
Coordination Module Reference Manual

OpenSwitch™
15.1

DOCUMENT ID: DC20190-01-1510-02

LAST REVISED: January 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Coordination Module Reference Manual iii

About This Book .. vii

CHAPTER 1 Introduction ... 1
Using coordination modules ... 1
Coordination modes ... 4
Notification requests... 4
Coordination module responses .. 5
What if the coordination module is unavailable?.............................. 6

CHAPTER 2 Using Coordination Modules ... 7
Introduction .. 7
Compiling the coordination module .. 8
Creating a minimal coordination module .. 8
Installing a callback handler ... 10
Creating a complete coordination module...................................... 14
Enabling Sybase Failover .. 14
Using concurrent coordination modules... 15

Configuration ... 16
Notifications... 17

Enabling mutually-aware support ... 18
Enabling redundant failback timer .. 18
Enabling encryption.. 18

CHAPTER 3 Coordination Module Routines and Registered Procedures 21
cm_callback ... 22
cm_close .. 25
cm_connect .. 26
cm_connect_enc .. 28
cm_create .. 30
cm_destroy... 31
cm_error ... 32
cm_exit ... 32
cm_getcol_data_size ... 33

Contents

iv OpenSwitch

cm_getcol_metadata.. 34
cm_getopt .. 35
cm_get_prop .. 37
cm_get_showquery .. 39
cm_get_value... 40
cm_ignore .. 42
cm_ignore_clear... 44
cm_init .. 46
cm_is_active .. 47
cm_optreset ... 48
cm_ping.. 49
cm_ping_enc.. 50
cm_repeat_ping ... 52
cm_repeat_short_ping ... 54
cm_run ... 56
cm_set_print... 57
cm_set_prop .. 58
cm_short_ping.. 59
cm_start ... 61
cm_stop.. 63
cm_timer_add .. 65
cm_timer_rem .. 67
cm_unignore .. 68
cm_version... 70
cm_kill .. 73
cm_pool_status .. 74
cm_rp_cancel... 76
cm_rp_cfg .. 77
cm_rp_cm_list .. 78
cm_rp_debug ... 78
cm_rp_del_list .. 80
cm_rp_dump .. 81
cm_rp_get_help ... 82
cm_rp_go ... 83
cm_rp_help .. 84
cm_rp_msg .. 84
cm_rp_pool_addattrib .. 86
cm_rp_pool_addserver .. 87
cm_rp_pool_cache... 88
cm_rp_pool_create .. 89
cm_rp_pool_drop ... 90
cm_rp_pool_help.. 90
cm_rp_pool_remattrib .. 91
cm_rp_pool_remserver .. 92

Contents

Coordination Module Reference Manual v

cm_rp_pool_server_status... 93
cm_rp_rcm_connect_primary... 93
cm_rp_rcm_list ... 94
cm_rp_rcm_shutdown.. 94
cm_rp_rcm_startup .. 95
cm_rp_rmon ... 96
cm_rp_set .. 97
cm_rp_showquery.. 98
cm_rp_shutdown.. 98
cm_rp_version.. 99
cm_rp_who... 99
cm_server_status... 100
cm_set_srv... 101
cm_switch .. 102

CHAPTER 4 Using the Replication Coordination Module 107
Introduction .. 107

What is the replication coordination module?........................ 108
Configuring OpenSwitch and the RCM .. 111

Determining your failover strategy... 112
Understanding a redundant environment 113
Planning for high availability .. 113
Configuring OpenSwitch.. 118
Configuring the RCM... 124
Creating a redundant environment.. 132
RCM configuration file examples... 140
Configuring the notification process 147

Starting and stopping the RCM .. 149
Starting and stopping the RCM automatically from OpenSwitch..

149
Starting an RCM at the command line 150
Stopping the RCM manually.. 153

Recovering from a coordinated failover 153
Recovering from switch active failover 153

Unexpected failure of Replication Server..................................... 154
Troubleshooting ... 155

Analyzing the RCM environment... 155
Monitoring the environment with Replication Server plug-in . 156

RCM internal coordination.. 157
The RCM start-up process .. 157
OpenSwitch connection coordination 157
Failover processing ... 159
How the RCM detects Adaptive Server failure 161
How the RCM detects Replication Server failure 162

Contents

vi OpenSwitch

Index ... 163

Coordination Module Reference Manual vii

About This Book

Audience This book is for developers creating coordination modules for
OpenSwitch™ version 15.1 and assumes that the reader has:

• A general knowledge of the operating system

• Familiarity with all platform-specific commands used to manipulate
the software and hardware, such as those for changing directories and
mounting the CD

• General knowledge of Sybase® servers

• General knowledge of failover systems

• In-depth knowledge of and experience with programming in the C
language

• Basic knowledge of Open Client™ programming

How to use this book This document includes these chapters:

• Chapter 1, “Introduction,” describes coordination modules—
user-built applications that connect to the OpenSwitch server and
control client logins and failover patterns within OpenSwitch.

• Chapter 2, “Using Coordination Modules,” describes the basic steps
for building OpenSwitch coordination modules (CM) and provides
example programs.

• Chapter 3, “Coordination Module Routines and Registered
Procedures,” provides a reference for each coordination module
routine and registered procedure.

• Chapter 4, “Using the Replication Coordination Module,” describes
the sample replication coordination module (RCM) provided with
OpenSwitch. You can use this Sybase-created RCM with Replication
Server® in an OpenSwitch implementation.

Related documents The OpenSwitch documentation set consists of:

• OpenSwitch Release Bulletin – contains last-minute information that
was too late to be included in the books.

viii OpenSwitch

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase Product
Manuals at http://www.sybase.com/support/manuals/.

• OpenSwitch Installation Guide for your platform – describes system
requirements and provides installation and configuration procedures for
OpenSwitch software.

• OpenSwitch New Features Guide – describes the new and updated features
in OpenSwitch.

• OpenSwitch Administration Guide – explains how to administer
OpenSwitch and how to reconfigure the product after installation.

• OpenSwitch Coordination Module Reference Manual (this book) –
describes how to develop and use OpenSwitch coordination modules.

• OpenSwitch Error Message Guide – explains how to troubleshoot
problems that you may encounter when using OpenSwitch, and provides
explanations of error messages.

• OpenSwitch Manager online help – describes the tasks you can perform in
OpenSwitch Manager.

• Sybase Software Asset Management Users Guide – describes Sybase asset
management configuration concepts and tasks.

• FLEXnet Licensing User Guide – this Macrovision manual explains
FLEXnet Licensing for administrators and end users and describes how to
use the tools which are part of the standard FLEXnet Licensing
distribution kit from Sybase.

• SAMreport Users Guide – this Macrovision manual explains how to use
SAMreport, a report generator that helps you monitor the usage of
applications that use FLEXnet Licensing.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

 About This Book

Coordination Module Reference Manual ix

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

x OpenSwitch

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The formatting conventions used in this document are:

Formatting example To indicate

command names and
method names

When used in descriptive text, this font indicates
keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in
descriptive text

• Java package names used in descriptive text

 About This Book

Coordination Module Reference Manual xi

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

OpenSwitch version 15.1 and the HTML documentation have been tested for
compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet non-U.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and Mixed Case Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

myCounter variable

Server.log

myfile.txt

Italic font indicates:

• Program variables

• Parts of input text that must be substituted

• File names

 sybase/bin

Directory names appearing in text display in
lowercase unless the system is case sensitive.

A forward slash (“/”) indicates generic directory
information. A backslash (“\”) applies to Windows
users only.

File | Save Menu names and menu items display in plain text.
The vertical bar indicates how to navigate menu
selections. For example, File | Save indicates
“select Save from the File menu.”

create table

table created

Monospace font indicates:

• Information that you enter on a command line
or as program text

• Example output fragments

Formatting example To indicate

xii OpenSwitch

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Coordination Module Reference Manual 1

C H A P T E R 1 Introduction

This chapter introduces coordination modules (CMs), which are user-built
applications that connect to an OpenSwitch™ server and control client
logins and failover patterns within OpenSwitch.

Using coordination modules
The default behavior of OpenSwitch is to migrate failed client connections
as they fail. For example, if a connection fails, OpenSwitch immediately
migrates it to the next available Adaptive Server® according to the mode
of the pool in which the connection resides.

However, you may want to coordinate the switching process for certain
OpenSwitch operations or business requirements. For example, when an
Adaptive Server fails, you may want the client to reconnect to the failed
server. Or, if a single connection fails unexpectedly, you may want to
switch all connections to the next available server.

More importantly, you may need to coordinate the switching process with
an external high availability (HA) solution such as Sybase® Replication
Server®. In this case, failover should not occur until the HA service has
completed the necessary steps to bring the backup server online, such as
waiting until replication queues are synchronized between servers.

Topic Page
Using coordination modules 1

Coordination modes 4

Notification requests 4

Coordination module responses 5

What if the coordination module is unavailable? 6

Using coordination modules

2 OpenSwitch

For these situations, OpenSwitch provides a simple application programming
interface (API) that allows you to develop an external coordination module
(CM). When connected to an OpenSwitch server, a coordination module
receives event notifications based on connection state changes.

Note OpenSwitch provides a sample replication coordination module (RCM),
which is a coordination module created using CM APIs. You can use the
sample to coordinate failover of a high availability, warm standby system that
uses Replication Server. See Chapter 4, “Using the Replication Coordination
Module.”

For example, if a user attempts to log in, or a connection is lost to a server, the
coordination module notifies OpenSwitch of the actions it should take, as
illustrated in Figure 1-1.

Figure 1-1: Coordination module example

In this example:

1 Server 1 goes down unexpectedly, for example, due to a power outage or
an explicit shutdown.

CHAPTER 1 Introduction

Coordination Module Reference Manual 3

2 As soon as a connection is lost, the coordination module receives a
message indicating which connection was lost, and the server with which
that connection was communicating. The lost connection is suspended in
the OpenSwitch server until the coordination module responds with the
action to be taken for the connection.

3 The coordination module now communicates with the high availability
solution, in this case, a Replication Server, to ensure that Server 2 is in a
state that all users can rely on, such as ensuring that all transactions have
been successfully migrated through the Replication Agent™. The
coordination module can, at this point, attempt to automatically recover
Server 1 before attempting to switch users to Server 2.

4 The coordination module responds to OpenSwitch that all connections that
were using Server 1 should now switch to the next available server, in this
case, Server 2.

5 All connections are switched, as requested by the coordination module, to
the next available server. Connections are issued a deadlock message, if
necessary.

Because the coordination module can intercept and respond to every
connection state change, including client logins, you can also use the CM to
override built-in OpenSwitch pooling and routing mechanisms with
application- or business-specific logic.

The coordination module can:

• Determine if a failed connection is due to a remote Adaptive Server being
unavailable

• Determine if the backup Adaptive Server is available

• Coordinate itself with third-party high availability tools

• Switch all connections in tandem

• Mark an Adaptive Server as unavailable in OpenSwitch

• Manage multiple instances of OpenSwitch

If the OpenSwitch server is configured to use a coordination module and one
is not available when a connection changes state, the connection suspends until
a coordination module comes online, at which time all pending notifications
are delivered.

Coordination modes

4 OpenSwitch

Coordination modes
OpenSwitch runs in one of four coordination modes, determined by the value
that you assign to the OpenSwitch configuration parameter COORD_MODE.
The coordination mode specifies how OpenSwitch should respond in the
presence of a coordination module. For details on using the configuration file,
see Chapter 5, “Using the Configuration File,” in the OpenSwitch
Administration Guide.

The values for COORD_MODE are:

Notification requests
When a client thread requests a response from a CM, the thread sleeps, or
appears to have stopped responding to the client, until the thread receives a
response from a coordination module.

A client connection is activated only by a CM response, or the client
disconnecting before a CM response is issued. Coordination requests issued by
threads are broadcast to all connected CMs via Open Client™ notification
procedures.

Note A notification is a special registered procedure that has no associated
action or code, but that can be used to notify Open Client applications when
certain events occur within OpenSwitch. See Chapter 8, “Notification
Procedures,” in the OpenSwitch Administration Guide.

 Mode Description

NONE OpenSwitch runs autonomously and makes all switching and
routing decisions without a CM. Coordination modules can
still connect to OpenSwitch, but do not receive notifications.

AVAIL In the absence of a CM, OpenSwitch runs autonomously. If a
CM is available and connected to the OpenSwitch server, the
CM is used.

ALWAYS A CM is required. If a CM is unavailable when a thread issues
a request, the thread sleeps until a CM becomes available.

ENFORCED A CM is required. If a CM is unavailable when a client makes
a request, the request is refused and an informational message
is sent back to the client.

CHAPTER 1 Introduction

Coordination Module Reference Manual 5

Notification procedures provide asynchronous communication with one or
more client applications, which allows multiple CMs to be attached to an
OpenSwitch server at any given time.

Note Each CM receives a copy of every notification broadcast. However, you
must ensure that no more than one CM attempts to respond to any given
message.

OpenSwitch uses an internal notification procedure, np_req_srv, to
communicate with a CM and notify it of connections that are waiting for a
response. This procedure is used by OpenSwitch internally to indicate that the
connection is blocked and is awaiting a response from the CM, which can come
in the form of a call to rp_set_srv, rp_switch, or rp_kill. Only these registered
procedures (rp_set_srv, rp_switch, or rp_kill) or a disconnection from the client
can “wake up” a connection waiting for a response.

Note np_req_srv is issued only if at least one CM is attached and the
coordination mode is AVAIL, ALWAYS, or ENFORCED. For more
information, see “Coordination modes” on page 4.

Coordination module responses
Coordination modules have no special response mechanism. The CM responds
by issuing registered procedure calls, just as an OpenSwitch administrator
would issue manually. Only a few registered procedures cause a thread to
awaken after blocking a coordination request:

Response
procedure Description

rp_set_srv A mirror of np_req_srv that responds to a specific
OpenSwitch spid with the name of an Adaptive Server that
OpenSwitch should use.

rp_switch Similar to rp_set_srv, except you can use rp_switch to route
multiple connections to another Adaptive Server.

rp_kill Forcibly disconnects a client connection from OpenSwitch.

What if the coordination module is unavailable?

6 OpenSwitch

What if the coordination module is unavailable?
If a coordination module is unavailable and the coordination mode is
ALWAYS, all client connections are refused until a coordination module
becomes available. When the coordination module connects to the OpenSwitch
server, all pending notifications are broadcast to the coordination module.

If a coordination module is unavailable, and the coordination mode is set to
ENFORCED, the connection is refused and a message is sent back to the client.

If COORD_MODE is set to AVAIL, client connections are made if a
coordination module is available. If a coordination module is not available,
OpenSwitch requests the name of an available Adaptive Server from the
defined pools in the configuration file.

Coordination Module Reference Manual 7

C H A P T E R 2 Using Coordination Modules

This chapter explains how to build an OpenSwitch coordination module.
Example programs are provided.

Introduction
A coordination module connects to an OpenSwitch server to control client
logins and failover patterns within OpenSwitch. You can customize
OpenSwitch to fit your requirements, and you can run multiple CMs
against multiple OpenSwitch servers to create a redundancy environment
so that no single OpenSwitch is a point of failure. The OpenSwitch
installation provides the APIs needed to create a CM, including:

• libcm.so (on Sun Solaris, IBM AIX, and Linux), libcm.sl (on
HP-UX), or libcm.lib (on Windows) – located in $OPENSWITCH/lib
on UNIX and %OPENSWITCH%\lib on Windows, this is the library
that contains all the CM API definitions.

• cm.h – located in $OPENSWITCH/include on UNIX and
%OPENSWITCH%\include on Windows, this is the header file that
contains the prototype declarations for all the CM APIs.

Topic Page
Introduction 7

Compiling the coordination module 8

Creating a minimal coordination module 8

Installing a callback handler 10

Creating a complete coordination module 14

Enabling Sybase Failover 14

Using concurrent coordination modules 15

Enabling mutually-aware support 18

Enabling redundant failback timer 18

Enabling encryption 18

Compiling the coordination module

8 OpenSwitch

• Open Client libraries – located in $SYBASE/$SYBASE_OCS/lib on UNIX
or %SYBASE%\%SYBASE_OCS%\dll on Windows.

• Open Client header files – located in $SYBASE/$SYBASE_OCS/include on
UNIX and %SYBASE%\%SYBASE_OCS%\include on Windows.

• cm1.c – located in $OPENSWITCH/sample on UNIX and
%OPENSWITCH%\sample on Windows, this is a sample CM program,
complete with a README and Makefile.

Compiling the coordination module
Use the Makefile located in $OPENSWITCH/sample on UNIX and
%OPENSWITCH%\sample on Windows to compile your CM application.

1 With a text editor, open Makefile and replace “cm1” with the name of your
CM application.

2 Enter the following, where CMsource is the directory containing your CM
source code.

On UNIX:

source $SYBASE/SYBASE.csh
cp $OPENSWITCH/sample/Makefile CMsource

To compile your CM application:

make Name_of_your_CM_application

On Windows in a Command Prompt window:

%SYBASE%\SYBASE.bat
cp %OPENSWITCH%\sample\Makefile CMsource

To compile your CM application:

nmake Name_of_your_CM_application

Creating a minimal coordination module
These basic steps allow you to build a minimal CM library program that
establishes a connection to OpenSwitch:

CHAPTER 2 Using Coordination Modules

Coordination Module Reference Manual 9

1 Allocate a context structure using cm_init.

2 Create a CM instance using cm_create.

3 Establish connection between the CM and Open Switch using cm_connect.

4 Start the CM using cm_run.

5 Destroy the CM instance using cm_destroy.

6 Deallocate the context structure using cm_exit.

For details about the routines used to build a CM, see Chapter 3, “Coordination
Module Routines and Registered Procedures.”

The following example program shows the steps required to create a minimal
CM.

#include <stdio.h>
#include <string.h>
#include <cspublic.h>
#include <cm.h>

int
main (
CS_INT argc,
CS_CHAR *argv[]
) {

char *username = "switch_coord";
char *password = "switch_coord";
char *server = "SWITCH1";

cm_ctx_t *ctx;
cm_t *cm;

/* Initialize and allocate a coordination module context structure
**for this executable.
*/
if (cm_init(&ctx) != CS_SUCCEED)
{

fprintf (stderr, "cm_init: Failed.\n");
exit (1);

}

/* Create a coordination module instance to manage an OpenSwitch server.
*/
if (cm_create(ctx, &cm) != CS_SUCCEED)
{

fprintf (stderr, "cm_create: Failed.\n");
cm_exit (ctx);

Installing a callback handler

10 OpenSwitch

}

/* Establish a connection between the coordination module and a single
**OpenSwitch server.
*/
if (cm_connect(cm, server, username, password)

!= CS_SUCCEED)
{

fprintf (stderr, "cm_connect: Unable to connect to server\n");
cm_destroy (cm);
cm_exit (ctx);
exit (1);

}

/* Start the coordination module.
*/
if (cm_run(ctx) != CS_SUCCEED)
{

fprintf (stderr, "cm_run: Failed.\n");
}

/* Destroy the coordination module instance.
*/
cm_destroy (cm);

/* Deallocate the coordination module instance and Exit.
*/
cm_exit (ctx);
exit (0);

}

Installing a callback handler
After compiling and running the CM, you must install callback handlers so the
CM can detect connection requests coming in from OpenSwitch, and handle
them accordingly.

In this example, the CM from the previous example is expanded to include a
callback handler, which handles a dropped connection between the CM and
OpenSwitch. You must call cm_set_prop to allow asynchronous callbacks; you
must call cm_callback to install the callback handler.

This example shows the steps required to install the callback handler.
#include <stdio.h>
#include <string.h>

CHAPTER 2 Using Coordination Modules

Coordination Module Reference Manual 11

#include <cspublic.h>
#include <cm.h>

CS_STATIC CS_RETCODE CS_PUBLIC cm_lost_hdl();

int
main (
CS_INT argc,
CS_CHAR *argv[]
) {

char *username = "switch_coord";
char *password = "switch_coord";
char *server = "SWITCH1";

cm_ctx_t *ctx;
cm_t *cm;

/* Initialize and allocate a coordination module context structure

**for this executable.
*/
if (cm_init(&ctx) != CS_SUCCEED)
{

fprintf (stderr, "cm_init: Failed.\n");
exit (1);

}

/* Create a coordination module instance to manage an OpenSwitch server.
*/
if (cm_create(ctx, &cm) != CS_SUCCEED)
{

fprintf (stderr, "cm_create: Failed.\n");
cm_exit (ctx);

}

/* Allow asynchronous callbacks
*/
if (cm_set_prop (cm, CM_P_ASYNC,

(CS_VOID*)&async) != CS_SUCCEED)
{

fprintf (stderr, "cm_callback: Unable to set async property\n");
cm_destroy (cm);
cm_exit (ctx);

}

/* Install the connection lost callback handler.
*/

Installing a callback handler

12 OpenSwitch

if (cm_callback (cm, CM_CB_LOST,
(CS_VOID*)cm_lost_hdl) != CS_SUCCEED)

{
fprintf(stderr, "cm_callback: Unable to install CM_CB_LOST handler\n");
cm_destroy (cm);
cm_exit (ctx);
exit(1);

}

/* Establish a connection between the coordination module and a single
** OpenSwitch server.
*/
if (cm_connect(cm, server, username, password)!= CS_SUCCEED)
{

fprintf (stderr, "cm_connect: Unable to connect to server\n");
cm_destroy (cm);
cm_exit (ctx);
exit (1);

}

/* Start the coordination module.
*/ if (cm_run(ctx) != CS_SUCCEED)
{

fprintf (stderr, "cm_run: Failed.\n");
}

/* Destroy the coordination module instance.
*/
cm_destroy (cm);

/* De-allocate the coordination module instance and Exit.
*/
cm_exit (ctx);

exit (0);

}

/*
* cm_lost_hdl():
*

/* This is a coordination module handler function that is called every
** time the connection is lost to OpenSwitch managed by cm. It is responsible
** for installing a timer callback that will attempt to reconnect to
** the OpenSwitch every 10 seconds (see cm_time_connect()).

*/
CS_STATIC CS_RETCODE CS_PUBLIC cm_lost_hdl (
cm_t *cm
) {

CHAPTER 2 Using Coordination Modules

Coordination Module Reference Manual 13

fprintf (stdout, "**** Connect Lost ******\n");

if (cm_timer_add (cm, "LOST_TIMER", (CS_INT)10000,
(cm_timer_cb*)cm_time_connect, (CS_VOID*)NULL, (CS_INT)0) != CS_SUCCEED)

{
fprintf (stderr, "cm_lost_hdl: Unable to add cm_time_connect\n");
return CS_FAIL;

}

return CS_SUCCEED;
}

/*
* cm_time_connect():
*

** This function is installed as a timed callback from a CM_CB_LOST
** callback handler. After it is installed, this function is called
** periodically to attempt to re-establish the coordination
** module’s connection to its OpenSwitch. After the connection
** is re-established, this timer removes itself from activity.

*/
CS_STATIC CS_RETCODE CS_PUBLIC cm_time_connect(

cm_t *cm,
CS_CHAR *name,
CS_VOID *data

) {
fprintf (stdout, "cm_time_connect: Attempting re-connect...\n");

if (cm_connect(cm, NULL, NULL, NULL) == CS_SUCCEED)
{

if (cm_timer_rem(cm, name) != CS_SUCCEED)
{

fprintf(stderr, "cm_time_connect: Unable to remove timer\n");
return CS_FAIL;

}
}
return CS_SUCCEED;

}

After installing the callback handler, the CM in this example immediately
detects when the OpenSwitch server goes down and starts a timer to ping the
OpenSwitch server every ten seconds until the OpenSwitch server comes back
online. If you want the CM to also respond to logins and failovers from the
OpenSwitch server, you must create a complete CM such as the one in the next
section.

Creating a complete coordination module

14 OpenSwitch

Creating a complete coordination module
OpenSwitch provides a sample of a self-contained CM that coordinates the
activities of an OpenSwitch server and demonstrates most of the calls in libcm
library. See the sample code file, which is installed along with OpenSwitch, in
$OPENSWITCH/sample/cml.c on UNIX and in
%OPENSWITCH%\sample\cml.c on Windows.

The CM in the sample file responds to login attempts and login retries.

Enabling Sybase Failover
To support Sybase Failover, add code to the existing CMs. See the cml.c
sample in $OPENSWITCH/sample/ on UNIX and %OPENSWITCH%\sample\
on Windows, under the cm_srvreq_hdl function under the case for
COORD_R_HAFAILOVER. Add this code to the CM:

case COORD_R_HAFAILOVER:
if (cm_set_srv(cm, req->spid, req->cur_server) !=CS_SUCCEED)
{

fprintf(stderr, “cm1: Unable for spid ‘%d’ to stay put on the
current server\n”, (int) req->spid);

}
break;

This code segment sets the server name. In a multicluster environment, the CM
is notified of a failover event only when the entire primary Adaptive Server®
Enterprise cluster fails. The CM is not notified when the primary node of the
Adaptive Server cluster fails, as connections are automatically redirected to the
secondary node without consulting the CM.

Event Response

Login attempt Login is allowed through the server that was automatically
chosen by OpenSwitch.

Login retry The Adaptive Server that the failing spid is attempting to
connect to is pinged. If the server is available, the spid is
killed. If the server cannot be pinged, the connection tries the
next server.

CHAPTER 2 Using Coordination Modules

Coordination Module Reference Manual 15

Using concurrent coordination modules
OpenSwitch allows you to run multiple CMs concurrently against one
OpenSwitch server to create a redundant environment where a CM is not a
single point of failure.

Note The RCM does not support concurrent coordination modules. When the
RCM establishes a connection to OpenSwitch, OpenSwitch sets the
COORD_TIMEOUT to zero (0), which turns off the coordinated CM
functionality. COORD_TIMEOUT must be set to zero (0) for the RCM to start.

When multiple CMs connect to one OpenSwitch, the following activities
occur, which are transparent to the end user:

1 Each CM registers its unique name with OpenSwitch using the Client-
Library™ CS_APPNAME parameter. The unique name is generated by
combining the host name and the process ID.

2 When the OpenSwitch server accepts a CM connection, it assigns the CM
a unique ID number (CM ID) and sends that CM ID back to the CM as a
message before the connection event is completed. OpenSwitch maintains
an internal list of inactive CMs that are currently available.

3 If a CM becomes unresponsive for the period of time specified for the
COORD_TIMEOUT configuration parameter, OpenSwitch retrieves the
next CM ID from the internal list of inactive CMs. All future notifications
include the new CM ID as part of the notification.

Using concurrent coordination modules

16 OpenSwitch

Figure 2-1: Concurrent coordination modules

Note See “Creating a minimal coordination module” on page 8 for basic
instructions on creating CMs.

Configuration
Use the COORD_TIMEOUT parameter in the [CONFIG] section of the
OpenSwitch server configuration file to specify the number of seconds
OpenSwitch waits for a response before determining that a CM is not
responding. The default COORD_TIMEOUT value is zero (0) seconds.

Note If you set COORD_TIMEOUT value to zero in the OpenSwitch
configuration file, concurrent CMs are not used.

In a legacy, pre-15.0 CM application, you must set COORD_TIMEOUT to zero
(0) in the [CONFIG] section of the OpenSwitch configuration file, or the CM
receives an error message and does not start.

CHAPTER 2 Using Coordination Modules

Coordination Module Reference Manual 17

If a CM does not respond within the COORD_TIMEOUT period, the
OpenSwitch server acquires the next CM ID from the internal list of inactive
CMs. The previous CM ID becomes obsolete. If the CM becomes active again,
it requests a new CM ID from the OpenSwitch. This occurs in the CM API and
is transparent to applications.

If a connection is lost because OpenSwitch fails for some reason, the callback
handler for COORD_CB_LOST is called for any CM that has lost the
connection. When OpenSwitch restarts, if the CMs that lost their connection
detect that the OpenSwitch has restarted, those CMs reconnect and are issued
a new CM ID on a first-come basis.

You can use concurrent coordination modules in a mutually-aware
configuration in OpenSwitch 15.1 and later.

For example, you have coordination modules CM1 and CM2 connected to an
OpenSwitch server (OSW1) in a mutually-aware configuration, and
coordination modules CM3 and CM4 connected to the other mutually-aware
OpenSwitch server (OSW2). If OSW1 is handling a failure, the clients
connected to OSW1 send the failure notification to CM1 first and wait for any
actions initiated by CM1 for the period you specify in COORD_TIMEOUT to
end, while the clients connected to OSW2 also wait for any action initiated by
OSW1. If CM1 does not respond to the failure within the COORD_TIMEOUT
period, the clients connected to OSW1 send the failure notification to CM2 and
wait for any actions initiated by CM2 for the COORD_TIMEOUT period. If
there is no response from CM2, then OSW1 handles the failure.

See Chapter 5, “Using the Configuration File,” in the OpenSwitch
Administration Guide to set the value for COORD_TIMEOUT.

Notifications
When multiple CMs are connected to OpenSwitch and COORD_TIMEOUT is
set to zero (that is, OpenSwitch is not configured to use concurrent CMs), all
CMs are registered to receive notifications sent by the OpenSwitch server. The
OpenSwitch server handles the first instance of a response to a notification; all
other instances of the same notification yield an error in the OpenSwitch
server’s log file.

Enabling mutually-aware support

18 OpenSwitch

Enabling mutually-aware support
OpenSwitch 15.0 and later includes the coordination module API
cm_get_value, which you can use to retrieve the mutually-aware configuration
value of an OpenSwitch server. See cm_get_value on page 40 for more
information.

See Chapter 6, “Using Mutually-aware OpenSwitch Servers,” in the
OpenSwitch Administration Guide to configure mutually-aware support.

Enabling redundant failback timer
The COORD_R_LOST2 reason code for mutually-aware environments allows
a failback timer to be installed in custom coordination modules that do not
handle any server failure action. When Adaptive Server restarts, the timer uses
the cm_is_active API to handle the failback. cm_is_active checks if the
coordination module is allowed to perform failback. See cm_is_active on page
47 for more information.

See the cml.c sample in $OPENSWITCH/sample/ on UNIX and
%OPENSWITCH%\sample\ on Windows, under the cm_srvreq_hdl function
under the case for COORD_R_LOST2 for the complete sample coding.

Enabling encryption
Two APIs are available for CM applications to support encryption:

• cm_connect_enc

• cm_ping_enc

The cm1.c sample, located in $OPENSWITCH/sample on UNIX and in
%OPENSWITCH%\sample on Windows, has been modified to use these APIs.
Use the -E flag to specify that the user names and passwords are encrypted. You
can use a shell script to invoke “cm1” using the encrypted user name/password
combinations. For example:

#!/usr/bin/sh
./cm1 \
-U 0x010c7ec... \

CHAPTER 2 Using Coordination Modules

Coordination Module Reference Manual 19

-P 0x010c7ec... \
-u 0x102c06... \
-p 0x102dcd... \
-S OSWITCH1 -E

You need not follow this convention in your CM applications. Sybase
recommends that if you choose to enforce encryption of user names and
passwords, that you set the encryption argument to CS_TRUE in both
cm_connect_enc and cm_ping_enc. See Chapter 3, “Coordination Module
Routines and Registered Procedures.”

The cm1.c sample allows you to use either encrypted or unencrypted values
depending on the arguments you pass. See the OpenSwitch Administration
Guide for more information about encryption support.

Enabling encryption

20 OpenSwitch

Coordination Module Reference Manual 21

C H A P T E R 3 Coordination Module Routines
and Registered Procedures

This chapter describes the routines and registered procedures that you can
call within a coordination module (CM).

Coordination module routines
Table 3-1 lists the routines used by coordination modules.

Table 3-1: CM routines

Topic Page
Coordination module routines 21

Coordination module registered procedures 71

Routine Description

cm_callback Installs or removes a CM event callback handler.

cm_close Closes an established connection between a CM and OpenSwitch.

cm_connect Establishes a connection between a CM and OpenSwitch.

cm_connect_enc Allows the use of encrypted user names and passwords when making a
connection.

cm_create Creates a CM instance.

cm_destroy Destroys a CM instance.

cm_error Outputs an error message.

cm_exit Exits and unallocates CM context.

cm_getcol_data_size Retrieves the name, datatype, and the maximum length of the specified column
present in the specified list.

cm_getcol_metadata Retrieves column metadata information.

cm_getopt Parses command line arguments.

cm_get_prop Retrieves a property of a CM.

cm_get_showquery Returns the query when executing OpenSwtich process ID.

cm_get_value Retrieves the mutually-aware configuration value of an OpenSwitch server.

cm_ignore Ignores OpenSwitch messages matching a given template.

cm_ignore_clear Sets all fields of a message structure to empty values.

cm_init Initializes a CM instance.

cm_is_active Checks if the CM is allowed to perform failback.

cm_callback

22 OpenSwitch

cm_callback
Description Installs or removes a CM event callback handler.

Syntax CS_RETCODE cm_callback(cm, cb_type, cb_func)
cm_t *cm;
CS_INT cb_type;
CS_VOID *cb_func;

Parameters cm
A pointer to a CM control structure.

cb_type
The CM event callback handler being installed. Valid values for cb_type are:

cm_optreset Resets the state of option parsing for cm_getcol_metadata.

cm_ping Verifies the health of a remote server.

cm_ping_enc Allows the use of encrypted user names and passwords when pinging.

cm_repeat_ping Verifies the health of a remote server, repeating if a failure occurs.

cm_repeat_short_ping Sets a time limit on the duration each ping waits when a failure occurs.

cm_run Starts the CM.

cm_set_print Installs an error display function.

cm_set_prop Sets a property of a CM.

cm_short_ping Sets a time limit on the number of seconds allowed for the CM to establish its
connection.

cm_start Resumes activity of connections.

cm_stop Suspends activity of connections.

cm_timer_add Adds a timed callback.

cm_timer_rem Removes a timed callback.

cm_unignore Removes OpenSwitch ignore requests matching template.

cm_version Returns the pointer to the location of the version string.

Routine Description

Callback type Description

CM_CB_ASEFAIL Called by the client connection to report messages or errors when the connection to
an Adaptive Server is lost. This callback is recommended for PING_THREAD that
may be running inside the coordination module to ping the Adaptive Server. If the
callback is not installed, no error or warning messages are reported back to the client
if the client loses connection to an Adaptive Server. The callback is only invoked
when the severity of the message is greater than or equal to CS_SV_COMM_FAIL.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 23

cb_func
A pointer to a function to be called when a message of cb_type is received.
Valid values for cb_func are:

Return value cm_callback returns these values:

Examples static CS_RETCODE cm_lost_handler(cm)
cm_t *cm;

{
fprintf(stderr, "Connection lost!");
return CS_SUCCEED;

}

main()
{

CM_CB_CTLIB Called each time an Open Client API error message is generated. If not defined, these
messages display to stderr when they are received. Use the cm_set_print function to
overwrite this behavior. Equivalent to an Open Client CS_CLIENTMSG_CB
command.

CM_CB_LOST Called by a CM to a remote OpenSwitch server from which the connection is lost. If
not defined, these messages are ignored.

CM_CB_MSG Called each time a message is received from OpenSwitch. If not defined, these
messages are displayed to stderr when they are received. Use the cm_set_print
function to overwrite this behavior. Equivalent to an Open Client
CS_SERVERMSG_CB command.

CM_CB_SERVER Called by a client connection, requesting the name of a remote server to either log in
to or switch to. If not defined, these messages are ignored.

Callback type Description

Callback type Description Form

CM_CB_CTLIB Open Client message callback
handler

cb_func(CS_CONTEXT *context, CS_CONNECTION

*connection, CS_CLIENTMSG

*clientmsg, cm_t *cm)

CM_CB_LOST Connection lost message cb_func(cm_t *cm)

CM_CB_MSG Server message callback
handler

cb_func(CS_CONTEXT *context, CS_CONNECTION

*connection, CS_SERVERMSG

*servermsg, cm_t *cm)

CM_CB_SERVER Server request message
callback

cb_func(cm_t *cm, cm_req_srv_t *req)

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_callback

24 OpenSwitch

CS_RETCODE retcode;
...

retcode = cm_callback(cm, CM_LOST_CB,
(CS_VOID*)cm_lost_handler);

if (retcode != CS_SUCCEED)
{

fprintf(stderr, "cm_callback failed!");
exit(1);

}
...

}

Usage • When you create a CM with cm_create, the CM has no callback handlers
installed. The default callback actions are performed as described in the
Parameters section.

• Unlike Open Client, you cannot establish callbacks at the CM context
level, so callbacks are not inherited between modules or the context, and
must be explicitly set for each module. For more information, see
“cm_init” on page 46.

• To uninstall an existing callback, program an application to call
cm_callback with cb_func as NULL. You can install a new callback any
time the application is running. New callbacks automatically replace
existing callbacks.

• Program an application to use the CM_P_USERDATA property to transfer
information to a callback routine and the program code that triggered it.
The CM_P_USERDATA property allows an application to save user data
in internal space and retrieve it later.

• If the CM process exits for any reason, such as the OpenSwitch server
failing, program the callback to return CS_FAIL to its caller. This return
status is necessary for the CM to perform the necessary cleanups before
the process exits.

See also cm_init, cm_create

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 25

cm_close
Description Closes an established connection between a CM and OpenSwitch.

Syntax CS_RETCODE cm_close(cm)
cm_t *cm;

Parameters cm
 A pointer to a CM control structure.

Return value cm_close returns these values:

Usage • Closes an existing connection between a CM and a remote OpenSwitch
using the cm_connect function.

• It is not an error to close a connection that was never opened; that is to say,
if cm_connect was never called or has already been closed due to another
event, for example, OpenSwitch unexpectedly failing.

• Closing the connection associated with a CM does not destroy the CM
instance. Use cm_destroy to destroy the CM instance.

See also cm_connect, cm_destroy

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_connect

26 OpenSwitch

cm_connect
Description Establishes a connection between a CM and OpenSwitch.

Syntax CS_RETCODE cm_connect(cm, server, username, password)
cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;

Parameters cm
A pointer to a CM control structure.

server
A pointer to the name of the OpenSwitch server to which to connect. server
is the name of the server’s entry in the sql.ini file on Windows and in the
interfaces file on UNIX, or in the directory services source. A NULL server
value may be supplied only if cm_connect has successfully attached to a
remote server in the past. For more information, see the Usage section for
this routine.

username
The name to be used to connect to OpenSwitch. This should match the
COORD_USER configuration value in the OpenSwitch configuration file.
For more information, see the OpenSwitch Administration Guide. A NULL
username value may be supplied only if cm_connect has successfully
attached to a remote server in the past.

password
The OpenSwitch user password to be used to connect to OpenSwitch. This
value should match the COORD_PASSWORD configuration value in the
OpenSwitch configuration file. For more information, see the OpenSwitch
Administration Guide. A NULL password value may be supplied only if
cm_connect has successfully attached to a remote server in the past.

Return value cm_connect returns these values:

Examples cm_t *cm;
/*
* Create a new coordination module.
*/
cm = cm_create(...)

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 27

...
if (cm_connect(cm, "SYB_SWITCH1", "coord_user",

"coord_password") != CS_SUCCEED)
{

fprintf(stderr, "cm_connect failed!\n");
return CS_FAIL;

}

Usage • The cm_connect function is used to connect an instance of a CM to a
remote OpenSwitch server. The username and password parameters are
used by the CM to identify itself to OpenSwitch. Supplying a username
and password that do not match the COORD_USER and
COORD_PASSWORD configuration parameters in OpenSwitch causes
cm_connect to return CS_FAIL.

• Internally, cm_connect establishes an Open Client connection to the
OpenSwitch server, and waits for an acknowledgment by OpenSwitch that
the appropriate username and password have been supplied. After
connecting, cm_connect registers itself to be aware of several notification
procedures, in particular, np_req_srv. For details about np_req_srv, see
Chapter 8, “Notifications Procedures” in the OpenSwitch Administration
Guide.

• Issuing a call to cm_connect while a connection is already established
closes the existing connection (internally, using cm_close) before the new
connection is attempted.

• If cm has been successfully connected to a server in the past using
cm_connect, then passing a NULL value for any one of server, username,
and password causes the value passed during the previous call to
cm_connect to be used.

See also cm_create, cm_close, cm_connect_enc

cm_connect_enc

28 OpenSwitch

cm_connect_enc
Description Similar to cm_connect, except it allows for the use of encrypted user names and

passwords.

Syntax CS_RETCODE CS_PUBLIC cm_connect(cm, server, username,
password, encrypted)

cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;
CS_BOOL encrypted;

Parameters cm
Pointer to a CM control structure.

server
A pointer to the name of the OpenSwitch server to which to connect. server
is the name of the server’s entry in the $SYBASE/interfaces file on UNIX,
the %SYBASE%\ini\sql.ini file on Windows, or directory services source. A
NULL server value may be supplied only if cm_connect_enc has
successfully attached to a remote server in the past.

username
The name to be used to connect to OpenSwitch. This should match the
COORD_USER configuration value in the OpenSwitch configuration file.
For more information, see the OpenSwitch Administration Guide. A NULL
username value may be supplied only if cm_connect_enc has successfully
attached to a remote server in the past.

password
The OpenSwitch user password to be used to connect to OpenSwitch. This
value should match the COORD_PASSWORD configuration value in the
OpenSwitch configuration file. For more information, see the OpenSwitch
Administration Guide. A NULL password value may be supplied only if
cm_connect_enc has successfully attached to a remote server in the past.

encrypted
A Boolean value that defines whether the user name and password are
encrypted or not. If encrypted is set to CS_TRUE, all user names and
passwords passed to the API must be encrypted. If set to CS_FALSE, none
of the user names and passwords should be encrypted.

Return value cm_connect_enc returns these values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 29

Examples cm_t *cm;
/*
* Create a new coordination module.

*/
cm = cm_create(...)

...
if (cm_connect_enc(cm, "SYB_SWITCH1",
"0x010a60c07b7f86c1d30fac6162ce70400daecdd6749335832fd
5c9c613e95ef6","0x010ed474cfcb327562ac19d5c6cad2f04733
e321d8983d474744ec3b80888bc0", 1) != CS_SUCCEED)
{

fprintf(stderr, "cm_connect_enc failed!\n");
return CS_FAIL;

}

Usage • Similar to cm_connect with the additional ability to pass in encrypted
username (COORD_USER) and password (COORD_PASSWORD).

• If encryption is set to true, both username and password must be in
encrypted form, and must also be encrypted in the OpenSwitch server.

See also cm_connect

CS_FAIL The routine failed.

Return value Meaning

cm_create

30 OpenSwitch

cm_create
Description Creates a CM instance.

Syntax CS_RETCODE cm_create(ctx, cm)
cm_ctx_t *ctx;
cm_t *cm;

Parameters ctx
Pointer to a CM context structure. This context must be allocated and
initialized by cm_init prior to calling cm_create.

cm
The address of a pointer variable. cm_create sets cm to the address of a
newly allocated cm_t structure.

Return value cm_create returns these values:

Examples cm_t *cm;

/*
* Create a coordination module context.
*/
...

if (cm_create(ctx, &cm) != CS_SUCCEED)
{

fprintf(stderr, "cm_create() failed!\n");
return CS_FAIL;

}

Usage • cm_create allocates a new CM to manage a single OpenSwitch server. This
CM does nothing until callback handlers are installed using cm_callback
and the CM is connected to an OpenSwitch using cm_connect.

• The ctx acts as a container for all CMs created with cm_create. This
structure may be used to represent a self-contained group of CMs.

See also cm_connect, cm_run, cm_callback, cm_init

Return value Meaning

CS_SUCCEED The routine completed successfully. cm contains a
pointer to a new cm_t structure.

CS_FAIL The routine failed. The contents of cm are undefined.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 31

cm_destroy
Description Destroys a CM instance.

Syntax CS_RETCODE cm_destroy(cm)
cm_t *cm;

Parameters cm
A pointer to a CM control structure to be destroyed.

Return value cm_destroy returns these values:

Examples if (cm_destroy(cm) != CS_SUCCEED)
{

fprintf(stderr, "cm_destroy() failed!\n");
return CS_FAIL;

}

Usage • cm_destroy frees all resources associated with an instance of a CM cm_t
structure. All memory used by the structure is reclaimed, and any active
connection to an OpenSwitch server is closed.

• After a cm_t structure has been destroyed, it cannot be reused. A new
structure must be allocated with cm_create.

See also cm_create

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_error

32 OpenSwitch

cm_error
Description Prints an error message to stderr.

Syntax CS_VOID cm_error(fmt, ...)
CS_CHAR *fmt;

Parameters fmt
An output format string. This string may contain all of the output format
specifications accepted by fprintf(3c).

Return value None.

Examples cm_error("Could not open file '%s': %s\n",
(char*)file_name,
strerror(errno));

Usage • The cm_error function is identical to the standard C printf function. It
formats the output according to the fmt string and prints it, by default, to
stderr.

• To print an error message to a file, use the cm_set_print function instead.

See also cm_set_print

cm_exit
Description Exits and unallocates CM context.

Syntax CS_RETCODE cm_exit(ctx)
cm_ctx_t *ctx;

Parameters ctx
A pointer to the coordination context structure to be destroyed.

Return value cm_exit returns these values:

Examples if (cm_exit(ctx) != CS_SUCCEED)
{

cm_error("Unable to destroy context\n");
return CS_FAIL;

}

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 33

Usage • A coordination context is used to encapsulate multiple OpenSwitch
connections.

• ctx must point to a valid coordination context structure allocated using
cm_init.

• Attempting to call cm_exit while any CMs exist within the context returns
an error. cm_destroy must be used to destroy existing CMs prior to calling
cm_exit.

See also cm_init, cm_destroy

cm_getcol_data_size
Description Retrieves the name, the datatype, and the maximum length of the specified

column present in the specified list.

Syntax CS_RETCODE cm_getcol_data_size(col_list, col_name, col_type, col_size)
cm_col_mtdata *col_list;
CS_CHAR *col_name;
CS_CHAR *col_type;
CS_INT *col_size;

Parameters col_list
A linked list containing the name, datatype, and maximum length of the
entries in the metadata.

col_name
The name of the column that matches the name field of the linked list.

col_type
Provides the data type of the column. It stores CHAR for character datatype
or INTEGER for numeric datatype.

col_size
Provides the size of the column.

Return value cm_getcol_data_size returns these values:

Examples /*

* Get the information related to the cache column

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_getcol_metadata

34 OpenSwitch

related to the pool structure of the OpenSwitch.

 */

cm_getcol_data_size(list_col_metad, "cache", type,
&size);

See also cm_getcol_metadata

cm_getcol_metadata
Description Retrieves column metadata information. The information includes name,

datatype, and the maximum length of the column.

Syntax CS_INT cm_getcol_metadata(cm, type, col_list)
cm_t *cm;
CS_INT type;
cm_col_mtdata **col_list;

Parameters cm
A pointer to a CM control structure.

type
Indicates the type of information requested. Valid values for type are:

 col_list
A pointer (to a pointer) to the list of columns that contain the column’s
metadata. The cm_col_metadata structure is defined as:

typedef struct cm_col_metadata {
CS_CHAR name[CS_MAX_NAME]; /* Name of the column */
CS_CHAR datatype[CS_MAX_TYPE]; /* Datatype */

Type Description

POOL_T_TYPE To display pool related information.

SERVER_T_TYPE To display server related information.

RMON_T_TYPE To display OpenSwitch resource monitoring thread
related information.

DBG_T_TYPE To display OpenSwitch debugging flags related
information.

POOLSERVER_T_TYPE To obtain the servers present in a particular pool.

VERSION_T_TYPE To display OpenSwitch version number.

WHO_T_TYPE To display detailed information about user
connections to OpenSwitch.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 35

CS_INT maxlength; /* Maximum length of the column*/
struct cm_col_metadata *next; /* Next pointer*/

} cm_col_mtdata;

Return value cm_getcol_metdata returns these values:

Examples

/*
* Get the column metadata information related to the pool structure of the

OpenSwitch.
*/
fprintf(stderr, "Information related to the columns present in the pool
structure %s: \n", (char *)data);
num_col = cm_getcol_metadata(cm, POOL_T_TYPE, &list_col_metad);
fprintf(stderr, "The number of columns present in the pool structure of the
OpenSwitch is %d\n", num_col);

See also cm_getcol_data_size

cm_getopt
Description Parses command line arguments.

Syntax CS_INT cm_getopt(argc, argv, optstring)
CS_INT argc;
CS_CHAR *argv[];
CS_CHAR *optstring;

Parameters argc
The number of arguments held in the command line vector argv.

argv
Command line argument vector containing arguments.

optstring
Contains the option letters recognized by the command using cm_getopt. If
a letter is followed by a colon, the option is expected to have an argument.
If the letter is followed by a semicolon, an option is allowed but not required.
If there is no character after the letter, an option is not allowed.

Return value cm_getopt returns these values:

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_getopt

36 OpenSwitch

Examples main(argc, argv) int argc;
char *argv[];

{
extern CS_INT cm_optind;
extern CS_INT cm_optarg;

CS_INT c;
CS_INT aflg = 0;
CS_INT bflg = 0;
CS_INT errflg = 0;
CS_CHAR *ofile = NULL;

while ((c = cm_getopt(argc, argv,
"abo:")) != EOF)

{
switch(c)
{

case 'a':
if (bflg)

errflg++;
else

aflg++;
break;

case 'b':
if (aflg)

errflg++;
else

bflg++;
break;

case 'o':
ofile = cm_optarg;
printf("ofile = %s\n", ofile);
break;

case '?':
errflg++;

}

if (errflg)
{

fprintf(stderr,

Return value Meaning

'?' An invalid option was supplied.

EOF The last option was processed.

char The command line option parsed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 37

"usage: cmd [-a|-b] [-o "
"<filename>] files...\n");

exit (2);
}

for (; cm_optind < argc; cm_optind++)
{

printf("%s\n", argv[cm_optind]);
return 0;

}
}

The code fragment shows how to process the arguments for a command that
can take the mutually exclusive options a and b, and the option o, which
requires an argument:

Usage • cm_getopt returns the next option letter in argv that matches a letter in
optstring.

• If an option accepts an argument (the option letter is followed by a colon
or a semicolon in optstring), the contents of the argument are found in the
global variable cm_optarg. If an argument is optional and is not supplied,
cm_optarg is NULL.

• cm_getopt places in the cm_optind the argv index of the next argument to
be processed. cm_optind is external and is initialized to 1 before the first
call of cm_getopt. When all options have been processed, up to the first
nonoptional argument, cm_getopt returns EOF.

• The cm_optreset function may be used to reset the state of cm_getopt.

See also cm_optreset

cm_get_prop
Description Retrieves a property of a CM.

Syntax CS_RETCODE cm_get_prop(cm, prop, value)
cm_t *cm;
CS_INT prop;
CS_VOID *value;

Parameters cm
A pointer to a CM control structure.

cm_get_prop

38 OpenSwitch

prop
The name of the property to be retrieved. Valid values for prop are:

value
A pointer to a memory location in which the CM property is retrieved. Valid
values for value are:

Return value cm_get_prop returns these values:

Examples CS_CHAR cm_name[31];

if (cm_get_prop(cm, CM_P_NAME, cm_name)
!= CS_SUCCEED)

{
cm_error("Unable to retrieve CM_P_NAME prop \n");
return CS_FAIL;

}
else
{

fprintf(stdout,
"module name: %s\n", (char*)cm_name);

}

Prop Description

CM_P_ASYNC Checks to see if asynchronous notification is set in the connection between the CM
and OpenSwitch.

CM_P_USERDATA Retrieves a pointer from the CM control structure previously attached using
cm_set_prop(CM_P_USERDATA). This property may be used to pass data between
CM callbacks.

CM_P_NAME Retrieves the name of the OpenSwitch server to which the CM is connected. If the
module has never been connected, an empty string is returned.

If prop is: value will be:

CM_P_ASYNC A pointer to a CS_BOOL value.

CM_P_USERDATA A pointer to a void pointer (CS_VOID**).

CM_P_NAME A pointer to an array of CS_CHAR of length 31 or
greater.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 39

Usage Although the contents of all CM data structures are transparent (versus
opaque), fields within the data structures should never be accessed directly.
Instead, the cm_get_prop or cm_set_prop functions should be used. This allows
the internal definitions to be changed in future releases without affecting
existing code.

See also cm_set_prop

cm_get_showquery
Description Returns the query when the OpenSwitch process ID is executed.

Syntax CS_RETCODE cm_get_showquery (cm, spid, query)
cm_t *cm;
CS_INT spid;
CS_CHAR *query;

Parameters cm
A pointer to a CM control structure.

spid
Valid OpenSwitch process ID.

query
A buffer to hold the returned query string.

Return value cm_get_showquery returns these values:

Examples If(cm_get_showquery(cm, 7, query) !=CS_SUCCEED)
{

cm_error(“cm_get_showquery()failed\n”)
}

Usage The returned query is stored in the assigned buffer.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_get_value

40 OpenSwitch

cm_get_value
Description Because mutually-aware OpenSwitch servers do not currently support

removing or adding Adaptive Servers to pools, before adding or removing a
server, use this API to retrieve the mutually-aware configuration value of an
OpenSwitch server. See the OpenSwitch Administration Guide for details
about using mutually-aware OpenSwitch servers.

If you select Use Mutual Aware Support? in the configuration GUI
(MUTUAL_AWARE=1 in the OpenSwitch configuration file), servers can
neither be added or removed from a pool.

Syntax CS_RETCODE CS_PUBLIC cm_get_value(cm, parm_name,
parm_value)

cm_t *cm;
CS_CHAR *parm_name;
CS_CHAR *parm_value;

Parameters cm
A pointer to a CM control structure.

parm_name
Name of a configuration variable as listed in the configuration file.

parm_value
Returns the value of the configuration parameter specified for parm_value.

Examples

If(cm_get_value(cm, "DEBUG", parm_val) !=CS_SUCCEED)
{

cm_error(“Unable to retrieve the value of the 'DEBUG' configuration
parameter\n”);

return CS_FAIL;
}

Usage Sample cm1.c file

The cm1.c sample has been modified such that, when a primary server is
detected to be down, cm1 not only marks it as down, but also removes it from
the pool. When the primary server comes back up, cm1 marks it as up and adds
it to the end of the pool. This way, new clients can continue to be redirected to
the secondary server until the administrator deems it appropriate to switch back
all the connections by manually executing the failback sequence as described
below:

• rp_server_status sec_ASE, LOCKED – prevents more new clients from
going to the secondary Adaptive Server

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 41

• rp_stop NULL, sec_ASE, NULL – stops all connections on the secondary
Adaptive Server

• rp_server_status sec_ASE, DOWN – makes the secondary Adaptive Server
unavailable to any new connections in the future

• rp_server_status pri_ASE, UP – sets the primary Adaptive Server up for
accepting new connections

• rp_switch NULL, sec_ASE, NULL, pri_ASE, 0, 1 – switches all the
connections back from the secondary to the primary Adaptive Servers

• rp_start NULL, sec_ASE, NULL – restarts all the stopped connections

These changes does not apply to mutually-aware setups. If MUTUAL_AWARE
is set to 1, cm1 only marks the primary server as down when it detects a failure,
but does not remove the server from the pool. When the server comes back up
in a mutually aware setup, cm1 marks the server as up, and the primary server
begins accepting connections right away.

If the administrator does not want to use this configuration, the administrator
can modify the cm_time_ping() function in cm1.c to comment out the call to
cm_server_status. By doing this, the cm1 program does not failback the
connections automatically, thus allowing the administrator to control when the
failback occurs when they execute the failback sequence mentioned above.

cm_ignore

42 OpenSwitch

cm_ignore
Description Ignores OpenSwitch messages matching a given template to prevent it from

invoking the corresponding callback handler as installed by cm_callback.

Syntax CS_RETCODE cm_ignore(cm, msg_type, msg)
cm_t *cm;
CS_INT msg_type;
CS_VOID *msg;

Parameters cm
A pointer to a CM control structure.

msg_type
The type of message being passed through the msg argument. The only valid
value for msg_type is:

msg
A pointer to a cm_req_srv_st structure, which is defined as:

typedef struct cm_req_srv_st {
CS_INT spid; /* OpenSwitch spid number */
CS_CHAR username[31]; /* Name of the user */
CS_CHAR appname[31]; /* Application they are running */
CS_CHAR hostname[31]; /* Host client is running on */
CS_CHAR database[31]; /* Host client is running on */
CS_CHAR pool[31]; /* Pool the user is in */
CS_INT rsn_code; /* Reason for request (see cm_rsn.h) */
CS_CHAR rsn_text[256]; /* Description of reason */
CS_CHAR cur_server[31]; /* Current server they are using */
CS_CHAR nxt_server[31]; /* Server they want to go too */

} cm_req_srv_t;

Return value cm_ignore returns these values:

Examples cm_req_srv_t m;

cm_ignore_clear(cm, CM_CB_SERVER, (CS_VOID*)&m);\

/*Ignore all incoming messages from Adaptive Server
"SYB_ASE1".

msg_type Description

CM_CB_SERVER A server-name request message

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 43

*/
strcpy((char*)m.cur_server, "SYB_ASE1");

if (cm_ignore(cm, CM_CB_SERVER, (CS_VOID*)&m)
!= CS_SUCCEED)

{
cm_error("Can't ignore msgs from SYB_ASE1\n");
return CS_FAIL;

}

Usage • When an Adaptive Server fails, all the connected clients as well as the
clients attempting to connect to it receive the same error message. To
prevent these similar errors from triggering the failover process multiple
times, you can code the CM so it acknowledges only the first lost
connection message received and ignores subsequent similar messages on
the same server. When the failed server has recovered fully, the CM can
unset the previous ignore message so that no messages are ignored.

• The cm_ignore_clear, cm_ignore, and cm_unignore functions cause a CM
to automatically discard messages received from OpenSwitch according
to a message template.

• The cm_ignore_clear function establishes an empty message template.
After it has been used to clear the msg structure, the data structure fields
that are to be ignored may be set. By passing this populated data structure
template to cm_ignore, all future messages matching the template are
automatically discarded by the CM until cm_unignore is called with an
identical template.

• Messages are ignored only when all fields of the incoming message
exactly match all populated fields of the template message. There is
currently no facility for providing “or” logic within a single template. This
may be achieved only by passing multiple templates to cm_ignore, or by
implementing a separate mechanism.

See also cm_ignore_clear, cm_unignore

cm_ignore_clear

44 OpenSwitch

cm_ignore_clear
Description Sets all fields of a message structure to empty values.

Syntax CS_RETCODE cm_ignore_clear(cm, msg_type, msg)
cm_t *cm;
CS_INT msg_type;
CS_VOID *msg;

Parameters cm
A pointer to a CM control structure.

msg_type
the type of message being passed through the msg argument. Valid values
for msg_type are:

msg
a pointer to a cm_req_srv_st structure, which is defined as:

typedef struct cm_req_srv_st {
CS_INT spid; /* OpenSwitch spid number */
CS_CHAR username[31]; /* Name of the user */
CS_CHAR appname[31]; /* Application they are running */
CS_CHAR hostname[31]; /* Host client is running on */
CS_CHAR database[31]; /* Host client is running on */
CS_CHAR pool[31]; /* Pool the user is in */
CS_INT rsn_code; /* Reason for request (see cm_rsn.h) */
CS_CHAR rsn_text[256]; /* Description of reason */
CS_CHAR cur_server[31]; /* Current server they are using */
CS_CHAR nxt_server[31]; /* Server they want to go too */

} cm_req_srv_t;

Return value cm_ignore_clear returns these values:

Examples cm_req_srv_t m;

cm_ignore_clear(cm, CM_CB_SERVER, (CS_VOID*)&m);

/*
* Ignore all messages coming generated from SQL
* Server "SYB_ASE1".

msg_type Description

CM_CB_SERVER A server-name request message

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 45

*/
strcpy((char*)m.cur_server, "SYB_ASE1");

if (cm_ignore(cm, CM_CB_SERVER, (CS_VOID*)&m)
!= CS_SUCCEED)

{
cm_error("Can't ignore msgs from SYB_ASE1\n");
return CS_FAIL;

}

Usage • When an Adaptive Server fails, all the connected clients as well as the
clients attempting to connect to it receive the same error message. To
prevent these similar errors from triggering the failover process multiple
times, you can code the CM so it acknowledges only the first lost
connection message received and ignores subsequent similar messages on
the same server. When the failed server has recovered fully, the CM can
then unset the previous ignore message so that no messages are ignored.

• The cm_ignore_clear function establishes an empty message template.
After you use it to clear the msg structure, set the data-structure fields to
ignore. By passing this populated data-structure template to cm_ignore, all
future messages matching the template are automatically discarded by the
CM until cm_unignore is called with an identical template.

• Messages are ignored only when all fields of the incoming message match
exactly all populated fields of the template message. There is currently no
facility for providing “or” logic within a single template. This may be
achieved only by passing multiple templates to cm_ignore, or by
implementing a separate mechanism.

See also cm_ignore, cm_unignore

cm_init

46 OpenSwitch

cm_init
Description Initializes a CM context.

Syntax CS_RETCODE cm_init(cm_ctx)
cm_ctx_t *cm_ctx;

Parameters cm_ctx
The address of a cm_ctx_t pointer. cm_init sets *cm_ctx to the address of a
newly allocated cm_ctx_t structure.

Return value cm_init returns these values:

Examples cm_ctx_t *ctx;

if (cm_init(&ctx) != CS_SUCCEED)
{

cm_error("Unable to allocate context\n");
return CS_FAIL;

}

Usage • A CM context structure is used to manage zero or more CMs. It provides
a handle for manipulating multiple CMs as a single entity. For example,
you can use a CM program to manage multiple OpenSwitch servers at the
same time. To do this, you must create multiple CMs, each one connecting
to a different OpenSwitch. Multiple CMs are particularly useful in a
redundancy setup to eliminate the single point of failure that a single
OpenSwitch might pose.

• After a CM context structure has been allocated, individual CM managers
may be allocated using cm_create.

• A CM context structure may be destroyed using cm_exit.

• Usually, only one CM context exists per executable.

• Common reasons for failure include:

• Memory allocation failure

• A problem with the Open Client installation

See also cm_create, cm_exit

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 47

cm_is_active
Description Checks if the CM is allowed to perform failback.

Syntax CS_RETCODE CS_PUBLIC cm_is_active(cm, is_active)
cm_t *cm;
CS_BOOL *is_active;

Parameters cm
A pointer to a CM control structure.

is_active
Address of the Boolean variable.

Return value cm_is_active returns these values:

Examples

if cm_is_active(cm, &is_active) != CS_SUCCEED)
{

cm_error("cm_is_active failed.\n");
return CS_FAIL;

}

if (is_active == CS_TRUE)
{

/* CM is connected to Primary OpenSwitch companion */)
cm_error("\nOpenSwitch is Primary Companion. \n");

else
{

/* CM is connected to Secondary OpenSwitch companion */)
cm_error("\nOpenSwitch is Secondary Companion. \n");

}

Usage • In a mutually-aware support, cm_is_active is used to check if the CM is
allowed to perform failback.

• is_active is the address of the Boolean variable, which should be non
NULL for normal operation.

• Boolean variable is set to CS_TRUE if the CM is allowed to perform
failback. Otherwise, Boolean variable is set to CS_FALSE.

• In a non-MAS, Boolean variable is always set to CS_TRUE.

• This routine can be used in the failback timer.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_optreset

48 OpenSwitch

cm_optreset
Description Resets the state of option parsing for cm_getopt.

Syntax CS_RETCODE cm_optreset()

Parameters None.

Return value cm_optreset returns these values:

Examples if (cm_optreset()!=CS_SUCCEED)
{

cm_error("Cannot reset options\n");
return CS_FAIL;

}

Usage • The cm_getopt function is a utility function similar to the standard UNIX
libc function call, getopt(3c). Each subsequent call to cm_getopt parses the
next command line option.

• cm_getopt and cm_optreset provide a more portable interface than
getopt(3c) and are recommended instead.

• Calling cm_optreset resets the state of cm_getopt to start at the beginning
of the supplied command line options.

See also cm_getopt

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 49

cm_ping
Description Verifies the health of a remote server by checking if it responds to a user

connection and a simple request.

Syntax CS_RETCODE cm_ping(cm, server, username, password, database)
cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;
CS_CHAR *database;

Parameters cm
Pointer to a CM control structure.

server
The name of the remote server to ping, as listed in the interfaces file on
UNIX and in the sql.ini file on Windows.

username
The user name used to connect to the remote server to perform the argv. This
user name must exist on the remote server and have access to the database
specified by the database argument.

password
The user password used to connect to the remote server.

database
If not NULL, the name of the database to ping on the remote server.

Return value cm_ping returns these values:

Examples if (cm_ping(cm, "SYB_ASE1", "bob", "bobs_password",
"pubs2") != CS_SUCCEED)

{
cm_error("Server SYB_ASE1 is dead.\n");
return CS_FAIL;

}

Usage • cm_ping is a utility function used to ping a remote server.

• A server is considered to be alive if:

Return value Meaning

CS_SUCCEED The routine completed successfully. The Adaptive
Server was successfully pinged and appears to be
available.

CS_FAIL The routine failed or the Adaptive Server was not
available.

cm_ping_enc

50 OpenSwitch

• A connection is successfully established to server using username and
password, and

• If the database is not NULL, a use database command succeeds, or

• If the database is NULL, a select @@spid statement succeeds.

• When the network between the CM host and the remote server goes down,
cm_ping can take as long as 60 seconds to return a failure. To be notified
of the failure sooner than that, use cm_short_ping instead and specify a
time-out value you want for your systems.

• To ping the server more than once before taking the necessary failover
actions, use cm_repeat_ping or cm_repeat_short_ping. These functions
ping the remote server up to the specified number of times before returning
a failure.

• Use cm_ping only on Sybase products that support use database and select
@@spid.

See also cm_repeat_ping, cm_repeat_short_ping, cm_short_ping

cm_ping_enc
Description Similar to cm_ping, except it allows for the use of encrypted user names and

passwords. Calls cm_repeat_short_ping if maxretry and timeout are greater than
zero, cm_repeat_ping if maxretry is greater than zero and timeout is not, and
cm_short_ping if neither maxretry or timeout are greater than zero.

Syntax CS_RETCODE CS_PUBLIC cm_ping_enc(cm, server, username,
password, database, timeout, maxretry, waitsec, encrypted)

cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;
CS_CHAR *database;
CS_INT timeout;
CS_INT maxretry;
CS_INT waitsec;
CS_BOOL encrypted;

Parameters cm
A pointer to a CM control structure.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 51

server
The name of the remote server to ping, as listed in the interfaces (UNIX) and
sql.ini (Windows) files.

username
The user name to connect to the remote server to perform the ping.

password
The user password to use to connect to the remote server.

database
If not NULL, the name of the database to ping on the remote server.

timeout
The timeout value in seconds for the CM to connect to the servername
specified. If the connection is not established within the amount of time
specified, this function returns CS_FAIL. Set this value slightly longer than
the usual amount of time it takes for the CM host to ping the server host
under normal operating conditions.

maxretry
If failure occurs, the number of times the CM retries to check the server
health. If the CM succeeds immediately, cm_ping_enc returns immediately
without retrying.

waitsec
The duration, in seconds, that the CM should wait between each retry. If the
CM succeeds immediately, cm_ping_enc returns without waiting.

encrypted
A Boolean value that defines whether or not the username and password are
encrypted. If encrypted is set to CS_TRUE, all user names and passwords
passed to cm_ping_enc must be encrypted. If set to CS_FALSE, none of the
user names and passwords should be encrypted.

Return value cm_ping_enc returns these values:

Examples if (cm_ping_enc(cm, "SYB_ASE1"
"0x010373d3657426eafbc917cf04a17456e5347612cd91e756c
8b6afddb0325574",

Return value Meaning

CS_SUCCEED The routine completed successfully. The Adaptive
Server was successfully pinged and appears to be
available.

CS_FAIL The routine failed or the Adaptive Server was not
available.

cm_repeat_ping

52 OpenSwitch

"0x010d43e3555092fafc20955d5647496877186a433f006d7e0
7df70ae39a7cf3b", pubs2", 30, 3, 20,1)

!= CS_SUCCEED)

{
cm_error("Server SYB_ASE1 is dead.\n");
return CS_FAIL;

}

Usage • Same as cm_repeat_short_ping, with the additional ability to support
encrypted user name and password.

• See the “Usage” section for cm_repeat_short_ping.

See also cm_repeat_ping, cm_short_ping, cm_repeat_short_ping

cm_repeat_ping
Description Verifies the health of a remote server, repeating up to the specified number of

times if a failure is encountered.

Syntax CS_RETCODE cm_repeat_ping(cm, server, username, password, database,
maxretry, waitsec)

cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;
CS_CHAR *database;
CS_INT maxretry;
CS_INT waitsec;

Parameters cm
Pointer to a CM control structure.

server
The name of the remote server to ping, as listed in the UNIX interfaces file
or the Windows sql.ini file.

username
The user name used to connect to the remote server to perform the ping. This
user name must exist on the remote server and have access to the database
specified by the database argument.

password
The user password to be used to connect to the remote server.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 53

database
If not NULL, the name of the database to ping on the remote server.

maxretry
If a failure is encountered, the number of times this function retries before
returning. If the ping succeeds immediately, cm_repeat_ping returns without
retrying.

waitsec
The duration in seconds this function waits between each retry. If the ping
succeeds immediately, cm_repeat_ping returns without waiting.

Return value cm_repeat_ping returns these values:

Examples

if (cm_repeat_ping(cm, "SYB_ASE1", "bob", "bobs_password", "pubs2", 3, 5)
!= CS_SUCCEED)

{
cm_error("Failed to connect to SYB_ASE1 after 3 retries.\n");
return CS_FAIL;

}

Usage • cm_repeat_ping is a utility function that can ping a remote server. If the
ping succeeds, cm_repeat_ping returns immediately. If the ping fails,
cm_repeat_ping sleeps for a specified duration (waitsec), then tries to ping
the server again. This process repeats until the maximum number of retries
(maxretry) completes.

• A server is considered to be alive if:

• A connection is successfully established to server using username and
password, and

• If the database is not NULL, a use database command succeeds, or

• If the database is NULL, a select @@spid statement succeeds.

• You can use cm_repeat_ping only on Sybase products that support use
database and select @@spid.

See also cm_ping, cm_short_ping, cm_repeat_short_ping

Return value Meaning

CS_SUCCEED The routine completed successfully. The Adaptive
Server was successfully pinged and appears to be
available.

CS_FAIL The routine failed or the Adaptive Server was not
available.

cm_repeat_short_ping

54 OpenSwitch

cm_repeat_short_ping
Description Similar to cm_repeat_ping, except that cm_repeat_short_ping also sets a time

limit on the duration each ping waits when a failure occurs.

Syntax CS_RETCODE cm_repeat_short_ping(cm, server, username, password,
database, timeout, maxretry, waitsec)

cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;
CS_CHAR *database;
CS_INT timeout;
CS_INT maxretry;
CS_INT waitsec;

Parameters cm
Pointer to a CM control structure.

server
The name of the remote server to ping, as listed in the interfaces (UNIX) or
sql.ini (Windows) file.

username
The user name used to connect to the remote server to perform the ping. This
user name must exist on the remote server and have access to the database
specified by the database argument.

password
The user password used to connect to the remote server.

database
If not NULL, the name of the database to ping on the remote server.

timeout
The timeout value in seconds for the user to connect to the servername
specified to determine the health of the server. If the connection fails within
the amount of time specified by this value, this function returns CS_FAIL.
Set this value to a number slightly longer than the usual amount of time it
takes the CM host to ping the host of the server under normal operating
conditions.

maxretry
If a failure is encountered, the number of times this function retries before
returning. If the ping succeeds immediately, cm_repeat_short_ping returns
without retrying.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 55

waitsec
The duration in seconds this function waits between each retry. If the ping
succeeds immediately, cm_repeat_short_ping returns without waiting.

Return value cm_repeat_short_ping returns these values:

Examples

if (cm_repeat_short_ping(cm, "SYB_ASE1", "bob", "bobs_password", "pubs2",
15, 3, 5) != CS_SUCCEED)

{
cm_error("Failed to access server SYB_ASE1 after 3 tries.\n");
/* Optional: Do further checks to determine the root cause */
sprintf(cmd, “ping server1”);
if (system(cmd) != 0)
{
cm_error(“Host of SYB_ASE1 not responding.\n”);
}
return CS_FAIL;
}

Usage • cm_repeat_short_ping is a utility function that can ping a remote server. If
the ping succeeds, cm_repeat_short_ping returns immediately. If the ping
fails, or a duration of timeout elapses without a response from the remote
server, cm_repeat_short_ping sleeps for a specified duration (waitsec), then
tries to ping the server again. This process repeats until the maximum
number of retries (maxretry) is carried out.

• A server is considered to be alive if:

• A connection is successfully established to the server using username
and password, and

• The database is not NULL, a use database command succeeds, or

• The database is NULL, a select @@spid statement succeeds.

• You can use cm_repeat_short_ping only on Sybase products that support
use database and select @@spid.

Return value Meaning

CS_SUCCEED The routine completed successfully. The Adaptive
Server was successfully pinged and appears to be
available.

CS_FAIL The routine failed, or the Adaptive Server was not
available, or the host of the Adaptive Server was down
and inaccessible through the network.

cm_run

56 OpenSwitch

• cm_repeat_short_ping can return false failures if timeout is set to a value
that is too small, or if the network is sluggish. Sybase recommends that
you perform further analysis to determine the precise reason for its failure
before triggering a failover.

See also cm_ping, cm_short_ping

cm_run
Description Starts the CM.

Syntax CS_RETCODE cm_run(ctx)
cm_ctx_t *ctx;

Parameters ctx
Pointer to a CM context structure.

Return value cm_run returns this value:

Examples if (cm_run(ctx) != CS_SUCCEED)
{

cm_error("coordination module done.\n");
return CS_FAIL;

}

Usage • cm_run acts as the main dispatch loop for the CM. It waits for incoming
OpenSwitch events and dispatches them to the appropriate event handler
installed with cm_callback.

• cm_run does not exit unless an internal error is encountered, or if a
callback handler returns a CS_FAIL.

• cm_run may be called even when no CMs are connected to an OpenSwitch
server. In this case, only timed callbacks installed with cm_timer_add are
executed.

See also cm_timer_add

Return value Meaning

CS_FAIL cm_run failed or a callback handler returned
CS_FAIL.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 57

cm_set_print
Description Installs an error display function.

Syntax CS_RETCODE cm_set_print(print_func)
cm_printerr_fn *print_func;

Parameters print_func
A NULL, or a pointer to a function of the form:

CS_RETCODE print_func(str)
CS_CHAR *str;

Return value cm_set_print returns these values:

Examples CS_RETCODE print_func(str)
CS_CHAR *str;

{
fputs(str, stdout);
return CS_SUCCEED;

}
...

if (cm_set_print(print_func) != CS_SUCCEED)
{

cm_error("Unable to install print_func\n");
return CS_FAIL;

}

Usage • By default, cm_error and all internal error messages display to stderr. The
cm_set_print function may be used to replace the default display method
with a custom function; for example, to write messages to a log file.

• If a NULL print_func is supplied, the default display method is used.

See also cm_error

Return Value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_set_prop

58 OpenSwitch

cm_set_prop
Description Sets the prop attribute of a coordination module cm to value. The meaning of

value depends on which property is being manipulated.

Syntax CS_RETCODE cm_set_prop(cm, prop, value)
cm_t *cm;
CS_INT prop;
CS_VOID *value;

Parameters cm
a pointer to a CM control structure, which is the structure used to represent
a CM.

prop
The name of the property to be set. Valid values for prop are:

value
The value to which the specified prop is being set.

Return value cm_set_prop returns these values:

Examples CS_VOID *data;

data = (CS_VOID*)strdup("STRING");

if (cm_set_prop(cm, CM_P_USERDATA, data)

Prop Description

CM_P_USERDATA Allows a user-created application to store a value that may be used by the callback
function at a later time. Callback routines are asynchronous and are defined using
cm_callback as the function to call back for a particular event.

CM_P_ASYNC A Boolean value that turns on or off whether notifications are sent directly at the time
of receipt.

If prop is: value can be:

CM_P_USERDATA A pointer to data to be passed to the
callback function when executed.

CM_P_ASYNC • CS_FALSE – to place notifications in
a queue to be sent one at a time. This
is the default.

• CS_TRUE – to send notifications
directly at the time of receipt.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 59

!= CS_SUCCEED)
{

cm_error("Unable to set USERDATA property\n");
return CS_FAIL;

}

Usage Although the contents of all CM data structures are transparent (versus
opaque), do not directly access fields within the data structures. Instead, use the
cm_get_prop or cm_set_prop routines. This allows the internal definitions to be
changed in future releases without affecting existing code.

See also cm_get_prop

cm_short_ping
Description Verifies the health of a remote server by checking if it responds to a user

connection and a simple request within a specified amount of time.

Syntax CS_RETCODE cm_short_ping(cm, server, username, password,
database, timeout)

cm_t *cm;
CS_CHAR *server;
CS_CHAR *username;
CS_CHAR *password;
CS_CHAR *database;
CS_INT timeout;

Parameters cm
Pointer to a CM control structure.

server
The name of the remote server to ping, as listed in the interfaces (UNIX) or
sql.ini (Windows) file.

username
The user name used to connect to the remote server to perform the ping. This
user name must exist on the remote server and have access to the database
specified by the database argument.

password
The user password to use to connect to the remote server.

database
If not NULL, the name of the database to ping on the remote server.

cm_short_ping

60 OpenSwitch

timeout
The timeout value in seconds for the user to connect to the servername
specified to determine the health of the server. If the connection is not
established within the amount of time specified, this function returns
CS_FAIL. Set this value slightly longer than the usual amount of time it
takes for the CM host to ping the server host under normal operating
conditions.

Return value cm_short_ping returns these values:

Examples

if (cm_short_ping(cm, "SYB_ASE1", "bob", "bobs_password", "pubs2", 15)!=
CS_SUCCEED)

{
cm_error("Failed to access server SYB_ASE1 within 15 seconds.\n");
/* Optional: Do further checks to determine the root cause */
sprintf(cmd, "ping server1");
if (system(cmd) != 0)
{

cm_error("Host of SYB_ASE1 not responding.\n");
}
return CS_FAIL;

}

Usage • cm_short_ping can ping a remote server.

• A server is considered to be alive if:

• A connection is successfully established to the server using username
and password, and

• The database is not NULL, a use database command succeeds, or

• The database is NULL, a select @@spid statement succeeds.

• You can use cm_short_ping only on Sybase products that support use
database and select @@spid.

Return value Meaning

CS_SUCCEED The routine completed successfully. The Adaptive
Server was successfully pinged and appears to be
available.

CS_FAIL The routine failed or the Adaptive Server was not
available. Alternatively, the host of the Adaptive
Server was not responding or inaccessible through the
network.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 61

• cm_short_ping can return false failures if the timeout value is set too low
or if the network is slow. Therefore, Sybase recommends that you perform
further analysis to determine the reason for a failure before triggering a
failover.

cm_start
Description Resumes activity of connections.

Syntax CS_RETCODE cm_start(cm, pool, server, spid)
cm_t *cm;
CS_CHAR *pool;
CS_CHAR *server;
CS_INT spid;

Parameters cm
A pointer to a CM control structure.

pool
The name of the pool in which the connections should be started. Supplying
only this argument starts all connections within the pool.

server
Resumes connections to the remote server. Supplying only this argument
starts all connections to the server.

spid
Starts the connection identified within OpenSwitch by spid.

• If you specify a spid value of -1 or NULL and do not specify any value
for pool or server, OpenSwitch starts all connections

• If you specify values for pool, server, or both parameters, OpenSwitch
starts the connection after it verifies that the values you specify in the
pool and server parameters exactly match the names of the pool and
server that connect to the spid you specify.

• If you specify values for pool, server, or both parameters, and there is
no exact match between the actual pool and server names and the pool
and server parameters you specify, OpenSwitch does not start the
connection.

Return value cm_start returns these values:

cm_start

62 OpenSwitch

Examples if (cm_start(cm, NULL, "SYB_ASE1", -1)
!= CS_SUCCEED)

{
cm_error(
"Can't start connections on SYB_ASE1\n");
return CS_FAIL;

}

Usage • cm_start is used to resume connections in OpenSwitch that were
previously stopped using cm_stop.

• cm_start is implemented in terms of the rp_start registered procedure
within OpenSwitch. For details, see the OpenSwitch Administration
Guide.

• Passing a NULL value for pool or server or a value of -1 for spid acts as a
wildcard for that field, indicating that all client connections match.

• If no arguments are supplied to cm_start, all connections are started within
OpenSwitch.

• spid refers to the OpenSwitch process ID, not the process ID in the remote
Adaptive Server; these two values are not the same.

• Starting a connection that was not stopped has no effect.

See also cm_stop

Return Value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 63

cm_stop
Description Suspends connection activity.

Syntax CS_RETCODE cm_stop(cm, pool, server, spid, flags)
cm_t *cm;
CS_CHAR *pool;
CS_CHAR *server;
CS_INT spid;
CS_INT flags;

Parameters cm
A pointer to a CM control structure.

pool
The name of the pool in which the connections should be stopped.
Supplying only this argument stops all connections within the pool.

server
Suspends connections to the remote server. Supplying only this argument
stops all connections to the server.

spid
Stops the connection identified within OpenSwitch by spid.

• If you specify a spid value of -1 or NULL and do not specify any value
for pool or server, OpenSwitch stops all connections

• If you specify a value for pool, server, or both parameters, OpenSwitch
stops the connection after it verifies that the values you specify in the
pool and server parameters exactly match the names of the pool and
server that connect to the spid you specify.

• If you specify values for pool, server, or both parameters, and there is
no exact match between the actual pool and server names and the pool
and server parameters you specify, OpenSwitch does not stop the
connection.

flags
Symbolic options that indicate how to stop connections. These options may
be used with “or” statements. Valid values for flags are:

Status Description

CM_IGNTRAN Stops connections even if they are in the middle of a
transaction. Without this flag, cm_stop waits for the
current transaction to complete.

cm_stop

64 OpenSwitch

Return value cm_stop returns these values:

Examples if (cm_stop(cm, NULL, "SYB_ASE1", -1, CM_IGNTRAN)
!= CS_SUCCEED)

{
cm_error(
"Can't stop connections on SYB_ASE1\n");
return CS_FAIL;

}

Usage • cm_stop is used to suspend connections in OpenSwitch. Connections
matching pool, server, and spid are stopped as soon as their transactions
have completed (unless the CM_IGNTRAN flag is supplied) and as soon as
the currently executing query has completed.

• cm_stop is implemented in terms of the rp_stop registered procedure
within OpenSwitch. For more details, see the OpenSwitch Administration
Guide.

• Passing a NULL value for pool or server or a value of -1 for spid acts as a
wildcard for that field, indicating that all client connections match.

• spid refers to the OpenSwitch process ID, not the process ID in the remote
Adaptive Server; these two values are not the same.

• Stopping a connection that is already stopped has no effect.

• cm_stop applies only to connections that are already established in the
OpenSwitch server. It does not apply to connections established after it is
called.

See also cm_start

CM_IGNFAIL Causes stopped connections to ignore the failure of a
Adaptive Server; that is, failure messages are broadcast
to the CM due to the failure, and a reconnect attempt is
made when cm_start is issued.

Status Description

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 65

cm_timer_add
Description Adds a timed callback.

Syntax CS_RETCODE cm_timer_add(cm, name, ms, func, data, flags)
cm_t *cm;
CS_CHAR *name;
CS_INT ms;
cm_timer_cb *func;
CS_VOID *data;
CS_INT flags;

Parameters cm
A pointer to a CM control structure.

name
The symbolic name for the callback.

ms
the number of milliseconds until the callback is executed.

func
A pointer to a callback function.

data
A pointer to data to be passed to the callback function when executed.

flags
Flags to affect the manner in which the timer callback is executed. The only
valid value for flags is:

Return value cm_timer_add returns these values:

Examples CS_RETCODE cb_func(cm, name, data)
cm_t *cm;
CS_CHAR *name;
CS_VOID *data;

{
printf("%s: data is %s\n",

(char*)name, (char*)data);

flag Description

CM_TF_ONCE The callback is called only once, at which time it is
removed from the list of active callback functions and
can be reinstalled only by calling cm_timer_add again.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_timer_add

66 OpenSwitch

return CS_SUCCEED;
}

if (cm_timer_add(cm, "Callback #1", (CS_INT)30000,
(cm_timer_cb*)cb_func,
(CS_VOID*)NULL, (CS_INT)0)
!= CS_SUCCEED)

{
cm_error(
"Unable to install Callback #1\n");
return CS_FAIL;

}

Usage • A timed callback is a function that is called automatically every n
milliseconds by the CM. Timed callbacks supply a mechanism for polling
various system resources.

• Timed callbacks are executed synchronously. Therefore, the granularity of
the timer varies with the activity of the CM and the number of timer
callbacks installed. Do not use timed callbacks where great precision of
timing is expected.

• The name of the callback is used to determine which callback handler is
removed by cm_timer_rem.

• A return value of CS_SUCCEED from a timer callback function indicates
that the function completed normally. Returning CS_FAIL causes the CM
to exit, and cm_run to return CS_FAIL.

See also cm_timer_rem, cm_run

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 67

cm_timer_rem
Description Removes a timed callback.

Syntax CS_RETCODE cm_timer_rem(cm, name)
cm_t *cm;
CS_CHAR *name;

Parameters cm
A pointer to a CM control structure.

name
The symbolic name for the callback to be removed.

Return value cm_timer_rem returns these values:

Examples if (cm_timer_rem(cm, "Callback #1")
!= CS_SUCCEED)

{
cm_error(
"Unable to de-install Callback #1\n");
return CS_FAIL;

Usage • A timed callback is a function that is automatically called every n
milliseconds by the CM.

• Timed callbacks are executed synchronously. Therefore, the granularity of
the timer varies with the activity of the CM and the number of timer
callbacks installed. Do not use timed callbacks where great precision of
timing is expected.

• The name of the callback supplied to cm_timer_rem must match the name
specified for cm_timer_add.

See also cm_timer_add

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_unignore

68 OpenSwitch

cm_unignore
Description Removes OpenSwitch ignore requests matching template.

Syntax CS_RETCODE cm_unignore (cm, msg_type, msg)
cm_t *cm;
CS_INT msg_type;
CS_VOID *msg;

Parameters cm
 Pointer to a CM control structure.

msg_type
The type of message being passed through the msg argument. The only valid
value for msg_type is:

msg
A pointer to a valid data structure of the type identified by msg_type.

Return value cm_unignore returns these values:

Examples cm_req_srv_t m;

cm_ignore_clear(cm, CM_CB_SERVER, (CS_VOID*)&m);

/*
* "Unignores" all messages coming generated
* from Adaptive Server "SYB_ASE1".
*/
strcpy((char*)m.cur_server, "SYB_ASE1");

if (cm_unignore(cm, CM_CB_SERVER, (CS_VOID*)&m)
!= CS_SUCCEED)

{
cm_error(
"Can't unignore msgs from SYB_ASE1\n");
return CS_FAIL;

}

msg_type Description

CM_CB_SERVER A server-name request message

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 69

Usage • Because one message is received for each OpenSwitch client connection
that is lost due to an Adaptive Server failure, you may want to pay
attention only to the first message received and, following the failover,
ignore any subsequent messages from that Adaptive Server until it is
recovered.

• The cm_ignore_clear, cm_ignore, and cm_unignore functions are used to
cause a CM to automatically discard messages received from OpenSwitch
according to a message template.

• The cm_ignore_clear function establishes an empty message template.
After it has been used to clear the msg structure, the data structure fields
that are to be ignored may be set. By passing this populated data structure
template to cm_ignore, all future messages matching the template are
automatically discarded by the CM until cm_unignore is called with an
identical template.

• Messages are ignored only when all fields of the incoming message match
exactly all populated fields of the template message. There is no facility
for providing “or” logic within a single template. You can do this only by
passing multiple templates to cm_ignore or by implementing a separate
mechanism.

See also cm_ignore_clear, cm_ignore

cm_version

70 OpenSwitch

cm_version
Description Returns a pointer to the location of the version string and displays the version

information for the CM.

Syntax CS_CHAR *cm_version()

Parameters None.

Examples

Sybase Coordination Module/15.0/B/SPARC/Solaris 2.8/0/OPT/Mon Mar 22
12:30:52 2005
Confidential property of Sybase, Inc.
Copyright 1987 - 2005
Sybase, Inc. All rights reserved.
Unpublished rights reserved under U.S. copyright laws.
This software contains confidential and trade secret information of Sybase,
Inc. Use, duplication or disclosure of the software and documentation by
the U.S. Government is subject to restrictions set forth in a license
agreement between the Government and Sybase, Inc. or other written
agreement specifying the Government's rights to use the software and any
applicable FAR provisions, for example, FAR 52.227-19.
Sybase, Inc. One Sybase Drive, Dublin, CA 94568, USA

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 71

Coordination module registered procedures
This section describes registered procedures for OpenSwitch coordination
modules (CM). CM registered procedures are issued programatically within
the user code to implement registered procedure calls (RPCs) via a CM.

Return values All cm_rp_* calls return these values:

Table 3-2: CM registered procedures

Value Description

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Registered procedure Description

cm_kill Kills client connections within OpenSwitch.

cm_pool_status Sets the status of a given pool.

cm_rp_cancel Cancels the processing of a client connection.

cm_rp_cfg Reads the OpenSwitch configuration file at runtime.

cm_rp_cm_list Displays a list of coordination modules that are currently connected to the
OpenSwitch server.

cm_rp_debug Enables or disables OpenSwitch debugging messages.

cm_rp_del_list Deletes allocated list.

cm_rp_dump Dumps the thread and/or mutex information.

cm_rp_get_help Displays the requested information provided by the registered procedures.

cm_rp_go Resumes the activity of the OpenSwitch server after a user has performed some
manual intervention.

cm_rp_help Displays registered procedures and their respective parameters.

cm_rp_msg Queues text messages to broadcast to one or more client connections.

cm_rp_pool_addattrib Adds a connection attribute or value to a pool.

cm_rp_pool_addserver Adds the status of the server within the pool.

cm_rp_pool_cache Displays or sets the pool cache setting.

cm_rp_pool_create Creates a new pool.

cm_rp_pool_drop Drops the existing pool.

cm_rp_pool_help Displays information about the pools.

cm_rp_pool_remattrib Removes a connection attribute or value from a pool.

cm_rp_pool_remserver Removes the server from the pool.

cm_rp_pool_server_status Displays or sets the status of the server present in the pool.

cm_rp_rcm_connect_primary Sends a notification to the secondary replication coordination module (RCM)
telling it to establish a connection to the primary OpenSwitch.

cm_rp_rcm_list Displays a list of RCMs with which OpenSwitch is familiar.

Coordination module registered procedures

72 OpenSwitch

cm_rp_rcm_shutdown Shuts down a given RCM.

cm_rp_rcm_startup Starts a given RCM.

cm_rp_rmon Displays the current set of attribute/value pairs being used by the resource
governor thread.

cm_rp_set Sets or displays a configuration parameter’s value.

cm_rp_showquery Displays a query being executed by the specified spid.

cm_rp_shutdown Shuts down an OpenSwitch server.

cm_rp_version Displays the version number of OpenSwitch.

cm_rp_who Displays detailed information about user connections to OpenSwitch.

cm_server_status Sets the status of a given remote server.

cm_set_srv Responds to a CM_CB_SERVER message.

cm_switch Switches connections between servers.

Registered procedure Description

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 73

cm_kill
Description Shuts down client connections within OpenSwitch.

Syntax CS_RETCODE cm_kill(cm, pool, server, spid)
cm_t *cm;
CS_CHAR *pool;
CS_CHAR *server;
CS_INT spid;

Parameters cm
A pointer to a CM control structure.

pool
The name of the pool in which the connections should be shut down.
Supplying only this argument causes all connections within pool to be shut
down.

server
Shuts down connections to the remote server. Supplying only this argument
causes all connections to the server to be shut down.

spid
Shuts down the connection identified within the OpenSwitch by spid. If this
argument is specified, pool and server are ignored. An spid of -1 indicates
that all connections matching the pool name and server name are to be shut
down.

Return value cm_kill returns these values:

Examples if (cm_kill(cm, NULL, "SYB_ASE1", -1)
!= CS_SUCCEED)

{
cm_error(
"Can't kill connections to SYB_ASE1\n");
return CS_FAIL;

}

Usage • cm_kill is used to shut down client connections to the remote server
through OpenSwitch.

• If no arguments are supplied to cm_kill, all connections are shut down
within OpenSwitch. Use this procedure with caution.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_pool_status

74 OpenSwitch

• cm_kill is implemented in terms of the rp_kill registered procedure within
OpenSwitch. For more details, see the OpenSwitch Administration Guide.

• Passing a NULL value for pool or server or a value of -1 for spid acts as a
wildcard for that field, indicating that all client connections match.

• spid refers to the OpenSwitch process ID, not the process ID in the remote
Adaptive Server; these two values are not the same.

• As with Adaptive Server, shutting down a connection causes it to be
forcefully removed from the OpenSwitch server, and no messages are
delivered to the client.

See also cm_switch, cm_stop, cm_start

cm_pool_status
Description Sets the status of a given pool.

Syntax CS_RETCODE cm_pool_status(cm, pool, status)
cm_t *cm;
CS_CHAR *pool;
CS_INT status;

Parameters cm
Pointer to a CM control structure.

pool
The name of the pool that is to have its status set.

status
A symbolic value representing the status to which pool is to be set. Valid
values for status are:

Status Description

CM_UP The pool is immediately available for use.

CM_DOWN The pool is unavailable, and is not considered for use
by any new client connections established to
OpenSwitch. New client connections are failed over to
the next available pool if one is configured.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 75

Return value cm_pool_status returns these values:

Examples if (cm_pool_status(cm, "POOLA", CM_DOWN)
!= CS_SUCCEED)

{
cm_error("Could not mark POOLA as DOWN\n");
return CS_FAIL;

}

Usage • cm_pool_status uses the rp_pool_status registered procedure within
OpenSwitch to function. For more details, see the OpenSwitch
Administration Guide.

• Changing the status of a pool does not affect users who are currently using
the pool. The pool status applies only to connections actively being
established to OpenSwitch, or existing connections that are in the process
of switching or performing a failover.

• Connections that are currently blocked on a locked pool are blocked until
either the pool is unlocked or until the client application performs a
disconnect. Administrative requests made of the connection, such as a call
to cm_switch, or cm_stop, are queued until the pool changes status.

• To stop all activity on a given pool, use cm_pool_status with the
CM_LOCKED argument followed by a call to cm_stop.

See also cm_server_status

CM_LOCKED The pool is available, but any new incoming
connections are blocked (or stopped) until the status is
changed to CM_UP or CM_DOWN. But if the
NOWAIT_ON_LOCKED parameter is set to 1 in the
OpenSwitch configuration, clients are rejected
immediately, a descriptive message is sent, and
blocked connections appear to the client application to
have stopped responding until the pool is unlocked.

Status Description

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_rp_cancel

76 OpenSwitch

cm_rp_cancel
Description Uses rp_cancel to cancel the processing of a client connection.

Syntax CS_RETCODE CS_PUBLIC cm_rp_cancel(cm, pool, server, spid, why)
cm_t *cm;
CS_CHAR *pool;
CS_CHAR *server;
CS_INT spid;
CS_CHAR *why;

Parameters cm
Pointer to a CM control structure.

pool
Cancels connections to a pool you specify. Supplying only this argument
cancels all connections within the pool you specify.

server
Cancels connections to a remote server you specify. Supplying only this
argument cancels all connections to the remote server you specify.

spid
Cancels the connection identified within the OpenSwitch server by spid.

If spid is -1 or NULL, and you do not specify any value for both pool and
server, OpenSwitch cancels all connections of all spids.

If you specify values for pool, server, or both parameters, OpenSwitch
cancels the connection after it verifies that the values you specify in the pool
and server parameters exactly match the names of the pool and server that
connect to the spid you specify.

If you specify values for pool, server, or both parameters, and there is no
exact match between the actual pool and server names and the pool and
server parameters you specify, OpenSwitch does not cancel the connection.

why
Message to be sent to the user of a cancelled query.

Examples Example 1

if (cm_rp_cancel(cm,(char *)NULL, (char *)NULL, -1, "OpenSwitch") !=
CS_SUCCEED)

{
cm_error(“Unable to cancel all the connections connected to

the OpenSwitch.\n”);
return CS_FAIL;

}

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 77

Cancels all the connections to the OpenSwitch server.

Example 2

if (cm_rp_cancel(cm,”POOL1”, (char *)NULL, -1, "OpenSwitch") != CS_SUCCEED)
{

cm_error(“Unable to cancel all the connections connected to ‘POOL1’
of the OpenSwitch.\n”);

return CS_FAIL;
}

Cancels all OpenSwitch connections to “POOL1.”

Example 3

if (cm_rp_cancel(cm,”POOL1”,“ASE”,17,"OpenSwitch") != CS_SUCCEED)
{

cm_error(“Unable to cancel the connection having spid ‘17’ connected
to server ‘ASE’ of pool ‘POOL1’ of the OpenSwitch.\n”);

return CS_FAIL;
}

Cancels a connection where spid 17 is connected to server “ASE” in “POOL1.”

cm_rp_cfg
Description Uses rp_cfg within OpenSwitch to read the OpenSwitch configuration file at

runtime.

Syntax CS_RETCODE CS_PUBLIC cm_rp_cfg (cm, cfg_file)
cm_t *cm;
CS_CHAR *cfg_file;

Parameters cm
Pointer to a CM control structure.

cfg_file
The name of the configuration file to be read. Passing a file name of NULL,
default, or an empty string causes the previously processed configuration
file to be read.

Examples

if (cm_rp_cfg(cm, "default")!= CS_SUCCEED)
{

cm_error(“Unable to read configuration File\n”);
return CS_FAIL;

cm_rp_cm_list

78 OpenSwitch

}

Reads the configuration file at runtime.CM application

cm_rp_cm_list
Description Uses rp_cm_list to display a list of coordination modules connected to the

OpenSwitch server.

Syntax CS_RETCODE CS_PUBLIC cm_rp_cm_list (cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples if (cm_rp_cm_list(cm) != CS_SUCCEED)
{

cm_error(“Unable to display the CM list\n”);
return CS_FAIL;

}

Displays all the coordination modules that are currently connected to the
OpenSwitch server.

cm_rp_debug
Description Uses rp_debug within a coordination module to enable or disable OpenSwitch

debugging messages.

Syntax CS_RETCODE CS_PUBLIC cm_rp_debug(cm, flags, state)
cm_t *cm;
CS_CHAR *flags;
CS_CHAR *state;

Parameters cm
pointer to a CM control structure.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 79

flags
A list of one or more single-character option flags. Each flag is a toggle;
supplying it once enables the option, supplying it again disables the option.
Passing an empty option (“ ”) lists the debugging flags that are currently
enabled. The following table shows the valid debugging flags.

Value Description

a Enables all possible debugging flags.

b Displays attempts to set or test configuration options as described in the
configuration file.

c Displays information about result handling of client-side cursors.

d Logs access to data items attached to each thread's user data.

D Displays information about the handling of dynamic SQL statements.

e Logs all error messages passing through the OpenSwitch error handlers,
even those that are normally suppressed.

f Shows connection progress information when OpenSwitch is
interacting with the coordination module.

g Displays operations involving security negotiations.

h Displays messages when entering each event handler.

i Displays progress information concerning the switching process during
a call to rp_switch, such as success or failure of each switch, and which
connections fail to go idle within the specified period of time.

j Shows the connection caching activity.

k Displays activity of the timer thread (the thread that is responsible for
calling timed callbacks within OpenSwitch).

l Dumps every SQL statement issued through the SRV_LANGUAGE
event handler to log_file.

m Displays every memory allocation and de-allocation (more extensive
information may be made available at compile time).

n Displays receipt and handling of cancel or attention requests from client
connections.

o Displays a message each time a command line option value is set or
tested.

p Displays manipulation, use, and assignments of server pools.

q Displays information about the connection monitor activity.

r Displays current state and actions of the internal resource monitoring
thread.

s Shows access and release of shared and exclusive internal locks (used
to prevent concurrent access to internal data structures).

S Logs SQL statements that are replayed during failover.

cm_rp_del_list

80 OpenSwitch

state
State of the flags.

Examples Example 1

if (cm_rp_debug(cm,"i", "on") != CS_SUCCEED)
{

cm_error(“Unable to set ‘i’ debugging options\n”);
return CS_FAIL;

}

Sets the “i” debugging options.

Example 2

if (cm_rp_debug(cm,"i", "off") != CS_SUCCEED)
{

cm_error(“Unable to reset ‘i’ debugging options\n”);
return CS_FAIL;

}

Resets the “i” debugging options.

cm_rp_del_list
Description Uses rp_del_list to free the memory allocated in the cm_rp_get_help API.

Syntax CS_RETCODE cm_rp_del_list(list, type)
CS_VOID** list;
CS_INT type;

Parameters list
Identifies the list to be deleted.

t Displays activities of the timer thread that is responsible for
periodically waking other sleeping threads.

u Displays information about result sets being returned to client threads.

x Displays mutex accesses (more detailed view on shared locks).

Value Description

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 81

type
Indicates the list type. The valid values are:

Examples Example 1

if (list_pool_info) != NULL)
{

cm_rp_del_list((CS_VOID **)%list_pool_info, CM_INFO);
}

Delete pool structure list.

Example 2

if (list_col_metad) != NULL)
{

cm_rp_del_list((CS_VOID **)&list_pool_metad, CM_METADATA);
}

Delete column metadata structure list.

Usage Invoke this function after obtaining the information from cm_rp_get_help to
delete the allocated list and to avoid the memory leaks.

See also cm_rp_get_help

cm_rp_dump
Description Uses rp_dump to dump the thread and/or mutex information.

Syntax CS_RETCODE CS_PUBLIC cm_rp_dump(cm, what, sendtolog)
cm_t *cm;
CS_INT what;
CS_INT sendtolog;

Parameters cm
Pointer to a CM control structure.

Type Description
CM_INFO Indicating an information list is being

deleted.
CM_METADATA Indicating a metadata list is to be deleted.

cm_rp_get_help

82 OpenSwitch

what
Valid values are:

• CM_THREAD – to dump information about all threads

• CM_MUTEX – to dump information about all mutexes

• CM_ALL – to dump information about all OpenSwitch threads and
mutexes.

sendtolog
If sendtolog is nonzero, the output is directed to the OpenSwitch log;
otherwise, the output is directed to the caller.

Examples

if (cm_rp_dump(cm, CM_ALL, 0) != CS_SUCCEED)
{

cm_error(“Unable to dump information\n”);
return CS_FAIL;

}

Dumps threads and mutex information.

cm_rp_get_help
Description Uses different registered procedures to display the requested information that

these CM registered procedures provide:

• cm_rp_pool_cache

• cm_rp_pool_help

• cm_rp_rmon

• cm_rp_debug

• cm_rp_pool_server_status

• cm_rp_version

• cm_rp_who

Syntax cm_osw_info* cm_rp_get_help(cm, type, name)
cm_t *cm;
CS_INT *type;
CS_CHAR *name;

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 83

Parameters cm
Pointer to a CM control structure.

type
Identifies the type of requested information. Valid values for type are:

name
Name of server or pool.

A pointer to a cm_infogateway structure, which is defined as:

typedef struct cm_infogateway {
CS_CHAR name[CS_MAX_NAME]; /* Name of the column*/
CS_CHAR value[CS_MAX_VALUE]; /* Value of column*/
struct cm_infogateway *next; /* Next pointer*/

} cm_osw_info;

Examples

cm_osw_info *list_pool_info = NULL;
list_pool_info = cm_rp_get_help(cm, POOL_T_TYPE, (char*)data);

See also cm_rp_debug, cm_rp_pool_cache, cm_rp_pool_help,
cm_rp_pool_server_status, cm_rp_rmon, cm_rp_version, cm_rp_who

cm_rp_go
Description Uses rp_go to resume the activity of the OpenSwitch after a user has performed

some manual intervention.

Syntax CS_RETCODE CS_PUBLIC cm_rp_go(cm)
cm_t *cm;

Type Description

POOL_T_TYPE To display pool related information.

SERVER_T_TYPE To display server related information.

RMON_T_TYPE To display OpenSwitch resource monitoring thread
related information.

DBG_T_TYPE To display OpenSwitch debugging flags related
information.

POOLSERVER_T_TYPE To obtain the servers present in a particular pool.

VERSION_T_TYPE To display OpenSwitch version number.

WHO_T_TYPE To display detailed information about user connections
to OpenSwitch.

cm_rp_help

84 OpenSwitch

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_go(cm) != CS_SUCCEED)
{

cm_error(“Unable to resumes the activity of the OpenSwitch after a user
has done some manual intervention \n”);

return CS_FAIL;
}

Resumes the activity of the OpenSwitch after a user has performed some
manual intervention.

cm_rp_help
Description Uses rp_help to display registered procedures and their respective parameters.

Syntax CS_RETCODE CS_PUBLIC cm_rp_help(cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_help(cm) != CS_SUCCEED)
{

cm_error(“Unable to display the list of the registered procedures and
their respective parameters.\n”);

return CS_FAIL;
}

Displays a list of the registered procedures and their parameters.

cm_rp_msg
Description Uses rp_msg within OpenSwitch to queue text messages to broadcast to one or

more client connections.

Syntax CS_RETCODE CS_PUBLIC cm_rp_msg(cm, pool, server, spid, msg)
cm_t *cm;

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 85

CS_CHAR *pool;
CS_CHAR *server;
CS_INT spid;
CS_CHAR *msg;

Parameters cm
Pointer to a CM control structure.

pool
The name of the pool to which the message should be delivered. If only pool
is specified, the message is sent to all connections within the pool.

server
Sends the message to current connections to a server you specify with this
parameter. If only server is specified, the message is sent to all current
connections to the server.

spid
The OpenSwitch process ID of the client connection to receive the message.

If spid is -1 or NULL and you do not specify any value for both pool and
server, the message is sent to all the spids connected to server in the pool.

If you specify a value for pool, server, or both parameters, OpenSwitch sends
the message after it verifies that the values you specify in the pool and server
parameters exactly match the names of the pool and server that connect to
the spid you specify.

If you specify values for pool, server, or both parameters, and there is no
exact match between the actual pool and server names and the pool and
server parameters you specify, OpenSwitch does not send the message.

msg
The text of the message to be delivered.

Examples Example 1

if (cm_rp_msg(cm,(char *)NULL, (char *)NULL, -1, "All connections will
shut down in 5 minutes") != CS_SUCCEED)

{
cm_error(“Unable to send message to all the connections connected

to the OpenSwitch.\n”);
return CS_FAIL;

}

Sends a message to all the OpenSwitch connections.

Example 2

if (cm_rp_msg(cm,”POOL1”, (char *)NULL, -1, "All connections will shut

cm_rp_pool_addattrib

86 OpenSwitch

down in 5 minutes") != CS_SUCCEED)
{

cm_error(“Unable to send message to all the connections connected to
‘POOL1’ of the OpenSwitch.\n”);

return CS_FAIL;
}

Sends a message to all OpenSwitch connections to “POOL1.”

Example 3

if (cm_rp_msg(cm,”POOL1”, “ASE”,17, "All connections will shut down in
5 minutes") != CS_SUCCEED)

{
cm_error(“Unable to send message to the connection having spid ‘17’

connected to server ‘ASE’ of ‘POOL1’ of the OpenSwitch.\n”);
return CS_FAIL;

}

Sends a message to the OpenSwitch connection spid 17 connected to server
“ASE” in “POOL1”.

cm_rp_pool_addattrib
Description Uses rp_pool_addattrib to add a connection attribute or value to a pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_addattrib(cm, pool,
attrib, value)

cm_t *cm;
CS_CHAR *pool;
CS_INT attrib;
CS_CHAR *value;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool to which attributes are being added.

attrib
Name of the attribute to be added to the pool. The valid values are:

• CM_USERNAME

• CM_APPNAME

• CM_HOSTNAME

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 87

value
A standard SQL wildcard expression used to match attrib.

Examples

if (cm_rp_pool_addattrib(cm,"POOL1", CM_APPNAME, "isql")!= CS_SUCCEED)
{

cm_error(“Unable to add ‘appname’ attribute.\n”);
return CS_FAIL;

}

Adds the “appname” attribute with a value of “isql” to “POOL1.”

cm_rp_pool_addserver
Description Uses rp_pool_addserver to add the status of the server within the pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_addserver(cm, pool, server,
rel_server, status, position)

cm_t *cm;
CS_CHAR *pool;
CS_CHAR *server;
CS_CHAR *rel_server;
CS_INT status;

 CS_INT position;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool to which the server is being added.

server
Name of the server to be added.

rel_server
Name of an existing server name within the pool, relative to the server being
added.

status
Status of the server being added. Valid values for status are:

• CM_UP

• CM_DOWN

• CM_LOCKED.

cm_rp_pool_cache

88 OpenSwitch

position
Position of the server relative to rel_server. Valid values are:

• CM_HEAD

• CM_BEFORE

• CM_AFTER

• CM_TAIL.

Examples

if (cm_rp_pool_addserver(cm,"POOL1", "ase2","ase1",CM_UP,CM_AFTER) !=
CS_SUCCEED)

{
cm_error(“Unable to add server ‘ase2’ with status ‘UP’ after ‘ase1’ in

the pool POOL1’\n”);
return CS_FAIL;

}

Adds server “ase2” after “ase1” with an UP status in “POOL1.”

cm_rp_pool_cache
Description Uses rp_pool_cache to display or set the pool cache.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_cache(cm, pool, cache)
cm_ t *cm;
CS_CHAR *pool;
CS_INT cache;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool to be cached.

cache
The number of seconds that connection caches are held in the pool. Setting
this to a value to zero (0) disables future connection caching. If this value is
set to -1, it displays the cache values for the pools.

Examples Example 1

if (cm_rp_pool_cache(cm, (char *)NULL, 30) != CS_SUCCEED)
{

cm_error(“Unable to set cache value for all the pools\n”);

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 89

return CS_FAIL;
}

Sets the cache value for all pools.

Example 2

if (cm_rp_pool_cache(cm, (char *)NULL, -1) != CS_SUCCEED)
{

cm_error(“Unable to display the cache value for all the pools\n”);
return CS_FAIL;

}

Displays the cache values.

cm_rp_pool_create
Description Uses rp_pool_create to create a new pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_create(cm, pool, rel_pool,
position, status, mode)

cm_t *cm;
CS_CHAR *pool;
CS_CHAR *rel_pool;
CS_INT position;
CS_INT status;
CS_INT mode;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool to be created.

rel_pool
Name of an existing pool, relative to the pool being created.

position
Position of pool relative to rel_pool. The valid values are CM_HEAD,
CM_BEFORE, CM_AFTER, and CM_TAIL.

status
The initial status of the pool. The valid values are CM_UP, CM_DOWN, or
CM_LOCKED.

mode
Mode of the pool. The valid values are CM_CHAINED or CM_BALANCED.

cm_rp_pool_drop

90 OpenSwitch

Examples

if (cm_rp_pool_create(cm,"POOL2","POOL1",CM_BEFORE, CM_UP, CM_CHAINED) !=

CS_SUCCEED)
{

cm_error(“Unable to create ‘POOl2’ before ‘POOL1’ in CHAINED mode
having status ‘UP’\n”);

return CS_FAIL;
}

Creates “POOL2” before “POOL1” in CHAINED mode with an UP status.

cm_rp_pool_drop
Description Uses rp_pool_drop to drop the existing pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_drop(cm, pool)
cm_t *cm;
CS_CHAR *pool;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool to be dropped.

Examples if (cm_rp_pool_drop(cm,"POOL1") != CS_SUCCEED)
{

cm_error(“Unable drop pool ‘POOL1’ \n”);
return CS_FAIL;

}

Drops “POOL1.”

cm_rp_pool_help
Description Uses rp_pool_help to display information about pools.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_help(cm, pool)
cm_t *cm;
CS_CHAR *pool;

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 91

Parameters cm
Pointer to a CM control structure.

pool
The name of the pool that is displaying information.

Examples Example 1

if (cm_rp_pool_help(cm,"POOL1") != CS_SUCCEED)
{

cm_error(“Unable to display information for the pool ‘POOL1’ \n”);
return CS_FAIL;

}

Displays information about “POOL1.”

Example 2

if (cm_rp_pool_help(cm, (char *)NULL) != CS_SUCCEED)
{

cm_error(“Unable to display information about all the pools \n”);
return CS_FAIL;

}

Displays information about all pools.

cm_rp_pool_remattrib
Description Uses rp_pool_remattrib to remove a connection attribute or value from a pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_remattrib(cm, pool,
attrib, value)

cm_t *cm;
CS_CHAR *pool;
CS_INT attrib;
CS_CHAR *value;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool from which attributes are being removed.

attrib
Name of the attribute to be deleted from the pool. The valid values are
CM_USERNAME, CM_APPNAME, or CM_HOSTNAME.

cm_rp_pool_remserver

92 OpenSwitch

value
A standard SQL wildcard expression used to match attrib.

Examples

if (cm_rp_pool_remattrib(cm,"POOL1", CM_APPNAME, "isql") != CS_SUCCEED)
{

cm_error(“Unable to remove ‘appname’ attribute.\n”);
return CS_FAIL;

}

Removes the “appname” attribute with the value of “isql” from “POOL1.”

cm_rp_pool_remserver
Description Uses rp_pool_remserver to remove the server from the pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_remserver(cm, pool, server)
cm_t *cm;
CS_CHAR *pool;
CS_CHAR *server;

Parameters cm
Pointer to a CM control structure.

pool
Name of the pool from which server is to be removed.

server
Name of the server to be removed.

Examples

if (cm_rp_pool_remserver(cm,"POOL1", "ase2") != CS_SUCCEED)
{

cm_error(“Unable to remove server ‘ase2’ from the pool ‘POOL1’\n”);
return CS_FAIL;

}

Removes server “ase2” from “POOL1.”

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 93

cm_rp_pool_server_status
Description Uses rp_pool_server_status to display or set the status of the server present in

the pool.

Syntax CS_RETCODE CS_PUBLIC cm_rp_pool_server_status(cm, pool,
server, status)

cm_ t *cm;
CS_CHAR *pool;
CS_CHAR *server;
CS_INT status;

Parameters cm
Pointer to a CM control structure.

pool
The name of the pool.

server
The name of the server. If server name is NULL, then
cm_rp_pool_server_status displays the status of all servers present in the
pool.

status
The status of the server. Valid status values are CM_UP, CM_DOWN, and
CM_LOCKED.

Examples

if (cm_rp_pool_server_status(cm, "POOL1", "ase1", CM_DOWN) != CS_SUCCEED)
{

cm_error(“Unable to set the status of the server ‘ase1’ present
in the pool ‘POOL1’.\n”);

return CS_FAIL;
}

Sets the status of server “ase1,” which is present in “POOL1,” to DOWN.

cm_rp_rcm_connect_primary
Description Issue rp_rcm_connect_primary through a registered procedure call to a

secondary OpenSwitch to send a notification to the secondary RCM telling it
that the primary OpenSwitch has restarted and it can re-establish a monitoring
connection.

cm_rp_rcm_list

94 OpenSwitch

Syntax CS_RETCODE CS_PUBLIC cm_rp_rcm_connect_primary(cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_rcm_connect_primary(cm) != CS_SUCCEED)
{

cm_error(“Unable to send the notification.\n”);
return CS_FAIL;

}

Sends the notification to the secondary RCM.

Usage Used when the primary OpenSwitch starts after the secondary replication
coordination module has already been running.

cm_rp_rcm_list
Description Uses rp_rcm_list to display a list of RCMs with which OpenSwitch is familiar.

Syntax CS_RETCODE CS_PUBLIC cm_rp_rcm_list(cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_rcm_list(cm) != CS_SUCCEED)
{

cm_error(“Unable to display the RCM list\n”);
return CS_FAIL;

}

Displays the RCM list known to OpenSwitch.

cm_rp_rcm_shutdown
Description Uses rp_rcm_shutdown to shut down a given RCM.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 95

Syntax CS_RETCODE CS_PUBLIC cm_rp_rcm_shutdown(cm, rcm_name)
cm_t *cm;
CS_CHAR *rcm_name;

Parameters cm
Pointer to a CM control structure.

rcm_name
Name of the RCM to be shut down.

Examples

if (cm_rp_rcm_shutdown(cm, “rcm1”) != CS_SUCCEED)
{

cm_error(“Unable to shutdown the ‘rcm1’\n”);
return CS_FAIL;

}

Shuts down “rcm1.”

cm_rp_rcm_startup
Description Uses rp_rcm_startup to start the RCM.

Syntax CS_RETCODE CS_PUBLIC cm_rp_rcm_startup(cm, rcm_path, rcm_cfg,
rcm_log, rcm_retries, rcm_redundant)

cm_ t *cm;
CS_CHAR *rcm_path;
CS_CHAR *rcm_cfg;
CS_CHAR *rcm_log;
CS_INT rcm_retries;
CS_INT rcm_redundant;

Parameters cm
Pointer to a CM control structure.

rcm_path
Used to specify the path of the RCM. The default value is
$OPENSWITCH/bin/rcm on UNIX and %OPENSWITCH%\bin\rcm.exe on
Windows.

rcm_cfg
Used to specify the path of the RCM configuration file. The default is the
RCM_CFG_FILE value in the OpenSwitch configuration file.

cm_rp_rmon

96 OpenSwitch

rcm_log
Used to specify the path of the RCM log file. The default is the
RCM_LOG_FILE value in the OpenSwitch configuration file.

rcm_retries
Used to specify the number of retry attempts made to start an RCM if the
RCM exits for reasons other than a user-requested shutdown. If rcm_retries
is -1, the default is the RCM_RETRIES value in the OpenSwitch
configuration file.

rcm_redundant
Used to specify whether the RCM is redundant. If rcm_redundant is -1, the
default is the RCM_SECONDARY value in the OpenSwitch configuration
file.

Examples

if (cm_rp_rcm_startup(cm, (char *)NULL, (char *)NULL, (char *)NULL, -1,-1)
!= CS_SUCCEED)

{
cm_error(“Unable to start the RCM\n”);
return CS_FAIL;

}

Starts the RCM that is present in $OPENSWITCH/bin/rcm (UNIX) or
%OPENSWITCH%\bin\rcm.exe (Windows).

cm_rp_rmon
Description Uses rp_rmon within OpenSwitch to display the current set of attribute and

value pairs being used by the resource governor thread. See
“[LIMIT_RESOURCE]” in Chapter 5, “Using the Configuration File,” of the
OpenSwitch Administration Guide for more information about resource
monitoring.

Syntax CS_RETCODE CS_PUBLIC cm_rp_rmon(cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_rmon(cm) != CS_SUCCEED)
{

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 97

cm_error(“Unable to display information about the resource governor
thread. \n”);

return CS_FAIL;
}

Displays information about the resource governor thread.

cm_rp_set
Description Uses rp_set to set or display a configuration parameter’s value.

Syntax CS_RETCODE CS_PUBLIC cm_rp_set(cm, parm_name, parm_value)
cm_t *cm;
CS_CHAR *parm_name;
CS_CHAR *parm_value;

Parameters cm
Pointer to a CM control structure.

parm_name
Name of a configuration variable as listed in the configuration file.

parm_value
Value to which the parameter is to be set. If a NULL parm_value is supplied,
the value of parm_name displays.

Examples Example 1

if (cm_rp_set(cm,"TEXTSIZE","104857") != CS_SUCCEED)
{

cm_error(“Unable to set the ‘TEXTSIZE’ configuration
parameter\n”);

return CS_FAIL;
}

Sets the value of the TEXTSIZE configuration parameter.

Example 2

if (cm_rp_set(cm,"TEXTSIZE",(char*)NULL) != CS_SUCCEED)
{

cm_error (“Unable to display the value of the ‘TEXTSIZE’
configuration parameter.\n”);

return CS_FAIL;
}

Displays the value of the TEXTSIZE configuration parameter.

cm_rp_showquery

98 OpenSwitch

cm_rp_showquery
Description Uses rp_showquery within OpenSwitch to display a query being executed by

the specified spid.

Syntax CS_RETCODE CS_PUBLIC cm_rp_showquery(cm, spid)
cm_t *cm;
CS_INT spid;

Parameters cm
Pointer to a CM control structure.

spid
The OpenSwitch spid executing a query.

Examples

if (cm_rp_showquery(cm, 7) != CS_SUCCEED)
{

cm_error(“Unable to display query being executed by a spid ‘7’\n”);
return CS_FAIL;

}

Displays the query being executed by spid 7.

cm_rp_shutdown
Description Uses rp_shutdown within OpenSwitch to shut down an OpenSwitch server.

Syntax CS_RETCODE CS_PUBLIC cm_rp_shutdown(cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_shutdown(cm) != CS_SUCCEED)
{

cm_error(“Unable to shutdown the OpenSwitch\n”);
return CS_FAIL;

}

Shuts down the OpenSwitch server.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 99

cm_rp_version
Description Uses rp_version to display the OpenSwitch version number.

Syntax CS_RETCODE CS_PUBLIC cm_rp_version(cm)
cm_t *cm;

Parameters cm
Pointer to a CM control structure.

Examples

if (cm_rp_version(cm) != CS_SUCCEED)
{

cm_error(“Unable to display version number of the OpenSwitch\n”);
return CS_FAIL;

}

Displays the OpenSwitch version number.

cm_rp_who
Description Uses rp_who to display detailed information about user connections to

OpenSwitch.

Syntax CS_RETCODE CS_PUBLIC cm_rp_who(cm, spid)
cm_t *cm;
CS_INT spid;

Parameters cm
Pointer to a CM control structure.

spid
The OpenSwitch spid value to display. “-1” displays information about all
spids connected to OpenSwitch.

Examples Example 1

if (cm_rp_who(cm, 7) != CS_SUCCEED)
{

cm_error(“Unable to display information about spid ‘7’.\n”);
return CS_FAIL;

}

Displays information about a specific spid; for example, spid 7.

Example 2

cm_server_status

100 OpenSwitch

if (cm_rp_who(cm, -1) != CS_SUCCEED)
{

cm_error(“Unable to display information about all the spids.\n”);
return CS_FAIL;

}

Displays information about all spids connected to OpenSwitch.

cm_server_status
Description Sets the status of a given remote server.

Syntax CS_RETCODE cm_server_status(cm, server, status)
 cm_t *cm;
CS_CHAR *server;
CS_INT status;

Parameters cm
Pointer to a CM control structure.

server
The name of the server that is to have its status set.

status
A symbolic value representing the status to which the server is to be set.
Valid values for status are:

Return value cm_server_status returns these values:

Status Description

CM_UP The server is immediately available for use.

CM_DOWN The server is unavailable, and is not to be considered
for use by any new client connections established to
the OpenSwitch server.

CM_LOCKED The server is available, but any new, incoming
connections through the pool are blocked (or stopped)
until the status is changed to CM_UP or CM_DOWN,
unless the NOWAIT_ON_LOCKED parameter is set to
1in the OpenSwitch configuration, in which case
clients are rejected immediately and a descriptive
message is sent. Blocked connections appear to the
client application to be not responding until the pool is
unlocked.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 101

Examples if (cm_server_status(cm, "SYB_ASE1", CM_DOWN)
!= CS_SUCCEED))

{
cm_error("Could not mark SYB_ASE1 as DOWN\n");
return CS_FAIL;

}

Usage • cm_server_status uses the rp_server_status registered procedure within
OpenSwitch to function. For more details, see the OpenSwitch
Administration Guide.

• Changing the status of a server does not affect users who are currently
using the server. The server status applies only to connections actively
being established to OpenSwitch, or to existing connections that are in the
process of switching or performing a failover.

• Connections that are currently blocked on a LOCKED server remain
blocked until the server is unlocked or until the client application performs
a disconnect. This means that any administrative requests made of the
connection, such as a call to, or cm_stop, are queued until the server
changes status.

• To stop all activity on a given server, use cm_server_status with the
CM_LOCKED argument followed by a call to cm_stop.

See also cm_pool_status

cm_set_srv
Description Sets a remote server name for a client to connect to within OpenSwitch in

response to a CM_CB_SERVER message.

Syntax CS_RETCODE cm_set_srv(cm, spid, server)
cm_t *cm;
CS_INT spid;
CS_CHAR *server;

Parameters cm
A pointer to a CM control structure.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cm_switch

102 OpenSwitch

spid
The OpenSwitch process ID of the connection to be routed.

server
The name of the server to which the spid is to be routed.

Return value cm_set_srv returns these values:

Examples if (cm_set_srv(cm, (CS_INT)10, "SYB_ASE1")
!= CS_SUCCEED)

{
cm_error("To send spid 10 to SYB_ASE1\n");
return CS_FAIL;

}

Usage • This function may be used in response to a CM_CB_SERVER request, and is
used to respond to the calling spid with the name of the server that should
be used. Usually, the spid that issued the CM_CB_SERVER notification
blocks waiting for either this function to respond with the name of the
server that it should use, or cm_kill to kill the spid, or cm_switch to switch
it to another server.

• cm_set_srv utilizes the rp_set_srv registered procedure to function. For
more information, see the OpenSwitch Administration Guide.

• Calling cm_set_srv on an spid that is not actively waiting for a response
from a CM does not return an error, and the call has no effect. cm_switch
may be used both to switch connections that are not waiting for a response
from the CM and those that are.

See also cm_callback, cm_switch, cm_kill

cm_switch
Description Switches connections between servers.

Syntax CS_RETCODE cm_switch(cm, pool_name, src_server, spid, dst_server,
grace_period, force)

cm_t *cm;
CS_CHAR *pool_name;
CS_CHAR *src_server;

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 103

CS_INT spid;
CS_CHAR *dst_server;
CS_INT grace_period;
CS_BOOL force;

Parameters cm
A pointer to a CM control structure.

pool_name
Switches all connections established through pool_name to the server
specified by dst_server. If this parameter is NULL, all pools are assumed.

src_server
Switches all connections currently established to the remote server
src_server to dst_server. If this parameter is NULL, all servers are assumed.

spid
Switches the named OpenSwitch spid to the remote server dst_server.

If you specify a spid value of -1 or NULL and do not specify any value for
pool_name or src_server, OpenSwitch switches all connections to
dst_server.

If specify a value for pool_name, src_server, or both parameters,
OpenSwitch switches the connection between servers after it verifies that
the values you specify in the pool_name and src_server parameters exactly
match the names of the pool and server that connect to the spid you specify.

If you specify values for pool_name, src_server, or both parameters, and
there is no exact match between the actual pool name and server name and
the pool_name and src_server parameters you specify, OpenSwitch does not
switch the connection.

dst_server
The name of the remote server to which all connections identified by
pool_name, src_server, and spid should be switched. If this parameter is
NULL, or has a blank value, the connections are switched to the next server
as identified by their associated pool.

grace_period
The maximum number of seconds that rp_switch should wait before
forcefully switching busy connections. A value of 0 (seconds) indicates that
no grace period is to be granted.

cm_switch

104 OpenSwitch

force
whether to force connections to switch, even if they are currently busy
(either actively communicating with a remote server, or in the middle of an
open transaction). Values are:

• CS_TRUE – to force connection switching.

• CS_FALSE – to not force connection switching.

Return value cm_switch returns these values:

Examples if (cm_switch(cm, NULL, "SYB_ASE1", -1,
"SYB_ASE2", 0, 1)
!= CS_SUCCEED)

{
cm_error(
"Can't switch from SYB_ASE1 to SYB_ASE2\n");
return CS_FAIL;

}

Usage • cm_switch uses the OpenSwitch registered procedure rp_switch. For
details, see the OpenSwitch Administration Guide.

• A call to cm_switch causes a switch request to be issued to all connections
matching pool_name, src_server, or spid. The switch request is processed
by each connection under these conditions:

a If the connection is completely idle (is not communicating with a
remote server and is not involved in an open transaction), the
connection is silently switched immediately

b If the connection is busy (either communicating with a remote server
or involved in an open transaction), grace_period is 0, and force is 0,
the connection switches as soon as it becomes idle.

c If the connection is busy, grace_period is a positive value, and force is
0, the connection switches as soon as it becomes idle. Otherwise, if
grace_period seconds pass before it becomes idle, its current query is
canceled, and a “deadlock” message is issued to the client. The
connection is then switched.

d If the connection is busy and force is 1, the connection immediately
has its query canceled, and receives a “deadlock” message. The
connection is then switched.

Return value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CHAPTER 3 Coordination Module Routines and Registered Procedures

Coordination Module Reference Manual 105

• The validity of dst_server is not checked. Passing an invalid value, for
example, an Adaptive Server name that does not exist, causes all incoming
client connections to be lost. Use caution when specifying this parameter.

• dst_server does not need to be a server within the pool of a given
connection, or a server within any pool. It must be a valid server.

• If force is 1, then grace_period must be zero (0), because grace_period does
not make sense in this context.

• A switch request issued to a connection that is blocked due to either a call
to cm_stop, a locked pool, or a locked server is processed as soon as the
connection becomes unblocked. Forcing a switch has no effect on a
blocked connection until it becomes unblocked.

See also cm_start, cm_stop

cm_switch

106 OpenSwitch

Coordination Module Reference Manual 107

C H A P T E R 4 Using the Replication
Coordination Module

This chapter describes the replication coordination module (RCM), an
OpenSwitch sample created using CM APIs, which coordinates failover
of a high availability, warm standby system.

For information about setting up high availability, warm standby
environments in Replication Server and Adaptive Server Enterprise, see:

• Replication Server Administration Guide, Volume 2

• Using Sybase Failover in a High Availability System in Adaptive
Server Enterprise 15.0 documentation

Introduction
When you install OpenSwitch, the RCM is installed automatically into the
%OPENSWITCH% (Windows) or $OPENSWITCH (UNIX) directory.

These RCM files are installed in %OPENSWITCH%\bin on Windows and
in $OPENSWITCH/bin on UNIX:

• rcm.exe – the replication coordination module executable.

• runrcm.sh – a script for starting the RCM binary on UNIX platforms.

• runrcm.bat – a batch file to start RCM on Windows.

Topic Page
Introduction 107

Configuring OpenSwitch and the RCM 111

Starting and stopping the RCM 149

Recovering from a coordinated failover 153

Unexpected failure of Replication Server 154

Troubleshooting 155

RCM internal coordination 157

Introduction

108 OpenSwitch

These files are installed in %OPENSWITCH%\config on Windows and in
$OPENSWITCH/config on UNIX:

• rcm.cfg – a sample RCM configuration file.

• rcm_oswitch.cfg – a sample OpenSwitch configuration file matching the
rcm.cfg file.

The rcm.loc file, the locales file for the RCM that also contains error messages,
is installed in %OPENSWITCH%\locales on Windows and in
$OPENSWITCH/locales on UNIX.

Note Sybase strongly recommends that the RCM and the OpenSwitch server
execute on the same machine.

What is the replication coordination module?
The RCM is an OpenSwitch component that coordinates the failover of a high
availability, warm standby environment.

Note The term “failover” in this document refers to automatically switching
to a redundant or standby server when the currently active server fails or
terminates abnormally. It does not refer to Sybase Failover, which is a specific
feature of Adaptive Server Enterprise.

A high availability, warm standby environment minimally consists of:

• A Replication Server configured for warm standby replication

• Two Adaptive Server Enterprise servers and corresponding databases

• One OpenSwitch server

• One RCM instance, configured to coordinate failover through the
OpenSwitch server

A redundant high availability, warm standby environment includes a backup
and secondary OpenSwitch, and a backup and redundant RCM. A redundant
system minimally consists of:

• A Replication Server configured for warm standby replication

• Two Adaptive Server Enterprise servers and corresponding databases

• Two OpenSwitch servers

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 109

• Two RCM instances configured to coordinate failover through the
OpenSwitch servers

Note The RCM does not support concurrent coordination modules. When the
RCM establishes a connection to OpenSwitch, OpenSwitch sets the
COORD_TIMEOUT to zero (0), which turns off the coordinated CM
functionality.

Figure 4-1 on page 110 illustrates a redundant system before and after the
failover of the active Adaptive Server. Before a failover, application end users
connect to the active Adaptive Server through the primary OpenSwitch server,
and decision-support-system users connect to the standby Adaptive Server
through either the primary or the secondary OpenSwitch server.

After failover, the primary OpenSwitch server switches the application end
users to the standby Adaptive Server. The application end users are still
connected through the primary OpenSwitch server, but now are connected to
the standby Adaptive Server. Decision-support-system users continue to
connect to the standby Adaptive Server through either the primary or the
secondary OpenSwitch server.

Introduction

110 OpenSwitch

Figure 4-1: A redundant, high availability, warm standby environment

CMs coordinate end-user connections that pass through the OpenSwitch server
to the Adaptive Servers. If the RCM determines that the active Adaptive Server
has failed, it connects to the Replication Server to fail over to the warm standby
server, and coordinates the switch of end users through an OpenSwitch server.
Decision-support-system users stay connected through the secondary
OpenSwitch server.

Figure 4-2 on page 111 illustrates the relationship between OpenSwitch and
the RCM.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 111

Figure 4-2: How OpenSwitch and the RCM work together

The RCM, in conjunction with Replication Server and OpenSwitch, is
designed to help meet the requirements of a high availability, warm standby
environment. It can:

• Remove all single points of failure

• Achieve an environment with fault-tolerant, redundant servers

• Perform automatic failover of end users when the active data server fails

• Coordinate access to the active and standby Adaptive Servers

• Coordinate a geographically dispersed system, where the active and
standby Adaptive Servers are at separate locations

Configuring OpenSwitch and the RCM
The most complicated part of any replication environment is setup and
configuration, because there are multiple, interacting servers. This section
describes the configuration for each component in the high availability
environment and discusses options for your failover strategy.

Configuring OpenSwitch and the RCM

112 OpenSwitch

Determining your failover strategy
The failover strategies that the RCM supports are: manual, automatic (switch
active), and failover with Replication Server quiesce.

• Manual – the RCM notifies the system administrator of a failure, but does
not control processing at the Replication Server. The administrator must
control the Replication Server.

• Automatic – the RCM coordinates failover automatically and the direction
of replication is reversed. This means that the roles of the standby and the
active databases have switched. The standby database is now the active
database, and changes are replicated from it to what was originally the
active database and is now the standby database.

• Failover with Replication Server quiesce – the RCM coordinates failover
automatically. The Replication Server is quiesced and replication is
stopped. When the Replication Server is quiesced, it does not capture
changes in the standby database.

Manual failover Choose manual failover to control every step of a failure and manually rebuild
the active Adaptive Server rather than have transactions automatically applied
to the standby database after failover.

Automatic failover or
failover with
Replication Server
quiesce

Choosing between automatic failover and failover with Replication Server
quiesce depends on the volume of data coming through the system, the size of
the Replication Server queues, and the length of time you expect the active
server to be unavailable.

If you choose automatic failover and switch the warm standby connection, the
Replication Server captures all transactions entered at the standby Adaptive
Server and stores them so that they can be applied to the active Adaptive Server
when the server recovers. This simplifies the recovery process because the
active databases do not have to be reloaded. However, if there is a heavy
volume of data or the active Adaptive Server is down for an extended period of
time, the Replication Server’s queue might not be capable of storing all of the
transactions. If this is the case, choose failover with Replication Server
quiesce.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 113

Understanding a redundant environment
Using two OpenSwitch servers in a high availability, warm standby
environment provides additional robustness and a redundant environment. A
redundant environment is one in which there is no single point of failure. The
second OpenSwitch server protects the replication environment from the
failure of the first OpenSwitch server by assuming control of the failover
sequence in case the subsequent active database fails or Replication Server
fails. See “Creating a redundant environment” on page 132 for more
information.

The second OpenSwitch server can provide secondary access to the active and
standby databases. This enables you to load-balance the databases. To
load-balance means using all servers simultaneously in the environment until
a server fails. You can differentiate user access for each of the databases so that
not all users connect to the same database and, thereby, balance the user
connection load among databases.

See “DSS users” on page 121 for more information about load balancing.

Planning for high availability
There are several important factors in planning for high availability that can
affect your environment setup. These factors are the characteristics of:

• The client application

• The servers

• Replication Server

• OpenSwitch

Coordinating the client application

The important aspects of using client applications with the RCM and
OpenSwitch are:

• End-user connectivity

• OpenSwitch restrictions

• Replication Server restrictions

Configuring OpenSwitch and the RCM

114 OpenSwitch

End-user connectivity

The most important reason to coordinate your client application with a high
availability environment is end-user connectivity. Client applications are
typically used by two groups of users—application end users, who write to the
back-end database, and decision-support-system (DSS) users, who read the
data in the database but never write to it. For the purpose of using the RCM and
OpenSwitch, keep these two types of users separate.

To keep these two types of users separate, OpenSwitch requires that you divide
them into two pools. Pools are groups of user IDs that log in to OpenSwitch to
access the back-end database. Each pool has access to a group of servers that
you define in the OpenSwitch configuration file.

The RCM tracks the application end-user pool to detect a login failure but
ignores the DSS user pool. OpenSwitch tracks the application end-user pool
and the DSS user pool; so if a connection switch is required, it can switch each
pool to the appropriate database.

See “Configuring user pools” on page 120 for more information.

Before configuring the OpenSwitch server, you must:

1 Identify the users who need continual access to the back-end database.

2 Divide the group of users into application end-user and DSS-user groups.

3 Define one or more user pools.

You must define one user pool for application end users. If you have DSS
users in your environment, you can define one or more pools through
which they can access the system. If you do not need DSS users to access
your system, you do not need a DSS user pool.

Note All application end users must belong to a single user pool.

4 Place the user IDs into their corresponding user pools.

See “Configuring OpenSwitch” on page 118 for more information.

Using client applications with OpenSwitch

OpenSwitch has several inherent restrictions that can affect your application
environment:

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 115

• Connection context – OpenSwitch does not track and restore current
character set, language context, or Adaptive Server context information
for a given connection. If the context is changed following the initial
connection, the context is lost.

• Performance – when you establish a connection through OpenSwitch, the
connect time is doubled, because the connection must first be established
to the OpenSwitch, which in turn establishes a connection to the remote
Adaptive Server.

Also, OpenSwitch must closely monitor all traffic passing between the
Adaptive Server and the client connection to detect connection context
information. This monitoring activity can have an impact on performance,
especially when large result sets are involved.

• Number of user connections – because OpenSwitch runs as a single
process, the host environment operating system applies constraints on the
number of open files per user process.

See the OpenSwitch Administration Guide for more information about
OpenSwitch restrictions.

Using client applications with Replication Server

Replication Server does not guarantee the replication of cross-database
transactions, which are transactions that modify tables in two or more
databases on the same server. Replication Server provides transactional
integrity within a single database and across the active and standby
databases—but not between two databases on the same server.

See the Replication Server Design Guide for more information.

Identifying server information required for configuration

To configure your environment, you must gather information about the servers
in your environment.

See “Using RCM configuration parameters” on page 118 and “Understanding
RCM configuration parameters” on page 124 for more information about
configuring servers with OpenSwitch and the RCM, respectively.

Identifying the Adaptive Server Enterprise server pair

The RCM must know the following about the Adaptive Servers in your
environment:

Configuring OpenSwitch and the RCM

116 OpenSwitch

• The names of the active and the standby databases and servers as defined
in the Sybase sql.ini (Windows) or interfaces (UNIX) file

• The names of the computers that host the active and standby Adaptive
Servers

• The login that has permission to start the Replication Agent thread

• The administrative login the RCM must use

Note This login must be the same on both the active and standby Adaptive
Servers.

Identifying the Replication Server

The RCM must know the following about the Replication Server in your
environment:

• The name of the Replication Server

• The name of the computer that hosts the Replication Server

• The logical connection names

• The RCM login to Replication Server (set by the RS_USER parameter in
the RCM configuration file) that has privileges to execute the following
commands: switch active, suspend log transfer from all, admin
quiesce_force_rsi, admin logical_status, and admin health.

Identifying the OpenSwitch Server

Gather information about your OpenSwitch servers:

• The names of the OpenSwitch servers

• The coordination module user login that the RCM uses

• The active and standby server names

• Configuration settings

• Pool settings

See the OpenSwitch Administration Guide for more information.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 117

Identifying pool settings

You must configure OpenSwitch to direct all application end-user pool
connections to the active Adaptive Server unless it is down, in which case, to
direct them to the standby Adaptive Server.

You can configure the DSS user pool to connect to either of the Adaptive
Servers, or to connect only to the standby Adaptive Server.

See “End-user connectivity” on page 114 and “Configuring user pools” on
page 120 for more information.

Understanding Replication Server restrictions

A Replication Server supporting a high availability, warm standby
environment has these restrictions:

• The replicate server cannot be a replicate Replication Server. No other
Replication Server can replicate data into the warm standby Replication
Server.

• The replicate server can be a primary Replication Server. Data can be
replicated out of a primary Replication Server to a replicate database.

See “Managing Warm Standby Applications” in the Replication Server
Administration Guide, Volume 2.

Before configuring the RCM

Before you configure the RCM, you must:

• Identify the logical flow for an automatic failover situation and how the
RCM will coordinate this flow through OpenSwitch.

• Identify the likely failover scenarios.

• Identify the server user logins and permissions.

• Identify the names and locations of all servers involved. See “Planning for
high availability” on page 113.

Configuring OpenSwitch and the RCM

118 OpenSwitch

Configuring OpenSwitch
This section describes OpenSwitch configuration parameters specific to using
RCMs. The format of the OpenSwitch configuration file is described in more
detail in Chapter 5, “Using the Configuration File” in the OpenSwitch
Administration Guide.

Using RCM configuration parameters

To use an RCM, you must configure OpenSwitch by setting the
COORD_MODE parameter to ALWAYS. The RCM can then coordinate the
switch of users between the active and the standby Adaptive Servers so that the
OpenSwitch server does not allow users to connect unless the RCM is
available. OpenSwitch determines which server the users are connected to
when failover occurs, while the RCM determines the state of each server
(either UP or DOWN). If the RCM determines that the active server is down,
OpenSwitch switches clients from that server to the standby server.

The parameters in Table 4-1, which are located in the [CONFIG] section of the
OpenSwitch configuration file, are vital to the success of coordinated failover,
and you must set them correctly.

Table 4-1: Coordinated failover configuration parameters

Parameter Description Value

COORD_MODE Setting this parameter to ALWAYS indicates that an
RCM is required. For warm standby environments with
coordinated failover, this parameter must be set to
ALWAYS.

ALWAYS

COORD_PASSWORD The password that the RCM uses to log in to the
OpenSwitch server. This parameter must match the
RCM COORD_PASSWORD configuration parameter.

OpenSwitch
administrator password

COORD_USER The user name that the RCM uses to log in to the
OpenSwitch server. This parameter must match the
RCM COORD_USER configuration parameter.

OpenSwitch
administrator user name

SERVER_NAME The name of the OpenSwitch server. This is the name of
the OpenSwitch server as defined in the sql.ini
(Windows) or interfaces (UNIX) file.

OpenSwitch server name

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 119

Configuring RCM autostart

The parameters in Table 4-2, which are also located in the [CONFIG] section
of the OpenSwitch configuration file, are used to configure an RCM to
automatically start and stop when OpenSwitch starts and stops.

Note The description in Table 4-2 also indicates whether an option is
configured dynamically or statically. A dynamic option indicates a newly
configured value that takes effect immediately and affects all future
connections; existing connections are not affected. Dynamically configured
options usually affect individual connections. Static options cannot be changed
by the user while OpenSwitch is running. You must stop and restart
OpenSwitch before the changes take effect. Static options usually define the
overall characteristics of the OpenSwitch server and its start-up options.

See “Starting and stopping the RCM automatically from OpenSwitch” on
page 149 and Chapter 5, “Using the Configuration File” in the OpenSwitch
Administration Guide, for complete instructions on configuring this
functionality.

Table 4-2: RCM autostart configuration parameters

Parameter Description Value

RCM_AUTOSTART Instruct OpenSwitch whether to start the replication
coordination module (RCM).

This option is configured dynamically.

Enter:

• 0 – to not
automatically start the
RCM when
OpenSwitch starts.
This is the default
value.

• 1 – to automatically
start the RCM when
you start OpenSwitch.

RCM_CFG_FILE The path where the RCM configuration file is located.
This parameter has a NULL value if you do not specify
a path, and is configured statically.

RCM configuration file
path

RCM_LOG_FILE The path where the RCM log file should be created. This
parameter has a NULL value if you do not specify a path,
and is configured statically.

RCM log file path

Configuring OpenSwitch and the RCM

120 OpenSwitch

Configuring user pools

You have many choices for user connection handling through OpenSwitch;
however, you must configure OpenSwitch to have one pool for application end
users for use with the RCM. Sybase recommends that you also configure
OpenSwitch to have one or more DSS user pools.

RCM_PATH The path where OpenSwitch should look for the RCM
executable.

If you do not enter this path, and are using and RCM,
OpenSwitch runs the RCM located in
$OPENSWITCH/bin on UNIX systems or in
%OPENSWITCH%\bin on Windows systems; where
OPENSWITCH is the installation directory.

This parameter has a NULL value if you do not specify
a path, and is configured statically.

RCM executable file path

RCM_RETRIES The number of times OpenSwitch should retry starting
the RCM.

If the RCM fails for reasons other than the user
requesting that the RCM be shutdown, OpenSwitch
attempts to restart the RCM. If an unrequested shut down
of the RCM occurs within one minute of starting,
OpenSwitch logs an error and does not attempt to restart
the RCM.

This option is configured statically.

Enter:

• 0 – OpenSwitch does
not attempt to restart
the RCM.

• Any numeric value –
enter the number of
times OpenSwitch
should retry to start the
RCM.

RCM_SECONDARY Indicate to OpenSwitch whether the RCM it is launching
is a primary or a secondary RCM. The default is “1”.

This parameter is configured dynamically.

Enter:

• 0 – the primary RCM.

• 1 – secondary RCM.

RCM_TRC_FLAG Indicates the RCM trace flags. RCM_TRC_FLAG sets
trace flags in the RCM when you start RCM from
OpenSwitch. RCM_TRC_FLAG uses RCM trace flags
as a parameter.

This parameter has a NULL value if you do not specify
the value, and is configured dynamically.

The default value is an
empty string:

RCM_TRC_FLAG =

See “Starting an RCM at
the command line” on
page 150 for a list of valid
-T trace_ flags.

Parameter Description Value

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 121

The RCM expects to find all application end users in one pool defined in the
OpenSwitch configuration file. You can also define and configure one or more
user pools for DSS users so that OpenSwitch connects all DSS users to the
standby server, and so that the RCM ignores any connection errors they might
generate. In a high-performance environment, offloading decision-support-
system users to the standby Adaptive Server can minimize performance impact
on the active server.

See “End-user connectivity” on page 114 for more information about user
pools.

See “DSS users” on page 121 for more information about load balancing.

Application end users

When an application end user logs in, OpenSwitch sends the login request to
the RCM. The RCM determines if the user can log in to the requested server
based on the state of the replication environment.

• If the environment is active, the user is connected to the active server. If
the active server is unavailable, the RCM starts the failover process. (See
“Failover processing” on page 159.)

• If the environment has failed over, the user is connected to the standby
server. If the standby server is unavailable, the RCM rejects the request,
and OpenSwitch notifies the user that the server is down.

• If the environment is in the process of failing over, the request is
suspended until the failover is complete. At that time, the user is connected
to the standby server.

DSS users

If DSS users log in after the environment has failed over to standby, the RCM
either allows the DSS users to access the standby server or rejects them,
depending on how you configure OpenSwitch and the RCM.

Other pools can be configured for DSS users. You have more flexibility when
setting up this pool because DSS users have read-only access to the Adaptive
Servers. The pool can be set to load-balance between servers or set to switch
users if a server fails. At that time, all the connections on the failed server are
redistributed to the next available server.

See “Setting configuration parameters for user pools” on page 122 for more
information.

Configuring OpenSwitch and the RCM

122 OpenSwitch

Setting configuration parameters for user pools

Table 4-3 lists OpenSwitch parameters for user pools. These parameters are in
the [CONFIG] section of the OpenSwitch configuration file.

Table 4-3: OpenSwitch user pool configuration parameters

Item Description
To configure for application
end user To configure for DSS user

connections An option for the
POOL parameter that
identifies the user
connections used by
that pool.

List the user connections that
will use the pool defined by the
POOL parameter.

You must list the connections
using the following syntax:

attribute:regex [, regex]
[attribute:regex [, regex]...]]

where attribute is the name of a
connection attribute, such as a
user name, an application name,
a host name, or a type of
connection, and regex is a
standard SQL-style extended
regular expression that describes
values for a given attribute. See
Chapter 5, “Using the
Configuration File” in the
OpenSwitch Administration
Guide for more information.

For example, if you set the
attribute to “user name”, set the
regular expression to one of the
user names in that pool.

Same as for application end
users.

MODE An argument for the
POOL parameter that
defines the connection
mode this user pool
uses during failover.

Set to CHAINED. In CHAINED
mode, all connections are routed
to the first server within the
pool. If the first server is not
available, the OpenSwitch
connects everyone to the next
server in the list.

Set to CHAINED or
BALANCED. In BALANCED
mode, incoming connections are
routed among all servers within
the pool that have a status of UP.

See the OpenSwitch
Administration Guide for more
information.

POOL The configuration
parameter that defines
the name of the user
pool.

Set to match the RCM
configuration parameter
APP_POOL.

Set to any string valid for your
environment, as long as it is
unique.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 123

User pool configuration file example

This section shows part of a sample OpenSwitch configuration file that
contains a pool for application end users and one for DSS users. The
application end-user pool is set up so that application end users connect to the
active Adaptive Server first. If it fails, users are switched to the standby
Adaptive Server.

The DSS pool is set up so that DSS users connect to the standby Adaptive
Server first. If it fails, the users are switched to the active Adaptive Server.

[CONFIG]

SERVER_NAME = ws_os
CHARSET = iso_1
.
.
.
COORD_USER = os_coord
COORD_PASSWORD = os_coord_pwd
COORD_MODE = ALWAYS
.
.
.
[POOL=Application:MODE=CHAINED, STATUS=UP]

servers:

SERVER The configuration
parameter that
identifies the names of
servers in the failover
environment.

List the servers in the order they
will be used by application end
users.

List the active server first,
followed by the standby server.

List the servers for the DSS
users.

List the servers in the order they
will be used by the DSS users if
MODE is set to CHAINED.

STATUS An argument for the
POOL parameter that
defines the status of
each server in the pool.

Set to UP as the initial status.

The RCM controls the status of
each server individually. The
RCM monitors the connection
and is aware of any failure. If a
failure occurs, the RCM changes
STATUS to DOWN.

Note If you do not set STATUS
to UP, RCM does not work
properly.

Set to UP as the initial status.

The RCM controls the status of
each server individually.

Item Description
To configure for application
end user To configure for DSS user

Configuring OpenSwitch and the RCM

124 OpenSwitch

BookServer
StandbyBook

connections:
username:bob
username:fred

[POOL=DSS:MODE=CHAINED, STATUS=UP]
servers:

StandbyBook
BookServer

connections:
username:alice

Configuring the RCM
The information the RCM requires to connect to servers in the replication
environment is stored in a RCM-specific configuration file, which is in the
same location as the OpenSwitch configuration file ($OPENSWITCH/config
on UNIX and %OPENSWITCH%\config on Windows). Because the RCM
reads the configuration file only at start-up, you cannot change parameters after
the RCM is started. You must restart the RCM to change parameters.

See “Introduction” on page 107 for a list of RCM-specific configuration files.

Understanding RCM configuration parameters

The RCM configuration parameters are set in an RCM-specific configuration
file. The configuration file is composed of pairs of parameters and values in the
format:

parameters=value

where parameter is the parameter name, and value is the value the parameter
will be set to when the RCM starts up.

Note Secure the RCM configuration file because it contains passwords for
Adaptive Servers, OpenSwitch servers, and Replication Server. To secure the
RCM configuration file, set the read and write permissions on the file and the
directory.

Table 4-4 on page 125 lists valid configuration parameters and default values.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 125

Table 4-4: RCM configuration parameters

Parameter Description Example Default

ACTIVE_ASE The name of the active Adaptive
Server. This is a required parameter.

BookServer None

ACTIVE_DBS A comma-separated list of databases
in the active Adaptive Server that the
Replication Server switches to during
a failover. The list is used only if the
RS_FAILOVER_MODE parameter is
set to SWITCH. If you do not provide
a list, the RCM uses the database
names from the logical connection list
as the default.

pubs3 The default is the
list of databases
taken from the
LOGICAL_CONN
parameter.

ACTIVE_PASSWORD The password that the RCM uses to
connect to the active Adaptive Server.

sa_pwd Empty string

ACTIVE_USER The user name that the RCM uses to
connect to the active Adaptive Server.
The login must have privilege to
execute the use database command
on all databases defined by the
ACTIVE_DBS parameter. This
parameter is required.

sa None

APP_POOL The name of the OpenSwitch pool
that identifies all of the application
end users. This is a required
parameter.

Application None

ASYNC_MODE If this parameter is set to 1 (true),
network communication is handled
asynchronously. If the parameter is
set to 0 (false), network
communication is handled
synchronously.

1 (true) 0 (false)

CHARSET The character set the RCM uses to
communicate with the servers in the
replication environment. The RCM
also displays error messages using
this character set.

sjis iso_1

COORD_PASSWORD The password that the RCM uses to
connect to the OpenSwitch. The
parameter must match the
OpenSwitch configuration parameter
COORD_PASSWORD.

os_coord_pwd Empty string

Configuring OpenSwitch and the RCM

126 OpenSwitch

COORD_USER The user name that the RCM uses to
connect to the OpenSwitch. The
parameter must match the
OpenSwitch configuration parameter
COORD_USER. This is a required
parameter.

os_coord None

DISCONNECT_STBY_USERS If this parameter is set to 1 (true),
users connected to the standby
Adaptive Server are disconnected
before application end users are
switched to the standby Adaptive
Server.

1 (true) 0 (false)

FAILOVER_WAIT The number of seconds the RCM
waits after a potential failover is
detected before initiating the failover
process.

This failover waiting period gives the
active Adaptive Server an
opportunity to recover automatically.

120 60

LANGUAGE The language the RCM uses to
communicate with the servers in the
replication environment. The RCM
also displays error messages in this
language.

japanese us_english

LOGICAL_CONN A comma-separated list of
Replication Server logical
connections in the form
dataserver.database.

This is a required parameter if you
have set the RS_FAILOVER_MODE
parameter to SWITCH.

LDS.LDB None

MONITOR_WAIT The number of seconds the RCM
monitors the Replication Server after
invoking a Replication Server
failover command (either switch
active, or suspend log transfer) and
before switching end users to the
standby Adaptive Server. This gives
the Replication Server time to empty
its queues.

300 60

Parameter Description Example Default

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 127

NUM_SWITCH_COMMAND The RCM issues a maximum of
NUM_SWITCH_COMMAND switch
active commands to the Replication
Server simultaneously before
checking the status of the Replication
Server.

RCM checks the status of the switch
active commands in batches for every
NUM_SWITCH_COMMAND switch
active commands.
NUM_SWITCH_COMMAND should
be multiples of the number of the
logical connections and must be less
than the number of the logical
connections.

RCM issues the switch active
command for the first
NUM_SWITCH_COMMAND logical
connections and if all the switch active
in a batch are completed successfully,
then RCM will send the second batch
of NUM_SWITCH_COMMAND
switch active commands. Otherwise,
RCM will check the status of those
switch active commands until
SWITCH_ACTIVE_INTERVAL
period is elapsed. Once this period is
elapsed or if the status of the
NUM_SWITCH_COMMAND switch
active commands have been
successfully checked or verified,
RCM will send the second batch of
NUM_SWITCH_COMMAND switch
active commands and will then check
for the status of the switch active
commands.

5 The default is 5.

The minimum is
1.

NOTIFICATION_PROCESS The name of a script or program that
the RCM executes when an event
occurs. See “Configuring the
notification process” on page 147 for
a list of events.

This is an optional configuration
parameter.

email.sh None

Parameter Description Example Default

Configuring OpenSwitch and the RCM

128 OpenSwitch

OPENSWITCH The name of the primary OpenSwitch
associated with this RCM. This
parameter must match the RCM's
administrator login connection entry
associated with the primary
OpenSwitch in the sql.ini (Windows)
or interfaces (UNIX) file.

This is a required parameter.

Note In a redundant RCM
environment, OPENSWITCH
configuration parameter should be
included in both the primary and the
secondary or redundant RCM
configuration files.

ws_os None

OSW_MONITOR_WAIT The number of seconds that the RCM
attempts to reconnect to an
OpenSwitch server to which the RCM
has lost its connection.

15 5

OSW_TIMER_INTERVAL The number of seconds the RCM
waits between attempts to reconnect
to an OpenSwitch server to which the
RCM has lost its connection.

4 1

PING_TIMEOUT The number of seconds the RCM
attempts to verify that a server or
database is available.

4 3

RCMNAME A unique name for an RCM that
allows OpenSwitch to identify the
RCMs to which it is attached.

OpenSwitch maintains an internal list
of registered RCMs and uses the list
to identify RCMs to shut down, or to
list out to the client application when
rp_rcm_list is issued.

This parameter is used to support
starting an RCM automatically after
OpenSwitch starts. See “Starting and
stopping the RCM automatically
from OpenSwitch” on page 149.

rcm1_rcm The name of the
OpenSwitch
server specified in
the RCM
configuration file
and appended
with “_rcm”; for
example:

OSW1_rcm

Parameter Description Example Default

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 129

REP_SERVER The name of the Replication Server
that controls the warm standby
environment.

This is a required parameter.

ws_rs None

REQUIRED_DBS A comma-separated list of databases
in the active Adaptive Server that
require failover support and that the
RCM should ping to determine server
failure.

If you do not provide this list, the
RCM pings only the active Adaptive
Server when determining server
failure.

pubs3 Empty list

RS_FAILOVER_MODE This parameter determines the
Replication Server failover strategy
the RCM uses when the active
Adaptive Server fails. Valid values
are SWITCH, QUIESCE, or NONE.

• SWITCH – the RCM issues the
switch active command to the
Replication Server.

• QUIESCE– the RCM issues the
suspend log transfer command and
the admin quiesce_force_rsi
command to quiesce the
Replication Server.

• NONE – the RCM does not issue
any commands to the Replication
Server, enabling you to manually
perform fail over.

SWITCH SWITCH

RS_PASSWORD The password that the RCM uses to
connect to the Replication Server.

sa_pwd Empty string

RS_USER The user name that the RCM uses to
connect to the Replication Server.

The user must have privileges to
execute the following commands:
switch active, suspend log transfer
from all, admin quiesce_force_rsi,
admin logical_status, and
admin_health. This is a required
parameter.

sa None

Parameter Description Example Default

Configuring OpenSwitch and the RCM

130 OpenSwitch

SECONDARY_OPENSWITCH The name of the secondary
OpenSwitch associated with this
RCM. This parameter must match the
RCM's administrator login
connection entry associated with the
secondary OpenSwitch in the sql.ini
(Windows) or interfaces (UNIX) file.

Note In a redundant RCM
environment,
SECONDARY_OPENSWITCH
should be included and is a required
parameter only in the secondary or
redundant RCM configuration file.
This should not be included in the
primary RCM configuration file
unless both RCMs use the same
configuration file.

ws_os2 None

STANDBY_ASE The name of the standby Adaptive
Server. This is a required parameter.

In switch active mode only, the
standby server must be identified in
the Replication Server logical
connection definition.

See “Managing Warm Standby
Applications” in the Replication
Server Administration Guide, Volume
2 for more information.

StandbyBook None

STANDBY_DBS A comma-separated list of databases
in the standby Adaptive Server that
the Replication Server switches to
during a failover.

The list is used only if the
RS_FAILOVER_MODE parameter is
set to SWITCH. If you do not provide
a list, the RCM uses the database
names from the logical connection list
as the default.

pubs3 The default is the
list of databases
taken from the
ACTIVE_DBS
parameter.

STANDBY_PASSWORD The password that the RCM uses to
connect to the standby Adaptive
Server.

sa_pwd Empty string

Parameter Description Example Default

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 131

STANDBY_USER The user name that the RCM uses to
connect to the standby Adaptive
Server.

The login must have privileges to
execute the sp_start_rep_agent and
the use database commands on all
databases defined by the
STANDBY_DBS parameter. This
parameter is required.

sa None

SWITCH_ACTIVE_INTERVAL This is the time interval in seconds
that RCM waits and checks whether
Replication Server has completed
processing the batch of switch active
commands issued. Once the switch
active command is issued, RCM
checks the status of the switch active
command for
SWITCH_ACTIVE_INTERVAL in
seconds.

60 The default is 60
seconds.

The minimum is 1
second.

SWITCH_USERS Determines whether or not the RCM
switches the connections in the
OpenSwitch server from active to
standby after switching the
Replication Server.

If this parameter is set to 0 (false), the
RCM does not switch the end users,
enabling you to fail over manually.

Note If not switched, the state of the
active Adaptive Server in the
OpenSwitch remains LOCKED.

0 (false) 1 (true)

Parameter Description Example Default

Configuring OpenSwitch and the RCM

132 OpenSwitch

Creating a redundant environment
To create a redundant high availability, warm standby environment, you must
configure two OpenSwitch servers. One OpenSwitch server is the primary,
which typically connects application end users to the active Adaptive Server.
The second OpenSwitch server is the secondary, which typically connects DSS
users to the standby Adaptive Server to load-balance the servers. In this case,
the secondary OpenSwitch is never used by application end users unless the
primary OpenSwitch fails.

See “DSS users” on page 121 for more information about a typical
load-balancing environment.

To operate two OpenSwitch servers in your environment, you must also
configure two RCM instances: The first RCM instance is the primary RCM,
coordinating the connections for application end users; the second RCM
instance is redundant, and is never used for failover processing unless the
primary RCM fails.

Note In case of mutually-aware OpenSwitch setup, RCM's failover processing
depends on the OpenSwitch that detects and handles the Adaptive Server
failure. For example, if primary OpenSwitch handles the Adaptive Server
failure, then the primary RCM starts the failover processing. If secondary
OpenSwitch handles the Adaptive Server failure, then the secondary RCM
starts the failover processing.

TIMER_INTERVAL The number of seconds the RCM
waits between server pings and
monitoring commands.

For example, if MONITOR_WAIT =
300 and TIMER_INTERVAL = 5, then
the RCM issues the monitor command
every 5 seconds for 5 minutes or until
the switch active command completes
at the Replication Server. The
TIMER_INTERVAL must be less than
both the FAILOVER_WAIT and
MONITOR_WAIT parameters.

10 5

Parameter Description Example Default

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 133

Anticipating failures within a redundant environment

There are three important potential failures in a redundant environment:

• Failure of the primary OpenSwitch

• Failure of the secondary OpenSwitch

• Failure of the primary or redundant RCM

Failure of the primary OpenSwitch

The failure of the primary OpenSwitch, which means the loss of the connection
between the two RCM instances and the primary OpenSwitch server, causes
the following changes to the environment:

• After trying to reestablish the connection and failing, the primary RCM
instance ceases execution.

• After trying to reestablish the connection to the primary OpenSwitch and
failing, the redundant RCM instance assumes control of the failover
operation.

• Users who connect to the environment through the primary OpenSwitch
server (both application end users and DSS users) lose their connection to
the primary OpenSwitch server and must log in again.

When these users log in again, they are connected to the secondary
OpenSwitch server because it is the next entry in the sql.ini (Windows) or
interfaces (UNIX) file record that describes the primary OpenSwitch
server to these users. This multiple query entry in the sql.ini (Windows) or
interfaces (UNIX) file enables user login connections to seamlessly roll
over, or to change from the primary to the secondary OpenSwitch server.

See “Setting up the sql.ini or interfaces file” on page 135 for more
information.

Note The RCM administrative login does not roll over during an OpenSwitch
server failure. See “Setting up the sql.ini or interfaces file” on page 135 for
more information about connection rollover.

Failure of the secondary OpenSwitch

The failure of the secondary OpenSwitch, which means the loss of the
connection between the two RCM instances and the secondary OpenSwitch
server, causes the following changes to the environment:

Configuring OpenSwitch and the RCM

134 OpenSwitch

• After trying to reestablish the connection and failing, the primary RCM
instance notes the failure of the secondary OpenSwitch server in its log.

• After trying to reestablish the connection to the secondary OpenSwitch
and failing, the redundant RCM instance ceases execution.

• Because DSS users connect to the environment through the secondary
OpenSwitch server, they lose their connection to the secondary
OpenSwitch server and must log in again.

When these users log in again, they are typically connected through the
primary OpenSwitch server because it is the next entry in the sql.ini
(Windows) or interfaces (UNIX) file record that describes the secondary
OpenSwitch server to these users. The multiple query entry in the sql.ini
(Windows) or interfaces (UNIX) file enables user logins to seamlessly roll
over to the primary OpenSwitch.

See “Setting up the sql.ini or interfaces file” on page 135 for more
information.

Note The RCM administrative login does not roll over during an
OpenSwitch server failure. See “Setting up the sql.ini or interfaces file”
on page 135 for more information.

Failure of the primary and redundant RCM instances

Failure of an RCM instance is unlikely; however, you should be prepared for
its potential failure because it can mean the loss of failover capability of the
environment. The failure of the primary RCM can mean that your environment
no longer has the capability of failing over in a catastrophic situation because
the primary RCM is no longer running and no longer aware of the status of the
system. Similarly, the failure of the redundant RCM can mean the loss of the
RCM’s overall ability to detect the failure of the primary OpenSwitch server
because the redundant RCM could not then assume control of failover if the
primary OpenSwitch server fails.

To gain some protection from an RCM failure, you must set the
COORD_MODE parameter to “ALWAYS” in the OpenSwitch configuration
file. This ensures that any logins to an OpenSwitch server after an RCM failure.
This login failure notifies users of a problem so that you can take steps to
recover, such as stopping and restarting servers.

See “Setting up the sql.ini or interfaces file” on page 135 for more information
about OpenSwitch configuration parameters.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 135

Configuring two OpenSwitch servers

To use two OpenSwitch servers effectively in a warm standby environment,
you must use features provided by both OpenSwitch and the connectivity
software. You can then configure your environment so that users are switched
from a primary OpenSwitch server to the secondary OpenSwitch server upon
failover. This is also described in this section as a rollover of the connections.

Note You can use the redundant RCM to funnel DSS users to the standby
Adaptive Server.

Configuring a redundant environment is complex, and you must be aware of
the following constraints:

• You must add an entry to the sql.ini (Windows) or interfaces (UNIX) file
for each OpenSwitch server; one for the primary OpenSwitch server and
one for the secondary OpenSwitch server.

• You must add a second query line to each OpenSwitch server entry that
contains redundant connection information to be used during a rollover.

• The configuration files for the primary RCM and redundant RCM
instances can be identical.

See “Setting up a configuration file for two RCM instances” on page 139
to view an example of an RCM configuration file for a redundant
OpenSwitch environment.

• If you use batch files to run the RCM, you must create two batch files or
scripts, one for each RCM instance.

• The redundant RCM must be started at the command line using the rcm
command with the -R flag. See “Starting and stopping the RCM” on page
149 for more information about the -R flag.

Setting up the sql.ini or interfaces file
Load balancing To load-balance your system among application end users and DSS users, you

must add an entry to the sql.ini (Windows) or interfaces (UNIX) file for each
OpenSwitch server, giving each entry a unique name. The entry for the primary
OpenSwitch server is used only by application end users; the entry for the
secondary OpenSwitch server is used only by DSS users.

A redundant
OpenSwitch

A redundant OpenSwitch environment requires two query lines for each
OpenSwitch server entry in the sql.ini (Windows) or interfaces (UNIX) file.
This feature enables the automatic rollover of users connecting to a server.

Configuring OpenSwitch and the RCM

136 OpenSwitch

The order of the query lines describes the sequence in which the connectivity
software attempts to connect to a specific server when a user logs in. If the
connection attempt using the first query line in that server’s entry fails, the
software tries to connect using the next query line. This rollover of user
connections gives you redundant connectivity through OpenSwitch.

See the Open Client DB-Library/C Reference Manual for more information
about placing multiple query entries in your sql.ini (Windows) or interfaces
(UNIX) file.

Redundant RCMs A completely redundant environment features two RCM instances: One
coordinates failover; the other waits to take over coordination if the first
instance fails.

 Warning! If you use multiple query lines for the RCM administrator login
connections to the primary and secondary OpenSwitch servers, your designed
failover might be disrupted when you start the RCM. This situation could be
catastrophic.

If you use multiple query lines for the RCM connections, and the primary RCM
instance successfully connects to the secondary OpenSwitch server after
attempting to connect to a failed or nonexistent primary OpenSwitch server, the
primary RCM instance is no longer coordinating failover through the primary
OpenSwitch server, because it is connected to the secondary OpenSwitch
server. In this scenario, neither the RCM nor the system administrator is aware
of the change in OpenSwitch servers, but now the RCM is connected to an
OpenSwitch server that is configured to be the secondary OpenSwitch server,
not the primary OpenSwitch server.

To resolve this issue, you must create two sql.ini (Windows) or interfaces
(UNIX) file entries for each OpenSwitch server and give each entry a unique
server name. The first sql.ini (Windows) or interfaces (UNIX) file entry is for
end users and should include a second query line for automatic rollover to the
secondary OpenSwitch in case the primary OpenSwitch fails, as follows:

[usr_os1]
master=TCP,tokyo,2000
query=TCP,tokyo,2000
query=TCP,newyork,2900

[usr_os2]
master=TCP,newyork,2900
query=TCP,newyork,2900
query=TCP,tokyo,2000

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 137

In this sql.ini (Windows) or interfaces (UNIX) file example, the primary
OpenSwitch server, “os1,” runs on port number 2000 on the computer “tokyo.”
The secondary OpenSwitch server, “os2,” runs on port number 2900 on
“newyork.” The sql.ini (Windows) or interfaces (UNIX) file records,
“usr_os1” and “usr_os2,” designate the primary and secondary OpenSwitch
servers, respectively, used by application end users and DSS users. Because of
the dual query lines in the entry, a user logging in to a failed OpenSwitch server
is automatically connected, or rolled over, to the secondary OpenSwitch server.

The second sql.ini (Windows) or interfaces (UNIX) file record is for the two
RCM administrator logins and should include only one query entry for the
primary OpenSwitch server to ensure that the primary RCM instance connects
only to the primary OpenSwitch server. It also includes only one query entry
for the secondary OpenSwitch server to ensure that the redundant RCM
instance connects only to the secondary OpenSwitch server. This is an example
of the second sql.ini (Windows) or interfaces (UNIX) file record:

[rcm_os1]
master=TCP,tokyo, 2000
query=TCP,tokyo, 2000

[rcm_os2]
master=TCP,newyork,2900
query=TCP,newyork,2900

The RCM administrator logins use the server names “rcm_os1” and “rcm_os2”
to connect to the two OpenSwitch servers (also identified in the RCM
configuration file). Because each OpenSwitch server record that the RCM
administrator logins use contains only one query entry, each RCM
administrator login connection does not roll over to another query entry like a
user login connection would.

For example, if the primary OpenSwitch server, rcm_os1, is not running, the
primary RCM instance cannot run. The primary RCM instance does not know
to connect to the secondary OpenSwitch, rcm_os2, because it is not indicated
in the server record for the primary OpenSwitch server. This enables you to
identify a problem with the primary OpenSwitch server or with the connection
between the RCM and the OpenSwitch server rather than have the RCM
administrative login roll over automatically to the second OpenSwitch server
without notifying you. It also ensures that an RCM instance is either in control
of failover or it ceases to run. Because end users are now connected through the
secondary OpenSwitch server to the back-end database, you can respond
manually to the failure when it is convenient to the end users.

Configuring OpenSwitch and the RCM

138 OpenSwitch

Figure 4-3: sql.ini or interfaces file for a redundant environment

Note To create a redundant environment, create entries for both the primary
and redundant RCM instances in your sql.ini (Windows) or interfaces (UNIX)
file, as well as entries for both the primary and secondary OpenSwitch servers.

See “RCM configuration file examples” on page 140 to find an example of an
RCM configuration file used in an environment with two OpenSwitch servers.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 139

Setting up two OpenSwitch configuration files

In the configuration files for both the primary and secondary OpenSwitch
servers, you must set the status to UP. To do this, use a text editor to open the
configuration file, locate the [SERVER] section, and next to the STATUS
parameter, enter “UP”. If the secondary OpenSwitch server is up, it can allow
DSS users to access the environment, enabling load-balancing or login control.

See “DSS users” on page 121 for more information.

Setting up a configuration file for two RCM instances

The two RCM instances in a redundant environment can use the same
configuration file. To set up this file properly, add the name of the secondary
OpenSwitch server as well as the name of the primary OpenSwitch server to
the “OpenSwitch Server” section of the RCM configuration file, as shown:

OPENSWITCH = rcm_os1
SECONDARY_OPENSWITCH = rcm_os2

Where the primary OpenSwitch server is “rcm_os1,” and the secondary
OpenSwitch server is “rcm_os2.”

See “Understanding RCM configuration parameters” on page 124 for more
information about RCM configuration parameters.

Note If you are using the same configuration file for both RCMs, you should
not provide the RCMNAME configuration parameter. When RCMNAME
parameter is not provided, its default value is OPENSWITCH_rcm for the
primary RCM and SECONDARY_OPENSWITCH_rcm for the secondary RCM.

Command line flag for the redundant RCM

To distinguish the redundant from the primary RCM instance, use the -R flag
with the rcm command at the command line when you start the redundant
RCM. When you use the -R option, the redundant RCM:

• Does not perform a failover upon detection of database or Replication
Server problems

• Handles the command processing for the secondary OpenSwitch

• Assumes the control of the failover process upon the loss of its connection
to the primary OpenSwitch

Configuring OpenSwitch and the RCM

140 OpenSwitch

• Restricts application end users’ access unless the primary OpenSwitch
server fails

Starting OpenSwitch and the RCM after OpenSwitch failure

To restart an OpenSwitch server and an RCM instance after the failure of an
OpenSwitch server in a redundant environment and, therefore, after the failure
of the corresponding RCM instance:

1 Restart the failed OpenSwitch server.

2 Stop the RCM instance that is still running (the redundant RCM instance).

3 Restart the primary and redundant RCM instances (using the -R command
line option for the redundant RCM).

This ensures that:

• Only one RCM instance is controlling failover

• All RCM connections are reestablished to both OpenSwitch servers

• User logins to both OpenSwitch servers are handled by the appropriate
RCM instance

RCM configuration file examples
This section includes examples of RCM configuration files designed for
different purposes within a high availability, warm standby environment.

Each configuration parameter is described in “Understanding RCM
configuration parameters” on page 124.

See “Setting up a configuration file for two RCM instances” on page 139 to
find an example of an RCM configuration file for a redundant environment.

Failover modes

This section shows examples of the RCM configuration file for each failover
mode you can choose: switch active, quiesce, and none.

switch active

This section shows an example of an RCM configuration file for switch active
mode:

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 141

Open Switch Server
OPENSWITCH = ws_os
COORD_USER = os_coord
COORD_PASSWORD = os_coord_pwd

Replication Server
REP_SERVER = ws_rs
RS_USER = sa
#RS_PASSWORD - Replication Server password is blank

Active and Standby ASE Servers
ACTIVE_ASE = BookServer
ACTIVE_USER = sa
#ACTIVE_PASSWORD - ACTIVE ASE password is blank

STANDBY_ASE = StandbyBook
STANDBY_USER = stndby_sa
STANDBY_PASSWORD = booknut

On failover switch the flow of replication
RS_FAILOVER_MODE = SWITCH

Identify the databases in the warm-standby environment
LOGICAL_CONN = LDS.LDB
ACTIVE_DBS = pubs3
STANDBY_DBS = pubs3
REQUIRED_DBS = pubs3

APP_POOL= Application

Wait 5 minutes before starting the failover
FAILOVER_WAIT = 300

Provide Replication Server 2 minutes perform the
switch active
MONITOR_WAIT = 120

If you use this example configuration file in your environment and the active
Adaptive Server fails, the RCM switches the logical connection named
“LDS.LDB” in the Replication Server. Then the RCM starts the Replication
Agent thread in the standby Adaptive Server for the database “pubs3.”

quiesce

This section shows an example of an RCM configuration file for quiesce mode.

Configuring OpenSwitch and the RCM

142 OpenSwitch

The section highlighted in bold is the only difference between this example and
the previous example configuration file for switch active mode. See “switch
active” on page 140 for comparison.

Open Switch Server
OPENSWITCH = ws_os
COORD_USER = os_coord
COORD_PASSWORD = os_coord_pwd

Replication Server
REP_SERVER = ws_rs
RS_USER = sa
#RS_PASSWORD - Replication Server password is blank

Active and Standby ASE Servers
ACTIVE_ASE = BookServer
ACTIVE_USER = sa
#ACTIVE_PASSWORD - ACTIVE ASE password is blank

STANDBY_ASE = StandbyBook
STANDBY_USER = stndby_sa
STANDBY_PASSWORD = booknut

On failover quiesce the Replication Server
No database information is needed
RS_FAILOVER_MODE = QUIESCE

Test to make sure that the pubs3 database is available
REQUIRED_DBS = pubs3

APP_POOL= Application

Wait 5 minutes before starting the failover
FAILOVER_WAIT = 300

Provide Replication Server 2 minutes perform the
switch active
MONITOR_WAIT = 120

If you use this example configuration file in your environment and if the active
Adaptive Server fails, the RCM issues the quiesce command to Replication
Server. All connections in Replication Server are then quiesced.

none

This section shows an example of an RCM configuration file for none mode.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 143

The section highlighted in bold is the only difference between this example and
the previous example for SWITCH ACTIVE mode. See “switch active” on
page 140 for comparison.

Open Switch Server
OPENSWITCH = ws_os
COORD_USER = os_coord
COORD_PASSWORD = os_coord_pwd

No Replication Server information is needed

Active and Standby ASE Servers
ACTIVE_ASE = BookServer
ACTIVE_USER = sa
#ACTIVE_PASSWORD - ACTIVE ASE password is blank

STANDBY_ASE = StandbyBook
STANDBY_USER = stndby_sa
STANDBY_PASSWORD = booknut

Manual Replication Server failover
No database information is needed
RS_FAILOVER_MODE = NONE

Don't switch the users to the standby ASE
SWITCH_USERS = 0

APP_POOL = Application

Wait 5 minutes before starting the failover
FAILOVER_WAIT = 300

Provide Replication Server 2 minutes perform the
switch active
MONITOR_WAIT = 120

If you use this example configuration file in your environment and the active
Adaptive Server fails, the RCM takes no action for Replication Server.

Multiple databases

This section shows an example of an RCM configuration file set up to support
multiple databases in a warm standby environment. In a multiple database
environment, an Adaptive Server contains more than one database involved in
warm standby replication.

Configuring OpenSwitch and the RCM

144 OpenSwitch

An Adaptive Server can contain several databases that are each being
replicated to the standby Adaptive Server. When the active Adaptive Server
fails, each database connection must be switched to the standby Adaptive
Server.

Following are the results for each failover mode:

• switch active – each database connection in the LOGICAL_CONNECTION
parameter is switched to the standby Adaptive Server.

• quiesce – by default all database queues in Replication Server are emptied
before the database connections are switched to the standby Adaptive
Server.

• none – multiple databases are treated the same way as a single database—
you are notified of the failure.

The section highlighted in bold is the only difference between this example and
the previous example for switch active mode with a single logical database. See
“switch active” on page 140 for comparison.

Open Switch Server
OPENSWITCH = ws_os
COORD_USER = os_coord
COORD_PASSWORD = os_coord_pwd

Replication Server
REP_SERVER = ws_rs
RS_USER = sa
#RS_PASSWORD - Replication Server password is blank

Active and Standby ASE Servers
ACTIVE_ASE = BookServer
ACTIVE_USER = sa
#ACTIVE_PASSWORD - ACTIVE ASE password is blank

STANDBY_ASE = StandbyBook
STANDBY_USER = stndby_sa
STANDBY_PASSWORD = booknut

On failover switch the flow of replication
RS_FAILOVER_MODE = SWITCH

Identify the databases in the warm-standby environment
LOGICAL_CONN = LDS.pubs3, LDS.sales, LDS.signings

#DATABASES - Omitted, so RCM will use pubs3, sales,
signings

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 145

The loss of the signings database will not trigger a
failover
REQUIRED_DBS = pubs3, sales

APP_POOL = Application

Wait 5 minutes before starting the failover
FAILOVER_WAIT = 300

Provide Replication Server 2 minutes perform the
switch active
MONITOR_WAIT = 120

If you use this example configuration file in your environment and the active
Adaptive Server fails, the RCM takes the same action as in the switch active
mode example (see “switch active” on page 140), but switches all logical
connections listed in the LOGICAL_CONN parameter. That is, the RCM
switches the logical connections named “LDS.pubs3,” “LDS.sales,” and
“LDS.signings” in the Replication Server (one connection for each database).
Then the RCM starts a Replication Agent in the standby Adaptive Server for
each of the pubs3, sales, and signings databases. The DATABASES parameter
is omitted, so that the RCM uses the database names identified in the
LOGICAL_CONN parameter when starting the Replication Agents on the
standby Adaptive Server. In this example, the REQUIRED_DBS parameter
does not include the signings database; therefore, a failure in that database does
not trigger the failover process.

Tuning

If you have set the RS_FAILOVER_MODE parameter to QUIESCE or
SWITCH, RCM monitors the Replication Server during a failover process. The
RCM monitors the failover process to determine when the Replication Server
commands switch active or suspend log transfer have completed.

Certain configuration parameters control how RCM monitors the failover
process:

• FAILOVER_WAIT – the number of seconds the RCM waits after a
potential failover is detected before initiating the failover process. This
failover waiting period gives the active Adaptive Server an opportunity to
recover automatically. For example, if you set FAILOVER_WAIT to 60,
RCM waits 60 seconds before initiating the failover process.

Configuring OpenSwitch and the RCM

146 OpenSwitch

• MONITOR_WAIT – the number of seconds the RCM monitors Replication
Server after invoking a failover command in Replication Server and before
switching end users to the standby Adaptive Server. This gives the
Replication Server time to empty its queues. For example, if you set
MONITOR_WAIT to 60, RCM monitors Replication Server for 60
seconds.

The MONITOR_WAIT parameter is not used if the
RS_FAILOVER_MODE parameter is set to NONE.

If you set MONITOR_WAIT to -1 and RS_FAILOVER_MODE to
QUIESCE, RCM quiesces Replication Server and ensures replication
server queues are emptied completely. RCM then switches user
connections to the standby Adaptive Server. See RS_FAILOVER_MODE
in “Understanding RCM configuration parameters,” for more information

• TIMER_INTERVAL – the number of seconds the RCM waits between
server pings and monitoring commands. The TIMER_INTERVAL value
must be less than or equal to the values of the FAILOVER_WAIT and
MONITOR_WAIT parameters.

For example, if you set TIMER_INTERVAL to 5, RCM waits 5 seconds
between server pings and monitoring commands. If you set
FAILOVER_WAIT to 60, the RCM pings the server 12 times before
beginning the failover process.

Note If the TIMER_INTERVAL value is greater than either or both the
FAILOVER_WAIT and MONITOR_WAIT values, the RCM does not start
and displays a notification that there is an error in the parameter settings.

You can tune the system using these configuration parameters. Used together,
these parameters work as described in the following scenario:

1 The RCM detects a failover in the system.

2 RCM pings the active Adaptive Server every TIMER_INTERVAL seconds
for FAILOVER_WAIT seconds to determine if it has recovered.

3 After FAILOVER_WAIT seconds, the Adaptive Server has not recovered,
so the RCM initiates the failover process. The RCM begins to monitor
Replication Server. Every TIMER_INTERVAL seconds, the RCM issues a
monitoring command.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 147

4 The RCM continues to monitor Replication Server for MONITOR_WAIT
seconds. At that time, or when the Replication Server finishes the failover
process if that is sooner, the RCM switches the users to the standby
Adaptive Server.

Note The RCM uses the FAILOVER_WAIT and TIMER_INTERVAL
parameters to monitor the environment even when you set the
RS_FAILOVER_MODE parameter to “NONE” because you plan to fail over
the Replication Server manually. In this case, the RCM responds to a failover
by locking user connections out of the Adaptive Server, but does not invoke
any Replication Server commands.

Configuring the notification process
The RCM can execute a process when an event occurs, for example, when
failover begins. This process is a script or a program that you create and then
define in the RCM configuration file using the NOTIFICATION_PROCESS
parameter.

When working with the RCM notification process, be aware that:

• The notification process is executed from the RCM current working
directory (the directory where the RCM executable is installed).

• The notification process is executed with the same set of permissions used
to execute the RCM.

• Output is redirected to a temporary file. The full path name of this file is
written to the RCM log and is prefixed with “rcm.”

• The RCM does not delete the temporary output file.

• The notification ID and text message are passed as parameters to the script
program.

Table 4-5 lists the events that trigger the RCM notification process.

Table 4-5: Notification process events

Notification
ID Event description

1 The RCM has detected a possible failover situation where the active Adaptive Server is not
responding. The RCM is about to enter a wait state to determine if the active Adaptive Server is
down, or if it will automatically recover.

Configuring OpenSwitch and the RCM

148 OpenSwitch

The RCM displays a notification ID and a text message in its log when any of
the events in Table 4-5 on page 147 occur. The text message is similar to the
event description in the table. To determine what process you want performed
when events occur, read the event description in Table 4-5 on page 147.

Some examples of processes that can be triggered by events are:

• Launching e-mail

• Launching a pager program

• Running a script that displays the notification ID and event description to
console

2 The failover process has started. The RCM has determined that the active Adaptive Server is down
and is failing over in the replication environment.

3 The failover has been aborted, because the active Adaptive Server has recovered before the RCM
started the failover process.

4 The RCM cannot connect to Replication Server. The RCM switches the users to the standby
Adaptive Server without failing over the logical connections in Replication Server.

5 The RCM cannot start the Replication Agent in the standby Adaptive Server after switching the
logical connections in Replication Server.

6 Executing the failover process in Replication Server has failed. This occurs when the RCM
unsuccessfully executes either the switch active or the quiesce commands.

7 The RCM has finished the Replication Server failover process. The RCM is about to switch users
to the standby Adaptive Server.

8 Switching the users in OpenSwitch from the active Adaptive Server to the standby Adaptive Server
has failed. The active Adaptive Server is locked, all existing connections are suspended, and new
users cannot log in.

9 The RCM failover process has completed.

10 The RCM has exited, probably because the connection to the primary OpenSwitch is lost, or
because of some internal error.

11 The RCM has lost the connection to the OpenSwitch. The message identifies which OpenSwitch
server failed. The RCM exits if the OpenSwitch server is not a secondary OpenSwitch server in a
dual OpenSwitch environment.

Note In a dual OpenSwitch environment, if the primary OpenSwitch fails, the RCM sends this
notification and notification ID 10 to the administrator, then exits. If the secondary OpenSwitch
fails, the RCM sends this notification ID 11 to the administrator, but does not exit.

12 A test notification is executed when the user starts the RCM with the -a (analyze) option.

Notification
ID Event description

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 149

For example, the following segment of the configuration file sets the
NOTIFICATION_PROCESS parameter to execute a program called email.sh
when an event occurs:

Set notification process to email me
NOTIFICATION_PROCESS = email.sh

To set up the notification process to trigger a program or script, you must set
the NOTIFICATION_PROCESS parameter. If you do not include this
parameter, the RCM does not send notification of events. See “Understanding
RCM configuration parameters” on page 124 for more information.

The RCM records all events in its log, so if you do not set the
NOTIFICATION_PROCESS parameter but need to troubleshoot the failover,
examine the RCM log, called rcm.log, in the RCM subdirectory.

Starting and stopping the RCM
You can start the RCM:

• Automatically from OpenSwtich after OpenSwitch starts. See “Starting
and stopping the RCM automatically from OpenSwitch” on page 149.

• From the command line. See “Starting an RCM at the command line” on
page 150.

• Using a batch or script file. See your operating system documentation for
more information about creating batch or script files.

Note If you start the RCM from the command line or from a script file, the
OpenSwitch server must be running before you can start the RCM. See the
OpenSwitch Administration Guide for more information about starting
OpenSwitch.

Starting and stopping the RCM automatically from OpenSwitch
OpenSwitch version 15.0 and later allows you to start and stop the RCM
automatically from OpenSwitch when OpenSwitch starts.

Starting and stopping the RCM

150 OpenSwitch

To configure this functionality, see Chapter 4, “Starting and Stopping
OpenSwitch and RCMs” in the OpenSwitch Administration Guide for
instructions.

This functionality is supported by:

• Parameters RCM_AUTOSTART, RCM_RETRIES, RCM_PATH,
RCM_CFG_FILE, RCM_LOG_FILE, and RCM_SECONDARY in the
[CONFIG] section of the OpenSwitch configuration file. See Chapter 4,
“Starting and Stopping OpenSwitch and RCMs” in the OpenSwitch
Administration Guide.

• Registered procedures rp_rcm_startup, rp_rcm_shutdown,
rp_rcm_connect_primary, and rp_rcm_list. See Chapter 7, “Registered
Procedures” in the OpenSwitch Administration Guide for details.

• RCMNAME parameter in the RCM configuration file. See Table 4-4 on
page 125.

Starting an RCM at the command line
You must start OpenSwitch before starting the RCM.

To start an RCM at the command prompt, enter:

rcm -c config_file -e system_log -i sql.ini_or_interfaces_file

Note You cannot start the RCM as a Windows service.

Syntax This section describes the command syntax and command line flags you can
set at RCM start-up.

rcm [-v] [-h] [-a] [-R]

[-c config_file]

[-e system_log]

[-i sql.ini or interfaces_file]

[-T trace_flags]

[-E filename]

Command line flags • -v – prints the version number and the copyright message, then exits.

• -h – prints the help message and exits.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 151

• -a – analyzes the replication environment and exits. The RCM:

• Tests the configuration parameters and prints the results to stdout

• Validates all configuration parameters

• Connects to the OpenSwitch server

• Logs in to the active Adaptive Server

• Verifies that the active databases exist

• Logs in to the standby Adaptive Server

• Verifies that the standby databases exist

• Logs in to the Replication Server

• Verifies that the logical connection exists

• Tests the ranges of the tuning parameter values

Note See “Tuning” on page 145 for more information about setting
these values.

• Tests the notification process if the NOTIFICATION_PROCESS
parameter is set (see “Understanding RCM configuration
parameters” on page 124)

• Prints out all configuration parameters

• -R – indicates that the current instance of RCM is redundant. When you
use the -R flag, you indicate that the redundant RCM does not perform a
failover, handles command processing for the secondary OpenSwitch, and
assumes the control of failover if it loses its connection to the primary
OpenSwitch.

• -c config_file – the full path name of the RCM configuration file. If you
omit the -c flag, the RCM looks for a configuration file named rcm.cfg in
the current directory.

• -e system_log – the full path name of the system log file. The RCM writes
all system, error, and trace messages to the system log file. If you omit the
-e flag, the RCM writes messages to a file named rcm.log in the current
directory.

Starting and stopping the RCM

152 OpenSwitch

• -i sql.ini_or_interfaces_file – the full path name of the Sybase sql.ini
(Windows) or interfaces (UNIX) file that the RCM searches when
connecting to servers. If you omit the -i flag, the RCM looks for the sql.ini
(Windows) or interfaces (UNIX) file in the directory to which the
SYBASE environment variable points.

On UNIX, the default interfaces file is in the Sybase installation directory
($SYBASE). On Windows, the default sql.ini is in %SYBASE%/ini.

• -T trace_flags – this flag sets trace flags in the RCM. Use this flag to debug
your environment. Following is the list of valid trace flags. To set more
than one flag, use a comma-separated list; for example, -T A,C,F.

• -E filename – user name and password encryption. You can provide an
optional filename argument. If you provide a filename, that file is created
and the encrypted user names and passwords are written to that file and to
the console. If you do not provide a filename, the encrypted user names
and passwords are written only to the console.

A Set all trace flags.

C Displays information on connectivity issues, including connecting
and disconnecting from servers and executing commands.

E Traces execution of the RCM when resolving OpenSwitch
connection issues. It also displays end-user connection
information, such as user, application, requested server, and so on.

F Traces the execution of the failover process when the RCM
coordinates the switching from the active and standby databases.

G Displays general or miscellaneous information.

I Traces the RCM’s initialization steps, including reading the
configuration file, installing the callback handlers, and connecting
to the OpenSwitch.

M Writes all messages generated by the RCM to the system log.
These messages include all connectivity messages and all
messages sent to the RCM by Replication Server and Adaptive
Server.

N Displays all notification process messages.

O Writes OpenSwitch server messages and connectivity messages
generated from connections between the RCM and the
OpenSwitch to the system log. Situations generating these
messages are usually handled by the RCM, so these messages are
typically redundant.

R Traces the process of coordinating multiple OpenSwitch servers.

S Writes all commands that the RCM sends to other servers to the
system log.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 153

Stopping the RCM manually
To shut down an RCM from the command line, use rp_rcm_shutdown. See
cm_rp_rcm_shutdown on page 94 for details.

Note If the RCM detects an error, it shuts down automatically, posting a
notification message to the log. See “Configuring the notification process” on
page 147.

Recovering from a coordinated failover
When a failover occurs in your environment, you must recover the
active-standby setup.

Note When you use the NONE option to create manual failover, you must
develop your own recovery procedures.

Recovering from switch active failover
When you use the SWITCH mode to fail over automatically, you must restart
the active server and resume database connections, and so on, to recover the
high availability environment. This section describes the steps you must take
to do this.

Table 4-6 on page 154 uses the following acronyms:

• ADB – the active database name

• ADS – the active data server name

• SDB – the standby database name

• SDS – the standby data server name

• LDS – the logical data server name

• LDB – the logical database name

Unexpected failure of Replication Server

154 OpenSwitch

Table 4-6: Steps to recover from automatic failover

Unexpected failure of Replication Server
If you are unaware that Replication Server has stopped running, the database
environment may become corrupted. If the Adaptive Server fails and the RCM
attempts to connect to Replication Server, which also fails, the standby server
is out of date because there was a period of time during which the Replication
Server was down and not replicating transactions to the standby server.

Step Server Example command line

1) Start the active Adaptive Server. Active Adaptive Server On Windows, run
[Active_ASE].bat

On UNIX, dataserver -d
[master_db_file] -R -c

[config_file].

2) Resume the active Replication Server
connections.

Replication Server resume connection to

<ADS>.<ADB>

3) Suspend connections to the standby
Adaptive Server.

OpenSwitch rp_server_status <SDS>,

'LOCKED' rp_stop NULL, <SDS>,

NULL, 1, 1

4) Monitor the Replication Agent thread. Standby Adaptive
Server

sp_help_rep_agent <SDB>,

'scan'

or watch for the last transaction in the
active Adaptive Server

5) Stop the Replication Agent thread. Standby Adaptive
Server

sp_stop_rep_agent <SDB>

6) Switch the Replication Server connections. Replication Server switch active connection for

<LDS>.<LDB> to <ADS>.<ADB>

7) Monitor the switching process. Replication Server admin logical_status,

<LDS>.<LDB>

8) Start Active Adaptive Server Replication
Agent.

Active Adaptive Server sp_start_rep_agent <ADB>

9) Switch users back to active Adaptive Server. OpenSwitch rp_server_status <ADS>, 'UP'

rp_server_status <SDS>, 'UP'

rp_switch NULL, <ADS>, NULL-

1, <ADS> rp_start NULL, NULL,

NULL

10) Resume the standby Replication Server
connections.

Replication Server Resume connection to

<SDS>.<SDB>

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 155

Attempts to add transactions to the standby server at this point might fail, and,
as a result, the entire database environment could be out of date. In this case,
the RCM still switches users to the standby environment to ensure that current
transactions are being captured. If the entire database environment becomes
out of date, you must recover from backup, following your internal procedure
for recovery.

See “Managing a Warm Standby Applications” in Replication Server
Administration Guide, Volume 2 for more information about transaction
processing in a warm standby environment.

Troubleshooting
This section describes some procedures you can use to help troubleshoot
problems with the high availability, warm standby environment.

Analyzing the RCM environment
You can use the “-a” flag with the rcm command to analyze your environment.
To analyze the RCM environment, enter rcm -a at the command line.

This is example output from the rcm -a command.

Writing to the system log file: 'rcm.log'.
Reading the configuration file: 'rcm.cfg'.
Using the 'us_english' language.
Using the 'iso_1' character set.
OpenSwitch server name: 'ws_os'.
OpenSwitch coordination module username: 'os_coord'.
Active ASE server name: 'BookServer'.
Active ASE username: 'sa'.
Standby ASE server name: 'StandbyBook'.
Standby ASE username: 'stndby_sa'.
OpenSwitch application pool name: 'Application'.
RCM is configured to wait 300 seconds before initiating the failover process.
RCM is configured to monitor the Replication Server failover for 120 seconds.
The RCM timer interval is configured to be 5 seconds.
The RCM will not disconnect users from the standby ASE on a failover.
The RCM will switch users to the standby ASE after a failover.
The RCM will issue the host ping command before attempting to connect to a
server.

Troubleshooting

156 OpenSwitch

Ping Host Command: 'ping'.
Replication Server failover mode: 'SWITCH'.
Replication Server host name: 'StndbySun8'.
Replication Server name: 'ws_rs'.
Replication Server username: 'sa'.
Logical connection list: LDS.LDB
Active Database list: pubs3
Standby Database list: pubs3
Required database list: pubs3
Attempting to initialize the coordination module's connectivity.
The coordination module's connectivity initialized successfully.
Attempting to create the coordination module.
The coordination module was created successfully.
Attempting to connect to the OpenSwitch 'ws_os', username 'os_coord'.
Connected to the OpenSwitch 'ws_os', username: 'os_coord'.
Attempting to connect to the ASE Server 'BookServer', username 'sa'.
Successfully connected to the ASE server 'BookServer'.
Logged into the database 'pubs3'.
Attempting to connect to the ASE Server 'StandbyBook', username 'stndby_sa'.
Successfully connected to the ASE server 'StandbyBook'.
Logged into the database 'pubs3'.
A standby OpenSwitch was not defined.
Attempting to initialize connectivity for the Replication Server.
The connectivity to the Replication Server was initialized successfully.
Attempting to connect to the Replication Server 'ws_rs', username 'sa'.
Connected to the Replication Server 'ws_rs'.
Attempting to retrieve the status of the logical connections.
Logical connection 'LDS.LDB'.
Active connection 'BookServer.pubs3', State: 'Suspended/'.
Standby connection 'StandbyBook.pubs3', State: 'Active/'.
Current operation: 'None', Step: 'None'.

See “Starting an RCM at the command line” on page 150 for details about the
-a flag.

Monitoring the environment with Replication Server plug-in
You can use the Replication Server plug-in, which comes with Replication
Server, to monitor the environment, including viewing the Replication Server
log.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 157

RCM internal coordination
This section describes how the RCM coordinates failover in a high availability,
warm standby environment.

The RCM start-up process
When the RCM starts, it:

1 Reads the command line parameters.

2 Reads and validates the RCM configuration file parameters.

3 Logs start-up information: version string, copyright, and critical
configuration parameters.

4 Connects to OpenSwitch.

5 Monitors user connections to OpenSwitch.

OpenSwitch connection coordination
The responsibility of a CM is to coordinate the end-user connections that pass
through the OpenSwitch to the Adaptive Servers. OpenSwitch notifies the
coordination module whenever:

• A user attempts to connect to OpenSwitch.

• An attempt fails.

• An existing connection to an Adaptive Server fail.

In this way, the RCM coordinates the switch of users to a different server
through OpenSwitch.

End-user login request

When an end user requests a connection, the connectivity software establishes
a connection to the first available OpenSwitch server. When an OpenSwitch
server fails, end-user connections are dropped. When the end user reconnects,
the connectivity software establishes a connection to the alternate OpenSwitch
server.

RCM internal coordination

158 OpenSwitch

OpenSwitch CMs process end-user login requests to servers controlled by
OpenSwitch. When the RCM receives a login request, it tells the OpenSwitch
server to log the user in to the requested server. It does not determine if the
server is available or if a failover process has occurred. If OpenSwitch
determines that the server is not available, it sends the RCM a login failure
notification (see “End-user login or connection failure” on page 158). After
the RCM has processed the failure, OpenSwitch changes the server status to
DOWN and requests a connection to the standby server.

Note When processing a login request, the RCM does not distinguish between
an application end user and a DSS user. Only upon login request failure does
the RCM note the type of user requesting to log in. If an application end-user
login fails, the RCM begins the failover process. See “Application end users”
on page 121.

If the Open Switch server fails, your environment is protected because user
logins are switched to the secondary OpenSwitch server.

End-user login or connection failure

The RCM is notified of an Adaptive Server failure when login requests to the
Adaptive Servers fail, or when existing connections to the Adaptive Servers
fail. Depending on the type of end user and the Adaptive Server, the RCM
performs the following processes:

• Active Adaptive Server – if an application end-user connection fails, the
OpenSwitch server notifies the RCM. If the active Adaptive Server has
failed, the RCM starts the failover process. All application end-user
connections are suspended until the failover process is finished.

If a DSS user connection fails, the OpenSwitch notifies the RCM. If the
active Adaptive Server fails, the RCM routes the connection to the next
available server. If there is no “next” server because the other server in the
environment is down, the RCM logs an error message. Because DSS users
are read-only, the RCM switches them to the standby server without
starting the failover process.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 159

• Standby Adaptive Server – if an application end-user connection fails,
OpenSwitch notifies the RCM. If the standby Adaptive Server fails, the
RCM routes the connection to the next available server. If there is no
“next” server because the other server in the environment is down, the
RCM logs an error message. In this scenario, application end users are
working on the standby server because the active server has already failed.
The RCM cannot continue to route users unless the active Adaptive Server
is running again and able to take login requests.

Note The RCM and Replication Server support fail over to two servers
only.

If a DSS-user connection fails, the OpenSwitch notifies the RCM. If the
standby Adaptive Server fails, the RCM routes the connection to the next
available server. This can include routing the DSS user to the active
Adaptive Server. If there is no “next” server because the other server in the
environment is down, the RCM logs an error message.

See “Failover processing” on page 159 for more details about failover.

See “End-user connectivity” on page 114 for more information about users and
user connections.

Failover processing
When notified of a failed connection, the RCM performs the following tasks:

1 Before starting the failover process, RCM pings the active Adaptive
Server. If the RCM can ping the Adaptive Server server, it is not down, so
the RCM issues a kill command to end the current connection. The end user
must manually reconnect.

2 The RCM changes the status of the active Adaptive Server in the
OpenSwitch log to LOCKED. This stops new users from connecting to the
active Adaptive Server.

3 The RCM issues a stop command to suspend all current connections to the
active Adaptive Server.

4 The RCM does not fail over immediately but waits to see if the system
recovers. The Adaptive Server might automatically recover, or the
network might stabilize. The RCM pings the active Adaptive Server at a
configurable interval. If the RCM successfully pings the server, it unlocks
the server, restarts the connections, and allows users to connect.

RCM internal coordination

160 OpenSwitch

5 When RCM determines that a failover is necessary, it performs the
following steps:

• If RS_FAILOVER_MODE is set to SWITCH, the RCM connects to
the Replication Server and issues the switch active command for each
logical connection defined by the LOGICAL_CONN configuration
parameter.

• If RS_FAILOVER_MODE is set to QUIESCE, the RCM connects to
Replication Server and issues the suspend log transfer from all and
admin quiesce_force_rsi commands.

• If the RS_FAILOVER_MODE is set to NONE, the RCM does not
connect to Replication Server, but locks out user connections to the
Adaptive Server.

6 When RS_FAILOVER_MODE is not set to NONE, because both the switch
active command and the quiesce commands are asynchronous, the RCM
monitors the process to determine when the commands have completed.
The RCM issues a monitoring command at a configurable interval until a
configurable amount of time is reached. At that time, or when Replication
Server finishes the failover process, whichever occurs first, the RCM
switches the users to the standby Adaptive Server.

Note The monitoring commands the RCM issues are different for switch
active and quiesce modes. In switch active mode, the RCM issues the admin
logical status command. In quiesce mode, the RCM issues the admin health
command.

7 If RS_FAILOVER_MODE is set to SWITCH, the RCM starts the
Replication Agent on the standby Adaptive Server for each database
defined by the DATABASES configuration parameter.

Note With this step, the RCM completes the reversal of replication flow
in the environment.

8 The RCM disconnects DSS users from the standby Adaptive Server.
Typically, DSS users can be off-loaded to the standby Adaptive Server to
execute read-only queries. You may decide to disconnect these users if a
failover from the active to the standby Adaptive Server occurs. If you set
the DISCONNECT_STBY_USERS configuration parameter, the RCM
disconnects all users from the standby Adaptive Server before switching
the users from the active Adaptive Server. The DSS users must wait to be
reconnected when the active Adaptive Server is back online.

CHAPTER 4 Using the Replication Coordination Module

Coordination Module Reference Manual 161

9 OpenSwitch switches end users from the active to the standby Adaptive
Server. The RCM sets the server status to DOWN, switches the server
connections from the active Adaptive Server to the standby Adaptive
Server, and restarts all existing connections that were suspended at the
active Adaptive Server.

How the RCM detects Adaptive Server failure
An Adaptive Server failure within the high availability, warm standby
environment occurs if login requests or existing connections to the Adaptive
Server fail. If the Adaptive Server fails, the OpenSwitch server passes the
notification to the RCM.

1 The RCM attempts to connect to the Adaptive Server.

2 If the attempt fails, the RCM logs the server as DOWN.

If the attempt succeeds, the RCM determines if the requested database is
available by monitoring database connections.

a If the requested database is listed in the REQUIRED_DBS
configuration parameter, the RCM attempts to connect to the
database. If the attempt fails, the server is considered down. If the
attempt succeeds, the server is considered up.

b If the requested database is not in the list, the RCM considers only the
status of the server and not the database when pinging the Adaptive
Server. Because the server status is UP, the RCM does not begin the
failover process.

This two-step process gives you finer control over failover. For example,
you can prevent noncritical databases that become unavailable from
starting the failover process.

Note Adaptive Server allows users to connect to the server even if the
requested database is unavailable. End users receive an error message, but are
still connected to the server. This means that the Adaptive Server does not
notify the OpenSwitch server and, therefore, the RCM, when users attempt to
connect to a database that is unavailable. However, the RCM is notified by the
OpenSwitch server when existing connections fail because a database has
become unavailable and the RCM can start the failover process.

RCM internal coordination

162 OpenSwitch

How the RCM detects Replication Server failure
If the RCM cannot log in to the Replication Server, the RCM:

• Notifies the system administrator about a possible Replication Server
failure and logs the failure in the system log.

• Waits a configurable interval of time to see if Replication Server recovers.
This is required because network problems might prevent the connection.

• Continues with the failover process by marking the active Adaptive Server
as DOWN and switching all users to the standby Adaptive Server.

Coordination Module Reference Manual 163

A
aborted failover 148
active Adaptive Server

down 148
failure of 158
in LOCKED state 159
suspend connections to 159
switching users back to 154

active servers 116
ACTIVE_ASE configuration parameter 125
ACTIVE_DBS configuration parameter 125, 126,

129, 130
ACTIVE_PASSWORD configuration parameter 125
ACTIVE_USER configuration parameter 125
Adaptive Server

active 148
end-user connection failure 158
identifying the server pair 115, 116
pinging host computer 161
Replication Agent, starting the active 154
standby 148
starting the active 154
suspending connections to standby 154
the RCM detection of connection failure 161

admin logical_status command 129
admin quiesce_force_rsi command 129, 160
admin_health command 129
administrative logins 133

for RCM 116
allocating context structure 9, 11
allowing asynchronous callbacks 10
analyzing the RCM environment 151, 155
APP_POOL configuration parameter 125
application end users 114, 121, 158

connection failures 158, 159
pool 114
pool connections 117

applications, Open Client 4
arguments

STATUS 139
ASYNC_MODE configuration parameter 125
automatic failover 112

recovering from 154
availability, server 158

C
C trace flag 152
callback handlers

example 10
installing 13, 22

CHARSET configuration parameter 125
client applications 113–115

using with OpenSwitch 114, 115
using with Replication Server 115

client connection 23
cm_callback 22

install callback handler 10
CM_CB_ASEFAIL 22
CM_CB_CTLIB 23
CM_CB_LOST 23
CM_CB_MSG 23
CM_CB_SERVER 23
cm_close 25
cm_connect 26

establishing connections with 9
example 10

cm_connect_enc 28
cm_create 30

creating coordination modules with 9
example 9, 11

cm_destroy 31
destroying coordination modules with 9
example 10

cm_error 32
cm_exit 32

deallocating coordination modules with 9
example 9, 10, 11, 12

Index

Index

164 OpenSwitch

cm_get_query 39
cm_get_showquery 39
cm_get_value 40
cm_getcol_data_size 33
cm_getcol_metadata 34
cm_getopt 35
cm_getprop 37
cm_ignore 42
cm_ignore_clear 44
cm_init 46

allocating context structure with 9
example 9, 11

cm_kill 73
cm_optreset 48
cm_ping 49
cm_ping_enc 50
cm_pool_status 74
cm_repeat_ping 52
cm_repeat_short_ping 54
cm_rp_cfg 77
cm_rp_cm_list 78
cm_rp_debug 78
cm_rp_del_list 80
cm_rp_dump 81
cm_rp_get_help 82
cm_rp_go 83
cm_rp_help 84
cm_rp_msg 84
cm_rp_pool_addattrib 86
cm_rp_pool_addserver 87
cm_rp_pool_cache 88
cm_rp_pool_create 89
cm_rp_pool_drop 90
cm_rp_pool_help 90
cm_rp_pool_remattrib 91
cm_rp_pool_remserver 92
cm_rp_pool_server_status 93
cm_rp_rcm_connect_primary 93
cm_rp_rcm_list 94
cm_rp_rcm_shutdown 94
cm_rp_rcm_startup 95
cm_rp_rmon 96
cm_rp_set 97
cm_rp_showquery 98
cm_rp_shutdown 98
cm_rp_version 99

cm_rp_who 99
cm_run 56

example 10
starting coordination modules with 9

cm_server_status 100
cm_set_print 23, 57
cm_set_prop 58

allowing asynchronous callbacks with 10
cm_set_srv 101
cm_short_ping 59
cm_start 61
cm_stop 63
cm_switch 102
cm_timer_add 65
cm_timer_rem 67
cm_unignore 68
cm_version 70
CMs. See coordination modules
command line flags 150, 151, 152, 155, 156

for the RCM 139, 140, 150, 152
commands

admin logical_status 129
admin quiesce_force_rsi 129, 160
admin_health 129
kill 159
monitor 132
quiesce 148
rcm 150, 152, 155
sp_start_rep_agent 131
stop 159
suspend log transfer 126, 129, 145
suspend log transfer from all 129, 160
switch active 126, 127, 129, 131, 132, 145, 148,

160
use database 131

concurrent coordination modules
and legacy CMs 16
configuration 16
notifications 17
unsupported in the RCM 15, 109
using 15

configuration
dynamic and static for RCM autostart 119
server information for 115, 117

configuration files
failover mode examples 140–143

Index

Coordination Module Reference Manual 165

for multiple databases 145
for Replication Server quiesce 141, 142
for switch active mode 141
multiple databases examples 143
OpenSwitch 123, 139
RCM 139
RCM security 124
user pool examples 124

configuration parameters
ACTIVE_ASE 125
ACTIVE_DBS 125, 126, 129, 130
ACTIVE_PASSWORD 125
ACTIVE_USER 125
APP_POOL 125
ASYNC_MODE 125
CHARSET 125
COORD_MODE 4, 6, 118, 134
COORD_PASSWORD 118, 125
COORD_TIMEOUT 16–17, 109
COORD_USER 118, 126
DATABASES 145
DISCONNECT_STBY_USERS 126, 160
FAILOVER_WAIT 126, 132
for RCM in OpenSwitch configuration file 118
for the RCM 124–127, 157
for user pools 122
LANGUAGE 126
LOGICAL_CONN 126, 160
MONITOR_WAIT 126, 132
NOTIFICATION_PROCESS 127, 149, 151
NUM_SWITCH_COMMAND 127
OPENSWITCH 128
OSW_MONITOR_WAIT 128
OSW_TIMER_INTERVAL 128
POOL 122
RCM autostart 119
RCM in OpenSwitch configuration file 118
RCM_AUTOSTART 119
RCM_CFG_FILE 119
RCM_LOG_FILE 119
RCM_PATH 120
RCM_RETRIES 120
RCM_SECONDARY 120
RCM_TRC_FLAG 120
REP_SERVER 129
RS_FAILOVER_MODE 126, 129, 130, 160

RS_PASSWORD 129
RS_USER 129
SECONDARY_OPENSWITCH 130
SERVER 123
SERVER_NAME 118
STANDBY_ASE 130
STANDBY_DBS 131
STANDBY_PASSWORD 130
STANDBY_USER 131
SWITCH_ACTIVE_INTERVAL 131
SWITCH_USERS 131
TIMER_INTERVAL 132

configuring
before configuring the RCM 117
OpenSwitch and RCM 111–149
rollover 135–138
the notification process 147, 149
user pools 114, 120–124

connection failures
application end user 159

connections
application end-user pool 117
context 115
coordination of 157
DSS user failure 158
establishing 9, 10
failed 161
logical 116
lost 23
monitoring database 161
OpenSwitch 137
OpenSwitch coordination 159
RCM 137
RCM to Replication Server failures 148
redundant 135
rollover of 135–138
rollover of user 135
switching logical 148
switching Replication Server 154
user 115

connections parameter option 122
connectivity

issues, resolving 152
status 152

constraints for redundant environments 135
context

Index

166 OpenSwitch

allocating structure 9
connection 115

conventions, documentation x
COORD_MODE configuration parameter 4, 6, 118, 134
COORD_PASSWORD configuration parameter 118, 125
COORD_TIMEOUT configuration parameter 16–17, 109
COORD_USER configuration parameter 118, 126
coordinated failover, recovering from 153, 154
coordinating

connections 157, 159
multiple OpenSwitch servers 152
RCM start-up 152

coordination modules 110, 157, 158
allocating 9, 11
building minimal 8
compiling 8
complete source code sample 14
concurrent 15
creating 8, 9, 11
deallocating 9, 10, 11, 12
defining variables in 9
destroying 9, 10
error messages in 9, 10, 11, 12, 13
establishing connection to OpenSwitch 8, 9, 10
example 9
exiting 9, 10, 11, 12
include statements in 9, 10
initializing 9, 11
legacy 16
reallocating 9
registered procedures, new 71
running 10
sample programs for 9, 14
starting 9, 10
with callback handler 10

corrupted database environment 154
creating

coordination modules 8, 9, 11
CS_SERVERMSG_CB 23

D
databases

active 116
corrupted environment 154

monitoring connections 161
multiple 143
noncritical 161
standby 116
unavailable 161

DATABASES configuration parameter 145
deallocating coordination modules 9, 10, 11, 12
decision-support-system. See (DSS) 114
defining variables in coordination module programs 9
destroying coordination modules 9, 10
directory, RCM installation 107
DISCONNECT_STBY_USERS configuration parameter

126, 160
displaying notification process messages 152
documentation

conventions x
OpenSwitch online vii

DSS
switching users 158
user connection failure 158
user pool 114
user pool connections 117
users 114, 121, 158
users, access to environment 139
users, off-loading 160

dual OpenSwitch server entries 136–138
dynamically configured parameters 119

E
E trace flag 152
encrypted user names and password for RCM 152
end-user

applications 114
connectivity 114
login request 157
logins failure 158

entries, interfaces file 135
entries, sql.ini 135
environment control by RCM 137
error messages

Adaptive Server 22
in coordination modules 9, 10, 11, 12, 13
Open Client API 23
OpenSwitch 23

Index

Coordination Module Reference Manual 167

establishing connections 9, 10
event descriptions, notification 147, 148
events

notification of 147
that trigger RCM notification process 147, 148

example program
callback handlers 10
minimal coordination module 9

examples
cm_connect 10
cm_create 9, 11
cm_destroy 10
cm_exit 9, 10, 11, 12
cm_init 9, 11
cm_run 10
configuration file for user pools 124
notification event scripts 148
OpenSwitch configuration file 123

execution of RCM 152
existing connections, failure 161
exiting from coordination modules 9, 10, 11, 12

F
F trace flag 152
failed connections 161
failover 108

aborted 148
after 109
automatic 112
before 109
control how RCM monitors 145
loss of capability 134
manual 112, 147
process 159, 160, 161
process failure 148
start the process 162
starting the process 161
strategies 112
switch active 160
tracing process execution 152
with Replication Server quiesce 112

failover modes
configuration file examples 140–143
none 142, 143

quiesce 141, 142
switch active 140, 141, 153, 160

FAILOVER_WAIT configuration parameter 126, 132,
146

failures
existing connections 161
login 158, 161
of active Adaptive Server 158
of Adaptive Server 161
of application end-user connection 158
of failover process 148
of OpenSwitch server 108, 157
of primary OpenSwitch server 133
of RCM-to-primary OpenSwitch connection 133
of RCM-to-secondary OpenSwitch connection

134
of Replication Server 154, 155, 162
of standby Adaptive Server 159
of switching process 148
of the primary RCM 134
of the RCM 134
of the redundant RCM instance 134
RCM-to-primary OpenSwitch connection 133
secondary OpenSwitch server 133, 134
within a redundant environment 133, 134

files
cm.h 7
cm1.c 8–19
interfaces 135–138
locales 108
notification output process 147
query lines 135
rcm.cfg 108
rcm.exe 107
rcm.loc 108
rcm.log 149
rcm_oswitch.cfg 108
runrcm.bat 107
runrcm.sh 107
sql.ini 135–138
stdout 151

flags
command line 139, 140, 150
trace 152

fprint(3c) 32

Index

168 OpenSwitch

H
HA failover, enabling 14
high availability, warm standby environment 113–117

minimal 108
redundant 108–109
requirements 111

I
identifying

the Adaptive Server Enterprise server pair 115, 116
user pools 114

IDs, notification 147–148
include statements in coordination module programs 9, 10
initialization, tracing RCM 152
initializing coordination modules 9, 11
installation

RCM directory 107
RCM files installed 107

installing callback handlers 22
interfaces file

entries 135
in a redundant environment 135–138
record for RCM administrator logins 137, 138

K
kill command 159

L
LANGUAGE configuration parameter 126
legacy coordination modules 16
load balancing 113, 135
locales file 108
log

RCM 149
viewing the Replication Server 156

logging in to a remote server 23
logical connections

name 116
switching 148

LOGICAL_CONN configuration parameter 126, 145,
160

login failure 161
notification 158

logins
RCM administrative 133, 134
RCM to Replication Server 116
Replication Agent thread 116

loss
of connection to Replication Server 148
of failover capability 134
of RCM-to-primary OpenSwitch connection 133
of RCM-to-secondary OpenSwitch connection

133, 134
lost connection 23

M
manual failover 112
messages

displaying notification process 152
writing to the system log 152

MODE parameter
arguments 122

modes, failover
NONE 129, 144, 146, 160
QUIESCE 129, 144, 145, 160
switch active 129, 144, 145, 153, 160

monitor command 132
MONITOR_WAIT configuration parameter 126, 132,

146, 147
monitoring

database connections 161
failover 145
switching process 154
the Replication Agent thread 154
with Replication Server plug-in 156

multiple databases 143
configuration file example for 145

multiple query lines 135, 136

N
network host ping 159

Index

Coordination Module Reference Manual 169

new features
concurrent coordination modules, using 15

noncritical databases 161
none mode

configuration file examples for 142, 143
notification

concurrent coordination module 17
configuring 149
configuring the process 147
described 4
event descriptions 147, 148
events that trigger 147, 148
execution permissions process 147
IDs 147–148
messages, displaying 152
of events 147
of login failure 158
output process 147
test 148

NOTIFICATION_PROCESS configuration parameter
127, 147, 149, 151

NUM_SWITCH_COMMAND configuration parameter
127

O
Open Client applications 4
OpenSwitch

configuration file RCM parameters 118
configuring the RCM 111–149
connection coordination 159
connections 137
online documentation vii
performance 115
primary 133
RCM configuration parameters 118
redundant 135
relationship with RCM 110
remote 23
restarting after failure 140
secondary 133
starting and stopping the RCM from 149
two configuration files for 139
user pools configuration 123
using with client applications 114, 115

OpenSwitch configuration file 118
CONFIG section 122

OPENSWITCH configuration parameter 128
OpenSwitch parameters

COORD_MODE 4, 6, 118
COORD_PASSWORD 118
COORD_USER 118
POOL 122
SERVER 123
SERVER_NAME 118

OpenSwitch RCM parameters
COORD_MODE 118

OpenSwitch server messages, writing to the system log
152

OpenSwitch servers 116
failure 108, 157
in warm standby environment 135
interfaces file entries for 136–138
primary 132, 133, 137
secondary 132, 134

OpenSwitch, establishing connection from coordination
module to 9, 10

option, connections 122
OSW_MONITOR_WAIT configuration parameter 128
OSW_TIMER_INTERVAL configuration parameter

128
output, notification process 147

P
parameter

connections options 122
MODE arguments 122
STATUS arguments 123
values 124

parameters
dynamic 119
static 119

parameters, configuration 149
COORD_MODE 4, 6, 118, 134
COORD_PASSWORD 118, 125
COORD_TIMEOUT 16–17, 109
COORD_USER 118
DATABASES 145
DISCONNECT_STBY_USERS 160

Index

170 OpenSwitch

FAILOVER_WAIT 146
LOGICAL_CONN 145, 160
MONITOR_WAIT 146, 147
NOTIFICATION_PROCESS 147, 151
REQUIRED_DBS 145, 161
RS_FAILOVER_MODE 145, 146, 160
SERVER_NAME 118
TIMER_INTERVAL 146, 147

performance
OpenSwitch 115

permissions, notification process 147
ping

Adaptive Server host computer 161
network host computer 159

POOL configuration parameter 122
pools, user 114

configuring 114
identifying 114

primary OpenSwitch servers 132
detecting problems with 137
failure 133

primary RCM 132
failure 134

printf function 32
problems

with active Adaptive Server 158
with Adaptive Server 161
with application end-user connection 158
with failover process 148
with OpenSwitch server 108, 157
with primary OpenSwitch server 133, 137
with RCM-to-OpenSwitch connections 137
with RCM-to-primary OpenSwitch connection 133
with RCM-to-secondary OpenSwitch connection 133
with Replication Server 154, 155, 162
with secondary OpenSwitch server 133
with standby Adaptive Server 159
with switching process 148
with the primary RCM 134
with the RCM 134
with the redundant RCM instance 134

programs
notification events 148
sample 9

programs, sample 14

Q
query lines 135

multiple 135, 136
quiesce command 148
quiesce mode

configuration file examples for 141, 142
quiesce Replication Server 112

R
RCM

administrative login 133
administrator logins 116
autostart configuration parameters 119
autostart dynamic and static configuration 119
before configuring 117
command line flags 150, 152
configuration file 139
configuration file examples 140–147
configuration parameters 124–127
configuring 111–149
connections 137
coordinating start-up 152
description 108
detection of Replication Server failure 162
environment, analyzing 155
events that trigger the notification process 147,

148
execution 152
exit of 148
failover process 160
failure of 134
files installed 107
in control of environment 137
initialization tracing 152
installation directory 107
interfaces file record for administrator logins 137
internals 162
internals of start-up 157
log 149
logging in to Replication Server 116
messages, writing to the system log 152
monitoring failover 145
nonsupport for concurrent coordination modules

15, 109

Index

Coordination Module Reference Manual 171

OpenSwitch configuration parameters 118
primary instance 132
redundant instance 132, 136
relationship with OpenSwitch 110
restarting after failure 140
rollover of administrator logins 133, 134
security configuration files 124
starting 149
starting and stopping from OpenSwitch 149
start-up options 150
start-up syntax 150, 152
tuning 145, 147
using 107
using encrypted user names and passwords 152
validation of configuration parameters 157
wait state 147

rcm command 139, 150, 155
syntax 150, 152

RCM parameters
ACTIVE_ASE 125
ACTIVE_DBS 125, 126, 129, 130
ACTIVE_PASSWORD 125
ACTIVE_USER 125
APP_POOL 125
ASYNC_MODE 125
CHARSET 125
COORD_USER 126
DISCONNECT_STBY_USERS 126
FAILOVER_WAIT 126, 132
LANGUAGE 126
LOGICAL_CONN 160
MONITOR_WAIT 126, 132
NOTIFICATION_PROCESS 127
NUM_SWITCH_COMMAND 127
OPENSWITCH 128
OSW_MONITOR_WAIT 128
OSW_TIMER_INTERVAL 128
REP_SERVER 129
REQUIRED_DBS 161
RS_FAILOVER_MODE 126, 129, 130, 160
RS_PASSWORD 129
RS_USER 129
SECONDARY_OPENSWITCH 130
STANDBY_ASE 130
STANDBY_DBS 131
STANDBY_PASSWORD 130

STANDBY_USER 131
SWITCH_ACTIVE_INTERVAL 131
SWITCH_USERS 131
TIMER_INTERVAL 132

rcm.cfg 108
rcm.exe 107
rcm.loc 108
rcm.log 149, 151
RCM_AUTOSTART 119
RCM_CFG_FILE 119
RCM_LOG_FILE 119
rcm_oswitch.cfg 108
RCM_PATH 120
RCM_RETRIES 120
RCM_SECONDARY 120
RCM_TRC_FLAG 120
RCM-to-OpenSwitch connections 137
RCM-to-primary OpenSwitch connections 133
reallocating coordination modules 9
reason code

COORD_R_LOST2 18
recovering

from a coordinated failover 153, 154
from a switch active failover 153, 154
from an automatic failover 154
from failure in a redundant environment 140
system 159

redundant
connections 135
environment 113
environment constraints 135
environment, creating 132
environment, failure of 133, 134
environment, OpenSwitch failure in 140
OpenSwitch server 135
RCM command line flag 139, 140
RCM instance 132, 136
RCM instance failure 134

registered procedures
coordination module, new 71
notifications 4

related documentation 107
remote

OpenSwitch 23
removing

coordination modules 9

Index

172 OpenSwitch

timers 67
REP_SERVER configuration parameter 129
replicate Replicate Server 117
Replication Agent thread

login 116
monitoring 154
stopping 154

Replication Agents
in standby Adaptive Server 148
unable to start 148

replication coordination module. See RCM
Replication Server 108, 116

configuration file for quiesce 142
connection switching 154
failover with quiesce 112
failover, manual 147
failure of 154, 155
monitoring with the plug-in 156
no connection to 148
RCM detection of failure 162
RCM logging in to 116
replicate 117
restrictions 117
resuming active connections 154
resuming standby connections 154
using with client applications 115
viewing the log 156

request for remote server name 23
REQUIRED_DBS configuration parameter 145, 161
requirements

high availability, warm standby environment 111
restarting

OpenSwitch 140
RCM 140

restrictions
Replication Server 117

resuming
active Replication Server connections 154
standby Replication Server connections 154

rollover 135–138
of user connections 135, 137

RS_FAILOVER_MODE configuration parameter 129, 130,
145, 146, 160

RS_PASSWORD configuration parameter 129
RS_USER configuration parameter 129
running coordination modules 10

runrcm.bat 107
runrcm.sh 107

S
sample programs 9, 14
scripts, notification event 148
secondary OpenSwitch servers 132

failure 133, 134
SECONDARY_OPENSWITCH configuration parameter

130
security

RCM configuration file 124
SERVER configuration parameter 123
SERVER_NAME configuration parameter 118
servers

active 116
availability 158
configuration information 115, 117
standby 116

setting up
configuration file for two RCM instances 139
two OpenSwitch configuration files 139

sp_start_rep_agent command 131
sql.ini file

entries 135
standby Adaptive Server 116

failure 159
out of date 154
Replication Agent in 148
suspending connections to 154
switching users to 148

STANDBY_ASE configuration parameter 130
STANDBY_DBS configuration parameter 131
STANDBY_PASSWORD configuration parameter 130
STANDBY_USER configuration parameter 131
starting

active Adaptive Server 154
active Adaptive Server Replication Agent 154
coordination modules 9, 10
failover process 161, 162
the RCM 149, 152
the RCM from OpenSwitch 149

start-up internals, RCM 157
statically configured parameters 119

Index

Coordination Module Reference Manual 173

STATUS parameter argument 123, 139
status, connectivity 152
stdout file 151
stop command 159
stopping the Replication Agent thread 154
strategies

failover 112
high availability 113–117

suspend log transfer command 126, 129, 145
suspend log transfer from all command 129, 160
suspending connections

to active Adaptive Server 159
to standby Adaptive Server 154

switch active 126, 127, 129, 131, 132, 145, 148, 153,
160

configuration file examples for 141
configuration file for 140, 141
modes 160
recovering from failover, 153

SWITCH_ACTIVE_INTERVAL configuration parameter
131

SWITCH_USERS configuration parameter 131
switching

failure of process 148
logical connections 148
monitoring the process 154
Replication Server connections 154
to a remote server 23
users back to active Adaptive Server 154
users to standby Adaptive Server 148

switchover. See rollover
syntax

rcm command 150, 152
system log, writing RCM messages to 152
system recovery 159

T
temporary file for notification process output 147
test notification 148
timer, removing 67
TIMER_INTERVAL configuration parameter 132,

146, 147
trace flags 152
tracing

connectivity issues 152
execution of failover process 152
RCM execution 152
RCM initialization 152

triggers 4
troubleshooting 155–156
tuning RCM 145, 147

U
unable to start Replication Agents 148
unavailability of database 161
use database command 131
user connections 115

rollover of 137
user pools

configuration parameters 122
configuring 120–124
example configuration file 123, 124

users, application end 158

V
validation of RCM configuration parameters 157
value, parameter 124
variables, defining 9
viewing the Replication Server log 156

W
wait state, RCM 147
warm standby environment 108–109
writing

OpenSwitch messages to the system log 152
RCM messages to the system log 152

Index

174 OpenSwitch

	Coordination Module Reference Manual
	About This Book
	CHAPTER 1 Introduction
	Using coordination modules
	Coordination modes
	Notification requests
	Coordination module responses
	What if the coordination module is unavailable?

	CHAPTER 2 Using Coordination Modules
	Introduction
	Compiling the coordination module
	Creating a minimal coordination module
	Installing a callback handler
	Creating a complete coordination module
	Enabling Sybase Failover
	Using concurrent coordination modules
	Configuration
	Notifications

	Enabling mutually-aware support
	Enabling redundant failback timer
	Enabling encryption

	CHAPTER 3 Coordination Module Routines and Registered Procedures
	cm_callback
	cm_close
	cm_connect
	cm_connect_enc
	cm_create
	cm_destroy
	cm_error
	cm_exit
	cm_getcol_data_size
	cm_getcol_metadata
	cm_getopt
	cm_get_prop
	cm_get_showquery
	cm_get_value
	cm_ignore
	cm_ignore_clear
	cm_init
	cm_is_active
	cm_optreset
	cm_ping
	cm_ping_enc
	cm_repeat_ping
	cm_repeat_short_ping
	cm_run
	cm_set_print
	cm_set_prop
	cm_short_ping
	cm_start
	cm_stop
	cm_timer_add
	cm_timer_rem
	cm_unignore
	cm_version
	Coordination module registered procedures
	cm_kill
	cm_pool_status
	cm_rp_cancel
	cm_rp_cfg
	cm_rp_cm_list
	cm_rp_debug
	cm_rp_del_list
	cm_rp_dump
	cm_rp_get_help
	cm_rp_go
	cm_rp_help
	cm_rp_msg
	cm_rp_pool_addattrib
	cm_rp_pool_addserver
	cm_rp_pool_cache
	cm_rp_pool_create
	cm_rp_pool_drop
	cm_rp_pool_help
	cm_rp_pool_remattrib
	cm_rp_pool_remserver
	cm_rp_pool_server_status
	cm_rp_rcm_connect_primary
	cm_rp_rcm_list
	cm_rp_rcm_shutdown
	cm_rp_rcm_startup
	cm_rp_rmon
	cm_rp_set
	cm_rp_showquery
	cm_rp_shutdown
	cm_rp_version
	cm_rp_who
	cm_server_status
	cm_set_srv
	cm_switch

	CHAPTER 4 Using the Replication Coordination Module
	Introduction
	What is the replication coordination module?

	Configuring OpenSwitch and the RCM
	Determining your failover strategy
	Understanding a redundant environment
	Planning for high availability
	Coordinating the client application
	Identifying server information required for configuration
	Understanding Replication Server restrictions
	Before configuring the RCM

	Configuring OpenSwitch
	Using RCM configuration parameters
	Configuring RCM autostart
	Configuring user pools

	Configuring the RCM
	Understanding RCM configuration parameters

	Creating a redundant environment
	Anticipating failures within a redundant environment
	Configuring two OpenSwitch servers
	Setting up the sql.ini or interfaces file
	Setting up two OpenSwitch configuration files
	Setting up a configuration file for two RCM instances
	Command line flag for the redundant RCM
	Starting OpenSwitch and the RCM after OpenSwitch failure

	RCM configuration file examples
	Failover modes
	Multiple databases
	Tuning

	Configuring the notification process

	Starting and stopping the RCM
	Starting and stopping the RCM automatically from OpenSwitch
	Starting an RCM at the command line
	Stopping the RCM manually

	Recovering from a coordinated failover
	Recovering from switch active failover

	Unexpected failure of Replication Server
	Troubleshooting
	Analyzing the RCM environment
	Monitoring the environment with Replication Server plug-in

	RCM internal coordination
	The RCM start-up process
	OpenSwitch connection coordination
	End-user login request
	End-user login or connection failure

	Failover processing
	How the RCM detects Adaptive Server failure
	How the RCM detects Replication Server failure

	Index

