
New Features Bulletin

Open Server™ and SDK 15.7
SP100

Windows, Linux, and UNIX

DOCUMENT ID: DC20155-01-1570100-01
LAST REVISED: May 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Product Platforms and Compatibilities1
Open Server and SDK Platform Compatibility Matrix1
Solaris SPARC 64-bit patch level5

Product Components ..7
Open Server ...7
Software Developer’s Kit ...7
SDK DB-Library Kerberos Authentication Option9

New Features for SP100 ..11
Change in Release Version Number11
Installer Changes ..11
Open Client 15.7 and Open Server 15.7 Features12

New MIT Kerberos Libraries Support Sybase
Kerberos Driver ...12

SDK 15.7 Features for Adaptive Server Enterprise
Drivers and Providers ...12

WindowsCharsetConverter Connection
Property ..12

SSIS Custom Data Flow Destination
Component for Faster Data Transfers to
Adaptive Server for SQL Server 201213

Adaptive Server ADO.NET Data Provider
Support for SSRS ..14

LDAPS Functionality for Adaptive Server
Enterprise Drivers and Providers15

SSL Support in jConnect16
New Features for ESD #7 ..17

Open Client 15.7 and Open Server 15.7 Features17
Client-Library Supports Connection String

Properties ..17
Remote Password Encryption21
libsybsspiwrapper64.dll for Windows 64-bit21

New Features Bulletin iii

SDK 15.7 Features for Adaptive Server Enterprise
Drivers and Providers ...22

New CancelQueryOnFreeStmt Connection
Property for Adaptive Server ODBC Driver22

New Efficient Method to Set Client Connection
Attributes ...22

Enhanced Support for data-at-exec Feature in
Adaptive Server ODBC Driver23

New -n Command line Option in Ribo Utility23
Adaptive Server Enterprise Extension Module for

Python ..24
Support for DSN-style Connection String

Properties ..24
New Sample Programs ..27
blklib Support ...28

Adaptive Server Enterprise Extension Module for PHP
..29

Support for DSN-style Connection Properties29
New Features for ESD #6 ..33

Open Client 15.7 and Open Server 15.7 Features33
Bulk-copy-in with LOB Datatype33
New SYBOCS_IFILE Environment Variable33
LDAP and SSL Version Support33
Parameter Format Suppression33
Open Server Support for Extended Plus

Encrypted Password ..34
BCP --quoted-fname Option35

Adaptive Server Enterprise Extension Module for
Python ..35

Support for DSN Style Connection Properties35
Adaptive Server Enterprise Extension Module for Perl

..35
Support for DSN Style Connection Properties36
Currently Supported Database Handle

Attributes ...39

Contents

iv Open Server and SDK

Perl Supported Datatypes42
Multiple Statements Usage42
Supported Character Lengths 44
Configuring Locale and Charsets 44
Dynamic SQL Support, Placeholders, and Bind

Parameters ..44
Stored Procedure Support for Placeholders45
Supported Private Driver Methods 48
Default Date Conversion and Display Format49
Text and Image Data Handling 50
Error Handling ..51
Configuring Security Services 52
Examples ...52

New Features for ESD #5 ..61
Adaptive Server ADO.NET Data Provider Support for

Transact-SQL Queries with COMPUTE Clause61
New SSIS Custom Data Flow Destination Component

for Faster Data Transfers to Adaptive Server62
Configuring Adaptive Server ADO.NET

Destination SSIS Component for SQLServer
2008 .. 62

jConnect Dynamic Logging Levels63
Package Name Changed in jConnect for Converter

Classes ..64
Increased PreparedStatement Parameter Limit in

jConnect ..65
New SkipRowCountResults Connection Property for

Adaptive Server ODBC Driver65
Support for AF_UNIX Sockets in Adaptive Server

ODBC Driver .. 65
AdjustLargePrecisionAndScale Connection Property

for Adaptive Server ODBC Driver66
New Features for ESD #4 ..67

Open Client 15.7 and Open Server 15.7 Features in
ESD #4 ...67

Contents

New Features Bulletin v

Stricter Permissions for Open Client and Open
Server Files (UNIX only)67

New SYBOCS_TCL_CFG Environment
Variable for Setting Alternate Path to
libtcl*.cfg Files ...68

New isql Command line Option --URP to Set
Universal Remote Password68

New linux64 and nthread_linux64 Settings for
SYBPLATFORM ..68

LAN Manager Driver for Microsoft Windows 64-
bit ...69

Support for Batched Parameters69
New CS-Library String Handling Routines71

SDK 15.7 features for jConnect and Adaptive Server
Drivers and Providers in ESD #473

Granular and Predicated Permissions73
alter table drop column without Datacopy74
Fast Logged Bulk Insert74
Dynamic Logging ...75
Dynamic Client Information Setting75
Dynamic Connection Property Setting75
Exception Handling ..76
New jConnect Connection Properties for

Performance Improvement76
New jConnect Connection Properties77
Notes on Hibernate Support for JDBC78
Support for

SQL_ATTR_OUTPUT_NTS=SQL_FALSE78
Support for SQLLEN Datatype of Length 8-byte

(Linux 64-bit only) ..78
ODBC Deferred Array Binding79
Bulk Insert Support for ODBC Data Batching79
Dynamic Logging Support without ODBC Driver

Manager Tracing ..80
Dynamic Control of TDS Protocol Capture80

Contents

vi Open Server and SDK

Replication Server Connection Support81
Comprehensive ADO.NET Provider Assembly

Files ...81
ADO.NET Support for Larger Decimal Precision/

Scale ...82
Visual Studio DDEX Connection Dialog

Enhancement for Additional Connection
Properties ..82

New Connection Strings for OLE DB
Applications ...82

Adaptive Server Enterprise Extension Module for
Python in ESD #4 ...84

New Parameter Datatype Support for Dynamic
Statements and Stored Procedures84

Adaptive Server Enterprise Extension Module for PHP
in ESD #4 ...85

Adaptive Server Enterprise Database Driver for Perl in
ESD #4 ..86

New Features for ESD #3 ..89
Skip Installation of Samples, Documentation, and

Debug Files ..89
Open Client 15.7 and Open Server 15.7 Features in

ESD #3 ...89
CyberSafe Kerberos Driver on 64-bit Microsoft

Windows ..89
UNIX Named Sockets ..89
Logging Rows Rejected by the Client90
Increased bcp Maximum Rows Handling

Capacity ..91
Parameter Format Suppression91

Adaptive Server Enterprise Extension Module for
Python in ESD #3 ...91

Accessing Stored Procedures using Python91
Compute Rows using Python92
Localized Error Messages92

Contents

New Features Bulletin vii

New Features for ESD #1 ..93
Open Client 15.7 and Open Server 15.7 Features in

ESD #1 ...93
FIPS-certified SSL Filter93
ASE database Driver for Perl and ASE

Extension Module for PHP Supported on 64-
bit Windows ...94

SDK 15.7 Features for jConnect and Adaptive Server
Drivers and Providers in ESD #194

Suppressing Parameter Format Metadata to
Improve Prepared Statement Performance94

Suppressing Row Format Metadata to Improve
Query Performance ...95

SuppressRowFormat2 and SQLBulkOperations
...95

Adaptive Server Enterprise Extension Module for
Python in ESD #1 ...95

Configuring Adaptive Server Enterprise
Extension Module for Python96

Open Client 15.7 and Open Server 15.7 Features97
Large Object Locator Support97

Client-Library Changes ..97
Open Server Support for Large Object Locators

...101
Large Object Locator Support101

In-row and off-row LOB Support105
Bulk-Library Select into Logging105

BLK_CUSTOM_CLAUSE105
Bulk-Library and bcp Handling of Nonmaterialized

Columns ...106
Support for Preserving Trailing Zeros106
New DB-Library Overflow Errors106
New Nameless Application Configuration Settings

Handling ...107
TCP Socket Buffer Size Configuration107

Contents

viii Open Server and SDK

Properties ..108
isql64 and bcp64 for all 64-bit Products109
Support for Expanded Variable-length Rows109
Row Format Caching ..109
Support for Releasing Locks at Cursor Close110

Client-Library Usage ..110
Open Server Usage ...111
ESQL/C and ESQL/COBOL Usage111

Large Objects as Stored Procedure Parameters111
Send Small Amounts of LOB Data as

Parameters ..112
Send Large Amounts of LOB Data as

Parameters ..114
Retrieve LOB Parameters in Open Server118
srv_get_data ..119

SDK 15.7 Features for jConnect and Adaptive Server
Enterprise Drivers and Providers121

ODBC Driver Version Information Utility121
SupressRowFormat2 Connection String Property122
Enhancement to UseCursor Property122
Log without ODBC Driver Manager Tracing123

Log Configuration File ..123
jConnect setMaxRows Enhancement124
TDS ProtocolCapture ..124
ODBC Data Batching without Binding Parameter

Arrays ...125
Manage Data Batches125
Examples of Managing Data Batches126
ODBC Data Batching Considerations126

Optimized Batching in jConnect127
Homogeneous Batching with LOB Columns127

jConnect Parameter Batching without Row
Accumulation ..128

jConnect Batch Update Enhancement to Execute Past
Errors ..128

Contents

New Features Bulletin ix

Support for Releasing Locks at Cursor Close128
select for update Support ..129
Support for Expanded Variable-length Rows129
Support for Nonmaterialized Columns130
In-row and off-row LOB Storage Support130
Large Objects as Stored Procedure Parameters130
Large Object Locator Support131

jConnect for JDBC Support131
Adaptive Server Enterprise ODBC Driver

Support ..132
Adaptive Server Enterprise Extension Module for

Python ..153
Adaptive Server Enterprise Extension Module for PHP .155
Adaptive Server Enterprise Database Driver for Perl157
Deprecated Features ...159

DCE Service Libraries ..159
dsedit_dce utility Files ...159
Unsupported Platforms ...159

Accessibility Features ...161
Index ..163

Contents

x Open Server and SDK

Product Platforms and Compatibilities

The platforms that support Open Server™ and SDK.

• HP-UX Itanium 32-bit
• HP-UX Itanium 64-bit
• IBM AIX 32-bit
• IBM AIX 64-bit
• Linux x86 32-bit
• Linux x86-64 64-bit
• Linux on POWER 32-bit
• Linux on POWER 64-bit
• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 32-bit
• Solaris SPARC 64-bit
• Solaris x86 32-bit
• Solaris x86-64 64-bit

Note: Not all Open Server and SDK components are available on the platforms listed above.
See Product Components for the complete list of components available on each platform.

Open Server and SDK Platform Compatibility Matrix
The table lists the platforms, compilers, and third-party products Open Server and SDK
products are built and tested on.

Plat-
form

Oper-
ating
sys-
tem
level

C and
C++
com-
pilers

CO-
BOL
com-
piler

Ker-
beros
ver-
sion

Light-
weight
Directo-
ry Ac-
cess
(LDAP)

Secure
Sock-
ets Lay-
er
(SSL)

Perl
ver-
sion

PHP
ver-
sion

Py-
thon
ver-
sion

HP-
UX
Itani-
um
32-bit

HP
11.31

HP AN-
SI C A.
06.17

MF SE
5.1

MIT
1.4.1

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

5.14
(DBI
1.616
)

n/a n/a

Product Platforms and Compatibilities

New Features Bulletin 1

Plat-
form

Oper-
ating
sys-
tem
level

C and
C++
com-
pilers

CO-
BOL
com-
piler

Ker-
beros
ver-
sion

Light-
weight
Directo-
ry Ac-
cess
(LDAP)

Secure
Sock-
ets Lay-
er
(SSL)

Perl
ver-
sion

PHP
ver-
sion

Py-
thon
ver-
sion

HP-
UX
Itani-
um
64-bit

HP
11.31

HP AN-
SI C A.
06.17

MF SE
5.1

MIT
1.4.1

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a 5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

IBM
AIX
32-bit

AIX
6.1

XL C
10.1

MF SE
5.1

Cyber-
safe
Trust-
broker
2.1,
MIT
1.4.1

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

5.14
(DBI
1.616
)

n/a n/a

IBM
AIX
64-bit

AIX
6.1

XL C
10.1

MF SE
5.1

MIT
1.4.3

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a 5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

Linux
x86
32-bit

Red
Hat En-
terprise
Linux
5.3

gcc 4.1.2
2006040
4 kernel
2.6.9-55
.ELsmp

MF SE
5.1

MIT
1.4.2

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a n/a n/a

Linux
x86-6
4 64-
bit

Red
Hat En-
terprise
Linux
5.3
(Na-
hant
Update
4)

gcc 4.1.2
2006040
4 kernel
2.6.9-55
.ELsmp

MF SE
5.1

MIT
1.4.3

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

5.14
(DBI
1.616
)

5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

Product Platforms and Compatibilities

2 Open Server and SDK

Plat-
form

Oper-
ating
sys-
tem
level

C and
C++
com-
pilers

CO-
BOL
com-
piler

Ker-
beros
ver-
sion

Light-
weight
Directo-
ry Ac-
cess
(LDAP)

Secure
Sock-
ets Lay-
er
(SSL)

Perl
ver-
sion

PHP
ver-
sion

Py-
thon
ver-
sion

Linux
on
POW-
ER
32-bit

Red
Hat En-
terprise
Linux
5.3

XL C
10.1

None
plan-
ned

MIT
1.4.1

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

5.14
(DBI
1.616
)

n/a n/a

Linux
on
POW-
ER
64-bit

Red
Hat En-
terprise
Linux
5.3

XL C
10.1

MF SE
5.1

MIT
1.4.1

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a 5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

Mi-
cro-
soft
Win-
dows
x86
32-bit

Win-
dows
2008
R2
Service
Pack 1

Win-
dows
XP
Service
Pack 1
(ODBC
/ OLE
DB on-
ly)

Micro-
soft Vis-
ual Stu-
dio 2005
Service
Pack 1
(C/C++)

MF SE
5.1

Cyber-
safe
Trust-
broker
4.0,
MIT
2.6.4

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a n/a n/a

Product Platforms and Compatibilities

New Features Bulletin 3

Plat-
form

Oper-
ating
sys-
tem
level

C and
C++
com-
pilers

CO-
BOL
com-
piler

Ker-
beros
ver-
sion

Light-
weight
Directo-
ry Ac-
cess
(LDAP)

Secure
Sock-
ets Lay-
er
(SSL)

Perl
ver-
sion

PHP
ver-
sion

Py-
thon
ver-
sion

Mi-
cro-
soft
Win-
dows
x86-6
4 64-
bit

Win-
dows
2008
R2
Service
Pack 1

Win-
dows
XP
Service
Pack 1
(ODBC
/ OLE
DB on-
ly)

Micro-
soft Vis-
ual Stu-
dio 2005
Service
Pack 1
(C/C++)

MF SE
5.1

Cyber-
safe
Trust-
broker
2.1

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

Ac-
tive
Perl
5.14.
1
(DBI
1.616
)

5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

So-
laris
SPAR
C 32-
bit

Solaris
10

Solaris
Studio
12.1

MF SE
5.1

Cyber-
safe
Trust-
broker
2.1,
MIT
1.4.2

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

5.14
(DBI
1.616
)

n/a n/a

So-
laris
SPAR
C 64-
bit

Solaris
10,
patch
level
144488
-17 or
later,
patch
level
119963
-24 or
later for
SUNW
libC

Solaris
Studio
12.1

MF SE
5.1

Cyber-
safe
Trust-
broker
2.1,
MIT
1.4.2

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a 5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

Product Platforms and Compatibilities

4 Open Server and SDK

Plat-
form

Oper-
ating
sys-
tem
level

C and
C++
com-
pilers

CO-
BOL
com-
piler

Ker-
beros
ver-
sion

Light-
weight
Directo-
ry Ac-
cess
(LDAP)

Secure
Sock-
ets Lay-
er
(SSL)

Perl
ver-
sion

PHP
ver-
sion

Py-
thon
ver-
sion

So-
laris
x86
32-bit

Solaris
10

Solaris
Studio
12.1

MF SE
5.1

MIT
1.4.2

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

5.14
(DBI
1.616
)

n/a n/a

So-
laris
x86-6
4 64-
bit

Solaris
10

Solaris
Studio
12.1

MF SE
5.1

MIT
1.4.2

Open-
LDAP
2.4.31
with
OpenSSL
1.0.1b

Certicom
SSL Plus
5.2.2
(SBGSE
2.0) CSI-
Crypto
2.7M1

n/a 5.3.6 2.6,
2.7,
and
3.1
(DB
API
2.0)

LEGEND: n/a = script is not available or does not work with SDK on that platform.

Note: For the most current Open Server and SDK certifications support, see the Sybase®

platform certifications page http://certification.sybase.com/ucr/search.do

Microsoft has ended mainstream support for Visual Studio 2005. Although, SDK currently
supports Visual Studio Compiler 2005 and later versions, Sybase recommends that you move
to Visual Studio 2010 as soon as possible.

Solaris SPARC 64-bit patch level
For the Solaris SPARC 64-bit platform, the Solaris 10 operating system kernel patch level
must be 144488-17 or later (patch bundle June 30th, 2011 or later).

You must also apply patch 119963-24 or later to the SUNWlibC package.

Product Platforms and Compatibilities

New Features Bulletin 5

http://certification.sybase.com/ucr/search.do

Product Platforms and Compatibilities

6 Open Server and SDK

Product Components

Open Server 15.7 and SDK 15.7 introduce new features, such as Bulk-Library select into
logging, large object stored procedure parameter support, support for nonmaterialized
columns in Adaptive Server® Enterprise, and updates to jConnect™ for JDBC™ and Adaptive
Server drivers and providers.

Open Server 15.7 and SDK 15.7 also support the Perl, PHP, and Python scripting languages
for use with Adaptive Server.

Open Server
Open Server is a set of APIs and supporting tools you can use to create custom servers to
respond to client requests submitted through Open Client™ or jConnect for JDBC routines.

Table 1. Open Server Components and Supported Platforms

Open Server Components Platforms

Open Server Server-Library All platforms

Open Server Client-Library All platforms

Language modules All platforms

Software Developer’s Kit
The Software Developer’s Kit (SDK) is a set of libraries and utilities you can use to develop
client applications.

Table 2. SDK Components and Supported Platforms

SDK Components Platforms

Open Client Client-Library All platforms

Open Client DB-Library™ All platforms

Embedded SQL™/C (ESQL/C) All platforms

Product Components

New Features Bulletin 7

SDK Components Platforms

Embedded SQL/COBOL (ESQL/COBOL) • HP HP-UX Itanium 32-bit
• HP HP-UX Itanium 64-bit
• IBM AIX 64-bit
• Linux x86 32-bit
• Linux x86-64 64-bit
• Linux on POWER 32-bit
• Linux on POWER 64-bit
• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 32-bit
• Solaris SPARC 64-bit
• Solaris x86 32-bit
• Solaris x86-64 64-bit

Extended Architecture (XA) • HP HP-UX Itanium 32-bit
• HP HP-UX Itanium 64-bit
• IBM AIX 32-bit
• IBM AIX 64-bit
• Linux x86-64 64-bit
• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 32-bit
• Solaris SPARC 64-bit
• Solaris x86 32-bit
• Solaris x86-64 64-bit

jConnect for JDBC All platforms

Adaptive Server Enterprise ODBC Driver by
Sybase

• HP HP-UX Itanium 64-bit
• IBM AIX 64-bit
• Linux on POWER 64-bit
• Linux x86 32-bit
• Linux x86-64 64-bit
• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 64-bit
• Solaris x86-64 64-bit

Adaptive Server Enterprise OLE DB Provider
by Sybase

• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit

Product Components

8 Open Server and SDK

SDK Components Platforms

Adaptive Server Enterprise ADO.NET Data
Provider

• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit

Language modules All platforms

Adaptive Server Enterprise extension module
for Python

• HP-UX Itanium 64-bit
• IBM AIX 64-bit
• Linux x86-64 64-bit
• Linux on POWER 64-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 64-bit
• Solaris x86-64 64-bit

Adaptive Server Enterprise extension module
for PHP

• HP-UX Itanium 64-bit
• IBM AIX 64-bit
• Linux x86-64 64-bit
• Linux on POWER 64-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 64-bit
• Solaris x86-64 64-bit

Adaptive Server Enterprise database driver for
Perl

• HP-UX Itanium 32-bit
• IBM AIX 32-bit
• Linux x86-64 64-bit
• Linux on POWER 32-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 32-bit
• Solaris x86 32-bit

SDK DB-Library Kerberos Authentication Option
The Sybase SDK DB-Library Kerberos Authentication Option allows the MIT Kerberos
security mechanism to be used on DB-Library.

The Sybase SDK DB-Library Kerberos Authentication Option is available on:

• Linux x86 32-bit
• Microsoft Windows x86 32-bit
• Solaris SPARC 32-bit
• Solaris SPARC 64-bit

Product Components

New Features Bulletin 9

Product Components

10 Open Server and SDK

New Features for SP100

SP100 introduces a change in versioning number and updated functionality for Open Client
15.7, Open Server 15.7, and SDK 15.7.

Change in Release Version Number
Software patches currently known to Sybase® customers as ESDs (Electronic Software
Deliveries) following major or minor releases are now referred to as SPs (support packages),
with numbers of up to three digits.

See SAP® Release Strategy for all Major Software Releases at: https://service.sap.com/
releasestrategy.There is no change to upgrade or downgrade procedures because of this
change in version number.

Installer Changes
The SDK and Open Server installers have been enhanced for version and backward
compatibility.

• The SDK and Open Server installers now check that the version you are installing is
compatible with, and can be installed on top of the version in your destination directory.
When the bug fixes in the version in your destination directory are unavailable in the
version you are installing, the installation is considered as incompatible.
If the already installed version is compatible, installation proceeds normally.
If the already installed version is incompatible with the version you are installing, the
installation process stops. You can:
• Override the error to continue, or,
• Abort the installation. Check the software download site to see if a compatible version

is available.
• For backward compatibility, the installer installs all security and directory driver file

versions from 15.7 GA to 15.7 SP100.

New Features for SP100

New Features Bulletin 11

https://service.sap.com/releasestrategy
https://service.sap.com/releasestrategy

Open Client 15.7 and Open Server 15.7 Features
Open Client 15.7 and Open Server 15.7 support new MIT Kerberos libraries.

New MIT Kerberos Libraries Support Sybase Kerberos Driver
The new MIT Kerberos libraries, version 4.0.1 for Windows 64-bit can be used with the
Sybase Kerberos driver, libsybskrb64.dll.

To use the MIT Kerberos GSS library on Windows 64-bit, add this entry to the SECURITY
section of your %SYBASE%\OCS-15_0\ini\libtcl64.cfg file:

[SECURITY]
csfkrb5=libsybskrb64.dll secbase=@MYREALM libgss=C:
\Kerberos_winx64\bin\gssapi64.dll

Here C:\Kerberos_winx64 is the location of your MIT Kerberos installation.

Note: The path to the Kerberos gssapi library cannot contain any spaces.

SDK 15.7 Features for Adaptive Server Enterprise Drivers
and Providers

SP100 introduces new functionality for Adaptive Server ODBC Driver 15.7, jConnect 7.07,
and Adaptive Server ADO.NET Data Provider15.7.

WindowsCharsetConverter Connection Property
(Microsoft Windows only) Starting in version 15.7 SP 100, a new connection property,
WindowsCharsetConverter, allows users to select which conversion library to use: the
Sybase Unicode Infrastructure Library (Unilib) or the Microsoft Unicode conversion
routines.

In versions 15.5 and later, the Adaptive Server Enterprise ADO.NET Data Provider, the
Adaptive Server Enterprise OLEDB Provider, and the Adaptive Server Enterprise ODBC
Driver on Windows platform use the Sybase Unicode Infrastructure Library (Unilib) for
character set conversions.

In versions earlier than 15.5, the Microsoft Unicode conversion routines are used.

There are subtle differences in the two libraries on how they perform conversions.

In the connection string, set WindowsCharsetConverter to:

• 0 – (the default) to use the Unilib library.
• 1 – to use the Microsoft Unicode conversion routines.

New Features for SP100

12 Open Server and SDK

Note: Use the Microsoft Unicode conversion routines if your application has a dependency on
the specific conversion differences with Unilib.

On non-Windows operating systems, only Unilib is supported for character set conversion;
setting WindowsCharsetConverter to 1 has no effect.

SSIS Custom Data Flow Destination Component for Faster Data
Transfers to Adaptive Server for SQL Server 2012

The Adaptive Server ADO.NET Data Provider distribution includes a SQL Server Integration
Services (SSIS) Custom Data Flow Destination component that is compatible with
SQLServer 2012, which performs faster data transfer using bulk-insert protocol into Adaptive
Server Enterprise.

The custom data flow destination component uses the Adaptive Server bulk-insert protocol
supported by the AseBulkCopy class. This component, named
Sybase.AdoNet4.AseDestination.dll, is installed along with the Adaptive
Server ADO.NET Data Provider in %SYBASE%\DataAccess\ADONET\dll on 32-bit
systems and %SYBASE%\DataAccess64\ADONET\dll on 64-bit systems.

See the ESD #5 section New SSIS Custom Data Flow Destination Component for Faster Data
Transfers to Adaptive Server for the version of the Custom Data Flow Destination component
that was compatible with SQLServer 2008.

Note: The SSIS destination component for data transfers from SQL Server 2008 has been
renamed from Sybase.AdaptiveServerAdoNetDestination.dll to
Sybase.AdoNet2.AseDestination.dll.

Configuring the Adaptive Server ADO.NET Destination SSIS Component
The Adaptive Server ADO.NET Destination SSIS component performs faster data transfer
into Adaptive Server destinations.

1. Copy Sybase.AdoNet4.AseDestination.dll to C:\Program Files
\Microsoft SQL Server\110\DTS\PipelineComponents and C:
\Program Files (x86)\Microsoft SQL Server\110\DTS
\PipelineComponents.

2. From either of the Microsoft SQL Server directories on your local drive used in Step 1,
register the Sybase.AdoNet4.AseDestination.dll using the
AseGacUtility4.exe provided in the SDK installation.

3. To launch SQLServer 2012 Data Tools or SQL Server 2012 Data in Windows, select Start
> All Programs > Microsoft SQL Server 2012 > SQL Server Data Tools.

4. Select File > New > Project > Integration Services Project.
The Sybase Destination Component automatically appears in the SSIS Toolbox.

5. From the Control Flow Items toolbox drag and drop a Control Flow object.

New Features for SP100

New Features Bulletin 13

6. Select the Data Flow Destinations tab, then select the Data Flow Sources Toolbox tab,
then drag and drop Sybase AdoNet4 ASE Destination and ADO NET Source
Component on to the Data Flow tab.

7. If there is no source or destination connection available in the Connection Managers
window, right-click in the Connection Managers window, and select New ADO.NET
Connection. If there is already an existing data connection, select it, or click New.

8. To create a new connection to the destination Adaptive Server, click New in the Configure
ADO.NET Connection Manager window, then select Sybase Adaptive Server
Enterprise Data Provider.

9. In the Connection Manager window, enter your connection properties.

10. To enable bulk insert, in the Additional Connection Props text box, enter:

enablebulkload=1
Note: See AseBulkCopy in the Adaptive Server Enterprise ADO.NET Data Provider
Users Guide for more details about using bulk-insert.

11. Click OK.

12. For the ADO.NET source in your data flow, set up the connection and data access mode.
After you connect the data flow path from your ADO.NET source, right-click Sybase
AdoNet4 ASE Destination, and choose Show Advanced Edit.

13. From the Connection Manager tab, select the ASE connection from the Connection
Manager field. From the Component Properties tab, set the TableName property to the
destination table name.

14. Select the Input Columns tab, and select Name. This selects all the columns specified by
the source table.

15. Click OK to establish the connection.

See Microsoft SSIS documentation for more information about data transfers using SQL
Server Integration Services.

Adaptive Server ADO.NET Data Provider Support for SSRS
The Adaptive Server ADO.NET Data Provider distribution includes a Microsoft SQL Server
Reporting Services (SSRS) Custom Data Extensions component, which allows users to store
credentials in the reporting server.

Adaptive Server SSRS component supports:

• Microsoft SQL Server 2008
• Microsoft SQL Server 2008 R2

This component, named Sybase.AdoNet2.AseReportingServices, is installed along with the
Adaptive Server ADO.NET Data Provider in: %SYBASE%\DataAccess\ADONET\dll
on 32-bit systems and %SYBASE%\DataAccess64\ADONET\dll on 64-bit systems.

New Features for SP100

14 Open Server and SDK

Configuring the Adaptive Server ADO.NET SSRS Component
Configure the Adaptive Server ADO.NET SSRS component.

1. Copy Sybase.AdoNet2.AseReportingServices.dll to C:\Program
Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE
\PrivateAssemblies.

2. Use a text editor to open the RSReportDesigner.config from C:\Program
Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE
\PrivateAssemblies.

• Enter the following below Data section:
<Extension Name="Sybase"
Type="Sybase.AdoNet2.AseReportingServices.SybaseClientConnecti
onWrapper,Sybase.AdoNet2.AseReportingServices"/>

• Enter the following below Designer section:
<Extension Name="Sybase"
Type="Microsoft.ReportingServices.QueryDesigners.GenericQueryD
esigner,Microsoft.ReportingServices.QueryDesigners"/>

3. Save the RSReportDesigner.config file.

LDAPS Functionality for Adaptive Server Enterprise Drivers and
Providers

When ldaps is specified in the LDAP URL instead of ldap, an SSL connection to the LDAP
server is established.

UNIX
This is an example of the attributes you must specify for the DSN in odbc.ini (or
connection string):

DSURL = ldaps://huey:636/dc=sybase,dc=com????
bindname=cn=Manager,dc=Sybase,dc=com?secret
DSServiceName = myAse
TrustedFile = /usr/u/sybase/config/trusted.txt

The Certificate Authority signing certificate used to sign the LDAP server’s certificate must
be appended to the trusted.txt file.

Windows
This is an example of the attributes you must specify in the connection string:

DSURL = ldaps://huey:636/dc=sybase,dc=com????
bindname=cn=Manager,dc=Sybase,dc=com?secret
DSServiceName = myAse

The Certificate Authority signing certificate used to sign the LDAP server’s certificate must
be installed in the Microsoft Certificate Store.

New Features for SP100

New Features Bulletin 15

SSL Support in jConnect
To use SSL sockets in versions of jConnect earlier than 15.7 SP 100, you had to create an
implementation of SybSocketFactory interface and use it by setting the
SYBSOCKET_FACTORY connection property.

In version 15.7 SP100, jConnect has built-in support to connect to Adaptive Server using SSL
sockets. The new connection property ENABLE_SSL when set to:

• false – (the default) jConnect will not use SSL sockets.
• true – jConnect uses SSL sockets and the target Adaptive Server must be enabled for SSL

socket connections.

Note: Sybase recommends that you set the login timeout using
DriverManager.setLoginTimeout property to allow the connection to timeout when
attempting SSL connection on a non SSL enabled Adaptive Server.

The SSL socket feature depends on the following standard Java properties:

• javax.net.ssl.keyStore

• javax.net.ssl.keyStorePassword

• javax.net.ssl.trustStore

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStore

• javax.net.ssl.trustStoreType

See the Java J2SE 6 Documentation for more information on Java standard properties.

New Features for SP100

16 Open Server and SDK

New Features for ESD #7

ESD #7 introduces updated functionality for Open Client 15.7 and Open Server 15.7, SDK
15.7, Adaptive Server Enterprise extension module for Python 15.7, and Adaptive Server
Enterprise extension module for PHP 15.7.

Open Client 15.7 and Open Server 15.7 Features
Open Client 15.7 and Open Server 15.7 have been enhanced to support Client-Library
connection string properties, remote password encryption, and
libsybsspiwrapper64.dll for Windows 64-bit.

Client-Library Supports Connection String Properties
Client-Library now supports the API routine, ct_connect_string().

ct_connect_string()
Connects to a server by specifying a connection string.

The ct_connect_string() function provides the same functionality as ct_connect(). It also
provides a mechanism to set certain attributes at connection time.

Syntax
CS_RETCODE ct_connect_string(connection, connection_string, length)
CS_CONNECTION *connection;
CS_CHAR *connection_string;
CS_INT length;

Parameters

• connection – a pointer to a CS_CONNECTION structure. A CS_CONNECTION
structure contains information about a particular client/server connection. Use
ct_con_alloc to allocate a CS_CONNECTION structure.

• connection_string – a string containing attribute names and values.
• length – the length, in bytes, of *connection_string. If *connection_string is null-

terminated, pass length as CS_NULLTERM. If connection_string is NULL, pass length as
0 or CS_UNUSED.

Return value
ct_connect returns:

New Features for ESD #7

New Features Bulletin 17

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

CS_PENDING Asynchronous network I/O is in effect. See the Asynchronous pro-
gramming section in the Open Client Client-Library/C Reference
Manual.

CS_BUSY An asynchronous operation is already pending for this connection. See
the Asynchronous programming section in the Open Client Client-
Library/C Reference Manual.

The connection string is a semicolon-separated string of name=value parts:

1. Name – a case-insensitive value that can be delimited by an equal sign (=) or semicolon (;).
An attribute can have multiple synonyms. For example, server and servername refer to
the same attribute.

2. Equals sign (=) – indicates the start of the value to be assigned to the Name. If there is no
equals sign, the Name is assumed to be of Boolean type with a value of true.

3. Value – a string that is terminated by a semicolon (;). Use a backslash (\) if a semicolon or
another back slash is present in the value. Values can be of type boolean, integer, or string.
Valid values for Boolean types are true, false, on, off, 1, and 0.

Note: If a boolean name is present without a value, the Boolean type must be set to true.

For example:
ct_connect_string(conn, "Username=me; Password=mypassword;
Servername=ASE", CS_NULLTERM);

Valid Attribute Names and Values
The table lists valid attribute names and values for the dsn keyword argument.

Name Description Value

ANSINull Determines whether evaluation of NULL-valued
operands in SQL equality (=) or inequality (!=)
comparisons is ANSI-compliant.

If the value is true, Adaptive Server enforces the
ANSI behavior that = NULL and is NULL are not
equivalent. In standard Transact-SQL®, = NULL
and is NULL are considered to be equivalent.

This option affects <> NULL and is not NULL
behavior in a similar fashion.

Boolean value.

The default is
false.

New Features for ESD #7

18 Open Server and SDK

Name Description Value

BulkLogin Determines whether a connection is enabled to per-
form a bulk-copy operation.

Boolean value.

The default is
false.

ChainXacts If true, Adaptive Server uses chained transaction
behavior, that is, each server command is consid-
ered to be a distinct transaction.

Adaptive Server implicitly executes a begin trans-
action before any of these statements: delete, fetch,
insert, open, select, and update. You must still
explicitly end or roll back the transaction.

If false, an application must specify explicit begin
transaction statements paired with commit or roll-
back statements.

Boolean value.

The default is
false.

Charset Specifies the charset to be used on this connection. String value.

Confidentiality Whether data encryption service is performed on
the connection.

Boolean value.

The default is
false.

CredentialDelegation Determines whether to allow the server to connect
to a second server with the user’s delegated cre-
dentials.

Boolean value.

The default is
false.

DetectReplay Determines whether the connection’s security
mechanism detects replayed transmissions.

Boolean value.

The default is
false.

DetectOutOfSequence Determines whether the connection’s security
mechanism detects transmissions that arrive out of
sequence.

Boolean value.

The default is
false.

Integrity Determines whether the connection’s security
mechanism performs data integrity checking.

Boolean value.

The default is
false.

Interfaces The path and name of the interfaces file. String value.

New Features for ESD #7

New Features Bulletin 19

Name Description Value

Keytab The name and path to the file from which a con-
nection’s security mechanism reads the security
key to go with the username value.

String value.

The default is
NULL, that is, the
user must have es-
tablished creden-
tials before con-
necting.

Locale Determines which language and character set to use
for messages, datatype conversions, and datetime
formats.

String value.

Language Determines which language set to use for messages,
datatype conversions, and datetime formats.

String value.

LoginTimeout Specifies the login timeout value. Integer value.

MaxConnect Specifies the maximum number of simultaneously
open connections that a context may have.

Integer value.

Default value is
25. Negative and
zero values are
not allowed.

MutualAuthentication Determines whether the server is required to au-
thenticate itself to the client.

Boolean value.

The default is
false.

NetworkAuthentication Determines whether the connection’s security
mechanism performs network-based user authenti-
cation.

Boolean value.

The default is
false.

PacketSize Specifies the TDS packet size. Integer value.

Password Specifies the password used to log in to the server. String value.

PasswordEncryption Determines whether the connection uses asymmet-
rical password encryption.

Boolean value.

The default is
false.

SecurityMechanism Specifies the name of the network security mecha-
nism that performs security services for the con-
nection.

String value.

The default value
depends on secur-
ity driver configu-
ration.

Server

Servername

Specifies the name of the server to which you are
connected.

String value.

New Features for ESD #7

20 Open Server and SDK

Name Description Value

ServerPrincipalName Specifies the network security principal name for
the server to which a connection is opened.

String value.

The default is
NULL, which
means that the
connection as-
sumes the server
principal name is
the same as its
ServerName val-
ue.

TDS_Keepalive Determines whether to use the KEEPALIVE op-
tion.

Boolean value.

The default is
true.

Timeout Specifies the connection timeout value. Integer value.

UID

User

Username

Specifies the name used to log in to the server. String value.

Remote Password Encryption
Open Server supports the retrieval of remote password pairs for connections using Extended
Plus Encrypted Passwords (EPEP).

The retrieving properties, including SRV_T_NUMRMTPWDS and SRV_T_RMTPWDS,
work with srv_thread_props(). If the client supports the EPEP protocol, the
SRV_T_NUMRMTPWDS property returns the number of decrypted remote password pairs,
and the SRV_T_RMTPWDS property returns the password pairs.

libsybsspiwrapper64.dll for Windows 64-bit
Use the libsybsspiwrapper64.dll wrapper library to allow Kerberos security driver
to use the Windows Security Support Provider Interface (SSPI) routines on Windows 64-bit
platform.

To use this feature, you must edit libtcl64.cfg to include
libsybsspiwrapper64.dll. For example:

[SECURITY]csfkrb5=LIBSYBSKRB64 secbase=@MYREALM libgss=C:\Sybase
\release\OCS-15_0\lib3p64\libsybsspiwrapper64.dll

Note: This library is stored in the %SYBASE%\OCS-15_0\lib3p64 directory.

New Features for ESD #7

New Features Bulletin 21

SDK 15.7 Features for Adaptive Server Enterprise Drivers
and Providers

ESD #7 introduces new functionality for Adaptive Server ODBC Driver 15.7 and the Ribo
utility.

New CancelQueryOnFreeStmt Connection Property for Adaptive
Server ODBC Driver

If a Microsoft Access form that is using the Adaptive Server ODBC Driver to execute a query
that returns large result set is closed before the entire result set is processed, Microsoft Access
remains unresponsive until the ODBC Driver completes processing the entire result set.

In version 15.7 ESD #7, a new connection property CancelQueryOnFreeStmt addresses this
issue. When this connection property is set to 1, whenever a form is closed, the Adaptive
Server ODBC Driver cancels any pending results and returns control to the Microsoft Access
application immediately. When set to 0 (default value), there is no change in Adaptive Server
ODBC Driver behavior.

New Efficient Method to Set Client Connection Attributes
In version 15.7 ESD #7, Adaptive Server ODBC Driver adds support for setting client
connection attributes efficiently using the ODBC SQLSetConnectAttr API. The attribute
values set are visible in the Adaptive Server sysprocesses table and help distinguish different
client connections.

To set these attributes in versions earlier than 15.7 ESD #7, application programs had to
explicitly call set statements to set corresponding attributes resulting in additional executions
on the server. When the SQLSetConnectAttr API is used, the driver defers executing the set
statements, attaching them to the next statement that is executed.

Note: Since the set statements are not executed immediately after SQLSetConnectAttr API is
called, the values set are invisible on Adaptive Server until the next statement is executed.

SQLSetConnectAttr supports these attributes:

• SQL_ATTR_CLIENT_NAME – sets the client name, using the command set clientname
<value>.

• SQL_ATTR_CLIENT_HOST_NAME – sets the client host name, using the command set
clienthostname <value>.

• SQL_ATTR_CLIENT_APPL_NAME – sets the client application name, using the command
set clientapplname <value>.

New Features for ESD #7

22 Open Server and SDK

The value of these attributes is truncated to 30 bytes. Use the ODBC SQLGetConnectAttr to
retrieve the value of these attributes. However, it does not reflect any changes to the server
value made outside of this interface.

Enhanced Support for data-at-exec Feature in Adaptive Server ODBC
Driver

In Adaptive Server ODBC Driver version 15.7 ESD #7, the data-at-exec feature has been
enhanced to support bulk and batch operations resulting in lower memory utilization and
increased performance for applications.

In earlier versions, all of the data for bound parameters had to be fully loaded before calling
SQLBulkOperations or executing a batch. In ESD #7, the application does not need to preload
any parameter data, it can be sent in chunks using SQLPutData. When using the Adaptive
Server ODBC Driver batch protocol (SQLExecute/SQLExecDirect with
SQL_ATTR_BATCH_PARAMS), data-at-exec is supported as long as
SQL_ATTR_PARAMSET_SIZE is set to 1. Using data-at-exec for LOB columns requires the
server to support LOB parameters.

New -n Command line Option in Ribo Utility
Ribo utility has been enhanced to translate a raw .tds dump file into multiple files of
manageable file sizes using a new command line option, -n.

In versions earlier than 15.7 ESD #7, Ribo utility translated the entire raw .tds dump file in
to a single translation file regardless of the size. Ribo utility has been enhanced to translate a
raw .tds dump file into multiple files of manageable file sizes using a new command line
option, -n. You specify the maximum size for a single translation file, in KB, with the -n
option. When the translation output file results in a size greater than the value specified in -n
option, a new file will be created.

The output file name follows this naming convention:

<output_file_part1_of_5> <output_file_part2_of_5>

where <output_file> is a file specified by the user, appended with partX_ofY, where X is the
current part and Y is the number of parts into which the translated output is divided.

Note: The -n flag takes effect when the translation is performed.

New Features for ESD #7

New Features Bulletin 23

Adaptive Server Enterprise Extension Module for Python
The Adaptive Server Enterprise extension module for Python has been enhanced to support
Data Source Name style (DSN-style) connection properties, new sample programs, and
blklib.

Support for DSN-style Connection String Properties
The connect() method adds support for DSN-style connection properties.

connect()
Constructs a connection object representing a connection to a database.

The method accepts these keyword arguments:

• user – the user login name that the connection uses to log in to a server.
• password – the password that a connection uses when logging in to a server.
• servername – defines the Adaptive Server name to which client programs connect. If you

do not specify servername, the DSQUERY environment variable defines the Adaptive
Server name.

• dsn – the data source name. The data source name is a semicolon-separated string of
name=value parts:
• Name – a case-insensitive value that can be delimited by an equal sign (=) or semicolon

(;). An attribute can have multiple synonyms. For example, server and servername
refer to the same attribute.

• Equals sign (=) – indicates the start of the value to be assigned to the Name. If there is
no equals sign, the Name is assumed to be of boolean type with a value of true.

• Value – a string that is terminated by a semicolon (;). Use a backslash (\) if a semicolon
or another back slash is present in the value. Values can be of type boolean, integer, or
string. Valid values for Boolean types are true, false, on, off, 1, and 0.

Note: If a boolean name is present without a value, the Boolean type must be set to
true.

For example:
sybpydb.connect(user='name', password='password string',
 dsn=’servername=Sybase;timeout=10’)

New Features for ESD #7

24 Open Server and SDK

Valid Attribute Names and Values
The table lists the valid attribute names and values for the dsn keyword argument.

Name Description Value

ANSINull Determines whether evaluation of NULL-valued
operands in SQL equality (=) or inequality (!=)
comparisons is ANSI-compliant.

If the value is true, Adaptive Server enforces the
ANSI behavior that = NULL and is NULL are not
equivalent. In standard Transact-SQL, = NULL and
is NULL are considered to be equivalent.

This option affects <> NULL and is not NULL
behavior in a similar fashion.

Boolean value.

The default is
false.

BulkLogin Determines whether a connection is enabled to per-
form a bulk-copy operation.

Boolean value.

The default is
false.

ChainXacts If true, Adaptive Server uses chained transaction
behavior, that is, each server command is consid-
ered to be a distinct transaction.

Adaptive Server implicitly executes a begin trans-
action before any of these statements: delete, fetch,
insert, open, select, and update. You must still
explicitly end or roll back the transaction.

If false, an application must specify explicit begin
transaction statements paired with commit or roll-
back statements.

Boolean value.

The default is
false.

Charset Specifies the charset to be used on this connection. String value.

Confidentiality Whether data encryption service is performed on
the connection.

Boolean value.

The default is
false.

CredentialDelegation Determines whether to allow the server to connect
to a second server with the user’s delegated cre-
dentials.

Boolean value.

The default is
false.

DetectReplay Determines whether the connection’s security
mechanism detects replayed transmissions.

Boolean value.

The default is
false.

New Features for ESD #7

New Features Bulletin 25

Name Description Value

DetectOutOfSequence Determines whether the connection’s security
mechanism detects transmissions that arrive out of
sequence.

Boolean value.

The default is
false.

Integrity Determines whether the connection’s security
mechanism performs data integrity checking.

Boolean value.

The default is
false.

Interfaces The path and name of the interfaces file. String value.

Keytab The name and path to the file from which a con-
nection’s security mechanism reads the security
key to go with the username value.

String value.

The default is
NULL, that is, the
user must have es-
tablished creden-
tials before con-
necting.

Locale Determines which language and character set to use
for messages, datatype conversions, and datetime
formats.

String value.

Language Determines which language set to use for messages,
datatype conversions, and datetime formats.

String value.

LoginTimeout Specifies the login timeout value. Integer value.

MaxConnect Specifies the maximum number of simultaneously
open connections that a context may have.

Integer value.

Default value is
25. Negative and
zero values are
not allowed.

MutualAuthentication Determines whether the server is required to au-
thenticate itself to the client.

Boolean value.

The default is
false.

NetworkAuthentication Determines whether the connection’s security
mechanism performs network-based user authenti-
cation.

Boolean value.

The default is
false.

PacketSize Specifies the TDS packet size. Integer value.

Password Specifies the password used to log in to the server. String value.

New Features for ESD #7

26 Open Server and SDK

Name Description Value

PasswordEncryption Determines whether the connection uses asymmet-
rical password encryption.

Boolean value.

The default is
false.

SecurityMechanism Specifies the name of the network security mecha-
nism that performs security services for the con-
nection.

String value.

The default value
depends on secur-
ity driver configu-
ration.

Server

Servername

Specifies the name of the server to which you are
connected.

String value.

ServerPrincipalName Specifies the network security principal name for
the server to which a connection is opened.

String value.

The default is
NULL, which
means that the
connection as-
sumes the server
principal name is
the same as its
ServerName val-
ue.

Keepalive Determines whether to use the KEEPALIVE op-
tion.

Boolean value.

The default is
true.

Timeout Specifies the connection timeout value. Integer value.

UID

User

Username

Specifies the name used to log in to the server. String value.

New Sample Programs
Several new samples are available for Adaptive Server Enterprise extension module for
Python.

dsnconnect
Demonstrates how to connect to a server using a dsn.

New Features for ESD #7

New Features Bulletin 27

blk
Uses the bulk-copy routines to copy data to a server table. The data is then retrieved and
shown.

blkmany
Uses the bulk-copy routines to copy data and multiple rows at a time.

blkiter
Demonstrates how to use the Python iteration protocol to bulk-copy-out rows of a table.

blktypes
Demonstrates how to use different Python object types (default, NULL values, and so on) as
values in a bulk operation.

blklib Support
The blklib feature is an extension to the Python DB-API, which enables you to bulk-copy
rows. The blklib feature includes an object interface, methods, and attributes.

BulkCursor Object Constructor
Python extension module that provides a connection object to establish a connection to the
database. The connection object includes a method for creating a new BulkCursor object,
which manages the context of a bulk operation.

The BulkCursor object can be constructed only from a connection object that was
established with a property marking the connection for use in a bulk operation.

Usage

import sybpydb
conn = sybpydb.connect(dsn="user=sa;bulk=true")cur = conn.cursor()
cur.execute("create table mytable (i int, c char(10))")
blk = conn.blkcursor()

close()
The close() method of the BulkCursor object closes a bulk operation. Once this method has
been called, the bulk cursor object cannot be used. close() takes no arguments.

Usage

import sybpydb
conn = sybpydb.connect(dsn="user=sa;bulk=true")
blk = conn.blkcursor()
bblk.close()

copy()
The copy() method of the BulkCursor object initializes a bulk operation.

New Features for ESD #7

28 Open Server and SDK

This method accepts the following arguments:

• tablename – a string specifying the name of the table for the bulk operation.
• direction – this is a keyword argument with these values: in and out.

Usage

import sybpydb
conn = sybpydb.connect(dsn="user=sa;bulk=true")
cur = conn.cursor()
cur.execute("create table mytable (i int, c char(10))")
blk = conn.blkcursor()
blk.copy("mytable", direction="out")

done()
The done() method of the BulkCursor object marks the completion of a bulk operation. To
start another operation, call the copy() method.

Usage

import sybpydb
conn = sybpydb.connect(dsn="user=sa;bulk=true")
cur = conn.cursor()
cur.execute("create table mytable (i int, c char(10)
blk = conn.blkcursor()
blk.copy("mytable", direction="in")
...
blk.done()
blk.copy("mytable", direction="out")
...
blk.done()
blk.close()

Adaptive Server Enterprise Extension Module for PHP
Adaptive Server Enterprise extension module for PHP has been enhanced to support DSN
style connection properties.

Support for DSN-style Connection Properties
sybase_connect() and sybase_pconnect() APIs support DSN-style connection properties.

When you call either sybase_connect() or sybase_pconnect() APIs using only the
servername parameter, servername must contain a valid DSN (data source name) string. The
data source name is a semicolon (;) separated string of name=value parts as explained as
follows:

1. Name – a case-insensitive value that can be delimited by an equal sign (=) or semicolon (;).
An attribute can have multiple synonyms. For example, server and servername refer to
the same attribute.

New Features for ESD #7

New Features Bulletin 29

2. Equals sign (=) – indicates the start of the value to be assigned to the Name. If there is no
equals sign, the Name is assumed to be of boolean type with a value of true.

3. Value – a string that is terminated by a semicolon (;). Use a backslash (\) if a semicolon or
another back slash is present in the value. Values can be of type boolean, integer, or string.
Valid values for Boolean types are true, false, on, off, 1, and 0.

Note: If a boolean name is present without a value, the Boolean type must be set to true.

For example:
Username=name;Password=pwd;Timeout=10

Valid Attribute Names and Values
The table lists the valid attribute names and values for the dsn keyword argument.

Name Description Value

ANSINull Determines whether evaluation of NULL-valued
operands in SQL equality (=) or inequality (!=)
comparisons is ANSI-compliant.

If the value is true, Adaptive Server enforces the
ANSI behavior that = NULL and is NULL are not
equivalent. In standard Transact-SQL, = NULL and
is NULL are considered to be equivalent.

This option affects <> NULL and is not NULL
behavior in a similar fashion.

Boolean value.

The default is
false.

BulkLogin Determines whether a connection is enabled to per-
form a bulk-copy operation.

Boolean value.

The default is
false.

ChainXacts If true, Adaptive Server uses chained transaction
behavior, that is, each server command is consid-
ered to be a distinct transaction.

Adaptive Server implicitly executes a begin trans-
action before any of these statements: delete, fetch,
insert, open, select, and update. You must still
explicitly end or roll back the transaction.

If false, an application must specify explicit begin
transaction statements paired with commit or roll-
back statements.

Boolean value.

The default is
false.

Charset Specifies the charset to be used on this connection. String value.

Confidentiality Whether data encryption service is performed on
the connection.

Boolean value.

The default is
false.

New Features for ESD #7

30 Open Server and SDK

Name Description Value

CredentialDelegation Determines whether to allow the server to connect
to a second server with the user’s delegated cre-
dentials.

Boolean value.

The default is
false.

DetectReplay Determines whether the connection’s security
mechanism detects replayed transmissions.

Boolean value.

The default is
false.

DetectOutOfSequence Determines whether the connection’s security
mechanism detects transmissions that arrive out of
sequence.

Boolean value.

The default is
false.

Integrity Determines whether the connection’s security
mechanism performs data integrity checking.

Boolean value.

The default is
false.

Interfaces The path and name of the interfaces file. String value.

Keytab The name and path to the file from which a con-
nection’s security mechanism reads the security
key to go with the username value.

String value.

The default is
NULL, that is, the
user must have es-
tablished creden-
tials before con-
necting.

Locale Determines which language and character set to use
for messages, datatype conversions, and datetime
formats.

String value.

Language Determines which language set to use for messages,
datatype conversions, and datetime formats.

String value.

LoginTimeout Specifies the login timeout value. Integer value.

MaxConnect Specifies the maximum number of simultaneously
open connections that a context may have.

Integer value.

Default value is
25. Negative and
zero values are
not allowed.

MutualAuthentication Determines whether the server is required to au-
thenticate itself to the client.

Boolean value.

The default is
false.

New Features for ESD #7

New Features Bulletin 31

Name Description Value

NetworkAuthentication Determines whether the connection’s security
mechanism performs network-based user authenti-
cation.

Boolean value.

The default is
false.

PacketSize Specifies the TDS packet size. Integer value.

Password Specifies the password used to log in to the server. String value.

PasswordEncryption Determines whether the connection uses asymmet-
rical password encryption.

Boolean value.

The default is
false.

SecurityMechanism Specifies the name of the network security mecha-
nism that performs security services for the con-
nection.

String value.

The default value
depends on secur-
ity driver configu-
ration.

Server

Servername

Specifies the name of the server to which you are
connected.

String value.

ServerPrincipalName Specifies the network security principal name for
the server to which a connection is opened.

String value.

The default is
NULL, which
means that the
connection as-
sumes the server
principal name is
the same as its
ServerName val-
ue.

Keepalive Determines whether to use the KEEPALIVE op-
tion.

Boolean value.

The default is
true.

Timeout Specifies the connection timeout value. Integer value.

UID

User

Username

Specifies the name used to log in to the server. String value.

dsnconnect.php Sample Program
The dsnconnect.php sample program connects to a server using a DSN connection
string. It optionally prints the server name, the user account, and the current database.

New Features for ESD #7

32 Open Server and SDK

New Features for ESD #6

ESD #6 introduces updated functionality for Open Client 15.7 and Open Server 15.7, Data
Source Name (DSN) connection properties support for Adaptive Server Enterprise extension
module for Python 15.7, and Adaptive Server Enterprise extension module for Perl 15.7.

Open Client 15.7 and Open Server 15.7 Features
Open Client 15.7 and Open Server 15.7 have been enhanced to support bulk-copy-in with LOB
datatype, the new SYBOCS_IFILE environment variable, LDAP and SSL version, parameter
format suppression, extended plus encrypted password, and BCP --quoted-fname option.

Bulk-copy-in with LOB Datatype
With ESD #6 you can use blk_textxfer() followed by blk_rowxfer() API call.

In previous versions, if you marked an LOB column for transfer using blk_textxfer() API to
copy LOB data into a database table consisting of both in-row and off-row values, all
subsequent columns of this datatype were also required to be marked for transfer using
blk_textxfer() API, and could not use blk_rowxfer(). With ESD#6, this limitation is removed
and you can use blk_textxfer() followed by blk_rowxfer() API call.

New SYBOCS_IFILE Environment Variable
Use SYBOCS_IFILE to specify the location of the interfaces file instead of the default
$SYBASE/interfaces.

If the application sets the CS_IFILE property in CT-Library, the property setting takes
precedence.

LDAP and SSL Version Support
The Sybase-provided OpenLDAP library (libsybaseldap.so/dll) uses OpenLDAP
version 2.4.31 and OpenSSL version 1.0.1b for the connections to an LDAP server.

Parameter Format Suppression
Open Client and Open Server now support parameter format suppression for dynamic
statements in Adaptive Server Enterprise.

Note: Starting with ESD #3, Open Client has been supporting the parameter format
suppression. However, ESD #6 introduces Open Server support for parameter format
suppression.

New Features for ESD #6

New Features Bulletin 33

Open Server Support for Extended Plus Encrypted Password
When a client connection supports extended plus encrypted password (EPEP), Open Server
handles the login negotiation, including decrypting of the password.

The login negotiation takes place before the SRV_CONNECT handler is called. In the
SRV_CONNECT event handler, applications can simply retrieve the password with the
existing SRV_T_PWD property and inspect the used password encryption protocol with a
new property.

To try out Open Server password encryption, you can connect to the 'lang' sample using isql
with the -X option, which turns on password encryption in isql.

Note: From 15.0 release, Open Client supported the strong login password encryption.
However, with ESD#6, Open Server supports the strong login password encryption.

SRV_T_PWD
This property is used with srv_thread_props() to retrieve the password. If the client supports
the EPEP protocol, SRV_T_PWD automatically returns the decrypted password.

SRV_PWD_ENCRYPT_VERSION
This new public enumerated type in Open Server has the following values:

• SRV_NOENCRYPT_PWD (0)
• SRV_ENCRYPT_PWD (1) (Not implemented in Open Server)
• SRV_EXTENDED_ENCRYPT_PWD (2) (Not implemented in Open Server)
• SRV_EXTENDED_PLUS_ENCRYPT_PWD (3)

SRV_T_PWD_ENCRYPT_VERSION
Use this new read-only property along with the srv_thread_props() function to retrieve the
protocol version of the password encryption that retrieved the password. The type and
possible values of this property are described in SRV_PWD_ENCRYPT_VERSION.

Note: You cannot use this property to avoid clear-text transmission of passwords. When Open
Server reads the client-supported password encryption versions, the password may already
have been transmitted in clear text. However, you can use this property to verify that all client
applications use the required password encryption algorithm.

SRV_S_DISABLE_ENCRYPT
Use the SRV_S_DISABLE_ENCRYPT property to disable support for the native password
negotiation. If this property is set, Open Server does not start the password negotiation
protocols. The default value for this SRV_S_DISABLE_ENCRYPT is CS_FALSE.

New Features for ESD #6

34 Open Server and SDK

BCP --quoted-fname Option
The current syntax of the command line parameter for BCP is “--quoted-fname”.

The system accepts the string “quoted-fname” without blank space in between string. You can
place the new parameter anywhere after data file names in the list of commandline parameters.

To use data file names containing special characters, besides using this option, quote your file
names within double quotation marks each preceded by a backslash (\"). If the file names
contain double quotation marks, put a backslash preceding each double quotation mark in the
file names.

Table 3. Examples

Data file name With the updated syntax

fnamepart1,fnamepart2 \” fnamepart1,fnamepart2\”

fnamepart1”fnamepart2 \” fnamepart1\”fnamepart2\”

“fnamepart1”fnamepart2” \”\” fnamepart1\”fnamepart2\”\”

Adaptive Server Enterprise Extension Module for Python
The Adaptive Server Enterprise extension module for Python has been enhanced to support
DSN style connection properties.

Support for DSN Style Connection Properties
The connect() method accepts a new keyword argument named dsn.

The keyword argument is a string that specifies connection information. The syntax of a dsn
string is:

name1=value1;name2=value2;...

Here name1 normally corresponds to a connection property or option.

The name string does not contain escaped characters. To show the equal sign and semicolon in
the value string, escape those characters by preceding each with a backslash.

Adaptive Server Enterprise Extension Module for Perl
The Adaptive Server Enterprise extension module for Perl has been enhanced to support new
attributes and methods, new Perl database and statement handle attributes, multiple

New Features for ESD #6

New Features Bulletin 35

statements, dynamic SQL, bind parameters, stored procedures, private driver methods, text
and image data handling, and error handling.

Support for DSN Style Connection Properties
The driver uses a DSN mechanism that allows certain attributes to be set at connection time.

The DSN attribute syntax is the same as the Open Source DBD::Sybase driver. Therefore, you
need not change Perl scripts or maintain different versions for DBD::Sybase versus
DBD::SybaseASE. However, DBD::SybaseASE does not support some attributes that are
considered obsolete. See Currently unsupported DSN syntax.

SybaseASE Driver Connect Syntax
The dbi:SybaseASE: section obtains the package name of the driver so it can be loaded in the
following syntax.

DBI->connect("dbi:SybaseASE:attr=value;attr=value", $user_id,
$password, %attrib);

When the DSN is passed into the driver, the system removes this part and the remaining string
holds the key and value pairs to be dissected.

Note: The $user_id and $password credentials are separate API arguments; they are not part
of the DSN string.

The %attrib argument is an optional, comma-separated chain of key-value pairs that set
options at connection time. They are passed into the driver and handled during a connect()
call. For example:

DBI->connect("dbi:SybaseASE:server=mumbles; user, password,
PrintError => 1, AutoCommit = 0);

Attributes and Methods
The following attributes are currently supported when connecting to a server.

Attributes Description

server Specifies the server to which you are connecting. The driver
currently assumes this option is set. If server is not specified, use
the ENV{"DSQUERY"} mechanism to obtain a server name.

database Specifies which database within the server is the target database
at connect time. If no database is specified, the master database is
used.

hostname Specifies, in the value section, the host name that is stored in the
sysprocesses table for this process. If no hostname is
specified, the host on which the Perl application executes is used.

New Features for ESD #6

36 Open Server and SDK

Attributes Description

language Specifies the locale to be used on this connection. If no language
is specified, the internal default locale named CS_LC_ALL is
used.

charset Specifies the charset to be used on this connection. If no charset is
specified, the internal default that is, utf8, is used.

host; port Specifies the combination of host and port to use instead of re-
lying on the interfaces file entries.

Note: In the Perl DSN syntax, host and port are separate options.
An alternative DSN form similar to the following is not currently
supported:

host:port=mumbles:1234
When the host and port DSN options are provided with the intent
of not using the interface file, the host and port must suffice to
connect. If the DSN attribute “server=” is also provided with the
host and port combination, the connection fails.

Therefore, the usage of either host and port must be used to
establish a connection or server alone must be used. The two DSN
attributes (server versus host/port) are mutually exclusive.

timeout Specifies the connection timeout value. Set to 0 or a negative
value for no timeout.

loginTimeout Specifies the login timeout value, in seconds. The default value is
60 seconds. Set loginTimeout=value in seconds to enable this
attribute.

tds_keepalive Specifies the KEEP_ALIVE attribute on the connection. Set
tds_keepalive=1 to enable this attribute.

packetSize Specifies the TDS packet size for the connection. By default, the
lower bound, which is set in the driver, is 2048. The maximum
value is determined by the server, and is not set in the driver.

maxConnect Increases or decreases the number of connections allowed. The
range of values is 1 – 128; the default is 25.

encryptPassword Specifies whether to use password encryption. Set encryptPass-

word=1 to enable this attribute.

sslCAFile Specifies an alternate location for the trusted.txt file.
Specify an absolute path of up to 256 characters.

New Features for ESD #6

New Features Bulletin 37

Attributes Description

scriptName Specifies the chosen name of the top-level Perl script that drives
the application. This name appears in the sysprocesses
table as the application name. Absence of this value gives a de-
fault application name that is obtained from the Perl internal
environment. This value can be as many as 256 characters.

Note: The application name fed into the SybaseASE Driver is
either set through the DSN scriptName option or is derived from
the Perl internal environment.

interfaces Specifies an alternate location to the Sybase interfaces file. Same
constraints apply to the sslCAFile and scriptName options.

You can repeat attribute values as long as they are recognized by the driver. Illegal attributes
cause the DBI->connect() call to fail.

Note: The attribute names follow the Open Source Sybase Perl driver.

DSN-specific example:

$dbh = DBI->connect("dbi:SybaseASE:server=mumbles", $user, $passwd);

Alternatively, use the DSQUERY environment variable:

my $srv = $ENV{"DSQUERY"};
$dbh = DBI->connect("dbi:SybaseASE:server=$srv", $user, $passwd);
$dbh = DBI-
>connect("dbi:SybaseASE:host=tzedek.sybase.com;port=8100", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:maxConnect=100", $user, $passwd);
$dbh = DBI->connect("dbi:SybaseASE:database=sybsystemprocs", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:charset=iso_1", $user, $passwd);
$dbh = DBI->connect("dbi:SybaseASE:language=us_english", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:packetSize=8192", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:interfaces=/opt/sybase/
interfaces", $user, $passwd);
$dbh = DBI->connect("dbi:SybaseASE:loginTimeout=240", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:timeout=240", $user, $passwd);
$dbh = DBI->connect("dbi:Sybase:scriptName=myScript", $user,
$password);
$dbh = DBI->connect("dbi:SybaseASE:hostname=pedigree", $user,
$password);
$dbh = DBI->connect("dbi:SybaseASE:encryptPassword=1", $user,
$password);
$dbh = DBI>connect("dbi:SybaseASE:sslCAFile=/usr/local/sybase/
trusted.txt", $user, $password,
AutoCommit => 1);

DSN-specific example combination:

New Features for ESD #6

38 Open Server and SDK

$dbh = DBI->connect("dbi:SybaseASE:server=mumbles,
database=tempdb;packetSize=8192;
language=us_english;charset=iso_1;encryptPassword=1", $user, $pwd,
AutoCommit=>1, PrintError => 0);

Currently Unsupported DSN Syntax
The following DSN syntax are not supported currently:

• tdsLevel

• kerberos; for example:
$dbh = DBI->connect("dbi:SybaseASE:kerberos=$serverprincipal",
'', '');

• bulkLogin; for example:
$dbh = DBI->connect("dbi:SybaseASE:bulkLogin=1", $user,
$password);

• serverType

Currently Supported Database Handle Attributes
The table lists currently supported database handle attributes.

Attribute Description Default

dbh->{AutoCommit} = (0|1); Disables or enables AutoCommit. 0 (off)

dbh->{LongTruncOK} = (0|1); Disables or enables truncation of text and
image types.

0

dbh->{LongReadLen}=(int); Sets the default read chunk size for text and
image data. For example:

dbh->{LongReadLen} = 64000.

32767

dbh->{syb_show_sql} =(0|1); If set, the current statement is included in the
error string returned by the $dbh->errstr mech-
anism.

0

dbh->{syb_show_eed} = (0|1); If set, the extended error information is included
in the error string returned by $dbh->errstr.

0

New Features for ESD #6

New Features Bulletin 39

Attribute Description Default

dbh->{syb_chained_txn} = (0|1); If set, CHAINED transactions are used when
AutoCommit is off.

Use this attribute only during the connect() call:

$dbh = DBI->connect("dbi:Syba-
seASE:", $user, $pwd,
{syb_chained_txn => 1});
Using syb_chained_txn at any time with Auto-
Commit turned off forces a commit on the cur-
rent handle.

When set to 0, an explicit BEGIN TRAN is issued
as needed.

0

dbh->{syb_use_bin_0x} = (0|1); If set, BINARY and VARBINARY values are
prefixed with '0x' in the result string.

0

dbh->{syb_binary_images} = (0|1); If set, image data is returned in raw binary
format. Otherwise, image data is converted
into a hexadecimal string.

0

dbh->{syb_quoted_identifier} =(0|
1);

Allows identifiers that conflict with Sybase re-
served words if they are quoted using "identifi-
er."

0

dbh->{syb_rowcount}=(int); If set to a nonzero value, the number of rows
returned by a SELECT, or affected by an UP-
DATE or DELETE statement are limited to the
rowcount value.

Setting it back to 0 clears the limit.

0

dbh->{syb_flush_finish} = (0|1); If set, the driver drains any results remaining for
the current command by actually fetching them.
This can be used instead of a ct_cancel() com-
mand issued by the driver.

0

dbh->{syb_date_fmt} = datefmt
string

This private method sets the default date con-
version and display formats. See Default Date
Conversion and Display Format.

dbh->{syb_err_handler} Perl subroutine that can be created to execute an
error handler or report before the regular error
handling takes place. Useful for certain classes
of warnings. See Error Handling.

0 (not
present)

dbh->{syb_failed_db_fatal} = (0|1) If the DSN has a database=mumbles attribute/
value pair and this database does not exist at
connection time, the DBI->connect() call fails.

0

New Features for ESD #6

40 Open Server and SDK

Attribute Description Default

dbh->{syb_no_child_con} =(0|1); If set, the driver disallows multiple active state-
ment handles on the dbh. In this case, a state-
ment can be prepared but must be executed to
completion before another statement prepare is
attempted.

0

dbh->{syb_cancel_re-
quest_on_error}=(0|1);

If set, when a multistatement set is executed and
one statement fails, sth->execute() fails.

1 (on)

dbh->{syb_bind_emp-
ty_string_as_null}= (0|1);

If set, a NULLABLE column attribute returns an
empty string (one space) to represent the NULL
character.

0

dbh->{syb_disconnect_in_child} =
(0|1);

Handles closed connections across a fork. The
DBI causes connections to be closed if a child
dies.

0

dbh->{syb_enable_utf8} = (0|1); If set, UNICHAR, UNIVARCHAR, and UNI-
TEXT are converted to utf8.

0

sth->syb_more_results} = (0|1); See Multiple Result Sets.

sth->{syb_result_type} = (0|1); If set, returns the numeric result number instead
of the symbolic CS_ version.

0

sth->{syb_no_bind_blob} = (0|1); If set, image or text columns are not re-
turned upon sth->{fetch} or other variations. See
Text and Image Data Handling.

0

sth->{syb_do_proc_status} = (0|
1);

Forces $sth->execute() to fetch the return status
of a stored procedure executed in the SQL
stream.

If the return status is nonzero, $sth->execute()
returns undef (that is, it fails).

Setting this attribute does not affect existing
statement handles. However, it affects those
statement handles that are created after setting
it.

To revert behavior of an existing $sth handle,
execute: $sth->{syb_do_proc_status} = 0;

0

Unsupported Database Handle Options
The following database handle options are not supported.

• dbh->{syb_dynamic_supported}

• dbh->{syb_ocs_version}

• dbh->{syb_server_version}

New Features for ESD #6

New Features Bulletin 41

• dbh->{syb_server_version_string}

• dbh->{syb_has_blk}

Note: Perl scripts attempting to use these options generate an error.

Perl Supported Datatypes
The Perl driver currently supports string, numeric, and date and time datatypes.

String types Numeric types Date and time data-
types

char
varchar
binary
varbinary
text
image
unichar
univarchar

integer
smallint
tinyint
money
smallmoney
float
real
double
numeric
decimal
bit
bigint

datetime
date
time
bigtime
bigdatetime

Note: Perl returns numeric and decimal types as strings. Other datatypes are returned in their
respective formats.

The default time/date format used by the Sybase ASE driver is the short format, for example,
Aug 7 2011 03:05PM.

This format is based on the C (default) locale. See Default Date Conversion and Display
Format for other date and time formats supported.

Multiple Statements Usage
Adaptive Server can handle multistatement SQL in a single batch.

For example:

my $sth = $dbh->prepare("
 insert into publishers (col1, col2, col3) values (10, 12, 14)
 insert into publishers (col1, col2, col3) values (1, 2, 4)
 insert into publishers (col1, col2, col3) values (11, 13, 15)

New Features for ESD #6

42 Open Server and SDK

 ");
my $rc = $sth->execute();

If any of these statements fail, sth->execute() returns undef. If AutoCommit is on,
statements that complete successfully may have inserted data in the table, which may not be
the result you expect or want.

Multiple Result Sets
The Perl driver allows you to prepare multiple statements with one call and execute them with
another single call. For example, executing a stored procedure that contains multiple selects
returns multiple result sets.

Results of multiple statements prepared with one call are returned to the client as a single
stream of data. Each distinct set of results is treated as a normal single result set, which means
that the statement handle's fetch() method returns undef at the end of each set.

The CT-Lib API ct_fetch() returns CS_END_RESULTS that the driver converts to undef
after the last rows have been retrieved.

The driver allows the application to obtain the result type by checking sth-
>{syb_result_type}. You can then use the sth->{syb_more_results} statement handle
attribute to determine if there are additional result sets still to be returned. The (numerical)
value returned by sth->{syb_results_type} is one of:

• CS_MSG_RESULT
• CS_PARAM_RESULT
• CS_STATUS_RESULT
• CS_COMPUTE_RESULT
• CS_ROW_RESULT
Example for multiple result sets:

do {
 while($a = $sth->fetch) {
 ..for example, display data..
 }
} while($sth->{syb_more_results});

Sybase recommends that you use this if you expect multiple result sets.

Note: The Perl driver currently does not support cursors using the ct_cursor() API. Therefore,
the driver does not report CS_CURSOR_RESULT.

Multiple Active Statements on a DatabaseHandle (dbh)
There can be multiple active statements on a single database handle by opening a new
connection in the $dbh->prepare() method if there is already an active statement handle on
this $dbh.

New Features for ESD #6

New Features Bulletin 43

The dbh->{syb_no_child_con} attribute controls whether this feature is on or off. By default,
DatabaseHandle is off, which indicates that multiple statement handles are supported. If it is
on, multiple statements on the same database handle are disabled.

Note: If AutoCommit is off, multiple statement handles on a single $dbh are unsupported.
This avoids deadlock problems that may arise. Also, using multiple statement handles
simultaneously provides no transactional integrity, as different physical connections are used.

Supported Character Lengths
Supported character lengths for different types of identifiers.

The names of Sybase identifiers, such as tables and columns, can exceed 255 characters in
length.

Logins, application names, and password lengths that are subject to TDS protocol limits
cannot exceed 30 characters.

Configuring Locale and Charsets
You can configure the Perl driver of CT-Library locale and charset using the DSN attributes
charset and language.

The driver's default character set is UTF8 and the default locale is CS_LC_ALL.

Dynamic SQL Support, Placeholders, and Bind Parameters
The Perl driver supports dynamic SQL, including parameter usage.

For example:

$sth = $dbh->prepare("select * from employee where empno = ?");

Retrieve rows from employee where empno = 1024:
$sth->execute(1024);
while($data = $sth->fetch) {
 print "@$data\n";
}
Now get rows where empno = 2000:
$sth->execute(2000);
while($data = $sth->fetch) {
 print "@$data\n";
}

Note: The Perl driver supports the '?' style parameter, but not ':1' placeholder types. You
cannot use placeholders to bind a text or image datatype.

DBD::SybaseASE uses the Open Client ct_dynamic() family of APIs for the prepare()
method. See the Sybase Open Client C Programmers guide for information about "?" style
placeholder constraints and general dynamic SQL usage.

This is another example showing dynamic SQL support:

New Features for ESD #6

44 Open Server and SDK

my $rc;
my $dbh;
my $sth;

call do() method to execute a SQL statement.
#
$rc = $dbh->do("create table tt(string1 varchar(20), date datetime,
 val1 float, val2 numeric(7,2))");

$sth = $dbh->prepare("insert tt values(?, ?, ?, ?)");
$rc = $sth->execute("test12", "Jan 3 2012", 123.4, 222.33);

alternate way, call bind_param() then execute without values in the
execute statement.
$rc = $sth->bind_param(1, "another test");
$rc = $sth->bind_param(2, "Jan 25 2012");
$rc = $sth->bind_param(3, 444512.4);
$rc = $sth->bind_param(4, 2);
$rc = $sth->execute();

and another execute, with args.....
$rc = $sth->execute("test", "Feb 30 2012", 123.4, 222.3334);

Note: The last statement throws an extended error information (EED) as the date is invalid. In
the Perl script, set dbh->{syb_show_eed} = 1 before execution to write the Adaptive Server error
message in the dbh->errstr.

Another example that illustrates the "?" style placeholder:

$sth = $dbh->prepare("select * from tt where date > ? and val1 > ?");
$rc = $sth->execute('Jan 1 2012', 120);

go home....
$dbh->disconnect;
exit(0);

Stored Procedure Support for Placeholders
The Adaptive Server Enterprise database driver for Perl supports stored procedures that
include both input and output parameters.

Stored procedures are handled in the same way as any other Transact-SQL statement.
However, Sybase stored procedures return an extra result set that includes the return status that
corresponds to the return statement in the stored procedure code. This extra result set, named
CS_STATUS_RESULT with numeric value 4043, is a single row and is always returned last.

The driver can process the stored procedure using a special attribute, $sth-
>{syb_do_proc_status}. If this attribute is set, the driver processes the extra result set, and
places the return status value in $sth->{syb_proc_status}. An error is generated if the result
set is a value other than 0.

New Features for ESD #6

New Features Bulletin 45

Examples

$sth = $dbh->prepare("exec my_proc \@p1 = ?, \@p2 = ?");
 $sth->execute('one', 'two');

This example illustrates the use of positional parameters:
$sth = $dbh->prepare("exec my_proc ?, ?");
 $sth->execute('one', 'two');

You cannot mix positional and named parameters in the same prepare statement; for example,
this statement fails on the first parameter:
$sth = $dbh->prepare("exec my_proc \@p1 = 1, \@p2 = ?");

If the stored procedure returns data using output parameters, you must declare them first:
$sth = $dbh->prepare(qq[declare @name varchar(50) exec getname abcd,
@name output]);

You cannot call stored procedures with bound parameters, as in:
$sth = $dbh->prepare("exec my_proc ?");
 $sth->execute('foo');

This works as follows:
$sth = $dbh->prepare("exec my_proc 'foo'");
 $sth->execute('foo');

Because stored procedures almost always return more than one result set, use a loop until
syb_more_results is 0:
do {
 while($data = $sth->fetch) {
 do something useful...
 }
 } while($sth->{syb_more_results});

Parameter examples

declare @id_value int, @id_name char(10)
 exec my_proc @name = 'a_string', @number = 1234,
 @id = @id_value OUTPUT, @out_name = @id_name OUTPUT

If your stored procedure returns only OUTPUT parameters, you can use:
$sth = $dbh->prepare('select *');
 $sth->execute();
@results = $sth->syb_output_params(); # this method is available in
SybaseASE.pm

This returns an array for all the OUTPUT parameters in the procedure call and ignores any
other results. The array is undefined if there are no OUTPUT parameters or if the stored
procedure fails.

Generic examples

$sth = $dbh->prepare("declare \@id_value int, \@id_name
 OUTPUT, @out_name = @id_name OUTPUT");

New Features for ESD #6

46 Open Server and SDK

 $sth->execute();
 {
 while($d = $sth->fetch) {
 # 4042 is CS_PARAMS_RESULT
 if ($sth->{syb_result_type} == 4042) {
 $id_value = $d->[0];
 $id_name = $d->[1];
 }
 }
 redo if $sth->{syb_more_results};
}

The OUTPUT parameters are returned as a single row in a special result set.

Parameter Types
The driver does not attempt to determine the correct parameter type for each parameter. The
default for all parameters defaults to the ODBC style SQL_CHAR value, unless you use
bind_param() with a type value set to a supported bind type.

The driver supports these ODBC style bind types:

• SQL_CHAR
• SQL_VARCHAR
• SQL_VARBINARY
• SQL_LONGVARCHAR
• SQL_LONGVARBINARY
• SQL_BINARY
• SQL_DATETIME
• SQL_DATE
• SQL_TIME
• SQL_TIMESTAMP
• SQL_BIT
• SQL_TINYINT
• SQL_SMALLINT
• SQL_INTEGER
• SQL_REAL
• SQL_FLOAT
• SQL_DECIMAL
• SQL_NUMERIC
• SQL_BIGINT
• SQL_WCHAR
• SQL_WLONGVARCHAR

The ODBC types are mapped in the driver to equivalent Adaptive Server datatypes. See the
Adaptive Server Enterprise ODBC Driver by Sybase User Guide 15.7.

New Features for ESD #6

New Features Bulletin 47

Execute the stored procedure, sp_datatype_info to get a full list of supported types for the
particular Adaptive Server. For example:
$sth = $dbh->prepare("exec my_proc \@p1 = ?, \@p2 = ?");
 $sth->bind_param(1, 'one', SQL_CHAR);
 $sth->bind_param(2, 2.34, SQL_FLOAT);
 $sth->execute;

 $sth->execute('two', 3.456);
 etc...

Note: Once you have set a column type for a parameter, you cannot change it unless you
deallocate and retry the statement handle. When binding SQL_NUMERIC or
SQL_DECIMAL data, you may get fatal conversion errors if the scale or the precision exceeds
the size of the target parameter definition.

For example, consider this stored procedure definition:
declare proc my_proc @p1 numeric(5,2) as...
 $sth = $dbh->prepare("exec my_proc \@p1 = ?");
 $sth->bind_param(1, 3.456, SQL_NUMERIC);

which generates this error:

DBD::SybaseASE::st execute failed: Server message number=241
severity=16 state=2 line=0 procedure=my_proc text=Scale error
during implicit conversion of NUMERIC value '3.456' to a
NUMERIC field.
Set the arithabort option as follows to ignore these errors:

$dbh->do("set arithabort off");

See the Adaptive Server reference documentation.

Supported Private Driver Methods
dbh->syb_isdead() returns a true or false representation of the state of the connection. A false
return value may indicate a specific class or errors on the connection, or that the connection
has failed.

$sth->syb_describe() returns an array that includes the description of each output column of
the current result set. Each element of the array is a reference to a hash that describes the
column.

You can set the description fields such as NAME, TYPE, SYBTYPE, SYBMAXLENGTH,
MAXLENGTH, SCALE, PRECISION, and STATUS, as shown in this example:

$sth = $dbh->prepare("select name, uid from sysusers");
 $sth->execute;
 my @description = $sth->syb_describe;
 print "$description[0]->{NAME}\n"; # prints name
 print "$description[0]->{MAXLENGTH}\n"; # prints 30
 etc, etc.

New Features for ESD #6

48 Open Server and SDK

 while(my $row = $sth->fetch) {

}

Note: The STATUS field is a string which can be tested for the following values:
CS_CANBENULL, CS_HIDDEN, CS_IDENTITY, CS_KEY, CS_VERSION_KEY,
CS_TIMESTAMP and CS_UPDATABLE, CS_UPDATECOL and CS_RETURN.

See the Open Client documentation.

Default Date Conversion and Display Format
You can set your own default date conversion and display format using the syb_data_fmt()
private method.

Sybase date format depends on the locale settings for the client. The default date format is
based on the 'C' locale, for example, Feb 16 2012 12:07PM.

This same default locale supports several additional input formats:

• 2/16/2012 12:07PM
• 2012/02/16 12:07
• 2012-02-16 12:07
• 20120216 12:07

Use dbh->{syb_date_fmt} with a string as argument, to change the date input and output
format.

Table 4. Supported date/time formats

Date format Example

LONG Nov 15 2011 11:30:11:496AM

SHORT Nov 15 2011 11:30AM

DMY4_YYYY Nov 15 2011

MDY1_YYYY 11/15/2011

DMY1_YYYY 15/11/2011

DMY2_YYYY 15.11.2011

DMY3_YYYY 15-11-2011

DMY4_YYYY 15 November 2011

HMS 11:30:11

LONGMS Nov 15 2011 11:30:33.532315PM

New Features for ESD #6

New Features Bulletin 49

The Adaptive Server Enterprise database driver for Perl supports all date and time values
supported up to version 15.7.

Text and Image Data Handling
The Adaptive Server Enterprise database driver for Perl supports image and a text type for
LONG/BLOB data. Each type can as much as 2GB of binary data.

The default size limit for text/image data is 32KB. Use the LongReadLen attribute to change
this limit, which is set by a call to the fetch() API.

You cannot use bind parameters to insert text or image data.

When using regular SQL, image data is normally converted to a hex string, but you can use the
syb_binary_images handle attribute to change this behavior. As an alternative, you can use a
Perl function similar to $binary = pack("H*", $hex_string); to perform the conversion.

As the DBI has no API support for handling BLOB style (text/image) types, the
SybaseASE.pm file includes a set of functions you can install, and use in application-level
Perl code to call the Open Client ct_get_data() style calls. The syb_ct_get_data() and
syb_ct_send_data() calls are wrappers to the Open Client functions that transfer text and
image data to and from Adaptive Server.

Example

$sth->syb_ct_get_data($col, $dataref, $numbytes);

You can use the syb_ct_get_data() call to fetch the image/text data in raw format, either in one
piece or in chunks. To enable this call, set the dbh->{syb_no_bind_blob} statement handle to
1.

The syb_ct_get_data() call takes these arguments: the column number (starting at 1) of the
query, a scalar reference, and a byte count. A byte count of 0 reads as many bytes as possible.
The image/text column must be last in the select list for this call to work.

The call sequence is:
$sth = $dbh->prepare("select id, img from a_table where id = 1");
 $sth->{syb_no_bind_blob} = 1;
 $sth->execute;
 while($d = $sth->fetchrow_arrayref) {
 # The data is in the second column
 $len = $sth->syb_ct_get_data(2, \$img, 0);
}

syb_ct_get_data() returns the number of bytes that were fetched, if you are fetching chunks of
data, you can use:
while(1) {
$len = $sth->syb_ct_get_data(2, $imgchunk, 1024);
... do something with the $imgchunk ...
 last if $len != 1024;
}

New Features for ESD #6

50 Open Server and SDK

Other TEXT/IMAGE APIs
The syb_ct_data_info() API fetches or updates the CS_IODESC structure for the image/text
data item you want to update.

For example:

$stat = syb_ct_data_info($action, $column, $attr)

• $action – CS_SET or CS_GET.
• $column – the column number of the active select statement (ignored for a CS_SET

operation).
• $attr – a hash reference that sets the values in the structure.

You must fist call syb_ct_data_info() with CS_GET to fetch the CS_IODESC structure for the
image/text data item you want to update. Then update the value of the total_txtlen structure
element to the length (in bytes) of the image/text data you are going to insert. Set the
log_on_update to true to enable full logging of the operation.

Calling syb_ct_data_info() with a CS_GET fails if the image/text data for which the
CS_IODESC is being fetched is NULL. Use standard SQL to update the NULL value to non-
NULL value (for example, an empty string) before you retrieve the CS_IODESC entry.

In this example, consider updating the data in the image column where the id column is 1:

1. Find the CS_IODESC data for the data:
$sth = $dbh->prepare("select img from imgtable where id = 1");
 $sth->execute;
 while($sth->fetch) { # don't care about the data!
 $sth->syb_ct_data_info('CS_GET', 1);
 }

2. Update with the CS_IODESC values:
$sth->syb_ct_prepare_send();

3. Set the size of the new data item to be inserted and make the operation unlogged:
$sth->syb_ct_data_info('CS_SET', 1, {total_txtlen
=> length($image), log_on_update => 0});

4. To transfer the data in a single chunk:
$sth->syb_ct_send_data($image, length($image));

5. To commit the operation:
$sth->syb_ct_finish_send();

Error Handling
All errors from the Adaptive Server database driver for Perl and CT-Lib are propagated into
the DBI layer.

Exceptions include errors or warnings that must be reported during driver start-up, when there
is no context available yet.

New Features for ESD #6

New Features Bulletin 51

The DBI layer performs basic error reporting when the PrintError attribute is enabled. Use
DBI trace method to enable tracing on DBI operations to track program- or system-level
problems.

Examples of adding more detailed error messages (server messages) are as follows:

• Set dbh->{syb_show_sql} = 1 on the active dbh to include the current SQL statement in the
string returned by $dbh->errstr.

• Set dbh->{syb_show_eed} = 1 on the active dbh to add extended error information (EED)
such as duplicate insert failures and invalid date formats to the string returned by $dbh-
>errstr.

• Use the syb_err_handler attribute to set an ad hoc error handler callback (that is, a Perl
subroutine) that gets called before the normal error handler performs its processing. If this
subroutine returns 0, the error is ignored. This is useful for handling PRINT statements in
Transact-SQL, and showplan output and dbcc output.
The subroutine is called with parameters that include the Sybase error number, the
severity, the state, the line number in the SQL batch, the server name (if available), the
stored procedure name (if available), the message text, the SQL text and the strings "client"
or "server" to denote type.

Configuring Security Services
Use the ocs.cfg and libtcl.cfg files to configure security options.

1. For a connection, use ocs.cfg to set directory and security properties.

Note: In the ocs.cfg file, add an entry for the application name so you can set that
driver-specific option.

2. Edit libtcl.cfg to load security and directory service drivers.

3. To encrypt passwords, use the encryptPassword DSN option. For example:
DBI-
>connect("dbi:SybaseASE:server=mumbles;encryptPassword
=1", $user, $pwd);

Examples
Use sample programs to view the basic usage of stored procedure and retrieve rows from the
pubs2 authors table.

Example 1
Use the sample program to view the basic usage of stored procedures in Perl.

This program connects to a server, creates two stored procedures, calls prepare, binds, or
executes the procedures, prints the results to STDOUT, disconnects, and exits the program.

use strict;

use DBI qw(:sql_types);
use DBD::SybaseASE;

New Features for ESD #6

52 Open Server and SDK

require_version DBI 1.51;

my $uid = "sa";
my $pwd = "";
my $srv = $ENV{"DSQUERY"} || die 'DSQUERY appears not set';
my $dbase = "tempdb";

my $dbh;
my $sth;
my $rc;

my $col1;
my $col2;
my $col3;
my $col4;

Connect to the target server.
#
$dbh = DBI->connect("dbi:SybaseASE:server=$srv;database=$dbase",
 $uid, $pwd, {PrintError => 1});

One way to exit if things fail.
#
if(!$dbh) {
 warn "Connection failed, check if your credentials are set
correctly?\n";
 exit(0);
}

Ignore errors on scale for numeric. There is one marked call below
that will trigger a scale error in ASE. Current settings suppress
this.
#
$dbh->do("set arithabort off")
 || die "ASE response not as expected";

Drop the stored procedures in case they linger in ASE.
#
$dbh->do("if object_id('my_test_proc') != NULL drop proc
my_test_proc")
 || die "Error processing dropping of an object";

$dbh->do("if object_id('my_test_proc_2') != NULL drop proc
my_test_proc_2")
 || die "Error processing dropping of an object";

Create a stored procedure on the fly for this example. This one
takes input args and echo's them back.
#
$dbh->do(qq{
create proc my_test_proc \@col_one varchar(25), \@col_two int,
 \@col_three numeric(5,2), \@col_four date
as
 select \@col_one, \@col_two, \@col_three, \@col_four
}) || die "Could not create proc";

New Features for ESD #6

New Features Bulletin 53

Create another stored procedure on the fly for this example.
This one takes dumps the pubs2..authors table. Note that the
format used for printing is defined such that only four columns
#appear in the output list.
#
$dbh->do(qq{
create proc my_test_proc_2
as
 select * from pubs2..authors
}) || die "Could not create proc_2";

Call a prepare stmt on the first proc.
#
$sth = $dbh->prepare("exec my_test_proc \@col_one = ?, \@col_two
= ?,
 \@col_three = ?, \@col_four = ?")
 || die "Prepare exec my_test_proc failed";

Bind values to the columns. If SQL type is not given the default
is SQL_CHAR. Param 3 gives scale errors if arithabort is disabled.
#
$sth->bind_param(1, "a_string");
$sth->bind_param(2, 2, SQL_INTEGER);
$sth->bind_param(3, 1.5411111, SQL_DECIMAL);
$sth->bind_param(4, "jan 12 2012", SQL_DATETIME);

Execute the first proc.
#
$rc = $sth->execute || die "Could not execute my_test_proc";

Print the bound args
#
dump_info($sth);

Execute again, using different params.
#
$rc = $sth->execute("one_string", 25, 333.2, "jan 1 2012")
 || die "Could not execute my_test_proc";

dump_info($sth);

Enable retrieving the proc status.
$sth->{syb_do_proc_status} = 1;

$rc = $sth->execute(undef, 0, 3.12345, "jan 2 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute("raisin", 1, 1.78, "jan 3 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute(undef, 0, 3.2233, "jan 4 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

New Features for ESD #6

54 Open Server and SDK

$rc = $sth->execute(undef, 0, 3.2234, "jan 5 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute("raisin_2", 1, 3.2235, "jan 6 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute(undef, 0, 3.2236, "jan 7 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

End of part one, generate blank line.
#
print "\n";

Undef the handles (not really needed but...).
#
undef $sth;
undef $rc;

Prepare the second stored proc.
#
$sth = $dbh->prepare("exec my_test_proc_2")
 || die "Prepare exec my_test_proc_2 failed";

Execute and print
#
$rc = $sth->execute || die "Could not execute my_test_proc_2";
dump_info($sth);

#
An example of a display/print function.
#
sub dump_info {
 my $sth = shift;
 my @display;

 do {
 while(@display = $sth->fetchrow) {
 foreach (@display) {
 $_ = '' unless defined $_;
 }
 $col1 = $display[0];
 $col2 = $display[1];
 $col3 = $display[2];
 $col4 = $display[3];

 # Proc status is suppressed, assume proc
 # execution was always successful. Enable
 # by changing the write statement.
 #
 #write;
 write unless $col1 eq 0;
 }

New Features for ESD #6

New Features Bulletin 55

} while($sth->{syb_more_results});
}

#
The FORMAT template for this example.
#
format STDOUT_TOP =

Column1 Column2 Column3 Column4
------ ------ ------ ------
.

Treat all data as left-justified strings
#
format STDOUT =
@<<<<<<<<<<<< @<<<<<<<<<<<< @<<<<<<<<<<<<
@<<<<<<<<<<<<
$col1, $col2, $col3, $col4
.

The End.....
#
$dbh->do("drop proc my_test_proc");
$dbh->do("drop proc my_test_proc_2");
$dbh->disconnect;

Example 2
Use the sample program to retrieve rows from the pubs2 authors table, insert them into
tempdb, and append new rows for batch insert. The program then prints the updated
authors table to STDOUT, disconnects, and exits.

use strict;

use DBI ();
use DBD::SybaseASE ();

require_version DBI 1.51;

trace(n) where n ranges from 0 - 15.
use 2 for sufficient detail.
#DBI->trace(2); # 0 - 15, use 2 for sufficient detail

Login credentials, handles and other variables.
#
my $uid = "sa";
my $pwd = "";
my $srv = $ENV{"DSQUERY"} || die 'DSQUERY appears not set';
my $dbase = "tempdb";
my $temp_table = "$dbase..authors";

my $rows;
my $col1;
my $col2;
my $dbh;

New Features for ESD #6

56 Open Server and SDK

my $sth;
my $rc;

Connect to the target server:
#
$dbh = DBI->connect("dbi:SybaseASE:server=$srv;database=$dbase",
 $uid, $pwd, {PrintError => 0, AutoCommit => 0})
 || die "Connect failed, did you set correct credentials?";

Switch to the pubs2 database.
#
$rc = $dbh->do("use pubs2") || die "Could not change to pubs2";

Retrieve 2 columns from pubs2..authors table.
#
$sth = $dbh->prepare(
 "select au_lname, city from authors where state = 'CA'")
 || die "Prepare select on authors table failed";

$rc = $sth->execute
 || die "Execution of first select statement failed";

We may have rows now, present them.
#
$rows = dump_info($sth);
print "\nTotal # rows: $rows\n\n";

Switch back to tempdb, we take a copy of pubs2..authors
and insert some rows and present these.
#
$rc = $dbh->do("use $dbase") || die "Could not change to $dbase";

Drop the authors table in tempdb if present
#
$rc = $dbh->do("if object_id('$temp_table') != NULL drop table
$temp_table")
 || die "Could not drop $temp_table";

No need to create a tempdb..authors table as the select into will
do that.

$rc = $dbh->do("select * into $temp_table from pubs2..authors")
 || die "Could not select into table $temp_table";

Example of a batch insert...
#
$sth = $dbh->prepare("
 insert into $temp_table
 (au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
 ('172-39-1177', 'Simpson', 'John', '408 496-7223',
 '10936 Bigger Rd.', 'Menlo Park', 'CA', 'USA', '94025')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values

New Features for ESD #6

New Features Bulletin 57

('212-49-4921', 'Greener', 'Morgen', '510 986-7020',
 '309 63rd St. #411', 'Oakland', 'CA', 'USA', '94618')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('238-95-4766', 'Karson', 'Chernobyl', '510 548-7723',
 '589 Darwin Ln.', 'Berkeley', 'CA', 'USA', '94705')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('267-41-4394', 'OLeary', 'Mich', '408 286-2428',
 '22 Cleveland Av. #14', 'San Jose', 'CA', 'USA', '95128')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('274-80-4396', 'Straight', 'Shooter', '510 834-2919',
 '5420 College Av.', 'Oakland', 'CA', 'USA', '94609')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('345-22-1785', 'Smiths', 'Neanderthaler', '913 843-0462',
 '15 Mississippi Dr.', 'Lawrence', 'KS', 'USA', '66044')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('405-56-7012', 'Bennetson', 'Abra', '510 658-9932',
 '6223 Bateman St.', 'Berkeley', 'CA', 'USA', '94705')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('427-17-2567', 'Dullest', 'Annie', '620 836-7128',
 '3410 Blonde St.', 'Palo Alto', 'CA', 'USA', '94301')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('527-72-3246', 'Greene', 'Mstar', '615 297-2723',
 '22 Graybar House Rd.', 'Nashville', 'TN', 'USA', '37215')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('672-91-3249', 'Yapan', 'Okiko', '925 935-4228',
 '3305 Silver Ct.', 'Walnut Creek', 'CA', 'USA', '94595')
");

$rc = $sth->execute || die "Could not insert row";

Retrieve 2 columns from tempdb..authors table and present these
#

New Features for ESD #6

58 Open Server and SDK

$sth = $dbh->prepare(
 "select au_lname, city from $temp_table where state = 'CA'")
 || die "Prepare select on $temp_table table failed";

$rc = $sth->execute
 || die "Execution of second select statement failed";

Output
#
$rows = dump_info($sth);
print "\nTotal # rows: $rows";
print "\n";

sub dump_info {
 my $sth = shift;
 my @display;
 my $rows = 0;

while(@display = $sth->fetchrow) {
 $rows++;
 foreach (@display) {
 $_ = '' unless defined $_;
 }
 $col1 = $display[0];
 $col2 = $display[1];
 write;
 }
 $rows;
}

The FORMAT template for this example.
#
format STDOUT_TOP =

Lastname City
-------- -------
.

format STDOUT =

@<<<<<<<<<<<< @<<<<<<<<<<<<
$col1, $col2
.

$dbh->disconnect;

New Features for ESD #6

New Features Bulletin 59

New Features for ESD #6

60 Open Server and SDK

New Features for ESD #5

ESD #5 introduces new functionality for jConnect 7.07, Adaptive Server ODBC Driver 15.7,
and Adaptive Server ADO.NET Data Provider15.7.

Adaptive Server ADO.NET Data Provider Support for
Transact-SQL Queries with COMPUTE Clause

Adaptive Server ADO.NET Data Provider now supports Transact-SQL queries that include a
COMPUTE clause.

A COMPUTE clause lets you include detail and summary results in a single select statement.
The summary row follows the detail rows of a specific group, as shown here:

select type, price, advance from titles order by type compute
sum(price), sum(advance) by type
type price advance
------------ --------- ----------
UNDECIDED NULL NULL
Compute Result:
------------------------ ------------------------
NULL NULL
type price advance
------------ --------- ----------
business 2.99 10,125.00
business 11.95 5,000.00
business 19.99 5,000.00
business 19.99 5,000.00
Compute Result:
------------------------ ------------------------
54.92 25,125.00
...
...

(24 rows affected)

When Adaptive Server ADO.NET Data Provider executes a select statement that includes a
COMPUTE clause, the provider returns multiple result sets to the client. The number of result
sets depends on the number of unique groupings available. Each group contains one result set
for the detail rows and one result set for the summary. The client must process all result sets to
fully process the rows returned; if it does not, only the detail rows of the first group of data are
included in the first result set returned.

See the Adaptive Server Enterprise Transact-SQL Users Guide for more information about the
COMPUTE clause.

New Features for ESD #5

New Features Bulletin 61

See the ADO.NET Programmers Guide on the Microsoft Web site for more information about
processing multiple result sets.

New SSIS Custom Data Flow Destination Component for
Faster Data Transfers to Adaptive Server

Adaptive Server ADO.NET Data Provider distribution now includes a SQL Server Integration
Services (SSIS) Custom Data Flow Destination component, which performs faster data
transfer in to Adaptive Server destinations.

The faster data transfers use the Adaptive Server bulk-insert protocol supported by
AseBulkCopy class. This component, named SybaseAdaptiveServerAdoNetDestination, is
installed along with the Adaptive Server ADO.NET Data Provider and the assembly files in:
%SYBASE%\DataAccess\ADONET
\SybaseAdaptiveServerAdoNetDestination.dll (32–bit systems) and
%SYBASE%\DataAccess64\ADONET
\SybaseAdaptiveServerAdoNetDestination.dll (64–bit systems).

Configuring Adaptive Server ADO.NET Destination SSIS Component
for SQLServer 2008

Configure Adaptive Server ADO.NET Destination SSIS component.

1. Copy the Sybase.AdoNet2.AseDestination.dll to C:\Program Files
\Microsoft SQL Server\100\DTS\PipelineComponents and C:
\Program Files (x86)\Microsoft SQL Server\100\DTS
\PipelineComponents.

2. From any Microsoft SQL Server directory on your local drive, register the
Sybase.AdoNet2.AseDestination.dll assembly using the AseGacUtility
provided in the SDK installation.

3. Start SQL Server Business Intelligence Studio.

4. On the Toolbox tab, right-click Data Flow Destinations and select Choose Items.
The Choose Toolbox Items window appears.

5. Select the SSIS Data Flow Items tab. Click Sybase Adaptive Server Enterprise ADO NET
Destination, then click OK. Select Toolbox > Data Flow Destinations to see the Sybase
Adaptive Server ADO NET Destination component.

6. To create an SSIS project, select File > New > Project > Integration Services Project
menu. Create or drag and drop a Control Flow object from the Control Flow Items toolbox.

7. From the Data Flow Destinations and Data Flow Sources Toolbox tab, drag and drop
Sybase Adaptive Server ADO NET Destination Component and ADO NET Source
Component onto the Data Flow tab.

New Features for ESD #5

62 Open Server and SDK

8. If a source or destination connection is not available in Connection Managers window,
right-click in the Connection Managers window, and select New ADO.NET Connection.
Select the already existing Data connection, or click New.

9. To create a new connection to the destination Adaptive Server, click New button in the
Configure ADO.NET Connection Manager window, and then select Sybase Adaptive
Server Enterprise Data Provider.

10. In the Connection Manager window, enter your connection properties.

11. To enable bulk insert, in the Additional Connection Props text box, enter:
enablebulkload=1
Note: See AseBulkCopy in the Adaptive Server Enterprise ADO.NET Data Provider
Users Guide for more details about utilizing bulk insert functionality.

12. Click OK.

13. For the ADO.NET Source in your Data Flow, setup the connection and data access mode.
After you connect the data flow path from your ADO.NET Source, right-click Sybase
Adaptive Server ADO NET Destination Component, and choose Show Advanced Edit.

14. From the Connection Manager tab, select ASE connection from the Connection Manager
field. From the Component Properties tab, set the TableName property to the destination
table name.

15. Select the Input Columns tab, and select the Name check box. This will select all the
columns specified by the source table.

16. Click OK.

Note: The SSIS destination component for data transfers from SQL Server 2008 has been
renamed from Sybase.AdaptiveServerAdoNetDestination.dll to
Sybase.AdoNet2.AseDestination.dll.

The connection is established. See Microsoft SSIS documentation for more information about
data transfer.

jConnect Dynamic Logging Levels
jConnect has been enhanced to allow application users to set message granularity to
Level.FINE, Level.FINER, and Level.FINEST.

For example:

• When a user sets the logging level to Level.FINE on SybConnection class, jConnect
reports:
Dr1_Col setClientInfo(Properties)

• Level.FINER on SybConnection class reports:
Dr1_Co1 setClientInfo(Properties.size = [3])

New Features for ESD #5

New Features Bulletin 63

• Level.FINEST on SybConnection class reports:
Dr1_Co1 setClientInfo(Properties = [[ClientUserValue, ApplicationNameValue,
ClientHostnameValue]])

See jConnect for JDBC Programmers Reference.

Package Name Changed in jConnect for Converter Classes
In jConnect 7.07, the package name and file path for all character-set converter classes has
been changed.

The character set converter class files has been moved from com/sybase/jdbc4/utils
to com/sybase/jdbc4/charset. Package name changes for character-set converter
classes in jConnect 7.07 include:

• com.sybase.jdbc4.utils.TruncationConverter has been changed to
com.sybase.jdbc4.charset.TruncationConverter

• com.sybase.jdbc4.utils.PureConverter has been changed to
com.sybase.jdbc4.charset.PureConverter

Note: If you have declared classes that extend character-set converter classes to use the full
package name, you must change the package name from com.sybase.jdbc4.utils to
com.sybase.jdbc4.charset.

Sybase recommends that you use wildcard character imports instead of coding the class
reference. For example:

import com.sybase.jdbc4.charset.*;

import com.sybase.jdbc4.utils.*;

The converter class references for package name are resolved by the import statements.

New Features for ESD #5

64 Open Server and SDK

Increased PreparedStatement Parameter Limit in jConnect
In previous versions, the maximum number of parameters for PreparedStatement was limited
to 2048. jConnect 7.07 now supports 32767 parameters, when connected to Adaptive Server
that also supports the larger limit.

New SkipRowCountResults Connection Property for
Adaptive Server ODBC Driver

The SkipRowCountResults connection property can be used to control how the ODBC Driver
treats statements that return row count results.

UPDATE, INSERT and DELETE statements return row count results. SELECT statements
return result sets. An ODBC application may execute a batch of statements that uses a mix
statements returning row counts or result sets.

When SkipRowCountResults is set to 1 (the default), the Adaptive Server ODBC Driver skips
any row count results. After executing a batch of statements using SQLExecDirect or
SQLExecute, the ODBC application is positioned on the first result set. Subsequent calls to
SQLMoreResults will skip over row count results and the application is positioned on the next
available result set.

When SkipRowCountResults is set to 0, the Adaptive Server ODBC Driver stops at each
result set or row count. After executing a batch of statements using SQLExecDirect or
SQLExecute, the application is positioned on the first available result which can be either a
result set or a row count. The ODBC application can use SQLFetch to retrieve a result set or
SQLRowCount to retrieve the row count results. Subsequent calls to SQLMoreResults will
position the application to the next available result, which can be either a result set or row
count.

Support for AF_UNIX Sockets in Adaptive Server ODBC
Driver

The Adaptive Server ODBC Driver now supports AF_UNIX sockets to communicate to
Adaptive Server.

This support is currently limited to the Linux x86-64 64-bit platform. You can use the
AF_UNIX socket when both the ODBC application and Adaptive Server are located on the
same host, and both are configured to use AF_UNIX sockets. The AF_UNIX sockets provide
better performance than TCP/IP sockets. To enable AF_UNIX sockets from ODBC, set these
connection strings properties:

New Features for ESD #5

New Features Bulletin 65

• networklibraryname=afunix – informs the Adaptive Server ODBC Driver that AF_UNIX
socket is used.

• server=<full path to the pipe> – path to the AF_UNIX socket. For example, /tmp/
test/demo_socket.

See the Sybase Adaptive Server Enterprise documentation for more information on
configuring Adaptive Server to use AF_UNIX sockets.

AdjustLargePrecisionAndScale Connection Property for
Adaptive Server ODBC Driver

In versions earlier than 15.7, the Adaptive Server ODBC Driver did not support calls to
SQLSetDescField(), to set scale and precision of numeric or decimal columns.

Any calls to this API were ignored, and the Adaptive Server ODBC Driver set the precision
and scale of the column based on the value received. As Adaptive Server supports a precision
larger than the ODBC numeric structure, the Adaptive Server ODBC Driver further scaled
down the values received from the server as needed to accommodate them within the ODBC
numeric structure. In versions 15.7 and later, the Adaptive Server ODBC Driver no longer
ignores the calls to SQLSetDescField() that set the precision and scale of the numeric or
decimal column. It is therefore possible to find that ODBC Applications that worked before
now receive data overflow errors with the new Adaptive Server ODBC Driver. The
AdjustLargePrecisionAndScale property allows the earlier behavior to continue, and enables
the Adaptive Server ODBC Driver to select the optimal precision and scale to accommodate
the value received from the server.

By default, AdjustLargePrecisionAndScale is 0, which causes the Adaptive Server ODBC
Driver to accept the calls made to SQLSetDescField() API to set precision or scale.

When you set the AdjustLargePrecisionAndScale connection property to 1, the Adaptive
Server ODBC Driver ignores any calls made to SQLSetDescField() API to set precision or
scale, and uses the precision and scale of actual data value.

For more information about SQLSetDescField(), see the Microsoft Developers Network
http://msdn.microsoft.com/.

New Features for ESD #5

66 Open Server and SDK

http://msdn.microsoft.com/

New Features for ESD #4

ESD #4 introduces new functionality for Open Client 15.7 and Open Server 15.7, SDK 15.7,
Adaptive Server Enterprise extension module for Python 15.7, Adaptive Server Enterprise
extension module for PHP 15.7, and Adaptive Server Enterprise data provider for Perl 15.7.

Open Client 15.7 and Open Server 15.7 Features in ESD #4
Open Client 15.7 and Open Server 15.7 have been enhanced to provide new functionality
including stricter permissions for Open Client and Open Server files (UNIX), batched
parameters, and new safe string handling routines.

Stricter Permissions for Open Client and Open Server Files (UNIX
only)

Starting with ESD#4, newly generated Open Client and Open Server files have the stricter
permissions.

Table 5. Files and their permission settings

Files Permission

Interfaces files rw- r-- r-- (644)

BCP data file rw- r-- --- (640)

BCP format file rw- r-- --- (640)

BCP output file rw- --- --- (600)

BCP error file rw- --- --- (600)

ISQL output file (-o option) rw- --- --- (600)

ISQL Command history file rw- --- --- (600)

ISQL temporary file rw- --- --- (600)

ISQL output redirection rw- --- --- (600)

Open Server log file rw- --- --- (600)

LDAP debug log file rw- --- --- (600)

Kerberos debug log file rw- --- --- (600)

Netlib trace output file rw- --- --- (600)

DCL trace output file rw- --- --- (600)

New Features for ESD #4

New Features Bulletin 67

Note: These permissions apply to newly generated files only; existing files retain their
permissions (typically rw- rw- rw- (666)). Permissions of files on Microsoft Windows remain
unchanged.

New SYBOCS_TCL_CFG Environment Variable for Setting Alternate
Path to libtcl*.cfg Files

Starting with ESD#4, you can use the new SYBOCS_TCL_CFG environment variable to set
the alternate full path name of the libtcl.cfg and libtcl64.cfg files.

For example:

Windows:

set SYBOCS_TCL_CFG c:\joe\libctl.cfg

UNIX:

%setenv SYBOCS_TCL_CFG /usr/u/joe/libtcl.cfg

By default, the libtcl.cfg and libtcl64.cfg files are searched in the %SYBASE%\
%SYBASE_OCS%\ini directory on Windows and in the $SYBASE/$SYBASE_OCS/
config directory on UNIX.

You can also use the CS_LIBTCL_CFG property to set the alternate path for the
libtcl.cfg and libtcl64.cfg files.

New isql Command line Option --URP to Set Universal Remote
Password

Use the new --URP command line option to enable setting the universal remote password for
clients accessing Adaptive Server.

isql --URP remotepassword

remotepassword is the universal remote password.

Examples:

%isql --URP “ASEremotePW”

New linux64 and nthread_linux64 Settings for SYBPLATFORM
linux64 and nthread_linux64 (for threaded applications) are now valid settings for
the SYBPLATFORM environment variable that can be used for compiling Open Client and

New Features for ESD #4

68 Open Server and SDK

Open Server sample applications on Linux x86-64 64-bit. The existing linuxamd64 and
nthread_linuxamd64 settings remain valid for the same use.

LAN Manager Driver for Microsoft Windows 64-bit
Open Client and Open Server includes libsybsmssp64.dll, which is a 64-bit LAN
Manager driver for Microsoft Windows x86-64 64-bit. libsybsmssp64.dll is located
in %SYBASE%\%SYBASE_OCS%\dll; its behavior is similar to the 32-bit driver
libsybsmss.dll.

Support for Batched Parameters
Starting with ESD #4, Open Client and Open Server allow multiple sets of command
parameters to be sent without ending the command itself.

In an Open Client application, use the new ct_send_params() routine repeatedly to transfer
parameters without needing to process the results of the previous command and without
needing to resend the command itself. In an Open Server application, set
SRV_S_PARAM_BATCHING property to CS_TRUE.

ct_send_params
Send command parameters in batches.

Syntax
CS_RETCODE ct_send_params(
 CS_COMMAND *cmd,
 CS_INT reserved)

Parameters

• cmd
A pointer to a CS_COMMAND structure.

• reserved
Set to CS_UNUSED. This is a placeholder reserved for possible future use.

Return value
ct_send_params returns:

Returns Indicates

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Usage
A call to this function sends the parameters indicated earlier using ct_param() or
ct_setparam(). To stop sending parameters, use a ct_send() call after the last

New Features for ESD #4

New Features Bulletin 69

ct_send_params() call. This signals the end of the parameters and completes the current
command.

• The first ct_send_params() call sends the actual command, the parameter formats for all
parameters, and the first set of parameters to the server. Subsequent calls only send more
parameters without format.

• The network buffer containing the parameters gets flushed during every call to
ct_send_params() so that the server can start processing the command.

• Unlike ct_send(), ct_send_params() does not end the current command. You can call
ct_send_params() repeatedly to send multiple sets of parameters.

• The handling of the results starts only after a ct_send() call to complete the command. If
ct_results() is called before ct_send(), an error results.

Rebinding using ct_setparam()
When sending multiple sets of parameters, an application may need to point CT-Library to
other locations in memory than for the previous set of parameters.

To rebind the parameters, use ct_setparam() to provide a different location for the data. Here is
the existing ct_setparam() declaration:

ct_setparam(cmd, datafmt, data, datalenp, indp)

 CS_COMMAND *cmd;
 CS_DATAFMT *datafmt;
 CS_VOID *data;
 CS_INT *datalenp;
 CS_SMALLINT *indp;

Provide new values for data, datalenp and indp parameters in ct_setparam() call to bind to
different memory locations.

After a ct_send_params() call, the format of the parameters cannot be changed. Any calls to
ct_setparam() made after a call to ct_send_params() must therefore pass a NULL value for
datafmt.

Only parameters initially bound with ct_setparam() can be rebound.

Batched Parameters Support to Server-Library
To enable batched parameter support in Open Server Server-Library, set the
SRV_S_PARAM_BATCHING server property to CS_TRUE.

For example, before srv_run():

if (srv_props(ctos_ctx->cx_context, CS_SET,
SRV_S_PARAM_BATCHING, (CS_VOID *)&cs_true, sizeof(cs_true), NULL) !=
CS_SUCCEED)
{...}

Then, srv_xferdata() has two new return codes when a command contains multiple sets of
command parameters.

New Features for ESD #4

70 Open Server and SDK

• CS_PARAMS_MORE - indicates parameters have been successfully copied and there are
more parameters in the batch.

• CS_PARAMS_END - indicates parameters have been successfully copied. This is the last
set of parameters in the batch.

Example Programs
Two new CT-Library sample programs are available.

• batch_lang.c - demonstrates how ct_send_params() can be used with a language
statement. This sample uses ct_send_params() repeatedly to insert lines read from a file
into a table. Since it uses the same location for the parameters for every line read, it does
not need to call ct_param() or ct_setparam() in between calls to ct_send_params().

• batch_dynamic.c - uses dynamic SQL and sends parameters to the server for which
the data resides at different memory locations. Therefore, this sample also demonstrates
how ct_setparam() can be used to rebind to different variables before calling
ct_send_params() again.

The ctos sample program has been updated to include:

• Turn on the SRV_S_PARAM_BATCHING server property.
• Use ct_setparams() to bind CT-Lib to the location of the data.
• Handle the new return values from srv_xferdata()

• Call ct_send_params() for each set of command parameters.

New CS-Library String Handling Routines
cs_strlcpy, cs_strlcat, and cs_snprintf are the three new CS-Library string handling routines.

cs_strlcpy
Safe string copy function. Copies at most target_size-1 characters from source_str to
target_str, truncating if necessary. The result is always a null terminated string except when
source_str or target_str are NULL, or target_size is 0.

Syntax
CS_RETCODE cs_strlcpy(target_str, source_str, target_size)

 CS_CHAR *target_str;
 CS_CHAR *source_str;
 CS_INT *target_size;

Parameters

• target_str
The target string where source string is to be copied.

• source_str
The source string to be copied.

New Features for ESD #4

New Features Bulletin 71

• target_size
Size of the target string

Return value

• 0 if source_str is NULL, target_str is NULL, or target_size is 0.
• target_size in case of an overflow.
• strlen(source_str) in all other cases.

cs_strlcat
Safe string concatenation function. Appends at most target_size - strlen(target_str) - 1
characters of source_str to target_str. The result is always a null terminated string, except
when source_str or target_str are NULL, or target_size is 0, or the string pointed to by
target_str is longer than target_size bytes.

Syntax
CS_RETCODE cs_strlcat(target_str, source_str, target_size)

 CS_CHAR *target_str;
 CS_CHAR *source_str;
 CS_INT *target_size;

Parameters

• target_str
The target string where source string is to be appended.

• source_str
The source string to be appended.

• target_size
Size of the target string

Return value

• 0 if source_str is NULL, target_str is NULL, or target_size is 0
• target_size in case of an overflow
• strlen(target_str) + strlen(source_str) in all other cases

cs_snprintf
A common snprintf like function for all platforms, providing formatted output conversion.
The result is always a null terminated string.

Syntax
void cs_snprintf(char *str, size_t size, const char *format, ...)

New Features for ESD #4

72 Open Server and SDK

Parameters

• str
String into which the output is written to.

• size
Maximum number of bytes to write.

• format
Character string composed of zero or more conversion directives.

Return value
None

SDK 15.7 features for jConnect and Adaptive Server Drivers
and Providers in ESD #4

ESD #4 introduces new functionality for jConnect for JDBC 7.07, Adaptive Server Enterprise
ODBC Driver 15.7, Adaptive Server Enterprise OLE DB Provider 15.7, and Adaptive Server
Enterprise ADO.NET Data Provider 15.7.

Granular and Predicated Permissions
Starting with Adaptive Server 15.7 ESD #2, role-privilege management model has been
enhanced.

• New grantable system privileges that are granular have been added to enforce principles of
Separation of Duties (SOD) and Least Privilege (LP). These grantable system permissions
can be server-wide privileges or database-wide privileges.

• System-defined roles sa_role, sso_role, oper_role, replication_role, and
keycustodian_role are now reconstructed as privilege containers consisting of a set of
explicitly granted privileges.

• Custom roles can now be created from out-of-box system-defined roles by granting or
revoking privileges.

• CREATE PROCEDURE statement now supports a new EXECUTE AS OWNER | CALLER
option. Then, ASE checks runtime permissions, executes DDL, and resolves object names
as procedure owner or as procedure caller.

• The enhanced role-privilege management model is enabled by using the new enable
granular permissions configuration option.

See Adaptive Server Enterprise 15.7 ESD #2 documentation.

jConnect for JDBC, Adaptive Server Enterprise ODBC Driver, Adaptive Server Enterprise
OLE DB Provider, and Adaptive Server Enterprise ADO.NET Data Provider support the new
role-privilege management model when connected to an Adaptive Server with the new model
enabled.

New Features for ESD #4

New Features Bulletin 73

To support returning information about the predicate used to grant predicated permissions, the
following methods return an additional column named PREDICATE:

• ODBC – SQLColumnPrivileges() and SQLTablePrivileges()

• JDBC – ResultSet getColumnPrivileges() and ResultSet getTablePrivileges()

• OLE DB – IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMN_PRIVILEGES) and
IDBSchemaRowset::GetRowset(DBSCHEMA_TABLE_PRIVILEGES)

If granular permissions are set up on the database, the methods return additional rows to
convey the granular permissions.

There is no change in the behavior of the ADO.NET methods.

alter table drop column without Datacopy
Adaptive Server version 15.7 ESD #2 allows you to drop columns from a table without
performing a data copy.

This reduces the amount of time required for alter table drop column to run. See Adaptive
Server Enterprise 15.7 ESD #2 documentation.

jConnect for JDBC, Adaptive Server Enterprise ODBC Driver, Adaptive Server Enterprise
OLE DB Provider, and Adaptive Server Enterprise ADO.NET Data Provider support this
feature for normal DML operations (insert, delete, update, and merge) when connected to an
Adaptive Server with the feature enabled. You do not need any special configuration to use the
feature; it is automatically supported.

jConnect for JDBC and Adaptive Server Enterprise ODBC Driver also support this feature for
bulk copy when connected to an Adaptive Server with the feature enabled.

This feature is not available for nonmaterialized or virtual computed columns, encrypted
columns, and XML Columns.

Fast Logged Bulk Insert
Adaptive Server version 15.7 ESD #2 allows you to fully log bcp in fast mode, providing full
data recovery.

Previous versions of bcp in fast mode logged only page allocations. See Adaptive Server
Enterprise 15.7 ESD #2 documentation.

In jConnect for JDBC, set ENABLE_BULK_LOAD connection property to the new value
LOG_BCP to enable full logging.

In ODBC Driver, set EnableBulkLoad connection property to new value 3 to enable full
logging. Alternatively, set the SQL_ATTR_ENABLE_BULK_LOAD connection attribute to
the desired level in the ODBC application:

sr = SQLSetConnectAttr(hdbc, SQL_ATTR_ENABLE_BULK_LOAD,
(SQLPOINTER)3, SQL_IS_INTEGER);

This allows a single connection to use different types of bulk load.

New Features for ESD #4

74 Open Server and SDK

In ADO.NET Provider, set EnableBulkLoad connection property to new value 3 to enable full
logging.

Dynamic Logging
Starting with ESD #4, jConnect for JDBC supports logging mechanism by implementing
standard Java Logger mechanism.

Now, the application can get handle of jConnect's logger and turn logging on or off as and
when required. See jConnect for JDBC Programmers Reference.

Dynamic Client Information Setting
Starting with ESD #4, you can set new values for jConnect for JDBC client information
properties (ApplicationName, ClientUser, ClientHostName) using setClientInfo() and
getClientInfo() standard methods even after the connection has been established.

Dynamic Connection Property Setting
Starting with ESD #4, you can set new values for jConnect for JDBC connection properties
using setClientInfo() and getClientInfo() standard methods even after the connection has been
established.

See jConnect for JDBC Programmers Reference for the list of connection properties that can
be dynamically set.

New Features for ESD #4

New Features Bulletin 75

Exception Handling
Exception handling in jConnect for JDBC has been enhanced. You can use getCause()
method to get the cause of the exception when the exception message contains directive to use
getcause().

New jConnect Connection Properties for Performance Improvement
Starting with ESD #4, jConnect for JDBC has new set of connection properties for
performance improvement.

Property Description Default value

OPTI-
MIZE_STRING_
CONVERSIONS

Specifies whether or not to enable string conversion op-
timization.

This optimization behavior can improve jConnect per-
formance when a client uses character datatypes in SQL
prepared statement.

Values:

• 0 – the default value; string conversion optimization is
not enabled.

• 1 – enable string conversion optimization when jCon-
nect uses utf8 or server default character set.

• 2 – enable string conversion optimization for all cases.

0

SUPPRESS_PAR-
AM_ FORMAT

When executing dynamic SQL prepared statements,
jConnect client can use the SUPPRESS_PARAM_FOR-
MAT connection string property to suppress parameter
data (TDS_PARAMS). The client sends less parameter
metadata where possible for better performance.

Values:

• 0 – TDS_PARAMFMT is not suppressed in select,
insert, and update operations.

• 1 – the default value; TDS_PARAMFMT is sup-
pressed where possible.

1

New Features for ESD #4

76 Open Server and SDK

Property Description Default value

SUPPRESS_ROW_
FORMAT

In jConnect, client can use the SUPPRESS_ROW_FOR-
MAT connection string property to force Adaptive Server
to send TDS_ROWFMT or TDS_ROWFMT2 data only
when the row format changes for a dynamic SQL prepared
statement. Adaptive Server can send less data to the client
if possible, resulting in better performance.

Values:

• 0 – TDS_ROWFMT or TDS_ROWFMT2 data is sent,
even if the row format has not changed.

• 1 – the default; forces the server to send
TDS_ROWFMT or TDS_ROWFMT2 only when the
row format has changed.

1

New jConnect Connection Properties
Starting with ESD #4, jConnect for JDBC has new set of connection properties.

Property Description Default value

EARLY_BATCH_
READ_THRESH-
OLD

Specifies the threshold on number of rows after which a
reader thread should be started to drain out the server
responses for a batch.

Set this value to -1 if the early read is not ever required.

-1

STRIP_BLANKS Forces the server to remove the preceding and trailing
blanks in a string value before storing it in the table.

Values:

• 0 – the default value; string values sent by the client
are stored ‘as is’.

• 1 – preceding and trailing blanks in a string value are
removed before storing it in the table.

0

SUPPRESS_ CON-
TROL_TOKEN

Suppresses control tokens.

Values:

• 0 – the default value; control tokens are sent.
• 1 – control tokens are suppressed.

0

New Features for ESD #4

New Features Bulletin 77

Notes on Hibernate Support for JDBC
Hibernate is a collection of related projects enabling developers to utilize POJO-style domain
models in their applications extending beyond Object or Relational Mapping. Out of the many
modules, Hibernate-core module deals with Object Relational Mapping.

Dialect is a helper for Hibernate to communicate with the database in its language. Hibernate
has created dialect files for versions of Adaptive Server Enterprise:

Sybase Dialect file ASE version

Sybase11Dialect.java 11.9.2

Sybase15Dialect.java 15.0

Sybase157Dialect.java 15.7

Note: Hibernate and Sybase actively test latest releases and create new dialects when
required. All the updated dialects are part of scheduled Hibernate releases. This release
schedule may not match Adaptive Server release schedule. If you need access to the updated
dialect prior to release of the corresponding Hibernate release, they may be available at
Hibernate on Sybase ASE.

Support for SQL_ATTR_OUTPUT_NTS=SQL_FALSE
Adaptive Server Enterprise ODBC Driver now allows you to set the
SQL_ATTR_OUTPUT_NTS attribute to SQL_FALSE so that the driver does not return string
data null-terminated.

Set the attribute before allocating any connection handle:

SQLSetEnvAttr(hEnv, SQL_ATTR_OUTPUT_NTS, (SQLPOINTER)SQL_FALSE,
SQL_IS_INTEGER)

By default, the SQL_ATTR_OUTPUT_NTS attribute to SQL_TRUE and all output strings are
null-terminated.

Support for SQLLEN Datatype of Length 8-byte (Linux 64-bit only)
Adaptive Server Enterprise ODBC Driver for Linux x86-64 64-bit and Linux on POWER 64-
bit now supports a 4-bytes SQLLEN datatype and an 8-bytes SQLLEN datatype.

Red Hat and SUSE provide the unixODBC Driver Manager as their driver manager. Versions
of the unixODBC Driver Manager prior to 2.2.13 expect to use a 4-bytes SQLLEN datatype.
The default configuration of the unixODBC Driver Manager in versions 2.2.13 and later, such
as that provided by Red Hat Enterprise Linux 6 and later, expect an 8-bytes SQLLEN datatype.
Accordingly, the Adaptive Server Enterprise ODBC Driver provides two versions of the
driver. Please check the unixODBC Driver Manager version used by your 64-bit Linux
system.

New Features for ESD #4

78 Open Server and SDK

https://community.jboss.org/wiki/HibernateSybaseintegration

Starting with ESD #4, there are two driver shared library files and a soft link in the
DataAccess64/ODBC/lib/ directory:

• The libsybdrvodb-sqllen4.so - equivalent to the original libsybdrvodb.so
file that supports a 4-bytes SQLLEN datatype

• The libsybdrvodb-sqllen8.so file - new version of the libsybdrvodb.so
file that supports an 8-bytes SQLLEN datatype

• The libsybdrvodb.so soft link that points to the original driver shared library file,
now named libsybdrvodb-sqllen4.so

There is no change when you want to continue using the 4-bytes SQLLEN datatype.

To use the 8-bytes SQLLEN datatype, modify the soft link to point to the libsybdrvodb-
sqllen8.so file:

> cd DataAccess64/ODBC/lib
> rm libsybdrvodb.so
> ln -s libsybdrvodb-sqllen8.so libsybdrvodb.so

ODBC Deferred Array Binding
Adaptive Server Enterprise ODBC Driver now provides the extended SQLBindColumnDA()
and SQLBindParameterDA() APIs that allow applications to bind all columns or parameters
with a single API call.

When you use these APIs, the pointers to column buffer or parameter buffer are reevaluated
for each SQLExecute() or SQLExecDirect() call. Therefore, the application is able to change
the buffers without another SQLBindCol() or SQLBindParameter() call. Because the calls to
bind new pointers can be expensive, using the new extended APIs improves application
performance where the same statement needs to be executed many times. Applications may
also be able to save some memory copy operations by changing the buffer pointers before
executing a query such that data is read from where available or copied to where needed.

See Adaptive Server Enterprise ODBC Driver by Sybase Users Guide.

Bulk Insert Support for ODBC Data Batching
The ODBC data batching without binding parameter arrays feature introduced in 15.7 release
has now been extended to support inserting batches using bulk insert protocol.

To enable, set the EnableBulkLoad connection property to the desired bulk insert level (1, 2, or
3), and the HomogeneousBatch connection property to 2. See Adaptive Server Enterprise
ODBC Driver by Sybase Users Guide.

For example, add ;enablebulkload=3;homogeneousbatch=2 in the connection
string and simple insert statements executed in a batch are converted to fast-logged bulk insert
statements.

New Features for ESD #4

New Features Bulletin 79

Alternatively, set the connection properties programmatically using the
SQL_ATTR_HOMOGENEOUS_BATCH and SQL_ATTR_ENABLE_BULK_LOAD
connection attributes to achieve the same result:
sr = SQLSetConnectAttr(hdbc, SQL_ATTR_HOMOGENEOUS_BATCH,
(SQLPOINTER)2, SQL_IS_INTEGER);
sr = SQLSetConnectAttr(hdbc,
SQL_ATTR_ENABLE_BULK_LOAD, (SQLPOINTER)3, SQL_IS_INTEGER);

Dynamic Logging Support without ODBC Driver Manager Tracing
Adaptive Server Enterprise ODBC Driver 15.7 introduced the application logging without an
ODBC driver manager tracing feature.

The application logging can be enabled (or disabled) for the duration of application execution.
See Logging without ODBC Driver Manager tracing.

ESD #4 extends this support by allowing you to dynamically enable or disable the application
logging during application execution by setting the new SQL_OPT_TRACE environment
attribute. Valid values are 0 (default) to disable or 1 to enable.

// enable logging
SQLSetEnvAttr(0, SQL_OPT_TRACE, (SQLPOINTER)1,
 SQLINTEGER);
// disable logging
SQLSetEnvAttr(0, SQL_OPT_TRACE, (SQLPOINTER)0,
 SQLINTEGER);

• Dynamic logging is enabled and disabled globally and affects all connections regardless of
when they were opened and whether they are part of the environment handle used to set
SQL_OPT_TRACE.

• By default, the log is written to the sybodbc.log file in the current directory. Use the
SQL_OPT_TRACEFILE environment attribute to set a different file or file path.
SQLSetEnvAttr(0, SQL_OPT_TRACEFILE, (SQLPOINTER) “logfilepath”,
SQL_NTS);

• Setting the LOGCONFIGFILE environment variable or registry value enables logging for
the entire duration of application execution and overrides SQL_OPT_TRACE.

• If an ODBC Driver Manager is being used, setting SQL_OPT_TRACE turns on the Driver
Manager tracing and has no impact on driver tracing.

• The client application can use a null handle when linking directly against the driver or an
allocated handle when using Driver Manager tracing.

• log4cplus configuration file cannot be used with SQL_OPT_TRACE.

Dynamic Control of TDS Protocol Capture
The new SQL_ATTR_TDS_CAPTURE connection attribute of Adaptive Server Enterprise
ODBC Driver allows pause (SQL_CAPTURE_PAUSE) and resume
(SQL_CAPTURE_RESUME) of TDS protocol capture.

// pause protocol capture
SQLSetConnAttr(hDBC, SQL_ATTR_TDS_CAPTURE,

New Features for ESD #4

80 Open Server and SDK

 (SQLPOINTER) SQL_CAPTURE_PAUSE, SQLINTEGER);

// resume protocol capture
SQLSetConnAttr(hDBC, SQL_ATTR_TDS_CAPTURE,
 (SQLPOINTER) SQL_CAPTURE_RESUME, SQLINTEGER);

By default, TDS protocol capture operates for the duration of the connection when the
ProtocolCapture connection property is set for the connection. Using
SQL_ATTR_TDS_CAPTURE (with the ProtocolCapture connection property set) allows the
application to selectively pause and resume TDS protocol capture for desired segments of
program execution.

SQL_ATTR_TDS_CAPTURE can be set after a connection handle is allocated. It is not an
error to pause or resume TDS protocol capture before a connection is established or for a
connection that is not using TDS protocol capture. Pausing or resuming TDS protocol capture
may be delayed by the driver to ensure the integrity of the capture stream. This ensures the
write of full PDU packets for accurate capture consumption by Ribo and other protocol
translator utilities.

Do not set SQL_ATTR_TDS_CAPTURE for applications that need to capture all TDS
packets for a connection.

Replication Server Connection Support
Adaptive Server Enterprise ODBC Driver can connect to Replication Server® to monitor and
administer the server.

Only valid Replication Server Administration commands sent by the ODBC Driver are
supported by Replication Server. Set the BackEndType connection property to
Replication Server for Replication Server connections.

Comprehensive ADO.NET Provider Assembly Files
Starting with ESD #4, Adaptive Server Enterprise ADO.NET Data Provider has only two
provider assembly files that each contain all functionality.

• Sybase.AdoNet2.AseClient.dll – supports features of .NET 2.0, .NET 3.0,
and .NET 3.5.

• Sybase.AdoNet4.AseClient.dll – supports features of .NET 4.1, and later.

The 32-bit versions of these files are installed in the C:\Sybase\DataAccess\ADONET
\dll directory and the 64-bit versions are installed in the C:\Sybase
\DataAccess64\ADONET\dll directory.

Update any build or deployment scripts that reference any of the DLLs that have been
obsoleted.

New Features for ESD #4

New Features Bulletin 81

ADO.NET Support for Larger Decimal Precision/Scale
Adaptive Server Enterprise ADO.NET Data Provider now supports AseDecimal - a structure
that can support a precision/scale of 78.

Adaptive Server numeric and decimal datatypes support a maximum precision/scale of 38 and
results from arithmetic operations can support precision/scale of up to 78, whereas the .NET
Framework Decimal datatype can support a maximum precision/scale of 28. This can lead to
data overflow when reading data of Adaptive Server numeric and decimal type or result of an
arithmetic operation into the .NET Framework Decimal type.

Adaptive Server Enterprise ADO.NET Data Provider now supports AseDecimal - a structure
that can support a precision/scale of 78. To use the AseDecimal structure to retrieve numeric or
decimal values, set the new UseAseDecimal connection property to 1. By default,
UseAseDecimal is set to 0 and the AseDecimal structure is not used.

Visual Studio DDEX Connection Dialog Enhancement for Additional
Connection Properties

Adaptive Server Enterprise ADO.NET Data Provider now allows you to add additional
connection properties in the Visual Studio DDEX Add Connection dialog.

• Connection properties can be specified as a semicolon(;)-separated list.
• Last connection property need not terminate with a semicolon(;).
• Properties without a value are ignored.

Currently, there are no warning or error messages to flag incorrect connection specifications.

New Connection Strings for OLE DB Applications
The new set of connection strings for OLE DB applications is introduced.

Property names Description Re-
quired

Default
value

ProtocolCapture Enable this property to capture communication
between an OLE DB application and the serv-
er.

See Adaptive Server Enterprise OLE DB Pro-
vider Users Guide.

No Empty

New Features for ESD #4

82 Open Server and SDK

Property names Description Re-
quired

Default
value

RetryCount, RetryDe-
lay

Control the connection retry behavior.

RetryCount is the number of times to attempt
to connect to the server before reporting the
connection failed. Between each retry, the
driver delays for RetryDelay number of sec-
onds.

By default, the OLE DB application does not
retry the connection.

You can also specify these values in
SQL.INI and LDAP interfaces:

• RetryCount can be specified as Retry
Count in SQL.INI and as sybaseRetry-

Count in LDAP.
• RetryDelay can be specified as Loop Delay

in SQL.INI and as sybaseRetryDelay in
LDAP.

No 0

SuppressControlTo-
kens

Specifies that Adaptive Server should not send
TDS_CONTROL tokens.

Values:

• 0 – forces Adaptive Server to send
TDS_CONTROL tokens where possible.

• 1– the default value; forces Adaptive Serv-
er to suppress TDS_CONTROL tokens.

No 1

SuppressParamFormat Specifies that the OLE DB application should
send parameter format tokens only when the
format changes.

Values:

• 0 – forces the OLE DB application to al-
ways send the parameter format tokens on
every execution.

• 1– the default value; requests the OLE DB
application to suppress sending parameter
format tokens when the format has already
been set.

No 1

New Features for ESD #4

New Features Bulletin 83

Property names Description Re-
quired

Default
value

SuppressRowFormat Specifies that Adaptive Server should send row
format tokens only on first execution or when
the format changes.

Values:

• 0 – forces Adaptive Server to send the for-
mat information on every execution.

• 1– the default value; requests Adaptive
Server to suppress sending row format to-
kens when possible.

No 1

SuppressRowFormat2 Specifies that Adaptive Server should send da-
ta using the TDS_ROWFMT byte sequence
where possible instead of the
TDS_ROWFMT2 byte sequence.

Values:

• 0 – the default value; forces Adaptive Serv-
er to send data in TDS_ROWFMT2 where
possible.

• 1– forces Adaptive Server to send data in
TDS_ROWFMT where possible.

See Adaptive Server Enterprise OLE DB Pro-
vider Users Guide.

No 0

Adaptive Server Enterprise Extension Module for Python in
ESD #4

The Adaptive Server Enterprise extension module for Python has been enhanced to support
new parameter datatype for dynamic statements and stored procedures.

New Parameter Datatype Support for Dynamic Statements and Stored
Procedures

Starting with ESD #4, the Adaptive Server Enterprise extension module for Python supports
decimal datatypes, money datatypes, and LOB as parameters for dynamic statements and
stored procedures.

The Adaptive Server Enterprise extension module for Python also supports for date, time,
datetime, and float parameters for stored procedures.

See the Adaptive Server Enterprise Extension Module for Python Programmers Guide.

New Features for ESD #4

84 Open Server and SDK

Adaptive Server Enterprise Extension Module for PHP in
ESD #4

Starting with ESD #4, the Adaptive Server Enterprise extension module for PHP has the full
set of APIs for application development.

API Type API Description

Connections: sybase_close() Closes the specified connection to ASE.

sybase_connect() Opens a connection to ASE.

sybase_pconnect() (New) Opens a persistent connection to ASE.

Queries: sybase_affected_rows() (New) Returns the number of rows affected by the
last insert, delete, or update query on the specified
connection.

sybase_query() Sends a query to the specified connection.

The complete result set is automatically fetched and
buffered.

sybase_unbuf-
fered_query()

(New) Sends a query to the specified connection.

The complete result set is not automatically fetched
and buffered as with sybase_query().

Remote Proce-
dure Calls:

sybase_rpc_bind_par-
am_ex

(New) Binds a PHP variable to a remote procedure
parameter.

sybase_rpc_execute (New) Executes the remote procedure call that was
initialized with sybase_rpc_init().

sybase_rpc_init (New) Returns a statement identifier pointing to the
statement initialized for the remote procedure on the
connection.

Result sets: sybase_data_seek() (New) Moves the internal row pointer on the result
set associated with the result identifier to point to the
specified row number.

sybase_fetch_array() (New) Fetch a result row as an associative array, a
numeric array, or both.

sybase_fetch_assoc() Fetches one row of data from the result set associated
with the specified result identifier in an associative
array.

sybase_fetch_field() (New) Returns an object containing field informa-
tion.

New Features for ESD #4

New Features Bulletin 85

API Type API Description

sybase_fetch_object() (New) Fetches one row of data from the result set
associated with the specified result identifier as an
object.

sybase_fetch_row() (New) Fetches one row of data from the result set
associated with the specified result identifier in a nu-
meric array.

sybase_field_seek() (New) Sets the internal pointer to the field offset
requested.

sybase_free_result() Frees all memory associated with the result set.

sybase_next_result() (New) Returns a result set identifier pointing to the
next result set on the connection.

sybase_num_fields() (New) Returns the number of fields in the result set.

sybase_num_rows() (New) Returns the number of rows in the result set of
a select statement.

sybase_use_result (New) Stores the result set of the last unbuffered
query on the connection and returns a result set iden-
tifier pointing to this stored result set.

Miscellane-
ous:

sybase_get_last_mes-
sage()

(New) Returns the last message returned by the
server.

sybase_get_last_status (New) Returns the last status result that was sent on
the connection.

sybase_select_db() (New) Sets the current active database on the server
referred to by the connection resource.

sybase_set_mes-
sage_handler()

(New) Sets a user-defined callback function that is to
be called when a client or server message is received.

See the Adaptive Server Enterprise Extension Module for PHP Programmers Guide.

Adaptive Server Enterprise Database Driver for Perl in ESD
#4

The Adaptive Server Enterprise database driver for Perl in ESD #4 has the following feature
enhancements.

See the Adaptive Server Enterprise database driver for Perl Programmers Guide.

• New database handle attributes

New Features for ESD #4

86 Open Server and SDK

• New default date conversion and display format support using the new _data_fmt private
method

• New LONG/BLOB data handling support
Adaptive Server Enterprise database driver for Perl now supports an image and a text type
for LONG/BLOB data. Each type can hold up to 2GB of binary data.

• New automatic key generation support
Adaptive Server Enterprise database driver for Perl now supports an IDENTITY feature
for automatic key generation. Declaring a table with an IDENTITY column generates a
new value for each insert. The values are monotonically increasing, but are not guaranteed
to be sequential. To fetch the value generated and used by the last insert:
SELECT @@IDENTITY

• New parameter binding support
Adaptive Server Enterprise database driver for Perl now directly supports parameter
binding. Only the '?' style parameters are supported; the ":1" placeholder type parameters
are not supported. Binding a text or image datatype parameter is not supported.

• New stored procedures with input and output parameters support

New Features for ESD #4

New Features Bulletin 87

New Features for ESD #4

88 Open Server and SDK

New Features for ESD #3

ESD #3 introduces new functionality for Open Client 15.7 and Open Server 15.7 and for
Adaptive Server Enterprise extension module for Python 15.7.

Skip Installation of Samples, Documentation, and Debug
Files

Starting with ESD#3, you can choose to skip installation of sample files, documentation files,
and debug files.

By default, these files are installed when you install Open Server and SDK. To skip installation
of these files:

• Use the new -DPRODUCTION_INSTALL=TRUE installer command-line argument
when installing in GUI, console, and silent mode.

• Use the new PRODUCTION_INSTALL=TRUE property in the response file when installing
in silent mode.

Open Client 15.7 and Open Server 15.7 Features in ESD #3
New features in ESD #3 include the CyberSafe Kerberos driver on 64-bit Microsoft Windows,
scripting language enhancements, UNIX named sockets, and logging rejected rows.

CyberSafe Kerberos Driver on 64-bit Microsoft Windows
Open Client and Open Server include libsybskrb64.dll, which is a 64-bit CyberSafe
Trustbroker Kerberos driver library for Microsoft Windows x86-64 64-bit.

libsybskrb64.dll is located in %SYBASE%\%SYBASE_OCS%\dll; its behavior is
similar to the 32-bit CyberSafe TrustBroker Kerberos driver library libsybskrb.dll.

UNIX Named Sockets
This feature provides support for UNIX named sockets in Open Client and Open Server. This
type of socket is also referred to as a UNIX domain socket.

This feature allows the use of UNIX named sockets for faster intrahost communication since
the TCP stack does not need to be traversed for interprocess communication. To enable this
feature, add entries to the directory service layer, specifying afunix instead of tcp for the
transportation type.

For example, a traditional interfaces file entry may look as follows:

New Features for ESD #3

New Features Bulletin 89

MYSERVER
master tcp unused myhost 8600
query tcp unused myhost 8600

To use UNIX named sockets instead of TCP for local clients while still using TCP for remote,
the above entries become:

MYSERVER
master afunix unused //myhost/tmp/MYSERVER.socket
query afunix unused //myhost/tmp/MYSERVER.socket
master tcp unused myhost 8600
query tcp unused myhost 8600

Logging Rows Rejected by the Client
A new bcp option named --clienterr errorfile has been added to log any rejected
row and its associated error message into an error file, if the row was rejected by the client due
to errors detected by the client, such as conversion or format errors.

If you use the --clienterr option without the -e option, client error messages are written
into the error file. However, server error messages are not written into the error file.

If you use the --clienterr option with the -e option, bcp does not proceed with the copy
in or copy out operation.

New Features for ESD #3

90 Open Server and SDK

Increased bcp Maximum Rows Handling Capacity
The maximum number of rows that bcp can handle has been increased from INT32_MAX to
UINT64_MAX (which is 18446744073709551615).

Parameter Format Suppression
Open Client now support parameter format suppression for dynamic statements in Adaptive
Server Enterprise.

Adaptive Server Enterprise Extension Module for Python in
ESD #3

The Adaptive Server Enterprise extension module for Python has been enhanced to support
stored procedures with input and output parameters, compute rows, and localized error
messages.

Accessing Stored Procedures using Python
The Adaptive Server Enterprise extension module for Python adds support for passing input
and output parameters to stored procedures.

Use the callproc() method of the Cursor object to call a stored procedure. If there is an error in
executing the stored procedure, callproc() throws an exception and you can retrieve the status
value using the proc_status attribute. This support is an extension to the Python DBAPI
specification.

This is a sample Python application with multiple row results:

import sybpydb
#Create a connection.
conn = sybpydb.connect(user='sa')
Create a cursor object.
cur = conn.cursor()
Call the stored procedure
try:
 cur.callproc('myproc')
 continue = True
 while(continue == True):
 row = cur.fetchall()
 continue = cur.nextset()
except sybpydb.Error:
 print("Status=%d" % cur.proc_status)

To specify output parameters, the extension module provides the OutParam constructor. This
support is an extension to the Python DBAPI specification. The callproc() method returns a
list of all the parameters passed to the method. If there are output parameters, and no result sets
generated from the store procedure, the list contains the modified output values as soon as

New Features for ESD #3

New Features Bulletin 91

callproc() completes. However, if there are result sets, the list does not contain modified
output values until all result sets from the stored procedure have been retrieved using the
fetch*() methods and a call to nextset() is made to check if there are any more result sets. The
nextset() method must be called even if only one result set is expected.

This is a sample Python application with output parameters:

import sybpydb
#Create a connection.
conn = sybpydb.connect(user='sa')
Create a cursor object.
cur = conn.cursor()
cur.execute("""
 create procedure myproc
 @int1 int,
 @int2 int output
 as
 begin
 select @int2 = @int1 * @int1
 end
 """)
int_in = 300
int_out = sybpydb.OutParam(int())
vals = cur.callproc('pyproc', (int_in, int_out))
print ("Status = %d" % cur.proc_status)
print ("int = %d" % vals[1])
cur.connection.commit()
Remove the stored procedure
cur.execute("drop procedure myproc")
cur.close()
conn.close()

More examples of different output parameter types are available in the sample program
callproc.py.

Compute Rows using Python
The Adaptive Server Enterprise extension module for Python adds support for compute rows.

An example of compute row processing is available in the sample program compute.py.

Localized Error Messages
The Adaptive Server Enterprise extension module for Python now supports localization of
error messages.

New Features for ESD #3

92 Open Server and SDK

New Features for ESD #1

ESD #1 introduces new functionality for Open Client 15.7 and Open Server 15.7, SDK 15.7,
and Adaptive Server Enterprise extension module for Python 15.7.

Open Client 15.7 and Open Server 15.7 Features in ESD #1
New features in ESD #1 include the FIPS-certified SSL filter and support for the Adaptive
Server Enterprise database driver for Perl and the Adaptive Server Enterprise extension
module for PHP on 64-bit Windows.

FIPS-certified SSL Filter
The Sybase SSL filter is now Federal Information Processing Standard (FIPS) 140-2
compliant for the platforms supporting Certicom SSL.

• HP-UX Itanium 32-bit
• HP-UX Itanium 64-bit
• IBM AIX 32-bit
• IBM AIX 64-bit
• Linux x86 32-bit
• Linux x86-64 64-bit
• Linux on POWER 32-bit
• Linux on POWER 64-bit
• Microsoft Windows x86 32-bit
• Microsoft Windows x86-64 64-bit
• Solaris SPARC 32-bit
• Solaris SPARC 64-bit
• Solaris x86 32-bit
• Solaris x86-64 64-bit

The shared object SSL filter files for Linux on POWER 32-bit and 64-bit have been renamed
from libsybfcsissl.so to libsybfssl.so and from libsybfcsissl64.so to
libsybfssl64.so. The sample libtcl.cfg file has also been updated:

[FILTERS]
;ssl=libsybfssl.so

The SSL filter DLL for Microsoft Windows x86-64 64-bit has been renamed from
libsybfcsissl64.dll to libsybfssl64.dll. The sample libtcl64.cfg file
has also been updated:

[FILTERS]
;ssl=libsybfssl64

New Features for ESD #1

New Features Bulletin 93

ASE database Driver for Perl and ASE Extension Module for PHP
Supported on 64-bit Windows

The Adaptive Server Enterprise database driver for Perl is now supported on the Microsoft
Windows 64-bit platform for use with ActivePerl 5.14.1 and DBI 1.616.

The Adaptive Server Enterprise extension module for PHP is now supported on the Microsoft
Windows 64-bit platform for use with PHP version 5.3.6.

SDK 15.7 Features for jConnect and Adaptive Server Drivers
and Providers in ESD #1

ESD #1 introduces support for suppressing parameter format metadata and row format
metadata to improve performance.

Suppressing Parameter Format Metadata to Improve Prepared
Statement Performance

Suppress parameter format metadata when the prepared statements are reexecuted to improve
the performance of prepared statements with the ODBC driver.

Adaptive Server 15.7 ESD#1 and later supports parameter format metadata suppression.
Set the DynamicPrepare connection property to 1, and then use the SuppressParamFormat
connection string property.

The valid SuppressParamFormat connection string property values are:
• 0 – parameter format metadata is not suppressed in prepared statements.
• 1– the default value; parameter format metadata is suppressed where possible.

Note: You can suppress parameter format metadata in prepared statements only if the
connected Adaptive Server supports this feature. If the DynamicPrepare and
SuppressParamFormat parameters are both set to 1 but the connected Adaptive Server does
not support the suppression of parameter format metadata, Adaptive Server ignores the
parameter settings.

Example

This ODBC connection string suppresses parameter format metadata in prepared statements:
DSN=sampledsn;UID=user;PWD=password;;DynamicPrepare=1;SuppressParam
Format=1;

New Features for ESD #1

94 Open Server and SDK

Suppressing Row Format Metadata to Improve Query Performance
Suppress row format metadata (TDS_ROWFMT or TDS_ROWFMT2) when queries that are
reexecuted in a session to improve the performance of repeatedly executed queries with the
ODBC driver and ADO.NET Data Provider.

Adaptive Server 15.7 ESD#1 and later supports row format metadata suppression.

Use the SuppressRowFormat connection string property.

The valid SuppressRowFormat connection string property values are:
• 0 – row format metadata is not suppressed.
• 1 – the default value; Adaptive Server does not send row format metadata where possible.

Note: You can suppress row format metadata only if the connected Adaptive Server supports
this feature. If the SuppressRowFormat parameter is set to 1 but the connected Adaptive
Server does not support the suppression of row format metadata, Adaptive Server ignores the
parameter setting.

Example

This ODBC connection string suppresses row format metadata:
DSN=sampledsn;UID=user;PWD=password;;DynamicPrepare=1;
SuppressRowFormat=1;

SuppressRowFormat2 and SQLBulkOperations
Do not use the SuppressRowFormat2 connection string property with an ODBC program that
uses the SQLBulkOperations API.

Enabling SuppressRowFormat2 suppresses information that SQLBulkOperations requires
and results in an error.

Adaptive Server Enterprise Extension Module for Python in
ESD #1

As of ESD #1, the Adaptive Server Enterprise extension module for Python supports Python
versions 2.6, 2.7, and 3.1.

You can install the Adaptive Server Enterprise extension module for Python from the SDK
installer. For installation instructions, see the Software Developers Kit and Open Server
Installation Guide and the Software Developers Kit and Open Server Release Bulletin. For
information about using the Adaptive Server Enterprise extension module for Python, see the
Adaptive Server Enterprise Extension Module for Python Programmers Guide.

New Features for ESD #1

New Features Bulletin 95

Configuring Adaptive Server Enterprise Extension Module for Python
Set either PYTHONPATH, or the Python variable sys.path in the default installation directory
paths to use the Adaptive Server Enterprise extension module for Python in an application.

Python Module Search Path
Python searches for an imported module in the list of directories specified with the Python
variable sys.path.

sys.path
The sys.path variable is initialized from the directory containing the application, and in the list
of directories specified by the environment variable PYTHONPATH, which uses the same
syntax as the shell variable PATH, that is, a list of directory names.

If you have not set PYTHONPATH, or if the module file is not found, the search continues in
an installation-dependent default path. To use the Adaptive Server Enterprise extension
module for Python in an application, you must set either PYTHONPATH, or the Python
variable sys.path to one of the following directory paths (these are the default directories
where the different versions of the Adaptive Server Python extension module are installed):

Platform Python Version Default Installation Path

Windows 2.6 $SYBASE\$SYBASE_OCS\python\py-
thon26_64\dll

2.7 $SYBASE\$SYBASE_OCS\python\py-
thon27_64\dll

3.1 $SYBASE\$SYBASE_OCS\python\py-
thon31_64\dll

All other platforms 2.6, 2.7 $SYBASE/$SYBASE_OCS/python/py-
thon26_64r/lib

3.1 $SYBASE/$SYBASE_OCS/python/py-
thon31_64r/lib

New Features for ESD #1

96 Open Server and SDK

Open Client 15.7 and Open Server 15.7
Features

Open Client and Open Server version 15.7 introduced new features, such as support for large
object (LOB) locators, In-row and off-row LOB, and many others.

Large Object Locator Support
A LOB locator contains a logical pointer to LOB data in Adaptive Server rather than the data
itself, thereby reducing the amount of data that passes through the network between Adaptive
Server and its clients.

Adaptive Server 15.7 includes Transact-SQL commands and functions that operate on LOB
data using LOB locators. You can invoke these commands and functions as language
commands from the Client-Library. See Chapter 21, "In-Row Off-Row LOB" in the Adaptive
Server Enterprise Transact-SQL Users Guide.

Client-Library Changes
The CS_LOCATOR datatype supports LOB locator. The cs_locator_alloc() and
cs_locator_drop() APIs allocate and deallocate memory for CS_LOCATOR variables.
cs_locator() has been added to retrieve information from a CS_LOCATOR variable.

Client-Library routines cs_convert() and ct_bind() have been enhanced to handle
CS_LOCATOR variables.

CS_LOCATOR
CS_LOCATOR is an opaque datatype that stores locator values and optional prefetched data.

Use cs_locator_alloc() to allocate memory for a CS_LOCATOR variable before binding the
incoming locator to the variable, otherwise, an error occurs. When the variable is no longer
needed, use cs_locator_drop() to free its memory.

CS_LOCATOR variables can be reused, however, the current locator value in Adaptive Server
is valid only until the transaction ends.

The type constants for CS_LOCATOR are:

• CS_TEXTLOCATOR_TYPE – for text LOBs.
• CS_IMAGELOCATOR_TYPE – for image LOBs.
• CS_UNITEXTLOCATOR_TYPE – for unitext LOBs.

Use cs_convert() to retrieve the locator’s prefetched data and the character representation of
the locator value from the CS_LOCATOR variable. Converting CS_LOCATOR to a
CS_CHAR returns the locator’s hexadecimal value as a string. Converting the locator to

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 97

CS_TEXT_TYPE, CS_IMAGE_TYPE, or CS_UNITEXT_TYPE returns the locator’s
prefetched data.

Supported LOB Locator Conversions
The table lists the LOB locator conversions.

CS_TEXT_
LOCATOR

CS_IMAGE_
LOCATOR

CS_UNITEXT_
LOCATOR

CS_CHAR_TYPE X X X

CS_TEXT_TYPE X

CS_IMAGE_TYPE X

CS_UNITEXT_TYPE X

CS_TEXT_LOCATOR X

CS_IMAGE_LOCATOR X

CS_UNITEXT_LOCATOR X

LEGEND: X = supported conversion.

When working with locator datatypes:

• ct_bind() ignores the maxlength value of CS_DATAFMT because Client-Library
considers the length of locator datatypes as fixed. Memory required for any optional
prefetched data that is sent with the locator is allocated internally for its entire length. The
maxlength value does not influence the length of the prefetched data.

• You can bind an incoming LOB locator to CS_CHAR_TYPE. You cannot, however,
directly bind a locator to CS_TEXT_TYPE, CS_IMAGE_TYPE, or
CS_UNITEXT_TYPE.

cs_locator()
Retrieves information from a CS_LOCATOR variable, such as prefetched data, the total
length of the LOB in the server, or the character representation of the locator pointer.

Syntax
CS_RETCODE cs_locator(ctx, action, locator, type, buffer, buflen,
 outlen)

CS_CONTEXT *ctx;
CS_INT action;
CS_LOCATOR *locator;
CS_INT type;
CS_VOID *buffer;
CS_INT buflen;
CS_INT *outlen;

Open Client 15.7 and Open Server 15.7 Features

98 Open Server and SDK

Parameters

• ctx – a pointer to a CS_CONTEXT structure.
• action – specifies whether to set or retrieve information. Currently, the only action allowed

is CS_GET.
• locator – a pointer to the locator variable.
• type – type of information to retrieve or set. Symbolic values:

Value Action *buffer
points to

Description

CS_LCTR_LOBLEN CS_GET CS_BIGINT Retrieves the total length of the LOB data in
the server.

CS_LCTR_LOCATOR CS_GET CS_CHAR Retrieves the locator value as a character
string.

CS_LCTR_PREFET-
CHLEN

CS_GET CS_INT Retrieves the length of the prefetched LOB
data contained in the locator variable.

CS_LCTR_PREFETCHDA-
TA

CS_GET CS_CHAR Retrieves the prefetched LOB data con-
tained in the locator variable.

CS_LCTR_DATATYPE CS_GET CS_INT Retrieves the locator type. Valid return types
are CS_TEXTLOCATOR_TYPE, CS_IM-
AGELOCATOR_TYPE, and CS_UNI-
TEXTLOCATOR_TYPE.

• buffer – a pointer to the variable to store data to. Character data is NULL terminated.
• buflen – *buffer length, in bytes.
• outlen – a pointer to a CS_INT variable. If outlen is not NULL, cs_locator() sets *outlen to

the length, in bytes, of the data placed in *buffer. If the data returned is a character data (for
example, a prefetched data or locator string), the length returned in *outlen includes the
NULL terminator. If cs_locator() returns CS_TRUNCATED and outlen is not NULL,
then cs_locator() returns the required buffer size in *outlen.

Returns

Return Value Meaning

CS_SUCCEED The routine completed successfully.

CS_TRUNCATED The result has been truncated because the buffer is too small.

CS_FAIL The routine failed.

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 99

cs_locator_alloc()
Allocates a CS_LOCATOR datatype structure.

Syntax
CS_RETCODE cs_locator_alloc(ctx, locator)

CS_CONTEXT *ctx;
CS_LOCATOR **locator;

Parameters

• ctx – a pointer to a CS_CONTEXT structure.
• locator – the address of a locator variable to be allocated. Sets *locator to the address of a

newly allocated CS_LOCATOR structure.

Returns

Return Value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

cs_locator_drop()
Deallocates a CS_LOCATOR datatype structure.

Syntax
CS_RETCODE cs_locator_drop(ctx, locator)

CS_CONTEXT *ctx;
CS_LOCATOR *locator;

Parameters

• ctx – a pointer to a CS_CONTEXT structure.
• locator – a pointer to the locator variable to be deallocated.

Returns

Return Value Meaning

CS_SUCCEED The routine completed successfully.

CS_FAIL The routine failed.

Open Client 15.7 and Open Server 15.7 Features

100 Open Server and SDK

isql Enhancement
isql displays the LOB locator value in its hexadecimal character form. Prefetched data stored
in CS_LOCATOR does not appear.

Example
Converts LOB data to locators, and displays the locator value:
1> set send_locator on
2> go

1> select * from testable
2> go
charcol textcol
--------------- --
Hello 0x48656c6c6f20576f726c642e2048657265204920616d2e2e

Open Server Support for Large Object Locators
LOB locator functionality has been added to Server-Library, allowing Open Server
applications to pass LOB locator language commands from the client to back-end servers.

To pass LOB locators from servers to client applications, an Open Server application allocates
memory for a CS_LOCATOR variable, and binds and receives the LOB information from the
server.

srv_bind() and srv_descfmt() have been enhanced to handle CS_TEXT_LOCATOR_TYPE,
CS_IMAGE_LOCATOR_TYPE, and CS_UNITEXT_LOCATOR_TYPE.

Large Object Locator Support
These connection capabilities indicate support for sending and receiving LOB locators.

• CS_DATA_LOBLOCATOR – a read-only request capability that is implicitly set when
client applications are initialized with CS_VERSION_157, indicating that the Client-
Library can send LOB locators to the server.

• CS_DATA_NOLOBLOCATOR – a response capability that a client application sets to
inform servers not to send LOB locators even though the underlying Client-Library
supports them.

Requesting LOB Locators from the Server
By default, when selecting LOB columns or values, Adaptive Server sends LOB data instead
of LOB locators, regardless of the negotiated LOB locator support.

To explicitly request LOB locators or to request prefetched data, set these query-processing
options using ct_options():

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 101

• CS_OPT_LOBLOCATOR – a Boolean that, when set to CS_TRUE, requests the server to
return a locator instead of a LOB value. Set this option before sending the query to the
server. The default is CS_FALSE.

• CS_OPT_LOBPREFETCHSIZE – an integer that specifies the size of the prefetched data
that the server must send. For image locators, this size indicates the number of prefetched
data bytes; for text and unitext locators, the number of characters.
CS_OPT_LOBPREFETCHSIZE has a default value of 0, which informs the server not to
send prefetched data. A value of -1 retrieves the entire LOB data for the requested LOB
along with its locator.

Locator values and optional prefetched data are stored in the CS_LOCATOR datatype. Clients
must allocate memory for CS_LOCATOR variables before requesting for locator data.

Example

Retrieves the LOB locator for a text value that needs to be truncated. See the Open Client
Client-Library/C Reference Manual for more code examples.
CS_LOCATOR *lobloc;
CS_INT prefetchsize;
CS_BOOL boolval;
CS_INT start, length;
CS_INT outlen;
CS_CHAR charbuf[1024];
CS_BIGINT totallen;
...

/*
** Turn on option CS_LOBLOCATOR first and set the prefetchsize to
100.
*/boolval = CS_TRUE;
ct_options(conn, CS_SET, CS_OPT_LOBLOCATOR, &boolval, CS_UNUSED,
NULL);
prefetchsize = 100;
ct_options(conn, CS_SET, CS_OPT_LOBPREFETCHSIZE, &prefetchsize,
CS_UNUSED,
 NULL);

/*
** Allocate memory for the CS_LOCATOR.
*/
cs_locator_alloc(ctx, &lobloc);

/*
** Open a transaction and get the locator. The locator is only valid
within a
** transaction.
*/
sprintf(cmdbuf, “begin transaction \
 select au_id, copy from pubs2..blurbs where au_id \
 like ‘486-29-%’”);
ct_command(cmd, CS_LANG_CMD, cmdbuf , CS_NULLTERM, CS_UNUSED);
ct_send(cmd);

Open Client 15.7 and Open Server 15.7 Features

102 Open Server and SDK

/*
** Process results.
*/
while ((results_ret = ct_results(...)) == CS_SUCCEED)
{
 ...
}
 /*
 ** Bind the locator and fetch it.
 */
 strcpy(prmfmt.name, "@locatorparam");
 prmfmt.namelen = CS_NULLTERM;
 prmfmt.datatype = CS_TEXTLOCATOR_TYPE;
 prmfmt.maxlength = CS_UNUSED;
 ...

 ct_bind(cmd, 1, &fmt, lobloc, NULL, &indicator);
 ct_fetch(cmd, CS_UNUSED, CS_UNUSED, CS_UNUSED, &count);
}

/*
** Use the cs_locator() routine to retrieve data from the fetched
locator.
** Get the prefetch length and the prefetch data.
*/
cs_locator(ctx, CS_GET, lobloc, CS_LCTR_PREFETCHLEN, (CS_VOID
*)&prefetchsize,
 sizeof(CS_INT), &outlen);

cs_locator(ctx, CS_GET, lobloc, CS_LCTR_PREFETCHDATA, (CS_VOID
*)charbuf,
 sizeof(charbuf), &outlen);

/*
** Retrieve the total length of the LOB data in the server for this
** locator.
*/
cs_locator(ctx, CS_GET, lobloc, CS_LCTR_LOBLEN,(CS_VOID *)&totallen,
 sizeof(totallen), &outlen);

/*
** Use the retrieved locator to perform an action to the LOB, pointed
to by
** this locator in the server.
**
** Get a substring from the text in the server, using a parameterized
language
** command.
*/
start = 10;
length = 20;
sprintf(cmdbuf, “select return_lob(text, substring(@locatorparam, \
 start, length))”);
ct_command(cmd, CS_LANG_CMD, cmdbuf, CS_NULLTERM, CS_UNUSED);

/*

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 103

** Set the format structure and call ct_param()
*/
strcpy(prmfmt.name, "@locatorparam");
prmfmt.namelen = CS_NULLTERM;
prmfmt.datatype = CS_TEXTLOCATOR_TYPE;
prmfmt.format = CS_FMT_UNUSED;
prmfmt.maxlength = CS_UNUSED;
prmfmt.status = CS_INPUTVALUE;

indicator = 0;
ct_param(cmd, &prmfmt, (CS_VOID *)lobloc, CS_UNUSED, indicator);

/*
** Send the locator commands to the server.
*/
ct_send(cmd);

/*
** Process results.
*/
while ((results_ret = ct_results(...)) == CS_SUCCEED)
{
 ...
}

/*
** Truncate the text to 20 bytes and commit the transaction.
*/
sprintf(cmdbuf, “truncate lob @locatorparam (length) \
 commit transaction”);
ct_command(cmd, CS_LANG_CMD, cmdbuf, CS_NULLTERM, CS_UNUSED);
ct_param(cmd, &prmfmt, (CS_VOID *)lobloc, CS_UNUSED, indicator);

ct_send(cmd);

/*
** Process results.
*/
while ((results_ret = ct_results(...)) == CS_SUCCEED)
{
 ...
}

/*
** The transaction is closed, deallocate the locator.
*/
cs_locator_drop(ctx, lobloc);

Open Client 15.7 and Open Server 15.7 Features

104 Open Server and SDK

In-row and off-row LOB Support
Bulk-Library version 15.7 supports in-row storage of text, image, and unitext large
object (LOB) columns in Adaptive Server.

In Adaptive Server 15.7, LOB columns that are marked for in-row storage are stored in-row
when there is enough space available in the row. Only bound LOB data can be written in-row.
The bcp utility binds LOB data, thus sending in-row LOB data as applicable. See Chapter 21,
"In-Row Off-Row LOB" in the Adaptive Server Enterprise Transact-SQL Users Guide.

Bulk-Library Select into Logging
To process a select into existing table statement that inserts rows into a proxy table, Adaptive
Server uses the Bulk-Library to generate a bulk-copy operation.

However, full logging is not available for regular bulk-copy operations. The
BLK_CUSTOM_CLAUSE property enables Adaptive Server to distinguish between
ordinary bulk-copy operations and bulk-copy operations that have resulted from an insert into
statement affecting a proxy table. Bulk-copy operations that result from such an insert into
statement can then be appended with the custom clause specified by the
BLK_CUSTOM_CLAUSE property. Adaptive Server can detect this clause and perform full
logging.

BLK_CUSTOM_CLAUSE
An application can use the blk_props Bulk-Library routine to set or retrieve
BLK_CUSTOM_CLAUSE.

Table 6. Client/Server BLK_CUSTOM_CLAUSE property

Property name Description *buffer is Applies
to

Notes

BLK_CUS-
TOM_CLAUSE

A custom, application-
specific SQL clause to
add after the existing
with clause of the insert
bulk command.

A character
string contain-
ing the custom
clause.

IN copies
only

Supported only
by server ver-
sions that support
the custom SQL
clause. Currently
used only by in-
ternal products.

• A select into operation is allowed only if the Adaptive Server select into/bulkcopy/pllsort
database option is set to on.

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 105

• For full logging of a select into operation, the Adaptive Server full logging for select into
database option must be set to on.

Example
BLK_CUSTOM_CLAUSE is set with blk_props:

blk_props(blkdesc, CS_SET, BLK_CUSTOM_CLAUSE,
(CS_VOID *)"from select_into", CS_NULLTERM, NULL);

Adaptive Server generates a bulk copy operation with the specified custom clause appended:

insert bulk mydb.mytable with nodescribe from select_into

where mydb and mytable are the affected database and table.

Bulk-Library and bcp Handling of Nonmaterialized Columns
Bulk-Library has been enhanced to handle nonmaterialized columns in Adaptive Server 15.7.

With this enhancement, you can use Bulk-Library and bcp version 15.7 and later to bulk-
copy-in data into Adaptive Server tables that are altered and contain nonmaterialized columns.
Adaptive Server raises an error when you use earlier versions of bcp to bulk-copy-in data into
nonmaterialized columns.

Support for Preserving Trailing Zeros
Open Client and Open Server version 15.7 support the disable varbinary truncation
configuration parameter introduced in Adaptive Server 15.7. This parameter specifies
whether Adaptive Server preserves or truncates trailing zeros from varbinary and
binary null data.

Versions of Adaptive Server earlier than 15.7 and versions of bcp, and bulklib earlier than 15.7
truncate trailing zeros for varbinary datatypes. Versions of Adaptive Server 15.7 or later
and versions of bcp, and bulklib 15.7 or later can truncate or preserve the trailing zeros of
varbinary datatypes.

By default, disable varbinary truncation is 0 (off) for the server. Set it to 1 (on) to enable the
feature.

New DB-Library Overflow Errors
Errors occur related to DB-Library overflow.

Use of a DB-Library routine that causes in an integer overflow results in this error:
302 = SYBEINTOVFL, "DB-LIBRARY internal error: The arithmetic
operation results in integer overflow."

Open Client 15.7 and Open Server 15.7 Features

106 Open Server and SDK

Multiplication of the scrollopt and nrows parameters of the dbcursoropen DB-Library routine
that causes an overflow results in this error:
301 = SYBCOPNOV, "dbcursoropen(): The multiplication of scrollopt and
nrows results in overflow."

New Nameless Application Configuration Settings Handling
You can now set whether the ocs.cfg runtime configuration file is parsed for application-
specific settings for nameless applications (CS_APPNAME is not explicitly set by the
application) and whether any settings found are applied to the application.

The executable name obtained from the operating system is set as CS_APPNAME for the
application and is used to parse the runtime configuration file.

Set CS_USE_DISCOVERED_APPNAME to CS_TRUE in the DEFAULT section of the
ocs.cfg runtime configuration file to enable this feature.

When CS_USE_DISCOVERED_APPNAME is set to CS_FALSE (default), the runtime
configuration file is not parsed for the nameless application.

Use CS_SANITIZE_DISC_APPNAME to specify whether the discovered application name
(executable name obtained from the operating system) for a nameless application
(CS_APPNAME is not explicitly set by the application) is used for parsing the runtime
configuration file as is, after converting to uppercase, or after converting to lowercase.

You can set CS_SANITIZE_DISC_APPNAME in the DEFAULT section of the ocs.cfg
runtime configuration file to any of these values:

• CS_CNVRT_UPPERCASE – convert discovered name to uppercase before use.
• CS_CNVRT_LOWERCASE – convert discovered name to lowercase before use.
• CS_CNVRT_NOTHING (default) – use the discovered name as it.

TCP Socket Buffer Size Configuration
You can set the size of TCP input and output buffers using the Open Client and Open Server
context/connection and server properties.

Open Client and Open Server applications use these property settings to set buffer sizes with
the operating system setsockopt command. Because setsockopt must be invoked before the
TCP connect and accept commands, you must set these Open Client and Open Server
properties before attempting to create a connection.

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 107

Properties
The context/connection properties for setting TCP input and output buffer sizes are
CS_TCP_RCVBUF and CS_TCP_SNDBUF.

Table 7. Client-Library properties for buffer size configuration

Property Meaning *buffer value Level

CS_TCP_RCVBUF Size of the input buffer for the
client application

A positive integer Context, con-
nection

CS_TCP_SNDBUF Size of the output buffer for the
client application

A positive integer Context, con-
nection

Context example
ct_config(*context, CS_SET, CS_TCP_RCVBUF, &bufsize, CS_UNUSED,
NULL);

Connection example
ct_con_props(*connection, CS_SET, CS_TCP_RCVBUF, &bufsize,
CS_UNUSED, NULL);

The server properties for setting TCP input and output buffer sizes are
SRV_S_TCP_RCVBUF and SRV_S_TCP_SNDBUF.

Table 8. Server properties for buffer size configuration

Property SET/
CLEAR

GET bufp when
cmd is
CS_SET

bufp when cmd is
CS_GET

SRV_S_TCP_RCVBUF Yes Yes A CS_INT A CS_INT

SRV_S_TCP_SNDBUF Yes Yes A CS_INT A CS_INT

Server example
srv_props(cp, CS_SET, SRV_S_TCP_SNDBUF, bufp, CS_SIZEOF(CS_INT),
(CS_INT *)NULL);

• Set these parameters as appropriate for your application. For example, if the client is
expected to be sending a large amount of data to the server, set CS_TCP_SNDBUF and
SRV_S_TCP_RCVBUF to large values to increase the corresponding buffer sizes.

• By default, the socket buffer size is set to the maximum allowable size for the operating
system.

Open Client 15.7 and Open Server 15.7 Features

108 Open Server and SDK

isql64 and bcp64 for all 64-bit Products
64-bit versions of isql and bcp (isql64 and bcp64) are now available on all the UNIX and
Windows platforms that Open Client and Open Server support.

In versions earlier than Open Server and SDK 15.5 ESD #9, only 64-bit isql.exe and bcp.exe
are available on 64-bit Windows. If you have a script that references isql.exe or bcp.exe, and
you intend to use the 64-bit version, you must change the reference in the script to isql64.exe
or bcp64.exe.

Support for Expanded Variable-length Rows
In Adaptive Server 15.7, the maximum offset of a variable-length column for a data-only-
locked (DOL) row has been expanded to 32767 bytes, which allows an Adaptive Server
configured with a logical-page size greater than 8K to support wide, variable-length, DOL
rows.

The Open Client and Open Server Bulk-Library 15.7 routines, used to populate Adaptive
Server logical pages, support the extended DOL rows. This feature is automatically activated
in Bulk-Library 15.7 and later, but must be enabled in Adaptive Server.

Databases that are configured for wide DOL rows can accept DOL rows sent from an
application that uses Bulk-Library 15.5 or earlier. However, applications that use Bulk-
Library 15.7 must not send wide DOL rows to Adaptive Server 15.5 or earlier, or to a database
that expects DOL rows in the old format. Otherwise, one of these errors occur:
• BCP failed to create rows in target table. Column %1! would

start at an offset over 8191 bytes; this starting location
cannot be represented accurately in the table's (row)
format.

• BCP failed to create rows in target table. Column %1! starts
at an offset greater than %2! bytes; this starting location
is not permitted by the current database configuration.

To correct the error:
• Change the locking scheme of the table from data-only-locked to allpages-locked.
• When connected to Adaptive Server 15.7 or later, enable the allow wide dol rows option in

the target database. See Chapter 2, "Data Storage” in the Adaptive Server Enterprise
Performance and Tuning Series: Physical Database Tuning.

Row Format Caching
Open Client 15.7 supports caching row format information, which allows client applications
to request data servers to not send the row format information each time a dynamic SQL

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 109

statement is invoked. Row format caching reduces network traffic between the data server and
client applications, thereby improving system performance.

By default, row format caching is enabled in Open Client 15.7. To disable it, set the
CS_CMD_SUPPRESS_FMT response capability to CS_FALSE. Use ct_cmd_props() to
check and set the value of CS_CMD_SUPPRESS_FMT.

To determine if the server supports row format suppression, check the value of
CS_RES_SUPPRESS_FMT using ct_capability().

Note: This feature is available only when a client application is connected to a server that
supports row format caching.

Support for Releasing Locks at Cursor Close
Open Client 15.7, Open Server 15.7, and the Embedded SQL C and COBOL 15.7 processors
support the release_locks_on_close cursor option introduced in Adaptive Server 15.7.

This feature allows read locks to be released if the cursor closes. See the Adaptive Server
Enterprise Reference Manual: Commands.

Client-Library Usage
The option parameter in the ct_cursor syntax has been extended to include
CS_CUR_RELLOCKS_ONCLOSE.

Use this option to direct Adaptive Server to release shared locks after a cursor closes. To use
with read-only cursors or scrollable cursors, use the bitwise OR operator, “|” (pipe):

• CS_CUR_RELLOCKS_ONCLOSE
• CS_CUR_RELLOCKS_ONCLOSE | CS_READ_ONLY
• CS_CUR_RELLOCKS_ONCLOSE | CS_FOR_UPDATE
• CS_CUR_RELLOCKS_ONCLOSE | CS_SCROLL_CURSOR
• CS_CUR_RELLOCKS_ONCLOSE | CS_SCROLL_INSENSITIVE
• CS_CUR_RELLOCKS_ONCLOSE | CS_SCROLL_SEMISENSITIVE
• CS_CUR_RELLOCKS_ONCLOSE | CS_NOSCROLL_INSENSITIVE

Examples

• Declares a cursor that releases its shared locks when it closes:
ct_cursor(cmd, CS_CURSOR_DECLARE, cursor_name,
 CS_NULLTERM, select_statement, CS_NULLTERM,
 CS_CUR_RELOCKS_ONCLOSE);

• Declares an insensitive, scrollable cursor that releases its shared locks when it closes:
ct_cursor(cmd, CS_CURSOR_DECLARE, cursor_name,
 CS_NULLTERM, select_statement, CS_NULLTERM,
 CS_CUR_RELOCKS_ONCLOSE | CS_SCROLL_INSENSITIVE);

Open Client 15.7 and Open Server 15.7 Features

110 Open Server and SDK

For a sample Open Client program that illustrates this feature, see
csr_disp_scrollcurs3.c.

Open Server Usage
When client applications declare a cursor with the CS_CUR_RELLOCKS_ONCLOSE
option specified, Open Server sets the curstatus (cursor status) field of the SRV_CURDESC
structure to SRV_CUR_RELLOCKS_ONCLOSE.

For illustration, see cursor.c in the ctos example code.

ESQL/C and ESQL/COBOL Usage
SQL DECLARE syntax in ESQL/C and ESQL/COBOL has been extended to include the
RELEASE_LOCKS_ON_CLOSE keyword.

EXEC SQL DECLARE cursor_name
 [SEMI_SENSITIVE | INSENSITIVE]
 [SCROLL | NOSCROLL]
 [RELEASE_LOCKS_ON_CLOSE]
 CURSOR FOR “select stmt”
 [for {read only | update [of column_name_list]}]

You cannot use RELEASE_LOCKS_ON_CLOSE with an UPDATE clause except in this form:
EXEC SQL declare cursor c1 release_locks_on_close
 cursor for select * from T for update of col_a

In this case, RELEASE_LOCKS_ON_CLOSE is ignored.

cpre and cobpre cannot generate these ct_cursor() options:

• CS_CUR_RELLOCKS_ONCLOSE | CS_READ_ONLY
• CS_CUR_RELLOCKS_ONCLOSE | CS_FOR_UPDATE

ESQL/C sample code is available in example8.cp; ESQL/COBOL sample code is
available in example7.pco.

Large Objects as Stored Procedure Parameters
Open Client and Open Server 15.7 support using text, unitext, and image as input
parameters to stored procedures and as parameters to dynamic SQL statements.

Two connection capabilities have been added to facilitate login negotiation regarding the use
of this feature:

• CS_RPCPARAM_LOB – client applications send this request capability to the server to
determine whether large object (LOB) datatypes can be used as input parameters to stored
procedures. The server clears this capability bit in the initial login negotiation when it

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 111

cannot support the feature, and an error occurs when you attempt to send LOB parameters
to such a server.

• CS_RPCPARAM_NOLOB – client applications send this response capability to request
the server to withhold sending LOB data as parameters. This capability is turned on by
default.

Send Small Amounts of LOB Data as Parameters
Sending a small amount of LOB data as an input parameter to stored procedures or as a
parameter to a prepared SQL statement is the same as sending non-LOB parameters.

To send a small amount of LOB data, allocate memory for the command and data and directly
send these to the server using ct_param() or ct_setparam().

You must set the maxlength field for the CS_DATAFMT structure when using text,
unitext, or image parameters. The maxlength value indicates whether all of the LOB data
is sent at once or streamed to the server. When maxlength is greater than zero, the LOB data is
sent in one chunk. When maxlength is set to CS_UNUSED, the LOB data is sent in a stream,
using a loop of ct_send_data() calls to send the data in chunks. A chunk length of zero
indicates the end of the data stream.

Example 1
Sends a small amount of LOB data as an input parameter to a stored procedure:
CS_TEXT textvar[50];
CS_DATAFMT paramfmt;
CS_INT datalen;
CS_SMALLINT ind;

...
ct_command(cmd, CS_RPC_CMD, ...)

/*
** Clear and setup the CS_DATAFMT structure, then pass
** each of the parameters for the RPC.
*/
memset(¶mfmt, 0, sizeof(paramfmt));

/*
** First parameter, an integer.
*/
strcpy(paramfmt.name, "@intparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_INT_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;
ct_param(cmd, ¶mfmt, (CS_VOID *)&intvar,
 sizeof(CS_INT), ind))

/*
** Second parameter, a (small) text parameter.

Open Client 15.7 and Open Server 15.7 Features

112 Open Server and SDK

*/

strcpy((CS_CHAR *)textvar, “The Open Client and Open
 Server products both include Bulk-Library and
 CS-Library. ”);
datalen = sizeof(textvar);
strcpy(paramfmt.name, "@textparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_TEXT_TYPE;
paramfmt.maxlength = EX_MYMAXTEXTLEN;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;
ct_setparam(cmd, ¶mfmt, (CS_VOID *)&textvar,
 &datalen, &ind);

ct_send(cmd);
ct_results(cmd, &res_type);

...

Example 2
Sends a small amount of LOB data using a prepared statement:
/*
** Prepare the sql statement.
*/
sprintf(statement, "select title_id from mybooks where
 title like (?) ");

/*
** Send the prepared statement to the server
*/
ct_dynamic(cmd, CS_PREPARE, "my_dyn_stmt", CS_NULLTERM,
 statement, CS_NULLTERM);

ct_send(cmd);
handle_results(cmd);

/*
** Prompt user to provide a value for title
*/
printf("Enter title id value - enter an X if you wish
 to stop: \n");

while (toupper(title[0]) != 'X')
{
 printf("Retrieve detail record for title: ?");
 fgets(mytexttitle, 50, stdin);

 /*
 ** Execute the dynamic statement.
 */

 ct_dynamic(cmd, CS_EXECUTE, "my_dyn_stmt",
 CS_NULLTERM, NULL, CS_UNUSED);

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 113

 /*
 ** Define the input parameter
 */

 memset(&data_format, 0, sizeof(data_format));
 data_format.status = CS_INPUTVALUE;
 data_format.namelen = CS_NULLTERM ;
 data_format.datatype = CS_TEXT_TYPE;
 data_format.format = CS_FMT_NULLTERM;
 data_format.maxlength = EX_MYMAXTEXTLEN;
 ct_setparam(cmd, &data_format,
 (CS_VOID *)mytexttitle, &datalen, &ind);

ct_send(cmd);
handle_results(cmd);
...
}

Send Large Amounts of LOB Data as Parameters
Large amounts of LOB data is sent in streams to the server to better manage resources. Use
ct_send_data() in a loop to send data to the server in chunks.

To send a LOB data parameter in chunks, use these settings to define the parameter:

• Set the datatype field of the CS_DATAFMT structure to CS_TEXT_TYPE,
CS_UNITEXT_TYPE, or CS_IMAGE_TYPE.

• Set maxlength field of the CS_DATAFMT structure to CS_UNUSED.
• Set the *data pointer argument of the ct_param() function to NULL.
• Set the datalen argument of the ct_param() function to 0.

Example 1
Sends a large LOB data parameter in chunks:
#define BUFSIZE 2048

int fp;
char sendbuf[BUFSIZE]

/*
** Clear and setup the CS_DATAFMT structure, then pass
** each of the parameters for the RPC.
*/
memset(¶mfmt, 0, sizeof(paramfmt));
strcpy(paramfmt.name, "@intparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_INT_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;

ct_param(cmd, ¶mfmt, (CS_VOID *)&intvar,
 sizeof(CS_INT), 0))

Open Client 15.7 and Open Server 15.7 Features

114 Open Server and SDK

/*
** Text parameter, sent as a BLOB.
*/
strcpy(paramfmt.name, "@textparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_TEXT_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;

/*
** Although the actual data will not be sent here, we
** must invoke ct_setparam() for this parameter to send
** the parameter format (paramfmt) information to the
** server, prior to sending all parameter data.
** Set *data to NULL and datalen = 0, to indicate that
** the length of text data is unknown and we want to
** send it in chunks to the server with ct_send_data().
*/
ct_setparam(cmd, ¶mfmt, NULL, 0, 0);

/*
** Another LOB parameter (image), sent in chunks with
** ct_send_data()
*/
strcpy(paramfmt.name, "@textparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_IMAGE_TYPE;
paramfmt.maxlength = CS_UNUSED;
paramfmt.status = CS_INPUTVALUE;
paramfmt.locale = NULL;

/*
** Just like the previous parameter, invoke
** ct_setparam() for this parameter to send the
** parameter format.
*/
ct_setparam(cmd, ¶mfmt, NULL, 0, 0);

/*
** Repeat this sequence of filling paramfmt and calling
** ct_param() for any subsequent parameter that needs
** to be sent before finally sending the data chunks for
** the LOB type parameters.
*/
strcpy(paramfmt.name, "@any_otherparam");
paramfmt.namelen = CS_NULLTERM;
paramfmt.datatype = CS_MONEY_TYPE;
...

/*
** Send the first LOB (text) parameter in chunks of
** ‘BUFSIZE’ to the server. We must end with a 0 bytes
** write to indicate the end of the current parameter.
*/

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 115

fp = open(“huge_text_file”, O_RDWR, 0666);

do
{
 num_read = read(fp, sendbuf, BUFSIZE);
 ct_send_data(cmd, (CS_VOID *)sendbuf, num_read);
} while (num_read != 0);

/*
** Repeat the ct_send_data() loop for the next LOB
** parameter.
** Send the image parameter in chunks of ‘BUFSIZE’
** to the server as well and end with a 0 bytes write
** to indicate the end of the current parameter.
*/
fp = open(“large_image_file”, O_RDWR, 0666);
do
{
 num_read = read(fp, sendbuf, BUFSIZE);
 ct_send_data(cmd, (CS_VOID *)sendbuf, num_read);
} while (num_read != 0);

/*
** Ensure that all the data is flushed to the server
*/
ct_send(cmd);

Example 2
Sends LOB data as a stream using a prepared SQL statement:
/*
** Prepare the sql statement.
*/
sprintf(statement, "select title_id from mybooks
 where title like (?) ");

/*
** Send the prepared statement to the server
*/
ct_dynamic(cmd, CS_PREPARE, "mydyn_stmt", CS_NULLTERM,
 statement, CS_NULLTERM);

ct_send(cmd);
handle_results();

/*
** Promt user to provide a value for title
*/
printf("Enter title id value - enter an X if you wish
 to stop: \n");

while (toupper(myblobtitle[0]) != 'X')
{
 printf("Retrieve detail record for title: ?");
 fgets(myblobtitle, 50, stdin);

Open Client 15.7 and Open Server 15.7 Features

116 Open Server and SDK

 /*
 ** Execute the dynamic statement.
 */
 ct_dynamic(cmd, CS_PREPARE, "my_dyn_stmt",
 CS_NULLTERM, statement, CS_NULLTERM);

 /*
 ** Define the input parameter, a TEXT type that we
 want to send in chunks to the server.
 */
 memset(&data_format, 0, sizeof(data_format)) ;
 data_format.namelen = CS_NULLTERM ;
 data_format.datatype = CS_TEXT_TYPE;
 data_format.maxlength = CS_UNUSED;
 data_format.status = CS_INPUTVALUE;
 ct_setparam(cmd, &data_format, NULL, 0, 0);

 /*
 ** Send the ‘myblobtitle’ data in chunks of
 ** ‘CHUNKSIZE’ to the server with ct_send_data() and
 ** end with 0 bytes to indicate the end of data for
 ** this parameter. This is just an example to show
 ** how chunks can be sent. (myblobtitle[] is used as
 ** a simple example. This could also be replaced by
 ** large file which would be read in chunks from disk
 ** for example).
 */
 bytesleft = strlen(myblobtitle);
 bufp = myblobtitle;

 do
 {
 sendbytes = min(bytesleft, CHUNKSIZE);
 ct_send_data(cmd, (CS_VOID *)bufp, sendbytes);
 bufp += bufp + sendbytes;
 bytesleft -= sendbytes;
 } while (bytesleft > 0)

 /*
 ** End with 0 bytes to indicate the end of current
 data.
 */
 ct_send_data(cmd, (CS_VOID *)bufp, 0);

 /*
 ** Insure that all the data is sent to the server.
 */
 ct_send(cmd);
 handle_results(cmd)
 ...
}

/*
** Deallocate the prepared statement and finish up.
*/

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 117

ct_dynamic(cmd, CS_DEALLOC, "my_dyn_stmt", CS_NULLTERM,
 NULL, CS_UNUSED);

ct_send(cmd);
handle_results(cmd);

Retrieve LOB Parameters in Open Server
Retrieve the complete LOB parameter data at once using srv_xferdata or in chunks using the
new srv_get_data routine.

Open Server retrieves LOB parameters in chunks when the parameter length has been set to
CS_UNUSED. See srv_get_data.

Example
Retrieves description of LOB parameters:
/*
** Retrieve the description of the parameters coming
** from client
*/

for (paramnum = 1; paramnum <= numparams; paramnum++)
{
 /*
 ** Get a description of the parameter.
 */
 ret = srv_descfmt(spp, CS_GET, SRV_RPCDATA,
 paramnum, &(paramfmtp[paramnum - 1]));

 /*
 ** Allocate space for the parameters and bind the
 ** data.
 */
 if (paramfmtp[paramnum-1].maxlength >= 0)
 {
 if (paramfmtp[paramnum-1].maxlength > 0)
 {
 data[paramnum-1] = calloc(1,
 paramfmtp[paramnum-1].maxlength);
 }
 else
 {
 ind[paramnum-1] = CS_NULLDATA;
 }
 }
 else
 {
 /*
 ** Allocate a large size buffer for BLOB data
 ** (which length is unknown yet)
 */
 blobbuf[blobnum] = malloc(BUFSIZE);
 blobnum++;

Open Client 15.7 and Open Server 15.7 Features

118 Open Server and SDK

 }

 srv_bind(spp, CS_GET, SRV_RPCDATA, paramnum,
 &(paramfmtp[paramnum-1]), data[paramnum-1],
 &(len[paramnum-1]), &(ind[paramnum-1]))

 /*
 ** For every LOB parameter, call srv_get_data() in
 ** a loop as long as it succeeds
 /*
 for (i = 0; i < blobnum ; i++)
 {
 bufp = blobbuf[i];
 bloblen[i] = 0;
 do
 {
 ret = srv_get_data(spp, bufp, BUFSIZE,
 &outlen);
 bufp += outlen;
 bloblen[i] += outlen;
 } while (ret == CS_SUCCEED);

 /*
 ** Check for the correct return code
 */
 if (ret != CS_END_DATA)
 {
 return CS_FAIL;
 }

 }

 /*
 ** And receive remaining client data srv_xferdata()
 */
 ret = srv_xferdata(spp, CS_GET, SRV_RPCDATA);
}

srv_get_data
Reads a text, unitext or image parameter stream from a client, in chunks.

Syntax
CS_RETCODE srv_get_data(spp, bp, buflen, outlenp)

SRV_PROC *spp;
CS_BYTE *bp;
CS_INT buflen;
CS_INT *outlenp;

Parameters

• spp – a pointer to an internal thread control structure.

Open Client 15.7 and Open Server 15.7 Features

New Features Bulletin 119

• bp – a pointer to a buffer where the data from the client is placed.
• buflen – size of the *bp pointer. This indicates how many bytes are transferred in each

chunk.
• outlenp – an output parameter, outlenp contains the number of bytes read into the *bp

buffer.

Return Values

• CS_SUCCEED – srv_get_data() ran successfully, more data is pending.
• CS_FAIL – the routine failed.
• CS_END_DATA – srv_get_data() has completed reading the entire text, unitext, or

image parameter.

Open Client 15.7 and Open Server 15.7 Features

120 Open Server and SDK

SDK 15.7 Features for jConnect and Adaptive
Server Enterprise Drivers and Providers

New features in SDK 15.7 for jConnect, the Adaptive Server Enterprise ODBC Driver, the
Adaptive Server Enterprise OLE DB Provider, and the Adaptive Server Enterprise ADO.NET
Data Provider are introduced.

ODBC Driver Version Information Utility
The odbcversion utility displays information about the ODBC driver.

Syntax
odbcversion -version | -fullversion | -connect dsn userid password

Parameters
-version
displays a simple numeric version string for the ODBC driver.

-fullversion
displays the verbose version string for the ODBC driver.

-connect dsn userid password
displays the Adaptive Server version and the version of ODBC and OLEDB MDA scripts
installed on that Adaptive Server. Three variables are required with this parameter: dsn, which
is the data source name for the Adaptive Server, and the user ID and password used to connect
to the Adaptive Server.

Example
Obtain the simple numeric version string of an ODBC driver used to connect to Adaptive
Server:

odbcversion -version

The utility returns a numeric version string:

15.05.00.1015

Usage
When no parameters are specified, the odbcversion utility displays a list of valid parameters.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 121

SupressRowFormat2 Connection String Property
With Adaptive Server Enterprise ODBC Driver 15.7, Adaptive Server Enterprise OLE DB
Provider 15.7, and Adaptive Server Enterprise ADO.NET Data Provider 15.7, you can use the
SupressRowFormat2 connection string property to force Adaptive Server to send data using
the TDS_ROWFMT byte sequence where possible instead of the TDS_ROWFMT2 byte
sequence.

TDS_ROWFMT contains less data than TDS_ROWFMT2—which includes catalog, schema,
table, and column information—and can result in better performance for many small select
operations. Because the server sends reduced result set metadata when SupressRowFormat2 is
set to 1, some information is not available to client programs. If your application relies on the
missing metadata, you should not enable this property.

Values:

• 0 – the default value; TDS_ROWFMT2 is not suppressed.
• 1 – forces the server to send data in TDS_ROWFMT where possible.

Example
This connection string forces the server to send data in TDS_ROWFMT where possible on a
connection made with ADO.NET Data Provider.
Data Source='myASE';Port=5000;Database=myDB;
Uid=myUID;Pwd=myPWD;SupressRowFormat2=1

Enhancement to UseCursor Property
You can use the UseCursor connection string property of Adaptive Server Enterprise ODBC
Driver to determine how server-side cursors are used for SQL statements that generate result
sets.

This property has been updated to allow a client application to control which statements create
server-side cursors (value 2).

Values:

• 0 – the default value. Server-side cursors are not used.
• 1 – server-side cursors are used for all statements that generate result sets.
• 2 – server-side cursors are used for statements that generate result sets only when the

SQLSetCursorName ODBC function is called. Because cursors use more resources, this
setting allows you to limit the use of server-side cursors to statements that benefit from
them.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

122 Open Server and SDK

Log without ODBC Driver Manager Tracing
In Adaptive Server Enterprise ODBC Driver 15.7, you can log calls to ODBC APIs without
using ODBC Driver Manager tracing. This is useful when the driver manager is not used or
when running on a platform that does not support tracing.

To enable this feature on Microsoft Windows, use the LOGCONFIGFILE environment
variable or the Microsoft Windows registry. To enable on Linux, use LOGCONFIGFILE.

When using LOGCONFIGFILE, set the environment variable to the full path of the ODBC
log’s configuration file. LOGCONFIGFILE overrides any existing registry entry.

When using the Microsoft Windows registry, create an entry called LogConfigFile in
HKEY_CURRENT_USER\Software\Sybase\ODBC or HKEY_LOCAL_MACHINE
\Software\Sybase\ODBC, and set its value to the full path of the ODBC log’s
configuration file. For example:
Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Sybase\ODBC]
"LogConfigFile"="c:\\temp\\odbclog.properties"

To disable logging, delete or rename the LogConfigFile value.

Note: The value specified in HKEY_CURRENT_USER overrides any value set in
HKEY_LOCAL_MACHINE.

Log Configuration File
The configuration file controls the format and location of the ODBC log file.

In this example, the line in bold specifies where the log file is saved:
log4cplus.rootLogger=OFF, NULL

log4cplus.logger.com.sybase.dataaccess.odbc.api=TRACE, ODBCTRACE
log4cplus.additivity.com.sybase.dataaccess.odbc.api=false

log4cplus.logger.com.sybase.dataaccess.odbc.api.parameter=TRACE,
ODBCTRACE
log4cplus.additivity.com.sybase.dataaccess.odbc.api.parameter=false

log4cplus.logger.com.sybase.dataaccess.odbc.api.returncode=TRACE,
ODBCTRACE
log4cplus.additivity.com.sybase.dataaccess.odbc.api.returncode=fals
e

log4cplus.appender.NULL=log4cplus::NullAppender

log4cplus.appender.ODBCTRACE=log4cplus::FileAppender
log4cplus.appender.ODBCTRACE.File=c:\temp\odbc.log

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 123

log4cplus.appender.ODBCTRACE.layout=log4cplus::PatternLayout
log4cplus.appender.ODBCTRACE.ImmediateFlush=true
log4cplus.appender.ODBCTRACE.layout.ConversionPattern=%d{%H:%M:%S.
%q} %t %p
 %-25.25c{2} %m%n

jConnect setMaxRows Enhancement
JDBC programs use Statement.setMaxRows(int max) to limit the number of rows returned by
a result set. In jConnect 7.0 and earlier, the result of the select, insert, update, and delete
statements are counted against the limit.

To be consistent with the JDBC specification, jConnect 7.07 introduces the
SETMAXROWS_AFFECTS_SELECT_ONLY connection property, which, when set to true
(the default), limits only the rows returned by select statements.

SETMAXROWS_AFFECTS_SELECT_ONLY is ignored when connected to Adaptive
Server 15.5 or earlier.

TDS ProtocolCapture
Adaptive Server Enterprise ODBC Driver 15.7 introduces the ProtocolCapture connection
string property which specifies a file for receiving Tabular Data Stream™ (TDS) packets
exchanged between an ODBC application and Adaptive Server.

ProtocolCapture takes effect immediately so that TDS packets exchanged during connection
establishment are written to a unique filename generated using the file prefix. TDS packets are
written to the file for the duration of the connection. You can use Ribo and other protocol
translation tools to interpret the TDS capture file.

For example, to specify tds_capture as the TDS tracing log file prefix, type:

Driver=AdaptiveServerEnterprise;server=server1;
port=port1;UID=sa;PWD=;ProtocolCapture=tds_capture;

The first connection generates tds_capture0.tds, the second generates
tds_capture1.tds, and so forth.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

124 Open Server and SDK

ODBC Data Batching without Binding Parameter Arrays
When the same SQL statement is executed for different parameter values, client applications
normally bind parameter arrays and execute each set of parameters using SQLExecute,
SQLExecuteDirect, and SQLBulkOperations.

In binding arrays to SQL parameters, memory for the array is allocated, and all data is copied
to the array before the SQL statement is executed. This can lead to inefficient use of memory
and resources when processing high volume of transactions.

In Adaptive Server Enterprise ODBC Driver 15.7, client applications can use SQLExecute to
send parameters in batches to Adaptive Server, without binding the parameters as arrays.
SQLExecute returns SQL_BATCH_EXECUTING until the last batch of parameters has been
sent and processed. It returns the status of the execution after the final batch of parameters has
been processed.

A call to SQLRowCount is valid only after the final SQLExecute statement has completed.

Manage Data Batches
SQL_ATTR_BATCH_PARAMS, a Sybase-specific connection attribute, has been
introduced to manage the batches of parameters sent to Adaptive Server. Set
SQL_ATTR_BATCH_PARAMS using SQLSetConnectAttr.

Values:

• SQL_BATCH_ENABLED – informs Adaptive Server Enterprise ODBC Driver to batch
the parameters. When in this state, the driver sends an error if a statement other than the
statement being processed—the first statement executed after setting
SQL_ATTR_BATCH_PARAMS to SQL_BATCH_ENABLED—by SQLExecute is
executed on the connection.

• SQL_BATCH_LAST_DATA – specifies that the next batch of parameters is the last batch,
and that the parameters contain data.

• SQL_BATCH_LAST_NO_DATA – specifies that the next batch of parameters is the last
batch, and to ignore the parameters.

• SQL_BATCH_CANCEL – informs the Adaptive Server Enterprise ODBC Driver to
cancel the batch and to roll back the transactions.
Only uncommitted transactions can be rolled back.

• SQL_BATCH_DISABLED – (default value) Adaptive Server Enterprise ODBC Driver
returns to this state after processing the last batch of parameters. You cannot manually set
SQL_ATTR_BATCH_PARAMS to this value.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 125

Examples of Managing Data Batches
Two examples are available for managing data batches.

Example 1
Sends a batch of parameters to the server without binding parameter arrays:
// Setting the SQL_ATTR_BATCH_PARAMS attribute to start
// the batch
sr = SQLSetConnectAttr(dbc, SQL_ATTR_BATCH_PARAMS,
 (SQLPOINTER)SQL_BATCH_ENABLED, SQL_IS_INTEGER);
printError(sr, SQL_HANDLE_DBC, dbc);

// Bind the parameters. This can be done once for the entire batch
sr = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,
 SQL_C_LONG, SQL_INTEGER, l1, 0, &c1, l1, &l1);
sr = SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_LONGVARCHAR, l2, 0, buffer, l2, &l2);
}

// Run a batch of 10 for (int i = 0; i < 10; i++)
{
 c1 = i;
 memset(buffer, 'a'+i, l2);
 sr = SQLExecDirect(stmt, insertStmt, SQL_NTS);
 printError(sr, SQL_HANDLE_STMT, stmt);
}

Example 2
Ends and closes a batch:
// Setting the SQL_ATTR_BATCH_PARAMS attribute to end
// the batch
sr = SQLSetConnectAttr(dbc, SQL_ATTR_BATCH_PARAMS,
 (SQLPOINTER)SQL_BATCH_LAST_NO_DATA, SQL_IS_INTEGER);
printError(sr, SQL_HANDLE_DBC, dbc);

// Call SQLExecDirect one more time to close the batch
// - Due to SQL_BATCH_LAST_NO_DATA, this will not
// process the parameters
sr = SQLExecDirect(stmt, insertStmt, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);

ODBC Data Batching Considerations
Certain considerations for the ODBC data batching feature.

• This feature supports only statements and stored procedures that do not return a result set
or have an output parameter.

• Asynchronous mode is not supported. While in batch mode, the application cannot
execute any statement on the same connection other than the one being batched.

• SQL_DATA_AT_EXEC is not supported. Bind LOB parameters as normal parameters.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

126 Open Server and SDK

• When batching data without binding parameter arrays and
SQL_ATTR_PARAM_STATUS_PTR is set, Adaptive Server Enterprise ODBC Driver
retrieves the number of array elements from the StringLength parameter to
SQLSetStmtAttr, and not from SQL_ATTR_PARAMSET_SIZE.

Optimized Batching in jConnect
jConnect for JDBC 7.07 implements an internal algorithm to speed up batch operations for
PreparedStatement objects.

This algorithm is invoked when the HOMOGENEOUS_BATCH connection property is set to
true.

Note: Homogeneous batching is available only when your client application is connected to a
server that supports this feature. Adaptive Server Enterprise 15.7 introduces support for
homogeneous batching.

This example illustrates a PreparedStatement batching operation using the addBatch and
executeBatch methods:

String sql = "update members set lastname = ? where member_id = ?";
prep_stmt = connection.prepareStatement(sql);
prep_stmt.setString(1, "Forrester");
prep_stmt.setLong(2, 45129);
prep_stmt.addBatch();
prep_stmt.setString(1, "Robinson");
prep_stmt.setLong(2, 45130);
prep_stmt.addBatch();
prep_stmt.setString(1, "Servo");
prep_stmt.setLong(2, 45131);
prep_stmt.addBatch();
prep_stmt.executeBatch();

where connection is a connection instance, prep_stmt is a prepared statement instance,
and ? denotes parameter placeholders for the prepared statement.

Homogeneous Batching with LOB Columns
When the HOMOGENEOUS_BATCH and ENABLE_LOB_LOCATORS properties are set
to true, your client application cannot mix LOB and non-LOB prepared statement setter
methods in the same batch.

For example, this is invalid:
String sql = "update members SET catchphrase = ? WHERE member_id
= ?";
prep_stmt = connection.prepareStatement(sql);
prep_stmt.setString(1, "Push the button, Frank!");
prep_stmt.setLong(2, 45129);
prep_stmt.addBatch();
Clob myclob = con.createClob();

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 127

myclob.setString(1, "Hi-keeba!");
prep_stmt.setClob(1, myclob);
prep_stmt.setLong(2, 45130);
prep_stmt.addBatch();
pstmt.executeBatch();

where catchphrase is a column of type text. This code fails because the setString method
and the setClob method are used in the same batch for the same column.

jConnect Parameter Batching without Row Accumulation
jConnect for JDBC 7.07 adds the SEND_BATCH_IMMEDIATE connection property.

When set to true, jConnect sends the parameters for the current row immediately after
invoking PreparedStatement.addBatch(). This minimizes usage of client memory and gives
the server more time to process the batch parameters.

The default SEND_BATCH_IMMEDIATE value is false, which, when set, signals jConnect
to send the batch parameters only after invoking PreparedStatement.executeBatch(), as
before.

jConnect Batch Update Enhancement to Execute Past
Errors

jConnect for JDBC 7.07 introduces the EXECUTE_BATCH_PAST_ERRORS connection
property, which, when set to true, allows a batch update operation to ignore nonfatal errors
encountered while executing individual statements and to complete the batch update.

When set to false, the default, batch update is aborted when an error is encountered, as in
earlier versions.

See jConnect for JDBC Programmers Reference for information about batch update usage
and the interpretation of its results.

Support for Releasing Locks at Cursor Close
Adaptive Server 15.7 extends the declare cursor syntax to include the
release_locks_on_close option, which releases shared cursor locks at isolation levels 2 and 3
when a cursor is closed. Adaptive Server Enterprise ODBC Driver 15.7 and jConnect for
JDBC 7.07 support the release-lock-on-close semantics.

To apply this functionality to all read-only cursors created on an Adaptive Server Enterprise
ODBC Driver connection, set the ReleaseLocksOnCursorClose connection property to 1. The
default ReleaseLocksOnCursorClose value is 0.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

128 Open Server and SDK

To apply on a jConnect for JDBC connection, set the
RELEASE_LOCKS_ON_CURSOR_CLOSE connection property to true. The default
RELEASE_LOCKS_ON_CURSOR_CLOSE value is false.

Settings applied through these connection properties are static and cannot be changed after the
connection has been established. This setting takes effect only when connected to a server that
supports release_locks_on_close.

For information about release_locks_on_close, see the Adaptive Server Enterprise
Reference Manual: Commands.

select for update Support
Adaptive Server 15.7 supports select for update, which can lock rows for subsequent updates
within the same transaction, and supports exclusive locks for updatable cursors.

See Chapter 2, "Queries: Selecting Data from a Table" in the Adaptive Server Enterprise
Transact-SQL Users Guide.

This functionality is automatically available to clients when the for update clause is added to a
select statement and to any updatable cursors opened within the clients. See Adaptive Server
Enterprise ODBC Driver Users Guide and jConnect for JDBC Programmers Reference for
information about creating updatable cursors.

Support for Expanded Variable-length Rows
Versions of Adaptive Server earlier than 15.7 configured for 16K logical page sizes could not
create data-only locked (DOL) tables with variable-length rows if a variable-length column
began more than 8191 bytes after the start of the row. This limitation has been removed starting
in Adaptive Server 15.7.

See Chapter 2, "Data Storage” in the Adaptive Server Enterprise Performance and Tuning
Series: Physical Database Tuning.

ODBC and JDBC clients do not need special configuration to use this feature. When
connected to Adaptive Server version 15.7 that has been configured to receive wide DOL
rows, these clients automatically insert records using the wide offset. An error message is
received if a client attempts to send a wide DOL row to an earlier version of Adaptive Server,
or to a Adaptive Server 15.7 for which the wide DOL row option is disabled.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 129

Support for Nonmaterialized Columns
The bulk insert routines in the Adaptive Server Enterprise ODBC Driver 15.7 have been
enhanced to handle nonmaterialized columns in Adaptive Server 15.7.

Earlier versions of the Adaptive Server Enterprise ODBC Driver cannot perform bulk inserts
of data into Adaptive Server when a table definition contains nonmaterialized columns.
Adaptive Server raises an error when earlier versions of the Adaptive Server Enterprise ODBC
Driver attempt to perform bulk inserts into nonmaterialized columns.

In-row and off-row LOB Storage Support
In Adaptive Server 15.7, LOB columns that are marked for in-row storage are stored in-row
when there is adequate memory to hold the entire row.

When the size of a row increases over its defined limit due to an update to any column in it, the
LOB columns which are stored in-row are moved off-row to bring it within the limits. See
Chapter 21, "In-Row Off-Row LOB" in the Adaptive Server Enterprise Transact-SQL Users
Guide.

The bulk insert routines in Adaptive Server Enterprise ODBC Driver 15.7 and jConnect for
JDBC 7.07 support the in-row and off-row storage of text, image, and unitext LOB
columns in Adaptive Server. Bulk insert routines from earlier client versions always store
LOB columns off row.

Large Objects as Stored Procedure Parameters
Passing LOB data as stored procedure input parameters has also been introduced in Adaptive
Server 15.7.

jConnect for JDBC 7.07, Adaptive Server Enterprise ODBC Driver 15.7, Adaptive Server
Enterprise OLE DB Provider 15.7, and Adaptive Server Enterprise ADO.NET Data Provider
15.7 support using text, unitext, and image as input parameters in stored procedures
and as parameter marker datatypes.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

130 Open Server and SDK

Large Object Locator Support
jConnect for JDBC 7.07 and Adaptive Server Enterprise ODBC Driver 15.7 support large
object (LOB) locators.

A LOB locator contains a logical pointer to LOB data rather than the data itself, reducing the
amount of data that passes through the network between Adaptive Server and its clients.
Server support for LOB locators was introduced in Adaptive Server 15.7.

jConnect for JDBC 7.07 accesses LOB data using server-side locators when connected to an
Adaptive Server that supports LOB locators and autocommit is turned off. Otherwise,
jConnect materializes LOB data at the client side. You can use the complete LOB API with
client-side materialized LOB data, however, due to larger data, API performance may be
different than when used with LOB locators.

Adaptive Server Enterprise ODBC Driver 15.7 clients cannot use LOB locators unless
connected to an Adaptive Server that supports it.

Note: When you are using LOB locators, retrieving a large result set that includes LOB data on
each row may impact your application's performance. Adaptive Server returns a LOB locator
as part of the result set and, to obtain LOB data, jConnect and ODBC Driver must cache the
remaining result set. Sybase recommends that you keep result sets small, or that you enable
cursor support to limit the size of data to be cached.

jConnect for JDBC Support
To enable LOB locator support, establish a connection to Adaptive Server with the
ENABLE_LOB_LOCATORS connection property set to true.

When enabled, client applications can access the locators using the Blob, Clob, and NClob
classes from the java.sql package.

Note: When both LOB locators and autocommit are enabled, jConnect automatically
switches the LOB locators to client-side-materialized LOB locators even if the connected
Adaptive Server is capable of supporting them. This increases the memory used by the client
and may degrade performance. Therefore, it is advisable to use LOB locators with
autocommit off.

For information about the Blob, Clob, and NClob classes, see the Java documentation.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 131

Adaptive Server Enterprise ODBC Driver Support
To enable LOB locator support, establish a connection to Adaptive Server with the
EnableLOBLocator connection property set to 1.

When EnableLOBLocator is set to 0, the default value, the ODBC Driver cannot retrieve a
locator for a LOB column. When enabling LOB Locators, the connection should be set to
autocommit off.

You must also include the sybasesqltypes.h file in your program. The
sybasesqltypes.h file is located in the include directory, under the ODBC
installation directory.

ODBC Datatype Mapping for Locator Support
The table lists the ODBC datatype mapping for the Adaptive Server locator datatypes.

ASE Datatype ODBC SQL Type ODBC C Type

text_loca-
tor

SQL_TEXT_LOCATOR SQL_C_TEXT_LOCATOR

image_loca-
tor

SQL_IMAGE_LOCATOR SQL_C_ IMAGE_LOCATOR

unitext_lo-
cator

SQL_UNITEXT_LOCATOR SQL_C_ UNITEXT_LOCATOR

Supported Conversions
The table lists the supported conversions for the Adaptive Server locator datatypes.

SQL_C_TEXT_
LOCATOR

SQL_C_IMAGE_
LOCATOR

SQL_C_UNI-
TEXT_LOCATOR

SQL_TEXT_LOCATOR X

SQL_IMAGE_LOCATOR X

SQL_UNITEXT_LOCATOR X

SQL_LONGVARCHAR

SQL_WLONGVARCHAR

SQL_LONGVARBINARY

LEGEND: x = supported conversion.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

132 Open Server and SDK

Methods that Support LOB Locators
ODBC API methods support LOB locators.

• SQLBindCol – TargetType can be any of the ODBC C locator datatypes.
• SQLBindParameter – ValueType can be any of the ODBC C locator datatypes.

ParameterType can be any of the ODBC SQL locator datatypes.
• SQLGetData – TargetType can be any of the ODBC C locator datatype.
• SQLColAttribute – the SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE

descriptors can return any of the ODBC SQL locator datatype.
• SQLDescribeCol – the datatype pointer can be any of the ODBC SQL locator datatypes.

See Microsoft ODBC API Reference.

Implicit Conversion of Prefetched LOB Data
In Adaptive Server Enterprise ODBC Driver 15.7, when Adaptive Server returns a LOB
locator, you can use SQLGetData and SQLBindCol to retrieve the underlying prefetched LOB
data by binding the column to SQL_C_CHAR or SQL_C_WCHAR for text locators, or to
SQL_C_BINARY for image locators.

Set the SQL_ATTR_LOBLOCATOR attribute to enable or disable locators in a connection. If
EnableLOBLocator has been specified in the connection string,
SQL_ATTR_LOBLOCATOR is initialized with the value of EnableLOBLocator, otherwise,
it is set to SQL_LOBLOCATOR_OFF, the default value. To enable locators, set the attribute to
SQL_LOBLOCATOR_ON. Use SQLSetConnectAttr to set the attribute’s value and
SQLGetConnectAttr to retrieve its value.

Use SQLSetStatementAttr to set SQL_ATTR_LOBLOCATOR_FETCHSIZE to specify the
size—in bytes for binary data and in characters for character data—of the LOB data to
retrieve. The default value, 0, indicates that prefetched data is not requested, while a value of
-1 retrieves the entire LOB data.

Note: If the underlying LOB data size of the column being retrieved exceeds the prefetched
data size that you have set, native error 3202 is raised when an ODBC client attempts to
directly retrieve the data. When this happens, the client can retrieve the complete data by
calling SQLGetData to obtain the underlying locator and perform all of the operations
available on locators.

Example 1
Retrieves an image locator using SQLGetData when the prefetched data represents the
complete LOB value:
//Set Autocommit off
SQLRETURN sr;
sr = SQLSetConnectAttr(dbc, SQL_ATTR_AUTOCOMMIT,
 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

//Enable LOB Locator for this exchange

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 133

sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR,
(SQLPOINTER)SQL_LOCATOR_ON,
 0);

// Set size of prefetched LOB data
sr = SQLSetStatementAttr(stmt, SQL_ATTR_LOBLOCATOR_FETCHSIZE,
(SQLPOINTER)32768, 0);

//Get a locator from the server
SQLLEN lLOBLen = 0;
Byte cBin[COL_SIZE];
SQLLEN lBin = sizeof(CBin);
unsigned char cLOC[SQL_LOCATOR_SIZE];
SQLLEN lLOC = sizeof(cLOC);

int id = 4;
SQLLEN l1 = sizeof(int);
SQLLEN idLen = sizeof(int);
sr = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, idLen,
 0, &id, idLen, &idLen);

printError(sr, SQL_HANDLE_STMT, stmt);

//Execute the select statement to return a locator
sr = SQLExecDirect(stmt, selectCOL_SQL, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);

sr = SQLFetch(stmt);
printError(sr, SQL_HANDLE_STMT, stmt);

//Retrieve the binary data (Complete Data is returned)
sr = SQLGetData(stmt, 1, SQL_C_BINARY, cBin, lBin, &lBin);
printError(sr, SQL_HANDLE_STMT, stmt);

//Cleanup
sr = SQLFreeStmt(stmt, SQL_UNBIND);
sr = SQLFreeStmt(stmt, SQL_RESET_PARAMS);
sr = SQLFreeStmt(stmt, SQL_CLOSE);

SQLEndTran(SQL_HANDLE_DBC, dbc,SQL_COMMIT);

//Disable LOB Locator for the future
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR,
(SQLPOINTER)SQL_LOCATOR_OFF,
 0);

Example 2
Retrieves an image locator using SQLGetData when prefetched data represents a truncated
LOB value:
//Set Autocommit off
SQLRETURN sr;
sr = SQLSetConnectAttr(dbc, SQL_ATTR_AUTOCOMMIT,

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

134 Open Server and SDK

 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

//Enable LOB Locator for this exchange
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR,
 (SQLPOINTER)SQL_LOCATOR_ON, 0);

//Set size of prefetched LOB data
sr = SQLSetStatementAttr(stmt,
 SQL_ATTR_LOBLOCATOR_FETCHSIZE, (SQLPOINTER)32768, 0);

//Get a locator from the server
SQLLEN lLOBLen = 0;
Byte cBin[COL_SIZE];
SQLLEN lBin = sizeof(CBin);
unsigned char cLOC[SQL_LOCATOR_SIZE];
SQLLEN lLOC = sizeof(cLOC);

int id = 4;
SQLLEN l1 = sizeof(int);
SQLLEN idLen = sizeof(int);
sr = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, idLen,
 0, &id, idLen, &idLen);
printError(sr, SQL_HANDLE_STMT, stmt);

//Execute the select statement to return a locator
sr = SQLExecDirect(stmt, selectCOL_SQL, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);
sr = SQLFetch(stmt);
printError(sr, SQL_HANDLE_STMT, stmt);

// Retrieve the binary data(Truncated data is returned)
sr = SQLGetData(stmt, 1, SQL_C_BINARY, cBin, lBin, &lBin);

if(sr == SQL_SUCCESS_WITH_INFO)
{
 SQLTCHAR errormsg[ERR_MSG_LEN];
 SQLTCHAR sqlstate[SQL_SQLSTATE_SIZE+1];
 SQLINTEGER nativeerror = 0;
 SQLSMALLINT errormsglen = 0;

 retcode = SQLGetDiagRec(handleType, handle, 1, sqlstate,
&nativeerror,
 errormsg, ERR_MSG_LEN, &errormsglen);

 printf("SqlState: %s Error Message: %s\n", sqlstate, errormsg);

 //Handle truncation of LOB data; if data was truncated call
SQLGetData to
 // retrieve the locator.

 /* Warning returns truncated LOB data */
 if (NativeError == 32028) //Error code may change
 {
 BYTE ImageLocator[SQL_LOCATOR_SIZE];
 sr = SQLGetData(stmt, 1, SQL_C_IMAGE_LOCATOR, &ImageLocator,

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 135

 sizeof(ImageLocator), &Len);
 printError(sr, SQL_HANDLE_STMT, stmt);

 /*
 Perform locator specific calls using image Locator on a
separate
 statement handle if needed
 */
 }
}

//Cleanup
sr = SQLFreeStmt(stmt, SQL_UNBIND);
sr = SQLFreeStmt(stmt, SQL_RESET_PARAMS);
sr = SQLFreeStmt(stmt, SQL_CLOSE);

SQLEndTran(SQL_HANDLE_DBC, dbc,SQL_COMMIT);

//Disable LOB Locator for the future
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR,
(SQLPOINTER)SQL_LOCATOR_OFF,
 0);

Access and Manipulate LOBs Using Locators
The ODBC API does not directly support LOB locators. An ODBC client application must
use Transact-SQL functions to operate on the locators and manipulate LOB values. Adaptive
Server Enterprise ODBC Driver introduces several stored procedures to facilitate the use of
the required Transact-SQL functions.

Various operations can be performed on a LOB locator. The input and output values of the
parameters can be of any type that Adaptive Server can implicitly convert to the stored
procedure definitions.

For details about the Transact-SQL commands and functions listed here, see Transact-SQL
Functions in the Adaptive Server Enterprise Reference Manual: Building Blocks.

Initializing a Text Locator
Use sp_drv_create_text_locator to create a text_locator and optionally initialize it with
a value. sp_drv_create_text_locator accesses the Transact-SQL function create_locator.

Syntax
sp_drv_create_text_locator [init_value]

Input Parameters
init_value – a varchar or text value used to initialize the new locator.

Output Parameters
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

136 Open Server and SDK

Result Set
A column of type text_locator. The LOB that the locator references has init_value when
supplied.

Initializing a Unitext Locator
Use sp_drv_create_unitext_locator to create a unitext_locator and optionally
initialize it with value. sp_drv_create_unitext_locator accesses the Transact-SQL function
create_locator.

Syntax
sp_drv_create_unitext_locator [init_value]

Input Parameters
init_value – a univarchar or unitext used to initialize the new locator.

Output Parameters
None.

Result Set
A column of type unitext_locator. The LOB that the locator references has init_value
when supplied.

Initializing an Image Locator
Use sp_drv_create_image_locator to create an image_locator and optionally initialize
it with value. sp_drv_create_image_locator accesses the Transact-SQL function
create_locator.

Syntax
sp_drv_create_image_locator [init_value]

Input Parameters
init_value – a varbinary or image used to initialize the new locator.

Output Parameters
None.

Result Set
A column of type image_locator. The LOB that the locator references has init_value
when supplied.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 137

Obtaining Complete Text Value from a Text Locator
Use sp_drv_locator_to_text, which accesses the Transact-SQL function return_lob

Syntax
sp_drv_locator_to_text locator

Input Parameters
locator – text_locator to retrieve value of.

Output Parameters
None.

Result Set
A column containing the text value referenced by locator.

Obtaining Complete Unitext Value from a Unitext Locator
Use sp_drv_locator_to_unitext, which accesses the Transact-SQL function return_lob

Syntax
sp_drv_locator_to_unitext locator

Input Parameters
locator – unitext_locator to retrieve value of.

Output Parameters
None.

Result Set
A column containing the unitext value referenced by locator.

Obtaining Complete Image Value from an Image Locator
Use sp_drv_locator_to_image, which accesses the Transact-SQL function return_lob.

Syntax
sp_drv_locator_to_image locator

Input Parameters
locator – image_locator to retrieve value of.

Output Parameters
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

138 Open Server and SDK

Result Set
A column containing the image value referenced by locator.

Obtaining a Substring from a Text Locator
Use sp_drv_text_substring, which accesses the Transact-SQL function substring.

Syntax
sp_drv_text_substring locator, start_position, length

Input Parameters

• locator – a text_locator that references the data to manipulate.

• start_position – an integer specifying the position of the first character to read and
retrieve.

• length – an integer specifying the number of characters to read.

Output Parameters
None.

Result Set
A column of type text containing the substring retrieved.

Obtaining a Substring from a Unitext Locator
Use sp_drv_unitext_substring, which accesses the Transact-SQL function substring.

Syntax
sp_drv_unitext_substring locator, start_position, length

Input Parameters

• locator – a unitext_locator that references the data to manipulate.

• start_position – an integer specifying the position of the first character to read and
retrieve.

• length – an integer specifying the number of characters to read.

Output Parameters
None.

Result Set
A column of type unitext containing the substring retrieved.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 139

Obtaining a Substring from an Image Locator
Use sp_drv_image_substring, which accesses the Transact-SQL function substring.

Syntax
sp_drv_image_substring locator, start_position, length

Input Parameters

• locator – an image_locator that references the data to manipulate.

• start_position – an integer specifying the position of the first byte to read and retrieve.

• length – an integer specifying the number of bytes to read.

Output Parameters
None.

Result Set
A column of type image containing the substring retrieved.

Inserting Text at Specified Position
Use sp_drv_text_setdata, which accesses the Transact-SQL function setadata.

Syntax
sp_drv_text_setdata locator, offset, new_data, data_length

Input Parameters

• locator – a text_locator that references the text column to insert into.

• offset – an integer specifying the position from which to start writing the new content.

• new_data – varchar or text data to insert.

Output Parameters
data_length – an integer containing the number of characters written.

Result Set
None.

Inserting Unitext at Specified Position
Use sp_drv_unitext_setdata, which accesses the Transact-SQL function setadata.

Syntax
sp_drv_unitext_setdata locator, offset, new_data, data_length

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

140 Open Server and SDK

Input Parameters

• locator –a unitext_locator that references the unitext column to insert into.

• offset – an integer specifying the position from which to start writing the new content.

• new_data – univarchar or unitext data to insert.

Output Parameters
data_length – an integer containing the number of characters written.

Result Set
None.

Inserting an Image at Specified Position
Use sp_drv_image_setdata, which accesses the Transact-SQL function setadata.

Syntax
sp_drv_image_setdata locator, offset, new_data, datalength

Input Parameters

• locator – an image_locator that references the image column to insert in.

• offset – an integer specifying the position from which to start writing the new content.

• new_data – varbinary or image data to insert.

Output Parameters
data_length – an integer containing the number of bytes written.

Result Set
None.

Inserting Text Referenced by a Locator
Use sp_drv_text_locator_setdata, which accesses the Transact-SQL function setadata.

Syntax
sp_drv_text_locator_setdata locator, offset, new_data_locator,
data_length

Input Parameters

• locator – a text_locator that references the text column to insert into.

• offset – an integer specifying the position from which to start writing the new content.

• new_data_locator – a text_locator that references the text data to insert.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 141

Output Parameters
data_length – an integer containing the number of characters written.

Result Set
None.

Inserting Unitext Referenced by a Locator
Use sp_drv_unitext_locator_setdata, which accesses the Transact-SQL function setadata.

Syntax
sp_drv_unitext_locator_setdata locator, offset, new_data_locator,
data_length

Input Parameters

• locator –a unitext_locator that references the unitext column to insert into.

• offset – an integer specifying the position from which to start writing the new content.

• new_data_locator – a unitext_locator that references the unitext data to insert.

Output Parameters
data_length – an integer containing the number of characters written.

Result Set
None.

Inserting Image Referenced by a Locator
Use sp_drv_image_locator_setdata, which accesses the Transact-SQL function setadata.

Syntax
sp_drv_image_locator_setdata locator, offset, new_data_locator,
 datalength

Input Parameters

• locator – an image_locator that references the image column to insert in.

• offset – an integer specifying the position from which to start writing the new content.

• new_data_locator – an image_locator that references the image data to insert.

Output Parameters
data_length – an integer containing the number of bytes written.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

142 Open Server and SDK

Truncating Underlying LOB Data
Use truncate lob to truncate the LOB data referenced by a LOB locator.

See the Adaptive Server Enterprise Reference Manual: Commands.

Finding Character Length of Underlying Text Data
Use sp_drv_text_locator_charlength to find the character length of a LOB column
referenced by a text locator. sp_drv_text_locator_charlength accesses the Transact-SQL
function char_length.

Syntax
sp_drv_text_locator_charlength locator, data_length

Input Parameters
locator – a text_locator that references the text column to manipulate.

Output Parameters
data_length – an integer specifying the character length of the text column referenced by
locator.

Result Set
None.

Finding Byte Length of Underlying Text Data
Use sp_drv_text_locator_bytelength to find the byte length of a LOB column referenced by a
text locator. sp_drv_text_locator_bytelength accesses the Transact-SQL function
data_length.

Syntax
sp_drv_image_locator_bytelength locator, data_length

Input Parameters
locator – a text_locator that references the text column to manipulate.

Output Parameters
data_length – an integer specifying the byte length of the text column referenced by
locator.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 143

Finding Character Length of Underlying Unitext Data
Use sp_drv_unitext_locator_charlength to find the character length of a LOB column
referenced by a unitext locator. sp_drv_unitext_locator_charlength accesses the
Transact-SQL function char_length.

Syntax
sp_drv_unitext_locator_charlength locator, data_length

Input Parameters
locator – a unitext_locator that references the unitext column to manipulate.

Output Parameters
data_length – an integer specifying the character length of the unitext column
referenced by locator.

Result Set
None.

Finding Byte Length of Underlying Unitext Data
Use sp_drv_unitext_locator_bytelength to find the byte length of a LOB column referenced
by a unitext locator. sp_drv_unitext_locator_bytelength accesses the Transact-SQL
function data_length.

Syntax
sp_drv_image_locator_bytelength locator, data_length

Input Parameters
locator – a unitext_locator that references the unitext column to manipulate.

Output Parameters
data_length – an integer specifying the byte length of the unitext column referenced by
locator.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

144 Open Server and SDK

Finding Byte Length of Underlying Image Data
Use sp_drv_image_locator_bytelength to find the byte length of a LOB column referenced
by an image locator. sp_drv_image_locator_bytelength accesses the Transact-SQL
function data_length.

Syntax
sp_drv_image_locator_bytelength locator, data_length

Input Parameters
locator – an image_locator that references the image column to manipulate.

Output Parameters
data_length – an integer specifying the byte length of the image column referenced by
locator.

Result Set
None.

Finding Position of a Search String within the Text Column Referenced by a
Locator
Use sp_drv_varchar_charindex, which accesses the Transact-SQL function charindex.

Syntax
sp_drv_varchar_charindex search_string, locator, start, position

Input Parameters

• search_string – the literal, of type varchar, to search for.

• locator – a text_locator that references the text column to search from.

• start – an integer specifying the position from which to begin searching. The first position
is 1.

Output Parameters
position – an integer specifying the starting position of search_string in the LOB column
referenced by locator.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 145

Finding Position of a String Referenced by a Text Locator within the Text
Column Referenced by Another Locator
Use sp_drv_textlocator_charindex, which accesses the Transact-SQL function charindex.

Syntax
sp_drv_textlocator_charindex search_locator, locator, start,
position

Input Parameters

• search_locator – a text_locator that points to the literal to search for.

• locator – a text_locator that references the text column to search from.

• start – an integer specifying the position from which to begin searching. The first position
is 1.

Output Parameters
position – an integer specifying the starting position of the literal in the LOB column
referenced by locator.

Result Set
None.

Finding Position of a Search String within the Unitext Column Referenced by a
Locator
Use sp_drv_univarchar_charindex, which accesses the Transact-SQL function charindex.

Syntax
sp_drv_univarchar_charindex search_string, locator, start, position

Input Parameters

• search_string – the literal, of type univarchar, to search for.

• locator – a unitext_locator that references the unitext column to search from.

• start – an integer specifying the position from which to begin searching. The first position
is 1.

Output Parameters
position – an integer specifying the starting position of search_string in the LOB column
referenced by locator.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

146 Open Server and SDK

Finding Position of a String Referenced by a Unitext Locator within the Unitext
Column Referenced by Another Locator
Use sp_drv_unitext_locator_charindex, which accesses the Transact-SQL function
charindex.

Syntax
sp_drv_charindex_unitextloc_in_locator search_locator, locator,
start,
position

Input Parameters

• search_locator – a unitext_locator that points to the literal to search for.

• locator – a unitext_locator that references the text column to search from.

• start – an integer specifying the position from which to begin searching. The first position
is 1.

Output Parameters
position – an integer specifying the starting position of the literal in the LOB column
referenced by locator.

Result Set
None.

Finding Position of a Byte Sequence within the Column Referenced by an
Image Locator
Use sp_drv_varbinary_charindex, which accesses the Transact-SQL function charindex.

Syntax
sp_drv_varbinary_charindex byte_sequence, locator, start, position

Input Parameters

• byte_sequence – the byte sequence, of type varbinary, to search for.

• locator – an image_locator that references the image column to search from.

• start – an integer specifying the position from which to begin searching. The first position
is 1.

Output Parameters
position – an integer specifying the starting position of search_string in the LOB column
referenced by locator.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 147

Finding Position of Byte Sequence Referenced by an Image Locator within the
Image Column Referenced by Another Locator
Use sp_drv_image_locator_charindex, which accesses the Transact-SQL function
charindex.

Syntax
sp_drv_image_locator_charindex sequence_locator, locator, start,
start_position

Input Parameters

• sequence_locator – an image_locator that points to the byte sequence to search for.

• locator – an image_locator that references the image column to search from.

• start – an integer specifying the position from which to begin searching. The first position
is 1.

Output Parameters
start_position – an integer specifying the starting position of the byte sequence in the LOB
column referenced by locator.

Result Set
None.

Checking if a text_locator Reference is Valid
Use sp_drv_text_locator_valid, which accesses locator_valid.

Syntax
sp_drv_text_locator_valid locator

Input Parameters
locator – the text_locator to validate.

Output Parameters
A bit representing one of these values:

• 0 – false, locator is invalid.
• 1 – true, locator is valid.

Result Set
None.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

148 Open Server and SDK

Checking if a unitext_locator Reference is Valid
Use sp_drv_unitext_locator_valid, which accesses locator_valid.

Syntax
sp_drv_unitext_locator_valid locator

Parameters
locator – the unitext_locator to validate.

Output Parameters
A bit representing one of these values:

• 0 – false, locator is invalid.
• 1 – true, locator is valid.

Result Set
None.

Checking if an image_locator Reference is Valid
Use sp_drv_image_locator_valid, which accesses locator_valid.

Syntax
sp_drv_image_locator_valid locator

Parameters
locator – the image_locator to validate.

Output Parameters
A bit representing one of these values:

• 0 – false, locator is invalid.
• 1 – true, locator is valid.

Result Set
None.

LOB Locator Deallocation
Use deallocate locator to freeing or deallocating a LOB Locator.

See the Adaptive Server Enterprise Reference Manual: Commands.

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 149

LOB Locator Examples
There are six LOB locator examples available.

Example 1
Allocates handles and establishes a connection:
// Assumes that DSN has been named "sampledsn" and
// UseLobLocator has been set to 1.

SQLHENV environmentHandle = SQL_NULL_HANDLE;
SQLHDBC connectionHande = SQL_NULL_HANDLE;
SQLHSTMT statementHandle = SQL_NULL_HANDLE;
SQLRETURN ret;

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &environmentHandle);
SQLSetEnvAttr(environmentHandle, SQL_ATTR_ODBC_VERSION,
SQL_ATTR_OV_ODBC3);
SQLAllocHandle(SQL_HANDLE_DBC, environmentHandle,
&connectionHandle);
Ret = SQLConnect(connectionHandle, "sampledsn",
 SQL_NTS, "sa", SQL_NTS, "Sybase",SQL_NTS);

Example 2
Selects a column and retrieves a locator:
// Selects and retrieves a locator for bk_desc, where
// bk_desc is a column of type text defined in a table
// named books. bk_desc contains the text "A book".

SQLPrepare(statementHandle, "SELECT bk_desc FROM books
 WHERE bk_id =1", SQL_NTS);

SQLExecute(statementHandle);
BYTE TextLocator[SQL_LOCATOR_SIZE];
SQLLEN Len = 0;
ret = SQLGetData(statementHandle, SQL_C_TEXT_LOCATOR,
 TextLocator, sizeof(TextLocator),&Len);

If(Len == sizeof(TextLocator))
{
 Cout << Locator was created with expected size <<
 Len;
}

Example 3
Determines data length:
SQLLEN LocatorLen = sizeof(TextLocator);
ret = SQLBindParameter(statementHandle, 1,
 SQL_PARAM_INPUT, SQL_C_TEXT_LOCATOR,
 SQL_TEXT_LOCATOR, SQL_LOCATOR_SIZE, 0, TextLocator,
 sizeof(TextLocator), &LocatorLen);

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

150 Open Server and SDK

SQLLEN CharLenSize = 0;
SQLINTEGER CharLen = 0;
ret = SQLBindParameter(statementHandle, 2,
SQL_PARAM_OUTPUT, SQL_C_LONG,SQL_INTEGER,0 , 0,
&CharLen, sizeof(CharLen), &CharLenSize);
SQLExecDirect(statementHandle,
 "{CALL sp_drv_text_locator_charlength(?,?) }" , SQL_NTS);

cout<< "Character Length of Data " << charLen;

Example 4
Appends text to a LOB column:
SQLINTEGER retVal = 0;
SQLLEN Col1Len = sizeof(retVal);
SQLCHAR appendText[10]=”abcdefghi on C++”;

SQLBindParameter(statementHandle, 14,
 SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER, 0, 0, &retVal, 0,
Col1Len);

SQLBindParameter(statementHandle, 21, SQL_PARAM_INPUT,
 SQL_C_TEXT_LOCATOR, SQL_TEXT_LOCATOR,
 SQL_LOCATOR_SIZE, 0, &TextLocator,
 sizeof(TextLocator), SQL_NULL_HANDLE);

SQLBindParameter(statementHandle, 32, SQL_PARAM_INPUT,
 SQL_C_SLONG, SQL_INTEGER, 0, 0, &charLen, 0, SQL_NULL_HANDLE);

SQLBindParameter(statementHandle, 43, SQL_PARAM_INPUT,
 SQL_C_CHAR, SQL_CHAR, 10, 0, append_text,
 sizeof(append_text), SQL_NULL_HANDLE);

SQLExecDirect(statementHandle,
 "{? = CALL sp_drv_setdata_text (?, ?, ?,?) }" , SQL_NTS);

SQLFreeStmt(statementHandle, SQL_CLOSE);

Example 5
Retrieves LOB data from a LOB locator.
SQLCHAR description[512];
SQLLEN descriptionLength = 512;

SQLBindParameter(statementHandle, 1, SQL_PARAM_INPUT,
 SQL_C_TEXT_LOCATOR, SQL_TEXT_LOCATOR,
 SQL_LOCATOR_SIZE, 0, TextLocator,
 sizeof(TextLocator), SQL_NULL_HANDLE);

SQLExecDirect(statementHandle, "{CALL sp_drv_locator_to_text(?)}",
SQL_NTS);

SQLFetch(statementHandle);

SQLGetData(statementHandle, 1,SQL_C_CHAR, description,

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

New Features Bulletin 151

 descriptionLength, &descriptionLength)

Cout << "LOB data referenced by locator:" << description
 << endl;

Cout << "Expected LOB data:A book on C++" << endl;

Example 6
Transfers data from a client application to a LOB locator.
description = "A lot of data that will be used for a lot
 of inserts, updates and deletes"; descriptionLength = SQL_NTS;

SQLBindParameter(statementHandle, 1, SQL_PARAM_INPUT,
 SQL_C_CHAR, SQL_CHAR, 512, 0, description,
 sizeof(description), &descriptionLength);

SQLExecDirect(statementHandle,
 "{CALL sp_drv_create_text_locator(?)}", SQL_NTS);

SQLFetch(statementHandle);

SQLGetData(statementHandle, SQL_C_TEXT_LOCATOR,
 TextLocator, sizeof(TextLocator),&Len);

SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers

152 Open Server and SDK

Adaptive Server Enterprise Extension Module
for Python

The Adaptive Server Enterprise extension module for Python provides a Sybase-specific
Python interface for executing queries against an Adaptive Server database.

This module implements the Python Database API specification version 2.0 with extensions
and is for use with Python versions 2.6, 2.7, and 3.1. You can read the Python Database API
specification http://www.python.org/dev/peps/pep-0249.

You can install the Adaptive Server Enterprise extension module for Python from the SDK
installer. For installation instructions, see the Software Developers Kit and Open Server
Installation Guide and the Software Developers Kit and Open Server Release Bulletin. For
information about using the Adaptive Server Enterprise extension module for Python, see the
Adaptive Server Enterprise Extension Module for Python Programmers Guide.

Adaptive Server Enterprise Extension Module for Python

New Features Bulletin 153

http://www.python.org/dev/peps/pep-0249

Adaptive Server Enterprise Extension Module for Python

154 Open Server and SDK

Adaptive Server Enterprise Extension Module
for PHP

The Adaptive Server Enterprise extension module for PHP provides an interface for executing
queries against an Adaptive Server database and handling query results and includes the PHP
APIs necessary for database access.

This module is for use with PHP version 5.3.6. For information about using the Adaptive
Server Enterprise extension module for PHP, see the Adaptive Server Enterprise Extension
Module for PHP Programmers Guide.

Adaptive Server Enterprise Extension Module for PHP

New Features Bulletin 155

Adaptive Server Enterprise Extension Module for PHP

156 Open Server and SDK

Adaptive Server Enterprise Database Driver
for Perl

The Adaptive Server Enterprise database driver for Perl is called through the generic Perl DBI
interface and translates Perl DBI API calls into a form that is understood by Adaptive Server
through the Open Client SDK using CT-Lib.

It gives Perl scripts direct access to Adaptive Server Enterprise database servers. This driver is
for use with Perl version 5.14 and DBI version 1.616.

You can read the Perl DBI specification http://search.cpan.org/~timb/DBI-1.616/DBI.pm.
For information about using the Adaptive Server Enterprise database driver for Perl, see the
Adaptive Server Enterprise Database Driver for Perl Programmers Guide.

Adaptive Server Enterprise Database Driver for Perl

New Features Bulletin 157

http://search.cpan.org/~timb/DBI-1.616/DBI.pm

Adaptive Server Enterprise Database Driver for Perl

158 Open Server and SDK

Deprecated Features

The current release of Open Server and SDK does not support certain libraries and utility
files.

DCE Service Libraries
The Distributed Computing Environment (DCE) directory services library
libsybddce.dll and the DCE security services library libsybsdce.dll have been
removed from Open Client and Open Server for Windows 32-bit platforms.

In versions of Open Client and Open Server earlier than 15.7, these libraries resided in the
%SYBASE%\OCS-15_0\dll directory.

dsedit_dce utility Files
The dsedit_dce X-Windows defaults file, OCS-15_0/xappdefaults/Dsedit_dce,
and the dsedit_dce help file, OCS-15_0/sybhelp/dsedit_dceHelpTextMsgs,
have been removed.

Unsupported Platforms
Open Server and SDK do not support HP-UX PA-RISC and Mac OS.

Deprecated Features

New Features Bulletin 159

Deprecated Features

160 Open Server and SDK

Accessibility Features

Section 508 requires that U.S. Federal agencies’ electronic and information technology is
accessible to people with disabilities. Sybase strongly supports Section 508 and has made a
range of Sybase products Section 508-compliant, including Open Client and Open Server
version 15.7.

Documents in the 15.7 release are available in HTML specialized for accessibility. You can
navigate the HTML with an adaptive technology such as a screen reader, or view it with a
screen enlarger. Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that comply with
Section 508 generally also meet non-U.S. accessibility guidelines, such as the World Wide
Web Consortium (W3C) guidelines for Web sites.

You might need to configure your accessibility tool for optimal use. Some screen readers
pronounce text based on its case; for example, they pronounce ALL UPPERCASE TEXT as
initials, and MixedCase Text as words. You might find it helpful to configure your tool to
announce syntax conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase Accessibility. The
Sybase Accessibility site includes links to information on Section 508 and W3C standards.

Accessibility Features

New Features Bulletin 161

http://www.sybase.com/accessibility

Accessibility Features

162 Open Server and SDK

Index
A

attributes
database handle 36
methods 36

attributes and methods 36

B

BLK_CUSTOM_CLAUSE property 105

C

connect syntax 36
connection properties

SUPPRESS_PARAM_FORMAT 76, 77
CS_TCP_RCVBUF property 108
CS_TCP_SNDBUF property 108

E

electronic software delivery, replaced by 11
ESD, replaced by 11

N

numbering of releases, changes to 11

O

odbcversion utility 121

R

release numbering, changes to 11

S

SP, replaces 11
SRV_S_TCP_RCVBUF property 108
SRV_S_TCP_SNDBUF property 108
support package, replaces 11
SUPPRESS_PARAM_FORMAT connection

property 76, 77

U

utilities
odbcversion 121

V

version numbering, changes to 11

Index

New Features Bulletin 163

Index

164 Open Server and SDK

	New Features Bulletin
	Contents
	Product Platforms and Compatibilities
	Open Server and SDK Platform Compatibility Matrix
	Solaris SPARC 64-bit patch level

	Product Components
	Open Server
	Software Developer’s Kit
	SDK DB-Library Kerberos Authentication Option

	New Features for SP100
	Change in Release Version Number
	Installer Changes
	Open Client 15.7 and Open Server 15.7 Features
	New MIT Kerberos Libraries Support Sybase Kerberos Driver

	SDK 15.7 Features for Adaptive Server Enterprise Drivers and Providers
	WindowsCharsetConverter Connection Property
	SSIS Custom Data Flow Destination Component for Faster Data Transfers to Adaptive Server for SQL Server 2012
	Configuring the Adaptive Server ADO.NET Destination SSIS Component

	Adaptive Server ADO.NET Data Provider Support for SSRS
	Configuring the Adaptive Server ADO.NET SSRS Component

	LDAPS Functionality for Adaptive Server Enterprise Drivers and Providers
	SSL Support in jConnect

	New Features for ESD #7
	Open Client 15.7 and Open Server 15.7 Features
	Client-Library Supports Connection String Properties
	Valid Attribute Names and Values

	Remote Password Encryption
	libsybsspiwrapper64.dll for Windows 64-bit

	SDK 15.7 Features for Adaptive Server Enterprise Drivers and Providers
	New CancelQueryOnFreeStmt Connection Property for Adaptive Server ODBC Driver
	New Efficient Method to Set Client Connection Attributes
	Enhanced Support for data-at-exec Feature in Adaptive Server ODBC Driver
	New -n Command line Option in Ribo Utility

	Adaptive Server Enterprise Extension Module for Python
	Support for DSN-style Connection String Properties
	Valid Attribute Names and Values

	New Sample Programs
	blklib Support
	BulkCursor Object Constructor

	Adaptive Server Enterprise Extension Module for PHP
	Support for DSN-style Connection Properties
	Valid Attribute Names and Values

	New Features for ESD #6
	Open Client 15.7 and Open Server 15.7 Features
	Bulk-copy-in with LOB Datatype
	New SYBOCS_IFILE Environment Variable
	LDAP and SSL Version Support
	Parameter Format Suppression
	Open Server Support for Extended Plus Encrypted Password
	BCP --quoted-fname Option

	Adaptive Server Enterprise Extension Module for Python
	Support for DSN Style Connection Properties

	Adaptive Server Enterprise Extension Module for Perl
	Support for DSN Style Connection Properties
	Attributes and Methods

	Currently Supported Database Handle Attributes
	Unsupported Database Handle Options

	Perl Supported Datatypes
	Multiple Statements Usage
	Supported Character Lengths
	Configuring Locale and Charsets
	Dynamic SQL Support, Placeholders, and Bind Parameters
	Stored Procedure Support for Placeholders
	Parameter Types

	Supported Private Driver Methods
	Default Date Conversion and Display Format
	Text and Image Data Handling
	Other TEXT/IMAGE APIs

	Error Handling
	Configuring Security Services
	Examples
	Example 1
	Example 2

	New Features for ESD #5
	Adaptive Server ADO.NET Data Provider Support for Transact-SQL Queries with COMPUTE Clause
	New SSIS Custom Data Flow Destination Component for Faster Data Transfers to Adaptive Server
	Configuring Adaptive Server ADO.NET Destination SSIS Component for SQLServer 2008

	jConnect Dynamic Logging Levels
	Package Name Changed in jConnect for Converter Classes
	Increased PreparedStatement Parameter Limit in jConnect
	New SkipRowCountResults Connection Property for Adaptive Server ODBC Driver
	Support for AF_UNIX Sockets in Adaptive Server ODBC Driver
	AdjustLargePrecisionAndScale Connection Property for Adaptive Server ODBC Driver

	New Features for ESD #4
	Open Client 15.7 and Open Server 15.7 Features in ESD #4
	Stricter Permissions for Open Client and Open Server Files (UNIX only)
	New SYBOCS_TCL_CFG Environment Variable for Setting Alternate Path to libtcl*.cfg Files
	New isql Command line Option --URP to Set Universal Remote Password
	New linux64 and nthread_linux64 Settings for SYBPLATFORM
	LAN Manager Driver for Microsoft Windows 64-bit
	Support for Batched Parameters
	ct_send_params
	Rebinding using ct_setparam()
	Batched Parameters Support to Server-Library
	Example Programs

	New CS-Library String Handling Routines

	SDK 15.7 features for jConnect and Adaptive Server Drivers and Providers in ESD #4
	Granular and Predicated Permissions
	alter table drop column without Datacopy
	Fast Logged Bulk Insert
	Dynamic Logging
	Dynamic Client Information Setting
	Dynamic Connection Property Setting
	Exception Handling
	New jConnect Connection Properties for Performance Improvement
	New jConnect Connection Properties
	Notes on Hibernate Support for JDBC
	Support for SQL_ATTR_OUTPUT_NTS=SQL_FALSE
	Support for SQLLEN Datatype of Length 8-byte (Linux 64-bit only)
	ODBC Deferred Array Binding
	Bulk Insert Support for ODBC Data Batching
	Dynamic Logging Support without ODBC Driver Manager Tracing
	Dynamic Control of TDS Protocol Capture
	Replication Server Connection Support
	Comprehensive ADO.NET Provider Assembly Files
	ADO.NET Support for Larger Decimal Precision/Scale
	Visual Studio DDEX Connection Dialog Enhancement for Additional Connection Properties
	New Connection Strings for OLE DB Applications

	Adaptive Server Enterprise Extension Module for Python in ESD #4
	New Parameter Datatype Support for Dynamic Statements and Stored Procedures

	Adaptive Server Enterprise Extension Module for PHP in ESD #4
	Adaptive Server Enterprise Database Driver for Perl in ESD #4

	New Features for ESD #3
	Skip Installation of Samples, Documentation, and Debug Files
	Open Client 15.7 and Open Server 15.7 Features in ESD #3
	CyberSafe Kerberos Driver on 64-bit Microsoft Windows
	UNIX Named Sockets
	Logging Rows Rejected by the Client
	Increased bcp Maximum Rows Handling Capacity
	Parameter Format Suppression

	Adaptive Server Enterprise Extension Module for Python in ESD #3
	Accessing Stored Procedures using Python
	Compute Rows using Python
	Localized Error Messages

	New Features for ESD #1
	Open Client 15.7 and Open Server 15.7 Features in ESD #1
	FIPS-certified SSL Filter
	ASE database Driver for Perl and ASE Extension Module for PHP Supported on 64-bit Windows

	SDK 15.7 Features for jConnect and Adaptive Server Drivers and Providers in ESD #1
	Suppressing Parameter Format Metadata to Improve Prepared Statement Performance
	Suppressing Row Format Metadata to Improve Query Performance
	SuppressRowFormat2 and SQLBulkOperations

	Adaptive Server Enterprise Extension Module for Python in ESD #1
	Configuring Adaptive Server Enterprise Extension Module for Python
	Python Module Search Path
	sys.path

	Open Client 15.7 and Open Server 15.7 Features
	Large Object Locator Support
	Client-Library Changes
	CS_LOCATOR
	Supported LOB Locator Conversions

	cs_locator()
	cs_locator_alloc()
	cs_locator_drop()
	isql Enhancement

	Open Server Support for Large Object Locators
	Large Object Locator Support

	In-row and off-row LOB Support
	Bulk-Library Select into Logging
	BLK_CUSTOM_CLAUSE

	Bulk-Library and bcp Handling of Nonmaterialized Columns
	Support for Preserving Trailing Zeros
	New DB-Library Overflow Errors
	New Nameless Application Configuration Settings Handling
	TCP Socket Buffer Size Configuration
	Properties

	isql64 and bcp64 for all 64-bit Products
	Support for Expanded Variable-length Rows
	Row Format Caching
	Support for Releasing Locks at Cursor Close
	Client-Library Usage
	Open Server Usage
	ESQL/C and ESQL/COBOL Usage

	Large Objects as Stored Procedure Parameters
	Send Small Amounts of LOB Data as Parameters
	Send Large Amounts of LOB Data as Parameters
	Retrieve LOB Parameters in Open Server
	srv_get_data

	SDK 15.7 Features for jConnect and Adaptive Server Enterprise Drivers and Providers
	ODBC Driver Version Information Utility
	SupressRowFormat2 Connection String Property
	Enhancement to UseCursor Property
	Log without ODBC Driver Manager Tracing
	Log Configuration File

	jConnect setMaxRows Enhancement
	TDS ProtocolCapture
	ODBC Data Batching without Binding Parameter Arrays
	Manage Data Batches
	Examples of Managing Data Batches
	ODBC Data Batching Considerations

	Optimized Batching in jConnect
	Homogeneous Batching with LOB Columns

	jConnect Parameter Batching without Row Accumulation
	jConnect Batch Update Enhancement to Execute Past Errors
	Support for Releasing Locks at Cursor Close
	select for update Support
	Support for Expanded Variable-length Rows
	Support for Nonmaterialized Columns
	In-row and off-row LOB Storage Support
	Large Objects as Stored Procedure Parameters
	Large Object Locator Support
	jConnect for JDBC Support
	Adaptive Server Enterprise ODBC Driver Support
	ODBC Datatype Mapping for Locator Support
	Supported Conversions
	Methods that Support LOB Locators
	Implicit Conversion of Prefetched LOB Data
	Access and Manipulate LOBs Using Locators
	Initializing a Text Locator
	Initializing a Unitext Locator
	Initializing an Image Locator
	Obtaining Complete Text Value from a Text Locator
	Obtaining Complete Unitext Value from a Unitext Locator
	Obtaining Complete Image Value from an Image Locator
	Obtaining a Substring from a Text Locator
	Obtaining a Substring from a Unitext Locator
	Obtaining a Substring from an Image Locator
	Inserting Text at Specified Position
	Inserting Unitext at Specified Position
	Inserting an Image at Specified Position
	Inserting Text Referenced by a Locator
	Inserting Unitext Referenced by a Locator
	Inserting Image Referenced by a Locator
	Truncating Underlying LOB Data
	Finding Character Length of Underlying Text Data
	Finding Byte Length of Underlying Text Data
	Finding Character Length of Underlying Unitext Data
	Finding Byte Length of Underlying Unitext Data
	Finding Byte Length of Underlying Image Data
	Finding Position of a Search String within the Text Column Referenced by a Locator
	Finding Position of a String Referenced by a Text Locator within the Text Column Referenced by Another Locator
	Finding Position of a Search String within the Unitext Column Referenced by a Locator
	Finding Position of a String Referenced by a Unitext Locator within the Unitext Column Referenced by Another Locator
	Finding Position of a Byte Sequence within the Column Referenced by an Image Locator
	Finding Position of Byte Sequence Referenced by an Image Locator within the Image Column Referenced by Another Locator
	Checking if a text_locator Reference is Valid
	Checking if a unitext_locator Reference is Valid
	Checking if an image_locator Reference is Valid
	LOB Locator Deallocation
	LOB Locator Examples

	Adaptive Server Enterprise Extension Module for Python
	Adaptive Server Enterprise Extension Module for PHP
	Adaptive Server Enterprise Database Driver for Perl
	Deprecated Features
	DCE Service Libraries
	dsedit_dce utility Files
	Unsupported Platforms

	Accessibility Features
	Index

