
Performance and Tuning Guide

EAServer
6.0

DOCUMENT ID: DC20063-01-0600-01

LAST REVISED: July 2006

Copyright © 1997-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning Guide iii

About This Book ... ix

CHAPTER 1 Introduction ... 1
Determining factors .. 1

Response time .. 1
Scalability and throughput ... 2
Memory use... 3
Threading .. 4

Measurement and diagnosis tools ... 6
Instrumented code... 6
Profiling software... 7
Load-testing tools .. 7
Memory and CPU usage monitors .. 8
EAServer monitoring and tracing tools 8

The tuning process... 14

CHAPTER 2 Server Tuning .. 15
Threshold monitor settings ... 15

How threshold monitoring works ... 15
Configuring threshold monitoring for servers or listeners........ 18
Configuring threshold monitoring for components................... 18
Tuning response rate thresholds... 19

Thread settings .. 21
Thread stack size .. 21

Debug and trace settings ... 22
Java virtual machine tuning.. 22

CLASSPATH and BOOTCLASSPATH settings 22
Custom class lists.. 23
Java VM type and version ... 23
Just-in-time compilation... 24
JVM memory allocation parameters.. 24
Other Java VM settings and troubleshooting 26

Listener tuning.. 26

Contents

iv EAServer

HTTP thread pool size... 27
Connection request backlog pool size..................................... 27

Operating system settings.. 28
UNIX file descriptors.. 28
Per-process memory limits.. 28

Factors that affect start-up and shutdown time 29
Start-up performance .. 29
Shutdown performance ... 30

EAServer memory requirements.. 31

CHAPTER 3 Component Tuning.. 33
Common component performance issues 33

Tracing and debugging settings .. 33
Thread-related issues.. 33
Stateful versus stateless components..................................... 37
Instance pooling .. 38
Optimizing intercomponent calls ... 39
Using method results caching ... 39

Java/CORBA component performance.. 41
EJB component performance... 42

Optimizing in-server EJB calls... 42
Stateful session beans .. 43

C++ component performance .. 44
PowerBuilder component performance.. 44

Settings that affect system resource use 44
DataStore row height size ... 45
Web DataWindow settings .. 45

CHAPTER 4 EJB CMP Tuning.. 47
CMP tuning concepts and terminology .. 47

Concurrency control .. 47
Object and query caching.. 48
Just-in-time JDBC wrapper drivers.. 49
Logical isolation level .. 49

Ant configuration for CMP entity beans.. 50
Table and field mapping configuration 50
Finder and query method configuration................................... 51

Finding persistence bottlenecks... 52
Creating and tuning database tables ... 52
Configuring the logical isolation level ... 52
Tuning data source settings for CMP entity beans 53

Tune the data source pool size and database type................. 53
Use JIT JDBC wrapper drivers.. 53

Contents

Performance and Tuning Guide v

Automatic key generation settings ... 54
Java key type for beans that use automatic key generation ... 54
Configuring automatic key generation..................................... 55
Tuning settings related to automatic key generation............... 56

Configuring concurrency control options.. 56
Enabling PCC.. 57
Enabling OCC ... 57
Enabling automatic transaction retry 60
Using soft locking .. 61

Configuring object and query caching.. 62
Cache coherency and transaction consistency 62
Enabling object caching .. 63
Enabling query caching ... 64

CHAPTER 5 Web Application Tuning... 65
Tuning server and Web application settings 65

Tracing properties ... 65
Session timeouts ... 66
Class loader settings ... 66
Clustered deployments.. 66
HTTP and HTTPS listener configuration 67
SSL and performance ... 67

Tuning servlet and JSP settings and code..................................... 67
Use local interfaces for EJB calls .. 67
Threading .. 67
Preloading classes .. 68
JSP compilation options .. 68

Tuning distributed HTTP session settings...................................... 69
How it works .. 70

Understanding HTTP response caching options............................ 71
Servlet response caching .. 72

Dynamic response caching .. 73
Configuring response caching for servlets and JSPs.............. 74
Caching an entire tree ... 75
Changes from EAServer 5.x.. 76

Using partial response caching .. 76
Using the caching tag library ... 77
Using the caching API ... 79

Class CacheManager... 80
CacheManager.getInstance(ServletContext) 80
CacheManager.createCache(String)....................................... 80
CacheManager.getData(String, PageCacheKey) 80
CacheManager.putData(String, PageCacheKey, String, int) .. 81
CacheManager.flushCacheByKey(String, PageCacheKey).... 81

Contents

vi EAServer

CacheManager.flushCacheByScope(HttpServletRequest, String,
String) ... 82

CacheManager.getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int).................................... 83

CHAPTER 6 Database Access Tuning .. 85
Component design and implementation... 85

Keep transactions short... 85
Minimize result set size ... 86
Minimize use of two-phase commit ... 87
Clean up connections before releasing them to the data source .

87
Avoid unnecessary database work.. 88

Server and component transaction settings................................... 88
Stateful component idle timeout .. 88
Long transaction support... 89

Data source settings .. 89
Tuning the pool size .. 89
Remove unused data sources... 92
Data source ping ... 92
Using the caching APIs ... 93
Dynamic prepare on jConnect data sources 93
Database driver specific settings... 93

Database tuning ... 93
Transaction cross-reference logging.. 94

CHAPTER 7 Cluster Tuning ... 95
When to use clusters.. 95
Cluster partitioning ... 96
IIOP client settings for clustered applications 96

Socket timeout for Java clients.. 96
Idle connection timeout for C++ and PowerBuilder clients...... 97

Web application settings .. 97
Component settings ... 98

Automatic failover.. 98
Response and request logs... 98

CHAPTER 8 Message Service Tuning... 101
About the message service.. 101
Best practices for design and coding ... 101
Data source and database tuning .. 103
Queue and topic settings ... 104

Contents

Performance and Tuning Guide vii

Database storage and table names 104
In memory message limits and overflow handling................. 105
Idle timeout setting .. 105
Transient message storage... 106
Duplicate key detection ... 106
Queue and topic data compression....................................... 107
Abbreviated queue and topic identifiers 107

JMS connection factory settings .. 107
Using store-and-forward messaging .. 108
Message driven bean tuning .. 108

Index ... 109

Contents

viii EAServer

Performance and Tuning Guide ix

About This Book

Subject This book contains information about configuring server and application
settings to achieve the highest application performance. This book also
describes implementation and design issues that affect performance.

Audience This book is for advanced administrators and developers who are familiar
with the basics of EAServer administration, development, and
deployment.

How to use this book Chapter 1, “Introduction,” explains key performance concepts, describes
tools to test and measure performance, and provides techniques for
measuring performance and identifying areas where your tuning efforts
will have the greatest impact on overall performance.

Chapter 2, “Server Tuning,” describes how to configure server and system
settings for best performance. These settings affect all applications,
regardless of architecture.

Chapter 3, “Component Tuning,” describes business component settings
and coding practices that you can optimize for best performance. These
settings affect applications that call business components from the Web
tier or directly from base clients.

Chapter 4, “EJB CMP Tuning,” describes how to tune the settings in the
EAServer EJB CMP engine and EJB CMP component properties. These
settings affect applications that use EJB entity beans with container
managed persistence (CMP).

Chapter 5, “Web Application Tuning,” describes tuning and coding best
practices to create high performance Web sites hosted in EAServer. These
settings affect applications that serve static content with EAServer and
make use of servlets and JavaServer Pages (JSPs) deployed on EAServer.

Chapter 6, “Database Access Tuning,” describes how to tune data source
settings and the EAServer transaction manager, and provides coding best
practices for interacting with remote databases. These settings affect
applications that call remote database servers from business components,
servlets, or JSPs deployed on EAServer.

x EAServer

Chapter 7, “Cluster Tuning,” describes how to tune application settings and
code to obtain high performance and load balancing in a clustered (multi-
server) deployment.

Chapter 8, “Message Service Tuning,” describes how to configure the
messages service for maximum performance and explains best coding
practices for high performance use of the JMS or message service APIs.

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software installation and
on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based
configuration scripts to:

• Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder™ components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User’s Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User’s Guide describes how to create
Java Message Service (JMS) clients and components to send, publish, and
receive JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

 About This Book

Performance and Tuning Guide xi

The EAServer Performance and Tuning Guide (this book) describes how to
tune your server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

xii EAServer

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_5.2.eas
tg/html/eastg/title.htm.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ 6.0.5 driver to allow JDBC access to Sybase database servers and
gateways. The jConnect for JDBC 6.0.5 Programmer’s Reference is available
on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jconnjdbc_6.
05.prjdbc/html/prjdbc/title.htm&toc=/com.sybase.help.jconnjdbc_6.05/toc.xml.

Sybase Software Asset Management User’s Guide EAServer includes
the Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the Sybase Product Manuals Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.0/title.
htm.

Conventions The formatting conventions used in this manual are:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

 About This Book

Performance and Tuning Guide xiii

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com/nav/base.do.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

Formatting example To indicate

xiv EAServer

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

 About This Book

Performance and Tuning Guide xv

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xvi EAServer

Performance and Tuning Guide 1

C H A P T E R 1 Introduction

This document provides an overview of ways to improve performance for
EAServer applications. There are many variables involved for application
throughput and response times. In addition to tweaking the code in your
application for optimum performance, you can tune EAServer based on
application specifics as well.

This chapter describes key performance concepts, tools to test and
measure performance, and techniques for measuring performance and
identifying areas where your tuning efforts will have the greatest impact
on overall performance.

The recommendations in this book are general guidelines. Results vary
depending on the design of your application, hardware and network
configuration, and other factors. For best results, you should monitor and
measure performance as you fine-tune the configuration and application.

Determining factors
Several factors determine how well your application and server
configuration perform.

Response time
Response time is the time required to execute a specified task, for
example, to call an EJB method or submit a JSP form request. For end
users, response time provides the key measurement of performance.

Topic Page
Determining factors 1

Measurement and diagnosis tools 6

The tuning process 14

Determining factors

2 EAServer

In client-side coding, you can minimize perceived response time by displaying
partial results or status bars. However, in server-side coding, all you can do is
minimize the in-server response time to an acceptable level. It helps to break
down the response time into time spent in each component and subsystem.
Figure 1-1 illustrates the processing of a Web form request to a JSP that calls
an EJB component which in turn executes a remote database query. A
slowdown can occur in any of these components. When tuning, you must
isolate the part of your deployment that is causing the delay.

Figure 1-1: Response time breakdown

Scalability and throughput
Although a server configuration may perform well with a few users, response
times can increase as the number of connected users increases. Scalability is a
measure of how many simultaneous users your application and server
configuration can support under prescribed use patterns before response times
increase to unacceptable levels. Throughput is a measure of how many
operations the server or application can process in a given time period; for
example, database transactions per second or Web server page requests per
second.

EJB

Database

Network latency

JSP Processing

CHAPTER 1 Introduction

Performance and Tuning Guide 3

Throughput can be useful in comparing benchmark results for servers from
different vendors, but scalability is a more useful measurement for tuning a
given application deployment. You can directly measure the number of users
and response times. End users are usually more concerned about how quickly
their own work gets done than they are about overall server performance.

Memory use
Many performance optimizations in EAServer use caching: once created,
objects such as component instances and database server connections are
pooled for reuse, avoiding the overhead of re-creating the object. EAServer
also caches servlet responses and static HTTP pages to avoid the overhead of
running the servlet or reading files from disk, respectively. Caching reduces
response time at the expense of increased memory use.

To maximize the performance gain from caching, Sybase recommends you run
EAServer with as much memory as possible, from 1GB minimum for large
deployments up to the limit of the machine architecture (2-3GB on most 32-bit
address systems, since 1-2GB of a process's address space is reserved for use
by the operating system).

Common performance problems related to memory use include:

• Memory leaks A memory leak occurs when code creates dynamically
allocated objects but never releases them. In a Java or EJB component, you
must set object references to null to release the memory associated with
them. When using JDBC connections, you must release statement objects
before releasing connections back to the data source pool (see “Clean up
connections before releasing them to the data source” on page 87). Since
EAServer pools and reuses component instances and data sources, a
memory leak can slowly exhaust the available memory. You can diagnose
and find memory leaks using a profiling tool—see “Profiling software” on
page 7.

Determining factors

4 EAServer

• Swapping Most operating systems support some form of virtual
memory, which allows programs to address more memory than is
physically available on the machine. Excess memory is mapped to data
stored on disk. Swapping occurs when the system exchanges in-memory
data for data stored on disk. Swapping should be avoided since the
resulting disk I/O slows down the server. Memory leaks can cause
swapping. If you have eliminated memory leaks, you can avoid swapping
by ensuring that the machine has enough memory to support the EAServer
configuration, and by making sure the system’s per-process memory limit
allows the server to use all of it. If you cannot increase physical memory,
reduce the server’s memory requirements by adjusting the parameters
listed in “EAServer memory requirements” on page 31.

• Object churning Large, complex objects such as EJB components and
database connections can take considerable time to allocate and construct.
Object churning refers to repeated allocation and deallocation of the same
object. For components, use instance pooling to avoid this phenomena, as
described in “Instance pooling” on page 38. For database connections, use
a data source. You can cache objects of other types within your
component, servlet, or JSP class instance.

Threading
EAServer scales well, primarily through the use of native platform threads.
Threading allows multiple components to execute concurrently with a
minimum of context-switching overhead. Threading issues that affect
performance include:

• Number of threads You can tune the number of EAServer threads for
HTTP request handling. You can also assign thread monitors to
components to limit the number of threads the component can be active in.
More threads allow the server to handle more clients. However, if the
number is too high, you may experience thrashing, which occurs when
each thread gets so little execution time that more time is spent switching
the thread context than running threads. You can avoid thrashing by
reducing the number of threads, assigning thread monitors to components
that cause thrashing, adding CPUs to a multi-CPU machine, or moving to
a clustered EAServer deployment.

CHAPTER 1 Introduction

Performance and Tuning Guide 5

• Concurrency When different threads share data structures or resources,
you must synchronize their execution so that access to the shared data or
resource is serialized, that is, accessed by only one thread at a time. If
access to the shared object is not serialized, you can cause race conditions,
where overlapping modifications yield unpredictable results, often
causing a crash due to the resulting nonsense data or resource state.
However, excessive serialization can slow down the application by
creating bottlenecks where many threads idle waiting to acquire
synchronization locks. To avoid this problem, do not use design patterns
that require synchronized code. When objects must be shared across
threads, minimize synchronization and design carefully to avoid deadlock.

• Deadlock Deadlock occurs when two or more threads create recursive
lock dependencies and wait indefinitely for each other to release the locks
held. Figure 1-2 illustrates a deadlock scenario. Component 1 has locked
object A while component 2 holds locks on object B. Now component 1
waits for B to be released while component 2 waits for A to be released.

Figure 1-2: Deadlock example

Deadlock is an extreme problem that can hang the server or at least the
threads that are deadlocked. You can eliminate deadlock by carefully
designing and following a locking protocol that avoids recursive
dependencies when a component locks more than one object at once. For
example, to lock the two objects in Figure 1-2, always lock A before
locking B.

A

Component 1 Component 2

B

Measurement and diagnosis tools

6 EAServer

• Thread binding EAServer pools and reuses threads, allowing
component instances to run on any thread rather than being tied to the
same thread as a client connection or the thread that created the instance.
Since most client connections have significant idle time, thread pooling
allows fewer threads to serve more clients. However, if a component uses
thread-local storage, each component instance must be bound to the thread
that created it. Binding the thread significantly reduces scalability, since
the thread cannot be used to run other instances and sits idle when the
component is not running. For more information, see “Thread-related
issues” on page 33.

Measurement and diagnosis tools
There are several tools available to measure the performance of your code and
server configuration.

Instrumented code
In your code, add optional logic that you can enable to record timing
information. Measure the execution time for major tasks such as:

• Component business method entry and exit

• Entry and exit of JSP or servlet service invocations

• Calls to other components or EJBs

• Database command execution and result-set processing

• Requests for cached connections

• JNDI lookups that return EJB proxies or JDBC data sources

EAServer includes built-in support for profiling and tracing of EJB business
method invocations and Web component invocations—see “Component
profiling and tracing” on page 9.

CHAPTER 1 Introduction

Performance and Tuning Guide 7

In your own Java code, you can record timings by calling
System.currentTimeMillis(). Logging can degrade performance, so be sure to
encapsulate the timing code in logic that allows you or your administrators to
selectively enable tracing for areas where you are tuning. To allow
configuration of the log options, you can use Log4j or the Java Logging
package.

Profiling software
Profiling software measures the frequency of execution of each method or
function in your code. Some profilers can also break down the execution time
and memory use by each object.

EAServer includes built-in profiling support of public component methods—
see “Component profiling and tracing” on page 9. You can also use third-party
tools to gather profiling data for additional methods. Popular third-party
software option include:

• OptimizeIt, from Borland at http://www.borland.com/. For detailed
instructions on using OptimizeIt with EAServer, see Integrating OptimizeIt
in Sybase EAServer, on the Sybase Web site at
http://www.sybase.com/detail?id=1011357.

• JProbe, available from Quest Software at
http://www.quest.com/jprobe/index.asp.

Load-testing tools
Load-testing software simulates multiple clients, allowing you to replicate
real-world timings and server loads in your test environment. These tools
typically allow you to run multiple scripted HTTP client sessions that simulate
typical end user request patterns. Popular options include:

• OpenSTA, which is available on the Web at http://www.opensta.org/

• Segue silkperformer from Segue Software at http://www.segue.com

• Winrunner, Loadrunner, and other test tools from Mercury Interactive at
http://www.mercuryinteractive.com

• e-TEST and other tools from Empirix at http://www.empirix.com/

Measurement and diagnosis tools

8 EAServer

Load-testing strategies
When setting performance goals, you must also specify a usage pattern that
reflects real-world use of the application. For example, interactive users do not
usually submit one request per second. A catalog shopper may download a part
description, read it, download another, add it to the shopping cart, and so forth
before checking out. To get accurate performance results, you must set up your
test tools to mimic typical request patterns, including the “think time” between
subsequent requests.

Memory and CPU usage monitors
You can monitor memory and process CPU time using system tools such as top
on UNIX systems or the Task Manager or Performance Monitor on Windows.
Many profiling tools such as OptimizeIt track memory and can help you find
the source of memory leaks.

You can monitor memory usage of a running application server using the
Management Console, as described in “CheckMemoryUsageTask tab” in
Chapter 11, “Runtime Monitoring,” in the System Administration Guide. You
can also configure the server to log memory usage statistics hourly or per-
minute using the Dump60MinuteMemoryUsage or Dump60SecondMemoryUsage
scheduled tasks described in “Scheduled tasks for statistics collection” on page
9.

In server and listener properties, you can configure memory thresholds for each
server as described in “Threshold monitor settings” on page 15.

In Java code, you can log the amount of free memory reported by the methods
freeMemory() and totalMemory() in the java.lang.RunTime class to track total
memory use in the Java dynamic allocation heap.

EAServer monitoring and tracing tools
EAServer includes these monitoring and tracing tools.

Runtime monitoring with the Management Console

The Management Console includes a runtime monitor that shows component,
Web application, and data source statistics. For more information, see Chapter
11, “Runtime Monitoring,” in the System Administration Guide.

CHAPTER 1 Introduction

Performance and Tuning Guide 9

Scheduled tasks for statistics collection

EAServer provides several scheduled tasks to collect performance data,
including:

• Dump60MinuteMemoryUsage, which records memory usage statistics every hour

• Dump60MinuteStatistics, which records performance metrics every hour

• Dump60SecondMemoryUsage, which records memory usage statistics once per
minute

• Dump60SecondStatistics, which records performance metrics once per minute

• PbHeap_dumpSummary, which periodically records the PowerBuilder VM heap
manager memory usage

• SybHeap_dumpSummary, which periodically records the EAServer heap manager
memory usage

• TxRef, which logs a transaction cross reference—see “Transaction cross-
reference logging” on page 94.

EAServer logs memory usage statistics and transaction cross-reference
statistics to the server log file. The other tasks log data to files in the
logs/statistics EAServer subdirectory. These tasks are not enabled by default.
You must install them in the server’s scheduled task list as described in Chapter
3, “Using Scheduled Tasks,” in the Automated Configuration Guide.

Component profiling and tracing

EAServer generates profiling and tracing code for deployed business and Web
components.

Tracing is off by default and must be enabled in server properties and in the
code generation options for EJB or Web modules. To enable tracing in server
properties, configure the Enable EJB Trace and Enable Web Trace options in
the server properties as described in “Log/Trace tab” in Chapter 3, “Creating
and Configuring Servers,” in the System Administration Guide. To enable or
disable tracing for EJB and Web components, configure the following
properties in the user configuration script for the module:

• For EJB components, the ejb.enableTracing Ant property globally enables
or disables generation of tracing code for all components in the module.
To disable or enable for a specific component, override the <setProperties>
task for the component in the user-configuration script and set the nested
<tracePublicMethods> property. For example:

Measurement and diagnosis tools

10 EAServer

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<tracePublicMethods enable="true"/>
</setProperties>

</target>

• For Web components, the web.enableTracing Ant property globally
enables or disables generation of tracing code for all components in the
Web application. You can override the setting for individual Web
components using the same syntax shown above for EJB components.

To enable profiling of deployed components, you must enable generation of
profiling code and not disable statistics collection in the server properties.
Generation of profiling code is enabled by default in deployed components.
The following properties can be changed in the generated configuration scripts
to enable or disable generation of profiling code:

• For EJB components, the ejb.enableProfiling Ant property globally enables
or disables generation of profiling code for all components in the module.
To disable or enable for a specific component, override the <setProperties>
task for the component in the user-configuration script and set the nested
<profilePublicMethods> property. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<profilePublicMethods enable="true"/>
</setProperties>

</target>

• For Web components, the web.enableProfiling Ant property globally
enables or disables generation of profiling code for all components in the
Web application. You can override the setting for individual Web
components using the same syntax shown above for EJB components.

In server properties, the Disable Statistics (disableStatistics) property must be
false to allow collection of profiling statistics.

If you change the profiling or tracing settings for an EJB or Web module,
recompile the module and restart the server for the change to take affect. If you
change the server Disable Statistics, Enable Web Tracing, or Enable EJB
Tracing properties, restart the server for the change to take affect.

When tracing or profiling is enabled, you can view statistics in the Web console
or with a Web connection from your spreadsheet software. For more
information, see “Viewing server statistics” in Chapter 11, “Runtime
Monitoring,” the System Administration Guide.

CHAPTER 1 Introduction

Performance and Tuning Guide 11

Other trace-logging and statistics collection options

You can configure some EAServer subsystems to log trace data to the server
log file, including:

• Thread monitors, to log performance data for the components to which
you have assigned the monitor. See “Thread monitors” on page 35 for
more information. You can assign thread monitors that have no thread
limit to track the number of threads that a component is running on.

• Tracing of SQL commands run through a data source, enabled in server
properties. See “Log/Trace tab” in Chapter 3, “Creating and Configuring
Servers,” in the System Administration Guide.

• Tracing of JMS commands, enabled in server properties. See “Log/Trace
tab” in Chapter 3, “Creating and Configuring Servers,” in the System
Administration Guide.

Runtime monitoring APIs

EAServer includes several APIs that you can use to create your own
monitoring applications, including:

• Jaguar::Monitoring provides methods to monitor the server state, connected
users, and performance statistics such as the number of active and pooled
component instances.

• Jaguar::PerfMonitor provides performance statistics in a per-second, per-
minute, and per-hour bucket model for systems that have a statistics
provider component installed. EAServer includes statistics providers for
the connection caching and HTTP protocol handler subsystems. You can
implement additional statistics providers for your application code using
the Jaguar::StatProvider and Jaguar::StatProviderController interfaces.

• The logPerfManagerStats method in the Jaguar::Management interface
reports statistics for components and network listeners that have
monitoring thresholds configured for the EAServer Performance Monitor.
For an example program that calls this method, see “Obtaining
performance monitor statistics” on page 12.

For additional documentation of these APIs, see the generated HTML
reference documentation in the html/ir subdirectory of your EAServer
installation.

Measurement and diagnosis tools

12 EAServer

Obtaining performance monitor statistics

To obtain performance monitor statistics, call the logPerfManagerStats method
in the Jaguar/Management built in component. The code below is a sample
Java client program to call this method:

// PerfDump.java
// This program is supplied on as is basis
// without any guarantees.
// This Program is not guaranteed to by
// Sybase to produce required results
// any or all of the time.
//
// Usage: java PerfDump iiop://<hostname>:<iiop port#>

import org.omg.CORBA.*;
import SessionManager.*;
import com.sybase.jaguar.system.*;

public class PerfDump
{

public static void main(String[] str)
{

try {
java.util.Properties props = new java.util.Properties();
props.put("org.omg.CORBA.ORBClass", "com.sybase.CORBA.ORB");
ORB orb = ORB.init((String[])null,props);
Manager manager = ManagerHelper.narrow(orb.string_to_object(str[0

]));
Session session = manager.createSession("jagadmin","");
Management _mg = ManagementHelper.narrow(session.create("Jaguar/M

anagement"));
try {

_mg.logPerfManagerStats();
}catch (Exception ex)
{

ex.printStackTrace();
}

}catch (Throwable th)
{

th.printStackTrace();
}
System.out.println("Now Refer to EAServer's Log file for Performance

Monitor Information");
}

}

CHAPTER 1 Introduction

Performance and Tuning Guide 13

EAServer writes statistics to the server log file. These include statistics for each
component and stack traces for each thread. Statistics for each component
include the component name, number of current active instances, number of
instances waiting to execute and average response time. A response time value
of -1.00 indicates that the component is not being monitored. Here is example
output:

Apr 15 20:45:32 2004: [0000004692] ******** PERFORMANCE MONITOR STATISTICS START

Apr 15 20:45:32 2004: [0000004692] Name Active Waiting
Response
Apr 15 20:45:32 2004: [0000004692] Instances Instances
Time
Apr 15 20:45:32 2004: [0000004692] ---

Apr 15 20:45:32 2004: [0000004692] CosNaming/JNameService 00000 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] Jaguar/HttpStatProviderCon 00000 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] JaguarOTS/OtsService 00000 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] CtsComponents/MessageServi 00032 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] ---

The stack trace listing shows the execution stack for each thread. When you
suspect a deadlock condition, the stack shows which entity is being blocked
and the calling sequence that caused the block. As show in the stack trace
below, the ***BLOCKED*** token is printed when the entity execution is
blocked. In this example, the call is blocked when trying to execute the
j2eebookstore/customer component. The stack sequence indicates that this
component is recursive: j2eebookstore/customer has called
j2eebookstore/customer. Also from the stack it is evident that the client is
connected to the port defined by Jaguar_iiop listener:

Apr 15 20:45:32 2004: [0000004692] *************STACK TRACES START

Apr 15 20:45:32 2004: [0000004692] Thread:134938976
Apr 15 20:45:32 2004: [0000004692] CtsComponents/MessageService
Apr 15 20:45:32 2004: [0000004692] CtsComponents/MessageThread
Apr 15 20:45:32 2004: [0000004692] ---
Apr 15 20:45:32 2004: [0000004692] Thread:134642792
Apr 15 20:45:32 2004: [0000004692] *******BLOCKED*******
Apr 15 20:45:32 2004: [0000004692] j2eebookstore/customer
Apr 15 20:45:32 2004: [0000004692] j2eebookstore/customer

The tuning process

14 EAServer

Apr 15 20:45:32 2004: [0000004692] Jaguar_iiop
Apr 15 20:45:32 2004: [0000004692] ---

The tuning process
Tuning requires extensive testing to isolate bottlenecks and fix them. You must
be systematic and test each potential fix as it is applied. Trying to fix multiple
issues at once may introduce new problems. Use the tools described in this
chapter to test and tune as described below.

❖ The tuning process

1 Load test under expected peak load conditions, using a tool configured to
mimic the typical request timings expected in production.

2 Find and fix any memory leaks and deadlocks. These problems may be
discovered now if you have not load-tested before.

3 Identify problem areas in your code or configuration.

4 Focus efforts on tuning the relevant EAServer settings or application code.
After each code or configuration change, repeat your functional tests to
verify that the application still returns correct results, then repeat the
performance test to check for improvement.

Try to identify where your tuning efforts will yield maximum gain. If
tuning business logic or Web components, focus on the components and
methods that are invoked most often. For example, it is better to shave 100
milliseconds from a method that is called twice a second than to shave 1
second from a method that is called once a minute. The latter optimization
saves 60 seconds an hour, while the former saves 720.

Performance and Tuning Guide 15

C H A P T E R 2 Server Tuning

This chapter describes how to tune server, Java virtual machine, and
system properties for the best server performance.

Threshold monitor settings
EAServer provides threshold-based memory and response time
monitoring to prevent degradation of server performance under extreme
load conditions. You can configure these settings to heuristically govern
the processing requests to prevent performance degradation due to
overuse of available resources.

How threshold monitoring works
Ideally, an applications request rate relates linearly to response rate as
shown in Figure 2-1.

Topic Page
Threshold monitor settings 15

Thread settings 21

Debug and trace settings 22

Java virtual machine tuning 22

Listener tuning 26

Operating system settings 28

Factors that affect start-up and shutdown time 29

EAServer memory requirements 31

Threshold monitor settings

16 EAServer

However, performance of any application depends on availability of resources
like CPU, memory, network connections, and swap space. These resources are
limited, and when they are exhausted, the response rate degrades. Due to
resource limits, the response rate is expected to level off when the number of
incoming requests reaches the point where resources are exhausted, as shown
in Figure 2-2. However, in practice, an unlimited increase in incoming requests
can cause performance to degrade; the response rate can drop in this case. In
extreme cases, the application may run out of memory and abend or hang.

Figure 2-1: Ideal response rate curve

CHAPTER 2 Server Tuning

Performance and Tuning Guide 17

Figure 2-2: Expected response rate curve

Threshold monitoring allows you to configure the system to operate at a
constant response rate and avoid out-of-memory conditions under high load
conditions. EAServer uses these algorithms to heuristically govern the request
rate when high load conditions are detected:

• Memory monitoring You can configure thresholds for memory usage.
EAServer monitors the memory used and throttles external requests when
the critical threshold is reached.

• Response time monitoring You can configure expected average
response times for network requests and component method invocations.
EAServer keeps a running average of the actual response time, and
throttles handling of new requests when the average response time rises
above the configured threshold. When the average response time drops
below the threshold, the throttle is removed.

Threshold monitoring requires associating a thread monitor with the
performance constraint to be monitored. Under stress conditions, the thread
monitors Maximum Active Threads property throttles the load. When the
performance threshold is crossed, new client requests must acquire the thread
monitor before proceeding. If the thread monitor has no available threads, the
request blocks temporarily until a thread is available. You can modify the
thread monitor’s Maximum Active Threads property to tune the response rate
curve.

Threshold monitor settings

18 EAServer

Configuring threshold monitoring for servers or listeners
In server properties, or the properties for each listener, you can configure
threshold monitors to queue handling of new requests when a response-time or
memory-limit threshold is reached. For example, you can specify that when
90% of available memory is consumed, new requests must acquire the
“memory” thread monitor before proceeding.

In the Management Console, configure the threshold monitoring properties on
the Monitors tab of the server properties pages, or on the Performance tab of
the listener properties pages. For details, see “Monitors tab” in Chapter 3,
“Creating and Configuring Servers,” in the System Administration Guide.

To be effective, threshold monitoring requires thread monitors with fixed limits
on the Maximum Active Threads setting. The default thread monitor for
response-time threshold monitoring is “performance.” The default for memory
threshold monitoring is “memory.” To configure thread monitors, follow the
instructions in “Monitoring threads” in Chapter 3, “Creating and Configuring
Servers,” in the System Administration Guide.

Configuring threshold monitoring for components
You can configure response-time monitoring for EJB, CORBA, PowerBuilder,
and Web components.

For components, threshold monitoring requires a thread monitor with a hard
thread limit. When the response-time threshold is reached, subsequent calls to
the component must acquire the thread monitor before proceeding. After the
average response time drops below the threshold, new invocations are allowed
to proceed normally. To define a thread monitor, follow the instructions in
“Monitoring threads” in Chapter 3, “Creating and Configuring Servers,” in the
System Administration Guide. Set the thread limit to a low number, for example
10. You can also define the thread monitor in an Ant configuration file, for
example:

<project name="MyThreadMonitor">
<import file="ant-config-tasks.xml"/>
<target name="configure">
<setProperties threadMonitor="MyThreadMonitor">

<property name="maximumActiveThreads" value="10"/>
</setProperties>

</target>
</project>

CHAPTER 2 Server Tuning

Performance and Tuning Guide 19

After you have defined a thread monitor, threshold monitoring can be applied
with the <performanceMonitor> Ant command run inside the <setProperties>
task. For example:

<setProperties component="ejb.components.myjar.MyCompRemote">
<performanceMonitor maxResponseTime="5000" threadMonitor="MyMonitor"/>

</setProperties>

The maxResponseTime value specifies the maximum allowed response time in
milliseconds. The threadMonitor value specifies the thread monitor that
must be acquired by new requests when the average response time exceeds the
maximum. The component value specifies the name of the DJC component
that runs the application component that you want to monitor. Set this
depending on the application component type, as follows:

• For enterprise JavaBeans components, specify the DJC component that
corresponds to the remote or local interface. If configuring an entity bean
with finder methods that perform heavy processing, consider applying the
same performanceMonitor configuration to the DJC component that
corresponds to the home interface. You can read the DJC component
names from the EJB module’s Ant configuration file that was generated by
deployment.

• For CORBA and PowerBuilder components, specify the DJC component
that corresponds to the remote interface of the EJB session bean that wraps
your component. This name is
ejb.components.package.componentRemote, where package is the
CORBA package name, and component is the component name.

• For Web components, specify the DJC component that corresponds to the
servlet or JSP that the settings apply to. You can read the DJC component
names from the Web application’s Ant configuration file that was
generated by deployment.

Tuning response rate thresholds
Tune the response rate threshold settings when your performance testing
indicates a severe degradation of server performance under load. When tuning,
consider the following:

• Deciding where to apply the settings You can apply response time
thresholds to components, servers, or listeners. Choose the entity that has
the greatest affect on client load and that has the least unintended effects
on other applications running in the same server. For example:

Threshold monitor settings

20 EAServer

• Apply memory-threshold settings to the server to govern all client
requests, regardless of type.

• If the application front end is a Web application, you can apply
response-time or memory-threshold settings to your HTTP listener
since all client requests pass through it.

• If clients connect to EJB session beans, apply the settings to the
session bean components or the IIOP listener, so that the number of
session bean instances governs the applied load.

• If a component accesses a database, and the client load tends to
overwhelm the database, apply a response-time threshold to this
component to throttle the database load to manageable levels. (You
could also tune the data source size as described in “Data source
settings” on page 89.)

 Warning! When applying response rate thresholds to components, some
configurations can introduce the possibility of deadlock—see “Avoiding
deadlock scenarios” on page 20.

• Choosing a response time threshold Use performance testing under
controlled client loads to determine a realistic value for response times
under high load conditions. Apply this setting as the allowable Maximum
Response Time for the component or listener. This setting prevents
response times from growing exponentially under worst-case load
conditions; it does not make the server run faster.

Avoiding deadlock scenarios

When you apply response time thresholds to components, the server may
deadlock if the thread monitors used do not allow nesting.

The thread monitor Allow Nesting (allowNesting) property specifies whether
thread monitor limits are applied when a thread already holds another monitor.
For example, if a thread has already acquired monitor A, nesting allows the
thread to acquire monitor B even if B's usage level is above the maximum.
Nesting is allowed by default.

Allowing nesting prevents deadlock. Deadlock may occur in some
intercomponent call scenarios if you disable thread monitor nesting for the
thread monitor used in response-time threshold monitoring. If you suspect your
components may be deadlocked due to response-time monitoring, analyze the
stack traces in the performance monitor statistics.

CHAPTER 2 Server Tuning

Performance and Tuning Guide 21

Thread settings
The server threading properties affect the number of clients that can be served
simultaneously and the memory used by each executing thread. In addition to
the properties discussed below, you can also configure the size of the thread
pool for HTTP request handling in listener properties—see “HTTP thread pool
size” on page 27.

Thread stack size
In EAServer, the thread stack size property determines the amount of memory
reserved for the call stack associated with each thread. The stack size must be
sufficient to allow for nested intercomponent calls. However, if the stack size
is too large, memory is wasted.

The default stack size is 256K on UNIX and on 32-bit Windows operating
systems. This is appropriate for almost all situations, and provides adequate
reserve memory for the largest case loads that have been tested by Sybase
engineering and customers.

For production servers that see heavy use from large numbers of clients, you
may want to decrease the stack size from the default value. Doing so can make
the per-thread stack memory available for other uses. However, you must first
run load tests on a test server to ensure that the stack size is adequate for the
components running on the server. If the stack size is too small, client requests
may fail with thread stack overflow errors, which are recorded in the server log.

Sybase recommends that you do not reduce the stack size if you run:

• Components that call third-party DLLs or shared libraries

• Java components that call native classes (including JDBC drivers that call
out to native libraries)

In EAServer, the thread stack size is a Java virtual machine startup option. You
can configure it as described in “JVM memory allocation parameters” on page
24.

Debug and trace settings

22 EAServer

Debug and trace settings
While useful for diagnosing configuration or code problems, debug and trace
properties can reduce application performance when data is logged needlessly.
Disable any debug or tracing properties unless you are actively diagnosing a
related problem.

Java virtual machine tuning
These settings tune the Java virtual machine (JVM) that runs Java code in the
server. These settings have a large effect on applications that are implemented
with Java, EJB, or Web components. Since many of the server internal
components are implemented in Java, these settings have some effect on
applications that are implemented in other languages such as PowerBuilder.

CLASSPATH and BOOTCLASSPATH settings
Check the CLASSPATH and BOOTCLASSPATH for the server to ensure that
they does not include unnecessary entries. You can check the runtime values in
the server log file.

The server start scripts assemble the CLASSPATH from the required files in
the EAServer installation and existing settings from your environment. The
scripts then set BOOTCLASSPATH to include the CLASSPATH settings.

You can set these variables in the bin\local-setenv.bat file (for Windows
platforms) or bin/local-setenv.sh script (for UNIX platforms). Create the file if
it does not already exist. If you require no additional CLASSPATH or
BOOTCLASSPATH entries, unset these variables. Otherwise, set them to
include the minimum required settings.

CHAPTER 2 Server Tuning

Performance and Tuning Guide 23

Custom class lists
EAServer uses custom Java class loaders to allow refreshing the Web
application classes and Java components, and to load classes from directories
and JAR files that are not specified in the CLASSPATH environment variable.
During the development cycle, this feature allows you to add or modify classes
without restarting the server. However, duplicates in the custom class list for
different components can waste memory by loading duplicate class instances.
Chapter 10, “Configuring Java Class Loaders,” in the System Administration
Guide describes how to configure common class lists for components and Web
applications.

Java VM type and version
EAServer supports multile JDK versions, and each JDK version can support
multiple VM types such as Server Hotspot, Client Hotspot, and Classic. You
specify the JDK version and VM type when starting the server, or for servers
that run as Windows services, with the command that you run to install the
service. For details, see “Starting the server” in the EAServer System
Administration Guide.

As a general rule, you should use the Server Hotspot VM in the latest supported
JDK version. However, always consult the EAServer Release Bulletin for your
platform for updated recommendations. For more information on Java Hotspot
technology, see the Sun Microsystems white paper Java HotSpot Performance
Engine Architecture at http://java.sun.com/products/hotspot/whitepaper.html.

Some applications may run significantly faster if compiled and run with JDK
1.5. JDK 1.5 provides the StringBuilder class as a faster alternative to
StringBuffer. JSPs and other code that makes extensive use of string
concatenation can run faster in JDK 1.5 due to the use of StringBuilder. To
realize the performance benefits of JDK 1.5, you must compile your
applications with JDK 1.5, and specify the -jdk15 option when deploying
them to EAServer. For more information on deploying, see the deploy
reference page in Chapter 12, “Command Line Tools,” in the System
Administration Guide.

Java virtual machine tuning

24 EAServer

Switching back to JDK 1.4 from JDK 1.5
Classes compiled with JDK 1.5 cannot be run in JDK 1.4 or earlier JDK
versions. Since EAServer generates new classes for deployed applications,
applications deployed with JDK 1.5 may not run if the server is restarted with
JDK 1.4. To switch back to JDK 1.4 from JDK 1.5, undeploy and redeploy any
applications that were deployed to the server running in JDK 1.5. Applications
deployed to JDK 1.4 must also be compiled with JDK 1.4 (or with JDK 1.5
while specifying JDK 1.4 compatiblity with the -source 1.4 option to javac).

Just-in-time compilation
The Java just-in-time (JIT) compiler converts Java bytecode into native
machine code, which can run much faster than the interpreted bytecode. The
JIT compiler is enabled by default.

JVM memory allocation parameters
The Java virtual machine uses its heap storage for dynamic allocation memory.
In addition, each thread requires reserved memory for the stack used to pass
method parameters. These parameters must be configured in the Java virtual
machine startup options.

Table 2-1 describes the JVM memory allocation options. Configure these
parameters for the server by setting the indicated environment variables in the
bin\local-setenv.bat file (for Windows platforms) or bin/local-setenv.sh script
(for UNIX platforms).

Table 2-1: JVM memory allocation parameters

Parameter Description

-XmxMaxHeap Specifies the maximum heap size. MaxHeap is the
heap size value specified using the syntax in Table 2-
2. The JVM reserves this much memory at start-up.
The memory used for object allocation cannot
exceed this amount. If the heap size is exceeded, you
see request failures accompanied by
java.lang.OutOfMemoryError errors in the error log.

To set this property, set the DJC_JVM_MAXHEAP
environment variable to the heap size value specified
using the syntax in Table 2-2.

CHAPTER 2 Server Tuning

Performance and Tuning Guide 25

The optimum heap size depends on your application and machine
configuration. To tune the value, first verify that you have removed any
memory leaks from your own code. Then test under expected peak load
conditions to determine the minimum size that allows the application to run
without errors. If the heap size is too large, it uses memory that could otherwise
be used for the call stack required to run each thread. Large heap sizes can also
incur a larger delay when the Java garbage collector runs. Never set the heap
size larger than the machine’s physical memory; if you do, the system will
swap memory to disk. Set the minimum and maximum sizes to equal values,
specified in bytes, kilobytes, or megabytes, as described in Table 2-2.

Table 2-2: Syntax for Java heap size values

-XmsMinHeap Specifies the minimum, or initial heap size. MinHeap
is the heap size value specified using the syntax in
Table 2-2. While the maximum size is reserved at
start-up, only the minimum size is monitored and
allocated from by the JVM.

On production servers, set this value to the same size as the
maximum heap size. The maximum heap size is reserved
at server start-up regardless of the minimum size, and using
equal sizes avoids the CPU overhead of dynamically
growing the heap.

To set this property, set the DJC_JVM_MINHEAP
environment variable to the heap size value specified
using the syntax in Table 2-2.

-XssStackSize Configures the stack size for Java threads. StackSize is
the amount of virtual memory reserved for the stack
of each Java thread. To set this property, add it to the
Java Startup Options server property in the
Management Console (or the javaStartupOptions
property if using Ant configuration); this property
specifies other JVM startup options as they are passed on
the Java command line.

Parameter Description

Heap size value syntax To indicate
nM

or

nm

n megabytes, for example:

512M

nK

or

nk

n kilobytes, for example:

1024K

Listener tuning

26 EAServer

Set the Java thread stack size to the smallest value that still allows the
application to run. Usual values are 256K or 512K for the applications used for
internal stress testing at Sybase. Most applications should never require more
than 1Mb. The stack must be large enough to accommodate parameters passed
in component dispatcher and intercomponent calls. However, if the value is too
high, it limits the maximum number of threads that can be spawned. To run N
threads, there must at least N x StackSize of free memory available.

Other Java VM settings and troubleshooting
You can configure additional Java VM options by adding them to the Java
Startup Options server property in the Management Console (or the
javaStartupOptions server property if using Ant configuration). This property
specifies other JVM startup options as they are passed on the Java command line.

Alternatively, add Java startup options to the value of the
DJC_USER_JVM_ARGS environment variable. Set this environment variable
in the bin\local-setenv.bat file (for Windows platforms) or bin/local-setenv.sh
script (for UNIX platforms).

To verify the Java VM options, check the server log file. The server logs all the
options at start-up, including those that are configured internally and by the
heap size settings discussed above.

Listener tuning
EAServer includes several preconfigured listeners, described in
“Preconfigured listeners” in the EAServer System Administration Guide.
Remove any listeners that you do not need. For example, if your application
does not need to support RMI clients or SSL clients, remove these listeners.
Unused listeners waste memory and network resources.

n n bytes, for example:

536870912

Heap size value syntax To indicate

CHAPTER 2 Server Tuning

Performance and Tuning Guide 27

HTTP thread pool size
For HTTP listeners, the Maximum Threads property specifies the size of the
thread pool used to run HTTP requests. This number can be less than the
number of client connections. EAServer runs an HTTP requests > by pulling a
thread from the pool to run the request. This happens when too many clients try
to send requests at the same time. The default setting of -1 indicates that the
thread pool size is the default of 256.

This setting does not apply to listeners for other network protocols.

 If the thread pool is too small, you may see [SocketListener] LOW ON >
THREADS errors in the log. To determine how many HTTP threads are required,
check the request pattern in the request log for indications of a heavily loaded
server. Adjust the maximum thread setting as necessary. Ideally, this setting
should be 10 – 20% more than the number of simultaneous HTTP requests that
you expect to handle. (The additional threads accommodate the use of threads
in Web browsers to submit simultaneous requests for images and text). A value
that is too low can increase HTTP response time by causing requests to block
while waiting for a thread. A value that is too high wastes available threads that
could be used for other purposes.

Connection request backlog pool size
You can configure the size of the pool used to handle outstanding connection
requests as the Listen Back Log setting in the Management Console Listener
Properties pages. If using Ant configuration, set the listenBackLog property for
the socketListener entity. If this property is not set, the default is 10.

When the server is very busy, all available threads may be in use when a
connect request arrives. These pending connect requests are pooled until they
can be handled. If the pool size is too small, client connection requests may
time out before the server can handle the request.

You can configure different request pool sizes for different protocols. For
example, if the server is handling mostly HTTP requests, you can increase the
request pool size for the HTTP listener while leaving the IIOP request pool size
at a low value.

The connection request pool size affects the server memory requirements:

mem = entries * 20K

That is, each entry requires about 20K of memory reserved at server start-up.

Operating system settings

28 EAServer

Operating system settings
These operating system settings can affect EAServer performance. For
additional information on system requirements, see the EAServer Release
Bulletin for your platform.

UNIX file descriptors
On UNIX, concurrent client connections to EAServer are limited by the
operating system limit for the number of file descriptors that can be opened in
one process. Before you start the server, set the file descriptor limit in the shell
where you will start the server as follows:

1 Use a text editor to open the bin/local-setenv.sh file. Create this file if it
does not exist.

2 Add the following line to specify the number of descriptors:

ulimit -n NNNN

Where NNNN is the number of descriptors. See your UNIX documentation for
more details on the ulimit command. On some systems you may need to also
adjust the system-wide limit. For example, to use more than 1024 descriptors
on Solaris, you must modify the /etc/system file and modify the rlim_fd_max
setting, for example:

set rlim_fd_max = 4096

Per-process memory limits
On some systems, the default configuration limits the memory available to the
server. You may need to raise the limit to make best use of memory intensive
features such as caching or a large Java heap. For more information, see:

• Your operating system documentation for details on per-process limits

• “EAServer memory requirements” on page 31

• For AIX systems, the Sybase technical document Configuring Memory
Parameters on AIX for EAServer at
http://www.sybase.com/detail?id=1024625

CHAPTER 2 Server Tuning

Performance and Tuning Guide 29

Factors that affect start-up and shutdown time
These settings affect how long it takes to shut down and restart the server.

Start-up performance
These settings affect how long it takes the server to start, that is, the time
between starting the process and when the server is ready to accept
connections:

• Message service initialization If you are running the message service,
it must initialize before the server can accept connections. At start-up, the
message service reads unprocessed persistent messages into the in-
memory cache. A large message backlog can delay server start-up.

• Service components and scheduled tasks All service components
must return from their start methods before EAServer accepts client
connections. Scheduled tasks that run at startup must also complete.
Lengthy processing in the service start method or in a scheduled task can
delay server start-up. For more information, see Chapter 3, “Using
Scheduled Tasks,” and Chapter 4, “Creating Service Components,” in the
Automated Configuration Guide.

• Modules loaded at start-up To run in a server, Web and EJB modules
must be installed in the server’s start modules list. To speed up server
startup, remove modules that you are not using by configuring the
Modules tab settings in the server property pages in the Management
Console. For details, see “Modules tab” in Chapter 3, “Creating and
Configuring Servers,” in the System Administration Guide.

If you do not use the Management Console, that is, you do all
configuration with Ant, you can remove the Management Console from
the server’s start module list by including application-console in the setting
of the server systemExcludeModules property. For example:

<project name="MyApplicationServer">
<import file="ant-config-tasks.xml"/>
<target name="configure">

<setProperties applicationServer="MyApplicationServer">
<property name="systemExcludeModules"

value="application-console"/>
</setProperties>

</target>
</project>

Factors that affect start-up and shutdown time

30 EAServer

• JSPs loaded at start-up JSPs that are configured to load at start-up are
compiled if necessary. Compilation of many JSPs can delay start-up. If
you define all JSPs that need to be precompiled with their own “servlet”
elements in your web.xml files, you can precompile them when deploying
to EAServer. Otherwise, precompile them using the jagtool compilejsp
command.

• Servlets loaded at start-up Servlets that are configured to load at start-
up must return from their init method before the server continues. Lengthy
processing in this method can delay start-up. (If the servlet does not load
at start-up, lengthy processing in this method can delay the response to the
first client request).

Shutdown performance
These settings affect how long it takes the server to shut down.

Pooled component destruction

EAServer explicitly destroys pooled component instances before the server
shuts down. This allows you to perform cleanup operations in your component,
such as closing database connections.

Servlet destruction

EAServer calls each servlet’s destroy method before shutting down or after you
have refreshed or stopped the servlet using the Management Console. If service
calls are still active, the servlet is not destroyed until they complete.

The Destroy Timeout setting specifies the number of seconds that the server
should wait for the service calls to return before calling the destroy method. The
default behavior specifies that the server wait indefinitely for service calls to
return.

CHAPTER 2 Server Tuning

Performance and Tuning Guide 31

EAServer memory requirements
The following configuration settings affect EAServer’s memory requirements.
While exact memory requirements depend on your component and servlet
implementations, this list tells you what options you can tune to affect the
server’s memory footprint:

• Java heap sizes The Java Virtual Machine (JVM) that EAServer uses
to run Java code has parameters to size its dynamic memory allocation
heap. For more information, see “JVM memory allocation parameters” on
page 24.

• The number of threads and thread stack size Each thread requires a
small amount of reserved memory to store the stack for code running in
the thread. “JVM memory allocation parameters” on page 24 describes
how to configure the thread stack size.

• HTTP response cache sizes EAServer supports several forms of
HTTP response caching. For more information, see “Understanding
HTTP response caching options” on page 71.

• Entity bean instance and query caching EAServer can cache instance
data and finder-method results for EJB-CMP entity beans. See
“Configuring object and query caching” on page 62 for more information.

• Data source pool sizes You can configure the number of connections
stored in each cache as described in “Tuning the pool size” on page 89.

• Component instance pool sizes You can configure the pool size for
component instances as described in “Instance pooling” on page 38. The
memory required for each instance depends on your implementation.

• Custom class lists EAServer uses custom Java class loaders to allow
you to refresh the Web application classes and Java components, and to
load classes from directories and JAR files that are not specified in the
CLASSPATH environment variable. During the development cycle, this
feature allows you to add or modify classes without restarting the server.
However, duplicate entries in the custom class lists for different
components waste memory by loading duplicate class instances. Chapter
10, “Configuring Java Class Loaders,” in the System Administration
Guide describes how to configure common class lists for components and
Web applications.

EAServer memory requirements

32 EAServer

• Use of the hot refresh feature Refreshing PowerBuilder and C++
components loads additional copies of the implementation classes.
EAServer leaves the previous implementation in memory for use by
existing client sessions. For this reason, it is best to restart your production
server after deploying a large number of PowerBuilder or C++ component
updates. If you have a maintenance window when the server can be
restarted, redeploy your changed code at this time to allow a restart of the
server. When you do refresh, do so at the lowest level possible. For
example, if you modified a component, refresh the package that it is
installed in rather than the whole server.

Performance and Tuning Guide 33

C H A P T E R 3 Component Tuning

Common component performance issues
These recommendations apply to all components, regardless of their type.
Follow these suggestions for every component, in addition to the ones
provided for specific component types.

Tracing and debugging settings
Tracing properties enable additional logging, which can be useful when
debugging problems. However, tracing requires additional file I/O and
computation. For best performance, disable all tracing and debugging
properties.

Thread-related issues
EAServer is scalable because it is multithreaded and multiprocessor-safe,
using a thread pooling model to run components invoked from the Web
tier. Ideally, a component:

• Supports thread pooling, to run on any thread rather than being tied to
the same thread as a client connection. Since most client connections
have significant idle time, thread pooling allows fewer threads to
serve more clients.

Topic Page
Common component performance issues 33
Java/CORBA component performance 41
EJB component performance 42
C++ component performance 44
PowerBuilder component performance 44

Common component performance issues

34 EAServer

• Supports concurrent execution, allowing multiple instances of the
implementation class to be invoked simultaneously to service different
clients.

These settings affect the threaded execution of your component.

Bind thread

For CORBA and PowerBuilder components, the Bind Thread option specifies
whether component instances must be bound to the thread that creates the
instance.

This option decreases scalability. Twice as many threads are needed to run the
component, since each instance requires the client thread plus another thread
bound to the component. Also, while the thread is bound to the instance, it
cannot be pooled and used to service requests involving other components.

Enable this option only for PowerBuilder components if required (see
“PowerBuilder component performance” on page 44) and CORBA/Java and
CORBA/C++ components that use thread-local storage. Otherwise, disable
this feature so EAServer can run the component on any available thread.

Enterprise JavaBean components implemented according to the EJB
specification do not require this setting.

Concurrency

For CORBA and PowerBuilder components, the Concurrency setting specifies
whether component instances can execute concurrently on multiple threads.

Enable this option for any component that is thread-safe. Concurrent access
can decrease the response time of client method invocations. If this option is
disabled, EAServer serializes all method calls to the component. Concurrency
applies to execution of all instances. With concurrency disabled, a call to one
instance cannot overlap the execution of another instance.

If the Sharing setting is enabled for your PowerBuilder component, disable the
Concurrency setting. PowerBuilder is thread-safe at the session level only. For
other component types, concurrency requires that your implementation be
thread-safe. The requirements depend on the value of the Sharing setting as
described in Table 3-1.

CHAPTER 3 Component Tuning

Performance and Tuning Guide 35

Table 3-1: Coding requirements to support concurrency

If you enable the Concurrency setting for a component that does not meet these
requirements, you may encounter hard-to-diagnose threading errors such as
race conditions. In a race condition, multiple threads update the same data
simultaneously. The outcome of conflicting updates is unpredictable and may
cause crashes or incorrect results.

Sharing

For CORBA components, if the Sharing setting is enabled, a single instance
serves all client requests.

For best performance, this option requires that you also enable the concurrency
option. However, if your component has read-write static or instance variables,
you must synchronize all access to them. This can create bottlenecks where
threads wait to access synchronized data or methods. Also, in a cluster, the
component is not a true singleton object: while one instance runs per server,
multiple instances run in the cluster, one instance per server. Consider these
limitations carefully before adapting the sharing/singleton pattern if your
implementation has read/write static or instance variables.

You can use sharing and concurrency without synchronization if your
implementation has no read/write static or instance variables. This can reduce
memory use since only one instance is loaded. However, the effect is likely to
be negligible unless the implementation class is very large.

Thread monitors

Thread monitors provide a means to limit the execution time devoted to
specified components and component methods. You can assign components
and methods to a thread monitor to ensure that no more than a specified
maximum number of threads will be active at any point executing the methods
and components assigned to the monitor.

Sharing enabled? Coding requirements

No Protect any static instance variables; synchronize access to
them to prevent concurrent access from different threads.
Exceptions to this rule are read-only static variables, such as
those that include the final modifier (meaning it is a constant
that cannot be changed), and static variables defined as a
primitive datatype that is 32 bits or less.

Yes Same as the above, but you must protect all instance
variables since one instance is called by multiple threads.

Common component performance issues

36 EAServer

You can also use thread monitors without a limit on the number of threads.
Doing so allows you to use the monitor trace properties to record performance
data.

Alternatives to thread monitors
As an alternative to configuring thread monitors to govern component load,
you can configure response-time threshold monitoring for your application
components or network listeners. For more information, see “Configuring
threshold monitoring for components” on page 18

❖ Creating or configuring a thread monitor

• Follow the instructions in “Monitoring threads” in Chapter 3, “Creating
and Configuring Servers,” in the System Administration Guide.

❖ Assigning a component or method to a thread monitor

• Create a user configuration script that configures the component
properties and calls the <threadMonitor> Ant task. For example:.

<setProperties component="ejb.components.myjar.MyCompRemote"
merge="true”>

<threadMonitor name="MyMonitor"/>
</setProperties>

The threadMonitor value specifies the thread monitor that must be
acquired by new requests when the average response time exceeds the
maximum. The component value specifies the name of the DJC
component that runs the application component that you want to monitor.
Set this depending on the application component type, as follows:

• For enterprise JavaBeans components, specify the DJC component
that corresponds to the remote or local interface. If configuring an
entity bean with finder methods that perform heavy processing,
consider applying the same thread monitor configuration to the DJC
component that corresponds to the home interface. You can read the
DJC component names from the EJB module’s Ant configuration file
that was generated by deployment.

• For CORBA and PowerBuilder components, specify the DJC
component that corresponds to the remote interface of the EJB session
bean that wraps your component. This name is
ejb.components.package.componentRemote, where package is
the CORBA package name, and component is the component name.

CHAPTER 3 Component Tuning

Performance and Tuning Guide 37

• For Web components, specify the DJC component that corresponds to
the servlet or JSP that the settings apply to. You can read the DJC
component names from the Web application’s Ant configuration file
that was generated by deployment.

Stateful versus stateless components
A component that remains bound to a client instance between consecutive
method invocations is called a stateful component. A component that can be
unbound from the client after each method call is said to be a stateless
component. Typically, an application built with stateless components offers the
greatest scalability.

Performance benefits of the stateless model

Applications that use stateless components generally perform better. In the
stateless model, each instance can serve different clients during the “think
time” that is typically seen in interactive applications. In the stateful model,
each client requires a dedicated component instance for the lifetime of the
client session. Resources associated with the instance state remain tied up
during the user’s idle time.

To develop stateless Enterprise JavaBeans component, follow the stateless
session bean model described in the EJB specification.

For CORBA and PowerBuilder components, you can either configure stateless
behavior, or code the component to call the appropriate lifecycle control
method to unbind the component instance from the client reference in each
business method. For more information, see Chapter 2, “CORBA Component
Life Cycles and Transaction Semantics,” in the CORBA Components Guide.

Note the stateless model requires an implementation that supports stateless
execution. For example, if your component requires two subsequent
invocations to compute a result for the client, it will break if you change the
component properties to enable stateless behavior.

Common component performance issues

38 EAServer

Passivation timeout for stateful components

If you use stateful CORBA components or EJB stateful session beans,
configure a passivation timeout and removal timeout for the component. These
settings limit the time that an instance can be bound to a client session. Doing
so ensures that if a client crashes or an end user leaves their workstation,
transactions do not remain open indefinitely if the component is transactional.
The timeout also prevents component instances from tying up other server
resources indefinitely.

To configure a timeout for stateful session beans, set the ejb.passivateTimeout
and ejb.removeTimeout properties as described in Chapter 2, “Deploying and
Configuring EJB Components,” in the EJB Users Guide.

To configure a timeout for stateful CORBA or PowerBuilder components, set
the Passivation Timeout as described in Chapter 4, “Managing CORBA
Packages and Components,” in the CORBA Components Guide.

Instance pooling
Instance pooling allows a single component instance to service multiple
clients. Rather than creating a new instance for each client, EAServer
maintains a pool of instances for reuse to service multiple clients. Instance
pooling increases performance by eliminating the overhead of creating new
instances for each client session. EAServer supports pooling of EJB stateless
session bean and entity bean components by default. Chapter 2, “CORBA
Component Life Cycles and Transaction Semantics,” in the CORBA
Components Guide describes how you can implement CORBA and
PowerBuilder components that support pooling.

To enable pooling for CORBA and PowerBuilder components, set the Pooling
option in the Management Console Component Properties pages. You can also
programmatically enable pooling using the canBePooled transaction primitive
method—see Chapter 2, “CORBA Component Life Cycles and Transaction
Semantics,” in the CORBA Components Guide.

To prevent idle pooled components from needlessly consuming memory,
configure an instance pool timeout by setting the ejb.poolTimeout Ant
property in the EJB module’s user-configuration script—see “Commonly
configured properties” in Chapter 2, “Deploying and Configuring EJB
Components,” in the Enterprise JavaBean User’s Guide. For CORBA and
PowerBuilder components, configure this setting for the EJB module that
contains the EJB wrappers for your CORBA package.

CHAPTER 3 Component Tuning

Performance and Tuning Guide 39

Optimizing intercomponent calls
If your components make many intercomponent calls to EJB components, you
can use local interfaces or call-by-reference. See “Optimizing in-server EJB
calls” on page 42 for more information.

Using method results caching
For stateless components, you can configure method results caching. In this
configuration, EAServer caches method return codes using a key composed of
the input parameter values. When handling an incoming request, EAServer
checks for a valid cached entry. If the cache contains a valid result, EAServer
returns the cached return code rather than invoking the business method. To use
this feature, your component must satisfy these requirements:

• The component must be an EJB stateless session bean, or a CORBA
component wrapped by one. For CORBA and PowerBuilder components,
the Stateful Session Bean component property must be disabled.

• The business method must return values (have a return type other than
void) and have the same semantics whether it is called once for a given set
of input values or multiple times. For example, you cannot enable results
caching for a method that increments counters or creates new database
rows every time it is called, regardless of input. Doing so would change
the behavior of the application. On the other hand, if multiple calls with
the same set of input values result in the same database end state, you can
use method results caching.

• The business method must perform database lookups or other time-
consuming processing. Methods that do simple calculations are unlikely to
be worth caching, since the overhead of caching is likely equal to or
greater than calling the method in the first place.

• The business method must operate on small input values. EAServer stores
input values in memory as part of the cache key. Large input values will
consume too much memory when the method results are cached.

• If the method results depend on data that can change independently of
method execution, your application must include some mechanism to
prevent the use of stale cache data. Use one of the following options:

Common component performance issues

40 EAServer

• Configure and use a database version table. The version table contains
a single row containing a an integer column that changes when data
that affects the method outcome has changed. For example, if the
method queries a database, you can configure database triggers on the
tables that affect the method result to update the version table row.

• Configure a finite cache timeout. Cached values older than the
timeout are discarded. This option can result in a larger performance
gain since it removes the overhead of querying the database version
table. However, it should not be used if stale data is never acceptable.

To configure method caching, run the <cacheResult> property task in the Ant
user-configuration file for the EJB module that contains the stateless session
bean to be configured. To configure a CORBA or PowerBuilder component,
perform this configuration on the EJB module that contains the EJB wrapper
components for the CORBA package. Here is an example configure-user target
that configures a version table:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">
<cacheResult method="getProductInfo(java.lang.Integer)"

cacheSize="100"
dataSource="myDataSource"
tableVersion="ref_tv.version"

/>
</setProperties>

</target>

Here is another example that configures a cache timeout:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">
<cacheResult method="getProductInfo(java.lang.Integer)"

cacheSize="100"
cacheTimeout="60"

/>
</setProperties>

</target>

The table below describes the attribute values used in the examples:

CHAPTER 3 Component Tuning

Performance and Tuning Guide 41

Java/CORBA component performance
Java/CORBA and EJB components benefit from most of the settings described
in “Common component performance issues” on page 33.

Attribute Description

component Specifies the name of the DJC component that runs the application component that you
want to monitor. Set this depending on the application component type, as follows:

• For enterprise JavaBeans components, specify the DJC component that corresponds to
the remote or local interface. You can read the DJC component names from the EJB
module’s Ant configuration file that was generated by deployment.

• For CORBA and PowerBuilder components, specify the DJC component that
corresponds to the remote interface of the EJB session bean that wraps your component.
This name is ejb.components.package.componentRemote, where package is the
CORBA package name, and component is the component name.

• For Web components, specify the DJC component that corresponds to the servlet or JSP
that the settings apply to. You can read the DJC component names from the Web
application’s Ant configuration file that was generated by deployment.

method Specifies the Java name and signature of the business method. If omitted, the cache
configuration applies to all non-void methods in the component.

cacheSize The maximum number of results that will be held in cache. To avoid overflow, rows are
removed from cache using a least-recently-used (LRU) discard strategy. If not specified,
the default is 1000.

cacheTimeout The maximum number of seconds that a result stored in cache will be considered valid.
This property should not be used to attempt to control the cache size, because invalid
results are only discarded from cache when an attempt is made to access them. A value of
zero is interpreted as an infinite timeout. The default is zero.

dataSource If a version table is required, specifies the name of the data source to connect to the
database in which the table is located.

tableVersion If a version table is required, specifies the table name and the name of the column that
contains the version number. For example, ref_tv.version specifies the version column
in table ref_tv.

EJB component performance

42 EAServer

You can improve the performance of Java/CORBA and EJB components by
configuring common class loaders for the application’s components (including
Web components). EAServer uses custom class loaders to allow you to refresh
implementation classes without restarting the server. Loading multiple copies
of the same class uses memory unnecessarily. You can eliminate redundant
class loading by configuring an application-level or server-level class list, as
described in Chapter 10, “Configuring Java Class Loaders,” in the System
Administration Guide.

EJB component performance
EJB components benefit from most of the settings described in “Common
component performance issues” on page 33. You can also configure common
class loaders as described in “Java/CORBA component performance” on page
41. You can configure the settings below to further tune EJB components.

The techniques described below can also be applied to PowerBuilder and
CORBA components. Apply the settings to the EJB module containing the EJB
wrappers for your CORBA package.

If you use EJB CMP entity beans, you can further tune the persistence settings
described in Chapter 4, “EJB CMP Tuning.”

Optimizing in-server EJB calls
Most J2EE applications have EJB components that are called from other EJB
components and the Web tier (servlets and JSPs). You can use the following
techniques to optimize these calls:

• Local interfaces, introduced in the EJB 2.0 specification, improve
performance by eliminating the marshalling of parameter data; in other
words, parameters in component calls are passed as local data references
rather than copying the object.

• You can also enable Pass-by-reference semantics in EAServer to achieve
the same benefits as local interfaces when code invokes components
through the remote interface.

CHAPTER 3 Component Tuning

Performance and Tuning Guide 43

Local interfaces

Beginning in EJB version 2.0, clients can also execute EJB components using
local interfaces if the client and component execute in the same virtual
machine. Using the local interface can improve performance. You can use local
interfaces for intercomponent calls, and for component invocations made from
servlets and JSPs hosted by the same server as the component. For more
information, see Chapter 3, “Developing EJB Clients,” in the Enterprise
JavaBeans User’s Guide.

Pass-by-reference semantics

EAServer supports the proprietary EJB pass-by-reference mechanism
supported by most other J2EE vendors. To enable pass-by-reference for EJB
component, set the ejb.copyValues Ant property in the EJB module user-
configuration file to false. For details, see “Commonly configured properties”
in Chapter 2, “Deploying and Configuring EJB Components,” in the
Enterprise JavaBeans User’s Guide.

When this setting is enabled, EJB stubs and skeletons for the component and
its home and remote interfaces use the same parameter passing mode that
EAServer normally uses for EJB 2.0 local interfaces. After changing the value,
you must recompile the EJB module.

Stateful session beans
Stateful session beans are more resource intensive than stateless session beans.
The stateful implementation remains bound to the client that creates them until
the client calls the remove method or EAServer removes the instance because
it has timed out. You can minimize the performance impact of using stateful
session beans by following these recommendations:

• Always call the remove method Code your clients to call remove so
that EAServer knows when the instance is no longer needed.

• Configure a passivation timeout Configure this setting as described in
“Passivation timeout for stateful components” on page 38 The timeout
ensures removal or passivation of component instances when the client
crashes or the end user walks away from their desk.

• Configure the maximum allowed instances If clients activate too
many instances at once, the server can run out of memory. To prevent this,
set a limit on the number of instances that can be active using a thread
monitor. See “Thread monitors” on page 35.

C++ component performance

44 EAServer

C++ component performance
Most C++ component performance issues are related to memory leaks. When
using C++ types that are mapped from IDL, follow the memory management
recommendations in “Using mapped IDL types” in Chapter 7, “CORBA/C++
Overview,” in the CORBA Components Guide.

The suggestions in “Common component performance issues” on page 33
apply to C++ components.

PowerBuilder component performance
To run PowerBuilder components in EAServer, use the most recent certified
PowerBuilder versions. For details on which PowerBuilder versions Sybase
recommends for EAServer on your platform, see the EAServer Release
Bulletin for your platform. In addition, you can tune the following settings for
improved performance.

Settings that affect system resource use
The system resource use of your PowerBuilder components determines how
many instances can run on a given system, which in turn determines how many
simultaneous clients the application can serve. Tune the settings in Table 3-2
to minimize resource use.

Table 3-2: PowerBuilder component settings that affect resource use

Setting Description

Component
class loader

By default, the PBVM uses per-component class loaders to run components. You can configure
components to share class loaders to reduce the memory footprint required to run components.
Doing so can improve scalability by allowing more component instances to run in the available
memory. For details, see the Sybase white paper Reducing Memory Requirements When Using
PowerBuilder Components in EAServer at http://www.sybase.com/detail?id=1019042.

DataStore
resource
footprint

DataStore objects used in components can consume system resources such as memory and
Windows user and kernel object handles. When many DataStore objects are instantiated, they can
exhaust the available resources unless you have tuned the DataStore settings to minimize resource
use. For details on tuning DataStore settings, see the Sybase white paper Operating System
Constraints Affecting the Scalability of PowerBuilder DataStores in EAServer at
http://www.sybase.com/detail?id=1019174.

CHAPTER 3 Component Tuning

Performance and Tuning Guide 45

DataStore row height size
If you are retrieving a lot of rows of data, try setting the
datawindow.detail.height.autosize property for the DataStore object to false.
Depending on the number of rows being retrieved, this setting can have a
significant impact on performance. If you have autosize enabled for the height
or width of any specific objects, try disabling those settings as well. For more
information, see the DataWindow Reference manual in the PowerBuilder
documentation.

Web DataWindow settings
If you use Web DataWindows, tuning these settings can improve performance.

DataWindow
memory
management

For large retrievals or imports into a DataWindow object, set the datawindow.storagepagesize
property to LARGE. Setting this property allows the DataWindow to most efficiently use the
available virtual memory. While the setting LARGE is recommended, a setting of MEDIUM is
also available. For more information, see the DataWindow Reference manual in the PowerBuilder
documentation.

Bind thread Disable Bind Thread for PowerBuilder components deployed to EAServer unless instructed
otherwise by the documentation that accompanies your PowerBuilder version or Sybase technical
support.

For more information on threading issues that affect PowerBuilder components, see the
Application Techniques manual in the PowerBuilder documentation.

Garbage
collection

The PBVM uses a garbage collection model to free memory used by unreferenced and orphaned
objects. For more information on how garbage collection happens in PowerBuilder, see the
Application Techniques manual in the PowerBuilder documentation.

Setting Description

PowerBuilder component performance

46 EAServer

Tuning code generation settings You can tune the Web DataWindow
settings to minimize the size of the generated JavaScript code. Doing so
improves the client response time by avoiding the generation and network
transport of unneeded code. If you do not use a feature such as display
formatting, validation rules, or client-side scripting, disable code generation
for the unused feature. You can also cache client-side methods in JavaScript
files to reduce the size of the generated code and increase performance on both
the server and the client. Without JavaScript caching, each time a Web
DataWindow is rendered in a client browser, JavaScript code for DataWindow
methods is generated on the server and downloaded to the client. However,
there is no performance gain if the client Web browser settings prevent
caching. The DataWindow Programmer’s Guide in the PowerBuilder
documentation describes techniques for controlling the size of generated code.

Using custom containers For improved performance, use a custom
component as the Web DataWindow container rather than the predefined
HTMLGenerator component. When using a custom component, you can
configure additional settings to reduce the number of method calls required to
configure the component. Doing so can result in improved performance,
maintainability, and scalability. Specifically, you can set the source file and
DataWindow object on the server so that the DataWindow object is loaded
when the component instance is created, resulting in fewer method calls from
server-side scripts in the Web page. You can also improve performance by
having your custom component maintain its state. For more information, see
the DataWindow Programmer’s Guide in the PowerBuilder documentation.

Changing the Web target default behavior By default, the
PSJaguarConnection methods for using a Web DataWindow make several trips
to the server. You can set the bOneTrip argument to make one trip to the server
instead. Doing so improves performance by reducing network traffic. For more
information, see the PSJaguarConnection reference pages in the Web and JSP
Target Reference manual in the PowerBuilder documentation.

Performance and Tuning Guide 47

C H A P T E R 4 EJB CMP Tuning

For EJB CMP entity beans, EAServer implements the persistence engine
that manages the mapping between the entity bean’s container-managed
fields and the underlying database. This chapter describes how to tune the
persistence settings for best performance.

CMP tuning concepts and terminology
To understand the CMP tuning options and strategy, it is helpful to
understand the concepts and terminology used.

Concurrency control
Concurrency control prevents overlapping updates from entity instances
running in different threads or different servers, or from applications
running outside of EAServer. There are two approaches for concurrency
control:

• In the Pessimistic concurrency control (PCC) model, data rows are
locked when read, for the duration of the EAServer transaction. This
method can introduce database deadlocks and usually reduces the
scalability of the application.

Topic Page
CMP tuning concepts and terminology 47

Ant configuration for CMP entity beans 50

Finding persistence bottlenecks 52

Creating and tuning database tables 52

Configuring the logical isolation level 52

Tuning data source settings for CMP entity beans 53

Automatic key generation settings 54

Configuring concurrency control options 56

Configuring object and query caching 62

CMP tuning concepts and terminology

48 EAServer

• In the Optimistic concurrency control (OCC) model, data rows are not
locked when read. Timestamps are used for concurrency control; the
timestamp can be a timestamp column in the database that is updated every
time the row is modified, or it can be the row data itself. At the end of the
transaction, the in-memory timestamp value is compared to the timestamp
value in the database, and the transaction rolls back if the values do not
match.

Object and query caching
Many optimizations rely on in-memory caching of database query result sets.
EAServer has two cache mechanisms for caching container managed field data
and query results:

• The object cache stores results from findByPrimaryKey method invocations
and the associated entity bean instances.

• The query cache stores results returned from other finder methods and
query methods.

EAServer creates and manages these caches internally. There are no
configuration entity types to configure them explicitly; rather, they are
configured implicitly by your CMP table and field mapping configuration
settings.

Caching can improve performance by minimizing the number of database
select queries required for ejbLoad operations, finder method invocations, and
ejbSelect method invocations. Most database applications are governed by the
80:20 rule: 80% of users access 20% of the data. Object caching increases
performance and scalability by allowing faster access to the most recently used
data.

Assuming that the database access is the principal bottleneck, the expected
performance gain falls in these ranges, depending on the ratio of update to
read-only transactions:

• 1.5 to 2 times faster for applications where most transactions are updates.

• 3 to 30 times faster for applications where most transactions are read-only.

Besides the transaction mix, the actual performance gain depends on:

• The size of the database table

• The size of the object and query caches

• The cache time out value

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 49

In summary, the best use case for caching is data that is static. If the data
changes often, the overhead of updating caches can outweigh the performance
benefits of caching. If the data is updated too frequently, soft locking or hard
locking may yield better performance. Furthermore, the data consistency
requirements dictate how cached data can be used. Decide how much
consistency you require, then optimize within those constraints.

Just-in-time JDBC wrapper drivers
EAServer includes customized JDBC drivers for use by CMP entity beans.
Many performance optimizations require code run in a wrapper driver. For
example, just-in-time (JIT) creation of semi-temporary stored procedures to
run queries and updates. The wrapper drivers offer better performance by
allowing updates to be deferred to the end of each transaction and sent together
as a command batch. Doing so improves performance by reducing network
round trips between the database server and EAServer.

Note The wrapper does not replace the underlying JDBC driver - it merely
permits CMP tuning at the level of JDBC prepared statements. All calls to the
database go through the underlying JDBC driver.

Logical isolation level
In standard SQL using PCC, the transaction isolation level defines the degree
to which data can be accessed by other users during the transaction. For
example, the isolation level “repeatable reads” locks all rows or pages read
during the transaction. After one query in the transaction has read rows, no
other transaction can update or delete the rows until the repeatable-reads
transaction completes.

When using OCC, EAServer supports a logical isolation level that provides the
same semantics as the corresponding PCC isolation level, while allowing safe
use of OCC optimizations such as avoiding row locks and query results
caching.

Logical isolation levels supported by EAServer are listed in the description of
the ejb.isolationLevel Ant property—see “Commonly configured properties”
in Chapter 2, “Deploying and Configuring EJB Components,” in the
Enterprise JavaBean User’s Guide.

Ant configuration for CMP entity beans

50 EAServer

Ant configuration for CMP entity beans
Before reading this chapter, you should be familiar with the deployment
settings described in Chapter 2, “Deploying and Configuring EJB
Components,” in the Enterprise JavaBean User’s Guide. In particular, review
the descriptions of these Ant properties listed under the section “Commonly
configured properties”:

• sql.dataSource, which specifies the data source (and thus the target
database)

• sql.createTables, which specifies whether to create tables automatically

• ejb.isolationLevel, which specifies a logical isolation level for queries and
transactions run by the entity beans

• sql.isolationLevel, which specifies the database isolation level setting to
request from the JDBC driver

• ejb.transactionBatch, which allows you to specify a default transaction
batch configuration for the entity beans

• ejb.transactionRetry, which enables automatic transaction retry globally
for the entity bean methods when using optimistic concurrency control.

When you deploy EJB CMP entity beans, EAServer generates Ant
configuration commands to define default database mappings and query
method configurations for the entity beans. To modify these settings, you can
copy the generated commands to your user-configuration file and modify them.

Table and field mapping configuration
The <persistentObject> and <persistentField> Ant task configure the object-
relational mapping for the entity beans. For each entity bean,
<persistentObject> commands specify the data source to use, which table is
queried, and other settings such as caching options and transaction isolation
level. For each container-managed field, <persistentField> maps fields to
database table columns.

For example:

<target name="configure-user">
<setProperties component="ejb.components.example.CustomerInventory">
<persistentObject

table="cust_inv"
isolationLevel="RepeatableRead"

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 51

dataSource=”myDB”
/>
<persistentField field="id"

column="c_id"
/>
<persistentField field="name"

column="c_name"
maxLength="40"

/>
</setProperties>

</target>

Many optimizations require you to modify or add parameters in the
<persistentObject> invocations.

Finder and query method configuration
The <queryMethod> Ant task configures the EJB-QL queries for finder and
query methods and optionally configures other settings such as an isolation
level that applies to this query only. For example:

 <target name="configure-user">
<setProperties component="ejb.components.example.Product">

...
<queryMethod

method="findByName(java.lang.String name)"
isolationLevel="RepeatableReadWithCache"
tableVersion="ref_tv.tv"
/>

<queryMethod
method="findByTitle(java.lang.String title)"
isolationLevel="RepeatableReadWithCache"
tableVersion="ref_tv.tv"
/>

</setProperties>
</target>

Many optimizations require you to modify or add parameters in the
<queryMethod> invocations.

Finding persistence bottlenecks

52 EAServer

Finding persistence bottlenecks
You can generate a transaction cross reference log for your application as
described in “Transaction cross-reference logging” on page 94. Review the
cross-reference log files to identify persistence bottlenecks to which the
various batching and caching options may be applicable.

Creating and tuning database tables
While EAServer automatically creates entity bean tables for supported
databases, this feature is provided as a development time convenience. For
deployment to production servers, you or your DBA should create the tables,
using an optimized index model and any other necessary optimizations, such
as enabling row-level locking. You can also add tuning parameters to the SQL
and DML syntax that is configured in the table mapping properties for the
entity bean. For example, you might optimize the select query to force the use
of an index by adding proprietary DBMS keywords.

For more information, see the description of the sql.createTables Ant property
in Chapter 2, “Deploying and Configuring EJB Components,” in the
Enterprise JavaBean User’s Guide.

Configuring the logical isolation level
Logical isolation levels supported by EAServer are listed in the description of
the ejb.isolationLevel Ant property—see “Commonly configured properties”
in Chapter 2, “Deploying and Configuring EJB Components,” in the
Enterprise JavaBean User’s Guide. Set this Ant property in your user-
configuration script to specify an option used globally (in all <persistentObject>
invocations that reference ${ejb.isolationLeve} as the isolationLevel
value). You can also configure the value explicitly for individual components.

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 53

Tuning data source settings for CMP entity beans
The data source used by EJB CMP entity beans is specified by the
sql.dataSource Ant property—see “Commonly configured properties” in
Chapter 2, “Deploying and Configuring EJB Components,” in the Enterprise
JavaBean User’s Guide.

Tune the data source pool size and database type
Tune the cache size parameters as described in “Data source settings” on page
89. For EJB CMP entity beans, make sure you specify a Database Type that
matches your database server. The database type definition allows the
persistence engine to make use of database-specific features such as stored
procedures and statement batches. You can create additional database type
definitions as described in “Configuring database types” in Chapter 4,
“Database Access,” in the System Administration Guide.

Use JIT JDBC wrapper drivers
EAServer includes customized JDBC drivers for use by CMP entity beans to
implement the performance optimizations described in “Just-in-time JDBC
wrapper drivers” on page 49. Wrapper drivers are provided for Sybase and
Oracle database drivers.

• Sybase This driver is a wrapper around the Sybase jConnect driver. To
use the driver, specify the following class names in the Data Source
properties:

• For JDBC Data Source Class, specify
com.sybase.djc.sql.jit.SybaseDataSource3

• For JDBC/XA Data Source Class, specify
com.sybase.jdbc3.jdbc.SybXADataSource.

Other data source properties for this wrapper driver are the same as are
used by com.sybase.jdbc2.jdbc.SybDriver, plus those listed in Table 4-1.

• Oracle This driver is a wrapper around the Oracle JDBC driver. To use
the driver, specify the class name com.sybase.djc.sql.jit.OracleDriver as the
driver in your data source. Data source properties for this wrapper driver
are the same as are used by oracle.jdbc.driver.OracleDriver, plus those listed
in Table 4-1.

Automatic key generation settings

54 EAServer

Oracle driver classes not included
The Oracle JDBC driver classes are not included in the EAServer
installation. Before using the Oracle wrapper driver, make sure these
classes are deployed to EAServer and that direct Oracle data sources can
be pinged successfully.

Table 4-1 lists the additional properties supported by the wrapper drivers. You
can configure these properties on the Advanced tab in the Management
Console Data Source Property pages, or by running <setProperties> in an Ant
configuration script and setting them with nested <configProperty> commands.

Table 4-1: Sybase JIT JDBC wrapper driver properties

Automatic key generation settings
EAServer supports several mechanisms for automatic key generation. If
automatic key generation is enabled, keys are created automatically for every
row inserted in the table. In

Java key type for beans that use automatic key generation
There are two options for the primary key type when using automatic key
generation in EJB-CMP entity beans:

Property
Legal
Values

Default
Value Description

jit:printWarnings true/false true Enables all database warning messages
received by wrapper driver to be printed in
server log.

jit:maximumBatchParameters 0 or
positive

99 (subject
to change)

Maximum number of parameters in a batch.

jit:maximumBatchStatements 0 or
positive

8 (subject to
change)

Maximum number of statements in a batch.

Any value less than 2 effectively disables
batching.

Larger values will give better performance
as long as memory is available. Setting this
too high may result in too many stored
procedures being created, and the database
server may run out of procedure cache.

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 55

• java.lang.Object The EJB 2.0 specification requires this type for entity
beans that have automatically generated keys. However, using
java.lang.Object makes client coding difficult, particularly if the home
interface has finder methods that take key values as input. In this case, you
do not know what the actual Java key type is until after deploying the
component.

• java.lang.Integer or other integer types EAServer allows you to use
an integer type with automatic key generation configured. You can also
use other integer types, as long as you specify the wrapper class name,
such as java.lang.Long or java.math.BigDecimal with scale of zero.

Configuring automatic key generation
EAServer supports three mechanisms for key generation:

• Using the Sybase identity datatype If you are using Sybase Adaptive
Server Enterprise or Adaptive Server Anywhere, the mapped table uses
the identity datatype for the primary key. The database manages the
creation of new keys.

• Using the Oracle sequence datatype If you are using an Oracle
database, the main table uses an Oracle sequence for the primary key. The
database manages the creation of new keys.

• Using a key lookup table For any SQL database, you can use a single-
row, single-integer-column table to generate key values. EAServer
increments the key lookup value to generate new keys. If other processes
or applications insert to the table, they must also use the key lookup table.

To configure the key generation mechanism and enable automatic key creation,
set the keyGenerator attribute in the <persistentObject> Ant command that maps
the database table to the entity bean. For example:

<target name="configure-user">
<setProperties

component="ejb.components.example.CustomerInventory">
<persistentObject

table="cust_inv"
isolationLevel="RepeatableRead"
dataSource=”myDB”
keyGenerator=”key-gen-value”

/>
</setProperties>

</target>

Configuring concurrency control options

56 EAServer

The the keyGenerator attribute takes the values listed in Table 4-2.

Table 4-2: keyGenerator attribute values

Tuning settings related to automatic key generation
If your component uses the Adaptive Server Enterprise with the Sybase identity
column type, make sure the relevant database and table options are tuned, such
as the identity burning set factor database option or the identity_gap table
creation parameter.

If your component uses automatic key generation with a key-lookup table, tune
the key batch size value. To prevent different threads from creating duplicate
keys, EAServer uses a semaphore to synchronize the key increment operation.
Each thread reserves the specified number of key values per increment. The
key use rate can be tuned to reduce inter-thread contention for locks on the key
table. A value of 100 results in good performance for most applications. Large
batch increment values can result in large gaps between key values. Gaps in the
key sequence are possible if the key use rate is greater than 1.

Configuring concurrency control options
You can configure OCC or PCC for a bean as a whole or for transactions started
by individual finder or business methods. By default, EAServer uses OCC with
an all-values comparison for timestamp checking.

OCC allows greater scalability than PCC for most CMP entity beans. However,
when using OCC, you must code your application to retry rejected updates, or
you must enable automatic transaction retry for the application components.

Value To specify

sequence seq-name Oracle sequence seq-name

select @@identity Sybase style identity column

key-table.key-column +=

batch-size

Key generator table using the specified table, column name, and key increment batch
size. For example, to specify a table named cust_key, using column next_id, and
incrementing through 100 keys at a time, set the value to:

cust_key.next_id += 100

Create the key lookup table if it does not exist in the database. EAServer does not create
it automatically.

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 57

PCC can perform better than OCC when your beans are mapped to tables with
very high update contention. In these cases, the overhead of retrying
transactions that fail due to update collisions can outweigh that caused by using
database locks. If you have configured OCC, and see many
“TRANSACTION_ROLLEDBACK: Optimistic Concurrency Control”
messages in the server log, you should try PCC on the component identified in
these messages.

Enabling PCC
To configure pessimistic concurrency control, you can do one of the following:

• Set the <persistentObject> selectWithUpdateLock or selectWithSharedLock
attribute to true.

The selectWithUpdateLock setting requests an exclusive database lock be
obtained at select time to avoid deadlocks during lock promotion. If you
use this setting, also consider configuring the database table for row-level
locking.

For databases such as Sybase Adaptive Server Enterprise that do not
support select for update locking syntax, EAServer locks rows by issuing
a no-change update statement. The <persistentObject> touchColumn
attribute specifies which column to update. If you do not set this property,
EAServer uses the first non-key column. For best performance, specify the
column with the datatype that can be updated most quickly. For example,
int columns can be updated more quickly than varchar columns. If no
existing column is suitable, consider adding an int column that defaults to
1.

• Configure the EJB finder and select methods queries and add “holdlock”
or the appropriate lock syntax for your database. For more information,
see “Finder and query method configuration” on page 51.

Enabling OCC
When using OCC, each update statement contains SQL logic that determines
if the last-read timestamp matches the stored value, and rolls back the
transaction if the timestamp does not match. In other words, updates based on
stale data are rejected. There are several options for using timestamps:

Configuring concurrency control options

58 EAServer

• Use a timestamp column: each table contains a timestamp column, which
can be a database timestamp type (if supported) or an integer column that
is incremented for every update. This option provides good performance
if your database and table schema can support it.

• Use all-values comparison: on update, all row values are compared to the
last-read values to detect update collisions. OCC with all-values
comparison is the default concurrency control model. Performance with
this option is worse than when using a single timestamp column,
particularly if the table contains many columns or wide columns (such as
Sybase text or image columns). Whenever possible, the use of a timestamp
column is recommended in these cases.

• Use a table-level timestamp: the timestamp is a single integer counter that
is incremented for every update, insert, or delete in the main table. This
option provides the best performance for CMP entity beans that are
mapped to read-mostly (or read-only) tables when verified results are
required to meet transaction isolation requirements. For best results, use
table-level timestamps with a Sybase JIT wrapper driver to allow
verification queries to be batched with other deferred operations. See “Use
JIT JDBC wrapper drivers” on page 53 for more information.

Configuring OCC options

To enable OCC, first verify that PCC is disabled, then configure the timestamp
mechanism of your choice.

To ensure that PCC is disabled, verify that the <persistentObject> configuration
does not set the selectWithSharedLock or selectWithUpdateLock attributes. Both
attributes default to false.

To to configure an OCC timestamp mechanism, set one of the
<persistentObject> or <queryMethod> configuration attributes described in
Table 4-3.

Table 4-3: OCC timestamp configuration options

<persistenObject>
or <queryMethod>
attribute Description

None If you specify no timestamp or lock-related attributes in the <persistentObject>
configuration, the default behavior is OCC with all-values comparison for version
control.

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 59

timestampColumn

Applies only to
<persistenObject>

Set the timestampColumn attribute in the <persistentObject> configuration to specify the
name of a column that holds a row timestamp which is automatically set (or
changed) by the database server whenever a row is inserted (or updated). This
column is usually the database timestamp type – you can use the timestamp datatype if
using Sybase Adaptive Server Enterprise or Adaptive Server Anywhere version 7.0 or later.

versionColumn

Applies only to
<persistenObject>

Set the versionColumn attribute in the <persistentObject> configuration to specify the
name of an integer-typed column that holds a row version which is automatically set (or
changed) by the persistence manager whenever a row is inserted (or updated).

If, due to triggers or other database-specific mechanisms, this version column is also
updated when ad-hoc updates are made to the database table by a client which is not
performing version management, then the trigger or other mechanism must be disabled
when the persistence manager is in use. This disabling is needed to prevent an update issued
by the persistence manager resulting in a double increment of the version column (one time
by the persistence manager and one time by the database server). To disable triggers, set
the Disable Triggers property for the data source.

tableVersion Set the tableVersion attribute in the <persistentObject> or <queryMethod> configuration
to specify the use of a timestamp table.

Specify a table and column name, in the form ts_table.ts_column, where ts_table
specifies the timestamp table and ts_column specifies the name of the timestamp column
in the timestamp table. The specified timestamp table must be separate from the main table.
The timestamp tables can contain multiple columns, to allow use of one timestamp table by
multiple entity beans. Timestamp tables are automatically created if they do not exist.

A timestamp table can be shared among multiple components even when only one column
is present in the timestamp table. In other words, a single timestamp value can be shared
by multiple tables. This helps further improve performance for a group of read-mostly
tables. However, any insert, delete, or update on any of the tables results in all cache entries
being discarded.

If, due to triggers or other database-specific mechanisms, this “table version” column is
also updated when ad-hoc updates are made to the database table by a client which is not
performing version management, then the trigger or other mechanism must be disabled
when the persistence manager is in use. This disabling is needed to prevent an update issued
by the persistence manager resulting in a double increment of the table version column (one
time by the persistence manager and one time by the database server). To disable triggers,
set the Disable Triggers property for the data source.

You cannot use a timestamp table if external processes outside of EAServer can update the
versioned data without updating the timestamp table.

<persistenObject>
or <queryMethod>
attribute Description

Configuring concurrency control options

60 EAServer

Enabling automatic transaction retry
EAServer can automatically retry transactions that are rolled back—method
calls back to the last transaction boundary are retried by the stub code. This
feature is useful for EJB CMP entity beans that use optimistic concurrency
control.

Auto-retry is not appropriate for all applications. For example, an end user may
want to cancel a purchase if the item price has risen. If auto-retry is disabled,
clients must be coded to retry or abort transactions that fail because of stale
data. The exception thrown is CORBA::TRANSIENT (for EJB clients, this
exception is the root cause of the java.rmi.RemoteException thrown by the EJB
stub).

Auto-retry must be enabled for the component that initiates the transaction,
which is typically a session bean in EJB applications.

To configure automatic retry globally for beans in an EJB module, set the
ejb.transactionRetry Ant property to true in the user configuration script. To
configure this setting for individual components, set the <transaction>
command in a <setProperties> task that configures the component’s remote or
local interface, or a specific method in that interface (whichever is used in the
call sequence that initiates the container-managed transaction). For details, see
the description of the ejb.transactionRetry Ant property in “Commonly
configured properties” in Chapter 2, “Deploying and Configuring EJB
Components,” of the Enterprise JavaBean User’s Guide.

parentVersion Set the parentVersion attribute in the <persistentObject> or <queryMethod> configuration
to specify version control using a particular version of a “parent” object to allows cached
entities to be associated with a particular version of a “parent” object, while guaranteeing
a high level of transactional consistency. The syntax of this property is:

ParentEntity[ForeignKey].version
The parent entity refers to another entity which uses the versionColumn attribute as the
timestamp mechanism. The foreign key is a persistent field of the current entity which is
assumed to be the primary key for the corresponding parent object. This is particularly
useful in combination with a logical isolation level of RepeatableReadWithCache or
SerializableWithCache.

As an example, a foreign key field custId declared on an Order entity could be associated
with a parent Customer entity by using the parent version expression:

Customer[custId].version

<persistenObject>
or <queryMethod>
attribute Description

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 61

Using soft locking
You can configure in-server soft locking of database rows used by EJB CMP
entity beans that use the isolation level repeatable_read_with_cache.

If you enable soft locking for a component, EAServer applies a soft lock to
each row selected by an instance, which prevents other component instances
running in the server from updating the row. Soft locking must be used with
optimistic concurrency control (OCC). The soft lock prevents update collisions
between instances in the same server, while OCC prevents update collisions
with external applications and instances running in another server.

As an alternative to pessimistic locking, OCC with soft locking may improve
performance if there is heavy update contention among entity bean instances
running in a single-server deployment or in small-to-medium sized clusters. In
clusters, if you see excessive OCC update failures, you may need to switch to
pessimistic database locking as described in “Enabling PCC” on page 57.

You can enable soft locking by setting the following <persistentObject>
attributes:

• cacheLock – a value of true enables soft locking. The default of false
disables soft locking.

• dcacheLockTimeout – the timeout period for soft-locked rows, specified in
seconds. Soft locks use a timeout mechanism to avoid deadlock. The
default is 5. If too many “soft lock timeout” errors are reported in the
server log, increase the timeout.

For example:

<target name="configure-user">
<setProperties component="ejb.components.example.CustomerInventory">

<persistentObject
table="cust_inv"
isolationLevel="RepeatableRead"
dataSource="myDB"
cacheLock="true"
cacheLockTimeout="10"

/>
...

</target>

Configuring object and query caching

62 EAServer

Configuring object and query caching
For components, object caching is enabled if you have configured an isolation
level that requires caching. You can further customize the caching parameters
as described in “Enabling object caching” on page 63. Query caching must be
configured for each finder and ejbSelect method—see “Enabling query
caching” on page 64. Query caching is disabled by default.

Cache coherency and transaction consistency
When data is maintained in the object cache as well as the source database, you
must take steps to ensure these transactional constraints are satisfied:

• Read consistency, to ensure that data read from the cache matches data in
the source database.

• Update consistency, to ensure that updates are not committed if the source
data has changed since it was last read.

Read consistency If your application requires read consistency, choose an
isolation level that requires it, such as ReadCommittedVerifyUpdates or
ReadCommittedWithCacheVerifyUpdates. When read consistency is
required, caching should be used only when the data changes infrequently.
Caching volatile data can make your application perform worse because the
added overhead of retrying queries that roll back because the data changed.

Update consistency When using caching, transactional update consistency
is ensured by:

• The timing of cache updates Cache entries are never modified or
deleted until the transaction associated with the change has committed.

• Optimistic Concurrency Control (OCC) At commit time, EAServer
runs a verification query to check whether the data has changed since it
was originally selected. If data has been changed by another user,
EAServer rolls back the transaction.

You should not disable OCC when using object caching, and you should
use a timestamp or version column rather than using the default value-
comparison technique of concurrency control. Version columns are
preferable to database timestamp columns when using caching. When
using the database timestamp column type, EAServer must requery after
updates to get the new timestamp value, which partly defeats the
advantages of using a cache (particularly if there are frequent updates and
you have enabled the cacheLock setting).

CHAPTER 4 EJB CMP Tuning

Performance and Tuning Guide 63

• Read consistency using timeouts For applications that have a more
lax requirement for read consistency, you can configure cache timeouts to
minimize the use of stale data. The cache timeout sets a time limit on how
long cached data remains valid. Stale entries are refreshed from the source
database before the data is used in the component.

Enabling object caching
The object cache is enabled implicitly if you configure an isolation level that
requires the use of the cache—see “Configuring the logical isolation level” on
page 52. To configure the cache settings explicitly, set the <persistentObject>
attributes listed in Table 4-4.

Table 4-4: <persistentObject> attributes to configure object cache
settings

Attribute Description

cacheSize The maximum number of database rows that will be held in
cache. To avoid overflow, rows are removed from cache using
a least-recently-used (LRU) discard strategy. If not set, the
default is 1000.

cacheTimeout The maximum number of seconds that a row stored in cache
will be considered valid. This setting should not be used to
attempt to control the cache size, because invalid rows are
only discarded from cache when an attempt is made to access
them. The default value of zero is interpreted as an infinite
timeout.

cacheLock When the name of the selected isolationLevel ends with
“Cache,” this setting determines whether exclusive locks
should be used to ensure that only one transaction at a time can
access any cache entry. The purpose of this setting is to permit
the use of caching with entities that have some level of update
contention. This property should not be relied upon to ensure
exclusive access to the underlying database table rows. It is
best used in combination with optimistic concurrency control.

cacheLockTimeout The number of seconds that a transaction will wait when
trying to obtain a lock. If a lock is not acquired in this period,
the transaction is rolled back.

cacheChildren When query methods refer to this entity using the
parentVersion attribute, the query methods must also be
explicitly referenced by this entity using the cacheChildren
attribute. Specify a comma-separated list of
ChildEntity.QueryName entries such as:

Order.findByCustomer,Order.findByItem

Configuring object and query caching

64 EAServer

Enabling query caching
Query caching allows EAServer to cache the values returned by finder and
ejbSelect method queries. When caching is enabled for a query, the key values
returned by each invocation are cached in memory, with the method input
parameter values serving as the cache key. Together with entity object caching,
query caching can reduce the number of unnecessary database reads.

To enable caching for a finder or ejbSelect query, configure the <queryMethod>
command attributes listed in Table 4-5.

Table 4-5: <queryMethod> attributes to configure query cache settings

Attribute Description

isolationLevel To enable query caching for a method, you must
explicitly specify an isolation level in the <queryMethod>
configuration that includes “Cache” in the name. See
“Logical isolation level” on page 49.

cacheSize The maximum number of database rows that will be held in
cache. To avoid overflow, rows are removed from cache using
a least-recently-used (LRU) discard strategy. If not set, the
default is 1000.

cacheTimeout The maximum number of seconds that a row stored in cache
will be considered valid. This setting should not be used to
attempt to control the cache size, because invalid rows are
only discarded from cache when an attempt is made to access
them. The default value of zero is interpreted as an infinite
timeout.

preloadCache If the logical isolation level for the associated persistent object
indicates the use of a cache, and if this query has no
parameters, then this property (if true) requests preloading of
results into the cache.

Performance and Tuning Guide 65

C H A P T E R 5 Web Application Tuning

This chapter describes the settings that you can tune to optimize the
performance of your Web applications.

Tuning server and Web application settings
These Web application and server settings can affect the performance of
your Web-based application.

In most cases, you modify your Web application using the development
tool of your choice, then deploy (or redeploy) the Web application in to
EAServer. Refer to the Web Application Programmers Guide for
additional information.

Tracing properties
Tracing properties enable additional logging, which can be useful when
debugging problems. However, tracing requires additional file I/O and
computation. For best performance, disable these trace properties unless
you are troubleshooting a related issue:

• Server tracing There are several options for tracing server events
(RMI-IIOP, JMS, SQL), which can be set from the Log/Trace tab of
the Server Properties dialog box. See the EAServer System
Administration Guide for more information.

Topic Page
Tuning server and Web application settings 65
Tuning servlet and JSP settings and code 67
Tuning distributed HTTP session settings 69
Understanding HTTP response caching options 71
Dynamic response caching 73
Using partial response caching 76
Class CacheManager 80

Tuning server and Web application settings

66 EAServer

• Web application tracing The Web application property <property
name=“web.enableTracing” value= “true”/> enables tracing of the Web
application. You must also set the Web Trace property from the Log/Trace
tab of the Server Properties dialog box to enable Web application tracing.

• HTTP request log The server property enableHttpRequestLog generates
an HTTP request log. You can set this property from the Log/Trace tab of
the Server Properties dialog box. See the EAServer System Administration
Guide for more information.

Session timeouts
Servlets and JSPs can use sessions to store temporary data required to maintain
a Web user’s session. EAServer also uses sessions internally in the Web
application security implementation. The Web application Session Timeout
property specifies how long a session can remain inactive, with no requests
issued from the client. Since sessions consume memory resources, you should
tune this setting to balance memory requirements against the possibility of
users losing their session.

To configure this property, set the Session Timeout property for the Web
application by setting the <session-config> property in the web.xml file using
your Web application development tool.

Class loader settings
EAServer uses custom class loaders to allow you to refresh implementation
classes without restarting the server. Loading multiple copies of the same class
uses memory unnecessarily. To avoid this issue, configure a common class
loader for use by the Web application and the components that it calls. To do
this, configure an application-level or server-level class list, as described in
Chapter 10, “Configuring Java Class Loaders,” in the EAServer System
Administration Guide.

Clustered deployments
If you deploy your Web application in a cluster, tune the settings described in
“Web application settings” on page 97.

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 67

HTTP and HTTPS listener configuration
The HTTP listener parameters can affect the performance of your application.
“Listener tuning” on page 26 describes how to tune these settings.

SSL and performance
You can configure Web pages to require SSL as described in Chapter 3, “Using
Web Application Security,” in the EAServer Security Administration and
Programming Guide. SSL encryption can protect critical client data, such as
passwords and credit card numbers. However, SSL adds overhead to the
network transfer phase. Use SSL only when the extra security is required.

Tuning servlet and JSP settings and code
Use these tips to tune the implementation of servlets and JSPs and their
deployment properties in EAServer.

Use local interfaces for EJB calls
If the Web application calls EJB components, local interface invocations offer
the best performance since they pass parameters on the stack rather than
marshalling parameter values into an IIOP stream. For information on using
local interfaces, see these sections in the EAServer Enterprise JavaBeans
User’s Guide, from Chapter 3, “Developing EJB Clients”:

• “Instantiating remote or local interface proxies”

• “Calling local interface methods”

Threading
Avoid using servlets that must be single-threaded. One instance of a single-
threaded servlet can serve only one client at a time, while thread-safe servlets
can serve all clients with one instance.

Tuning servlet and JSP settings and code

68 EAServer

If you cannot avoid using a single-threaded servlet, configure the number of
instances to minimize blocked client requests (requests block if there are more
requests than available instances). For more information, see “Threading
settings” in the “Creating Java Servlets,” chapter in the EAServer
Programmer’s Guide.

Preloading classes
If your servlets that take a long time to load and initialize, configure them to
load when the server starts. Otherwise, the first client that calls the servlet
experiences poor response time when the servlet is loaded to satisfy the
request. You can also configure JSPs to load at start-up. If a JSP is loaded at
start-up, it is compiled if necessary.

Define the <load-on-startup> property for the servlet or JSP in the Web
application’s web.xml file.

JSP compilation options
JSP runtime compilation is expensive. While this feature is convenient during
the development phase, you should precompile JSPs when deploying them to
production server. If you precompile JSPs, you can further improve
performance by disabling runtime timestamp checking. If your application
design requires runtime compilation, you can tune the JSP compilation settings
to reduce compile time.

Precompiling JSPs

There are two ways to precompile JSPs:

• Configure the JSP to load at start-up, as described in “Preloading classes”
on page 68. The JSPs are compiled when the server starts up. This
technique requires that you have Web components defined for each JSP in
your application.

• Compile the JSPs using the jagtool compilejsp command. You can do this
from deployment scripts or batch files, or in an Ant build file. For more
information, see Chapter 6, “Using jagtool and jagant,” in the Automated
Configuration Guide.

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 69

Tuning distributed HTTP session settings
Web applications manage state information via HTTP sessions. Distributed
HTTP sessions are required to support various features, such as:

• Clusters – HTTP session information is distributed to support failover of
HTTP sessions.

• Load balancing – the same HTTP session information must be available
on multiple servers simultaneously.

Types of distributed HTTP sessions include:

• In-memory persistence – Provides a faster way of replicating and
maintaining HTTP session state information in a single server instance.

• Database persistence – Provides a reliable way to save session state
information in persistent storage. While In-memory persistence is faster,
some applications require a more permanent storage method or the ability
to share session data among servers running in a cluster.

• A combination of in-memory and database persistence – This is the
method used in EAServer. It combines the speed of in-memory persistence
with the reliability of database persistence. For this reason, it is used in
EAServer. each node maintains a local in-memory copy of the data. When
a client requests an HTTP session, it sends a version number indicating
which version it requires. If the version number in the local in-memory
copy is the same, then the data from memory is used, otherwise it is
obtained from the database. After each request is processed, the version
number increments (only if the data has changed) and the database is
updated. This method reduces the number of database accesses in half.

Distributed HTTP sessions meet these requirements:

• Optimized – clients that do not frequently update the session simply read
the HTTP session information.

• Portable – not tied to any one Web server implementation.

• Reliable – database persistence provides reliable storage for session
information.

• Versioning – changes only when the session state changes.

Tuning distributed HTTP session settings

70 EAServer

How it works
Each request made to a Web server is inspected to determine from where the
session information is retrieved (in-memory or database). After processing,
session information is updated and saved to a database. Web application filters
and the SessionManager interface are used to intercept and process requests
before the response is sent back to the client. The filters determine if:

• A new session is created – if there was none before invoking the
servlet/JSP but there is one afterwards.

• The existing session is modified – If there was a session before the
servlet/JSP and there is one afterwards, then a comparison is made to see
if any attributes change. If so, the database and version cookie are updated.

• The session is removed – when there was a session before the servlet/JSP
but none afterwards the session is deleted from the database.

Sessions

Session versioning

The version is tracked using a cookie. The cookie is sent to the client for each
response. For each subsequent request, the client sends the cookie back
indicating what version it requires. If the browser does not send back a cookie,
the Web application operates correctly, but performance is reduced.

Session Manager

For authentication, the Web server creates a new session if necessary before the
filter is invoked. See “Filter deployment” on page 71.

Session versioning allows use of a local copy of the session information instead
of delegating it to a database. Without an associated version, session
information would have to be read from the database to guarantee the data is
not stale. Each session has an associated version. The version starts at one and
changes each time a change is made to the session. To detect whether a session
has changed, a cloned copy of the existing session is saved with which session
information is compared. After processing, the request is compared to the
cloned session to see if they are different.

Custom HTTP sessions

A custom version of an HttpSession object that contains an additional version
parameter is created and used to maintain version information.

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 71

Distributable attribute

The distributable attribute is set automatically at the package level for any Web
application marked as distributable. This attribute inserts a method call after
the super.service() method, which updates the version cookie before the
container sends the response to the client. This attribute can be set in the
web.xml descriptor file of your Web application

Filter deployment

One filter is installed for each Web application, which has a path filter mapping
of “/*”. This filter is automatically installed into your Web application during
deployment if the Web application is marked as distributable.

Local in-memory cache

In order to serve the HTTP sessions more efficiently, the in-memory version of
the session data managed by the Web server is used if appropriate. In order to
determine whether or not the in-memory version is appropriate, the Web server
compares the version that the client requires against the stored version.

Database persistence

Each session is saved to a user defined database. All database operations are
handled by the persistence manager. One table, web_session, is required to
hold all of the sessions for the server. This table has a single primary key whose
value is the sessionId. The table consists of four VARBINARY columns and
one BLOB. It also has a column containing the session version. The database
only needs to be updated if the session has changed at the end of the request.
Database persistence uses the session.db data source, which is an alias for the
“default” data source in the as-installed configuration.

Understanding HTTP response caching options
EAServer supports caching of static content and servlet responses.

Understanding HTTP response caching options

72 EAServer

Servlet response caching
When caching is enabled for servlets and JSP Web components, EAServer
checks for a cached response before calling the Web component. For servlets
and JSPs that are called often, caching improves performance by skipping the
processing required to produce the response. EAServer supports three
mechanisms for response caching:

• Dynamic response caching Responses are cached in a hash table,
using a multi-part key. By default, the key includes the request path, but
you can configure additional key parameters such as request or session
attributes. “Dynamic response caching” on page 73 describes how to
configure this mechanism.

• Partial response caching allows you to cache parts of a response. This
mechanism is useful when pages contain volatile content, such as
calculation results, but otherwise have static content such as headers and
footers. The response cannot be cached effectively using other
mechanisms because of the volatile content, but partial response caching
allows you to cache only the static parts of a response. Partial response
caching is supported by a tag library for use in JSPs, and a public API for
use in servlets. “Using partial response caching” on page 76 describes
how to use this mechanism.

Which components
should use caching?

Not all Web components should be cached. Caching the output of seldom-
called Web components can sometimes reduce performance. If the cache is
full, the rarely accessed output can bump more frequently accessed data out of
the cache. On the other hand, if a servlet takes a long time to execute, you may
still benefit from caching a servlet that it is not called as frequently as others,
as long as there is sufficient space to cache the servlet. When the cache is too
full to add or refresh a response, EAServer removes enough entries to make
room, removing entries in least-recently-used order.

There is some overhead required to create and remove cache entries. If a Web
component runs quickly, you may get better results with caching disabled, thus
avoiding the overhead of maintaining additional cache entries and reserving
more memory for the caching of other Web components.

To decide which Web components should be cached, review your request log
patterns and Java profiling data (or timing trace data) to answer the following
questions:

• How often is the Web component invoked?

• How long does it usually take?

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 73

• How often can requests use the cached data? If not always, can you define
a key based on request and session parameters to allow the correct
response to be cached and reused? Does a timeout suffice to satisfy the
requirements for accurate data?

Based on these answers, you can determine which Web components are
appropriate to cache and estimate the time that can be saved by caching them.
For example, if you specify a timeout of 1 minute, the response takes 5 seconds
to process, and the matching request occurs 4 times per minute, you can
eliminate up to 15 seconds of processing time per minute (based on the fact that
there are 3 cache hits per minute before the matching entry times out and must
be recalculated).

JSPs must be listed
as Web components
in the deployment
descriptor

To enable caching, you must define EAServer Web components for JSPs as
well as servlets. Although a JSP can run when it is not installed as a Web
component, you cannot enable caching unless you have defined a Web
component that is mapped to the JSP. To ensure JSPs are defined as Web
components when deploying to EAServer, add configuration for them to the
web.xml deployment descriptor before deploying to EAServer.

Dynamic response caching
Dynamic response caching decreases a servlet’s or JSP’s response times by
caching the output with a multi-part, user-configured key value. This caching
mechanism stores responses in their entirety. For pages that return both volatile
content and content that rarely changes, use partial response caching instead.

When response caching is enabled for a servlet or JSP, EAServer checks the
cache before invoking the Web component, looking for an entry that matches
the key that you have defined for the servlet or JSP. If an appropriate response
is found in the cache, EAServer returns the contents of the cache, instead of
calling the servlet. If the cache contains no matching key, EAServer invokes
the servlet, and caches the response and response headers while returning them
to the client.

You can define the key that EAServer uses to store and retrieve cached entries.
By default, a key consists of only the servlet’s or JSP’s location on disk. You
can further refine key values by adding up to five optional parameters. Doing
so allows caching of separate responses from the same servlet or JSP, based on
request characteristics such as locale or HTTP session ID. In addition, you can
configure a timeout for cache entries associated with the JSP or servlet to
prevent the use of stale data.

Dynamic response caching

74 EAServer

Configuring response caching for servlets and JSPs
Configuration of this caching is done in the webapp.xml configuration file. You
can create a sybase-webapp-config.xml using the development tool of your
choice that adds the necessary caching attributes to the Web application’s
configuration file.

❖ To configure response caching for a servlet or JSP:

1 Modify the sybase-webapp-config.xml file for the corresponding Web
application, located in the deploy\webapps\web_app_name\WEB-INF
subdirectory of your EAServer installation. For example, if the Web
application is named testwebapp, then you would edit the
deploy\webapps\testwebapp\WEB-INF\sybase-webapp-config.xml file.

2 Add the cacheResponse attribute to the XML file, and the parameters that
you want to use in the key as listed in Table 5-1.

Table 5-1: response caching properties

Parameter name Description

timeOut Specifies the timeout in seconds for a cache entry; the default is 60; a value of
0 indicates no timeout.

This property is cacheTimeout when specified in the <cacheResponse> Ant
property.

size Specifies the number of entries that can be cached. If not specified, the default
is 1000.

sessionLocal Includes the session ID from the request as part of the key. This allows session
specific items such as shopping carts to be differentiated from each other. To
enable the sessionLocal parameter, set it to true. The default is false.

localeSensitive Allows you to include which languages are accepted as part of the key. The key
is constructed from the list of locales in the request. The ability to include locale
information is also included in the requestHeaders option, but for ease of use,
it has been added as a separate option. Enable this option by setting it to true
(the default).

requestParameters Allows certain parameters from the request to be included in the key. The
request contains a table of key-value pairs that are accessible from within a
servlet or JSP from which the servlet developer can base the output of the
servlet. This means that the same servlet, when given different parameters, may
produce different output. Hence, two separate entries in the cache. You can
specify as part of the cacheResponse attribute which attributes are to be
included in the key. Since the attributes are stored as key-value pairs, both the
key name and key value affect the key. The included parameters are listed in
the requestParameters parameter of the cacheResponse attribute. To include
all parameters, use an asterisk “*” (the default) in place of the list.

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 75

3 Deploy (or redeploy) the Web application.

Caching an entire tree
To use response caching for a JSP that forwards request to, or dynamically
includes, other JSPs or static files, consider these factors. By default, when you
enable response caching for a JSP Web component, only its content is cached.
If a JSP includes, or forwards requests to, other pages or static files, their output
is not cached. To include the output of all the pages or files that are invoked,
you can select to cache a Web component’s entire tree. This example illustrates
portions of three JSP files; two use the <jsp:include> tag to include other JSPs:

// page1.jsp
<HTML>
<H1>This is page 1</H1></p>
<jsp:include page="/page2.jsp" />
</HTML>

// page2.jsp
<HTML>
<H2>This is page 2</H2></p>
<jsp:include page="/page3.jsp" />
</HTML>

// page3.jsp
<HTML>
<H3>This is page 3</H3></p>
</HTML>

sessionAttributes Allows certain session attributes from the session to be included in the key.
Session attributes are stored in the key as key-value pairs. The attributes are
specified by the sessionAttributes parameter of the cacheResponse attribute.
To include all attributes, use an asterisk “*” in place of the list. In order to
guarantee that the cache can store a session attribute, the type being stored
needs to be serializable. The default is not to use sessionAttributes.

requestHeaders Allows certain request headers from the request to be included in the key. For
example, you could specify the date header to be included so that only entries
in the cache whose date header matches the current date header are considered.
Headers are case insensitive so the key is converted to lowercase. Headers are
stored in the key as key-value pairs. The included headers are listed in the
requestHeaders parameter of the cacheResponse attribute. To include all
headers, use an asterisk “*” in place of the list. The default is not to use
requestHeaders.

Parameter name Description

Using partial response caching

76 EAServer

If you enable response caching for the Web component mapped to page1.jsp
and choose to cache the entire tree, the cached entry displays this in the
browser:

This is page 1
This is page 2
This is page 3

If you enable response caching for page1.jsp but not for the entire tree, the
cached entry displays this in the browser:

This is page 1

When a client requests the Web component mapped to page1.jsp and it is
configured to cache the entire tree, the output from page1.jsp, page2.jsp, and
page3.jsp is cached as a single entry. EAServer creates a separate cache entry
for a single page when:

• A client requests the page directly, and

• The Web component is configured to not cache the entire tree.

For example, if the Web component “Page2” is mapped to page2.jsp and it is
not configured to cache the entire tree, its output is cached as a separate entry
when a client specifically requests Page2.

Changes from EAServer 5.x
Caching in EAServer 6.0 does not support the messageTopics key parameter
that was supported in EAServer 5.x. This parameter is ignored when you
migrate your EAServer 5.x JSPs and servlets.

The default value for localeSensitive has changed from false to true. The new
default is applied when you migrate your EAServer 5.x JSPs and servlets.

In EAServer 6.0, the caching parameters are configured in the Web
application’s XML configuration file as opposed to the .props file used in
EAServer 5.x. Also, There is no longer a Web application level default for the
parameters. Each parameter has its own default value.

Using partial response caching
There are two methods for caching dynamic content from JSP and Servlets:

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 77

1 The entire response

2 Part of the response

Fragment caching, also known as partial response caching allows you to cache
parts of a response. This allows you to create “template pages” that contain
static and dynamic data separated into individual fragments. As with regular
dynamic response caching, you control different caching parameters. By
configuring each fragment to be sensitive to different page parameters, the
page designer ensures that you do not get stale or incorrect data.

Fragment caching is more effective than caching entire responses when pages
contain volatile content. For example, you can use fragment caching when the
response contains volatile content, such as calculation results, mixed with
static content such as headers and footers.

Partial response caching is supported by a tag library for use in JSPs, and a
public API for use in servlets. “Using the caching tag library” on page 77
describes how to use the tag library. Class CacheManager on page 80 describes
the API for use in servlet code.

Using the caching tag library
The tag library implementation is provided in CacheTags.jar, installed in the
lib/default/ext subdirectory of your EAServer installation. To use the library in
a JSP, add the following directive:

<%@ taglib uri="http://www.sybase.com/EAServer/cachetags.tld" prefix="ct"%>

The library includes the tags described below.

The cache tag

To cache a portion of a page, surround it with this tag, as in:

<prefix:cache attributes>
... page content ...
</prefix:cache>

Where prefix is the tag prefix that you assigned the tag library when declaring
it in the taglib directive in your page source, and attributes is a list of attribute-
value pairs to set the attributes described in Table 5-2.

Using partial response caching

78 EAServer

Table 5-2: Cache tag attributes

When recompiling a JSP, EAServer flushes any cache entries that are used in
the page. When refreshing the Web application, EAServer refreshes all caches
that are scoped to the application. You can also flush caches programmatically
using the flushCacheByKey or flushCacheByScope tags.

Flushing caches

The flushCacheByKey and flushCacheByScope tags allow you to flush key
entries from a cache:

• flushCacheByKey – causes the specified entries to be erased from the
cache, and can only be used on caches that specify the name attribute.

Attribute Comments

parameters A comma-delimited list of request parameters to include in the key. A
value of “*” includes all parameters in the key. If not specified, all
parameters are included in the key.

attributes A comma-delimited list of session attributes to include in the key. A
value of “*” includes all session attributes. If not specified, no session
attributes are included in the key.

localeSensitive Set this attribute to true if locale-sensitive headers are to be included
as part of the key. The default is false, which omits locale-sensitive
headers from the key.

headers A comma-delimited list of request headers to include in the key. The
default is to include no headers in the key.

timeout Specifies how long, in seconds, an entry in the cache remains valid.
The default value is 600.

name Allows you to specify a unique name, so that a cache can be shared
across multiple pages. If you do not specify a name, the default value
is computed so that each page has one cache for all the tags within that
page, and each occurrence of the cache tag is assigned an ID that is
unique within the page. You can specify a name to cache parts of a
response that occur on several pages: data computed on one page can
be read from cache and used in another page.

scope Specifies the scope in which data is stored in the cache. Can be either
session or application. The value session indicates that only pages in
the same session can view the cached data. The default, application,
indicates that all pages in the Web application have access to the
cached data.

maxEntries Specifies the a size (number of entries) in the cache. If not specified,
the default is 1000.

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 79

• flushCacheByScope – removes entries from all the caches in a specific
scope.

The flushCacheByKey tag

You can use this tag to flush caches for which you have specified a name. You
can specify a name, scope, and key parameters as described in Table 5-3. The
entry that matches the specified key values and scope is flushed when the tag
executes.

Table 5-3: flushCacheBykey tag attributes

The flushCacheByScope tag

You can use this tag to flush all entries from all caches in the specified scope.

Table 5-4: flushCacheByScope tag attributes

Using the caching API
You can call the caching API to cache response parts in servlets. The API is
implemented by class CacheManager, described below.

Attribute Required Comments

name Yes The cache name.

scope No The cache scope. If not specified, the default is application.

parameters No Same as for the cache tag. The default is to include all request
parameters in the key.

attributes No Same as for the cache tag. The default is to not include any session
attributes in the key.

localeSensitive No Same as for the cache tag. The default is false.

headers No Same as for the cache tag. The default is to not include headers in the
key.

Attribute Required Comments

scope Yes Specifies which scope to refresh the caches in. Values are session,
application, and page. Specify application to flush all caches in the
application. Specify session to flush all caches that are scoped to the
user’s session. Specify page to flush all cache entries that are used in
the current page.

uri No The URI from which the caches are flushed. The default is the URI of
the current page.

Class CacheManager

80 EAServer

Class CacheManager
Description package com.sybase.djc.web.util.jsptags

public class CacheManager

Allows you to cache responses or parts of a response in Java servlets.

Constructors None. Call the CacheManager.getInstance(ServletContext) method.

CacheManager.getInstance(ServletContext)
Description Gets the instance of the CacheManager for a given servlet context. Each

context has a single CacheManager instance.

Syntax

public static CacheManager getInstance(ServletContext context)

Parameters context
The servlet context.

Return value The CacheManager instance for the context, or null if the specified context is
not a valid EAServer servlet context.

CacheManager.createCache(String)
Description Creates a new cache.

Syntax

public void createCache(String cacheName) throws CacheNameException

Parameters cacheName
The name of the cache to create. The method throws CacheNameException
if the name is invalid.

CacheManager.getData(String, PageCacheKey)
Description Retrieves data from the cache.

Package com.sybase.djc.web.util.jsptags

Class CacheManager

Package com.sybase.djc.web.util.jsptags

Class CacheManager

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 81

Syntax

public String getData(String cacheName, PageCacheKey key)
throws CacheNotFoundException, CacheNameException

Parameters cacheName
The name of the cache to use.

key
The key for the entry. Call getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int) to get a key instance.

Return value The cached text, or null if no entry matches the key. Throws
CacheNotFoundException if there is no cache with the specified name. Throws
CacheNameException if the name is invalid.

CacheManager.putData(String, PageCacheKey, String, int)
Description Places data in the cache.

Syntax

public void putData(String cacheName, PageCacheKey key, String data, int
timeout) throws CacheNotFoundException, CacheNameException

Parameters cacheName
The name of the cache to use.

key
The key for the entry. Call getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int) to get a key instance.

data
The text to cache.

timeout
The timeout for the entry, in seconds.

CacheManager.flushCacheByKey(String, PageCacheKey)
Description Flushes the entry for the specified key from the cache.

Package com.sybase.djc.web.util.jsptags

Class CacheManager

Package com.sybase.djc.web.util.jsptags

Class CacheManager

Class CacheManager

82 EAServer

Syntax

public void flushCache(String cacheName, PageCacheKey key) throws
CacheNotFoundException, CacheNameException

Parameters cacheName
The name of the cache to flush from.

key
The key for the entry to flush. Call getCacheKey(HttpServletRequest, String,
String, String, String, String, boolean, int) to get a key instance.

CacheManager.flushCacheByScope(HttpServletRequest, String,
String)
Description Flushes caches associated with the specified scope.

Syntax

public void flushCacheByScope(HttpServletRequest request, String scope,
String uri)

Parameters request
The request associated with the page that you are caching content for.

scope
A value from the following table:

uri
The URI of the page from which to flush the cache.

Package com.sybase.djc.web.util.jsptags

Class CacheManager

Package com.sybase.djc.web.util.jsptags

Class CacheManager

Value To indicate

application To flush all caches in the Web application.

session To flush all caches whose session ID matches the session ID of
the current session. If there is not an active session, nothing is
flushed.

page Flush all caches for the specified page.

CHAPTER 5 Web Application Tuning

Performance and Tuning Guide 83

CacheManager.getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int)
Description Creates a cache key for the specified inputs.

Syntax

public PageCacheKey getCacheKey(HttpServletRequest request, String
parameters, String attributes, String headers, String scope, Boolean
localeSensitive, String tagID)

Parameters request
The request associated with the page that you are caching content for.

parameters
A comma-separated list of request parameters to include in the key. Specify
“*” to include all parameters.

attributes
A comma-separated list of session attributes to include in the key. Specify
“*” to include all attributes.

headers
A comma-separated list of request headers to include in the key. Pass as null
to omit all headers from the key.

scope
Controls the scope in which data is stored in the cache. Pass a value from the
following table:

localeSensitive
Pass as true if locale-sensitive headers are to be included in the key, and false
otherwise.

tagID
A string containing the unique tag ID for the tag.

Return value A com.sybase.djc.web.util.jsptags.PageCacheKey instance containing the input
data.

Package com.sybase.djc.web.util.jsptags

Class CacheManager

Value To indicate

application All pages in the Web application have
access to the cached data.

session Only requests in the same session can
view the cached data.

Class CacheManager

84 EAServer

Performance and Tuning Guide 85

C H A P T E R 6 Database Access Tuning

This chapter describes how to tune data sources and the settings that affect
the performance of the EAServer transaction manager.

Component design and implementation
The design and implementation of your code to access databases can have
a significant effect on performance. Be sure to understand how the server
manages transactions for your component model. For EJB components,
EAServer implements the standard container-managed transaction
semantics defined in the EJB specification. For CORBA and
PowerBuilder components, EAServer implements the transaction
semantics described in Chapter 2, “CORBA Component Life Cycles and
Transaction Semantics,” in the CORBA Components Guide.

Keep transactions short
Avoid component designs that require the use of long-running
transactions. For each transaction that your application runs, the database
server may lock tables, rows, indexes, and other resources required to
guarantee the required transaction outcome. Long-running transactions
reduce the scalability of the application, since the required locks may be
held for the duration of the transaction and other users must wait for them
to be released.

Topic Page
Component design and implementation 85

Server and component transaction settings 88

Data source settings 89

Database tuning 93

Transaction cross-reference logging 94

Component design and implementation

86 EAServer

Many design patterns that depend on long-running transactions can be easily
modified to use optimistic concurrency control and short transactions. That is,
rather than running all the database work in one transaction, select the initial
values and perform all computations without starting a transaction. Use a
timestamp or value comparisons before updates to verify that data has not been
modified since it was first selected.

For EJB components, minimize the use of bean-managed transactions. If you
do use bean-managed transactions, avoid implementations that allow the
transaction to remain open when a method returns.

For CORBA and PowerBuilder components, avoid stateful components that
are transactional and call the continueWork or disallowCommit state primitives,
and other designs that require transactions to span client method invocations.
If the transaction remains open when the business method returns, it can remain
open if the client hangs or the user changes their mind.

Note Beginning in version 6.0, you can disable support for long-running
transactions started by CORBA stateful components. For details, see “Long
versus short transactions” in Chapter 2, “CORBA Component Life Cycles and
Transaction Semantics,” in the CORBA Components Guide.

Minimize result set size
Tune your queries and schemas to ensure that you do not waste network
resources and memory by selecting unneeded data. For example, do not select
100 rows, then search them in your component to find the one row that you
need. Use the query language to direct the database to find and return only the
data you need. In EJB entity beans, implement additional finder methods to
allow results filtering with database query language rather than returning many
rows to be filtered on the client.

In CORBA components that return large result sets to the client, you may get
better performance by batching the result set into smaller groups of rows, then
reassembling them on the client. Doing so avoids the need to construct large
TabularResults.ResultSet objects in memory.

CHAPTER 6 Database Access Tuning

Performance and Tuning Guide 87

Minimize use of two-phase commit
Multiple database transactions require two-phase commit, and consequently
execute more slowly than those that use only a single database. Review your
application design and component transaction settings to make sure that two-
phase commit is used only when the component work involved must be part of
the same atomic unit of database work.

If a component inherits a transaction in an intercomponent call involving two
or more database connections, EAServer uses two-phase commit. The
component’s transaction attribute determines whether transactions can be
inherited through intercomponent calls. For example, two-phase commit is
required if the component’s transaction attribute is “Supports,” the component
has been called from another component that has attribute “Requires,” and the
components use different data sources.

To avoid use of two-phase commit for a component’s database work, set the
transaction attribute to “Requires New” after verifying that the work can be
commit or rollback independently of the calling components transaction
outcome. If a component performs updates to a noncritical database you can
choose “Not Supported” as the component's transaction attribute to eliminate
the overhead of using EAServer transactions at all. For example, the
component may log usage statistics to a remote database.

Clean up connections before releasing them to the data source
Many JDBC programs do not explicitly clean up java.sql.Statement objects.
Instead, they rely on the JDBC driver to clean up Statement objects when the
connection is closed. This strategy does not work with pooled connections; you
must explicitly clean up Statement objects before releasing a connection back
into the pool. To clean up Statement objects, call Statement.close() and set the
Statement reference to null.

 Warning! To prevent memory leaks, you must explicitly clean up a
connection’s Statement objects before releasing the connection back into the
pool. Do not release the same connection more than once.

Server and component transaction settings

88 EAServer

Avoid unnecessary database work
For PowerBuilder and CORBA components that participate in transactions,
you can call isRollBackOnly to test if the transaction is doomed before the
method executes more logic that would have to be rolled back. For more
information, see “Using transaction state primitives” in Chapter 2, “CORBA
Component Life Cycles and Transaction Semantics,” in the CORBA
Components Guide.

Server and component transaction settings
These server properties affect the performance of the EAServer transaction
manager and components that use server-managed transactions.

Stateful component idle timeout
If your application includes transactional stateful CORBA or PowerBuilder
components or EJB stateful session beans, configure an idle timeout property
for the component. Doing so ensures that if a client crashes or an end user
leaves their workstation, transactions do not remain open indefinitely.

To configure a timeout for stateful session beans, set the ejb.passivateTimeout
property as described in Chapter 2, “Deploying and Configuring EJB
Components,” in the EJB Users Guide.

To configure a timeout for stateful CORBA or PowerBuilder components, set
the Passivation Timeout as described in Chapter 4, “Managing CORBA Packages
and Components,” in the CORBA Components Guide.

CHAPTER 6 Database Access Tuning

Performance and Tuning Guide 89

Long transaction support
You can configure EAServer so long transactions cannot be run from CORBA
and PowerBuilder stateful components. Doing so decouples the transaction
outcome and duration from the component’s invocation of transaction state
methods. Long transactions are enabled by default. Before disabling long
transactions, verify the change does not compromise the transactional integrity
of your application.For more information, see “Long versus short
transactions” in Chapter 2, “CORBA Component Life Cycles and Transaction
Semantics,” in the CORBA Components Guide.

Data source settings
Data source use increases performance by allowing reuse of database
connections, eliminating the overhead of repeatedly creating and destroying
connections to the same database. For general information on data sources,
see:Chapter 4, “Database Access,” in the EAServer System Administration
Guide.

The following sections describe how to tune data source settings for the best
performance.

Tuning the pool size
Data sources have 10 connections by default. For applications with many
clients, this number is often too small. For lightly used data sources, you can
lower the size to free up memory and network connections that would be
wasted by rarely used database connections. To tune the pool size, monitor the
data source statistics as described in Chapter 11, “Runtime Monitoring,” in the
EAServer System Administration Guide. Tune the pool size by setting the
properties listed in Table 6-1.

Table 6-1: Properties to configure data source pool size

Property Description

Initial Pool Size
(initialPoolSize)

The initial number of pooled connections, allocated at server start-up. If not set, the
default is 0.

Data source settings

90 EAServer

Set the pool size so the majority of database connections are taken from the
data source. You can tune the minimum pool size and idle time parameters to
reduce the number of database connections that are held during off-peak hours.
You can raise the maximum size if you see many failed connection requests or
waits.

Figure 6-1 illustrates how these settings affect the growth of the data source
pool size.

Minimum Pool Size
(minPoolSize)

The minimum number of connections in the pool. When open connections are idle, the
pool is pruned to this size. The default is zero.

If no minimum size is specified, EAServer opens connections as-needed to fill the pool
up to the maximum size.

Maximum Pool Size The maximum number of connections allocated to the pool for this data source. If the
maximum is exceeded, and cannot be resolved by waiting; for example, if deadlock
occurs, you may see “ResourceMonitorTimeoutException” errors in your log file, and
some transactions may fail. A value of zero sets no limit to the connection pool size.

Maximum Wait Time The maximum number of seconds to wait for a connection before the request is
cancelled.

Maximum Idle Time Specifies the number of seconds an idle connection remains in the pool before it is
dropped. The default is 60 seconds. Idle connections are dropped until the minimum
pool size is reached.

Note If the idle timeout is set to 0, connections are not dropped and can remain in the
pool until the server shuts down.

Maximum Cached
Statements

The maximum number of JDBC prepared statements that can be cached for each
connection by the JDBC driver. The value of this property is JDBC-driver specific.

Property Description

CHAPTER 6 Database Access Tuning

Performance and Tuning Guide 91

Figure 6-1: Data source pool growth patterns

When the server starts, it preallocates the specified inital number of
connections, allowing faster response times to the initial client requests that
require a database connection.

If all connections are in use simultaneously, but the pool size is below the
maximum, the pool manager creates new connections to satisfy demand. When
released, these connections are added to the pool, causing it to grow towards
its maximum pool size.

During peak use, requests may arrive when the pool contains the maximum
number of connections, but all connections are in use. When this happens, the
requesting component waits. If the wait time exceeds the configured maximum
(Maximum Wait Time), the request fails with exception
com.sybase.djc.util.ResourceMonitorTimeoutException.

When the activity level drops, the pool manager removes idle connections if
you have configured an idle connection timeout (Maximum Idle Time). The
pool size drops back down to the minimum.

Minimum
pool size

start-up

Normal use

Peak use

Maximum
pool size

Normal use

Initial
pool size

Data source settings

92 EAServer

Monitoring data source pool activity

You can monitor the data source activity in the Management Console to
determine how effective the settings are. See “DataSource tab” in Chapter 11,
“Runtime Monitoring,” in the EAServer System Administration Guide for
more information.

Tuning data sources used by EJB CMP entity beans

For EJB CMP entity beans, EAServer provides wrapper drivers that improve
performance by using statement batches and stored procedures. For more
information, see “Use JIT JDBC wrapper drivers” on page 53.

Remove unused data sources
Remove unused data sources from the server’s resource startup list, or set the
Initial Pool Size setting to 0. EAServer allocates the minimum pool size for
each data source, and unused connections waste memory and network
resources.

Data source ping
By default, the data source manager runs a stock query to verify that
connections are ready for use before placing them back in the data source pool.
Sanity checking prevents errors that occur when components release a
connection that is not ready for use by another component. For example, there
may be pending results on the connection, causing an error when the next
component to use the connection tries to send a command.

If you have debugged the results handling in your application, you can improve
performance by disabling Ping Pooled Connections in the data source
properties.

If you have enabled the Set Session Authorization property so database work
runs under the effective user ID of the client, you can also enable the Ping With
Set Session Auth property (pingAndSetSessionAuth). Doing so causes the ping
and session-authorization commands to be run in a single command batch and
may improve performance.

CHAPTER 6 Database Access Tuning

Performance and Tuning Guide 93

Using the caching APIs
In Java/CORBA and CORBA/C++components, you must use the EAServer
APIs to obtain a data source reference and retrieve connections from it. For
best performance, use by-name lookup to obtain data source handles and pass
the data source handle when obtaining and releasing connections. Doing so
avoids internal table searches in the data source manager. For information on
using these APIs, see the API Reference Manual.

Dynamic prepare on jConnect data sources
Ensure that data sources that utilize a com.sybase driver class are defined with
the DYNAMIC_PREPARE property set to FALSE for optimal performance. In
EAServer 4.1.1 and later, this property is set to FALSE by default. However, it
was set to TRUE by default in some earlier versions.

Database driver specific settings
See the documentation for your database and the connectivity driver or library
for performance tuning recommendations. For example, if you are using
Sybase jConnect for JDBC, the Programmer’s Reference includes a chapter on
performance and tuning. This document is available in the jConnect
documentation on the Sybase Web site at http://sybooks.sybase.com/jc.html.

Unless you are actively debugging problems, ensure that the trace and debug
settings are disabled for your connectivity driver or library.

Database tuning
Consult your database performance and tuning documentation for information
on tuning your queries to minimize database response time. Take advantage of
any performance features available in your database, such as stored procedures
if using Sybase Adaptive Server Enterprise. Consult your database
performance and tuning documentation. If you are using Sybase Adaptive
Server Enterprise, the Performance and Tuning Guide is available on the
Product Manuals Web site at
http://sybooks.sybase.com/nav/summary.do?prod=9938&lang=en&prodName=A
daptive+Server+Enterprise.

Transaction cross-reference logging

94 EAServer

Transaction cross-reference logging
You can configure EAServer to create a log of transaction cross references. For
each distinct container managed transaction (identified by the business method
that initiates the transaction), the log includes information about SQL
statements and JMS operations that were executed in the transaction.

To create the transaction cross reference, enable Generate Transaction Cross
Reference in the server property pages in the Management Console, or set the
txRef property to true if using Ant configuration. This setting causes EAServer
to collect the necessary data and write it to the log files using the TxRef
scheduled task.

The transaction cross reference output is recorded in the EAServer
logs/transactions directory, in file my-server-name.transactions, where my-
server is the server name.

Performance and Tuning Guide 95

C H A P T E R 7 Cluster Tuning

This chapter describes the performance benefits of EAServer clusters and
tells you what settings to tune for the best performance when your
application runs in a cluster.

When to use clusters
An EAServer cluster is a group of servers that share replicated repository
information to run the same components and Web applications. A
clustered deployment provides load balancing and high availability, at the
cost of slightly increased overhead to replicate client session information
between servers in the cluster. If you are not familiar with these concepts,
see these chapters in the EAServer System Administration Guide:

• Chapter 6, “Clusters and Synchronization”

• Chapter 8, “Load Balancing, Failover, and Component Availability”

If your application cannot support the required number of clients running
on one machine, moving to a cluster allows EAServer to balance the load
across several machines. Depending on the hardware you choose, a cluster
of low priced machines may be less expensive than upgrading to a single
machine with multiple CPUs. Clusters also provide failover support when
you run servers on multiple machines: no single machine failure takes
your application offline.

Topic Page
When to use clusters 95

IIOP client settings for clustered applications 96

Web application settings 97

Component settings 98

Cluster partitioning

96 EAServer

Clusters incur a slight overhead increase due to the need to store client session
data to a remote database for access by multiple servers. You can minimize the
performance impact by minimizing your use of stateful components and HTTP
session storage, and by tuning the database and data source used for session
storage.

Cluster partitioning
A cluster partition allows you to divide the application load among the servers
in a cluster. You can configure individual components, message queues, and
topics to be serviced only by the servers in a specific partition. For details, see
“Cluster partitions” in Chapter 6, “Clusters and Synchronization,” in the
System Administration Guide.

IIOP client settings for clustered applications
When deploying clients in a cluster, these settings can affect the distribution of
server load and the client’s ability to fail over if a server goes off line.

Socket timeout for Java clients
For EJB and CORBA/Java clients, this setting specifies a time limit to receive
a server response before the connection fails over to try another server in the
cluster. Setting this property ensures that failover happens without an
unreasonable delay. Specify the timeout period in seconds. The default of 0
indicates no time limit. The following table describes how to set this property
for each client type:

Client type Property name

Java com.sybase.CORBA.socketTimeout

EJB com.sybase.ejb.socketTimeout

C++ and
PowerBuilder

Not supported.

CHAPTER 7 Cluster Tuning

Performance and Tuning Guide 97

Idle connection timeout for C++ and PowerBuilder clients
In a cluster, EAServer’s load balancing policy can evenly distribute the initial
client connections. However, long running C++ and PowerBuilder clients can
create unbalanced loads by building an affinity for the server that they are
initially directed to by the name service.

To avoid this problem, configure the ORBidleConnectionTimeout C++ ORB
property. This property specifies the time, in seconds, that a connection is
allowed to sit idle. When the timeout expires, the ORB closes the connection.
The default is 0, which specifies that connections can never timeout. The
connection timeout does not affect the life of proxy instance references; the
ORB may close and reopen connections transparently between proxy method
calls. Specifying a finite timeout for your client applications can improve
server performance. If many instances of the client run simultaneously, a finite
client connection timeout limits the number of server connections that are
devoted to idle clients. A finite timeout also allows rebalancing of server load
in an application that uses a cluster of servers. You can also configure this
property by setting the environment variable
JAG_IDLECONNECTIONTIMEOUT.

Web application settings
Web applications in a clustered deployment can provide better performance
since multiple machines can handle more load than one. Clusters also provide
high availability: if one machine goes off-line, clients can connect to another
server in the cluster. To run your Web application in a cluster, you must
configure a mechanism to support load balancing of HTTP requests, and
optionally failover. For more information, see “Deploying Web applications to
a cluster” in Chapter 8, “Load Balancing, Failover, and Component
Availability,” in the EAServer System Administration Guide.

Chapter 5, “Web Application Tuning,” describes the Web application settings
that you can tune for single-server deployments. In a clustered deployment, the
the HTTP session replication mechanism can also be tuned.

In a clustered deployment, EAServer replicates user session data stored in
HTTP sessions so that the same data is available on other servers in the cluster.
Replication uses the remote database server specified by the session.db data
source. All servers in the cluster store session data in a remote database. Tune
the data source settings as described in “Data source settings” on page 89.

Component settings

98 EAServer

Component settings
Chapter 3, “Component Tuning,” describes the component settings and
implementation techniques that you can tune for single-server deployments. In
a clustered deployment, these additional settings affect performance.

Automatic failover
To allow load balancing when deployed in a cluster, your components must be
configured to support automatic failover.

Enterprise JavaBeans can be configured by setting the ejb.automaticFailover
Ant property—see “Commonly configured properties” in Chapter 2,
“Deploying and Configuring EJB Components,” in the Enterprise JavaBean
User’s Guide.

CORBA and PowerBuilder components can be configured by setting the
Automatic Failover property in the Component Properties pages in the
Management Console.

Response and request logs
For components deployed to a cluster, you can configure request and response
logging to avoid duplicate calls to business methods. These repeated calls
might occur when the client has failed over from one server to another, and is
uncertain whether the call was successfully executed on the first server before
failure.

Request logging can prevent repeated calls to methods that return void. Enable
request logging by calling the <requestLog> command inside a <setProperties>
command that configures your component.

Response logging can prevent repeated calls to methods that return a value (not
void). Enable request logging by calling the <responseLog> command inside a
<setProperties> command that configures your component.

Request and response logging uses the af_response_log database table in the
cluster.db data source. Request and response logging will normally degrade
performance due to the use of a database. However, there use is appropriate if
possible duplication of method calls is unacceptable.

The following example shows how to configure automatic failover, request
logging, and response logging from an Ant user-configuration script:

CHAPTER 7 Cluster Tuning

Performance and Tuning Guide 99

<setProperties component="ejb.components.myjar.MyCompRemote">
<automaticFailover enable="true"/>
<requestLog enable="true"/>
<responseLog enable="true"/>

</setProperties>

The <setProperties> component attribute specifies the name of the DJC
component that runs the application component that you want to monitor. Set
this depending on the application component type, as follows:

• For enterprise JavaBeans components, specify the DJC component that
corresponds to the remote interface. You can read the DJC component
names from the EJB module’s Ant configuration file that was generated by
deployment.

• For CORBA and PowerBuilder components, specify the DJC component
that corresponds to the remote interface of the EJB session bean that wraps
your component. This name is
ejb.components.package.componentRemote, where package is the
CORBA package name, and component is the component name.

Component settings

100 EAServer

Performance and Tuning Guide 101

C H A P T E R 8 Message Service Tuning

About the message service
EAServer supports the Java Message Service APIs and implements the
required server functionality. Before reading this chapter, you should be
familiar with message service configuration and programming, as
described in these chapters in the Java Message Service User’s Guide:

• Chapter 1, “Message Service Overview”

• Chapter 2, “Setting up the Message Service”

• Chapter 3, “Developing JMS Clients”

Best practices for design and coding
For best performance, follow these recommendations when designing and
implementing JMS applications:

• Consider storage types carefully EAServer supports two options
for message storage and delivery, transient versus persistent:

Topic Page
About the message service 101

Best practices for design and coding 101

Data source and database tuning 103

Queue and topic settings 104

JMS connection factory settings 107

Using store-and-forward messaging 108

Message driven bean tuning 108

Best practices for design and coding

102 EAServer

• Transient messages are stored in memory only. Applications based on
transient messages run faster, however messages can be lost if the
server goes offline or restarts.

• Persistent messages are stored in a remote database and also cached
in memory. The database interaction affects performance. However,
since the messages are stored in a database, they are not lost when the
server goes offline or restarts (reliable delivery depends on the
settings described “Queue and topic settings” on page 104).

Use transient messages if your application requirements allow the
possibility of lost messages. Use persistent messages if lost messages are
never acceptable. For example, transient storage may suffice if the
message is intended to notify retail customers of new catalog items. On the
other hand, if the message represents a change to a customer’s account
balance, use persistent storage for the most reliable delivery.

Transient messaging yields much better performance than persistent
messaging for high-volume publish/subscribe applications such as stock
or currency trading systems. Sybase recommends that you design these
applications to work reliably with non-persistent messages. If messages
might have been are lost, your application receives a JMSException error.
If the applications takes appropriate action to cope with the possible loss
of messages, you can use transient messaging.

• Use message selectors If using the publish/subscribe model, message
selectors save bandwidth by preventing the delivery of messages that the
subscriber does not need. Do not scan and delete messages in your client
code. Instead, create a selector so that the server filters messages before
they cross the network.

• Start consumers before producers Messages that you send before a
consumer is available can create backlogs in the queue. If you can control
the timing, make sure the consumer starts first.

• Set the expiration time If appropriate, set the message time-to-live
property. Doing so allows EAServer to free resources associated with the
message when it expires. For example, in an automated trading
application, you might set the time-to-live to 10 seconds for price-change
messages, assuming this is the acceptable window for execution of trades
that result from message receipt.

• Set message priority If some messages must be delivered ahead of
others, set the message priority property. Priority values are application
assigned relative values ranging from 0 to 9. You must use them
consistently in your application.

CHAPTER 8 Message Service Tuning

Performance and Tuning Guide 103

• Minimize message size Longer messages consume more network
bandwidth and take longer to process in memory. Design your message
formats to eliminate unnecessary data.

• For large message values, consider using compression Message
compression can reduce network overhead and, for persistent messages,
reduce database overhead.

In JMS clients, compress data sent over the network by setting the
com.sybase.jms.dataCompression InitialContext property. Alternatively,
use a JMS Provider instance and set the dataCompression property. For
details, see Chapter 3, “Developing JMS Clients,” in the Java Message
Service User’s Guide.

For persistent messaging, you can also configure the queue or topic
properties to enable compression before persisting the message. See
“Queue and topic data compression” on page 107.

Test system performance to determine whether enabling network and
persistent message compression increases throughput. While compression
can reduce database and network overhead, it increases CPU usage by
EAServer and your client application.

• Clean up unused JMS resources Close resources such as connections,
sessions, queues, and topics as soon as you no longer need them.

Data source and database tuning
You can specify the data source and database table name used for persistent
storage in the message queue and topic properties. A database is required even
for applications that use transient messaging. Among other things, EAServer
requires the data source to store persistent messages, to store transient
messages when the in-memory queue overflows, for temporary storage of
transient message queues that are idle.

The default data source for messaging is the message.db data source. You can
reconfigure or redefine this data source. To support development use, the
default message service configuration connects to the Adaptive Server
Anywhere database server runtime that is included with EAServer. For large
scale production use, Sybase recommends that you use an enterprise-grade
database server such as Sybase Adaptive Server Enterprise.

Queue and topic settings

104 EAServer

If your application uses messaging in transactions involving other components,
such calling EJB entity bean method in the same transaction, consider running
the message service against the same server that hosts the application data.
Doing so allows you to avoid the added overhead of two-phase commit
transaction management. When transactions enlist multiple data sources, all
the data sources must be configured for two-phase commit to achieve atomicity
between message queue operations and other resource access.

Tune the message.db data source as described in “Data source settings” on
page 89.

The default database table in message queue and topic properties is jms_pm.
You may get better performance specifying dedicated tables for each queue and
topic. EAServer creates the specified table with appropriate indexes. For large-
scale use, the table properties may benefit from further tuning by your database
administrator.

Queue and topic settings
These settings affect the performance of the application’s message consumers
and message producers. You can configure them in the message queue and
connection factories that you create in the Management Console or from an
Ant configuration script.

For details on configuring these settings, see Chapter 2, “Setting up the
Message Service,” in the Java Message Service User’s Guide.

Database storage and table names
You can configure the data source and table name used to manage messages for
the queue or topic by setting the Data Source and Database Properties. See
“Data source and database tuning” on page 103 for performance
considerations.

The default table name for queues and topics is jms_pm, which results in all
queues and topics using a single table. If a single table becomes a bottleneck
when using multiple queues and topics, specify different tables for each queue
and topic. The database server may be better able to handle the load using
multiple tables. You can also use different data sources to run queues and topics
from different database servers.

CHAPTER 8 Message Service Tuning

Performance and Tuning Guide 105

In memory message limits and overflow handling
Set the queue or topic Maximum Messages In Memory property to constrain
memory used to manage messages. The value is the number of messages that
can be held in memory at once.

Persistent messages are always stored in the database, and some will be held in
memory to improve performance. This property affects the size of the in-
memory cache if the queue or topic is used only for persistent messaging.

EAServer manages non-persistent messages primarily in memory. You can
configure the Store Transient Messages property how transient message
overflow is handled. A value of false causes EAServer to discard overflow
messages. A value of true enables storage of overflow messages in the
database.

Keeping more messages in memory generally improves performance, unless
the memory used leaves too little for other server tasks. Tune the message limit
and overflow handling properties to balance performance requirements and
memory constraints against the possibility of lost messages. Persistent
messages that are discarded from memory can be retrieved from the database.
Transient messages are lost when discarded from the queue unless you enable
the Store Transient Messages property.

You can also control the memory used by queues and topics by:

• Configuring the idle timeout setting

• Setting the time-to-live message property in your application code

• Minimizing the message size

Idle timeout setting
In queue or topic properties, the Idle Connection Timeout setting specifies
number of seconds that the message queue remains in memory when it is not
being accessed by a consumer and has no registered listener.

For transient messaging, the Store Transient Messages property determines the
fate of transient messages when an idle timeout occurs. If this property is true,
EAServer saves transient messages to the database. Otherwise an idle timeout
causes EAServer to discard transient messages.

For persistent messaging, the idle timeout setting acts like a cache timeout.
Messages likely to be accessed soon are kept in memory. An idle timeout
flushes the cached messages from memory.

Queue and topic settings

106 EAServer

If your application uses temporary queues or topics, configure a JMS Factory
and specify the queue and topic template properties. Set the timeout in the
queue and topic that are used as templates.

Transient message storage
EAServer may store transient messages to the database in two scenarios:

• The in memory message limit for the queue or topic has been exceeded

• The queue sits idle for longer than the specified idle timeout, causing
EAServer to flush messages from memory

The Store Transient Messages property determines whether messages are
discarded or stored to database in these scenarios. If lost messages are
acceptable, set this property to false for better performance.

Duplicate key detection
The Ignore Duplicate Messages specifies whether EAServer checks for
messages with duplicate keys before sending them. If duplicate messages are
acceptable in the application, disabling this setting can improve performance.

If duplicate key detection is enabled, the Duplicate Detection Protocol property
determines how EAServer handles duplicate keys. A setting of optimistic
will optimize the detection of duplicates by using deferred inserts and checking
for duplicate key exceptions from the duplicate detection table. As a result,
when duplicates are detected, transaction rollbacks will occur, and automatic
transaction retry adds non-deferred duplicate checking. A setting of
pessimistic will always use non-deferred duplicate checking. When there
are few duplicates, optimistic is more efficient. When there are many
duplicates, pessimistic may be more efficient.

To check for duplicate keys, EAServer logs key values to the database table
specified by the Duplicate Detection Table property. To prevent this table from
growing to an unreasonable size, set the Duplicate Detection Timeout property.
EAServer deletes entries that remain in the table past this time limit.

CHAPTER 8 Message Service Tuning

Performance and Tuning Guide 107

Queue and topic data compression
For persistent messaging, you can also configure the Compressed Stored
Messages queue or topic property to enable compression before persisting the
message. You can also enable compression on the network connection between
the JMS client and EAServer—see “For large message values, consider using
compression” on page 103.

Compression may increase performance if the application uses large messages.
Test system performance to determine whether enabling network and persistent
message compression increases throughput. While compression can reduce
database and network overhead, it increases CPU usage by EAServer and your
client application.

Abbreviated queue and topic identifiers
If using persistent messaging and queues or topics with long names, set the
Queue ID property to specify an abbreviated identifier. By default, EAServer
stores the full queue or topic name with the persisted message data. Using an
abbreviation can reduce database and network overhead.

JMS connection factory settings
Connection factory settings configure how JMS clients interact with the
message service. For details, see “Connection factories” in Chapter 2, “Setting
up the Message Service,” in the Java Message Service User’s Guide. The
command batching options can be tuned to affect performance. For details, see
the property descriptions.

To ensure that the idle timeout property is set for queues that are created
programmatically by clients, set the topic and queue template properties to
specify a preconfigured topic and queue that have appropriate timeout values.

Using store-and-forward messaging

108 EAServer

Using store-and-forward messaging
You can configure EAServer to perform store-and-forward messaging by
defining a message queue with the Pull Messages From property set to specify
another message source, or the Push Messages To property set to specify
another message consumer. When using store-and-forward messaging, tune the
Push Batch Size or Pull Batch Size. The default of 1 causes EAServer to send
messages individually. A larger batch size may improve performance if there
is high message traffic.

Message driven bean tuning
A message driven bean (MDB) is a variation of the EJB stateless component
model designed to run as a message consumer. For more information, see
“Message-driven beans” in Chapter 2, “Setting up the Message Service,” in
the Java Message Service User’s Guide.

If your MDB implementation can run concurrently on multiple threads, this
configuration can significantly increase performance. EAServer by default
delivers messages using a single worker thread. The default configuration
guarantees first-in-first-out (FIFO) processing of messages in the queue, based
on message priority: EAServer delivers messages serially to one component
instance. If you do not require FIFO message ordering, customize the MDB
thread settings to increase the thread count. EAServer creates several instances
of the MDB, each running on a different thread to process messages
concurrently.

In the Management Console, modify the MDB thread count by modifying the
properties of the EJB Module that contains the MDB. For details, see Chapter
2, “Deploying and Configuring EJB Components,” in the EJB Users Guide. In
a user configuration file, you can configure the thread count using the Ant
<setProperties> and <messageListener> commands, for example:

<setProperties component="ejb.components.myjar.MyListener">
<messageListener queue="MyQueue" threadCount="5"/>

</setProperties>

Performance and Tuning Guide 109

A
APIs

for partial page caching 79
for runtime monitoring 11

architecture
for entity object caching 48
for finder query caching 48

Automatic Failover, component setting 98
automatic transaction retry, EJB CMP setting 60

B
Bind Thread

component setting 34
PowerBuilder component setting 45

binding, of threads 6
BOOTCLASSPATH server setting 22

C
C++ component tuning 44
CacheManager, Java class 80
caching

benefits of 3
business method results 39
database rows 62
dynamic page 73
entity bean instance data 48
HTTP responses 71
object 48
of CMP entity bean results 48
of EJB finder query results 48
of EJB finder results 64
of JSP fragments 76
of servlet responses 72
partial page 76
query 48

tag libraries for 77
caching, dynamic page

configuring 73
explanation of 73

caching, object 48
caching, partial page 76
caching, query 48
churning, object 4
class loaders

component 41
PowerBuilder 44
server 23
Web application 66

CLASSPATH server setting 22
client settings

connection timeout 96
for clusters 96
idle connection timeout 97

cluster settings
for clients 96
HTTP session replication 97

clusters
benefits of 95
client settings for 96
component settings for 98
explanation of 95
running Web applications in 97
tuning settings for 95

CMP entity beans
concurrency control for 47
tuning 47

compilation, of JSPs 68
component settings

automatic failover 98
Bind Thread 34, 45
class loading 41
Concurrency 34
for C++ components 44
for clustered deployment 98
for debugging 33

Index

Index

110 EAServer

for EJB CMP entity beans 47
for EJBs 42
for PowerBuilder 44
for stateful session beans 43
for transactions 88
instance pooling 38
instance timeout 38
passivation 38
Sharing 35
Stateless 37
thread monitor 35
tracing 33
transaction timeout 88

components
and database access 85
and transactions 85
assigning to a thread monitor 35
C++ 44
collecting performance data for 35
debugging 33
lifecycle of 37
MDB 108
optimizing in-server invocations 39
pooling of instances 38
PowerBuilder 44
reuse of instances 38
stateful vs. stateless 37
stateless 37
thread settings for 33
tracing 33
tuning 33

components, EJB 42
components, stateful

definition of 37
EJB 43
memory used by 43
passivation of 38
timeouts for 38

Concurrency
component setting 34

concurrency control
explanation of 47
for CMP entity beans 47

concurrency control, database 56
concurrency, thread 5
connection timeout

client setting 96
conventions xii
CPU usage

monitoring 8

D
data sources

APIs for 93
for EJB CMP 53
idle timeout setting 90
ping property for 92
pool size for 89
sanity checking 92
tuning 85, 89

database settings, for EJB CMP 52
databases

creating keys for 55
locking 56
tuning 85

DataStore, settings for 45
DataWindow, settings for 45
deadlock

avoiding 5
explanation of 5

debugging
component settings for 33
server settings for 22
Web application settings for 65

disk swapping 4
dynamic page caching

APIs for 79
caching an entire tree 75
configuring 73, 74
explanation of 73
for Web components 73
keys for 73
timeout for 74

E
EJB

component settings 42
local interfaces 43, 67

Index

Performance and Tuning Guide 111

optimizing in-server calls 42
pass-by-reference semantics 43
stateful session beans 43

EJB CMP
tuning 47

EJB CMP settings
automatic transaction retry 60
concurrency control 56
data source 53
database 52
finder query caching 48
instance and query caching 48
instance caching 48
isolation level 52
key generation 54
optimistic concurrency control 57
pessimistic concurrency control 57
Select For Update 57
Select With Lock 57
soft locking 61

EJB components
local interfaces for 42
tuning 42

EJB finder methods
caching results for 64

entity instance caching
configuring 48
explanation of 48

F
file descriptors, limits on 28
flow control

See threshold monitoring 15

G
garbage collection,

in PowerBuilder 45

H
heap size, for Java VM 24

hot refresh, memory used by 32

I
idle connection timeout

client setting 97
IIOP

client settings 96
load balancing 95
thread limit for 21

instance pool
definition of 38
destruction of 30

instance timeout
component setting 38

instances, component
destruction of 30
pooling 38
reusing 38
shared 35
timeouts for 38

isolation level
definition of 49
EJB CMP setting 52

J
Java VM

heap size 24
Hotspot technology 23
JIT compilation 24
types of 23

JDBC
and connection reuse 87
JIT wrapper drivers for 49

JIT wrapper drivers, explanation of 49
JMS

and duplicate key processing 106
best practices 101
storage options 101

JSP settings
for compilation 68
load at start-up 68

JSPs

Index

112 EAServer

and EJB invocations 67
caching parts of the response 76
compilation of 68
configuring page caching for 74
loading at start-up 68
precompiling 68
response caching 72, 73

K
key log, message service table 106
keys

duplicate message 106
for EJB CMP entity beans 54
for partial page caching 81
for servlet response caching 73
generated 55
message 106

keys, table
creating automatically 55

L
leaks, memory 3, 87
lifecycles, component 37
limits

component instance timeout 38
data source pool size 89
file descriptors 28
for memory 28
for message queues 105
for server memory 31
for threads 21
Java VM heap size 24
operating system 28
transaction timeout 88

listener settings
and Web application performance 67
maximum threads 27
request pool size 27

load at start-up
JSP setting 30
servlet and JSP setting 68
servlet setting 30

load balancing
of component invocations 95
of HTTP requests 97
of IIOP requests 95

load testing
procedure for 14
tools for 7

local interfaces, EJB
explanation of 43
using in Web applications 67

locales, and dynamic page caching 74
locking

of database rows 57
locks, database

avoiding 56
logging

HTTP requests 66
transactions 94

logical transaction isolation level 49

M
Management Console, runtime monitoring with 8
maximum threads, listener setting 27
MDBs, tuning 108
memory

and allocation costs 4
and object churning 4
and the hot refresh feature 32
automatic monitoring of 15
cycling of 4
disk swapping 4
leaks 3
monitoring tools 8
operating system limits for 28
paging 4
performance and 3
to run servers 31
used by Java VM 24
used by stateful components 43

memory leak
and JDBC usage 87
definition of 3

message driven beans
tuning 108

Index

Performance and Tuning Guide 113

message service
and duplicate key processing 106
best practices 101
initialization of 29
storage options 101
tuning 101
tuning message driven beans 108
tuning store-and-forward messaging settings 108

message service settings
queue size 105
queue timeout 105

method results caching 39
monitoring tools

API for 11
CPU usage 8
for EAServer 8
for transactions 94
Management Console 8
memory 8
thread monitors 35

monitors, thread 4, 35

N
network

and file descriptor limits 28
listener settings 26
load balancing 95

network listeners
tuning 26

O
object cache 48
object caching, architecture of 48
object churning, definition of 4
OCC, definition of 47
optimistic concurrency control

definition of 47
enabling 57
explanation of 56

P
page caching

configuring 74
properties 74

paging, memory 4
parameters, passing by reference 43
partial page caching

API for 79
using in JSPs 76

pass-by-reference semantics 43
passivation

configuring 38
PCC, definition of 47
pessimistic concurrency control

definition of 47
enabling 57
explanation of 56

ping, data source setting 92
pooling

of component instances 38
of network requests 27
of threads 33

PowerBuilder
component settings 44
DataStore settings 45
DataWindow settings 45

precompiling JSPs 68
profiling

component properties for 9
server properties for 9
tools for 7

Q
query cache 48
query caching

configuring 48, 64
explanation of 48, 64

R
race condition

avoiding 35
definition of 35

Index

114 EAServer

refresh, memory used by 32
Request Pool Size

listener setting 27
response time

automatic monitoring of 15
definition of 1

runtime monitoring
APIs for 11
of transactions 94
with Management Console 8

S
sanity checking

data source setting 92
scalability, definition of 2
scheduled tasks

used to collect performance data 9
Select For Update

EJB CMP setting 57
Select With Lock

EJB CMP setting 57
serialization, thread

effect on performance 5
server

tracing 65
server settings

and memory use 31
and operating system limits 28
BOOTCLASSPATH 22
CLASSPATH 22
debugging 22
file descriptor limit 28
for Java virtual machine 22
for network listeners 26
for transactions 88
HTTP threads 21
IIOP threads 21
Java VM type 23
JIT compilation 24
Max Number Threads 21
number of threads 21
thread stack size 21
threshold monitoring 15
tracing 22

servers
tuning 15

servlet settings
destroy timeout 30
load at start-up 68
threading 67

servlets
and EJB invocations 67
configuring page caching for 74
loading at start-up 68
response caching 72, 73
thread settings for 67

sessions, HTTP
and dynamic page caching 74
replicating 97
timeout for 66
using in clusters 97

Sharing
component setting 34, 35

soft locking
explanation of 61

SSL
and performance 67

stack size
for Java threads 26
for native threads 21

stateful components
definition of 37
memory used by 43
passivation of 38
timeouts for 38

stateless components
and method results caching 39
configuring 37
creating 37
definition of 37
performance benefit of 37

store-and-forward messaging 108
swapping, disk 4

T
table-level timestamps 58, 59
tag libraries

for partial page caching 77

Index

Performance and Tuning Guide 115

to support response caching 77
thrashing

explanation of 4
thread local storage

and component settings 34
thread monitor

assigning to components 35
creating 35
definition of 4, 35
using 35

threading
and bound objects 6
and component Bind Thread setting 34
and component concurrency 34
and component settings 34
and component Sharing setting 35
and deadlock 5
and Java stack size 26
and race conditions 35
and shared component instances 34
and thread pooling 33
as used to run components 33
benefits of 4
binding threads to components 34
component settings for 34
monitors for 35
server settings for 21
server thread limits 21
servlet settings for 67
settings for 4
stack size for 21

threads
and serialization 5
binding of 6
deadlocked 5
listener settings for 27
number of 4
race conditions in 5, 35
synchronization of 5

threshold monitoring
configuring 15
explanation of 15

throughput, definition of 2
timeouts

for client connections 96
for dynamic page caching 74

for EJB CMP instance and query cache 63
for idle client connections 97
for idle database connections 90
for message service queues 105
for message service topics 105
for partial page caching 78, 81
for servlet destruction 30
for servlet initialization 30
for stateful components 38
for stateful session beans 38
for transactions 88
HTTP session 66

timestamps
database column 59
for optimistic concurrency control 56, 57
table-level 58, 59

tools
diagnostic 6
load testing 7
memory monitors 8
monitoring tools 8
profiling 7
to measure performance 6

tracing
component properties for 9
component settings for 33
server 65
server properties for 9
server settings for 22
tools for 8
Web applications 65

tracing tools
for EAServer 8

transaction isolation level 49
transactions

and EJB CMP 62
automatic retry 60
component settings for 88
consistency of 62
cross-reference logging 94
design issues for 85
isolation level 52
isolation level for 49
logging of 94
performance of 85
server settings for 88

Index

116 EAServer

timeouts for 88
tuning

C++ components 44
cluster settings 95
component settings 33
data sources 89
database access code 85
database settings 85
EJB CMP settings 47
EJB components 42
MDBs 108
message service settings 101
PowerBuilder components 44
procedure for 14
server settings 15
transaction management settings 85, 88
Web application settings 65

typographical conventions xii

U
ulimit command 28
UNIX

file descriptor settings 28
ulimit command 28

W
Web application settings

and listener configuration 67
caching 72
class loader 66
debugging 65
destroy timeout 30
for clustered deployment 97
for JSP compilation 68
response caching 71
servlet threading 67
session timeout 66
tracing 65

Web applications
cache settings for 71
clustered 97
tuning 65

	Performance and Tuning Guide
	About This Book
	CHAPTER 1 Introduction
	Determining factors
	Response time
	Scalability and throughput
	Memory use
	Threading

	Measurement and diagnosis tools
	Instrumented code
	Profiling software
	Load-testing tools
	Memory and CPU usage monitors
	EAServer monitoring and tracing tools
	Runtime monitoring with the Management Console
	Scheduled tasks for statistics collection
	Component profiling and tracing
	Other trace-logging and statistics collection options
	Runtime monitoring APIs
	Obtaining performance monitor statistics

	The tuning process

	CHAPTER 2 Server Tuning
	Threshold monitor settings
	How threshold monitoring works
	Configuring threshold monitoring for servers or listeners
	Configuring threshold monitoring for components
	Tuning response rate thresholds
	Avoiding deadlock scenarios

	Thread settings
	Thread stack size

	Debug and trace settings
	Java virtual machine tuning
	CLASSPATH and BOOTCLASSPATH settings
	Custom class lists
	Java VM type and version
	Just-in-time compilation
	JVM memory allocation parameters
	Other Java VM settings and troubleshooting

	Listener tuning
	HTTP thread pool size
	Connection request backlog pool size

	Operating system settings
	UNIX file descriptors
	Per-process memory limits

	Factors that affect start-up and shutdown time
	Start-up performance
	Shutdown performance
	Pooled component destruction
	Servlet destruction

	EAServer memory requirements

	CHAPTER 3 Component Tuning
	Common component performance issues
	Tracing and debugging settings
	Thread-related issues
	Bind thread
	Concurrency
	Sharing
	Thread monitors

	Stateful versus stateless components
	Performance benefits of the stateless model
	Passivation timeout for stateful components

	Instance pooling
	Optimizing intercomponent calls
	Using method results caching

	Java/CORBA component performance
	EJB component performance
	Optimizing in-server EJB calls
	Local interfaces
	Pass-by-reference semantics

	Stateful session beans

	C++ component performance
	PowerBuilder component performance
	Settings that affect system resource use
	DataStore row height size
	Web DataWindow settings

	CHAPTER 4 EJB CMP Tuning
	CMP tuning concepts and terminology
	Concurrency control
	Object and query caching
	Just-in-time JDBC wrapper drivers
	Logical isolation level

	Ant configuration for CMP entity beans
	Table and field mapping configuration
	Finder and query method configuration

	Finding persistence bottlenecks
	Creating and tuning database tables
	Configuring the logical isolation level
	Tuning data source settings for CMP entity beans
	Tune the data source pool size and database type
	Use JIT JDBC wrapper drivers

	Automatic key generation settings
	Java key type for beans that use automatic key generation
	Configuring automatic key generation
	Tuning settings related to automatic key generation

	Configuring concurrency control options
	Enabling PCC
	Enabling OCC
	Configuring OCC options

	Enabling automatic transaction retry
	Using soft locking

	Configuring object and query caching
	Cache coherency and transaction consistency
	Enabling object caching
	Enabling query caching

	CHAPTER 5 Web Application Tuning
	Tuning server and Web application settings
	Tracing properties
	Session timeouts
	Class loader settings
	Clustered deployments
	HTTP and HTTPS listener configuration
	SSL and performance

	Tuning servlet and JSP settings and code
	Use local interfaces for EJB calls
	Threading
	Preloading classes
	JSP compilation options
	Precompiling JSPs

	Tuning distributed HTTP session settings
	How it works
	Sessions
	Distributable attribute
	Filter deployment
	Local in-memory cache
	Database persistence

	Understanding HTTP response caching options
	Servlet response caching

	Dynamic response caching
	Configuring response caching for servlets and JSPs
	Caching an entire tree
	Changes from EAServer 5.x

	Using partial response caching
	Using the caching tag library
	The cache tag
	Flushing caches

	Using the caching API

	Class CacheManager
	CacheManager.getInstance(ServletContext)
	CacheManager.createCache(String)
	CacheManager.getData(String, PageCacheKey)
	CacheManager.putData(String, PageCacheKey, String, int)
	CacheManager.flushCacheByKey(String, PageCacheKey)
	CacheManager.flushCacheByScope(HttpServletRequest, String, String)
	CacheManager.getCacheKey(HttpServletRequest, String, String, String, String, String, boolean, int)

	CHAPTER 6 Database Access Tuning
	Component design and implementation
	Keep transactions short
	Minimize result set size
	Minimize use of two-phase commit
	Clean up connections before releasing them to the data source
	Avoid unnecessary database work

	Server and component transaction settings
	Stateful component idle timeout
	Long transaction support

	Data source settings
	Tuning the pool size
	Monitoring data source pool activity
	Tuning data sources used by EJB CMP entity beans

	Remove unused data sources
	Data source ping
	Using the caching APIs
	Dynamic prepare on jConnect data sources
	Database driver specific settings

	Database tuning
	Transaction cross-reference logging

	CHAPTER 7 Cluster Tuning
	When to use clusters
	Cluster partitioning
	IIOP client settings for clustered applications
	Socket timeout for Java clients
	Idle connection timeout for C++ and PowerBuilder clients

	Web application settings
	Component settings
	Automatic failover
	Response and request logs

	CHAPTER 8 Message Service Tuning
	About the message service
	Best practices for design and coding
	Data source and database tuning
	Queue and topic settings
	Database storage and table names
	In memory message limits and overflow handling
	Idle timeout setting
	Transient message storage
	Duplicate key detection
	Queue and topic data compression
	Abbreviated queue and topic identifiers

	JMS connection factory settings
	Using store-and-forward messaging
	Message driven bean tuning

	Index

