
Users Guide

Adaptive Server® Enterprise
ODBC Driver by Sybase
15.0

[Microsoft Windows, Linux, and Mac OS X]

DOCUMENT ID: DC20116-01-1500-03

LAST REVISED: November 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Users Guide iii

About This Book .. vii

CHAPTER 1 Introduction to ODBC Programming... 1
Introduction to ODBC ... 2

ODBC conformance .. 2
ODBC Driver Manager .. 3

Using the ASE ODBC Driver samples.. 6
Defining ODBC handles ... 6

Allocating ODBC handles.. 8
Connecting to a data source .. 9

Choosing an ODBC connection function................................... 9
Establishing a connection.. 10
Using threads and connections in ODBC applications............ 12

Executing SQL statements... 12
Executing statements directly.. 13
Executing statements with bound parameters 13
Executing prepared statements... 15

Working with result sets ... 17
Choosing cursor characteristics .. 17
Retrieving data .. 18
Updating and deleting rows through a cursor.......................... 18
Using scrollable cursors .. 19

Calling stored procedures .. 23
Handling errors... 25
Datatype mappings .. 26
Using computed columns... 28
Using server-specified packet size... 28
Using Large Identifiers for database objects.................................. 29

CHAPTER 2 Connecting to a Database .. 31
Introduction to connections .. 31

Installing ODBC MetaData stored procedures 31
How connection parameters work.. 32

Contents

iv Adaptive Server Enterprise ODBC Driver

Character sets.. 33
Configuring the ASE ODBC Driver... 34

Windows.. 34
Linux.. 35
Mac OS X .. 37
ODBC ini files .. 38

Connecting using a data source... 40
Using connection parameters.. 40

CHAPTER 3 ASE Advanced Features ... 45
Asynchronous execution for ODBC ... 45
Supported Adaptive Server Cluster Edition features...................... 46

Login redirection.. 47
Connection migration .. 47
Connection failover in Cluster Edition 48

Using Distributed Transactions .. 49
Programming for MS DTC... 49
Programming components deployed in Sybase EAServer,

MTS, or COM+ ... 50
Connection properties for Distributed Transaction support 51

Using directory services ... 52
LDAP as a directory service .. 52
Using directory services .. 53
Enabling directory services ... 54

Bookmark and bulk support ... 55
DSN Migration tool ... 56

Using the Migration tool... 56
Conversion switches ... 56

Using password encryption .. 57
Windows.. 58
Linux.. 59
Mac OS X .. 59

Password expiration handling .. 59
Using SSL .. 60

SSL security levels in ASE ODBC Driver 62
Validating the server by its certificate...................................... 62
Enabling SSL connections .. 63

Using failover in high availability systems 65
Windows.. 67
Linux.. 68
Mac OS X .. 69

Enabling Kerberos authentication .. 69
Process overview .. 69
Requirements .. 70

Contents

Users Guide v

Enabling Kerberos authentication ... 71
Windows.. 71
Linux.. 72
Obtaining an initial ticket from the Key Distribution Center 72

Index ... 75

Contents

vi Adaptive Server Enterprise ODBC Driver

Users Guide vii

About This Book

Audience This document is intended for application developers who need access to
data from Adaptive Server® Enterprise (ASE) Microsoft Windows,
Linux, and Mac OS X platforms, using Open Database Connectivity
(ODBC).

How to use this book The information in this book is organized as follows:

• Chapter 1, “Introduction to ODBC Programming”

• Chapter 2, “Connecting to a Database”

• Chapter 3, “ASE Advanced Features”

Related documents For information about installing the Software Developer’s Kit (SDK), see
the Software Developer’s Kit and Open Server 15.0 Installation Guide.

For information about known problems and recent updates, see the
Software Developer’s Kit and Open Server 15.0 Release Bulletin.

For information about installing Adaptive Server Enterprise on Windows,
see the Adaptive Server Enterprise 15.0 for Windows Installation Guide.

For information about installing the Adaptive Server Enterprise on Linux,
see the Adaptive Server Enterprise 15.0 for Linux Installation Guide.

For information about known problems and recent updates to Adaptive
Server Enterprise on Windows, see the Adaptive Server Enterprise for
Windows Release Bulletin.

For information about known problems and recent updates to Adaptive
Server Enterprise on Linux, see the Adaptive Server Enterprise 12.5.2 for
Linux Release Bulletin.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format, and may also contain other documents or
updated information not included on the SyBooks CD. It is included
with your software. To read or print documents on the Getting Started
CD, you need Adobe Acrobat Reader, which you can download at no
charge from the Adobe Web site using a link provided on the CD.

viii Adaptive Server Enterprise ODBC Driver

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks installation guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/
http://certification.sybase.com/

 About This Book

Users Guide ix

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following conventions are used in this book.

• Functions, command names, command option names, program names,
program flags, properties, keywords, statements, and stored procedures
are printed as follows:

You use the SQLSetConnectAttr function to control details of the
connection. For example, the following statement turns off ODBC
autocommit behavior.

• Variables, parameters, and user-supplied words are in italics in syntax and
in paragraph text, are printed as follows:

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

x Adaptive Server Enterprise ODBC Driver

For example, the following statement allocates a SQL_HANDLE_STMT
handle the with name stmt, on a connection with a handle named dbc.

• Names of database objects such as databases, tables, columns, and
datatypes, are printed as follows:

The value of the pubs2 object.

• Examples that show the use of functions are printed as follows:

retcode = SQLConnect(dbc,
(SQLCHAR*) "MANGO", SQL_NTS,
(SQLCHAR*) "sa", SQL_NTS,
(SQLCHAR*) "", SQL_NTS);

Syntax formatting conventions are summarized in the following table.

Table 1: Syntax formatting conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Software Developer’s Kit version 15.0 and the HTML documentation have
been tested for compliance with U.S. government Section 508 Accessibility
requirements. Documents that comply with Section 508 generally also meet
non-U.S. accessibility guidelines, such as the World Wide Web Consortium
(W3C) guidelines for Web sites.

Key Definition
{ } Curly braces mean you must choose at least one of the enclosed

options. Do not include braces in the command.

[]

Brackets mean you can choose or omit enclosed options. Do not
include brackets in the command.

|

Vertical bars mean you can choose no more than one option
(enclosed in braces or brackets).

,

Commas mean you can choose as many options as you need
(enclosed in braces or brackets). Separate your choices with
commas, to be typed as part of the command.

Commas can also be required in other syntax contexts.

()

Parentheses are to be typed as part of the command.

... An ellipsis (three dots) means you can repeat the last unit as many
times as you need. Do not include ellipses in the command.

 About This Book

Users Guide xi

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and Mixed Case Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility

xii Adaptive Server Enterprise ODBC Driver

Users Guide 1

C H A P T E R 1 Introduction to ODBC
Programming

This chapter presents information for developing applications that call the
Open Database Connectivity (ODBC) programming interface directly.

The primary documentation for ODBC application development is the
Microsoft ODBC SDK documentation at http://msdn.microsoft.com. This
chapter provides introductory material and describes features specific to
Adaptive Server® Enterprise ODBC Driver by Sybase (referred to
hereafter as ASE ODBC Driver) but is not a complete guide to ODBC
application programming.

Topic Page
Introduction to ODBC 2

Using the ASE ODBC Driver samples 6

Defining ODBC handles 6

Connecting to a data source 9

Executing SQL statements 12

Working with result sets 17

Calling stored procedures 23

Handling errors 25

Datatype mappings 26

Using computed columns 28

Using server-specified packet size 28

Using Large Identifiers for database objects 29

http://msdn.microsoft.com

Introduction to ODBC

2 Adaptive Server Enterprise ODBC Driver

Introduction to ODBC
The Open Database Connectivity (ODBC) interface is a call-based application
programming interface defined by Microsoft Corporation as a standard
interface to database management systems on Windows operating systems. In
addition, ODBC is now widely used on many non-Windows platforms, such as
Linux.

Software
requirements

To write ODBC applications for Adaptive Server Enterprise, you need:

• Adaptive Server Enterprise, versions 12.0 and above

• A C compiler capable of creating programs for your environment

• ODBC Software Development Kit

• On non-Windows platforms, there are open source projects like
unixODBC and iOBDC that release the required headers and libraries to
build ODBC applications

Note Significant portions of this book deal with writing C programs to access
data using ODBC functions with ASE ODBC Driver. There are utilities,
programs, and 4GL RAD tools that can use ODBC connections. For example,
you can write a PowerBuilder application or a PHP Web page that connects to
an ODBC Data Source. For such uses, you only need to know how to set up a
Data Source using ASE ODBC Driver. Once the Data Source has been set up,
these tools completely abstract the underlying ODBC function calls.

Supported platforms The ASE ODBC Driver is supported on:

• Windows 32-bit (x86 architecture)

• Windows 64-bit (x86-64 architecture)

• Linux 32-bit (x86 architecture)

• Linux 64-bit (x86-64 architecture)

• Mac OS X on Intel

See the Software Developer’s Kit and Open Server 12.5.1 Installation Guide,
for version details of supported platforms.

ODBC conformance
The ASE ODBC Driver conforms to ODBC 3.52 specification.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 3

Levels of ODBC
support

ODBC features are arranged according to level of conformance. Features are
either Core, Level 1, or Level 2, with Level 2 being the most complete level of
ODBC support. These features are listed in the Microsoft ODBC Programmer's
Reference.

Features supported by
ASE ODBC Driver

The ASE ODBC Driver meets Level 2 conformance with the following
exceptions:

• Level 1 conformance The ASE ODBC Driver supports all Level 1
features, except for asynchronous execution of ODBC functions,
SQLBulkOperations, SQLSetPos, and scrollable cursors.

• Level 2 conformance The ASE ODBC Driver supports all Level 2
features, except for asynchronous execution of ODBC functions, using
bookmarks.

ODBC backward
compatibility

Applications developed using older versions of ODBC continue to work with
the ASE ODBC Driver and the newer ODBC Driver Manager. The new ODBC
features are not available for older applications.

ODBC Driver Manager
The ODBC Driver Manager manages the communications between the user
applications and ODBC Drivers. Typically, user applications are linked against
the ODBC Driver Manager. The Driver Manager manages the job of loading
and unloading the appropriate ODBC Driver for the application. Applications
make ODBC calls to the ODBC Driver Manager, which performs basic error
checking and then processes these calls or passes them on to the underlying
ODBC Driver.

The ODBC Driver Manager is not a required component, but it exists to solve
many issues surrounding ODBC application development and deployment.
Some advantages of using an ODBC Driver Manager are:

• Portable data access: Applications do not need to be rebuilt to use a
different DBMS.

• Runtime binding to a data source.

• Ability to easily change a data source.

To use the ASE ODBC Driver without using the ODBC Driver Manager, you
can link your application directly with the ASE ODBC Driver library. Then,
the resulting executable can connect to only ASE data sources.

Introduction to ODBC

4 Adaptive Server Enterprise ODBC Driver

An ODBC Driver Manager is not included with the ASE ODBC Driver:
typically, it is installed when you install the operating system. Also, multiple
open source and commercial implementations of ODBC Driver Manager are
available. The ASE ODBC Driver works with any ODBC Driver Manager
implementation.

The ASE ODBC Driver has been tested with the following ODBC Driver
Managers:

• On Windows, the Microsoft ODBC Driver Manager that is included with
Windows

• On Linux, the unixODBC Driver Manager that is included with Red Hat
and SuSE

• On Mac OS X, the iODBC Driver Manager that is included with Mac
OS X

Building applications using an ODBC Driver Manager

You can build applications using an ODBC Driver Manager on the following
operating systems:

• Windows

• Linux

• Mac OS X

Windows The Microsoft ODBC Driver Manager includes either a DLL named
odbc32.dll or an import library named odbc32.lib. On Windows 2000, the
odbc32.dll file is located in %SystemRoot%\system32. The odbc32.lib file can
appear in a number of locations, depending on which products you have
installed. If you use Microsoft Visual Studio.NET, the odbc32.lib is located in
the %Install Path% to Microsoft Visual Studio%\ Vc7\PlatformSDK\Lib.

To link an ODBC application against the Microsoft ODBC Driver Manager,
use odbc32.lib.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 5

Linux The ODBC Driver Manager includes a shared library named libodbc.so, which
is a soft link to a library named libodbc.so.1. This file is typically located in the
/usr/lib directory.

Note Some older Driver Manager packages do not create the soft link from
libodbc.so.1 to libodbc.so. Sybase recommends that you manually create this
link. The ODBC Driver Manager also includes another shared library called
libodbcinst.so.1. A soft link from this file to libodbcinst.so should also exist. If
it is not on your system, you should create one.

In order to link an ODBC application against the ODBC Driver Manager, pass
the -lodbc flag to the linker.

If the ODBC Driver Manager is not installed in the /usr/lib directory, you also
need to pass the following to the linker:

-Ldir

where dir is the directory where the ODBC Driver Manager shared libraries are
located.

Mac OS X The iODBC Driver Manager includes a dynamic library named libiodbc.dylib,
typically located in the /usr/lib directory. To link an ODBC application against
the iODBC Driver manager, pass the -liodbc flag to the linker.

If you use the unixODBC Driver Manager instead of iODBC, the linker flag
should be -lodbc.

If the ODBC Driver Manager is not installed in the /usr/lib directory, you also
need to pass the following flag to the linker:

-Ldir

where dir is the directory where the ODBC Driver Manager shared libraries are
located.

Building applications without using an ODBC Driver Manager

You cannot build your applications directly against the ASE ODBC Driver on
Windows platforms––you need to build your applications against an ODBC
Driver Manager.

Using the ASE ODBC Driver samples

6 Adaptive Server Enterprise ODBC Driver

You can build applications without using an ODBC Driver Manager on Linux.
The ASE ODBC Driver is a shared dynamic library called libsybdrvodb.so.
This file is usually located in the $SYBASE/DataAccess/ODBC/lib directory
for Linux 32-bit, or the $SYBASE/DataAccess64/ODBC/lib directory for Linux
64-bit, where $SYBASE is the Sybase installation root directory.

❖ To link an ODBC application with the ASE ODBC Driver on Linux

1 Pass the -lsybdrvodb and -L<dir to ASE ODBC Driver> flags to the linker.

2 When deploying your application, verify that the directory containing the
ASE ODBC Driver shared library ($SYBASE/DataAccess/ODBC/lib or
$SYBASE/DataAccess64/ODBC/lib, depending on your Linux platform)
is included in the user’s library path (LD_LIBRARY_PATH on Linux).

Using the ASE ODBC Driver samples
The samples for the ASE ODBC Driver are located in the
%SYBASE%\DataAccess\ODBC\samples directory of a Linux 32-bit platform,
or the %SYBASE%\DataAccess64\ODBC\samples directory of a Linux 64-bit.

Each directory and sample contains a README file that contains instructions
on building and running the following samples. The list of samples follows:

• simple

• cursors

• advanced

Defining ODBC handles
ODBC applications use a small set of handles to define basic features, such as
database connections and SQL statements. A handle is a 32-bit value on 32-bit
platforms and a 64-bit value on 64-bit platforms.

The handle types required for ODBC programs are as follows:

Item Handle type

Environment SQLHENV

Connection SQLHDBC

CHAPTER 1 Introduction to ODBC Programming

Users Guide 7

The following handles are used in all ODBC applications:

• Environment The environment handle provides a global context in
which to access data. Every ODBC application must allocate exactly one
environment handle upon starting, and must free it at the end.

The following code allocates an environment handle:

SQLHENV env;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &env);

• Connection A connection is specified by an ODBC driver and a data
source. An application can have several connections associated with its
environment. Allocating a connection handle does not establish a
connection; a connection handle must be allocated first and then used
when the connection is established.

The following code allocates a connection handle:

SQLHDBC dbc;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

• Statement A statement handle provides access to a SQL statement and
any information associated with it, such as result sets and parameters.
Each connection can have several statements. Statements are used both for
cursor operations (fetching data) and for single statement execution (such
as INSERT, UPDATE, and DELETE).

The following code allocates a statement handle:

SQLHSTMT stmt; SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

• Descriptor A descriptor is a collection of metadata that describes the
parameters of a SQL statement or the columns of a result set, as seen by
the application or driver. Thus, a descriptor can fill any of four roles:

• Application Parameter Descriptor (APD) – contains information
about the application buffers bound to the parameters in an SQL
statement, such as their addresses, lengths, and C datatypes.

Statement SQLHSTMT

Descriptor SQLHDESC

Item Handle type

Defining ODBC handles

8 Adaptive Server Enterprise ODBC Driver

• Implementation Parameter Descriptor (IPD) – contains information
about the parameters in a SQL statement, such as their SQL datatypes,
lengths, and nullability.

• Application Row Descriptor (ARD) – contains information about the
application buffers bound to the columns in a result set, such as their
addresses, lengths, and C datatypes.

• Implementation Row Descriptor (IRD) – contains information about
the columns in a result set, such as their SQL datatypes, lengths, and
nullability.

The following example illustrates how to retrieve implicitly allocated
descriptors:

SQLRETURN rc;
SQLHDESC aparamdesc;
SQLHDESC aparamdesc;
SQLHDESC irowdesc;
SQLHDESC arowdesc;
rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_PARAM_DESC,

&aparamdesc, SQL_IS_POINTER);

rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_ROW_DESC,
&arowdesc, SQL_IS_POINTER);

rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_ROW_DESC,
&iparamdesc, SQL_IS_POINTER);

rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_ROW_DESC,
&irowdesc, SQL_IS_POINTER);

Implicit descriptors are automatically freed when the statement handle is
freed by calling SQLFreeHandle(SQL_HANDLE_STMT, stmt).

Allocating ODBC handles

❖ To allocate an ODBC handle

1 Call the SQLAllocHandle function, which takes the following parameters:

• An identifier for the type of item being allocated

• The handle of the parent item

• A pointer to the location of the handle to be allocated

CHAPTER 1 Introduction to ODBC Programming

Users Guide 9

For a full description, see SQLAllocHandle in the Microsoft ODBC
Programmer's Reference.

2 Use the handle in subsequent function calls.

3 Free the object using SQLFreeHandle, which takes the following
parameters:

• An identifier for the type of item being freed

• The handle of the item being freed

For a full description, see SQLFreeHandle in the Microsoft ODBC
Programmer's Reference.

Example The following code fragment allocates and frees an environment handle:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &env);
if (retcode == SQL_SUCCESS ||

retcode == SQL_SUCCESS_WITH_INFO)
{

// success: application code here
}

Connecting to a data source
This section describes how to use ODBC functions to establish a connection to
an Adaptive Server Enterprise database on a Linux platform.

Note In general, the examples in this chapter use SQLConnect.

Choosing an ODBC connection function
ODBC supplies a set of connection functions. Which of the following you use
depends on how you expect your application to be deployed and used:

• SQLConnect, which is the simplest connection function

Connecting to a data source

10 Adaptive Server Enterprise ODBC Driver

SQLConnect takes a data source name (DSN), and an optional user ID and
password. You might want to use SQLConnect if you hard-code a data
source name into your application.

For more information, see SQLConnect in the Microsoft ODBC
Programmer's Reference.

• SQLDriverConnect, which connects to a data source using a connection
string

SQLDriverConnect allows the application to use Adaptive Server
Enterprise-specific connection information that is external to the data
source.

Note On Linux, the ASE ODBC Driver supports only
SQL_DRIVER_NOPROMPT.

You can also use SQLDriverConnect to connect without specifying a data
source.

For more information, see SQLDriverConnect in the Microsoft ODBC
Programmer's Reference.

• SQLBrowseConnect, which connects to a data source using a connection
string, like SQLDriverConnect.

SQLBrowseConnect allows your application to build its own dialog boxes
to prompt for connection information, and to browse for data sources used
by a particular driver—in this case, the ASE ODBC Driver.

For more information, see SQLBrowseConnect in the Microsoft ODBC
Programmer's Reference.

For a complete list of connection parameters that can be used in connection
strings, see Chapter 2, “Connecting to a Database.”

Establishing a connection
Your application must establish a connection before it can carry out any
database operations.

❖ To establish an ODBC connection

1 Allocate an ODBC environment:

SQLHENV env;

CHAPTER 1 Introduction to ODBC Programming

Users Guide 11

SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &env);

2 Declare the ODBC version.

By declaring that the application follows ODBC version 3, SQLSTATE
values and some other version-dependent features are set to the proper
behavior. For example:

retcode = SQLSetEnvAttr(env,
SQL_ATTR_ODBC_VERSION,
(void*)SQL_OV_ODBC3, 0);

3 If necessary, assemble the data source or connection string.

Depending on your application, you can have a hard-coded data source or
connection string, or you can store it externally for greater flexibility.

4 Allocate an ODBC connection handle:

retcode = SQLAllocHandle(SQL_HANDLE_DBC, env,
&dbc);

5 Set any connection attributes that must be set before connecting. (Some
connection attributes must be set before establishing a connection, while
others can be set either before or after.) For example:

retcode = SQLSetConnectAttr(dbc,
SQL_AUTOCOMMIT,

(SQLPOINTER)
SQL_AUTOCOMMIT_OFF,

SQL_IS_UINTEGER);

6 Call the ODBC connection function:

if (retcode == SQL_SUCCESS ||
retcode == SQL_SUCCESS_WITH_INFO)

{
printf("dbc allocated\n");
retcode = SQLConnect(dbc,

(SQLCHAR*) "MANGO", SQL_NTS,
(SQLCHAR*) "sa", SQL_NTS,
(SQLCHAR*) "", SQL_NTS);

if (retcode == SQL_SUCCESS ||
retcode == SQL_SUCCESS_WITH_INFO)

{
// successfully connected.

}
}

Executing SQL statements

12 Adaptive Server Enterprise ODBC Driver

You can find a complete sample of establishing a connection in your
installation directory.

Notes on usage • Every string passed to ODBC has a corresponding length. If the length is
unknown, you can pass SQL_NTS indicating that it is a Null Terminated
String whose end is marked by the null character (\0).

• You use the SQLSetConnectAttr function to control details of the
connection. For example, the following statement turns off ODBC
autocommit behavior:

retcode = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF,
SQL_IS_UINTEGER);

Many aspects of the connection can be controlled through the connection
parameters. For more information, see Chapter 2, “Connecting to a Database.”

For more information including a list of connection attributes, see
SQLSetConnectAttr in the Microsoft ODBC Programmer's Reference.

Using threads and connections in ODBC applications
You can develop multithreaded ODBC applications for Adaptive Server
Enterprise. Sybase recommends that you use a separate connection for each
thread. However, you are allowed to share an open connection among multiple
threads.

Executing SQL statements
ODBC includes several functions for executing SQL statements:

• Direct execution ASE parses the SQL statement, prepares an access
plan, and executes the statement. Parsing and access plan preparation are
called preparing the statement.

• Bound parameter execution You can construct and execute a SQL
statement using bound parameters to set values for statement parameters
at runtime. Bind parameters are also used with prepared statements to
provide performance benefits for statements that are executed more than
once.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 13

• Prepared execution The statement preparation is carried out separately
from the execution. For statements that are to be executed repeatedly, this
avoids repeated preparation and as a result improves performance.

Executing statements directly
The SQLExecDirect function prepares and executes a SQL statement.
Optionally, the statement can include parameters.

The following code fragment illustrates how to execute a statement without
parameters. The SQLExecDirect function takes a statement handle, a SQL
string, and a length or termination indicator, which in this case is a null-
terminated string indicator.

❖ To execute a SQL statement in an ODBC application

1 Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a SQL_HANDLE_STMT
handle with the name “stmt,” on a connection with a handle named “dbc”:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2 Call the SQLExecDirect function to execute the statement.

For example, the following lines declare a statement and execute it:

SQLCHAR *deletestmt =
"DELETE FROM department WHERE dept_id = 201";

SQLExecDirect(stmt, deletestmt, SQL_NTS) ;

For more information, see SQLExecDirect in the Microsoft ODBC
Programmer's Reference.

Executing statements with bound parameters
This section describes how to construct and execute a SQL statement, using
bound parameters to set values for statement parameters at runtime.

❖ To execute a SQL statement with bound parameters in an ODBC
application

1 Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a SQL_HANDLE_STMT
handle the with name “stmt”, on a connection with a handle named “dbc”:

Executing SQL statements

14 Adaptive Server Enterprise ODBC Driver

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2 Bind parameters for the statement using SQLBindParameter.

For example, the following lines declare variables to hold the values for
the department ID, department name, and manager ID, as well as for the
statement string itself. Then, they bind parameters to the first, second, and
third parameters of a statement executed using the “stmt” statement
handle.

#defined DEPT_NAME_LEN 20

SQLINTEGER cbDeptID = 0,
cbDeptName = SQL_NTS, cbManagerID = 0;

SQLCHAR deptname[DEPT_NAME_LEN];
SQLSMALLINT deptID, managerID;
SQLCHAR *insertstmt =

"INSERT INTO department "
"(dept_id, dept_name, dept_head_id)"
"VALUES (?, ?, ?,)";

SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&deptID, 0, &cbDeptID);

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
deptname, 0,&cbDeptName);

SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&managerID, 0, &cbManagerID);

3 Assign values to the parameters.

For example, the following lines assign values to the parameters for the
fragment of step 2:

deptID = 201;
strcpy((char *) deptname, "Sales East");
managerID = 902;

Usually, these variables are set in response to user action.

4 Execute the statement using SQLExecDirect.

For example, the following line executes the statement string held in
“insertstmt” on the “stmt” statement handle.

SQLExecDirect(stmt, insertstmt, SQL_NTS) ;

Bind parameters are also used with prepared statements to provide
performance benefits for statements that are executed more than once.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 15

For more information, see SQLExecDirect in the Microsoft ODBC
Programmer's Reference.

Executing prepared statements
The ASE ODBC Driver provides a full set of functions for using prepared
statements that provide performance advantages for statements that are used
repeatedly.

❖ To execute a prepared SQL statement

1 Prepare the statement using SQLPrepare.

For example, the following code fragment illustrates how to prepare an
insert statement:

SQLRETURN retcode;
SQLHSTMT stmt;
retcode = SQLPrepare(stmt,

"INSERT INTO department"
"(dept_id, dept_name, dept_head_id)"
"VALUES (?, ?, ?,)",
SQL_NTS);

where:

• retcode holds a return code that should be tested for success or failure
of the operation.

• stmt provides a handle to the statement.

• ? is a statement parameter marker.

2 Set statement parameter values using SQLBindParameter.

For example, the following function call sets the value of the dept_id
variable:

SQLBindParameter(stmt,
1,
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_INTEGER,
0,
0,
&sDeptID,
0,
&cbDeptID);

Executing SQL statements

16 Adaptive Server Enterprise ODBC Driver

where:

• stmt is the statement handle.

• 1 indicates that this call sets the value of the first parameter.

• SQL_PARAM_INPUT indicates that the parameter is an input
statement.

• SQL_C_SHORT indicates the C datatype being used in the
application.

• SQL_INTEGER indicates the SQL datatype being used in the
database.

• 0 indicates the column precision.

• 0 indicates the number of decimal digits.

• &sDeptID is a pointer to a buffer for the parameter value.

• 0 indicates the length of the buffer, in bytes.

• &cbDeptID is a pointer to a buffer for the length of the parameter
value.

3 Bind the other two parameters and assign values to sDeptId:

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
deptname, 0,&cbDeptName);

SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&managerID, 0, &cbManagerID);

4 Execute the statement:

retcode = SQLExecute(stmt);

You can repeat steps 2 through 4 multiple times.

5 Drop the statement using SQLFreeHandle.

Dropping the statement frees resources associated with the statement
itself.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 17

Working with result sets
ODBC applications use cursors to manipulate and update result sets. The ASE
ODBC Driver provides extensive support for different kinds of cursors and
cursor operations.

Choosing cursor characteristics
ODBC functions that execute statements and manipulate result sets use cursors
to carry out their tasks. Applications open a cursor implicitly when they
execute a statement that returns a result set.

For applications that move through a result set only in a forward direction and
do not update the result set, cursor behavior is relatively straightforward. By
default, ODBC applications request this behavior. ODBC defines a read-only,
forward-only cursor, and the ASE ODBC Driver provides a cursor optimized
for performance in this case.

To set the required ODBC cursor characteristics, call the SQLSetStmtAttr
function that defines statement attributes. You must call SQLSetStmtAttr before
executing a statement that returns a result set.

You can use SQLSetStmtAttr to set many cursor characteristics. The
characteristic that determines the cursor type for the ASE ODBC Driver is
SQL_ATTR_CONCURRENCY. You can set one of the following values:

• SQL_CONCUR_READ_ONLY Disallow updates. This is the default.

• SQL_CONCUR_LOCK Use the lowest level of locking needed to verify
that the row can be updated.

For more information, see SQLSetStmtAttr in the Microsoft ODBC
Programmer's Reference.

Example The following fragment requests an updateable cursor:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLSetStmtAttr(stmt, SQL_ATTR_CONCURRENCY,

SQL_CONCUR_LOCK, 0);

Note Before using cursors, verify that UseCursor property is set to 1. The
default value for UseCursor is 0.

Working with result sets

18 Adaptive Server Enterprise ODBC Driver

Retrieving data
To retrieve rows from a database, you execute a select statement using
SQLExecute or SQLExecDirect. This opens a cursor on the statement. Then, use
SQLFetch or SQLFetchScroll with SQL_FETCH_NEXT option to fetch rows
through the cursor. When an application frees the statement using SQLFreeStmt
with SQL_CLOSE option, it closes the cursor.

To fetch values from a cursor, your application can use either SQLBindCol or
SQLGetData:

• If you use SQLBindCol, values are automatically retrieved on each fetch.

• If you use SQLGetData, you must call it for each column after each fetch.

SQLGetData is used to fetch values in pieces for columns such as LONG
VARCHAR or LONG BINARY. As an alternative, you can set the
SQL_ATTR_MAX_LENGTH statement attribute to a value large enough to hold
the entire value for the column. For SQL_ATTR_MAX_LENGTH, the default
value is 32KB.

The following code fragment from the simple sample opens a cursor on a query
and retrieves data through the cursor. Error checking has been omitted to make
the example easier to read.

SQLExecDirect(stmt, "select au_fname from authors ", SQL_NTS) ;
retcode = SQLBindCol(stmt, 1, SQL_C_CHAR, aufName,

sizeof(aufName), &aufNameLen);
while(retcode == SQL_SUCCESS

|| retcode == SQL_SUCCESS_WITH_INFO)

{
retcode = SQLFetch(stmt);

}

Updating and deleting rows through a cursor
To open a cursor for updates or deletes, you can set a statement attribute called
SQL_ATTR_CONCURRENCY to SQL_CONCUR_LOCK:

SQLSetStmtAttr(stmt,SQL_ATTR_CONCURRENCY,(SQLPOINTER)
SQL_CONCUR_LOCK,0);

The following code fragment from the cursor sample illustrates using cursors
for updates and deletes. Error checking has been omitted for clarity.

/* Set statement attribute for an updateable cursor */
SQLSetStmtAttr(stmt, SQL_ATTR_CONCURRENCY,

CHAPTER 1 Introduction to ODBC Programming

Users Guide 19

(SQLPOINTER)SQL_CONCUR_LOCK, 0);
SQLSetCursorName(stmt1, "CustUpdate", SQL_NTS);
SQLExecDirect(stmt1, "select LastName from t_CursorTable ",

SQL_NTS) ;
SQLFetch(stmt1);
SQLExecDirect(stmt2, "Update t_CursorTable"

"set LastName='UpdateLastName'"
"where current of CustUpdate",
SQL_NTS) ;

For the complete code, refer to the cursor.cpp sample.

Using scrollable cursors
Scrollable cursors can go backward as well as forward to more easily support
screen-based applications. When a user scrolls backward and forward, the back
end provides the corresponding data.

Setting the UseCursor connection property

To determine whether client-side or server-side scrollable cursors are used, you
must set the UseCursor property:

• When the UseCursor connection property is set to 1, server-side scrollable
cursors are used if ASE version is 15.0 or later. In earlier versions of the
ASE server, server-side scrollable cursors are not available.

• When the UseCursor connection property is set to 0, client-side scrollable
cursors (cached result sets) are used, regardless of the ASE version.

 Warning! Using client-side scrollable cursors is resource-intensive.

Support for the Static Insensitive scrollable cursor

The ASE ODBC Driver supports the Static Insensitive scrollable cursor. It
implements the ODBC SQLFetchScroll method to scroll and fetch rows. The
SQLFetchScroll method is a standard ODBC method defined in Microsoft Open
Database Connectivity Software Development Kit Programmer’s Reference,
Volume 2, which is part of the MSDN library. Go to the Microsoft Web site at
http://msdn.microsoft.com/en-us/library/ms714177.aspx for more information.

The ODBC driver supports the following scrolling types:

http://msdn.microsoft.com/en-us/library/ms714177.aspx

Working with result sets

20 Adaptive Server Enterprise ODBC Driver

• SQL_FETCH_NEXT – return the next rowset.

• SQL_FETCH_PRIOR – return the prior rowset.

• SQL_FETCH_RELATIVE – return the rowset n from the start of the current
rowset.

• SQL_FETCH_FIRST – return the first rowset in the result set.

• SQL_FETCH_LAST – return the last complete rowset in the result set.

• SQL_FETCH_ABSOLUTE – return the rowset starting at row n.

Setting scrollable cursor attributes

You must set the following attributes to use scrollable cursors:

• SQL_ATTR_CURSOR_SCROLLABLE – the type of scrollable cursor you
are using. It should be set to the value of SQL_SCROLLABLE. Possible
values are static, semi-sensitive, and insensitive.

• SQL_ATTR_CURSOR_SENSITIVITY – the sensitivity value for this
scrollable cursor.

Note The only supported value for this is SQL_INSENSITIVE.

The following are optional attributes when using scrollable cursors:

• SQL_ATTR_ROW_ARRAY_SIZE – the number of rows that you want
returned from each call to the SQLFetchScroll() method.

Note If you do not set this value, the default value of one row is used.

• SQL_ATTR_CURSOR_TYPE – The type of scrollable cursor you are using.

Note The only supported values for this are
SQL_CURSOR_FORWARD_ONLY or SQL_CURSOR_STATIC.

• SQL_ATTR_ROWS_FETCHED_PTR – the address where the number of
rows fetched are stored. The SQL_ATTR_ROWS_FETCHED_PTR points to
a variable of datatype SQLUINTEGER.

• SQL_ATTR_ROW_STATUS_PTR – the address where the row status is
stored. The SQL_ATTR_ROW_STATUS_PTR points to a variable of
datatype SQLUSMALLINT.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 21

Executing scrollable cursors

❖ To set up a program to execute a scrollable cursor

1 Set the scrollable cursor attributes for your environment.

See “Setting scrollable cursor attributes” on page 20 for more
information.

2 Bind the results. For example, add the following to your program:

res=SQLBindCol(m_StatementHandle, 2, SQL_C_DOUBLE, price, 0, NULL);
res=SQLBindCol(m_StatementHandle, 3, SQL_C_LONG, quantity, 0, NULL);

3 Scroll and fetch by using SQLFetchScroll(). For example, add the
following to your program:

res = SQLSetStmtAttr(m_StatementHandle,
SQL_ATTR_CURSOR_SCROLLABLE ,
(SQLPOINTER)SQL_SCROLLABLE,SQL_IS_INTEGER);

res = SQLSetStmtAttr(m_StatementHandle,
SQL_ATTR_CURSOR_SENSITIVITY , (SQLPOINTER)SQL_INSENSITIVE,
SQL_IS_INTEGER);

res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_NEXT,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_PRIOR,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_FIRST,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_LAST,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_ABSOLUTE,2);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_ABSOLUTE,-2);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_RELATIVE,1);

4 Execute the Select statement. For example, add the following to your
program:

res = SQLExecDirect(m_StatementHandle, (SQLCHAR "select price, quantity
from book" SQL_NTS);

5 Close the result set and the cursor. For example, add the following to your
program:

res = SQLFreeStmt(m_StatementHandle,SQL_CLOSE);

Looking at results

After you execute a scrollable cursor, you will see these results, assuming a
total of N rows and a rowset m where N > m:

Working with result sets

22 Adaptive Server Enterprise ODBC Driver

The following results are expected if the current cursor points to row k and k-a >
0, k + m + a < N, a>=0:

Implicit setting of scrolling cursor attributes

Certain attributes are set implicitly when your application sets specific
attributes. The supported ODBC scrollable cursor attributes set implicitly are
as follows:

Result Interpretation

Absolute 0 No row is returned, error.

Absolute 1 m row is returned.

Absolute N 1 row is returned.

Absolute N+1 No row is returned, error.

First The first (1..m) rows are returned.

Last The last (N-m+1 .. N) rows are returned.

Next The same as SQLFetch().

Prior Return the rowset that is before current rowset.

Result Interpretation

Relative -a The rows (k-a, k-a + m -1) are returned.

Relative a The rows (k + a, k+a + m -1) are returned.

Application sets attribute to Other attributes set implicitly

SQL_ATTR_CONCURRENCY to
SQL_CONCUR_READ_ONLY

SQL_ATTR_CURSOR_SENSITIVITY to
SQL_INSENSITIVE

SQL_ATTR_CONCURRENCY to
SQL_CONCUR_LOCK

SQL_ATTR_CURSOR_SENSITIVITY to
SQL_SENSITIVE

SQL_ATTR_CURSOR_SCROLLABLE
to SQL_NONSCROLLABLE

SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_FORWARD_ONLY

SQL_ATTR_CURSOR_SENSITIVITY to
SQL_INSENSITIVE

SQL_ATTR_CONCURRENCY to
SQL_CONCUR_READ_ONLY
SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_STATIC

SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_FORWARD_ONLY

SQL_ATTR_CURSOR_SCROLLABLE to
SQL_NONSCROLLABLE

SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_STATIC

SQL_ATTR_CURSOR_SCROLLABLE to
SQL_SCROLLABLE

CHAPTER 1 Introduction to ODBC Programming

Users Guide 23

Calling stored procedures
This section describes how to create and call stored procedures, and how to
process the results from an ODBC application.

For a full description of stored procedures and triggers, see the ASE Reference
Manual.

Procedures and result
sets

There are two types of procedures: those that return result sets, and those that
do not. You can use SQLNumResultCols to tell the difference: The number of
result columns is zero if the procedure does not return a result set. If there is a
result set, you can fetch the values using SQLFetch or SQLFetchScroll just like
any other cursor.

Pass parameters to procedures using parameter markers (question marks). Use
SQLBindParameter to assign a storage area for each parameter marker, whether
it is an INPUT, OUTPUT, or INOUT parameter.

Example The advanced sample illustrates a stored procedure that returns an output
parameter and a return value, and another stored procedure that returns
multiple result sets. Error checking has been omitted to make the example
easier to read.

/*

Example 1: How to call a stored procedure and use input and output parameters

*/

SQLBindParameter(stmt, 1, SQL_PARAM_OUTPUT, SQL_C_SLONG,
SQL_INTEGER , 0, 0, &retVal, 0,
SQL_NULL_HANDLE);

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR , 4, 0, stor_id, sizeof(stor_id) ,
SQL_NULL_HANDLE);

SQLBindParameter(stmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR,
SQL_VARCHAR , 20, 0, ord_num, sizeof(ord_num) ,
&ordnumLen);

SQLBindParameter(stmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_VARCHAR , 40, 0, date, sizeof(date) ,
&dateLen);

SQLExecDirect(stmt, "{ ? = call sp_selectsales(?,?,?) }", SQL_NTS) ;

/*

At this point retVal contains the return value as returned from
the stored procedure and the ord_num contains the order number

Calling stored procedures

24 Adaptive Server Enterprise ODBC Driver

as returned from the stored procedure
*/

/*
Example 2: How to call stored procedures returning multiple result sets

*/

SQLBindParameter(stmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR , 4, 0, stor_id, sizeof(stor_id) ,
SQL_NULL_HANDLE);

SQLExecDirect(stmt, "{ call sp_multipleresults(?) }", SQL_NTS);

SQLBindCol(stmt, 1, SQL_C_CHAR, dbValue, sizeof(dbValue),
&dbValueLen);

SQLSMALLINT count = 1;

while(retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO)

{
retcode = SQLFetch(stmt);
if (retcode == SQL_NO_DATA)
{
/*
-- End of first result set --
*/
if(count == 1)
{

retcode = SQLMoreResults(stmt);
count ++;

}
/*
At this point dbValue contains the value in the current row of the

 result
*/

}
}

CHAPTER 1 Introduction to ODBC Programming

Users Guide 25

Handling errors
Errors in ODBC are reported using the return value from each of the ODBC
function calls and either the SQLGetDiagField function or the SQLGetDiagRec
function. The SQLError function was used in ODBC versions up to, but not
including, version 3. As of version 3, the SQLError function has been replaced
by the SQLGetDiagRec and SQLGetDiagField functions.

Every ODBC function returns a SQLRETURN that is one of the following status
codes:

Every environment, connection, and statement handle can have one or more
errors or warnings associated with it. Each call to SQLGetDiagRec returns the
information for one error and removes the information for that error. If you do
not call SQLGetDiagRec to remove all errors, the errors are removed on the
next function call that passes the same handle as a parameter.

Each call to SQLGetDiagRec can pass either an environment, connection, or
statement handle. The first call passes in a handle of type SQL_HANDLE_DBC
to get the error associated with a connection. The second call passes in a handle
of type SQL_HANDLE_STMT to get the error associated with the statement that
was just executed.

Status code Description

SQL_SUCCESS No error.

SQL_SUCCESS_WITH_INFO The function completed, but a call to
SQLGetDiagRec will indicate a warning.

The most common cause for this status is that
a value being returned is too long for the buffer
provided by the application.

SQL_INVALID_HANDLE An invalid environment, connection, or
statement handle was passed as a parameter.

This often happens if a handle is used after it
has been freed, or if the handle is the null
pointer.

SQL_NO_DATA There is no information available.

The most common use for this status is when
fetching from a cursor; it indicates that there
are no more rows in the cursor.

SQL_NEED_DATA Data is needed for a parameter.

This is an advanced feature described in the
ODBC Software Development Kit
documentation under SQLParamData and
SQLPutData.

Datatype mappings

26 Adaptive Server Enterprise ODBC Driver

SQLGetDiagRec returns SQL_SUCCESS if there is an error to report (not
SQL_ERROR), and SQL_NO_DATA_FOUND if there are no more errors to
report.

Example 1 The following code fragments use SQLGetDiagRec and return codes:

retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(retcode == SQL_ERROR)
{

SQLGetDiagRec(SQL_HANDLE_DBC,dbc, 1, NULL,NULL,
errmsg, 100, NULL);

/* Assume that print_error is defined */
print_error("Allocation failed", errmsg);
return;

}

Example 2 retcode = SQLExecDirect(stmt,
"delete from sales_order_items where id=2015",
SQL_NTS);

if(retcode == SQL_ERROR)
{

SQLGetDiagRec(SQL_HANDLE_STMT,stmt, 1, NULL,NULL,
errmsg, 100, NULL);

/* Assume that print_error is defined */
print_error("Failed to delete items", errmsg);
return;

}

Datatype mappings
The following table describes the ASE ODBC Driver datatype mappings.

Table 1-1: Datatype mappings

ASE datatype ODBC SQL datatype ODBC bind datatype

bigint SQL_BIGINT SQL_C_BIGINT

binary SQL_BINARY SQL_C_BINARY

bit SQL_BIT SQL_C_BIT

char SQL_CHAR SQL_C_CHAR

date SQL_TYPE_DATE SQL_C_TYPE_DATE or
SQL_C_CHAR

CHAPTER 1 Introduction to ODBC Programming

Users Guide 27

datetime SQL_TYPE_TIMESTA
MP

SQL_C_TYPE_TIMESTAMP
or SQL_C_CHAR

decimal SQL_DECIMAL SQL_C_NUMERIC or
SQL_C_CHAR

double SQL_DOUBLE SQL_C_DOUBLE

float(<16) SQL_REAL SQL_C_FLOAT

float(>=16) SQL_DOUBLE SQL_C_DOUBLE

image SQL_LONGVARBINAR
Y

SQL_C_BINARY

int[eger] SQL_INTEGER SQL_C_LONG

money SQL_DECIMAL SQL_C_NUMERIC or
SQL_C_CHAR

nchar SQL_CHAR SQL_C_CHAR

nvarchar SQL_VARCHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_NUMERIC or
SQL_C_CHAR

real SQL_REAL SQL_C_FLOAT

smalldatetime SQL_TYPE_TIMESTA
MP

SQL_C_TYPE_TIMESTAMP
or SQL_C_CHAR

smallint SQL_SMALLINT SQL_C_SHORT

smallmoney SQL_DECIMAL SQL_C_NUMERIC or
SQL_C_CHAR

text SQL_LONGVARCHAR SQL_C_CHAR

time SQL_TYPE_TIME SQL_C_TYPE_TIME or
SQL_C_CHAR

timestamp SQL_BINARY SQL_C_BINARY

tinyint SQL_TINYINT SQL_C_TINYINT

unichar SQL_WCHAR SQL_C_CHAR

unitext SQL_WLONGVARCHA
R

SQL_C_CHAR

univarchar SQL_WVARCHAR SQL_C_CHAR

unsignedbigint SQL_BIGINT SQL_C_UBIGINT

unsignedint SQL_INTEGER SQL_C_ULONG

unsignedsmallint SQL_SMALLINT SQL_C_USHORT

varbinary SQL_VARBINARY SQL_C_BINARY

varchar SQL_VARCHAR SQL_C_CHAR

ASE datatype ODBC SQL datatype ODBC bind datatype

Using computed columns

28 Adaptive Server Enterprise ODBC Driver

Special instructions for
unichar, varchar, and
unitext

When you use the ASE datatypes unichar, univarchar, and unitext, and then bind
either of them to SQL_C_CHAR, in Linux, the ASE ODBC Driver needs to
convert the data from Unicode to multibyte and vice versa. For this conversion,
it needs to have the SYBASE charsets installed in the $SYBASE directory. The
installation program for Linux includes an option to install these charset files.

Note If the driver does not find the charsets, or if the $SYBASE environment
variable is not set, then an appropriate error is propagated to the application. To
install the SYBASE charsets, you must reinstall the ODBC Driver. See the
Software Developer’s Kit and Open Server 12.5.1 Installation Guide for
installation information.

Using computed columns
The ASE Drivers support computed columns that allow you to create a
shorthand term for an expression, such as “Pay” for “Salary + Commission,”
and to make that column indexable, as long as its datatype can be indexed.
Computed columns are defined by an expression, whether from regular
columns in the same row, functions, arithmetic operators, and path names,
including their metadata information.

Using server-specified packet size
Clients and servers have to be prepared to reserve memory to store the
packages used for communication between them. These packages are called
Protocol Data Units, or PDUs. Every PDU starts with an 8-byte header
containing a 2-byte, unsigned integer describing the actual size in bytes of the
current PDU (including the header itself). Clients and servers must know the
maximum size that a PDU sent by the other party could be, and this is called
the packet size. The packet size is negotiated at login time.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 29

When connected to ASE 15.0, the ODBC Driver lets the server select the
packet size to optimize performance. When connected to an pre-15.0 ASE
server, the ODBC Driver uses 512 as the packet size, unless you specify the
packetsize property. If you do not want the server to decide the packet size, you
need to set EnableServerPacketSize to 0. If you have memory restrictions, you
need to set RestrictMaximumPacketSize to a number (in multiples of 512) so
that ASE and the ODBC Driver will not negotiate a packet size greater than the
one you specified.

Using Large Identifiers for database objects
The ASE Drivers support the new ASE large identifiers, or names, for database
objects. Some object names in ASE 15.0 now have new limits of 255 bytes. As
a result, you can now have longer names for objects such as tables, columns,
and procedures.

 Warning! If you use large identifiers in C++ programs or client applications,
you must allocate sufficient buffer lengths to avoid data truncation.

Using Large Identifiers for database objects

30 Adaptive Server Enterprise ODBC Driver

Users Guide 31

C H A P T E R 2 Connecting to a Database

This chapter describes how client applications connect to Sybase
Adaptive Server Enterprise using ODBC.

Introduction to connections
Any client application that uses Adaptive Server Enterprise must establish
a connection to the Adaptive server before any work can be done. The
connection forms a channel through which all activity from the client
application takes place. For example, your user ID determines
permissions to carry out actions on the database—and the database server
has your user ID because it is part of the request to establish a connection.
The ASE ODBC Driver uses connection information included in the call
from the client application (perhaps together with information held on
disk in an initialization file) to locate and connect to an ASE server
running the required database.

Installing ODBC MetaData stored procedures
You must install the ODBC MetaData stored procedures on any Adaptive
Servers that you want to connect to using the ODBC Driver.

Windows

❖ To install the stored procedures on a target Adaptive Server on Windows

1 Change to the sp directory under the ODBC installation directory.

Topic Page
Introduction to connections 31

How connection parameters work 32

Character sets 33

Configuring the ASE ODBC Driver 34

Connecting using a data source 40

How connection parameters work

32 Adaptive Server Enterprise ODBC Driver

2 Execute the install_odbc_sprocs script:

install_odbc_sprocs ServerName username [password]

where:

• ServerName is the name of the Adaptive Server.

• username is the user name to connect to the server.

• [password] is the password for the user name. If the value is null,
leave the parameter empty.

Linux

❖ To install the stored procedures on a target Adaptive Server on Linux

1 Change to the sp directory under the ODBC installation directory.

2 Execute the install_odbc_sprocs script:

./install_odbc_sprocs ServerName username
[password]

where:

• ServerName is the name of the Adaptive Server.

• username is the user name to connect to the server.

• [password] is the password for the user name. If the value is null,
leave the parameter empty.

How connection parameters work
When an application connects to a database, it uses a set of connection
parameters to define the connection. Connection parameters include
information such as the server name, the database name, and a user ID. A
keyword-value pair (of the form parameter=value) specifies each connection
parameter. For example, you specify the user ID connection parameter as
follows:

UID=sa

Connection
parameters passed as
connection strings

Connection parameters are passed to the ASE ODBC driver as a connection
string and are separated by semicolons:

parameter1=value1;parameter2=value2;...

CHAPTER 2 Connecting to a Database

Users Guide 33

In general, the connection string built by an application and passed to the driver
does not correspond directly to the way a user enters the information. Instead,
a user can fill in a dialog box, or the application can read connection
information from an initialization file.

Character sets
The ASE server can be configured to store character data in a specific charset.
When the ODBC Driver connects to the ASE server, the server and the driver
negotiate a charset. Then, the driver and the server exchange multibyte data in
the negotiated charset. The ASE ODBC driver determines the charset
depending on the platform:

• On Windows, the ASE ODBC Driver by default negotiates the same
default charset as the ASE server. The default charset is ServerDefault.
However, if you want to use the ClientDefault charset, you need to specify
the value for the CodePageType property, which can be ANSI or OEM.
The default is ANSI. You can also specify a User specified charset by
specifying a valid ASE charset for the Charset connection property.

• On Linux, the ASE ODBC Driver by default examines the LC_CTYPE
and LANG environment variables. If they are not set, it defaults to ISO
8859-1. If one of these environment variables are set, it then looks for
locales.dat in the $SYBASE/locales/locales.dat directory to pickup the
corresponding ASE charset. If the file is not found, it then looks into its
own map in memory to lookup the corresponding ASE charset.

During login, the driver then negotiates this client charset. This behavior
can be overwritten by specifying the CharSet connection property to a
valid ASE charset or "ServerDefault." When set to "ServerDefault," the
driver behavior is the same as in the Windows platform. You can also
specify a User specified charset by specifying a valid ASE charset for
Charset connection property.

Configuring the ASE ODBC Driver

34 Adaptive Server Enterprise ODBC Driver

Configuring the ASE ODBC Driver
When connecting to the database, ODBC applications typically use ODBC
data sources. An ODBC data source is a set of connection parameters, stored
in the registry or in a file. ODBC data sources on non-Windows platforms
typically reside in an ini file. Most ODBC Driver Managers provide a GUI tool
to configure ODBC Driver and data sources.

Windows
When you use the Sybase SDK installation program to install the ASE ODBC
Driver, it registers the driver on the local machine. You can manually register
the ASE ODBC Driver on Windows using the regsvr32 utility.

Registering the ASE ODBC Driver on Windows

Note You do not need to manually register the ASE ODBC Driver if you have
used the Sybase SDK installation program to install ASE ODBC Driver on this
machine.

❖ To register the ASE ODBC Driver manually

1 Change to the %SYBASE%\DataAccess\ODBC\dll directory, which
contains the ASE ODBC Driver DLL.

2 Run the regsvr32 utility to create registry entries in the
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI key:

regsvr32 sybdrvodb.dll

Configuring a data source on Windows

❖ To configure a data source

1 Launch the ODBC Administrator. See the online help for your specific
Windows operating system for detailed instructions.

2 Select the User DSN tab. Click Add.

3 Choose “Adaptive Server Enterprise” from the list of drivers.

4 Click Finish.

CHAPTER 2 Connecting to a Database

Users Guide 35

5 Select the General tab. Enter values in the following fields:

• Data Source Name: a name for your data source

• Description: a description for your data source

• Server Name: an Adaptive Server Enterprise host name

• Server Port: an Adaptive Server Enterprise port number

• Database Name: a database name

• Logon ID: a user name to login to the Adaptive Server Enterprise
database

6 Select Use Cursors if you want cursors to be opened for every select
statement.

7 Complete the Connection and Advanced tabs as needed.

8 Click OK to save the changes.

Note For a detailed explanation of connection parameters, see “Using
connection parameters” on page 40.

Linux
The unixODBC Driver Manager supports configuring drivers and data sources
from a GUI as well as the command line. Refer to the ODBC Driver Manager's
documentation for instructions on the GUI tool and command line syntax.

Note The ASE ODBC Driver and data sources that use this driver cannot be
configured using the GUI tools from the unixODBC Driver Manager. You must
use the command line interface.

When configuring the driver and data sources using the unixODBC Driver
Manager command line tool, you must supply a template file. Sample
templates are described in the following section. You can also find these
templates in the $SYBASE/DataAccess/ODBC/samples directory of Linux 32-
bit platforms, or in the $SYBASE/DataAccess64/ODBC/samples of Linux 64-
bit platforms.

The following is an example of a driver template file:

[Adaptive Server Enterprise]

Configuring the ASE ODBC Driver

36 Adaptive Server Enterprise ODBC Driver

Description=Sybase ODBC Driver
Driver=/install dir/driver library name
FileUsage=-1

where:

• install dir is the path to the ASE ODBC Driver installation.

• driver library name is the name of the driver library.

Installing the ASE ODBC Driver on Linux

To install the ASE ODBC Driver, execute the following command to install the
ASE ODBC Driver:

odbcinst -i -d -f driver template file

where driver template file is the complete path to the ASE ODBC Driver
template file.

Note In most cases, this command needs to be executed as the root user
because it modifies the odbcinst.ini file that is owned by root.

Configuring a data source on Linux

The following is a data source template:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1

To configure a data source using the unixODBC Driver Manager command
line tool, execute the following command to configure a data source for the
ASE ODBC Driver using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

CHAPTER 2 Connecting to a Database

Users Guide 37

where dsn template file is the complete path to the ASE ODBC Data source
template file. This creates entries for the data source in the odbc.ini file.

Note The exact command you need to configure ODBC data sources depends
on the ODBC Driver Manager you are using.

Mac OS X
During the ASE ODBC Driver installation, the ASE ODBC Driver is
configured in the /Library/ODBC/odbcinst.ini file. To configure the ASE
ODBC Driver manually, use the iODBC ODBC Administrator, as described in
the following procedure.

Manually configuring the ODBC Driver on Mac OS X

❖ To use the iODBC Driver Manager

1 Start the iODBC Administrator from Applications | Utilities.

2 Select the Drivers tab and click Add.

3 In the Description field, enter "Adaptive Server Enterprise" as the Driver
description.

4 Click Choose to select the installation path in the Driver file field.

You do not need to enter values in the setup file or keyword value pairs
fields.

5 Click OK to save the changes.

Configuring a data source on Mac OS X

You can configure the ASE ODBC Driver using the iODBC Administrator.

❖ To configure a data source

1 Start the iODBC Administrator from Applications | Utilities.

2 Select the User DSN tab. The Choose a Driver window opens.

3 Select the Adaptive Server Enterprise Driver you want to use.

4 Click OK.

Configuring the ASE ODBC Driver

38 Adaptive Server Enterprise ODBC Driver

5 Provide a name for your data source in the Data Source Name (DSN) field.

6 Provide a description for your data source in the Description field.

7 Click Add to add keyword value pairs. Repeat this step until you have
added all the keyword value pairs. For example:

Keyword Value
UserID sa
Password
Server sampleserver
Port 4100
Database pubs2
UseCursor 1

8 Click OK to save the changes.

Note For more information on installing and configuring drivers and data
sources using the iODBC Administrator on Mac OS X, look up the iODBC
Administrator online help.

ODBC ini files
The ODBC Driver Manager stores driver and data source information in ini
files or the system registry.

Note Refer to your ODBC Driver Manager documentation for the exact path
for these ini files.

Windows

The odbc.ini and odbcinst.ini files are located in the c:\winnt directory. The
Microsoft ODBC Driver Manager looks up these files or the registry at runtime
when an application requests a connection to a data source.

Linux

Information about the ODBC Driver installed on the system is saved in the
odbcinst.ini file. This file is typically located at /etc/odbcinst.ini.

The information about data sources is saved in one of two files:

CHAPTER 2 Connecting to a Database

Users Guide 39

• User data source information, available only to that user, is saved in the
$HOME/.odbc.ini file, where $HOME is the user home directory.

• System data source information, available to any user on the system, is
usually saved in the /etc/odbc.ini file. If the same data source is defined in
both files, the user data source takes precedence.

The ODBC Driver Manager looks up these files at runtime when an application
requests a connection to a data source.

Note Refer to your ODBC Driver Manager documentation for the exact path
for these ini files. Some Driver Manager use alternate locations.

If your application is not using ODBC Driver Manager and uses the ASE
ODBC Driver directly, the ini file is searched differently: The ASE ODBC
Driver first looks for a file named odbc.ini in the current working directory; if
the file is not found or the data source not found in the file, it looks for
$SYBASE/odbc.ini.

Mac OS X

When you use the iODBC ODBC Administrator tool, the odbcinst.ini and the
odbc.ini files are typically located in the /Library/ODBC directory if the driver
or data source was installed system-visible. If the driver or data source was
installed to be user-visible, the odbcinst.ini and the odbc.ini files are in the
$HOME/Library/ODBC directory.

At runtime, the iODBC Driver Manager searches for DSN information in
$HOME/Library/ODBC/odbc.ini. If your DSN information is in
/Library/ODBC/odbc.ini or in any other location, you need to set an
environment variable called ODBCINI to the path to the odbc.ini file. For
example:

setenv ODBCINI full pathname to the odbc.ini file

Connecting using a data source

40 Adaptive Server Enterprise ODBC Driver

Connecting using a data source
ODBC applications usually use data sources on the client computer for each
database you want to connect to. You can store sets of Adaptive Server
Enterprise connection parameters as an ODBC data source, in either the system
registry or ini files. If you have a data source, your connection string can simply
name the data source by using the DataSourceName (DSN) connection
parameter:

DSN=my data source

Using connection parameters
Following is a list of connection parameters other than from the DSN
parameter that can be supplied to the ASE ODBC Driver.

Table 2-1: Connection parameters

Property names Description Required Default value

UID, UserID A case-sensitive user ID required to connect
to the ASE server.

Yes Empty

PWD, Password A case-sensitive password to connect to the
ASE server.

No, if the
user name does
not require a
password

Empty

Server The name or IP address of the ASE server. Yes Empty

Port The port number of ASE server. Yes Empty

AnsiNull Strict ODBC compliance where you cannot
use “= NULL.” Instead, you must use
“IsNull.”

No 1

ApplicationName The name used by ASE to identify the client
application.

No Empty

BufferCacheSize Keeps the input / output buffers in pool. When
large results will occur, increase this value to
boost performance.

No 20

CHAPTER 2 Connecting to a Database

Users Guide 41

CharSet The designated character set.
On Windows, the ASE ODBC Driver by
default negotiates the same default Character
set as the ASE server. The default Character
set is ServerDefault.

On Linux the ASE ODBC Driver uses the
Client's Character set based on the
environment. If you want to use the ASE
server's Character Set, you must specify it in
the connection properties with
Charset=ServerDefault. The default
Character set is ClientDefault. See the section
titled “Character sets” on page 33.

No Empty

ClientHostName The name of the client host passed in the login
record to the server.

No Empty

ClientHostProc The identity of client process on this host
machine passed in the login record to the
server.

No Empty

CRC By default, the driver returns the total records
updated when multiple update statements are
executed in a stored procedure. This count
will also include all updates happening as part
of the triggers set on an update or an insert.

Set this property to 0 if you want the driver to
return only the last update count.

No 1

Database The database to which you want to connect. No Empty

DataIntegrity Enables Kerberos Data Integrity. No 0 (disabled)

DSPassword The password used to authenticate on the
LDAP server, if the LDAP server does not
allow anonymous access. The password can
be specified in the Directory Service URL
(DSURL) as well.

No Empty

DSPrincipal The user name used to authenticate on the
LDAP server, if the LDAP server does not
allow anonymous access. The principal can be
specified in the DSURL as well.

No Empty

DSURL The URL to the LDAP server. No Empty

DTCProtocol (Windows
only)

Allows the driver to use either an XA protocol
or OleNative protocol when using distributed
transactions. See “Using Distributed
Transactions” on page 49, in Chapter 3, “ASE
Advanced Features.”

No XA

Property names Description Required Default value

Connecting using a data source

42 Adaptive Server Enterprise ODBC Driver

DynamicPrepare When set to 1, the driver sends SQLPrepare
calls to ASE to compile/prepare. This can
boost performance if you use the same query
repeatedly.

No 0

EnableServerPacketSize Allows ASE server versions 15.0 or later to
choose the optimal packet size.

No 1

EncryptedPassword Specifies whether password is transmitted in
an encrypted format:

• 0 – Use plain text password.

• 1 – Use encrypted password. If it is not
supported, return an error message.

• 2 – Use encrypted password. If it is not
supported, use plain text password.

Note When password encryption is enabled,
and the server supports asymmetric
encryption, this format is used instead of
symmetric encryption.

No 0

Encryption The designated encryption. Possible values:
ssl.

No Empty

FetchArraySize Specifies the number of rows the driver
retrieves when fetching results from the
server.

No 25

HASession Specifies if high availability is enabled. 0
indicates high availability disabled, 1 high
availability enabled.

No 0

IgnoreErrorsIfRS
Pending

Specifies whether the driver is to continue
processing or stop if error messages are
present. When set to 1, the driver will ignore
errors & continue processing the results if
more results are available from the server.
When set to 0, the driver will stop processing
the results if an error is encountered even if
there are results pending

No 0

UseCursor Specifies whether cursors are to be used by
the driver. 0 indicates do not use cursors, and
1 indicates use cursors.

No 0

Language The language in which ASE returns error
messages.

No Empty – ASE uses
English by default

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 43

LoginTimeOut Number of seconds to wait for a login attempt
before returning to the application. If set to 0,
the timeout is disabled, and a connection
attempt waits for an indefinite period of time.

No 10

MutualAuthentication Enables Kerberos Mutual Authentication. No 0 (disabled)

oldpassword The current password. If oldpassword
contains a value that is not null or an empty
string, the current password is changed to the
value contained in pwd.

No Empty

pwd Contains the new password entered by the
user. If the oldpassword property does not
exist or is null, pwd contains the value of the
current password.

No Empty

PacketSize The number of bytes per network packet
transferred between ASE and the client.

No Server determined
when driver is
connected to ASE
15.0 or later. For
older ASE servers,
the default is 512.

QuotedIdentifier Specifies if ASE treats character strings
enclosed in double quotes as identifiers:

• 0 = do not enable quoted identifiers

• 1 = enable quoted identifiers

No 0

ReplayDetection Enables Kerberos Replay Detection. No 0

RestrictMaximum
PacketSize

If the you have memory constraints when
EnableServerPacketSize is set to 1, then set
this property to an int value in multiples of 512
to a maximum of 65536.

No 0

SecondaryPort The port number of the ASE server acting as
a failover server in an active-active or active-
passive setup.

Yes, if
HASession is
set to 1.

Empty

SecondaryServer The name or the IP address of the ASE server
acting as a failover server in an active-active
or active-passive setup.

Yes, if
HASession is
set to 1.

Empty

Property names Description Required Default value

Connecting using a data source

44 Adaptive Server Enterprise ODBC Driver

ServerInitiated
Transactions

When SQL_ATTR_AUTOCOMMIT is set to
“1” Adaptive Server starts managing
transactions as needed. The driver issues a
“set chained on” command on the connection.
Older ODBC Drivers do not use this feature
and manage the job of starting transactions by
calling begin tran. Set this property to “0” if
you want to maintain the old behavior or
require that your connection not use
“chained” transaction mode.

No 1

TextSize The maximum size of binary or text data that
will be sent over the wire.

No Empty – ASE
default is 32K.

TightlyCoupled
Transaction (Windows
only)

When using distributed transactions, if you
are using two DSNs which connect to the
same ASE server, set this to 1. See “Using
Distributed Transactions” on page 49, in
Chapter 3, “ASE Advanced Features.”

No 0

TrustedFile If encryption is set to ssl, this property should
be set to the path to the Trusted File.

No Empty

Property names Description Required Default value

Users Guide 45

C H A P T E R 3 ASE Advanced Features

This chapter describes the advanced ASE features you can use with the
ASE ODBC Driver.

Asynchronous execution for ODBC
By default, drivers execute ODBC functions synchronously. That is, the
application calls a function and the driver returns control to the application
when execution is complete. With asynchronous execution, the driver
returns control to the application after minimal processing and before
execution is complete. This allows the application to execute in parallel
other functions while the first function is still executing. Asynchronous
execution is beneficial when a task is complex and requires a significant
amount of time to execute.

Topic Page
Asynchronous execution for ODBC 45

Supported Adaptive Server Cluster Edition features 46

Using Distributed Transactions 49

Using directory services 52

Bookmark and bulk support 55

DSN Migration tool 56

Using password encryption 57

Password expiration handling 59

Using SSL 60

Using failover in high availability systems 65

Enabling Kerberos authentication 69

Supported Adaptive Server Cluster Edition features

46 Adaptive Server Enterprise ODBC Driver

For more information on asynchronous execution and its application, refer to
MSDN ODBC Programmer’s Reference at http://msdn.microsoft.com/en-
us/library/ms714177.aspx.

Note The ASE ODBC Driver by Sybase supports a maximum of one
concurrent statement in asynchronous mode. Only one concurrent statement,
synchronous or asynchronous, can be executed if server-side cursors are used
or if the connection’s auto-commit is disabled.

To use connection-level asynchronous execution with the ASE ODBC Driver
by Sybase, call SQLSetConnectAttr and set SQL_ATTR_ASYNC_ENABLE to
SQL_ASYNC_ENABLE_ON.

Note Calling SQLCancel when no processing is being done will not close the
associated cursors. ODBC applications should explicitly call SQLFreeStmt or
SQLCloseCursor to close cursors.

Supported Adaptive Server Cluster Edition features
This section describes the ASE ODBC Driver features that support the Cluster
Edition environment, an environment where multiple Adaptive Servers
connect to a shared set of disks and a high-speed private interconnection. This
allows Adaptive Server to scale using multiple physical and logical hosts.

For more information about Cluster Edition, see the Adaptive Server
Enterprise Cluster Edition Users Guide to Clusters.

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx

CHAPTER 3 ASE Advanced Features

Users Guide 47

Login redirection
At any given time, some servers within a Cluster Edition environment are
usually more loaded with work than others. When a client application attempts
to connect to a busy server, the login redirection feature helps balance the load
of the servers by allowing the server to redirect the client connection to less
busy servers within the cluster. The login redirection occurs during the login
sequence and the client application does not receive notification that it was
redirected.

Note When a client application connects to a server that is configured to
redirect clients, the login time may increase because the login process is
restarted whenever a client connection is redirected to another server.

Connection migration
The connection migration feature allows a server in a Cluster Edition
environment to dynamically distribute load, and seamlessly migrate an existing
client connection and its context to another server within the cluster. This
feature enables the Cluster Edition environment to achieve optimal resource
utilization and decrease computing time. Because migration between servers is
seamless, the connection migration feature also helps create a truly High
Availability (HA), zero-downtime environment.

Note The login redirection and connection migration features are enabled
automatically when a client application connects to a server that supports these
features.

Note Command execution time may increase during server migration. Sybase
recommends that you increase the command timeouts accordingly.

Supported Adaptive Server Cluster Edition features

48 Adaptive Server Enterprise ODBC Driver

Connection failover in Cluster Edition
Connection failover allows a client application to switch to an alternate
Adaptive Server if the primary server becomes unavailable due to an
unplanned event, like power outage or a socket failure. In the Adaptive Server
Cluster Edition, client applications can failover numerous times to multiple
servers using dynamic failover addresses.

With the High Availability enabled, the client application does not need to be
configured to know the possible failover targets. Adaptive Server keeps the
client updated with the best failover list based on cluster membership, logical
cluster usage and load distribution. During failover, the client refers to the
ordered failover list while attempting to reconnect. If the driver successfully
connects to a server, the driver internally updates the list of host values based
on the list returned. Otherwise, the driver throws a connection failure
exception.

For more information about connection failover, see “Using failover in high
availability systems” on page 65.

Enabling Cluster Edition connection failover
Using the ODBC user
interface

One way to enable the Cluster Edition connection failover in ODBC is through
the ODBC user interface.

❖ Using the user interface to enable extended failover

1 Open the Adaptive Server Enterprise dialog box.

2 Go to the Connection tab.

3 Select Enable High Availability.

4 Optionally, enter the alternate servers and ports in the Alternate Servers
field using the format:

server1:port1,server2:port2,...,serverN:portN;

In establishing a connection, ODBC Driver by Sybase will first try to connect
to the primary host and port defined in the General tab of the Adaptive Server
Enterprise dialog box. If ODBC fails to establish a connection, ODBC will go
through the list of hosts and ports specified in the Alternate Servers field.

Using the ODBC
connection string

Another way to enable the connection failover in ODBC is to set the
HASession connection string property to 1. You can use SQLDriverConnect to
specify a connection string. For example:

Driver=AdaptiveServerEnterprise;server=server1;

CHAPTER 3 ASE Advanced Features

Users Guide 49

port=port1;UID=sa;PWD=;HASession=1;
AlternateServers=server2:port2,...,serverN:portN;

The preceding example defines server1 and port1 as the primary server and
port. If ODBC fails to establish connection to the primary server, and alternate
servers are defined, it will go through the ordered list of servers and ports
specified in the Alternate Servers field until a connection is established or until
the end of the list is reached.

Note The list of alternate servers specified in the GUI or the connection string
is used only during initial connection. After the connection is established with
any available instance, and the client supports high-availability, the client will
receive an updated list of the best possible failover targets from the server. This
new list overrides the specified list.

Using Distributed Transactions
This section describes how you can use the ASE ODBC driver to participate in
two-phase commit transactions. This feature is supported only on Windows
and requires that Microsoft Distributed Transaction Coordinator (MS DTC) be
the transaction coordinator managing two-phase commit.

Sybase supports all of the following programming models:

• Applications using MS DTC directly

• Applications using Sybase Enterprise Application Server (EAServer, also
known as Jaguar)

• Applications using Microsoft Transaction Server (MTS) or COM+

Programming for MS DTC

❖ To program using Microsoft Distributed Transaction Coordinator
(MS DTC)

1 Connect to MS DTC by using the DtcGetTransactionManager function.
For information about MS DTC, see Microsoft Distributed Transaction
Coordinator documentation.

Using Distributed Transactions

50 Adaptive Server Enterprise ODBC Driver

2 Call SQLDriverConnect or SQLConnect once for each Sybase ASE
connection you want to establish.

3 Call the ITransactionDispenser::BeginTransaction function to begin an MS
DTC transaction and to obtain an OLE Transaction object that represents
the transaction.

4 Call SQLSetConnectAttr one or more times for each ODBC connection you
want to enlist in the MS DTC transaction. SQLSetConnectAttr must be
called with an attribute of SQL_ATTR_ENLIST_IN_DTC and a ValuePtr of
the Transaction object (obtained in step 3).

5 Call SQLExecDirect one or more times for each insert or update SQL
statement.

6 Call the ITransaction::Commit function to commit the MS DTC transaction.
The Transaction object is no longer valid.

To perform a series of MS DTC transactions, repeat steps 3 through 6.

To release the reference to the Transaction object, call the ITransaction::Release
function.

To use an ODBC connection with an MS DTC transaction and then use the
same connection with a local ASE Server transaction, call SQLSetConnectAttr
with a ValuePtr of SQL_DTC_DONE to unenlist the connection from the
transaction.

Note Also, you can call SQLSetConnectAttr and SQLExecDirect separately for
each ASE Server, instead of calling them as suggested in steps 4 and 5.

Programming components deployed in Sybase EAServer,
MTS, or COM+

The following procedure describes how to create components that participate
in Distributed Transactions in Sybase EAServer, MTS, or COM+.

❖ To program components deployed in Sybase EAServer, MTS or COM+

1 Call SQLDriverConnect once for each Sybase ASE connection you want to
establish.

2 Call SQLExecDirect once for each insert or update SQL statement.

CHAPTER 3 ASE Advanced Features

Users Guide 51

3 Deploy your component to MTS, and configure the transaction attributes
as needed.

The transaction coordinator creates a distributed transaction as needed, and the
component that uses the ASE ODBC driver automatically enlists in the global
transaction. Then, the transaction coordinator will commit or roll back the
distributed transaction.

Connection properties for Distributed Transaction support
The following describes the Connection properties:

• Distributed Transaction Protocol (DistributedTransactionProtocol) – To
specify the protocol used to support the distributed transaction, either XA
Interface standard or MS DTC OLE Native protocol, select the Distributed
Transaction Protocol in the ODBC Data Source Dialog, or set the property
DistributedTransactionProtocol = OLE native protocol in the connection
string. The default is XA.

• Tightly Coupled Transaction (TightlyCoupledTransaction) – When a
distributed transaction using two resource managers points to the same
ASE server, you have a "Tightly Coupled Transaction." Under these
conditions, if you do not set this property to 1, the Distributed Transaction
may fail.

To summarize, if you open two database connections to the same ASE server
and then enlist these connections in the same distributed transaction, you must
set TightlyCoupledTransaction=1. To set this property select the Tightly Coupled
Transaction in the ODBC Data Source dialog box, or pass the property
TightlyCoupledTransaction=1 in the connection string.

 Warning! Enlistment with SQLSetConnectAttr returns a SQL_ERROR if the
connection has already begun a local transaction, either by using
SQLSetConnectAttr with the SQL_AUTOCOMMIT_OFF or by executing the
BEGIN TRANSACTION statement explicitly using SQLExecDirect.

Using directory services

52 Adaptive Server Enterprise ODBC Driver

Using directory services
Directory services allow the ASE ODBC Driver to get connection and other
information from a central LDAP server; then, it uses this information to
connect to an ASE server. It uses a property called Directory Service URL
(DSURL), that indicates which LDAP server to use.

LDAP as a directory service
Lightweight Directory Access Protocol (LDAP) is an industry standard for
accessing directory services. Directory services allow components to look up
information by a distinguished name (DN) from an LDAP server that stores
and manages server, user, and software information that is used throughout the
enterprise or over a network.

LDAP defines the communication protocol and the contents of messages
exchanged between clients and servers. The LDAP server can store and
retrieve information about:

• Adaptive Server, such as IP address, port number, and network protocol

• Security mechanisms and filters

• High-availability companion server name

See the Adaptive Server Enterprise System Administration Guide for more
information.

The LDAP server can be configured with these access restrictions:

• Anonymous authentication – all data is visible to any user.

• User name and password authentication – Adaptive Server uses the default
user name and password from the file.

User name and password authentication properties establish and end a session
connection to an LDAP server.

Note The LDAP server can be located on a different platform from the one on
which Adaptive Server or the clients are running.

CHAPTER 3 ASE Advanced Features

Users Guide 53

Using directory services
To use directory services, add the following properties to the ConnectString:

DSURL=ldap://SYBLDAP:389/dc=sybase,dc=com??one?sybase
Servername=MANGO

The URL is an LDAP URL and uses LDAP libraries to resolve the URL.

To support high availability on the LDAP server, the DSURL accepts multiple
URLs, separated by a semicolon:

DSURL={ldap://SYBLDAP:389/dc=sybase,dc=com??one?sybase
Servername=MANGO};

The provider attempts to get the properties from the LDAP servers in the order
specified. For example:

ldap://hostport/dn[?attrs[?scope[?filter[?userdn?userp
ass]]]]

where:

• hostport is a host name with an optional portnumber, for example,
SYBLDAP1:389.

• dn is the search base, for example, dc=sybase,dc-com.

• attrs is a comma-separated list of attributes requested from the LDAP
server. You must leave it blank. Data Provider requires all attributes.

• scope is one of three strings:

• base (the default) searches the base.

• one searches immediate children.

• sub searches the sub-tree.

• filter is the search filter. Generally, it is the sybaseServername. You can
leave it blank and set the Data Source or Server Name property in the
ConnectionString.

• userdn is the user's distinguished name (dn). If the LDAP server does not
support anonymous login, you can set the user's dn here, or you can set the
DSPrincipal property in the ConnectionString.

• userpass is the password. If the LDAP server does not support anonymous
login, you can set the password here, or you can set the DSPassword
property in the ConnectionString.

ldap://SYBLDAP:389/dc=sybase
ldap://SYBLDAP:389/dc=sybase
ldap://hostport/dn[?attrs[?scope[?filter[?userdn?userp

Using directory services

54 Adaptive Server Enterprise ODBC Driver

The URL can contain sybaseServername, or you can set the property Server
Name to the service name of the LDAP Sybase server object.

The following properties are useful when using Directory Services:

• DSURL – set to LDAP URL. The default is an empty string.

• Server – the Service Name of the LDAP Sybase server object. The default
is an empty string.

• DSPrincipal – the user name to log in to the LDAP server if it is not a part
of DSURL and the LDAP server does not allow anonymous access.

• DSPassword or Directory Service Password – the password to authenticate
on the LDAP server if it is not a part of DSURL and the LDAP server does
not allow anonymous access.

Enabling directory services
This section describes how to enable directory services on the platform you are
using.

❖ To enable directory services on Windows

1 Launch the ODBC DataSource Administrator.

2 Select the data source that you want to use and choose Configure.

3 Click the Connection tab.

4 In the Directory Service Information group, provide the complete URL in
the URL field. You also have the option to provide the user name in the
User ID field and the LDAP Service Name in the Service Name Field, to
log on to the LDAP server.

Linux

❖ To enable directory services for Linux

Install the following packages:

• openldap-2.0 (runtime)

• openldap-devel-2.0

The ODBC Driver attempts to load a file named libldap.so, but to create a
symbolic link with this file, you must install the openldap-devel package. The
openldap runtime package does not create the symbolic link.

CHAPTER 3 ASE Advanced Features

Users Guide 55

If you are linking to the unixODBC Driver Manager:

1 Edit the ASE ODBC data source template, odbc.ini.

2 Reinstall the data source using the unixODBC command line tool:

odbcinst -i -s -f <dsn template file>

where dsn template file is the complete path to the ASE ODBC data source
template file.

If you are directly linking to the ASE ODBC Driver, modify the odbc.ini file.

Following is an example of the odbc.ini data source template file:

[sampledsn] Description=Sybase
ODBC Data Source UserID=sa
Password= Driver=Adaptive
Server Enterprise Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
DSURL=ldap://SYBLDAP1:389/dc=sybase,dc=com??one?sybase
Servername=MANGO

Mac OS X

❖ To enable directory services for Mac OS X

1 Launch the iODBC Administrator from Applications | Utilities.

2 Select the data source you want to use and add two new keyword value
pairs:

DSURL=ldap://SYBLDAP1:389/dc=sybase,dc=com??one?syb
aseServername=MANGO

Bookmark and bulk support
Sybase supports bookmarks and SQL bulk operations for the ODBC Driver.

ldap://SYBLDAP1:389/dc=sybase
ldap://SYBLDAP1:389/dc=sybase

DSN Migration tool

56 Adaptive Server Enterprise ODBC Driver

Bulk insertions that use SQLBulkOperations with the option of SQL_ADD and
cursor positioned updates & deletes using SQLSetPos (SQL_UPDATE,
SQL_DELETE, SQL_POSITION). For instructions on using SQL_ADD and
SQLSetPos, refer to the Microsoft Developer Network library, ODBC
Programmer’s Reference at http://msdn.microsoft.com/en-
us/library/ms714177.aspx.

DSN Migration tool
The ODBC DSN Migration tool can help you migrate from the Data Direct
ODBC driver to the ODBC Driver by Sybase.

Using the Migration tool
The dsnmigrate tool uses switches to control which DSNs are migrated. You
need to enter the following from the command line:

dsnmigrate.exe [/?|/help] [l|/ul|/sl][/a|/ua|/sa]
[[/dsn|/udsn|/sdsn]=dsn] [/suffix=suffix]

All DSNs that are converted are renamed to “<dsn>-backup” before the
conversion is completed. When the new Sybase DSNs are created and the
conversion is completed, the name is changed to“<dsn>,” which will allow
existing applications to continue to run without any modifications.

Conversion switches
The following table lists and describes the switches used in the conversion.

Table 3-1: Conversion switches

Switches Description of results

/?,/h,/help Displays this message. This message is
also displayed if dsnmigrate is called
with no command line arguments.

/l Displays a list of all Sybase Data Direct
user and system DSNs.

/ul Displays a list of all Sybase Data Direct
user DSNs.

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx

CHAPTER 3 ASE Advanced Features

Users Guide 57

Using password encryption
By default, the ASE ODBC Driver sends plain text passwords over the network
to ASE for authentication. However, ODBC Driver also supports symmetrical
and asymmetrical password encryption, and you can use this feature to change
the default behavior and encrypt your password before they are sent over the
network.

The symmetrical encryption mechanism uses the same key to encrypt and
decrypt the password whereas an asymmetrical encryption mechanism uses
one key (the public key) to encrypt the password and another key (the private
key) to decrypt the password. Because the private key is not shared across the
network, the asymmetrical encryption is considered more secure than
symmetrical encryption. When password encryption is enabled, and the server
supports asymmetric encryption, this format is used instead of symmetric
encryption.

/sl Displays a list of all Sybase Data Direct
system DSNs.

/a Converts all Sybase Data Direct user and
system DSNs.

/ua Converts all Sybase Data Direct user
DSNs.

/sa Converts all Sybase Data Direct system
DSNs.

/dsn Converts specific Sybase Data Direct
user or system DSNs.

/udsn Converts specific Sybase Data Direct
user DSNs.

/sdsn Converts specific Sybase Data Direct
system DSNs.

dsn The name of the DSN to be converted.

/suffix An optional switch that changes the way
DSNs are named. If this switch is used,
the original DSN is retained and the new
DSN is named “<dsn>-<suffix>.”

suffix The suffix that is used to name the new
DSN.

Switches Description of results

Using password encryption

58 Adaptive Server Enterprise ODBC Driver

To enable password encryption, you must set the EncryptPassword connection
property, which specifies whether the password is transmitted in encrypted
format. When password encryption is enabled, the password is sent over the
wire only after a login is negotiated; the password is first encrypted and then
sent. The EncryptPassword values are:

• 0 – Use plain text password. This is the the default value.

• 1 – Use encrypted password. If it is not supported, return an error message.

• 2 – Use encrypted password. If it is not supported, use plain text password.

Note To use the password encryption feature, you require a server that
supports extended password encryption, such as ASE 15.0.2.

Note When using asymmetrical encryption, you may experience a slight delay
in login time due to the additional processing time required for asymmetrical
encryption.

Windows

❖ To encrypt passwords on Windows

1 Launch the ODBC DataSource Administrator.

2 Select the data source you want to use and choose Configure.

3 Click the Advanced tab.

4 Select EncryptPassword.

You can use the EncryptPassword connection property in a call to
SQLDriverConnect.

Note You can only enable or disable password encryption (which corresponds
to EncryptPassword value of 1 and 0, respectively) from the user interface. You
can set EncryptPassword to 2 from a connection string.

CHAPTER 3 ASE Advanced Features

Users Guide 59

Linux
To link to the unixODBC Driver Manager, edit the data source template and
reinstall the data source using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the ASE ODBC Data source
template file.

Note If you are directly linking to the ASE ODBC Driver, modify the odbc.ini
file.

The following is an example of an odbc.ini data source template file:

[sampledsn] Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver Port=4100
Database=pubs2
UseCursor=1
EncryptPassword=1

Mac OS X

❖ To encrypt passwords on Mac OS X

1 Launch the iODBC Administrator from Applications | Utilities.

2 Select the data source you want to use and add a new keyword value pair:

EncryptPassword=1

Password expiration handling
Every company has a specific set of password policies for its database system.
Depending on the policies, the password expires at a specific date and time.
Unless the password is reset, the ASE drivers connected to a database throw
password expired errors and suggest that the user change the password using
isql. This feature allows users to change their expired passwords using the ASE
ODBC Driver.

Using SSL

60 Adaptive Server Enterprise ODBC Driver

Changing the
password through the
connection string
properties

To change password, you have to set two connection string properties:

• oldpassword – the current password. If oldpassword contains a value that
is not null or an empty string, the current password is changed to the value
contained in pwd.

• pwd – contains the value of the new password entered by the user. If
oldpassword does not exist or is null, pwd contains the value of the current
password.

Changing the
password through a
dialog box

A change password dialog is activated when “SQLDriverConnect with
SQL_DRIVER_PROMPT” is set to True. In this dialog, the user is prompted
for the current password and the new password that will replace it.

Using SSL
Secure Sockets Layer (SSL) is an industry standard for sending wire- or
socket-level encrypted data over client-to-server and server-to-server
connections. Before the SSL connection is established, the server and the client
negotiate and agree upon a secure encrypted session. This is called the “SSL
handshake.”

Note Additional overhead is required to establish a secure session, because
data increases in size when it is encrypted; it also requires additional
computation to encrypt or decrypt information. Under normal circumstances,
the additional I/O accrued during the SSL handshake can make user login 10
to 20 times slower.

SSL handshake When a client application requests a connection, the SSL-enabled server
presents its certificate to prove its identity before data is transmitted.
Essentially, the SSL handshake consists of the following steps:

1 The client sends a connection request to the server. The request includes
the SSL (or Transport Layer Security, TLS) options that the client
supports.

2 The server returns its certificate and a list of supported CipherSuites,
which includes SSL/TLS support options, the algorithms used for key
exchange, and digital signatures. CipherSuites are preferential lists of key-
exchange algorithms, hashing methods, and encryption methods used by
the SSL protocol.

CHAPTER 3 ASE Advanced Features

Users Guide 61

3 A secure, encrypted session is established when both client and server
have agreed upon a CipherSuite.

CipherSuites During the SSL handshake, the client and server negotiate a common security
protocol through a CipherSuite.

By default, the strongest CipherSuite supported by both the client and the
server is the CipherSuite used for the SSL-based session. Server connection
attributes are specified in the connection string or through directory services
such as LDAP.

The ASE ODBC Driver and Adaptive Server support the CipherSuites that are
available with the SSL Plus library API and the cryptographic engine, Security
Builder, both from Certicom Corp.

Note The following list of CipherSuites conform to the Transport Layer
Security (TLS) specification. TLS is an enhanced version of SSL 3.0, and is an
alias for the SSL version 3.0 CipherSuites.

Following is a list of the CipherSuites, ordered from the strongest to the
weakest, supported in ASE OBDC Driver:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_WITH_RC4_128_SHA

• TLS_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_DHE_DSS_WITH_RC4_128_SHA

• TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_WITH_DES_CBC_SHA

• TLS_DHE_DSS_WITH_DES_CBC_SHA

• TLS_DHE_RSA_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT1024_WITH_RC4_56_SHA

• TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA

• TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

Using SSL

62 Adaptive Server Enterprise ODBC Driver

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

For more specific information about the SSL handshake and the SSL/TLS
protocol, see the Internet Engineering Task Force Web site at http://www.ietf.org.

For a complete description of CipherSuites, go to the IETF organization Web site
at http://www.ietf.org/rfc/rfc2246.txt.

SSL security levels in ASE ODBC Driver
In ASE ODBC Driver, SSL provides the following levels of security:

• When the SSL session is established, user name and password are
transmitted over a secure, encrypted connection.

• When establishing a connection to an SSL-enabled server, the server
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any data is transmitted.

• A comparison of the server certificate’s digital signature can determine if
any information received from the server was modified in transit.

Validating the server by its certificate
Any ASE OBDC Driver client connection to an SSL-enabled server requires
that the server have a certificate file, which consists of the server’s certificate
and an encrypted private key. The certificate must also be digitally signed by a
signing/certification authority (CA). ASE OBDC Driver client applications
establish a socket connection to Adaptive Server similar to the way that
existing client connections are established. Before any user data is transmitted,
an SSL handshake occurs on the socket when the network transport-level
connect call completes on the client side and the accept call completes on the
server side.

To make a successful connection to an SSL-enabled server, the following must
occur:

1 The SSL-enabled server must present its certificate when the client
application makes a connection request.

2 The client application must recognize the CA that signed the certificate. A
list of all “trusted” CAs is in the “trusted roots file.”

http://www.ietf.org
http://www.ietf.org/rfc/rfc2246.txt

CHAPTER 3 ASE Advanced Features

Users Guide 63

The trusted roots file The list of known and trusted CAs is maintained in the trusted roots file. The
trusted roots file is similar in format to a certificate file, except that it contains
certificates for CAs known to the entity (such as client applications, servers,
network resources, and so on). The System Security Officer adds and deletes
trusted CAs using a standard ASCII-text editor.

The application program specifies the location of the trusted roots file using the
TrustedFile=trusted file path property in the ConnectString. A trusted roots file
with the most widely used CAs (Thawte, Entrust, Baltimore, VeriSign, and
RSA) is installed in a file located at $SYBASE/config/trusted.txt.

For more information about certificates, see the Open Client Client-Library C
Reference Manual.

Enabling SSL connections
To enable SSL for ASE ODBC Driver, add Encryption=ssl and
TrustedFile=<filename> (where filename is the path to the trusted roots file) to
the ConnectString. The ASE ODBC Driver then negotiates an SSL connection
with the ASE server.

Note ASE must be configured to use SSL. For more information on SSL, see
the Adaptive Server Enterprise System Administration Guide.

Windows
Using a connection
string

Before you enable SSL, you must set the TrustedFile property in the connection
string to the file name of the trusted roots file. The file name should contain the
path to the file as well.

Using DSN

❖ To enable SSL connections

1 Set the Encryption property in the connection string to ssl.

2 Launch the ODBC DataSource Administrator.

3 Select the data source name (DSN) you would like to use and choose
Configure.

4 Click the Connection tab.

5 Select UseSSL in the Secure Socket Layer Group.

Using SSL

64 Adaptive Server Enterprise ODBC Driver

6 Provide the complete path to the trusted roots file in the TrustedFile field.

Linux

❖ To enable SSL connections

1 Start the unixODBC Driver Manager odbcinst utility.

2 Open an existing data source template or create a new one.

3 Edit the data source template by adding the following:

Encryption=ssl

TrustedFile=<filename>line

4 Reinstall the data source using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the ASE ODBC data source
template file.

If you are linking directly to the ASE ODBC Driver, modify the odbc.ini file.

Following is an example of the odbc.ini data source template file:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
Encryption=ssl
TrustedFile=<SYBASE>/config/trusted.txt

Mac OS X

❖ To enable SSL connections on Mac OS X

1 Launch the iODBC Administrator from Applications | Utilities.

2 Select the data source you want to use and add two new keyword value
pair:

Encryption=ssl
TrustedFile=<filename>

CHAPTER 3 ASE Advanced Features

Users Guide 65

where <filename> is the complete path to the trusted roots file.

Using failover in high availability systems
A high availability cluster includes two or more machines that are configured
so that if one machine (or application) is interrupted, the second machine
assumes the workload of both machines. Each of these machines is called one
node of the high availability cluster. A high availability cluster is used in an
environment that must always be available, such as, a banking system to which
clients must connect continuously, 365 days a year.

The machines in Figure 3-1 are configured so that each machine can read the
other machine's disks, although not at the same time. (All of the disks that are
failed-over should be shared disks).

Figure 3-1: High availability cluster using failover

Using failover in high availability systems

66 Adaptive Server Enterprise ODBC Driver

For example, if Adaptive Server 1 is the primary companion server, and it
crashes, Adaptive Server 2, as the secondary companion server, reads its disks
(disks 1 - 4) and manages any databases on them until Adaptive Server 1 can
be rebooted. Any clients connected to Adaptive Server 1 are automatically
connected to Adaptive Server 2.

Failover allows Adaptive Server to work in a high availability cluster in
active-active or active-passive configuration.

During failover, clients connected to the primary companion using the failover
property automatically reestablish their network connections to the secondary
companion. Failover can be enabled by setting the connection property
HASession to “1” (default value is “0”). If this property is not set, the session
failover does not occur, even if the server is configured for failover. You also
must set SecondaryServer (the IP address or the machine name of the
secondary ASE server) and SecondaryPort (the port number of the secondary
ASE server) properties. See the ASE book, Using Sybase Failover in a High
Availability System, for information, about configuring your system for high
availability.

When the ASE ODBC driver detects a connection failure with the primary
ASE server, it first tries to reconnect to the primary. If it cannot reconnect, it
assumes that a failover has occurred. Then, it automatically tries to connect to
the secondary ASE server using the connection properties set in
SecondaryServer, and SecondaryPort.

Confirming a
successful failover

If a connection to the secondary server is established, the ASE ODBC Driver
returns SQL_ERROR for the function return code. To confirm a successful
failover, you should further examine the SQLState and NativeError for values of
“08S01” and “30130” respectively. The error message returned on such
failover is:

“Connection to Sybase server has been lost
, you have been successfully connected
to the next available HA server.
All active transactions have been rolled
back.”

You can access these values by calling SQLGetDiagRec on the
StatementHandle. Then, the client must reapply the failed transaction with the
new connection. If failover happens while a transaction is open, only changes
that were committed to the database before failover are retained.

CHAPTER 3 ASE Advanced Features

Users Guide 67

Verifying an
unsuccessful failover

If the connection to the secondary server is not established, the ASE ODBC
Driver returns SQL_ERROR for the function return code. To confirm that
failover did not occur, you should further examine the SQLState and
NativeError for values of “08S01” and “30131.” The error message returned on
an unsuccessful failover is:

“Connection to Sybase server has been lost,
connection to the next available HA server
also failed. All active transactions
have been rolled back”.

You can access these values by calling SQLGetDiagRec on the
StatementHandle.

The following shows how to code for a failover:

/* Declare required variables */
....
/* Open Database connection */
....
/* Perform a transaction */
...
/* Check return code and handle failover */
if(retcode == SQL_ERROR)
{

retcode = SQLGetDiagRec(stmt, 1,
sqlstate,&NativeError, errmsg,100, NULL);

if(retcode == SQL_SUCCESS ||
retcode == SQL_SUCCESS_WITH_INFO)

{
if(NativeError == 30130)
{
/* Successful failover retry transaction*/
...

}
else if (NativeError == 30131)
{

/* Failover failed. Return error */
...

}
}

}

Windows
The following describes how to use failover for Windows.

Using failover in high availability systems

68 Adaptive Server Enterprise ODBC Driver

❖ To use failover on Windows

1 Launch the ODBC DataSource Administrator.

2 Select the data source you want to use and choose Configure.

3 Click the Connection tab.

4 Select Enable High Availability in the High Availability Information
Group.

5 Provide the failover server name in the Server Name field.

6 Provide the failover server port in the Server Port field.

Linux
The following describes how to use failover on Linux.

If you are linking to the unixODBC Driver Manager, edit the data source
template and reinstall the data source using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the ASE ODBC data source
template file.

Note If you are directly linking to the ASE ODBC Driver, modify the odbc.ini
file.

Following is an example of the odbc.ini data source template file:

[sampledsn]
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
UserID=sa
Password=
Database=pubs2
HASession=1
SecondaryHost=failoverserver
SecondaryPort=5000

CHAPTER 3 ASE Advanced Features

Users Guide 69

Mac OS X

❖ To use failover on Mac OS X

1 Launch the iODBC Administrator from Applications | Utilities.

2 Select the data source you want to use and add three new keyword value
pairs:

HASession=1
SecondaryHost=failoverserver
SecondaryPort=5000

Enabling Kerberos authentication
Kerberos is an industry standard network authentication system that provides
simple login authentication as well as mutual login authentication. It is used for
single sign-on across various applications in extremely secure environments.
Instead of passing passwords around the network, a Kerberos server holds
encrypted versions of the passwords for users as well as available services.

In addition, Kerberos uses encryption to provide confidentiality and data
integrity.

Adaptive Server and the ASE ODBC driver provide support for Kerberos
connections. The ASE ODBC driver specifically supports MIT, CyberSafe,
and Active Directory (Key Distribution Centers, called KDCs).

Process overview
The Kerberos authentication process works as follows:

1 A client application requests a “ticket” from the Kerberos server to access
a specific service.

2 The Kerberos server returns the ticket, which contains two packets, to the
client: The first packet is encrypted using the user password. The second
packet is encrypted using the service password. Inside each of these
packets is a “session key.”

3 The client decrypts the user packet to get the session key.

Enabling Kerberos authentication

70 Adaptive Server Enterprise ODBC Driver

4 The client creates a new authentication packet and encrypts it using the
session key.

5 The client sends the authentication packet and the service packet to the
service.

6 The service decrypts the service packet to get the session key and decrypts
the authentication packet to get the user information.

7 The service compares the user information from the authentication packet
with the user information that was also contained in the service packet. If
the two match, the user has been authenticated.

8 The service creates a confirmation packet that contains service specific
information, as well as validation data contained in the authentication
packet.

9 The service encrypts this data with the session key and returns it to the
client.

10 The client uses the session key obtained from the user packet it received
from Kerberos to decrypt the packet and validates that the service is what
it claims to be.

In this way, the user and the service are mutually authenticated. All future
communication between the client and the service (in this case, the Adaptive
Server database server) will be encrypted using the session key. This
successfully protects all data sent between the service and client from
unwanted viewers.

Requirements
To use Kerberos as an authentication system, you must configure Adaptive
Server Enterprise to delegate authentication to Kerberos. See the Adaptive
Server Enterprise System Administration Guide for more information.

If Adaptive Server has been configured to use Kerberos, any client that
interacts with Adaptive Server must have a Kerberos client library installed.
This varies for operating system vendors, as follows:

• On Windows, the Active Directory client library comes installed with the
operating system.

• CyberSafe and MIT client libraries are available for Windows and Linux.

For additional information, refer to vendor documentation.

CHAPTER 3 ASE Advanced Features

Users Guide 71

Enabling Kerberos authentication
To enable Kerberos authentication for the ASE ODBC driver, add the
following connection properties:

AuthenticationClient=<one of 'mitkerberos'
or 'cybersafekerberos' or 'activedirectory'>
and ServerPrincipal=<ASE server name

where <ASE server name> is the logical name or the principal as configured
in the Key Distribution Center (KDC). The ASE ODBC driver will use this
information to negotiate Kerberos authentication with the configured KDC and
ASE server.

The Kerberos client libraries are compatible across various KDCs. For
example, on Linux you can set AuthenticationClient equal to mitkerberos, even
if your KDC is a Microsoft Active Directory.

If you want the Kerberos client to look for the Ticket Granting Ticket (TGT) in
another cache, you might want to specify the userprincipal property.

If you use SQLDriverConnect with the SQL_DRIVER_NOPROMPT,
ConnectString appears similar to the following:

"Driver=Adaptive Server Enterprise;UID=sa;
PWD='';Server=sampleserver;
Port=4100;Database=pubs2;
AuthenticationClient=mitkerberos;
ServerPrincipal=MANGO;”

Windows

❖ To enable Kerberos for Login Authentication on Windows

1 Start the Microsoft Windows ODBC Data Source administrator.

2 Select the Sybase Adaptive Server Enterprise ODBC Driver.

3 Select the User DSN/ System DSN tab and click the data source that you
would like to modify, or choose Add New Data Source.

4 On the Security tab, select Use Active Directory under the Kerberos
Authentication Client.

5 Enter the name of the server principal in the Server Principal edit box. This
name should match the name of the ASE server configured in the KDC.

Enabling Kerberos authentication

72 Adaptive Server Enterprise ODBC Driver

Linux

❖ To enable Kerberos for Login Authentication on Linux

If you are linking to the UNIX ODBC Driver Manager:

1 Open an existing data source, or create a new data source template.

2 Add the following to the data source template:

Authentication= mitkerberos
(or cybersafekerberos) ServerPrincipal=<MANGO>
to enable Kerberos Login Authentication.

where: <MANGO> is the name of the principal server used to authenticate
sign-ons.

3 Reinstall the data source using the odbcinst utility at the command line:

odbcinst -i-s -f ${datasourcetemplatefile}

If you are linking directly to the ASE ODBC Driver, modify the odbc.ini file
directly.

Following is an example of how the odbc.ini data source template file should
look after you modify it:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
AuthenticationClient=mitkerberos
ServerPrincipal=MANGO

Obtaining an initial ticket from the Key Distribution Center
To use Kerberos authentication, you must generate an initial ticket called
Ticket Granted Ticket (TGT) from the Key Distribution Center. The procedure
to obtain this ticket depends on the Kerberos libraries being used. For more
information, refer to the vendor documentation.

❖ To generate TGTs for the MIT Kerberos client library

1 Start the kinit utility at the command line:

CHAPTER 3 ASE Advanced Features

Users Guide 73

% kinit

2 Enter the kinit user name, such as your_name@YOUR.REALM.

3 Enter the password for your_name@YOUR.REALM, such as
my_password. When you enter your password, the kinit utility submits a
request to the Authentication Server for a Ticket Granting Ticket (TGT).

The password is used to compute a key, which in turn is used to decrypt
part of the response. The response contains the confirmation of the
request, as well as the session key. If you entered your password correctly,
you now have a TGT.

4 Verify that you have a TGT by entering the following at the command line:

% klist

The results of the klist command should be:

Ticket cache: /var/tmp/krb5cc_1234
Default principal: your_name@YOUR.REALM
Valid starting Expires Service principal
24-Jul-95 12:58:02 24-Jul-95 20:58:15 krbtgt/YOUR.REALM@YOUR.REALM

Explanation of results Ticket cache The ticket cache field tells you which file contains your
credentials cache.

Default principal The default principal is the login of the person who owns
the TGT (in this case, you).

Valid starting/Expires/Service principal The remainder of the output is a
list of your existing tickets. Because this is the first ticket you have requested,
there is only one ticket listed. The service principal
(krbtgt/YOUR.REALM@YOUR.REALM) shows that this ticket is a TGT. Note
that this ticket is good for approximately 8 hours.

mailto:your_name@YOUR.REALM
mailto:your_name@YOUR.REALM
mailto:your_name@YOUR.REALM
mailto:YOUR.REALM@YOUR.REALM
mailto:YOUR.REALM@YOUR.REALM

Enabling Kerberos authentication

74 Adaptive Server Enterprise ODBC Driver

Users Guide 75

A
advanced sample 23
allocating 8
authentication 69

B
bound parameters 13

C
certificate 62
CipherSuites 61
connecting to a data source 9
connection

establishing 10
how parameters work 32
introduction 31
setting attributes 12
strings 32
table of parameters 40
using parameters 40

connection functions 9
connection handle 7
conventions ix
cursor characteristics 17
cursor sample 18
cursors

choosing characteristics 17
updating and deleting rows 18

D
data

retrieving 18
data source

connecting to 9
connecting with 40
template 36

datatype mapping 26
datatypes

computed columns 28
large identifiers 29

descriptor handle 7
directly executing SQL statements 13
directory services 52

using 53
Distributed Transaction Manager (DTC) 49
DSURL 53

E
EncryptPassword 57
environment handle 7
error handling 25
establishing connections 10
executing

prepared statements 15
SQL statements 12
SQL statements directly 13
SQL statements with bound parameters 13

F
failover

on Linux 68
on Mac OS X 69
on Windows 67
using in high availability systems 65

H
handles 6

Index

Index

76 Adaptive Server Enterprise ODBC Driver

allocating 8
handling errors 25
handshake 60
help xi
high availability systems

using failover in 65

K
Kerberos 69

Linux 72
process overview 69
requirements 70
Windows 71

kinit utility 72

L
LDAP 52
Linux

failover on 68
Kerberos 72

M
Mac OS X

failover on 69

N
network authentication 69

O
ODBC

backward compatibiliity 3
conformance, conformance 2
driver manager 3
introduction 2

odbc.ini file 36

P
password encryption 57
prepared statements 15
process overview

Kerberos 69

R
related documents vii
requirements

Kerberos 70
result sets 17
retrieving data 18
return codes 25

S
samples

advanced 23
cursor 18
simple 18

Secure Sockets Layer (SSL)
enabling connections 63
in ASE ODBC Driver 62
using 60
validation 62

setting connections attributes 12
simple sample 18
SQL statements

executing 12
executing directly 13
executing prepared statements 15
executing with bound parameters 13

SSL see Secure Sockets Layer 60
statement handle 7
stored procedures

calling 23

T
threads 12
trusted roots file 63

Index

Users Guide 77

U
updating and deleting rows through a cursor 18

V
validation 62

W
Windows

failover on 67
Kerberos 71

Index

78 Adaptive Server Enterprise ODBC Driver

	Users Guide
	About This Book
	CHAPTER 1 Introduction to ODBC Programming
	Introduction to ODBC
	ODBC conformance
	ODBC Driver Manager
	Building applications using an ODBC Driver Manager
	Building applications without using an ODBC Driver Manager

	Using the ASE ODBC Driver samples
	Defining ODBC handles
	Allocating ODBC handles

	Connecting to a data source
	Choosing an ODBC connection function
	Establishing a connection
	Using threads and connections in ODBC applications

	Executing SQL statements
	Executing statements directly
	Executing statements with bound parameters
	Executing prepared statements

	Working with result sets
	Choosing cursor characteristics
	Retrieving data
	Updating and deleting rows through a cursor
	Using scrollable cursors
	Setting the UseCursor connection property
	Support for the Static Insensitive scrollable cursor
	Setting scrollable cursor attributes
	Executing scrollable cursors
	Looking at results
	Implicit setting of scrolling cursor attributes

	Calling stored procedures
	Handling errors
	Datatype mappings
	Using computed columns
	Using server-specified packet size
	Using Large Identifiers for database objects

	CHAPTER 2 Connecting to a Database
	Introduction to connections
	Installing ODBC MetaData stored procedures

	How connection parameters work
	Character sets
	Configuring the ASE ODBC Driver
	Windows
	Registering the ASE ODBC Driver on Windows
	Configuring a data source on Windows

	Linux
	Installing the ASE ODBC Driver on Linux
	Configuring a data source on Linux

	Mac OS X
	Manually configuring the ODBC Driver on Mac OS X
	Configuring a data source on Mac OS X

	ODBC ini files
	Windows
	Linux
	Mac OS X

	Connecting using a data source
	Using connection parameters

	CHAPTER 3 ASE Advanced Features
	Asynchronous execution for ODBC
	Supported Adaptive Server Cluster Edition features
	Login redirection
	Connection migration
	Connection failover in Cluster Edition
	Enabling Cluster Edition connection failover

	Using Distributed Transactions
	Programming for MS DTC
	Programming components deployed in Sybase EAServer, MTS, or COM+
	Connection properties for Distributed Transaction support

	Using directory services
	LDAP as a directory service
	Using directory services
	Enabling directory services
	Linux
	Mac OS X

	Bookmark and bulk support
	DSN Migration tool
	Using the Migration tool
	Conversion switches

	Using password encryption
	Windows
	Linux
	Mac OS X

	Password expiration handling
	Using SSL
	SSL security levels in ASE ODBC Driver
	Validating the server by its certificate
	Enabling SSL connections
	Windows
	Linux
	Mac OS X

	Using failover in high availability systems
	Windows
	Linux
	Mac OS X

	Enabling Kerberos authentication
	Process overview
	Requirements
	Enabling Kerberos authentication
	Windows
	Linux
	Obtaining an initial ticket from the Key Distribution Center

	Index

