statement is executed or only when you exit your Interactive SQL session.
You can also commit manually by entering an explicit commit command whenever appropriate. The default behavior is that transactions are committed when you exit Interactive SQL.

- Command files – determine how Interactive SQL acts when an error occurs. When an error occurs:
  - Continue – Interactive SQL displays the error message in the Results pane but does not exit. Correct the problem, then reissue the command.
  - Exit – Interactive SQL exits when an error occurs.
  - Notify and Continue – Interactive SQL displays the error message in a dialog box and describes the error but does not exit.
  - Notify and Exit – Interactive SQL displays the error message in a dialog box, describes the error, and exits.
  - Notify and stop – Interactive SQL displays the error message and describes the error.
  - Prompt – the default setting. Interactive SQL displays a message box asking if you want to continue.
  - Stop – Interactive SQL displays the error message in the Results pane. Correct, then reissue the command.
  - Echo Command Files to Log – when you enable logging, this option causes SQL statements executed from script files (or command files) to be copied to the log along with the SQL statements entered interactively. If you disable this option, only SQL statements entered interactively are copied to the log when you start logging.

**Folders**

Determines in which directory the browser should start looking for files. Select either “Last folder used” or “Current folder.”

**Result dialog box**

The Results dialog box has multiple components that let you configure how your results from Interactive SQL appear.

The components are:

- Display null values – lets you specify how you want nulls to appear in the table columns when you browse data. The default setting is (NULL).
Configure Interactive SQL

- Maximum number of rows to display – limits the number of rows that appear. The default setting is 500.
- Truncation length – limits the number of characters that appear in each column in the Results pane in Interactive SQL. The default setting is 30.
- Show multiple result sets – enables or disables the display of multiple result sets. For example, you can use this feature when you create a procedure containing multiple select statements. If this option is enabled, you can see each result set on a separate tab in the Results pane when you call the procedure.
  
  If you are using the jConnect driver, choosing to display multiple result sets requires Interactive SQL to wait for an entire result set to be retrieved before any rows appear. This may result in longer waits for large result sets. This option is off by default.
- Show row number – check if you want the row numbers displayed in the result set.
- Automatically refetch result – enables or disables the ability of Interactive SQL to automatically regenerate the most recent result set after you execute an insert, update, or delete statement. For example, if you are updating a table with the Results tab in the Results pane displaying the rows about to be affected, this option causes Interactive SQL to automatically refresh the Results tab to reflect the executed changes. This option is on by default.
- Console Mode – select how you want the result sets displayed in the console; only the last result sets, all result sets, or no result sets.
- Font – select which font you want to use for the result set.

Import/Export dialog box

The Import/Export dialog box allows you to configure import and export settings in Interactive SQL.

The components are:
- Default export format – select the default file format for exporting. This format is automatically selected in the Files of Type field in the Save dialog, but you can still choose other formats. The default is also used when Interactive SQL interprets an output statement if no format is specified. The default setting is ASCII.
• Default import format – select the default file format for importing. This format is automatically selected in the Files of Type field in the Open dialog, but you can still choose other formats. The default is also used when Interactive SQL interprets an input statement if no format is specified. The default setting is ASCII.

• ASCII options – specify the default symbols that are used for the field separator, quote string, escape character, and the default encoding datatype when you import or export data in the ASCII format. The default settings are the comma (,) for the field separator, an apostrophe (‘) for the quote string, and a backslash (\) for the escape character.

By default, Interactive SQL uses the default datatype of the server.

**Messages dialog tab**

The Messages dialog box allows you to configure specify message settings in Interactive SQL.

The components are:

• Measure execution time for SQL statements – enables or disables the ability of Interactive SQL to measure the time it takes for a statement to execute. When this option is enabled (which is the default), the time appears in the Messages pane.

• Show separate Messages pane – lets you specify where information from the database server appears. By default, messages appear on the Messages tab in the Results pane. If you select this option, database server information appears in a separate Messages pane in the Interactive SQL window.

• Default number of lines in Messages pane – lets you specify the initial height (in lines) of the Messages pane. The default is 7 lines.

**Editor**

The Editor dialog box allows you to configure edit settings in Interactive SQL.

The components are:

• Editor – Select your scrollbar style preference: vertical, horizontal, or both.
• Tabs – This pane determines how tabs are used in your SQL text:
  • Tab size – enter the number of spaces you want each tab to comprise.
  • Indent size – Enter the number of spaces for each indent.
  • Tab radio buttons – Select Insert spaces to convert tabs to spaces when you indent SQL text. Select Keep tabs to retain tabs as spaces when you indent SQL text.
  • Auto indent – Select:
    • None if you do not want to automatically indent SQL text
    • Default to use the default tab and indent settings
    • Smart if you want Interactive SQL to automatically indent SQL text. Select Indent open brace to indent open braces or Indent closing brace to indent the closing braces. Interactive SQL displays how these decisions affect the text in the window below the buttons.
• Format – Determines the look of your SQL text.
  • Text Highlighting – select the type of text you want to highlight from the list (keywords, comments, strings, and so on).
  • Foreground – select the foreground color of the text.
  • Background – select the color of the text’s background field.
• Style
  • Font size – select the size font.
  • Caret color – determines the color of the caret.
  • Reset All – returns all styles to original selections.
• Print – Customizes your printed jobs:
  • Header – enter the header text.
  • Footer – enter the footer text.
  • Font size – select the font size.

**Query Editor**

The Query Editor dialog box allows you to configure the query editor settings in Interactive SQL.
The components are:

- Fully qualify table and column names – select this to have Interactive SQL prefix table names with the owner (for example, dbo.authors) and prefix column names with the owner and table names (for example, dbo.titles.price).
- Quote names – Select this to automatically put quotes around table and columns names to avoid conflicts with reserved words.
- Get list of tables on startup – Select this to automatically get a list of tables in the database when the query editor is started.

Processing command files

This section describes how to process files consisting of a set of commands.

Writing output to a file

In Interactive SQL, the output for each command remains in the Results pane until the next command is executed. To keep a record of your data, you can save the output of each statement to a separate file.

If statement1 and statement2 are two select statements, then you can output them to file1 and file2, respectively:

```
Statement1; OUTPUT TO file1
GO
Statement2; OUTPUT TO file2
GO
```

For example, this command saves the result of a query:

```
select * from titles
GO
output to "C:\My Documents\Employees.txt"
```

Executing command files

There are three ways to execute command files.
• Using the Interactive SQL read command to execute command files. this
  statement executes the file temp.sql:

        read temp.SQL

• Loading a command file into the SQL Statements pane and execute it
directly from there.

  You load command files back into the SQL Statements pane by choosing
  File | Open. Enter transfer.sql when prompted for the file name.

  The SQL Statements pane in Interactive SQL has a limit of 500 lines. For
  command files larger than this, you should use a generic editor capable of
  handling large files and use the read command to import it into Interactive
  SQL, which has no limit on the number of lines it can read.

• Supplying a command file as a command-line argument for Interactive
  SQL.

Saving, loading, and running command files

You can save the commands currently present in the SQL Statements pane so
they are available for future Interactive SQL sessions. The file in which you
save them is called a command file.

Command files are text files containing SQL statements. You can use any
editor you like to create command files. You can include comment lines along
with the SQL statements to be executed. These command files are commonly
called scripts.

When you begin a new session, you can load the contents of a command file
into the SQL Statements pane, or you can run the contents immediately.

❖ Saving the commands from the SQL Statements pane to a file
  1  Choose File | Save.
  2  In the Save dialog, specify a location, name, and format for the file. Click
    Save when finished.

❖ Loading commands from a file into the SQL Statements pane
  1  Choose File | Open
  2  In the Open dialog, find and select the file. Click Open when finished.
CHAPTER 7 Using Interactive SQL in Graphics Mode

❖ Running a command file immediately

1 Choose File | Run Script.

2 The Run Script menu item is the equivalent of a read statement. For example, in the SQL Statements pane, you can also run a command file by typing the following, where c:\filename.sql is the path, name, and extension of the file. Single quotation marks (as shown) are required only if the path contains spaces:

   READ "c:\filename.sql"

3 In the Open dialog, find and select the file. Click Open when finished.

   The Run Script menu item is the equivalent of a READ statement. For example, in the SQL Statements pane, you can also run a command file by typing the following, where c:\filename.sql is the path, name, and extension of the file. Single quotation marks (as shown) are required only if the path contains spaces:

   READ 'c:\filename.sql'

The SQL escape syntax in Interactive SQL

Interactive SQL supports JDBC escape syntax. This escape syntax allows you to call stored procedures from Interactive SQL regardless of the database management system you are using.

The general form for the escape syntax is:

   {{ keyword parameters }}

   The braces must be doubled. This doubling is specific to Interactive SQL. There must not be a space between successive braces: "{{" is acceptable, but "}{" is not. As well, you cannot use newline characters in the statement. You cannot use the escape syntax in stored procedures because they are not executed by Interactive SQL.

   You can use the escape syntax to access a library of functions implemented by the JDBC driver, including number, string, time, date, and system functions.

   For example, to obtain the name of the current user in a database management system-neutral way, you would type:

   select {{ fn user() }}
Interactive SQL commands

The functions that are available depend on the JDBC driver that you are using. The numeric functions that are supported by jConnect are:

```plaintext
abs cos log10 sign
acos cot pi sin
asin degrees power sqrt
atan exp radians tan
atan2 floor rand
ceiling log round
```

The string functions that are supported by jConnect are:

```plaintext
ascii difference repeat space
char lcase right substring
concat length soundex ucase
```

The system functions that are supported by jConnect are:

```plaintext
database ifnull user convert
curdate dayofweek monthname timestampadd
curtime hour now timestampdiff
dayname minute quarter year
dayofmonth month second
```

A statement using the escape syntax should work in Adaptive Server Anywhere, Adaptive Server Enterprise, Oracle, SQL Server, or another database management system that you are connected to from Interactive SQL. For example, to obtain database properties with the sa_db_info procedure using SQL escape syntax, type this in the SQL Statements pane in Interactive SQL:

```plaintext
((CANN sa_db_info(1)))
```

Interactive SQL commands

Interactive SQL includes a set of commands that are entered in the top pane of the Interactive SQL display. These commands are intended only for Interactive SQL and are not sent to Adaptive Server for execution.
The commands available for Interactive SQL are:

- `clear` – clears the Interactive SQL panes.
- `configure` – opens the Interactive SQL Options dialog.
- `connect` – establishes a connection to a database.
- `disconnect` – drops the current connection to a database.
- `exit` – leaves Interactive SQL.
- `input` – imports data into a database table from an external file or from the keyboard.
- `output` – imports data into a database table from an external file or from the keyboard.
- `parameters` – specifies parameters to an Interactive SQL command file.
- `read` – reads Interactive SQL statements from a file.
- `set connection` – changes the current database connection to another server.
- `set option` – use this statement to change the values of Interactive SQL options.
- `start logging` – use this statement to start logging executed SQL statements to a log file.
- `stop logging` – use this statement to stop logging of SQL statements in the current session.
- `system` – use this statement to launch an executable file from within Interactive SQL.

Interactive SQL commands
CHAPTER 8  sybcluster Interactive Commands Reference

Some interactive commands are active before you connect to a cluster, while others are active only after you connect to a cluster.

The sybcluster command prompt includes the current cluster and the default instance when these values have been set. The prompt is:

• > – when sybcluster is not connected to a cluster.
• cluster_name> – when sybcluster is connected to a cluster.
• cluster_name instance_name> – when sybcluster is connected to a cluster and a default instance has been set.

See “sybcluster” on page 168 for complete syntax and usage information.

Commands active before connecting to a cluster

These commands are active before you connect to a cluster, and are not available after you connect to a cluster:

• connect – connects to an existing cluster.
• create cluster – creates a new cluster.
• deploy plugin – deploys the configuration information for a single instance of the cluster to the Unified Agent.
• exit – exits sybcluster.
• help – lists the currently available sybcluster interactive commands.
• quit – exits sybcluster.
• show agents – displays information about available UAF agents.
Commands active after connecting to a cluster

These commands are active only after you connect to a cluster:

- **add backupserve** – configures one or more new Backup Servers on nodes in the cluster not currently configured for Backup Server.
- **add instance** – adds one new instance to the cluster.
- **create backupserver** – create Backup Server.
- **create xpserver** – creates an XP Server.
- **diagnose { cluster | instance }** – performs a set of checks to ensure the cluster or instance is working properly.
- **disconnect** – loses all connections to the current cluster and returns the cluster to the unconnected state.
- **drop backupserver** – drops the Backup Server.
- **drop cluster** – removes each instance from the cluster and deletes the cluster definition from the cluster configuration file.
- **drop xpserver** – drops the XP Server.
- **drop instance** – removes an instance from the cluster.
- **exit** – exits **sybcluster**.
- **help** – lists the currently available **sybcluster** interactive commands.
- **localize** – displays current values for default language, charset, and sort order. Allows you to change the default values and add or remove languages.
- **quit** – exits **sybcluster**.
- **set backupserver** – changes the listening port number for Backup Server on one or more nodes.
- **set cluster** – sets properties for the cluster.
- **set instance** – sets properties for the instance.
- **set xpserver** – changes the listening port number for XP Server on one or more nodes.
- **show backupserver config** – displays the names of the nodes on which Backup Server is configured and the associated listening port number.
- **show cluster** – displays configuration, log, and status values for the cluster.
• show instance – displays information about an instance.
• show membership mode – displays the cluster’s current membership mode, which specifies whether or not the cluster supports Veritas Cluster Server integration.
• show session – displays current agent and discovery information.
• show xpserver config – displays the names of the instances and nodes on which XP Server is configured and the associated listening port number.
• shutdown cluster – shuts down the cluster by executing a Transact-SQL shutdown command for each instance in the cluster.
• shutdown instance – shuts down the instance by executing a Transact-SQL shutdown command.
• start cluster – starts all instances in the cluster.
• start instance – starts an instance in the cluster.
• use – sets the default instance.
**add backupserver**

**Description**
Configures Backup Server for nodes not already configured for Backup Server.

**Syntax**
```
add backupserver
```

**Examples**
Adds a Backup Server to “mycluster” on nodes “blade3” and “blade4”:
```
add backupserver
Finding nodes for which Backup Server is not configured...
Do you want to configure Backup Server for node "blade3"? [Y]
Please enter the Backup Server port number for node "blade3": 5001
Do you want to configure Backup Server for node "blade4"? [Y]
Please enter the Backup Server port number for node "blade4": 50011
```

**Usage**
You can configure Backup Server for one or more nodes in the cluster.

add backupserver lets you add additional nodes when configuring for single Backup Servers. You cannot use this command to add multiple Backup Servers.
add instance

Description
Adds one new instance to the cluster.

You can add an instance interactively, with sybcluster prompting for necessary configuration information, or through an input file. add instance also creates a local system temporary database for the new instance. add instance prompts vary depending on whether configuration for the cluster is shared or private.

Syntax
add instance instance_name [ file "input_file"]

Parameters
instance_name
is the name of the instance.

file "input_file"
specifies a file name that contains the configuration information for adding an instance.

Usage
• add instance creates a local system temporary database for the new instance. Before executing add instance, make sure that a device with sufficient space for the local system database exists.

• The input file for add instance has the same format as the cluster input file. However, the add instance input file may limit the instance definitions to the new instance in the node section.

• add instance may prompt for this information:
  • The instance name, if you did not enter an instance name in the command statement.
  • The node hosting the instance
  • The port number of the UAF agent on the node
  • The query port number
  • The primary and secondary address of the node
  • The primary and secondary port specification

• If you have configured single Backup Servers for the cluster, add instance asks whether Backup Server is already configured for the new instance node. If no, add instance asks if Backup Server should be configured. If yes, it prompts for the Backup Server port for the node.

If you have configured multiple Backup Servers for the cluster, add instance prompts for:

• The name of the Backup Server
add instance

- The Backup Server log file path
- The Backup Server port for the new instance

add instance also prompts for XP Server port number information for the new instance.

- If the installation mode is private, add instance prompts for additional information for the new instance:
  - The $SYBASE home directory.
  - The environment shell script path.
  - The Adaptive Server home directory.
  - The server configuration file path.
  - The interfaces file path, if LDAP is not configured.
connect

Description
Connects to an existing cluster.

Syntax
connect [ to cluster_name ]
    [ login login_name ]
    [ password [password ]]  
    [ agent "agent_spec [, agent_spec [,...]]" ]  
    [ discovery "discovery_spec [, discovery_spec [,...]]" ]

Parameters
- **cluster_name**
  is the name of the cluster to which you are connecting.

- **login login_name**
  is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework.

  The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

  For information about Sybase Common Security, see *Unified Agent and Agent Management Console Version 2.0 for Windows and UNIX*.

- **password password**
  is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework.

  The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

- **agent agent_spec**
  is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that sybcluster uses to connect to the Unified Agent.

  The format is node_name:port_number[, node_name:port_number ][,...]. The default port number is 9999. This is the preferred method for connecting to a cluster.
connect
discovery discovery spec
is the discovery method used to identify the agents responsible for the requested cluster.

The format is method[(method specification)][, (method specification)]]...]].
See the description for sybcluster -d discovery_list for more information about discovery methods.

Examples

Example 1 Connects to “mycluster,” when “mycluster” is the default cluster specified in the sybcluster command statement:

    connect

Example 2 Connects to “mycluster” using the agent specification and default port numbers:

    connect to mycluster agent "blade1,blade2,blade3"

Usage

A direct connection is one in which the user identifies the cluster nodes and, optionally, the port numbers for the UAF agents. Sample agent specifications are:

• myhost – identifies the host node and assumes the default listening port of 9999.

• myhost.mydomain.com – includes the host domain name.

• myhost:9999 – identifies the host node and listening port number.
create backupserver

**Description**
Creates a Backup Server for the cluster, or, if the cluster is configured for multiple Backup Servers, creates a Backup Server for each instance in the cluster.

**Syntax**
create backupserver

**Examples**

**Example 1** Creates the Backup Server “mycluster_BS” for “mycluster”:

```plaintext
create backupserver
Do you want to create multiple Backup Servers? [Y] N
Enter the Backup Server name: [mycluster_BS]
Enter the Backup Server log file path: [$SYBASE/ASE-15_0/install/mycluster_BS.log]
Do you want to create a Backup Server for node "blade1"? [Y]
Enter the Backup Server port number for node "blade1":
The Backup Server "mycluster_BS" was successfully defined.
```

**Example 2** Creates multiple Backup Servers for “mycluster” running on “ase1” on “blade1” and “ase2” on “blade2”:

```plaintext
create backupserver
Do you want to create multiple Backup Servers? [Y] Y
The "dump/load" commands would be routed to appropriate Backup Server based on following policies:
1. Dedicated - Each instance associated with exactly one Backup Server.
2. Round Robin - Choose the Backup Server with least number of requests in round robin fashion starting from global cluster level counter.
Enter the number corresponding to the policy to be used: [1] 1
Enter the Backup Server name for instance ase1: [ase1_BS]
Enter Backup Server log file path: [/remote/var/sybase/install/ase1_BS_log]
Enter the Backup Server port for node "blade1": 23001
Enter the Backup Server name for instance ase2: [ase2_BS]
Enter Backup Server log file path: [/remote/var/sybase/install/ase2_BS_log]
Enter the Backup Server port for node "blade2": 23002
Backup Servers successfully defined.
```

**Usage**
create backupserver prompts for the Backup Server listening port on each node. It copies other necessary configuration information from the cluster configuration file. create backupserver:

- Creates directory service entries for Backup Server on each node.
- Creates the Backup Server configuration and log files, and the RUN_backup_server script.
create backupserver

- Adds the Backup Server name to the cluster’s sysservers table.
- Enables Backup Server HA.
create cluster

Description

Creates an Adaptive Server shared-disk cluster.

Enter the necessary configuration information interactively, as responses to a series of prompts, or use an input file.

Syntax

create cluster [cluster_name ]

[ login login_name ]

[ password password ]

[ agent "agent_spec[ , agent_spec[ , ...]]" ]

[ discovery "discovery_spec[ , discovery_spec[ , ...]]" ]

[ file "input_file" ]

Parameters

cluster_name

is the name of the cluster.

login login_name

is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the simple login module in the agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

password password

is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

agent agent_spec

is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that sybcluster uses to connect to the Unified Agent.

The format is node_name:port_number [, node_name:port_number][,...]. The default port number is “9999.”

discovery discovery_spec

is the discovery method used to identify the agents responsible for the requested cluster.

The format is method[(method_specification) ][, (method_specification)][,...].

See the description for sybcluster -d discovery_list.
create cluster

file "input_file"

is the operating system input file for creating the cluster.

Examples

Example 1 Creates a new cluster called “mycluster”;

    sybcluster prompts you for the information necessary to create the cluster:

    create cluster mycluster

Example 2 Creates a new cluster called “mycluster1” using configuration information supplied in the mycluster1.xml file:

    create cluster mycluster1 file mycluster1.xml

Usage

When you create a cluster, sybcluster prompts for the:

• Cluster name, if one has not been provided.
• Number of instances.
• Installation mode for the cluster (private or shared).
• Complete path to the master, quorum, PCI, systemdb, sybsysprocs, and temporary database devices.
• Path to the interfaces file, if LDAP is not configured and this is a shared install.
• (Optional) Trace flags.
• Complete path to the dataserver configuration file, if this is a shared install.
• Primary and secondary interconnection protocols.
• Instance host name, port number, private address, log file location, and start-up arguments.

    If this is a private installation, sybcluster also prompts for the $SYBASE installation directory, Adaptive Server home directory, dataserver configuration file location, and interfaces file location (if LDAP is not configured).

If sybcluster detects the Veritas Cluster Server (VCS) on the system, sybcluster asks if it should check whether device is managed by VCS.

After you create and confirm the cluster, create cluster prompts for an I/O fencing check, which checks whether or not each device has I/O fencing capability (see the Installation Guide for a description of I/O fencing).
**create xpserver**

Description  
Creates an XP Server for each instance in the cluster.

Syntax  
```create xpserver```

Examples
Creates an XP Server for each instance in “mycluster”:

```create xpserver```

Enter the XP Server port number for instance "ase1":
Enter the XP Server port number for instance "ase2":
Enter the XP Server port number for instance "ase3":
The XP Server was successfully defined for each instance.

Usage  
`create xpserver` prompts for the XP Server listening port for each node in the cluster. Other information necessary to create the XP Server is read from the cluster configuration file.
deploy plugin

Description

Adds the configuration information for a single instance of the cluster to the Unified Agent.

You can use deploy plugin to configure the Unified Agent to manage a cluster if you created the cluster without using the Adaptive Server plug-in or sybcluster utility, or if you need to re-create the Unified Agent configuration for a cluster. The configuration of a cluster instance is performed by deploying a Unified Agent plug-in.

Syntax

deploy plugin

[ login login_name ]
[ password password ]
[ agent agent_spec ]
[ discovery discovery_spec ]

Parameters

login login_name

is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework.

The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

password password

is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework.

The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

agent agent_spec

is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that sybcluster uses to connect to the Unified Agent.

The format is “node_name:port_number [, node_name:port_number] [...]]”. The default port number is “9999”. 
discovery discovery_spec
is the discovery method used to identify the agents responsible for the requested cluster.

The format is “method[(method_specification)][(method_specification)[,...]]”. See the description for sybcluster -d discovery_list for more information about discovery methods.

Examples

Example 1 Deploys the plug-in using the UAF agent on host “system1501”:

    deploy plugin agent system1501

sybcluster prompts for the cluster name, cluster node number, installation mode, full path to the quorum device, the environment shell script path, and the Adaptive Server home directory.

Example 2 Deploys the plug-in and uses discovery to identify the agent:

    deploy plugin discovery udp

Usage

After you execute deploy plugin, sybcluster prompts you for:

• The path to the quorum device.
• The path to the Sybase home directory.
• The installation mode (private or shared). The default is shared.
• The location of your Sybase environment script. This must be a shell script that can be loaded using the “file_name” syntax, such as “sh” or “bash”. An example is SYBASE.sh.
• The location of your Adaptive Server software directory. The default is <sybase_home_directory>/ASE-15.0. When entering the location of the Adaptive Server software directory, include the full path. Do not use $SYBASE.

The dataserver login and password are configured using the login command, which updates all Adaptive Server plug-ins managing the cluster.
diagnose cluster

Description
Performs a set of checks to ensure that the cluster is working correctly.

Syntax
diagnose cluster

Examples
Checks that “mycluster” is working correctly:

diagnose cluster
Cluster name.................. mycluster
Maximum instances............ 4
Cluster node count........... 1
Instances defined............ 4
Is cluster locked............. Yes
JDBC connection available.... 1 ase1 Yes
JDBC connection available.... 2 ase2 Yes
JDBC connection available.... 3 ase3 Yes
JDBC connection available.... 4 ase4 Yes
Instance Public Network...... 1 ase1 on blade1 (10.22.79.39) Reachable: Yes
Instance Public Network...... 2 ase2 on blade1 (10.22.79.39) Reachable: Yes
Instance Public Network...... 3 ase3 on blade1 (10.22.79.39) Reachable: Yes
Instance Public Network...... 4 ase4 on blade1 (10.22.79.39) Reachable: Yes
Has private Primary network.. No
Has private Secondary network.. No
Network ports required/instance 20
Minimum port allowed......... 1025
Maximum port allowed........... 65535

Current port strategy......... Public primary and secondary unique.
...The ports are sequenced primary followed by the next instance primary.
...When the primaries are are completed the secondary ports follow the same pattern.

Recommended port strategy....... Public primary and secondary unique.
...The ports are sequenced primary followed by the next instance primary.
...When the primaries are are completed the secondary ports follow the same pattern.

Usage
diagnose cluster checks that:

- A Unified Agent is running on each instance in the cluster.
- The number of instances in the cluster does not exceed the value set for maximum number of instances.
- The quorum file exists.
- All instances are defined in the interfaces file and that port numbers do not conflict.
• The primary and secondary protocol specifications do not overlap.
• Each of the $SYBASE$ directories are shared.
diagnose instance

Description
Performs a set of checks to ensure that the instance is configured correctly.

Syntax
diagnose instance [instance_name]

Parameters
instance_name
is the name of an instance. sybcluster uses the default value if you do not specify an instance name.

Examples
Displays and verifies configuration information for “ase1” on “mycluster”:

diagnose instance ase1
Cluster name ................ mycluster
Instance id .................. 1
Instance name ................ ase1
Node name .................... blade1

Query port ................. 7101

JDBC connection available .... Yes

Instance Public Network ......... 1 ase1 on blade1 (10.33.108.139)
Reachable:.....Yes

Minimum port allowed......... 1025
Maximum port allowed .......... 65535

Instance port range ........... 1 Primary ase1 17100 to 17115 (16) Okay
Instance port range ........... 1 Secondary ase1 17165 to 17180 (16) Okay

Usage
Use diagnose cluster to ensure the cluster is configured correctly.
disconnect

Description
Closes all connections to the current cluster and returns sybcluster to an unconnected state.

Syntax
disconnect

Usage
Use connect to reconnect to an existing cluster.
**drop backupserver**

**Description**
Drops Backup Server from a node or from the cluster. If the cluster is configured for multiple Backup Servers, drops all Backup Servers.

**Syntax**
`drop backupserver`

**Examples**

**Example 1** Drops a single Backup Server:

```
drop backupserver
Do you want to drop the Backup Server from:
 1. Selected nodes
 2. Cluster
Enter choice: 1
Do you want to drop Backup Server from node "blade1"? [N] y
Do you want to drop Backup Server from node "blade2"? [N]
The Backup Server has been dropped from selected nodes.
```

**Example 2** Drops the Backup Server from the cluster:

```
drop backupserver
Do you want to drop the Backup Server from:
 1. Selected nodes
 2. Cluster
Enter choice: 2
Are you sure you want to drop Backup Server mycluster_BS from cluster mycluster? (Y or N): [N] y
The Backup Server has been dropped.
```

**Example 3** Drops all of the multiple Backup Servers that were configured for the cluster:

```
drop backupserver
Multiple Backup Server are defined for the cluster. This command will drop all of them.
Are you sure you want to continue? (Y/N): [N] y
The Backup Server has been dropped.
```

**Usage**
Use `drop backupserver` to drop a Backup Server from the cluster.
drop cluster

Description

Removes each instance from a cluster and then removes the cluster definition from the cluster configuration file.

The `drop cluster` command also removes regular files associated with the cluster and the cluster agent plug-ins that manage the cluster. The cluster must be down to use `drop cluster`.

Syntax

drop cluster

Examples

Drops all instances from the current cluster and deletes the cluster:

drop cluster

Usage

- `sybcluster` prompts for confirmation before dropping the cluster.
- Due to certain file-system locking, the UAF plug-ins may not be deleted after you use `drop cluster`. Verify that the `$SYBASE_UA/nodes/*/plugins/<cluster_name>` directory has been deleted. If the directory still exists, delete it.
- `drop cluster`:
  - Removes cluster and instance entries from the interfaces file, configuration files, and specified data devices.
  - Marks the quorum device as unused.
  - Shuts down and removes the cluster’s UAF agent plug-ins.
drop instance

Description
Removes an instance from the cluster configuration file and updates the Unified Agent Framework (UAF) and discovery services. drop instance also notifies the cluster that an instance is to be dropped, and removes the instance and interfaces file entries.

Syntax
drop instance [instance_name]

Parameters
instance_name identifies an instance in a cluster. If an instance name is not specified, sybcluster uses the default specified in the sybcluster command line.

Examples
Removes the “ase3” instance from the current cluster:

drop instance ase3

Usage
• Before you use drop instance:
  • Start at least one instance in the cluster other than the instance you plan to drop.
  • Shut down the instance you plan to drop.
  • Manually remove instance-specific information. drop instance automatically removes the local system temporary database.

  • sybcluster prompts for confirmation before removing the instance.
  • You cannot drop the last instance in the cluster. You must use drop cluster.
  • drop instance removes references to the instance in the interfaces file, the instance entry in the quorum device, and notifies the cluster that the instance has been dropped.
  • drop instance removes entries for multiple and single Backup Servers if they were configured for the instance you are dropping.
  • drop instance drops XP Server and single or multiple Backup Servers if they have been configured for that instance.
drop xpserver

Description
Drops the XP Server for each instance in the cluster.

Syntax
drop xpserver

Examples
Drops the XP Servers for “mycluster”:

    drop xpserver
    Are you sure you want to drop the XP Servers from cluster
    mycluster"? {Y or N}: [N] y
    The XP Servers have been dropped for all instances.

Usage
Use drop xpserver to drop an XP Server from the cluster.
### exit

<table>
<thead>
<tr>
<th>Description</th>
<th>Exits the sybcluster utility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>exit</td>
</tr>
<tr>
<td>Usage</td>
<td>exit and quit both exit the sybcluster utility. If some agents have been shut down while connected to sybcluster, Adaptive Server may display error messages describing the connections. You can ignore these messages.</td>
</tr>
</tbody>
</table>
**help**

**Description**
Lists the currently available `sybcluster` interactive commands.

**Syntax**
`help`

**Usage**
The list of currently available interactive commands changes depending on whether or not `sybcluster` is connected to a cluster.
**localize**

**Description**
Displays the current values for default language, charset, and sort order. Allows modification of default values, and addition or removal of languages.

**Syntax**
```
localize
```

**Examples**
Displays default localization values, and then prompts for changes. The default language changes to Chinese, the default charset to eucgb, and the default sort order to `bin_eucgb`:

```
localize
Current default locale properties are:
Default Language - portuguese
Default Charset - mac
Default SortOrder - Binary ordering, for use with the Macintosh character set (mac).

Options for default Language are:
1. spanish
2. portuguese
3. german
4. us_english
5. thai
6. french
7. japanese
8. chinese
9. korean
10. polish
Enter the number representing the language to be set as defaults: [2] 8

Options for default charsets are:
1. gb18030
2. eucgb
3. utf8
Enter the number representing the charset to be set as default: [1] 2

Options for sort orders are:
1. Binary ordering, for the EUC GB2312-80 character set (eucgb).
Enter the number representing the sort order to be set as default [1]

Do you want to install any language? [Y] n
Do you want to remove any language? [N]
The cluster mycluster was successfully localized with default language chinese, charset eucgb, sortorder bin_eucgb
Usage

- The current default localization value displays after each prompt. To accept the current value, enter a carriage return instead of a number.
- The options for default languages include all languages present in $SYBASE_ASE. If the selected default language is not configured, use localize to configure it or remove it.
- To ensure that new values are consistent for all instances in the cluster, restart the cluster after changing localization values.
quit

<table>
<thead>
<tr>
<th>Description</th>
<th>Exits the sybcluster utility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>quit</td>
</tr>
<tr>
<td>Usage</td>
<td>exit and quit both exit the sybcluster utility.</td>
</tr>
</tbody>
</table>
set backupserver

Description
Changes the listening port number for Backup Server on specified nodes in a cluster.

Syntax
set backupserver

Examples

Example 1 Changes the listening port number for Backup Server on “blade1” of “mycluster”:

set backupserver
Backup Server is configured on the following nodes:
1. blade1: 3001
2. blade2: 3002
3. blade3: 3003
Do you want to change the Backup Server port on any node? [Y]
Enter the number representing the node whose port you want to change: 1
Enter the Backup Server port number for node "blade1":4001
Backup Server was successfully modified as per new properties.

Example 2 When “mycluster” has been configured for multiple Backup Servers, changes the listening port number for one or more Backup Servers:

set backupserver
Multiple Backup Servers are configured for the cluster. Their configuration is as follows:
Backup Server Policy: Dedicated
1. Backup Server name: ase1_BS
 Configured for blade1:23001
 Log file location: /remote/sybase/ASE-15_0/install/ase1_BS.log
2. Backup Server name: ase2_BS
 Configured for blade2:23002
 Log file location: /remote/sybase/ASE-15_0/install/ase2_BS.log
3. Backup Server name: ase3_BS
 Configured for blade3:23003
 Log file location: /remote/sybase/ASE-15_0/install/ase3_BS.log
Do you want to edit any Backup Server (y/n)? [Y]
Enter the number representing the Backup Server you want to edit: [1]
Enter the new port for Backup Server "ase1_BS":24001
Do you want to edit any more Backup Servers? [N]
Backup Server "ase1_BS" successfully updated.

Usage
When you set a new listening port number, Adaptive Server first checks to see if that port number is already in use.
set cluster

Description
Changes configuration values for the cluster.
The cluster must be down to execute all set cluster commands except set cluster login.

Syntax
set cluster {
 maxinst max_num_instances |
 traceflags trace_flag[, trace_flag[,...]] |
 { primary | secondary } protocol udp |
 login login_name [password password]
}

Parameters
maxinst max_instances
 specifies the maximum number of instances that can run in the cluster.
traceflags trace_flag[, trace_flag[,...]]
 specifies trace flags to be set when the cluster starts.
login login_name [password password]
 specifies a user name and password that the Unified Agent uses to log in to the cluster and perform shutdown and certain other tasks.
 This login must have sa_role. By default, the Unified Agent uses the “sa” login with no password. To change this password, use set cluster login. See the Clusters Users Guide.

Note set cluster login can only be used to change the login or password that the Unified Agent uses to log in to the cluster. To change the login or password sybcluster uses to log in to the Unified Agent, use the Agent Management Console Sybase Central plug-in.

{ primary | secondary } protocol udp
 sets the protocol for the private network for the primary or secondary interface.

Examples
Example 1 Changes the maximum number of instances to 4 for “mycluster”:
 set cluster maxinst 4

Example 2 Adds the trace flag 15506:
 set cluster traceflags 15506

Example 3 Changes the password for the “sa” user name:
 set cluster login sa password abcde

Usage
To check that the cluster is down, enter show cluster status.
set instance

Description
Sets properties of the instance. The instance must be down.

Syntax
set instance instance_name logpath path
set instance instance_name startargs values
set instance instance_name {primary | secondary} port port_range
set instance instance_name {primary | secondary} address ip_address

Parameters
logpath logfile_path
 specifies the path for the instance log file.

instance_name
 specifies an instance.

startargs startup_args
 specifies arguments for starting the instance.

{ primary | secondary } address ip_address
 specifies the primary or secondary IP address for the instance.

{ primary | secondary } port port_range
 specifies the primary or secondary port range for the instance. The format
 for port_range is start_num end_num.

Examples
Changes the port range for the primary interface listening port:

 set instance primary port 7777

Usage
To check that the instance is down, enter show cluster status.
set xpserver port

Description
Changes the listening port number for XP Server on specified nodes of the cluster.

Syntax
`set xpserver port`

Examples
Changes the listening port for the XP Server for instance “ase1” on “blade1” of “mycluster” without changing the listening ports for “ase2” and “ase3”:

```
set xpserver port
Enter the XP Server port number for instance "ase1" [3002]: 4002
Enter the XP Server port number for instance "ase2" [3002]: <CR>
Enter the XP Server port number for instance "ase3" [3002]: <CR>
```

Usage
You can change the XP Server listening port number on one or more instances.
show agents

Description Displays information about available UAF agents.

Syntax

```
show agents
[ login login_name ]
[ password password ]
[ agent "agent_spec[, agent_spec[...]]" ]
[ discovery "discovery_spec[, discovery_spec[...]]" ]
```

Parameters

```
login login_name
```

is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework.

The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

```
password password
```

is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework.

The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

```
agent agent_spec
```

is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that sybcluster uses to connect to the Unified Agent.

The format is “node_name:port_number [, node_name:port_number] [...]”. The default port number is “9999.”

```
discovery discovery_spec
```

is the discovery method used to identify the agents responsible for the requested cluster.

The format is “method([method_specification]) [, (method_specification) [...]]”. See the description for sybcluster -d discovery_list for more information about discovery methods.

Examples Displays UAF agent information:

```
show agents
Agent Information: service:jmx:rmi:///jndi/rmi://blade1:9985/agent
```


Usage

show agents is active before you connect to a cluster.
show backupserver config

Description
Displays the nodes on which Backup Server is configured, the associated listening port numbers, and the Backup Server policy.

Syntax
show backupserver config

Examples
Displays configuration information for “mycluster,” which has been configured for multiple Backup Servers.

```
show backupserver config
Multiple Backup Servers are configured for cluster. Their configuration is as follows:
Backup Server policy: Dedicated
1. Backup Server for ase1: ase1_BS
   Configured on (host:port) - blade1:23001
2. Backup Server for ase2: ase2_BS
   Configured on (host:port) - blade2:23002
3. Backup Server for ase3: ase3_BS
   Configured on (host:port) - blade3:23003
```

Usage
• Use the show backupserver config command to display Backup Server configuration information.
• If you are configuring multiple Backup Servers, show backupserver config includes the Backup Server policy.
show cluster

Description
Displays configuration, log, and status information about the cluster.

Syntax
show cluster
 config
 template
 log
 [errors]
 [minseverity severity_level]
 [startdate [date_string]]
 [enddate [date_string]]
 [last number_of_lines]
 status

Parameters
status
displays status information for the cluster. Values are:

• Up
• Down
• Undefined
• Invalid
• Start
• Init
• Quiesce

log
displays logs from all instances in the cluster.

errors [minseverity severity_level]
display log file entries for errors. (Optional) Limits displayed error entries to a severity level and above.

Note Error severities_level is an attribute of Adaptive Server error messages, not sybcluster messages.

startdate [date_string]
display log file entries that occur on and after the date specified. The format for date_string is: mm:dd:yy.

If you do not specify a startdate or enddate date_string, the default is the current date (today).
enddate [date_string]
 display log file entries that occur on or before the date specified.

last num_lines
 limits the number of lines displayed, counting backward from the last line in
 the log files.

config
 displays configuration information for the cluster:
 • Maximum number of instances
 • Installation mode: shared or private
 • Primary and secondary protocols
 • Trace flags set
 • Location and name of the quorum device
 • LDAP information, if LDAP is configured
 • Location and name of the master device

template
 displays formatted configuration information for the cluster.

Examples

Example 1 Displays current configuration and other information about the
default cluster:

 show cluster status

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Node</th>
<th>State</th>
<th>Heartbeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ase1</td>
<td>blade1</td>
<td>Up</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>ase2</td>
<td>blade2</td>
<td>Up</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>ase3</td>
<td>blade3</td>
<td>Down</td>
<td>No</td>
</tr>
</tbody>
</table>

Example 2 Displays configuration information—including LDAP, if it is
configured—for the default cluster configured for shared installation mode:

 show cluster config

 **Cluster configuration for "mycluster" **
 Installation Mode shared
 Interfaces Path "/work2/sybase/ASE-15_0/
 Trace Flags: 15556
 Maximum Instances "4"
 Quorum "/dev/raw/raw101"
 Master Device
show cluster

"/dev/raw/raw102"
logfile ase1 /work2/sybase/ASE-15_0/install/ase1.log
run_parameters ase1 null
logfile ase2 /work2/sybase/ASE-15_0/install/ase2.log
run_parameters ase2 null

Primary Interconnect "udp"
Server[1] ase1 tigger.sybase.com 26016 26031

Secondary Interconnect "udp"
Server[1] ase1 tigger.sybase.com 26081 26096

Example 3 Displays configuration information for the default cluster configured for private installation mode:

show cluster config

**Cluster configuration for "localcluster" **
Installation Mode "private"
Trace Flags:
There are no trace flags
Maximum Instances "4"
Quorum "/dev/raw/raw101"
Master Device "/dev/raw/raw102"
logfile ase1 /remote/work2/sybase/ASE-15_0/install/ase1.log
run_parameters ase1 null
logfile ase2 /work2/sybase/ASE-15_0/install/ase2.log
run_parameters ase2 null

Primary Interconnect "udp"
Server[1] ase1 tigger.sybase.com 26016 26031

Secondary Interconnect "udp"
Server[1] ase1 tigger.sybase.com 26081 26096
LDAP server blade1 2250

Usage show cluster status displays the results of a show instance command on each instance in the cluster.
show instance

Description Displays information about an instance.

Syntax

show instance [instance_name] {
 config |
 status |
 log |
 [[errors] minseverity severity_level] |
 [startdate [date_string]] |
 [enddate [date_string]] |
 [last num_lines] }

Parameters

instance_name specifies a unique name for an instance in the cluster.

status displays status information for the instance. Values are:
 • Up
 • Down
 • Undefined
 • Invalid
 • Start
 • Init
 • Quiesce

log displays the instance log.

errors [minseverity severity_level] displays log file entries for errors. (Optional) Limits displayed error entries to a severity level and above.

Note Error severities_level is an attribute of Adaptive Server error messages, not sybcluster messages.

startdate [date_string] displays log file entries that occur on and after the date specified. The format for date_string is: mm:dd:yy.

If a startdate or enddate date_string is not specified, date_string defaults to the current day.
show instance

`enddate [date_string]` displays log file entries that occur on or before the date specified. The format is: mm:dd:yy.

`last num_lines` Limits the number of lines displayed, counting backwards from the last line in the log file.

Examples

Example 1 Displays information about “ase1.”

```
show instance ase1 status
Id   Name   State
------------------------
1    ase1    Down
```

Example 2 Displays configuration information for “ase1.”

```
show instance ase1 config
Instance: ase1 at blade6:25001

Private Primary Network
  Address: blade1
  Port Range: 2541 - 2556
  Sybase home: /sybase/sybase_sdc
  ASE home: /sybase/sybase_sdc/ASE-15_0
  Config file: /sybase/sybase_sdc/ase1.cfg

Private Secondary Network
  Address: blade1
  Port Range: 2557 - 2572

Log Path: /blade1/sybase/
  ASE-15_0/install/mycluster_ase1.log
```

Usage

- `show instance status` displays one of seven different states for the named instance:
 - Down
 - Init
 - Invalid
 - Quiesce
 - Start
 - Undefined
 - Up

Adaptive Server Enterprise
• show instance config includes this information when the installation mode is private:
 • The $SYBASE path
 • The ASE path
 • The server configuration file path
show membership mode

Description
Displays the cluster’s current membership mode. Membership mode specifies whether or not Veritas Cluster Integration is supported on the current cluster.

Syntax
show membership mode

Usage
Values for show membership mode are:

- vcs – VCS is supported for the current cluster.
- native – VCS is not supported for the current cluster.

If the cluster is running in VCS membership mode, make sure you shut down or start up servers and the cluster using VCS shut-down and start-up mechanisms.
show session

Description
Displays current discovery and agent information.

Syntax
show session

Examples
Displays agent status information:

```plaintext
show session
Session information
---------------------
Sybase sybcluster Command Line Utility/15.0.1/CE GA
2/S/jdk1.4.2/sybclustermain/129/Mon Aug 13 09:59:51 PDT 2007
Connected Cluster: mycluster
Default Cluster:
  Default Instance:

  Agent Specifications:
  [1]: oddjob:7171

  Discovery Specifications:

  Agent Connections: 1

    Node Name: oddjob1
    Agent Port: 7171
    Agent Version: 2.5.0
    Agent Build: 980
    OS Name: Linux
    OS Version: 2.6.9-42.ELsmp
    OS Architecture: amd64

  Agent Service Info:
    Agent Service (Agent) Build:980 Status:running
    BootstrapService (BootstrapService) Build:
      <unavailable> Status: running
    Configuration Service (ConfigService) Build:
      980 Status: running
    Deployment Service (DeploymentService) Build:
      19 Status: running
    Environment Service(EnvironmentDiscoveryService)
      Build: 980 Status: running
    File Transfer Service (FileTransferService)
      Build: 980 Status: running
```
show session

Plugin Registration Service
 (PluginRegisterService) Build:980 Status: running
RMI Service (RMIService) Build: 980 Status: running
Remote Shell Service (RemoteShellService) Build: 980 Status: running
Security Service (SecurityService) Build: 980 Status: running
Self Discovery Service (SelfDiscoveryService) Build: 980 Status: running
Service Registration Service
 (ServiceRegistrationService) Build: 980 Status: running
Session Service (SessionService) Build: 980 Status: running
Sybase Home Service (SybaseHomeService) Build: 14 Status: running

Agent Plugin Info:

ASE Cluster Agent Plugin(com.sybase.ase.cluster)
 Version: 15.0.1 Build: 129 Instance: 1
 Status: running
Cluster Name: mycluster
Env Shell: /oddjob1/work2/
 sybase_sybclustermain_mycluster_vu/SYBASE.sh
 Shell Type: sh
Sybase Home: /oddjob1/
 work2/sybase_sybclustermain_mycluster_vu
ASE Home: /oddjob1/work2/
 sybase_sybclustermain_mycluster_vu/ASE-15_0
ASE Version: Adaptive Server Enterprise/
 15.0.1/EBF 14721 Cluster Edition/B/x86_64/
 Enterprise Linux/asecluster3/2381/64-bit/
 FBO/Mon Nov 12 07:44:23 2007
ASE Login: sa
Update time: 300 seconds

Usage
Use the sybcluster show session command to view information about the current cluster.
show xspxserver

Description: Displays the XP Server name and listening port number, node name, and instance name configured on each node.

Syntax:

```
show xspxserver
```

Examples: Displays the XP Server name, listening port number, node name, and instance name:

```
show xspxserver config
```

```
**XP Server configuration for the cluster**
---------------------------------------------------
XPServer Name Port Host Node
---------------------------------------------------
ase1_XP     4010  blade1 ase1
ase2_XP     4011  blade2 ase2
ase3_XP     4012  blade3 ase3
```

Usage: Use the `sybcluster show xspxserver` command to view information about XP Server.
shutdowm cluster

Description
Shuts down the cluster by executing a Transact-SQL shutdown command for each instance in the cluster’s instance list, in the order specified in the cluster configuration file.

Syntax
shutdown cluster [nowait]

Parameters
nowait
shuts down the cluster immediately, without waiting for transactions or statements currently executing to conclude. By default, sybcluster waits for all transactions and statements to execute before shutting down the cluster.

Examples
Shuts down the current cluster:

```
shutdown cluster
INFO - ...
INFO - 01:00:00000:00117:2007/06/02 00:23:53.56 kernel ueshutdown: exiting
```

Usage
sybcluster prompts for confirmation before shutting down the cluster.

If the cluster is managed by VCS, shutdown cluster fails. You must use VCS shut-down mechanisms to shut down the cluster.
shutdown instance

Description
Shuts down the instance by executing a Transact-SQL `shutdown` command.

Syntax
```
shutdown instance [ instance_name ] [ nowait ]
```

Parameters
- `instance_name`
 is the unique name of an instance in the cluster.

- `nowait`
 shuts down the instance immediately, without waiting for currently executing transactions or statements to finish.

Examples
Shuts down the instance “ase1,” after waiting for currently executing transactions or statements to finish:

```sql
shutdown instance ase1
```

Usage
- Shutting down the last instance in a cluster also shuts down the cluster.
- `sybcluster` prompts for confirmation before shutting down the instance.
- If the cluster is managed by VCS, `shutdown instance` fails. You must use VCS shut-down mechanisms to shut down the instance.
start cluster

Description Starts all instances in the cluster.

Syntax start cluster

Examples Starts the current cluster:

```
start cluster
INFO - [cluster boot log]
...
INFO - 02:00:00000:00002:2007/06/02 00:21:53.56 server 'ase1' (ID=1).
INFO - 02:00:00000:00002:2007/06/02 00:21:53.56 server Master device size: 80 megabytes, or 40960 virtual pages.
```

Usage Connect to the cluster before starting it.
start instance

Description
Starts an instance.

Syntax
start instance [instance_name] [unlock]

Parameters
- **instance_name**
 specifies a unique name for an instance in the cluster.
 If you do not enter a cluster name, *sybcluster* uses the instance specified in the *sybcluster* command line or specified with the *use* command.

- **unlock**
 removes the lock from a cluster that was terminated unexpectedly. The cluster must be down before using unlock.

Warning! Do not use the unlock parameter unless you have verified that all instances in the cluster are shut down.

Usage
The instance must be down to use start instance unlock.
upgrade server

Description

You can perform the upgrade by answering prompts at the command line or via an input file.

You can upgrade from Adaptive Server version 12.5 and later to the Cluster Edition.

Syntax

```
upgrade server server_name
    [ login login_name ]
    [ password password ]
    [ agent agent_spec ]
    [ discovery discovery_spec ]
    [ file input_file_name ]
    [ checkonly ]
```

Parameters

- `server_name` is the name of the non-clustered Adaptive Server.
- `login login_name` is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework.

 The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

- `password password` is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework.

 The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

- `agent agent_spec` is the agent specification that identifies the node in the cluster running a Unified Agent, and the port number that `sybcluster` uses to connect the Unified Agent.

 When upgrading a non-clustered Adaptive Server, there is only one node. The format for `agent_spec` is “node_name:port_number”. The default port number is “9999.”
discovery discovery_spec
is the discovery method used to identify the agents responsible for the requested cluster.
The format is “method[method_specification]”. See the description for sybcluster -d discovery_list for more information about discovery methods.

file file_name
is the input file containing values required for upgrading the server.

checkonly perfroms a check run of the non-clustered Adaptive Server to determine its readiness for upgrade.

Examples
Upgrades “myserver” to the Cluster Edition:

```
upgrade server
Enter the name of the cluster: new_cluster
Enter the existing Sybase installation directory for server myserver:
Enter the name of the subdirectory containing the ASE installation for server myserver:
Enter the name of the subdirectory containing the OCS installation for server myserver:
Enter the name of an sa login on server exit: [sa]
Enter a password:
Cluster new_cluster - Enter the maximum number of instances: [4]
Verifying the supplied agent specifications... 
  1>tigger 9999 2.5.0 Linux
Enter the number representing the cluster node 1 [1]
Will this cluster be configured using private SYBASE installations? (Y/N)
...
```

The information required to upgrade a server or create a cluster are the same. See “create cluster” on page 315 or the installation guide for your platform.

Usage
upgrade server prompts for these values:

- The Sybase installation directory of the non-clustered Adaptive Server.
- The release home directory of the non-clustered Adaptive Server.
- The Open Client home directory of the non-clustered Adaptive Server.
- The installation mode, private or shared.
- If sybcluster detects a VCS subsystem, asks if you want to include VCS integration with the cluster.
- If you have not configured LDAP, the path to the interfaces file.
- The name of the first instance in the cluster.
• Other values as required to create a cluster.

The checkonly option does not perform any upgrade steps, but instead check the server’s readiness for upgrade. Resolve the error conditions checkonly finds before performing the upgrade.
use

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifies the default instance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>use instance_name</code></td>
</tr>
<tr>
<td>Usage</td>
<td><code>use</code> overrides the instance name specified in the sybcluster command line.</td>
</tr>
</tbody>
</table>
use
CHAPTER 9

Migrating Data Using sybmigrate

This chapter discusses sybmigrate.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>359</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>363</td>
</tr>
<tr>
<td>Migration process</td>
<td>366</td>
</tr>
<tr>
<td>Using sybmigrate with encrypted columns</td>
<td>387</td>
</tr>
<tr>
<td>Post-migration activities</td>
<td>389</td>
</tr>
<tr>
<td>Migrate databases in the Replication Server domain</td>
<td>389</td>
</tr>
<tr>
<td>Limitations</td>
<td>397</td>
</tr>
<tr>
<td>Troubleshooting and error messages</td>
<td>399</td>
</tr>
</tbody>
</table>

Overview

sybmigrate is the migration tool used to migrate data from one server to another.

By default, sybmigrate migrates encrypted columns in ciphertext format. This avoids the overhead of decrypting data at the source and encrypting at the target. In some cases, sybmigrate chooses the reencrypt method of migration, decrypting data at the source and encrypting at the target.

Note When migrating from one Adaptive Server to another more recent version of Adaptive Server, you must specify the size and location of a work database on the target server.

The sybmigrate utility:

- Aids users in changing the page sizes of their database applications.
- Provides a manageable and smooth migration process.
Overview

• Allows customers to take advantage of the variable page size feature for existing databases with user data, thus realizing the full benefit of Adaptive Server versions 12.5 and later.

What sybmigrate does

During the set-up portion of the migration process, sybmigrate migrates following server data to the target Adaptive Server:
• Remote servers
• Logins
• Login attributes
• Server roles
• Login roles
• Role attributes
• Users
• Alternate users
• Roles
• Permissions
• Remote logins
• External login attributes
• Timer
• Resource limits
• Replication attributes
• Display level attributes
• User messages in the master database
• Java classes in the master database
• JAR files in the master database
• Proxy objects

During the migration portion of the migration process, sybmigrate migrates following database-specific data to the target database:
• Defaults
• User-defined datatypes
• Rules
• User tables
• User table data
• Views
• Triggers
• Indexes
• Stored procedures
• Extended stored procedures
• Users
• Logins
• Roles
• Remote servers
• Database data
 • Users
 • Alternate users
 • Roles
 • Role attributes
 • Permissions
 • User messages
 • Java classes
 • JAR files
• Defaults
• Rules
• User-defined types
• Tables
• Indexes
Overview

- Referential constraints
- Views
- Stored procedures
- Triggers

What `sybmigrate` does not do

Migrate the following items manually:

- Migrate/downgrade databases from a higher version level. For example, you cannot use `sybmigrate` to downgrade Adaptive Server version 15.7 to an earlier version, such as 15.5.
- Table-level lock promotion attributes
- User-defined thresholds
- Abstract plan definitions maintained in `sysqueryplans`
- All system databases except the `model` database
- Any required database options like cache binding, recovery order, and the associated log I/O size as specified by `sp_logiosize`
- Proxy databases
- Engine groups
- Engine bindings
- Execution classes
- Cache configurations
- Auditing tables and auditing configuration
- Server-wide row-lock promotion settings
- Access rules

Note Drop access rules before beginning data migration; they can prevent the Database Owner from accessing all rows in a table, which prevents complete data migration.

- Compiled objects with hidden SQL text
- User-defined segments
• Constraints are migrated but when they are bound by name to user-defined message numbers, the bindings must be re-created manually
• Settings for objects such as ascinserts, indextrips, oamtrips, datatrips, and sortbufsize created using dbcc tune
• Device definitions
• SQLJ functions
• Proxy tables for external files
• Audit options and audit events
• Server configuration
• Database suspect threshold
• Recovery orders

Before You Begin

sybmigrate requires JRE 1.4, jConnect™ for JDBC™ 6.0, ddlgen components, and Component Integration Services in the source Adaptive Server.

Because sybmigrate requires a server-to-server connection, two Adaptive Servers must be running. Make sure that you have the appropriate licenses.

Dependencies

Before you begin the migration process, create databases, devices, and segments on the target Adaptive Server. Server and cache configurations must also be already installed on the target Adaptive Server.

Use ddlgen to extract the corresponding scripts from the source Adaptive Server, and modify them as needed before applying them to the target Adaptive Server. For more information, see ddlgen on page 58.
Before You Begin

Installation

Sybmigrate is installed as part of the Adaptive Server software. For information about how to install Adaptive Server, see the installation guide for your platform.

Permissions

The System Administrator login is needed for the setup portion of the migration process. For the remainder of the process, the login must have “sa_role” and “sso_role” privileges to run sybmigrate.

Changing target login accounts

Once you have migrated between different platforms, login passwords are not compatible. However, sybmigrate allows you to change the password on target Adaptive Server login accounts during the setup session of the migration process in either of two ways:

- Let sybmigrate generate a password on the target server. sybmigrate outputs a list of passwords used during migration after the process is complete.
- Supply a password file that contains user name and password pairs. sybmigrate sets these passwords on the target server. Thereafter, the System Administrator must run sp_password to create a new password for each login not included in the password file.

Note After the migration process is complete, the System Administrator must change passwords manually on the target Adaptive Server. The System Administrator must issue sp_password for new login and for each login not reset during the migration process.

In addition to the changing password options, sybmigrate also allows you to lock and unlock target Adaptive Server accounts. This option is provided so that the System Administrator can block a user from logging into the target Adaptive Server during the migration process.
Platforms

sybmigrate works on both UNIX and Windows platforms.

• For UNIX, the executable file is located in $SYBASE/$SYBASE_ASE/bin/sybmigrate.

• For Windows, the executable file is located in %SYBASE%\%SYBASE_ASE%\bin\sybmigrate.bat.

Environment settings

The following environment variables must be set correctly. With the exception of SYBMIGRATE_MEMORY, these environment variables are defined in the SYBASE.csh or SYBASE.sh files that are created during the installation process.

• SYBASE – defines the location of the Sybase release path.

• SYBASE_ASE – defines the location of the Adaptive Server component directory.

• SYBASE_JRE – defines the location of the Java runtime environment. This is generally set to $SYBASE/shared/jre-1.4 in the Adaptive Server release area. This environment variable overrides JAVA_HOME.

• SYBASE_JRE defaults to $SYBASE/shared/jre142 (UNIX) and %SYBASE%\Shared\Sun\jre142 (Windows).

• SYBMIGRATE_MEMORY – specifies the amount of memory to be used when invoking the Java virtual machine (JVM). This environment variable should be specified with a number, which refers to the amount of memory in megabytes. If SYBMIGRATE_MEMORY is not set, JVM uses the default memory setting of 512MB.

If sybmigrate is using a large number of threads, or working on many tables or indexes in parallel, increase the amount of memory allocated to the JVM on the client side.

Migrating proxy tables

sybmigrate supports the migration of proxy tables. If you are planning to migrate proxy tables, you should do the following before you begin migration.

• Make sure that the remote servers involved in proxy table definitions is present in the target server interface file.
Migration process

In order to verify the DDL execution time, the remote server has to be accessible when the migration is performed.

Migration process

The goal of sybmigrate is to provide a means to migrate all objects and user data that exist on the source Adaptive Server. However, when migration takes place, there is some server-wide data that needs to be migrated before any user data or user objects can be migrated to individual databases.

The hierarchy of objects dictates the order in which objects are re-created. Generally, server-wide objects from the master database are created first. Independent objects like default languages and character are migrated to the target server before data from individual databases.

Overview of the migration process

The migration procedure consists of configuring the source and target Adaptive Servers, setting up the migration paths, migrating objects, and validating the migrated objects.

The setup session establishes the migration paths from the source database to the target database. The setup creates the repository database and the work databases, and registers the option to migrate the server data. The setup session can only be executed by an “sa” login.

The migrate session is used to migrate objects and data from the source database to the target database.

The validate session validates the migrated objects. Validation ensures the integrity of data and objects that have been successfully migrated from the source database to the target database.

sybmigrate does not migrate an archive database if an entire installation is being migrated.

sybmigrate migrates an archive database only if the archive database is specifically selected for migration. When you migrate an archive database to a target server, sybmigrate automatically creates a traditional database—rather than an archive database—on the target server.
Pre-migration considerations

You must have the source Adaptive Server and the target Adaptive Server running concurrently when you migrate data from one to the other.

sybmigrate assumes that the target Adaptive Server has been installed and configured prior to data migration. Use srvbuild or syconfig to create a new Adaptive Server with the required logical page size.

Keep the following items in mind prior to migration, when you are creating the target Adaptive Server and configuring the source Adaptive Server:

• sybmigrate requires allow resource limits to be set to 0.

• If metadata already exists on the target server, you cannot migrate server data.

• When you create a new Adaptive Server with a different logical page size into which you want to migrate data, you must adequately adjust the size of the database on the target Adaptive Server to accommodate the inbound data. If you are migrating data to an Adaptive Server with a larger logical page size, this is especially important.

Use the space estimation report, space_est, to determine how much space is available on your target database. For more information about space_est, see sybmigrate on page 180.

• To speed the migration process, you can run multiple sessions of sybmigrate within the same server. However, running more than one session of sybmigrate on the same source and target database path is not allowed.

• You must manually create segments on the target database before migrating tables and indexes.

• The data transfer rate for sybmigrate is configured through CIS bulk insert array size. The default configuration for CIS bulk insert array size is 50 rows. This means that as many as 50 rows of data are buffered by CIS before being transferred to the target Adaptive Server.

To increase throughput, increase the configuration of CIS bulk insert array size to a larger value.

However, increasing CIS bulk insert array size causes the source Adaptive Server to use memory from the operating system for local buffers. This can lead to excessive consumption of operating system memory.
Sybase recommends that if you do choose to increase the CIS bulk insert array size default value, you do so modestly. See the CIS documentation for more information.

- CIS bulk insert array size has no effect on data throughput if the table being transferred has a text, image, or Java ADT column. When a table has a text, image, or Java ADT column in it, all data is migrated one row at a time, for the duration of the migration of that particular table. Also, no array buffering takes place.

- As the data migration is being done using CIS bulk transfer, the value for the configuration parameter CIS packet size on the source Adaptive Server can affect the speed of the data transfer. The recommended value for CIS packet size on the source Adaptive Server is the logical page size (2K, 4K, 8K, or 16K) of the target Adaptive Server.

- max packet size allowed on the target Adaptive Server should match the value of CIS packet size on the source Adaptive Server.

For more information on max packet size allowed, see the System Administration Guide.

- To maximize the performance of sybmigrate, increase the additional network memory configuration parameter on the target Adaptive Server to a value larger than the default.

For more information on additional network memory, see the System Administration Guide.

- All the above considerations affect the max memory configuration parameter. Before migrating your data, make sure that max memory is set to a sufficiently large value.

- There are three types of data that are migrated: server data, database data, and user objects. To migrate metadata (the server and database data), the target Adaptive Server must be newly installed so that the migrated metadata does not conflict with any residual data from previous usage.

If you are migrating only user objects, you can use a previously used Adaptive Server. For user data however, the target tables must be empty.

- Before migrating data, create the databases into which you want to migrate data on the target Adaptive Server. The databases should have the same name that they have on the source Adaptive Server.

- To enable conversion of character sets that do not have an internal Adaptive Server conversion routine, configure the target Adaptive Server with enable unicode conversions set to 1.
• Determine the size of the named caches and buffer pools on the target Adaptive Server. sybmigrate does not migrate cache configurations. You can use the information that is generated by ddigen and apply it to the target Adaptive Server, or you can choose to configure larger amounts of memory, in light of the larger page size being used.

However, sybmigrate migrates cache bindings, therefore if the required cache is not in the target Adaptive Server, warnings are generated in the migration log.

• Before running sybmigrate, you must install the desired languages on the target Adaptive Server. The default language should be the same on the source and the target Adaptive Server.

If there are user messages on the source Adaptive Server that are not installed on the target Adaptive Server, sybmigrate aborts user message migration and reports an error.

• If you are migrating Java columns, you must enable Java on the source and target Adaptive Server prior to migration. Enter:

```
sp_configure 'enable java', 1
```

• To complete the migration, the source and target Adaptive Servers must have different local server names. Set the local server name, and then restart the servers for the change to take effect.

• To migrate an Adaptive Server using single-byte character sets to an Adaptive Server using multibyte character sets (utf8):

 a Use sybmigrate to migrate to a server using the same, single-byte character set.

 b Change the character set to multibyte after migration is complete.

 sybcluster cannot migrate data directly from an Adaptive Server using single-byte character sets to an Adaptive Server using multibyte character sets.

Configuration and tuning for higher performance

Depending upon your server resources, you can configure sybmigrate and Adaptive Server for optimal performance.
Configuration considerations for *sybmigrate*

Copy threads and create index threads are used to migrate tables and re-create indexes. When you are configuring sybmigrate during setup mode, the values of COPY_THREADS and INDEX_THREADS can increase the speed at which sybmigrate copies and migrates data.

The number of copy threads controls the number of tables for which data migration is done simultaneously. One copy thread is assigned to each table. When the thread has successfully completed one task, it moves on to another. Depending upon the size of your database and the resources for your Adaptive Server, you can increase the number of copy threads used during the migration process to improve performance.

Note When you are migrating a large number of objects in parallel, check the value of SYBMIGRATE_MEMORY to verify that there is sufficient memory allocated to sybmigrate.

Index threads control the number of threads used to re-create indexes on the target Adaptive Server tables. One thread per table is used to re-create the indexes. Once the indexes have been re-created on a table, the thread proceeds to the next successfully migrated table. Any threads without a task exits. The number of create index threads is expected to be substantially smaller than the number of copy threads.

If you configure INDEX_THREADS to a large number, be sure that the target Adaptive Server is also configured with a large number of sort buffers. The use of index threads takes up space in the target database, so make sure that the target database is configured with adequate space for the designated number of index threads. Also, you must configure the target database with extra space if you are going to be re-creating clustered indexes.

Configuration considerations for Adaptive Server

There are several configuration parameters on both the source and target Adaptive Server that affect the performance of the migration process.

On the source Adaptive Server:

- **cis packet size** – should be equal to max page size of the target Adaptive Server.
- **number of user connections** – should be high enough to accommodate the migration of multiple tables simultaneously according to the value of COPY_THREADS and INDEX_THREADS.
CHAPTER 9 Migrating Data Using sybmigrate

• max parallel degree – should be set to a value that is larger than the largest number of partitions in a single table. Data migration is done in parallel, and if max parallel degree is not set to a value large enough to accommodate the partitioned tables, the tables do not migrate.

• number of worker processes – data migration for partitioned tables requires one worker thread per partition. Therefore, if \(t \) partitioned tables with \(p \) partitions each are migrating simultaneously, configure a total of \(t \) multiplied by \(p \) worker threads on the source Adaptive Server.

• cis bulk insert batch size – controls the number of rows after which the data transfer transaction is committed. The default value is 0. Using the default value is the safest way to ensure data integrity while migrating data, but it can result in a large number of page and row locks on the source Adaptive Server. To reduce the number of locks, increase this value. If you increase the value of cis bulk insert batch size, only a partial data migration completes if an error occurs during the process. In this situation, manually truncate the target table and restart sybmigrate.

• cis bulk insert array size – controls the number of rows that are copied in bulk at one time. The default is 50 rows per batch. For faster data migration, increase this value.

If the table contains text or image columns, the data is transferred one row at a time, regardless of the value for cis bulk insert array size.

The following configuration parameters on the target Adaptive Server affect the performance of sybmigrate:

• max network packet size – should be set to a value that is at least equal to max page size.

• number of user connections – should be set to accommodate the migration of multiple tables in parallel and partitioned tables.

For parallel data transfer for partitioned tables, worker processes are required on the source Adaptive Server, but user connections are required on the target Adaptive Server. If you are migrating partitioned tables, set the number of user connections on the target Adaptive Server to the same value as number of worker processes on the source Adaptive Server.

• number of sort buffers – the default value of 500 is sufficient during the migration process. You can increase this value when sybmigrate rebuilds the indexes, especially if you are migrating indexes on partitioned tables.
Migration process

Possible errors to avoid

Before beginning the data migration process, sybmigrate checks for the following error conditions. If any of these conditions are detected, the migration procedure is aborted.

- A target table with existing data – any attempt to migrate data to a table that already contains data results in the failure of sybmigrate.
- A target table with existing indexes – the presence of indexes on a target table causes sybmigrate to operate in slow bcp. Manually drop all indexes before you begin the data migration.
- Unmatching numbers of partitions on the source and target tables – if the number of partitions on the source and target table do not match, the attempt to migrate data fails. sybmigrate only migrates data; it does not redistribute it across partitions.

Auto-select dependent objects for migration

sybmigrate selects dependent objects for migration when you use the auto-select feature. The auto-select feature checks for the existence of dependent objects, and automatically migrates them to the target Adaptive Server. For a successful migration, Sybase recommends that you use this feature.

Migrating an archive database

sybmigrate does not migrate an archive database if an entire installation is being migrated.

sybmigrate migrates an archive database only if the archive database is specifically selected for migration. When you migrate an archive database to a target server, sybmigrate automatically creates a traditional database—rather than an archive database—on the target server.

Upgrading an Adaptive Server with an archive database

You cannot upgrade an archive database. If you load a database dump from an older version of Adaptive Server onto an archive database hosted on a newer version of Adaptive Server, the database is not internally upgraded when you execute online database.
If you upgrade an Adaptive Server containing an archive database, all the databases except the archive databases are upgraded. The archive database remains on the older version of Adaptive Server.

Sybase recommends you reload the archive database with a dump generated from an already upgraded database.

For more information about upgrading Adaptive Server, see the installation guide for your platform.

Downgrading an Adaptive Server with an archive database

When you are downgrading to a version of Adaptive Server that does not support archive databases, be aware of the following:

- If you must downgrade an Adaptive Server containing an archive database to a version of Adaptive Server that does not support archive databases, Sybase recommends you drop the archive database before you downgrade.

 To eliminate the new `sysaltusages` table, drop the scratch database before you perform the downgrade procedure. `sysaltusages` does not cause any problems if the scratch database is not dropped.

- Backup Server versions 15.0 ESD #2 and later writes a new format for compression (with `compression = compression_level`) so that the dump can be loaded into an archive database. Therefore, if you must load a compressed dump onto a version of Adaptive Server that does not support archive databases access, use the same version of Backup Server that created the compressed dump to load the compressed database dump. An earlier version of Backup Server does not support the new format of the compressed database dump.

 When you are downgrading without compression, you need not worry about Backup Server at all.

GUI mode

You can use either the GUI or the resource file mode for the migration process. You can also elect to run parts of the migration process in GUI mode, and parts of it in resource file mode.

When you run `sybmigrate`, there are three phases of the migration process that you must follow: setup, migrate, and validate.
Setting up source databases for migration

Before migrating data, indicate your source and target Adaptive Servers and register the paths between the source and target databases they contain. To do this, start sybmigrate with the -m setup command line option, or by selecting “Setup source databases for migration” when you are prompted in the Session Type window.

1. The Connect to ASE window allows you to designate the source and the target Adaptive Servers for your migration process.
 - Choose from the drop-down menu in the Server fields. The menus provide a list of Adaptive Servers that are located in the default interfaces file ($SYBASE/interfaces on UNIX or %SYBASE%/ini/sql.ini on Windows) or in the interfaces file that you specify with the -I command line argument.

 If you are not using the interfaces file, you cannot use the -I command line argument; you must specify the source and the target Adaptive Servers in the host:port format.

 - During the setup phase, you must be logged in to the servers as a System Administrator. Enter “sa” into the Login field, enter your password, and select Connect.

 Note You can run only one session of sybmigrate at a time. Therefore, if there is another user running sybmigrate on the same source and target Adaptive Servers, you see the error message “Setup session lock: Either previous setup exit abnormal or there is another setup session running. Do you want to override?” You can override the session lock because it is possible that the previous session may have crashed or quit prematurely.

 Before proceeding with the setup and migration process, verify that there are no other users running sybmigrate. If there is more than one user running sybmigrate simultaneously, Sybase cannot guarantee data integrity.

2. The Session Type window prompts you to select the type of operation you want to perform. Choose from:
 - Setup source databases for migration
 - Migrate database objects and data
 - Validate the migrated objects and data
• Reports – when you select Reports, a Reports type window displays. You can choose from status, space_est, repl, diff, or password. When you select either the space estimation or the replication report, a Report Paths Window prompts you to select the database paths on which to run the reports.

The Password, Status, and Replications reports are disabled if the setup session has not been completed between the source and target Adaptive Servers.

If you started sybmigrate with the -m option specifying setup, migrate, validate, or reports you do not see this window.

3 Use the Setup wizard to prepare databases for migration. The Setup wizard displays several windows:

• Choose Database window

This window prompts you to select the source and target databases located within your source and target Adaptive Servers, so that sybmigrate knows where to put the data from the source Adaptive Server in the target Adaptive Server.

Note The source and target databases must have identical names.

The Source Database drop-down list has a list of the databases in your source Adaptive Server.

The Target Database drop-down list has a list of the databases available in the target Adaptive Server. sybmigrate requires that you create the databases in the target Adaptive Server before beginning the migration process.

The **migration path** is a selected source and target database pair.

• Configure DDL threads

Choose the number of threads to be used to create database objects on the target server for the specified migration path.

• Configure copy threads

Choose the number of threads to be used to copy data from the source to the target for the migration path. Make sure you use sufficient numbers of threads for systems with multiple engines.

• Configure index threads
Migration process

Chose the number of threads to be used to create indexes on the target server for the specified migration path. Make sure you use sufficient numbers of threads for systems with multiple engines.

You control the number of threads used for parallel table transfer. When several tables are transferred concurrently, each table requires a one-server-to-one-server CIS connection.

Suppose the data migration is performed on unpartitioned tables (each table contains a single partition). When you migrate such tables, a single server-to-server connection is established, which uses a single user connection on the source Adaptive Server and a single user connection on the target Adaptive Server.

If the data migration is performed on \(n \)-way partitioned tables, the data transfer is performed in parallel with an \(n \)-way degree of parallelism. This requires \(n \) worker processes on the source server and \(2n \) user connections on the target server.

For example, suppose you have 10 \(n \)-way partitioned tables to migrate. You use four threads in sybmigrate, and configure the source Adaptive Server to have at least four worker processes and eight user connections. You must configure the target Adaptive Server to have at least eight user connections.

Note The value you assign to each property in the setup session becomes the default value. You can temporarily override default values in the migrate or validate session. Limit these values to the resources available to Adaptive Server.

- Configuring the work database

 sybmigrate requires at least one work database during the migration process. The Database size field provides a default value in megabytes. The default value is based on the number of copy and create index threads specified in a previous window. The default is the minimum value; you can increase but not decrease it.
The Device field lets you indicate the device on which to create the work database.

Note When migrating from a source Adaptive Server version 12.0 through 12.5.0, `sybmigrate` also requires a work database on the target server. The wizard prompts for the same information for the target work database.

• **Current paths**
 Review the migration paths you have selected. Right-click a migration path to display edit and delete options.

 You can add paths by selecting Add Migration Path. To add paths later on, rerun `sybmigrate` in Setup mode.

• **Configure repository**
 `sybmigrate` creates a repository database on the source server to track the migration of all migration paths. The default database size is a minimum; you can increase but not decrease it.

• **Migration of server-wide data**
 You can choose whether or not to migrate information in system catalogs, such as login information. The options are:

 • Yes – server-wide data is migrated at the end of the Setup phase.
 • No – server-wide data is not migrated. You can return to this window and choose to migrate data at any time—as long as database migration has not yet begun.
 • Undecided – allows you to return and choose another migration option later on. However, you cannot begin the Migration phase until you have chosen Yes or No. Undecided is useful when you want to set up the migration process, but plan to migrate data at a later date.

 If the target server already has been configured for logins or other server-wide information, `sybmigrate` defaults this option to No.

 The Options button provides advanced options for handling login accounts. The options let you specify:

 • Whether or not to lock login accounts after migration
 • How to handle login passwords when migrating across platforms
Migration process

- No change – use when migrating to the same platform (default)
- Generate random passwords
- Assign passwords from a list in a file

Summary
Displays a summary of options chosen. Click Finish to perform the chosen setup tasks.

4 The Setup Progress window displays the progress of the setup phase.
During this time, sybmigrate is creating the repository database, installing the database schema, creating a working database for each selected path, and migrating the server data based on your selection, in that order. If you are running sybmigrate in setup mode a subsequent time, it is creating new paths for data migration. If you do not want to create new paths, there is no reason to run sybmigrate through the setup mode more than once.

You can view the progress in the log by clicking Show Log. The completion of the setup process is indicated when the Current Task window displays DONE, and when the log shows SETUP_COMPLETE. Click Close to exit the log and the Setup Progress window.

5 You return to the Connect to ASE window. Select Quit to exit sybmigrate.
To begin the migration phase of the data migration process, exit sybmigrate and restart it in the migrate mode.

❖ Begin the migration
After you have completed setup, you are ready to begin migrating. Restart sybmigrate with the -m migrate command line option, or choose the migrate database objects and data option from the GUI window.

1 In the Connect to ASE window, select the source and target Adaptive Servers to which you want to connect.

2 If you have not started sybmigrate with the -m migrate command line argument, select the session type in the Session Type window.

3 The Object Selection window allows you to choose what types of database data you want to migrate.
In the Object Selection window, you can set the Copy thread, create index thread, and work thread parameters from the Setting menu bar.
In the Object Selection window, you can also request that `sybmigrate` Auto-Select Dependent Objects on your selected objects by right clicking the object tree node.

When you expand the database data folder, there is a file for each path that you created during setup. Each file allows you to select the data you want to migrate for that particular database. You can choose from the following:

- Database Data

 Note If you choose to migrate database data, you must migrate all of it. If you deselect parts of the database data, you see an error message asking you whether or not you want to migrate database data.

 If you do not migrate the server data during setup, the Database Data selection is disabled.

- Defaults
- Rules
- User-defined Datatypes
- Tables
- Indexes
- Referential Constraints
- Views
- Stored Procedures
- Triggers

The Status field for these objects indicates whether or not the data has successfully migrated. “Success” indicates that the data has already migrated. “Initial” means that the migration has not yet begun. If you find an error in the data that has been migrated, you can reset the Status field to Initial so that the data migrates again. The validation process acts only on those objects that have been migrated successfully, so to begin the validation process without all of the data having successfully migrated, reset the Status field to Success. “Work in Progress” means that the object was selected for migration, but that the migration was not attempted because there was some error causing `sybmigrate` to exit abnormally.

You can see whether or not the server data has been selected to be migrated, but this is for informational purposes only since the server data has already been migrated at this point in the migration process.
Migration process

When you have selected the data that you want to migrate, click Migrate.

- **Validating the migration**
 - The validation phase is the same as the migrate phase. The windows ask you to indicate the same information, but rather than selecting data for migration, you are selecting data for validation.

 You can validate only those objects that have successfully been migrated.

Migration and validation progress

sybmigrate keeps you informed of the migration and validation progress on the Migration/validation screen. It shows migration progress, messages reported, and a summary count of objects pending, failed, and succeeded for each task type.

You can select the Cancel button at any time, which starts a graceful shutdown of the execution progress.

Resource file mode

Make these changes to the resource file mode:

- **data_copy_thread, create_index_thread, and work_thread** attributes are recognized in the setup, migration, and validate sessions of sybmigrate. In the setup session, these values are recorded in the repository database, and used as default values during the migrate and validate sessions. During the migrate and validate sessions, you can override the default values by specifying a new value.

- **lock_account** is a new login account management feature. lock_account tells sybmigrate to lock or unlock all accounts on the target Adaptive Server after copying the login information. Valid values are “Yes” and “No”, with “Yes” instructing sybmigrate to lock the target Adaptive Server accounts. To activate lock_account, you must set migrate_server_data to “Yes” in the setup session.

 If the lock_account attribute is not set, nothing is done to target login accounts.
• login_password_file has been added to support changing the passwords on
 the target Adaptive Server. In the setup session, login_password_file takes
 the input password file or the value “<generate>”. “<generate>” is a
 special key used to tell sybmigrate to generate the passwords instead of
 reading them from the password file. If this attribute is not set in the
 resource file during the setup session, there is no change to the target
 Adaptive Server login passwords. To activate login_password_file, you
 must set migrate_server_data to “Yes” in the setup session.

• The password file must be in plain text. The content of this file consists of
 two columns: the login name column and the password string column. The
 separator between the columns are tabs and or spaces. Any lines beginning
 with “#” are comments.

• auto_select_dependent_objects is a new value that is available during the
 migrate and validate sessions. This attribute tells sybmigrate to
 automatically select the dependent objects for migration and validation.
 The valid values for this attribute are either “Yes” or “No”; “No” is the
 default.

• If source_ase, source_ase_login, source_ase_password, target_ase,
 target_ase_login, and target_ase_password attributes are not in the
 resource file, sybmigrate prompts the user for these attributes.

• In the database section of the resource file, if you do not specify any
 objects or SQL, all objects and types are selected.

For example, in the following resource file all object types (default, rule,
 table, and so on) are migrated from pubs2 and pubs3 databases:

```plaintext
[server]
source_ase=tho:5002
source_ase_login=sa
source_ase_password=

target_ase=tho:6002
target_ase_login=sa
target_ase_password=

[database]
source_database_name=pubs2
target_database_name=pubs2

[database]
source_database_name=pubs3
target_database_name=pubs3
```
Migration process

Resource file mode is a non-interactive mode. The resource file contains all the information required for migration. You can use the resource file mode if you do not have GUI support or if you need to run batch files.

If you do not specify any object type attributes to migrate in the resource file, sybmigrate migrates the entire database.

If you do not specify the source or target Adaptive Server login or password in the resource file, sybmigrate prompts the user for this information.

Following is the format for the resource file to run sybmigrate in noninteractive mode. To create a resource file, type all the values into a file:

#
This is a sample Migration Tool resource file.
This resource file will migrate objects in pubs2, pubs3, and foo databases.
#

###
Server wide information
###
[server]
"<host name>:<port number>" or just server name.
source_ase=tho:5002
source_ase_login=sa
source_ase_password=

"<host name>:<port number>" or just server name.
target_ase=tho:6002
target_ase_login=sa
target_ase_password=

Repository database setup attributes. This is required with "setup" mode.
Repository database size in MB.
repository_database_size=7
Device used to create the "sybmigrate" database.
repository_device=master
Migrate server wide data - logins, roles, remote servers, etc...
valid only with "setup" mode, default is yes
migrate_server_data=yes
Tell sybmigrate to lock or unlock all login accounts on the
target Adaptive Server. Valid values are "yes" and "no":
"yes" to lock and "no" to unlock. This is only valid if
"migrate_server_data" is set to "yes" and run in "setup" mode.
If this attribute is not specified, target Adaptive Server login
accounts are not change.
lock_account=no

Change target Adaptive Server login passwords. This is only valid
if "migrate_server_data" is set to "yes" and run in "setup" mode.
If this attribute is not specified, target Adaptive Server login
accounts are not change.
The valid values are "<generate>" and password file.
"<generate>" instructs sybmigrate to use random passwords.
Password file instructs sybmigrate to use the passwords from
this file.
The content of the password file consists of two columns:
the login name column and the password string column.
The separator between the columns are tabs and or spaces.
The valid values are "<generate>" and password file.
"<generate>" instructs sybmigrate to use random passwords.
Password file instructs sybmigrate to use the passwords from
this file.
The content of the password file consists of two columns:
the login name column and the password string column.
The separator between the columns are tabs and or spaces.
lock_account=no

Database information

Migrate the "pubs2" database objects
[database]
source_database_name=pubs2
target_database_name=pubs2

Migrate database data, valid only if "migrate_server_data"
was set to "yes" in "setup" mode. This is default to yes.
migrate_database_data=yes

Work database setup attributes. This is required with "setup" mode.
Work database size in MB.
work_database_size=5
work_database_device=master

Number of threads use to do user table data copy
data_copy_thread=5

Number of thread use to create indexes.
create_index_thread=1

Number of thread use to do ddl migration/validation
Migration process

work_thread=10

Automatically select the dependent objects for migration and
validation. Valid values are "yes" or "no".
auto_select_dependent_objects=yes

#
Migrate objects
#
These attributes specify the list of DDL object to
migrate or validate. User can directly specify the
list of DDL object or ask Migration tool to query the
list. Directly specifying the list has the higher
precedence. The SQL command will ignore if the list
is given.
#
Note:
* The SQL command for the "*_list_from_sql" attributes
must return column <object name> or columns <user
name> and <object name>
* Index type must also specify the table name. For
example, "<table>.<index name>" for
"index_create_list" attribute or columns <table>,
<index name> for "index_create_list_from_sql"
attribute.
* Value "<ALL_OBJECTS>" can be used on any of the
attributes to specify all objects for the type.
* If none of these attributes are given, all objects
and data are migrated.
#
user_defined_type_create_list=
id
dbo.tid

default_create_list_from_sql=
select user_name(uid), name from sysobjects
where type = 'D'

rule_create_list=
pub_idrule, title_idrule

table_create_list=
publishers
titles
dbo.authors
dbo.titleauthor
dbo.roysched
stores
dbo.sales
dbo.salesdetail
dbo.discounts
dbo.au_pix
blurbs

table_migrate_list=
dbo.publishers titles dbo.authors dbo.titleauthor
dbo.roysched
stores dbo.sales dbo.salesdetail dbo.discounts au_pix
dbo.blurbs

index_create_list=
dbo.authors.auidind
dbo.authors.aunmind
publishers.pubind
royshed.titleidind
sales.salesind
salesdetail.titleidind
salesdetail.salesdetailind
titleauthor.taind
titleauthor.auidind
titleauthor.titleidind
titles.titleidind
titles.titleind

trigger_create_list=
deltitle
totalsales_trig

store_procedure_create_list_from_sql=
select name from sysobjects where type = 'P'

view_create_list_from_sql=<ALL_OBJECTS>

referential_constraint_create_list_from_sql=<ALL_OBJECTS>

logical_key_create_list_from_sql=<ALL_OBJECTS>

Migrate the "pubs3" database objects
#
Migration process

[database]
source_database_name=pubs3
target_database_name=pubs3

Migrate database data - user, etc.
migrate_database_data=yes

These two attributes valid only with "setup" mode
work_database_size=5
work_database_device=master

Number of threads use to do user table data copy
data_copy_thread=5

Number of thread use to create indexes.
create_index_thread=1

Number of thread use to do ddl migration/validation
work_thread=10

Migrate objects
user_defined_type_create_list=<ALL_OBJECTS>
default_create_list=<ALL_OBJECTS>
rule_create_list=<ALL_OBJECTS>
table_create_list=
dbo.authors
publishers
dbo.titles
dbo.roysched
stores
dbo.sales
dbo.store_employees
salesdetail
dbo.titleauthor
dbo.discounts
blurbs
table_migrate_list_from_sql=<ALL_OBJECTS>
index_create_list=<ALL_OBJECTS>
trigger_create_list=<ALL_OBJECTS>
store_procedure_create_list=<ALL_OBJECTS>

view_create_list=<ALL_OBJECTS>

referential_constraint_create_list_from_sql=<ALL_OBJECTS>

logical_key_create_list_from_sql=<ALL_OBJECTS>

Migrate all the "foo" database objects with default settings.
[database]
source_database_name=foo
target_database_name=foo

Migrate database data - user, etc.
migrate_database_data=yes

These two attributes valid only with "setup" mode
work_database_size=5
work_database_device=master

data_copy_thread=5

create_index_thread=1

work_thread=10

Using sybmigrate with encrypted columns

For databases with encrypted columns, sybmigrate migrates:

1. The system encryption password – if you specify not to migrate the system encryption password, sybmigrate migrates the encrypted columns using the reencrypt method instead of migrating the ciphertext directly.
Using sybmigrate with encrypted columns

2. Encrypted columns in cipher text format by default – this avoids the overhead of decrypting data at the source and reencrypting it at the target. In some cases, however, sybmigrate chooses the reencrypt method of migration, which does decrypt data at the source and reencrypts it at the target.

3. The encryption keys – you may select the keys to migrate. sybmigrate automatically selects keys in the current database used to encrypt columns in the same database. If you have selected migration of the system encryption password, sybmigrate migrates the encryption keys using their actual values. The key values from the sysencryptkeys system table have been encrypted using the system encryption password and these are the values that are migrated. If you have not migrated the system encryption password, sybmigrate migrates the keys by name, to avoid migrating keys that will not decrypt correctly at the target. Migrating the key by name causes the key at the target to be created with a different key value from the key at the source.

4. The data – by default, the data is transferred in its ciphertext form. Ciphertext data can be migrated to a different operating system. Character data requires that the target server uses the same character set as the source.

sybmigrate works on a database as a unit of work. If your database on the source server has data encrypted by a key in another database, migrate the key’s database first.

sybmigrate chooses to reencrypt migrated data when:

- Any keys in the current database are specifically not selected for migration, or already exist in the target server. There is no guarantee that the keys at the target are identical to the keys at the source, so the migrating data must be reencrypted.

- The system password was not selected for migration. When the system password at the target differs from that at the source, the keys cannot be migrated by value. In turn, the data cannot be migrated as ciphertext.

- The user uses the following flag:

```
sybmigrate -T 'ALWAYS_REENCRIPT'
```

Reencrypting data can slow performance. A message to this effect is written to the migration log file when you perform migration with reencryption mode.

To migrate encrypted columns, you must have both sa_role and sso_role enabled.
Post-migration activities

- `sybmigrate` supports the migration of only the objects listed elsewhere in this document. Manually migrate other schema objects and configuration information to ensure the target Adaptive Server is fully functional.

- Statistics for indexes are automatically re-created when you rebuild the indexes. However, `sybmigrate` does not re-create statistics from non-index columns. Any user-defined step values for index statistics are not retained during migration. To obtain target-server-side statistics similar to the source-server-side statistics, use `optdiag` to identify the tables with non-index columns that include statistics. Once you have determined which non-index columns include statistics, update the statistics manually.

- Any message requiring user attention preceded by the word “attention” and logged in the migration log.

- Run the object migrations status report to verify that all objects have been migrated.

Migrate databases in the Replication Server domain

The Replication Server domain includes one or more:

- Primary databases
- Replicate databases
- Replication Server System Databases (RSSDs)

Note The RSSD stores Replication Server system tables; in addition, it can also be a primary or a replicate database.

You can migrate any of these databases, but the process requires additional steps to ensure success.

❖ Preparing for migration

Make sure that replication from or into each database is complete before initiating migration. This means that:

- For a primary database – all changes have been applied to all subscribing databases
Migrate databases in the Replication Server domain

- For a replicate database – all changes to which the database subscribes have been applied

Note All transactions in the Replication Server inbound and outbound queues must be applied. After migration, there is no way to restore data left in the Adaptive Server transaction log.

1. Log in to the Replication Server and suspend log transfer. Enter:

   ```
   suspend log transfer from server.database
   ```

2. Log in to the Adaptive Server, and shut down the RepAgent. Enter:

   ```
   use database
   sp_stop_rep_agent database
   ```

3. Suspend all DSI connections to the replicate database. Log in to the Replication Server and enter:

   ```
   suspend connection to server.database
   ```

4. Put the Replication Server in hibernation mode. Enter:

   ```
   sysadmin hibernate_on, replication_server
   ```

Before starting the migration process, `sybmigrate` records replication information in its log. The information needed to restore the replication information during the postmigration steps can be retrieved from this log. See “Postmigration procedures” for more information.

Postmigration procedures

After migration, restore the replication information in the database. These steps can be generated by the `repl` report.

If the page size changes between the source and target, you must also follow directions in “Amending system tables when the logical page size changes” on page 392.

Replication Server identifies all connections by `server_name.database_name`. After migration, you must change the name of the target server (the server you are migrating to) to that of the source server (the server you are migrating from).
❖ **Restoring primary databases**

Follow this procedure for all primary databases, including the RSSD, if it is a primary database.

If the page size changes during the migration, you must also alter the `rs_lastcommit` and `rs_threads` system tables as described in “Amending system tables when the logical page size changes” on page 392.

1. If the original primary database had warm standby on, restore the standby status. Enter:
   ```sql
   sp_reptostandby database_name, status
   ``
   sybmigrate saves the standby status in the migration log of the source database.

2. Increase the generation ID by 1. Enter:
   ```sql
 dbcc settrunc ("ltm", "gen_id", gen_id)
   ```
   You can view the current generation ID in the migration log of the source database.

3. Reset the secondary truncation point:
   ```sql
 dbcc settrunc ("ltm", "valid")
   ```

4. Zero the Replication Server locator value for this database. Enter:
   ```sql
 rs_zeroltm server, database_name
   ```

5. If this database is an active connection in a warm standby configuration, rematerialize the standby database by dumping the primary and loading the dumps into the standby. See the Replication Server documentation for instructions.

6. Start the RepAgent on the primary database. Enter:
   ```sql
 sp_start_rep_agent database_name
   ```

7. Log in to the Replication Server and restart log transfer:
   ```sql
 resume log transfer from server.database
   ```

❖ **Restoring the RSSD**

1. If the RSSD is a primary database, follow the procedure in “Restoring primary databases” on page 391.

   If the page size changes, make sure you alter the `rs_lastcommit` and `rs_threads` system tables as instructed.
Migrate databases in the Replication Server domain

2  Turn off hibernation for the Replication Server. Log in to Replication Server and enter:

```
sysadmin hibernate_off replication_server
```

❖  **Amending system tables when the logical page size changes**

If the logical page size changes during migration, you must alter the `rs_lastcommit` and `rs_threads` system tables to account for the change.

Follow this procedure for all databases in which the page size has changed.

1  Alter the `rs_lastcommit` table. Enter:

```
declare @pad8_size integer
declare @alter_cmd varchar(200)

select @pad8_size = (@@maxpagesize / 2)
- (select sum(A.length) from syscolumns A, sysobjects B
 where A.id = B.id
 and B.name = 'rs_lastcommit')
+ (select A.length from syscolumns A, sysobjects B
 where A.id = B.id
 and B.name = 'rs_lastcommit'
 and A.name = 'pad8')

select @alter_cmd = "alter table rs_lastcommit
 modify pad8 char(" + convert(varchar(100), @pad8_size)
 ")"
execute (@alter_cmd)
go
```

2  Alter the `rs_threads` table. Enter:

```
declare @pad4_size integer
declare @alter_cmd varchar(200)

select @pad4_size = (@@maxpagesize / 2)
- (select sum(A.length) from syscolumns A, sysobjects B
 where A.id = B.id
 and B.name = 'rs_threads')
+ (select A.length from syscolumns A, sysobjects B
 where A.id = B.id
 and B.name = 'rs_threads')
```
and A.name = 'pad4')

select @alter_cmd = "alter table rs_threads " + "modify pad4 char(" + convert(varchar(100), @pad4_size) + ")"
execute (@alter_cmd)
go

Restoring replicate databases

If the page size does not change during migration, there are no postmigration steps necessary for replicate databases.

If the page size does change, follow the procedure in “Amending system tables when the logical page size changes” on page 392.

Logs

In the migration tool log, information about replicated objects is preceded by this banner:

=== Replication Information for Database 'pdb1' ===

This is a sample log file for a primary database named pdb1:

sp_repostandby 'pdb1' is NONE.

If the standby status for the database is not NONE, use the standby status as described in the post-migration steps above.

sp_config_rep_agent 'pdb1'

sp_config_rep_agent requests the current RepAgent configuration. The migration tool automatically restores RepAgent configuration, and you can use this log to verify the RepAgent configuration.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Default</th>
<th>Config Value</th>
<th>Run value</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>fade timeout</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>scan timeout</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>retry timeout</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>rs username</td>
<td>n/a</td>
<td>rs1_user</td>
<td>rs1_user</td>
</tr>
<tr>
<td>trace flags</td>
<td>0</td>
<td>8194</td>
<td>8194</td>
</tr>
<tr>
<td>batch ltl</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>rs servername</td>
<td>n/a</td>
<td>rs1</td>
<td>rs1</td>
</tr>
<tr>
<td>send buffer size</td>
<td>2k</td>
<td>2k</td>
<td>2k</td>
</tr>
<tr>
<td>trace log file</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Migrate databases in the Replication Server domain

connect database	n/a	pdb1	pdb1
connect dataserver	n/a	pds1	pds1
can batch size	1000	1000	1000
security mechanism	n/a	n/a	n/a
msg integrity	false	false	false
unified login	false	false	false
kip ltl errors	false	false	false
msg origin check	false	false	false
short ltl keywords	false	false	false
msg confidentiality	false	false	false
data limits filter mode	stop	stop	stop
msg replay detection	false	false	false
mutual authentication	false	false	false
send structured ogids	false	false	false
send warm standby xacts	false	false	false
msg out-of-sequence check	false	false	false
skip unsupported features	false	false	false
send maint xacts to replicate	false	false	false

(28 rows affected)

This is a list of explicitly replicated tables. sybmigrate automatically restores the replication status for explicitly replicated tables, and you can use this part of the log to verify the replication status of explicitly replicated tables.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Repdef</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>owner_off</td>
<td></td>
</tr>
<tr>
<td>t2</td>
<td>owner_on</td>
<td></td>
</tr>
</tbody>
</table>
```

(2 rows affected)

This is a list of explicitly replicated stored procedures. The migration tool automatically restores the replication status for explicitly replicated stored procedures, and you can use this part of the log to verify the replication status of explicitly replicated stored procedures.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Log</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>function</td>
<td>log_sproc</td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>function</td>
<td>log_current</td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td>table</td>
<td>log_sproc</td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td>table</td>
<td>log_current</td>
<td></td>
</tr>
</tbody>
</table>
```

(4 rows affected)

This is information about the secondary truncation page. You will need the generation_id column during the post-migration steps.
dbcc gettrunc
secondary_trunc_page  secondary_trunc_state  dbrepstat  generation_id
database_id  database_name  ltl_version
----------------------------------------------------------
621  1  167  0
   6  pdbl  400
(1 row affected)

This appears to be a replicated primary database.
Make sure the post processing steps for a replicated primary
database are performed. Please consult the manuals for
the steps that need to be performed.

This is an example log entry if your database is a replicate database.

This appears to be a replicate database.
If the pagesize is greater than 2K, make sure the
post processing steps for a replicate database
are performed. Please consult the manuals for the
steps that need to be performed.

This is an example log entry for an RSSD database.

This appears to be a replication system database
Make sure the post processing steps for a replication system
database are performed. Please consult the manuals for
the steps that need to be performed

All three logs can be present for a database, since a database can list the three
categories.

**Migrating databases that support wide data**

Adaptive Server version 12.5 and later can generate data wider than what
Replication Server version 12.1 and earlier can handle. If RepAgent passes
wide data to Replication Server 12.1 or earlier, Replication Server threads may
shut down.

RepAgent communicates with Replication Server using Log Transfer
Language (LTL). When the RepAgent connects to Replication Server, it
returns an LTL version as shown in Table 9-1.
### Table 9-1: Replication Server and LTL versions

<table>
<thead>
<tr>
<th>Replication Server version</th>
<th>LTL version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 and earlier</td>
<td>&lt; 400</td>
</tr>
<tr>
<td>12.5 and later</td>
<td>&gt;= 400</td>
</tr>
</tbody>
</table>

If Replication Server returns an LTL version less than 400, RepAgent uses the setting of the data limits filter mode option to determine how to treat wide data.

You can set the data limits filter mode option using `sp_config_rep_agent`. Values for data limits filter mode are:

- **stop** – RepAgent shuts down when it encounters data too wide for Replication Server to process (the default when the LTL version is less than 400).
- **skip** – RepAgent ignores data too wide for Replication Server to process, and logs an informational message.
- **truncate** – RepAgent truncates wide data so that Replication Server can process it. If the table or stored procedures has more than 250 columns or parameters, only the first 250 columns or parameters are sent. If the column or parameter is wider than 255 bytes, only the first 255 bytes are sent.
- **off** – RepAgent sends wide data to the Replication Server; Replication Server threads may shut down.

Table 9-2 shows column and width limits for Replication Server 12.1 and earlier and Replication Server 12.5 and later.
Table 9-2: Replication Server column number and width limits

<table>
<thead>
<tr>
<th>Property</th>
<th>Replication Server 12.1 and earlier</th>
<th>Replication Server 12.5 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column count</td>
<td>250</td>
<td>65535</td>
</tr>
<tr>
<td>Column width</td>
<td>255</td>
<td>65535</td>
</tr>
</tbody>
</table>

Limitations

When migrating server data, sybmigrate requires that the target Adaptive Server catalog contain only default data. Default data on Windows machines is different from UNIX machines. This causes problems when migrating from UNIX to Windows machines. To successfully migrate from a UNIX machine to a Windows machine, delete the XP Server name and the mon_user login on the target Windows machine.

High availability

Data migration is not supported while you are in high availability. You must stop high availability before beginning database migration.

❖ Stopping high availability before beginning database migration

1 Decouple primary and secondary Adaptive Servers.


3 Configure the target Adaptive Server for high availability.

Warning! The primary and the secondary Adaptive Servers must be configured to the same logical page size to run high availability.
Other limitations

- sybmigrate does not do any special processing for a DTM/XA environment. The status of open transactions and outstanding prepared transactions should be given consideration. If any special handling is required, you must do it manually.

- There is no reliable way for sybmigrate to determine the dependency of various objects. sybmigrate does not attempt to create an order in which objects are migrated based on their dependencies on other objects. Views can be dependent upon other views, and they will not be re-created if the view on which they are dependent has not yet been migrated. The migration of stored procedures and triggers may not be successful if the data on which they depend has not yet been migrated. Cross-database dependencies mean that you need to coordinate the migration of related objects. If dependencies are within the selected set, sybmigrate takes care of those dependencies. However, if dependencies exist outside the selected set, you may need to run sybmigrate through migration more than one time. For this reason, you may need to perform some partial retries to successfully complete the data migration.

- Adaptive Server versions 12.5.3 and later allow you to specify the size and location of a work database on your target server. When migrating a database or server from a source server with Adaptive Server Enterprise versions 12.0 and later but earlier than 12.5.0.1, you must specify the size and location of a work database on the target server.

- The name of the source and the target databases must be the same. SQL schema generated by ddlgen may have objects that must be qualified with the source Adaptive Server name.

- sybmigrate does not support any kind of auditing for migration activities.

- When renaming any of the compiled objects (procs, views, rules, defaults) the object name in syscomments is not updated. During the migration, the DDLGen query the object from syscomments with the old name in the text. This old name in the text causes problems for sybmigrate during the DDL migration.
## Troubleshooting and error messages

This section discusses common errors and how to address them, as well as different error messages and their meaning.

**Table 9-3: Migration-related errors and their descriptions**

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects fail to migrate</td>
<td>Objects often fail to migrate on the first attempt. sybmigrate automatically retries all failed migration attempts. However, if you choose to migrate an object that is dependent upon another object that is not migrated, the migration fails. To prevent failed migration of objects, examine the dependencies of objects that you select for migration. For example, you cannot migrate a trigger if the table on which the trigger is defined is not also migrated. Similarly, views can be created on other views or tables, and if these objects are not migrated, the migration of the view fails.</td>
</tr>
<tr>
<td>Beginning database migration</td>
<td>When you are in the setup phase of the migration process, you are asked to decide whether or not you want to migrate server data. You must select from yes, no, or undecided. “Undecided” provides you with the flexibility of setting up the migration process, but being able to return to the process at a later date that is more convenient for migration. If you select Undecided, you cannot begin the database migration until you indicate whether you want to migrate server data. If you indicate that you do not want to migrate server data during setup, you cannot migrate database data during migration. You can override this limitation in GUI mode.</td>
</tr>
</tbody>
</table>
| “Connection refused” and “Unable to obtain connection to the server” | There are two possible reasons why you may encounter these error messages.  
  - If either the source or the target Adaptive Server is not running, sybmigrate cannot establish a connection.  
  - The number of user connections configuration parameter must be configured to provide sufficient resources on both the source and target Adaptive Servers. |
| Target server cannot be reached from source server | The interfaces file is used to start the source Adaptive Server. Verify that it has an entry that identifies the target Adaptive Server. Verify that your login can access the target Adaptive Server from the source Adaptive Server. |
| If sybmigrate hangs during migration            | If sybmigrate hangs during the migration process, check the sybmigrate log in $SYBASE/$SYBASE_ASE/init/logs for any errors or exceptions. Also, check your Adaptive Server logs. If the Adaptive Server logs run out of space on the database, increase the database size, and install the sp_threasholdaction stored procedure to do dump tran when the log is full. |
Troubleshooting and error messages

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merging two databases</td>
<td>To merge two databases on the source Adaptive Server into one database on the target Adaptive Server, use the following procedure.</td>
</tr>
<tr>
<td></td>
<td>• Set up and migrate the first database.</td>
</tr>
<tr>
<td></td>
<td>• After migrating the first database, rename the target database so that it has the same name as the second source database.</td>
</tr>
<tr>
<td></td>
<td>• Set up and migrate the second database.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> You cannot migrate the database data for the second database because the users, roles and other database data already exist on the target database. You can still migrate user data.</td>
</tr>
<tr>
<td>Post-migration failure cleanup</td>
<td>If sybmigrate fails unexpectedly, rerun sybmigrate on the areas that failed. If it fails again with no more progress, clean up the source and target Adaptive Servers, and begin migration again. There are actions that you must perform on both the source and target Adaptive Server. On the source Adaptive Server:</td>
</tr>
<tr>
<td></td>
<td>• Drop the temporary working databases mtpdb$%.</td>
</tr>
<tr>
<td></td>
<td>• Drop the repository database sybmigratedb.</td>
</tr>
<tr>
<td></td>
<td>• Drop all remote servers mtr$s%.</td>
</tr>
<tr>
<td></td>
<td>On the target Adaptive Server:</td>
</tr>
<tr>
<td></td>
<td>• If server data was migrated, rebuild the target Adaptive Server with srvbuild or syconfig.</td>
</tr>
<tr>
<td></td>
<td>• Re-create the target databases.</td>
</tr>
<tr>
<td>Remigrating one database</td>
<td>To remigrate a specific database:</td>
</tr>
<tr>
<td></td>
<td>1 Start sybmigrate.</td>
</tr>
<tr>
<td></td>
<td>2 In the Setup Paths window, during the setup session, right-click the migration path you want to redo.</td>
</tr>
<tr>
<td></td>
<td>3 Select Delete Migration Path on the pop-up menu.</td>
</tr>
<tr>
<td></td>
<td>4 Clean up or remove the migrated data and objects on the target database, or drop and re-create the target database.</td>
</tr>
<tr>
<td></td>
<td>5 Restart sybmigrate and run it from setup mode.</td>
</tr>
<tr>
<td>Re-creating an individual object</td>
<td>To re-create an individual object:</td>
</tr>
<tr>
<td></td>
<td>1 In the target Adaptive Server, drop the object you want to re-create.</td>
</tr>
<tr>
<td></td>
<td>2 Start sybmigrate in the migration session, and go to the Migrate Object Selection window. Highlight the object you want to create and right-click.</td>
</tr>
<tr>
<td></td>
<td>3 From the pop-up menu, select Reset Object to Initial status.</td>
</tr>
<tr>
<td></td>
<td>4 Complete the migration process.</td>
</tr>
</tbody>
</table>
CHAPTER 9  Migrating Data Using sybmigrate

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection fail</td>
<td>If you receive a connection fail error message even though the source and target Adaptive Servers are running, you may be using the wrong character set. When you are using sybmigrate, you must use the default character set. Run sybmigrate with the <code>-J charset</code> option, to change the character set you are using.</td>
</tr>
</tbody>
</table>
| “Insufficient memory in JVM shared class” | If you see the following error in the server log, it indicates that you must reconfigure the size of shared class heap configuration parameter to a larger value.  
01:00000:00036:2002/01/28 14:17:05.63 server Java VM  
Host: Memory allocation request failed because of insufficient memory in JVM Shared Class. |
| “There is not enough memory in the procedure cache” | If you see the error message there is not enough memory in the procedure cache during the migration of indexes, use `sp_configure procedure cache size` to increase the procedure cache. |
| java.lang related error | If you receive `java.lang.NoClassDefFoundError:com/sybase/jdbcx/SybDriver` when you are connecting to Adaptive Server, check to make sure you have jConnect 6.0 installed in your `$SYBASE` directory (`$SYBASE/jConnect-6_0`). |
This chapter discusses sybrestore.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>403</td>
</tr>
<tr>
<td>Before you begin</td>
<td>404</td>
</tr>
<tr>
<td>Using sybrestore</td>
<td>405</td>
</tr>
<tr>
<td>Restoring a database in noninteractive mode</td>
<td>407</td>
</tr>
<tr>
<td>Restoring a database in interactive mode</td>
<td>407</td>
</tr>
</tbody>
</table>

Overview

Use sybrestore, which supports Adaptive Server versions 15.7 ESD #2 and later, to restore an Adaptive Server database to the time of failure from the most current full database backup dump files. sybrestore offers two modes—interactive and noninteractive—and is supported on both Windows and UNIX platforms.

Interactive mode

In interactive mode, you can specify:

- A different target server than the source server. If the target database you specify does not exist, a new database is automatically created.
- Whether the last transaction is dumped from the source server and loaded on to the target server. If your data device fails and the database is inaccessible, the dump transaction does not truncate the log.
- Whether to drop and re-create the database.
- Whether to use the current dump history files or external dump files.
Before you begin

• The location for the dump transaction.
• Whether to bring the database online immediately after the restore.
• A point in time, within the range of time during which the database is backed up in the dump history files, from which to restore the database.
• Reinitialize and re-create the database devices of an offline database for which the devices are offline. Then restore the re-created database.

Noninteractive mode

Providing the database name invokes the utility in noninteractive mode, which restores a database using the most current dump history files.

To use noninteractive mode:
• Use Adaptive Server 15.7 ESD #2 and later.
• The target and source servers must be the same server and the target database to be restored must be the same database as the source.
• You cannot use external dump files.
• Specify the server name, a user name, and the database name. If you do not provide a password, you are prompted to do so when you invoke sybrestore.
• (Optional) Specify a dump directory and an interfaces file.

Before you begin

Before using sybrestore:
• You must be a user with sa_role privilege. To work on an offline database that has offline or inactivated devices, you must be a user with mon_role and sa_role.
• Make sure these environment variables are set correctly:
  • SYBASE -- the location of the current version of Adaptive Server.
  • SYBASE_ASE -- the location of the Adaptive Server component directory.
- SYBASE_JRE6 and SYBASE_JRE7 -- the location of JRE 1.6 and JRE 1.7 respectively.
- Adaptive Server and Backup Server must be running for both the target and source servers.
- The master database must be available.
- The source database must be connected to the server in a recovered or unrecovered state.
- The log segment of the source database must be available for dumping and then loading back the last transaction logs that have not been dumped.
- Dump history files or external dump files must be available.

Sybrestore is installed as part of the Adaptive Server software. For information about how to install Adaptive Server, see the installation guide for your platform. The executable file is located in:

```
$SYBASE/ASE-15_0/bin/
```

**Using sybrestore**

Sybrestore performs checks in both interactive and noninteractive modes:
- A check is performed to determine the version of Adaptive Server. In version 15.7 ESD #2, enhancements called dump configurations were introduced in the dump and load commands. Sybrestore supports dump configurations in version 15.7 ESD #2 and later. If you are using Adaptive Server 15.7 ESD #1 or earlier, you must use external dump files.
- Another check determines whether Backup Server is running. The session is terminated if it is not.
- The dumped database and target database are checked for geometry compatibility, which verifies that the database dump can be loaded successfully into the target database. See “Compatibility geometry check” on page 406.
- A final check determines whether dump history files exist for the database. If there is no such file, sybrestore prompts you to provide external dump files.
Using sybrestore

Compatibility geometry check

A geometry compatibility check verifies whether a database dump can be loaded successfully into the target database.

The rules that verify this compatibility are:

- The size and the order of the data and log fragments must match. If two or more consecutive fragments are of the same type (data or log), the sizes for these consecutive fragments are combined together before a comparison is done between the dumped database and the target database.

- The size of all fragments before the last fragment for the target database must match exactly with the size of the dumped database. The last fragment of the target database can be bigger than the database that is dumped. There may be extra fragments in the target database after matching all fragments in the dumped database.

sybrestore syntax

To start sybrestore, you must provide a login and server name (or host name and port number). If you do not provide a password, you are prompted to enter one when you execute the command. If the connection to the server fails, an error message is raised. For a complete list of sybrestore parameters, see “sybrestore” on page 187.

By default, the $SYBASE/interfaces file is used. If you specify an interfaces file, that file is used instead of $SYBASE/interfaces.

Interactive mode syntax

The interactive mode syntax is:

```
sybrestore
-S server_name | host_name:port_number
-U username
[-P password]
[-t [point in time of restore]]
[-I interfaces_file]
```

Noninteractive mode syntax

Providing the database name invokes noninteractive mode. The noninteractive mode syntax is:
Restoring a database in noninteractive mode

In Adaptive Server 15.7 ESD #2 and later, use sybrestore in noninteractive mode to restore a database to the time of failure from the most current dump history files.

In noninteractive mode, the dump history files must be available.

The current full database dump files are used, along with series of transaction log dumps, if dump transaction is used.

Start sybrestore with the user name, password, server name, and database name options. For example:

    sybrestore -Usa -P -SaseServer1 -Ddba_db

You see the Restore Database wizard, which shows a preview of the SQL to be executed for restoring the database, along with any progress or error messages.

Optionally, you can specify an interfaces file, and a directory for dumping the last transaction log. If you specify a directory for dumping the last transaction log in the sybrestore command, it overrides the default location of the dump directory.

A geometry check, which verifies that the database dump can be loaded successfully into the target database is performed. See “Compatibility geometry check” on page 406. If dump files do not exist or the geometry check fails, the session is terminated.

Restoring a database in interactive mode

The interactive command line interface allows single-key entry, plus the Enter key to navigate through each menu. Use:
Restoring a database in interactive mode

- Space – to move back to the previous menu.
- q – to quit the session.
- ? – to display help.

When the Restore Database wizard starts, which is based on the given parameters. For example, you see the menu shown below when you start sybrestore with the minimal options of user name, password, and server name:

```
sybrestore -Usa -P -SaseServer1
```

```
<<<<<<====Restore Database Menu ======>>>>>>>
```

s : Select Database
t : Target Server
r : Recreate Database
e : Use External Dump
c : Check Geometry
d : Dump Directory
o : Online Database
p : Preview
g : Go

This example illustrates how the Restore Database menu is affected if you include the point-in-time parameter in the sybrestore command:

```
sybrestore -Usa -P -SaseServer1 -t
```

```
<<<<<<====Restore Database Menu ======>>>>>>>
```

s : Select Database
t : Target Server
r : Recreate Database
i : Point-In-Time
c : Check Geometry
o : Online Database
p : Preview
g : Go

Table 10-1: Restore Database menu

<table>
<thead>
<tr>
<th>Menu Option</th>
<th>Input Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Database</td>
<td>Select the database to be restored.</td>
</tr>
</tbody>
</table>
When using the interactive command line to restore a database, you can provide one or more mapping directories.

Providing a mapping directory

When using the interactive command line to restore a database, you can provide one or more mapping directories.
Restoring a database in interactive mode

- If the mounted directory of the target server backup files is the same as the source server, provide an empty mapping directory by leaving the prompt blank.

- If the mounted directory of the target server backup files is not the same as the source server, provide a mapping directory in this form:

  /path1>>/path2

Do not use cyclic path entries, as they cannot be resolved. For example:

<table>
<thead>
<tr>
<th>Mapping</th>
<th>Results in</th>
</tr>
</thead>
<tbody>
<tr>
<td>/path1&gt;&gt;/path2</td>
<td>/path1&gt;&gt;/path1</td>
</tr>
<tr>
<td>/path2&gt;&gt;/path1</td>
<td>/path1&gt;&gt;/path2</td>
</tr>
<tr>
<td>/path1&gt;&gt;/path2</td>
<td>/path1&gt;&gt;/path5</td>
</tr>
<tr>
<td>/path2&gt;&gt;/path3</td>
<td>/path2&gt;&gt;/path5</td>
</tr>
<tr>
<td>/path3&gt;&gt;/path5</td>
<td>/path3&gt;&gt;/path5</td>
</tr>
</tbody>
</table>

Using the interactive command line

- Restoring a database

1. In the command window, start sybrestore:

   sybrestore -Usa -P -serverName:portNumber

   Once the Restore Database wizard starts, you see the Restore Database menu.

   <<<<<<>>> Restore Database Menu >>>>>>>

   s : Select Database
t : Target Server
r : Recreate Database
e : Use External Dump
c : Check Geometry
d : Dump Directory
o : Online Database
p : Preview
g : Go

2. Enter:

   g

   You see a list of available source databases.
3 Select a database by entering the number associated with the database or the name of the database.

4 Specify whether the target server to be restored is the same as the source server.

If the target server is not the same as the source server, you are prompted to specify a target server by providing the server name (or hostname:port number), login, and password. You can then provide a mapping directory. See “Providing a mapping directory” on page 409.

5 Specify whether the name of the target database is the same as the source database:
   • If the target database name is not the same as the source database name, select a target database.
   • If the target database does not exist, a database is created, and you must specify devices and devices sizes and log devices and log sizes.
   • If the database is offline and its devices do not exist, you are prompted to reinitialize the database devices.

6 Specify whether to drop and re-create the database.

When re-creating the database, you are prompted to specify devices and devices sizes, and log devices and log sizes.

7 If you choose to restore the database from dump history files, specify whether to use the current dump files or external dump files.

If you are using external backup files to restore the database:
   • Specify the archive directory for the dump database file location and the dump database file name, including respective stripe names.
   • Specify the dump transaction log file location and multiple dump transaction log file names, including respective stripes names.

Note Provide the transaction log files in the same time sequence as they were dumped.

If you have selected dump history files, a geometry check verifies that the database dump can be loaded successfully into the target database. See “Compatibility geometry check” on page 406.

In Adaptive Server versions 15.7 ESD #2 and earlier, specify external dump files; no geometry check is performed.
8 Specify whether to dump the last transaction of the source database, provided that:
   • The status of the database is not "for load," or "offline."
   • The database passes the tran_dumpable_status check.
9 Use the archive directory as the location of the dump directory, or specify a different location for dumping the transaction.
10 Specify whether to bring the database online after the restore.
   You see a preview of the SQL statements to be executed for restoring the database.
11 Specify whether to execute the SQL.
   You see any progress or error messages.

❖ Restoring a database to a point in time
1 In the command window, start sybrestore.

   sybrestore -Usa -P -serverName -t

Once the Restore Database wizard starts, you see the Restore Database menu.

   <<<<<<<<< Restore Database Menu >>>>>>>>>

   s : Select Database
   t : Target Server
   r : Recreate Database
   i : Point-In-Time
   c : Check Geometry
   o : Online Database
   p : Preview
   g : Go

2 Enter:

   g

   You see a list of available source databases.
3 Select a database by entering the number associated with the database or the name of the database.
4 Specify whether the target server to be restored is the same as the source server.
If the target server is not the same as the source server, you are prompted to specify a target server by providing the server name (or hostname:port number), login, and password. You can then provide a mapping directory. See “Providing a mapping directory” on page 409.

5 Specify whether the name of the target database is the same as the source database.

   If the target database name is not the same as the source database name, select a target database.

   If the target database does not exist, a database is created, and you must specify devices and devices sizes and log devices and log sizes.

6 Specify whether to drop and re-create the database.

   When re-creating the database, you are prompted to specify devices and devices sizes, and log devices and log sizes.

7 The dates and times of the dumped database are given.

   First, specify the range of time from which to restore the database. You then see the low and high time ranges. Specify a point in time that falls within the available range. See “Restore to a point-in-time example” on page 413.

8 A geometry check is performed. See “Compatibility geometry check” for more information. If dump files do not exist or the geometry check fails, the session is terminated.

9 Specify whether to bring the database online after the restore.

   You see a preview of the SQL to be executed for restoring the database.

10 Specify whether you want to execute the SQL.

   You see any progress or error messages.

---

**Restore to a point-in-time example**

The following is an example of restoring a database to a point-in-time based on the dump database dates and times.
Table 10-2: Example of dump history

<table>
<thead>
<tr>
<th>Date</th>
<th>Dump time</th>
<th>Type of dump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 14</td>
<td>11:04 AM</td>
<td>database dump</td>
</tr>
<tr>
<td></td>
<td>12:20 PM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>2:20 PM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>7:00 PM</td>
<td>transaction dump</td>
</tr>
<tr>
<td>Aug 17</td>
<td>9:00 AM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>9:00 AM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>2:16 PM</td>
<td>transaction dump</td>
</tr>
<tr>
<td>Aug 23</td>
<td>10:27 AM</td>
<td>database dump</td>
</tr>
<tr>
<td></td>
<td>2:00 PM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>9:30 PM</td>
<td>transaction dump</td>
</tr>
<tr>
<td>Sep 28</td>
<td>8:00 AM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>9:00 AM</td>
<td>transaction dump</td>
</tr>
<tr>
<td></td>
<td>12:14 PM</td>
<td>transaction dump</td>
</tr>
</tbody>
</table>

sybrestore prompts you to select a range of time based on the database dump history.

For example, based on the information in the above table, you see:


You can select a time range by entering the list number. For example, enter 2 for the time range [Aug 14 2012 11:04:58:330AM, Aug 17 2012 2:16:17:206PM].

Next, enter a time that falls between Aug 14 2012 11:04:58:330AM and Aug 17 2012 2:16:17:206PM. For example, enter:

Aug 16 2012 10:00 A.M
Index

Symbols
!! (exclamation points) operating system commands prefix (isql) 99
< (redirect in) in isql  279
> (redirect out) in isql  279
\ (backslash)
  escaping special characters  1
  \ (backslash) data field terminator in interactive bcp  224
\0 (null) character terminator in interactive bcp  224
“ ” (enclosing special characters)  1

A
actions
  collect  135
  compare  135
  custom start  135
  fix_stats  135
  restore  187
  simple start  135
  start_stats to fix missing statistics  135
Adaptive Server
  configuration of, for migration  370
  executing (dataserver)  49
  executing (sqlsrvr)  152
  restoring  405
  rolling back processes  238
  upgrading (sqlupgrade)  159
  upgrading with resource files (sqlupgraderes)  160
add instance  309
adding
  network transport addresses in dsedit  269, 271
  server entries in dscp  256
  server entries in dsedit  267, 268
additional network memory parameter  367
allow_dup_row option to create index, and bcp  241
application programs, copying data from  230
archive database access
  downgrading  373
  migrating  366, 372
ASCII format, bcp and  215
ascii_7 character set
  defncopy and  83

B
backing up, compared to bulk copying  243
backslash (\)
  escaping special characters  1
  terminator in interactive bcp  224
Backup Server
  See also backupserver utility command  8
backup Server  8
backupserver utility command  8
  character set, default  8
  defined  8
  error log file  8
  error messages in  8
  full path names, specifying  8
  interfaces file  8
  interfaces file, name and location of  8
  language, default  8
  LC_ALL environment variable  8
  permissions required for  13
  server connections, number of  8
  server names, specifying  8
  starting servers and  8
  trace flags  8
  -bbatch_size parameter  238
bcp  212
bcp utility command  14, 243
  allow_dup_row option to create index  241
ASCII format and  215
  batch operations in  238
  batch size settings  14
Index

-batch_size parameter 238
binary format and 194
count format 215
count format files 214
count format, default 216
count formats accepted 194
count set defaults 14
configuration parameters 241
copying data in 202, 205, 233, 236
copying data out 230, 233, 240
copying in batches of table rows 238
data integrity 243
data loss and dumping 199
data storage size in 218
data transfer, preparing for 197
datatype types 222
default values for data 243
defaults for columns and datatypes 243
defined 14
described 194
dump database and 243
error files 241
errors in data conversion 241
examples for using 26
fast version of 202
fast version of, and data recoverability 201
field lengths 215
field terminators 216, 218
file storage types in 218
format files 227
identity columns and 210
improving performance of operations 241
improving recoverability when copying data in 239
index creation 241
indexes and triggers, dropping 202
insert and 243
interactive mode 217, 225
languages, using alternate 237
load database and 243
load transaction and 243
maximum speed, enabling 243
native file format and 214
native format option and 215
non-character to character datatypes default field lengths 222
non-interactive 214

non-iso_1 data files and 237
other Adaptive Server utilities and 243
page allocations, increasing for 205
partitioned tables and 203, 212, 240
password encryption in 14
performance issues with 210, 243
permissions required for 196, 219
prefix length 218
prompts and responses. See Interactive bcp 216, 217
prompts in 218
rolling back processes 238
row terminators 216
rules and copying data 243
slow version and deadlocks on index pages 204
slow version of 202
space needed for data 202
special characters, handling 14
speed, and indexes and triggers 199
speed, modes of 195
storage types 222
system data format (SDF) output in 231
system differences, operating 215
table defaults and copying data 243
terminators used in 194
transferring data between programs 194
triggers and data copying 243
triggers not fired on target table 199
unique identity column values and 210
using with row-level access rules 238
warning about data recovery 14
binary data
bcp and 194
default in interactive bcp 221
buffer, query 276
buildmaster utility command. See dataserver bulk copy process
See also bcp utility command 14

C

carriage-return data field terminator (\r) in interactive bcp 224
certauth utility command
defined 35
permissions required for 35
settings for 35
certpk12 utility command
defined 39
permissions required for 39
settings for 39
certreq utility command
defined 42
permissions required for 42
settings for 42
char datatype, and bcp 214
character formats
bcp 194
default in bcp 214, 216
terminators for 224
character sets
backupserver, default in 8
bcp, defaults in 14
converting from non-character data 222
installing and modifying (sqllocres) 151
installing and modifying, in GUI (sqlloc) 149
loading, with charset 46
platform default 237
charset utility command 46
defined 46
permissions required for 46
settings for 46
checks
sybrestore utility command 405
CIS bulk insert array size
configuration for migration 367, 370
CIS bulk insert batch size 370
CIS packet size
configuration for migration 370
for migration 367
closing a session
dscp 254
dsed 264
cobpre utility command 47
collect action of qptune 135
column precision in numeric or decimal storage formats 227
column scale in numeric or decimal storage formats 227
columns
datatype sizes and 222
default values and bcp 243
fixed- and variable-length 221
null 241
separator character (isql) 274
comma-delimited output 230, 232
command terminator (isql) 274
statistics option interaction 278
compare action of qptune 135
component directory for migration 365
connect 311
copy threads on sybmigrate 370
copying
between sessions in dscp 258
different sessions in dscp 258
new entries with dscp 258
server entries with dscp 257
server entries with dsedit 268, 269, 270, 271
copying data in
batch operations in 238
improving recoverability after rolling back 239
parallel bcp, requirements for 206, 210
partitioned tables 203
partitions, random use of 204
steps, using fast version of bcp 202
copying data in with interactive bcp 233, 236
compatibility of datatypes, and failure 234
delimiters 234
error files and 242
field lengths 233
copying data out with interactive bcp 230, 233
delimiters 231
error files and 242
fixed-length fields 230
for other software 230
text and image data 240
copying definitions 83
cpere utility command 48
create cluster 315
create index command, bcp and duplicate rows 241
creating
new servers (srvbuild) 161
new servers using resource files (srvbuildres) 163
custom start action of qptune 135
Index

D

data
    changing with Adaptive Server commands  243
    conversion errors  241, 242
    importing and exporting with bcp  194
    moving with Adaptive Server commands  243
    padding with spaces in interactive bcp  221
    parsing. See Field terminators  216
    permission required to copy into tables  32, 197
    recoverability  201
    transferring from different programs using bcp  194
    data transfer, default formats with bcp  214
    database data, migration of  360
    database management systems, other  230
    database menu
        sybrestore utility command  408
    database objects
        copying using bcp  14
    databases, copying with bcp  243
    dataserver utility command  49
        defined  49
        passwords, generating new  49
        permissions required for  49, 152
    datatypes
        bcp file storage types for  217, 219
        bcp format files for  227
        bcp, used in  222
        char  214
        copying and compatibility  234
        default values and bcp  243
        field lengths in interactive bcp  219, 225
        implicit conversions of  219
        non-character to character default field lengths in bcp  222
        storage (SYB)  227
ddlgen utility command
    defined  58
    permissions required for  58
    settings for  58
    debugging utility  143
default network packet size configuration parameter  241
defaults
    bcp data conversion  222
    bcp prompts  217, 225
    character sets in backupserver  8
    character sets, in bcp  14

copying into tables using data  243
copying, with defncopy  83
languages in backupserver  8
prompts in interactive bcp  217, 225

definitions
    backupserver utility command  8
    bcp utility command  14
    certauth utility command  35
    certpk12 utility command  39
    certreq utility command  42
    charset utility command  46
copying. See defncopy utility command
dataserver utility command  49
ddlgen utility command  58
defncopy utility command  83
dscp utility command  89
dseedit utility command  91
extractjava utility command  92
installjava utility command  95
isql utility command  99
optdiag utility command  115
preupgrade utility command  123
qrmutil utility command  128
showserver utility command  142
sqldbgr utility command  143
sqlloc utility command  149
sqllocres utility command  151
sqlsrvr utility command  152
sqlupgrade utility command  159
sqlupgraderes utility command  160
srvbuild utility command  161
srvbuildres utility command  163
startserver utility command  165
sybdiag utility command  173
sybmigrate utility command  180
sybrestore utility  187
sybtmspssw utility command  189
xpserver utility command  190
defncopy utility command  83
asci_7 character set and  83
defined  83
encrypted text  83
examples  83
failure due to long comments  83
passwords and crashing  83
Report Workbench, incompatibility with 83
deleting
  server entries (dscp) 259
delimiters
  copying data in with 234
  copying data out with 231
deploy plugin 318
diagnose cluster 320
diagnose instance 322
directory services
  entries, adding 265
  entries, copying to 268, 270, 271
  entries, deleting 267
  entries, modifying 267
  entries, renaming 267
  opening to, with dsedit 263
disconnect 323
DISPLAY environment variable
  setting, in dsedit 262
downgrading an archive database 373
drop cluster 325
drop instance 326
dscp utility command 89
  commands, table of 260
  defined 89, 253
  entries, creating new, by copying 258
  examples of 89
  exit command 260
  help 89, 253
  permissions required for 89
  quit command 260
  server attributes 255
  server entries, adding 256
  server entries, copying 257
  server entries, deleting 259
  server entries, listing 259
  server entries, modifying 257
  server entry contents, viewing 259
  sessions, closing 254
  sessions, copying between 258
  sessions, copying to different 258
  sessions, listing 254
  sessions, opening 254
  starting 253
dsedit utility command 91
  about 261
  command line arguments 261
  defined 91
  Directory Service Session screen 264
  DISPLAY environment variable and 262
  libtcl.cfg file 263
  network transport addresses, adding 269, 271
  network transport addresses, editing 269
  opening with sql.ini 263
  permissions required for 91, 262
  remote machines, running from 262
  Select a Directory Service screen 262
  server attributes 265
  server entries, adding 267, 268
  server entries, cannot add, modify, or delete 272
  server entries, copying 268, 269, 270, 271
  server entries, deleting 267
  server entries, editing 267
  server entries, renamming 267
  sessions, closing 264
  sessions, opening 264
  starting 262
  starting from command prompt 261
  starting from Windows Explorer 261
  SYBASE environmental variable and locating
    libtcl.cfg 263
  troubleshooting 261, 272
  xd2 Unable to open X displayxd3 error message 272
DSLISTEN environment variable
  backupserver and 8
  dump database command
    bcp and 243
  dump transaction command
    bcp and 243
    error message recommending use of dump database 201

E
  echo input (isql) 279
  editing
    interfaces files 262, 264
    interfaces files in GUI (dsedit) 91
    network transport addresses in dsedit 269
  editing interfaces files in GUI

Utility Guide 419
Index

See also dsedit utility command 91

**enable unicode conversions** for migration 367
encrypted hidden text 83

environment variables
  DSLISTEN (backupserver) 8
  LANG (backupserver) 8
  LC_ALL (backupserver) 8
release path, for **sybmigrate** 365
SYBASE_ASE 365
SYBASE_JRE environment variable 365
error files
  bcp and 241, 242
copying out and 242
error log files
  for backupserver 8
error messages
dsedit and X display 272
dump database use over dump transaction 201
in backupserver 8
error messages for migration 399
ers in data conversions 241, 242
operations, saving during copy in 241
operations, saving during copy out 242
examples
  bcp utility command 26
defincopy utility command 83
dscp utility command 89
isql utility command 99
showserver utility command 142
startserver utility command 165
executing Adaptive Server 49, 152
  See also dataserver utility command 49
  See also sqlsrvr utility command 152
exit 328
exit command
  in dscp 260
  in isql 273
exporting data. See Copying data out with interactive bcp 230
extractjava utility command
defined 92
permissions required for 92
settings for 92

**F**
failure cleanup, **sybmigrate** 400
fast version of bcp 202
copying data in 202
data recoverability and 201
field lengths
copy in 233
in interactive bcp 221, 222
prefix length, integer value in 227
field terminators 216
  bcp 218
  interactive bcp 224, 225
files
  See also Format files in bcp 227
default formats with bcp 214
error (bcp) 241
native format 214
fixed-length fields 230
format files in bcp 227
column numbers 227
column precision 227
column scale 227
elements used in 227
format used for 227
host file column order 227
host file data length 227
host file datatype storage formats (SYB) 227
number of records in 227
prefix length, integer value in 227
saving 227
server column names 227
server column orders 227
TDS version number in 227
terminators 227
formatting isql output 274
full path names, specifying
  in Backup Server 8

**G**
geometry check
  sybrestore utility command 406
GUI mode
  for migration 373
Index

H
help 329
help command (dscp) 89, 253
hidden encrypted text 83
--hide-vcc parameter 15
high availability
migration with 397
host file
isql and reading 279
host files
column order 227
data length 227
datatype storage formats (SYB) 227
interactive bcp native format 221

I
IDENTITY columns
bcp and 210
parallel bcp and 210
ignore_dup_key option, create index, and bcp 241
image datatype
interactive bcp and 221
importing data. See Copying data in with interactive bcp 233
index re-creation for migration 389
index threads for sybmigrate 370
indexes
bcp, dropping before using 202
slowing down bcp 199
insert command
bulk copying, comparing 243
installing
character sets (sqllocres) 151
character sets, in GUI (sqlloc) 149
languages (sqllocres) 151
languages, in GUI (sqlloc) 149
languages, new (langinstall) 112
sort orders (sqllocres) 151
sort orders, in GUI (sqlloc) 149
installjava utility command
defined 95
permissions required for 95
settings for 95
interactive bcp 217, 225
backslash terminator (\) 224
binary data, default 221
carriage-return data field terminator (\r) 224
caracter format files, terminators for 224
copying data for other software 217
copying data in 233, 236
copying data out 230, 233
defaults for prompts 217, 225
field length 221, 222
field terminators 224, 225
fields, prefix length of 219, 221
file storage types 217, 219
image datatype, default for 221
implicit conversion of datatypes 219
null or invisible character terminator (\0) 224
null values and 221
padding data with spaces 221
row terminators 224, 225
storage length 221, 222
tab data field terminator (\t) 224
terminator for new lines (\n) 224
terminators for tabular data preparation 224
terminators, field and row 222, 225
text data copying, default for 221
interactive command line
sybrestore utility command 410
interactive mode
sybrestore 403
interactive SQL parser 99
See also isql utility command 99
interfaces files
backupserver and 8
backupserver, specifying names and locations of 8
dscp sessions, opening 254
dscp, viewing and editing with 89
dsedt, editing with 264
dsedt, viewing and editing in GUI with 91
dsedt, viewing and editing with 91
opening for editing 262
iso_1 character set 237
isql utility command 99
< (redirect in) symbol 279
> (redirect out) symbol 279
column-separator character 274
column terminator 274
command terminator, changing 277
Index

command terminator, resetting 99
correcting typing errors 276
defined 99
echo input 279
examples of 99
exit command 273
host files, reading 279
line numbers, removing 274, 279
maximum statement size 274
network packet size, setting 109
network packet size, specifying in 109
output file 274
output, formatting 274
packet size, setting 109
queries, editing 276
query buffer, resetting 276
quit command in 273
reset command in 276
statistics 278
statistics option with command terminator 278
Transact-SQL, using with 273
loading character sets 46
See also charset utility command 46
locations of backupserver error log files 8

M
manual migration, what is not migrated 362
mapping directory
sybrestore utility command 409
max memory, for migration 367
max network packet size configuration parameter 241
max network packet size, configuration for migration 370
max parallel degree, for sybmigrate 367
max packet size allowed, for sybmigrate 370
merging databases, during migration 400
migrate session, for sybmigrate 366
migrating
servers (sybmigrate) 180
migrating an archive database 366, 372
missing statistics
fix_stats action 135
start_stats action 135
modifying
character sets (sqllocres) 151
character sets, in GUI (sqlloc) 149
languages (sqllocres) 151
languages, in GUI (sqlloc) 149
server entries (dscp) 257
server entries with dsedit 267, 268
sort orders (sqllocres) 151
sort orders, in GUI (sqlloc) 149

N
native file format
bcp and 214
native format files 214
network packet size
isql, specifying in 109
network transport addresses
adding with dsedit 269, 271
dsedit, editing with 269
network transports 264
new servers, creating 161
  See also srvbuild utility command 161
new servers, creating, using resource files 163
  See also srvbuildres utility command 163
new-line terminator (\n)
in bcp 216
in interactive bcp 224
noncharacter datatypes, operating system format for 219
noninteractive mode
sybrestore 404
non-printable characters, host file 221
notes
  ascii_7 character set compatibility 83
  batch size settings in bcp 14
  defncopy and Report Workbench 83
  hidden encrypted text 83
  null terminator versus no terminator 224
  passwords, using 1
  security 1
  slow version of bcp and deadlocks 204
  special characters, handling in bcp 14
  system differences in bcp, operating 215
  triggers not fired by bcp in target table 199
null character terminator (\0) in interactive bcp 224
null values 241
  interactive bcp and 221
number (quantity of)
  server connections to backupserver 8
  number of pre-allocated extents 205
number of sort buffers for migration 370
number of user connections for migration 370
number of worker processes for migration 370
numbers
  line, removing from isql 274, 279
numeric datatypes
  bcp conversion to character storage 222
  column precision 227
  column scale 227
  operating system format for 215

O
  object hierarchy for migration 366
  objects

failed migration of 399
re-creating after migration 400
opening
  sessions in dscp 254
  sessions in dsedit 264
operating system files
  native format 214
  permission required for copying tables into 32, 197
operating systems
  non-character datatype formatting 219
numeric datatype formatting 215
optdiag command, changes 115
optdiag utility command 115
  defined 115
  permissions required for 121
output formats, data. See Copying data out with
  interactive bcp 230

P
  packet size, network
    bcp, specifying with 240
    isql, specifying in 109
    specifying in isql 109
  padding data and bcp 222
parallel bcp
  copying to a specific partition 206, 209
  different methods of using 208, 210
  IDENTITY columns and 210
  syntax 209
parameter
  --hide-vcc 15
partitioned tables in bcp 203, 212
  copying data into randomly 204
  copying data into, methods for 203
  page allocations, increasing 205
passwords
  bcp encryption 14
  defncopy and 83
  new, generating 49
  notes about using 1
performance
  bcp issues and 210, 243
  bulk copy and packet size 241
Index

isql network packet size and permissions 109
qptune 135
permissions required for
backupserver utility command 13
bcp utility command 196, 219
certauth utility command 35
certpk12 utility command 39
certreq utility command 42
charset utility command 46
dataserver utility command 49, 152
ddlgen utility command 58
dscp utility command 89
dsedit utility command 91
dsedit, required for 262
extractjava utility command 92
installjava utility command 95
langinstall utility command 112
operating system file, copying tables into 32, 197
optdiag utility command 121
preupgrade utility command 123
pwdcrypt utility command 128
qrmutil utility command 129
sqldbgr utility command 143
sqlloc utility command 149
sqllocres utility command 151
sqlupgraderes utility command 159
sqlupgraderes utility command 160
svrbuild utility command 161
svrbuildres utility command 163
sybrestore utility command 404
sybtmspasswd utility command 189
tables, copying data into 32, 197
xpserver utility command 190
post-migration activities, for sybmigrate 389
prefix field lengths in interactive bcp 219, 221
prefix length 227
prefix lengths in bcp 218
preupgrade utility command defined 123
permissions required for 123
settings for 123
primary database, restoring after migration 391
prompts
bcp. See Interactive bcp 217
prompts in bcp utility command 218
pwdcrypt utility command
defined 128
permissions required for 128
settings for 128

Q
qptune
collect action 135
custom start action for tuning 135
fix_stats action 135
parameters 135
simple start action for tuning applications or queries 135
start_stats action to fix missing statistics 135
syntax 135
qrmutil utility command
defined 129
permissions required for 129
settings for 129
query buffer, resetting 276
quick reference
dscp commands 260
quit 332
quit command
in dscp 260
in isql 273
quotation marks (’’) for enclosing special characters 1
quotation marks (xd2 xd3 ) for enclosing special characters 1

R
redirect in symbol (<> in isql 279
redirect out symbol (>) in isql 279
release path, for sybmigrate 365
remigrating a database 400
remote machines 262
renaming server entries with dsedit 267
recovered database
restoring after migration 393
replicated databases
post-migration procedures 390
Replication Server, migrating replicated data to
  Adaptive Server 389
report Workbench, incompatibility with defncopy 83
reports for sybmigrate 180
reset command (isql) 276
resource file mode, for migration 380
restoring a database
  sybrestore utility command, sybrestore utility command
    interactive command line 410
restoring databases in interactive mode
  sybrestore utility command 407
restoring databases in noninteractive mode
  sybrestore utility command 407
restoring to a point in time
  sybrestore utility command 412
roll-back processes 238
row terminators
  bcp, in 216
  interactive bcp, in 224, 225
row-level access rules and bcp 238
rows in bcp, and erroneous table 242
rows, table
  bulk copying and failed 238
  length 208
rules
  defncopy, copying with 83
  tables, copying data into 243

S
saving
  errors during copy in operations 241
  errors during copy out operations 242
  format files (bcp) 227
security Mechanism server attribute (dscp) 255
security, notes about 1
select a Directory Service screen 262
select into command, compared to bulk copying 243
server column
  names 227
  orders 227
server connections
  backupserver, number of 8
server data, migration of 360
server entries
  adding, with dsedit 267
  contents, viewing with dscp 259
  copying, with dsedit 268, 269, 270, 271
  deleting, with dseditdsedit 267
dscp, listing with 259
  modifying, with dsedit 267, 268
  renaming, with dsedit 267
server entries, adding 268
server Entry Editor window 264
server Name server attribute (dscp) 255
server Object Version server attribute (dscp) 255
server Service server attribute (dscp) 255
servers
  backupserver, specifying names in 8
  backupserver, starting in 8
  migrating 180
  modes of speed when using bcp 195
  startserver utility command 165
  startserver, starting in 165
  sybdiag utility command 173
  sybmigrate utility command 180
sessions
  listing (dscp) 254
set cluster 334
set instance 335
setup session, for sybmigrate 366
server attributes (dscp) 255
show agents 337
show cluster 340
show instance 343
show servers 142
  See also showserver utility command. 142
show session 347
showserver utility command 142
  defined 142
  examples of 142
shutdown cluster 350
shutdown instance 351
simple start action of qptune 135
size
  data storage in bcp 218
  packet size 240
  text or image data 240
Index

slow version of bcp 202
  deadlocks on index pages 204
sort orders
  installing and modifying (sqllocres) 151
  installing and modifying, in GUI (sqlloc) 149
space requirements and bcp steps 202
special characters
  bcp, handling in 14
  utility commands, use in 1
specifying full path names in Backup Server 8
specifying server names in backupserver 8
SPX/IPX addresses for interfaces entries 269
SQL parser utility. See isql utility command.
sql.ini file
  dsedit sessions, opening with 263
  entries, adding 265
  entries, copying to 268, 270, 271
  entries, deleting 267
  entries, modifying 267
  entries, renaming 267
sqlbgr utility command
  defined 143
  permissions required for 143
  settings for 143
sqlloc utility command 149
  defined 149
  permissions required for 149
sqllocres utility command 151
  defined 151
  permissions required for 151
sqlsrvr utility command 152
  defined 152
sqlupgrade utility command 159
  defined 159
  permissions required for 159
sqlupgraderes utility command 160
  defined 160
  permissions required for 160
srvbuild utility command 161
  defined 161
  permissions required for 161
srvbuildres utility command 163
  defined 163
  permissions required for 163
start cluster 352
start instance 353
starting
  dscp utility 253
  dsedit utility command 261, 262
  servers (startserver) 165
  XP Server manually (xpserver) 190
startserver utility command 165
  backupserver and 8
  defined 165
  examples of 165
  runserver file examples 165
statistics
  displaying (optdiag) 115
  isql 278
  loading updated (optdiag) 115
storage types used in bcp 222
stored procedures
  copying with defncopy 83
SYBASE environment variable 365
SYBASE environment variable in dsedit 263
SYBASE_ASE environment variable 365
SYBASE_JRE environment variable 365
sybcluster commands
  add backupserver 308
  add instance 309
  connect 311
  create backupserver 313
  create cluster 315
  create xpserver 317
  deploy plugin 318
  diagnose cluster 320
  diagnose instance 322
  disconnect 323
  drop backupserver 324
  drop cluster 325
  drop instance 326
  drop xpserver 327
  exit 328
  help 329
  localize 330
  quit 332
  set backupserver 333
  set cluster 334
  set instance 335
  set xpserver port 336
  show agents 337
  show backupserver config 339
Utility Guide

Index

show cluster 340
show instance 343
show membership mode 346
show session 347
show xpserver 349
shutdown cluster 350
shutdown instance 351
start cluster 352
start instance 353
upgrade server 354
use 357
sybcluster utility 168
sybdiag utility command 173
defined 173
sybmigrate
GUI mode 373
sybmigrate
additional network memory parameter 367
cylinder set conversion 367
CIS bulk insert array size 370
CIS bulk insert array size configuration 367
CIS bulk insert batch size configuration 370
CIS packet size configuration 367, 370
component directory 365
cOMPonents for 363
cONfiguration and tuning 369
cOPY threads 370
dependencies for 363
eNvironment variables 365
errors to avoid 372
executable file 365
index re-creation 389
index threads 370
installation 364
Java columns 367
Java runtime environment 365
languages 367
max packet size allowed configuration 367
max parallel degree configuration 370
memory for the JVM 365
merging two database 400
migrate session 366, 378
migrating Replication Server data 389
migration failure cleanup 400
migration of database data 360
migration of server data 360
migration with high availability 397
multiple sessions 367
number of sort buffers configuration 370
number of user connections configuration 370
number of worker processes configuration 370
object hierarchy 366
objects fail to migrate 399
permissions for 364
platforms 365
post-migration activities 389
post-migration procedures for replicated databases 390
pre-migration considerations 366
re-creating an object 400
release path 365
remigrating a database 400
reports 180
resource file mode 380
restoring replicate databases 393
restoring the primary database 391
setup session 366, 374
source Adaptive Server configuration 370
starting 373
sybmigrate log 393
trouble shooting and error messages 399
validate session 366, 380
sybmigrate, max network packet size configuration 370
sybmigrate utility command 180
defined 180
sybmigrate, max memory configuration 367
sybmigrate, what is not migrated 362
SYBMIGRATE_MEMORY environment variable for migration 365
sybmultbuf, using to start Backup Server 8
sybrestore utility 187
sybrestore utility command
checks 405
database menu 408
defined 187
described 403
gEOMETRY check 406
mapping directory 409
permissions required for 404
restoring a database 410
restoring databases in interactive mode 407
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>restoring databases in noninteractive mode</td>
<td>407</td>
</tr>
<tr>
<td>restoring to a point in time</td>
<td>412</td>
</tr>
<tr>
<td>syntax</td>
<td>406</td>
</tr>
<tr>
<td>sybtsmpasswd utility command</td>
<td>189</td>
</tr>
<tr>
<td>defined</td>
<td>189</td>
</tr>
<tr>
<td>permissions required for</td>
<td>189</td>
</tr>
<tr>
<td>settings for</td>
<td>189</td>
</tr>
<tr>
<td>symbols, field terminator (bcp)</td>
<td>224</td>
</tr>
<tr>
<td>syntax</td>
<td>224</td>
</tr>
<tr>
<td>sybrestore utility command</td>
<td>406</td>
</tr>
<tr>
<td>system data format (SDF) output in bcp</td>
<td>231</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>tab data field terminator () in interactive bcp</td>
<td>224</td>
</tr>
<tr>
<td>table rows</td>
<td></td>
</tr>
<tr>
<td>copying in batches</td>
<td>238</td>
</tr>
<tr>
<td>length</td>
<td>208</td>
</tr>
<tr>
<td>tables</td>
<td></td>
</tr>
<tr>
<td>bcp character set defaults</td>
<td>14</td>
</tr>
<tr>
<td>bcp prompts in</td>
<td>218</td>
</tr>
<tr>
<td>permission required for copying data into</td>
<td>32, 197</td>
</tr>
<tr>
<td>permission required to copy into operating system files</td>
<td>32, 197</td>
</tr>
<tr>
<td>tabular data, copying</td>
<td>225</td>
</tr>
<tr>
<td>tabular output</td>
<td>230</td>
</tr>
<tr>
<td>TCP/IP addresses for interfaces entries</td>
<td>269</td>
</tr>
<tr>
<td>terminators (bcp)</td>
<td>227</td>
</tr>
<tr>
<td>changing</td>
<td>216</td>
</tr>
<tr>
<td>defined</td>
<td>194</td>
</tr>
<tr>
<td>field and row, and</td>
<td>222, 225</td>
</tr>
<tr>
<td>other programs, using for</td>
<td>224</td>
</tr>
<tr>
<td>text datatype</td>
<td></td>
</tr>
<tr>
<td>interactive bcp and</td>
<td>221</td>
</tr>
<tr>
<td>trace flags and backuptserver</td>
<td>8</td>
</tr>
<tr>
<td>Transact-SQL</td>
<td></td>
</tr>
<tr>
<td>using with isql</td>
<td>273</td>
</tr>
<tr>
<td>transferring data from programs using bcp</td>
<td>194</td>
</tr>
<tr>
<td>transport Address server attribute (dscp)</td>
<td>255</td>
</tr>
<tr>
<td>transport Type server attribute (dscp)</td>
<td>255</td>
</tr>
<tr>
<td>triggers</td>
<td></td>
</tr>
<tr>
<td>bcp, dropping before using</td>
<td>202</td>
</tr>
<tr>
<td>copying with defncopy</td>
<td>83</td>
</tr>
<tr>
<td>slowing down bcp</td>
<td>199</td>
</tr>
<tr>
<td>tables, copying data into</td>
<td>243</td>
</tr>
<tr>
<td>trouble shooting, for migration</td>
<td>399</td>
</tr>
<tr>
<td>troubleshooting dsedit</td>
<td>272</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>unlogged transactions</td>
<td>201</td>
</tr>
<tr>
<td>upgrading Adaptive Server</td>
<td>159</td>
</tr>
<tr>
<td>upgrading Adaptive Server using resource files</td>
<td>160</td>
</tr>
<tr>
<td>use</td>
<td>357</td>
</tr>
<tr>
<td>utilities</td>
<td></td>
</tr>
<tr>
<td>bulk copy (bcp)</td>
<td>212</td>
</tr>
<tr>
<td>utilities, other Adaptive Server, and bcp</td>
<td>243</td>
</tr>
<tr>
<td>utility commands</td>
<td></td>
</tr>
<tr>
<td>special characters, using</td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>validate session for sybmigrate</td>
<td>366</td>
</tr>
<tr>
<td>viewing interfaces files in GUI</td>
<td>91</td>
</tr>
<tr>
<td>views, copying, with defncopy</td>
<td>83</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>warnings</td>
<td></td>
</tr>
<tr>
<td>bcp data loss</td>
<td>199</td>
</tr>
<tr>
<td>bcp in data recovery</td>
<td>14</td>
</tr>
<tr>
<td>defncopy failure due to long comments</td>
<td>83</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>xd2 xd3 (enclosing special characters)</td>
<td>1</td>
</tr>
<tr>
<td>XP Server, starting manually</td>
<td>190</td>
</tr>
<tr>
<td>xpserver utility command</td>
<td>190</td>
</tr>
<tr>
<td>defined</td>
<td>190</td>
</tr>
<tr>
<td>permissions required for</td>
<td>190</td>
</tr>
</tbody>
</table>