
Performance and Tuning Guide
EAServer
Version 5.2

DOCUMENT ID: DC20063-01-0520-01

LAST REVISED: January 2005

Copyright © 1997-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, My AvantGo, My AvantGo Media
Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket,
Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-
DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and
XP Server are trademarks of Sybase, Inc. 10/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... ix

CHAPTER 1 Introduction ... 1
Determining factors .. 1

Response time .. 1
Scalability and throughput ... 2
Memory use... 3
Threading .. 4

Measurement and diagnosis tools ... 6
Instrumented code... 6
Profiling software... 7
Load-testing tools .. 7
Memory and CPU usage monitors .. 8
EAServer monitoring and tracing tools 8

The tuning process... 10

CHAPTER 2 Server Tuning .. 11
The performance tuning wizard.. 11
General server tuning... 11

Thread settings.. 11
Flow control ... 14
Debug and trace settings .. 15

Java virtual machine tuning.. 16
CLASSPATH and BOOTCLASSPATH settings 16
Custom class lists.. 17
Java VM type and version ... 17
Just-in-time compilation... 18
JVM memory allocation parameters.. 18
Other Java VM settings and troubleshooting 19

Listener tuning.. 20
HTTP keep alive.. 20
HTTP maximum requests.. 20
Connection request pool size .. 21
Performance and Tuning Guide iii

Contents
SSL session caching ... 21
Operating system settings.. 22

UNIX file descriptors.. 22
Per-process memory limits.. 23

Factors that affect start-up and shutdown time 23
Start-up performance .. 23
Shutdown performance ... 25

EAServer memory requirements.. 26

CHAPTER 3 Component Tuning.. 29
Running the performance tuning wizard .. 29
Common component performance issues 29

Tracing and debugging settings .. 29
Thread-related issues.. 30
Stateful versus stateless components..................................... 33
Instance pooling .. 33
Optimizing intercomponent calls ... 37

Java component performance.. 38
EJB component performance... 38

Optimizing in-server EJB calls... 39
Entity bean read-only methods.. 42
Entity bean database update frequency.................................. 42
Stateful session beans .. 43

C++ component performance .. 44
PowerBuilder component performance.. 44

Settings that affect system resource use 45
DataStore row height size ... 46
Web DataWindow settings .. 46

CHAPTER 4 EJB CMP Tuning.. 49
Generated entity bean subclasses... 49
Creating and tuning database tables ... 50
Automatic key generation settings ... 51
Concurrency control options .. 51

Enabling PCC.. 52
Enabling OCC ... 53
Enabling automatic transaction retry 55
Configuring CMP isolation level .. 55
Using soft locking .. 59

Connection cache settings ... 60
Tuning the cache size and database type............................... 60
Using CMP JDBC wrapper drivers .. 60

Entity instance and query caching ... 63
iv EAServer

Contents
Cache architecture .. 64
Cache coherency and transaction consistency 64
Configuring object caching .. 65
Enabling query caching ... 68
Configuring transaction local cache settings 70
Enabling database change notification.................................... 70

CMP runtime monitoring .. 75

CHAPTER 5 Web Application Tuning... 77
Using the performance tuning wizard... 77
Tuning server and Web application settings 77

Tracing properties ... 78
Session timeouts ... 78
Class loader settings ... 79
Servlet buffer pools ... 79
Clustered deployments.. 80
HTTP and HTTPS listener configuration 80
SSL and performance ... 80

Tuning servlet and JSP settings and code..................................... 80
Use local interfaces for EJB calls .. 81
Threading .. 81
Preloading classes .. 81
JSP compilation options .. 82

Understanding HTTP response caching options............................ 84
Static page caching ... 84
Servlet response caching .. 85

Dynamic page caching... 87
Configuring page caching for servlets and JSPs..................... 88
Configuring Web application page caching properties 90
Caching an entire tree ... 90
Using page caching with filters that modify a response 91

Using the servlet Java cache ... 92
Using partial page caching... 93

Using the caching tag library ... 94
Using the caching API ... 96

Class CacheManager... 96
CacheManager.getInstance(ServletContext) 97
CacheManager.createCache(String, String, String)................ 97
CacheManager.getData(String, PageCacheKey) 98
CacheManager.putData(String, PageCacheKey, String, int) .. 98
CacheManager.flushCacheByKey(String, PageCacheKey).... 99
CacheManager.flushCacheByScope(HttpServletRequest, String)

99
CacheManager.getCacheKey(HttpServletRequest, String, String,
Performance and Tuning Guide v

Contents
String, String, String, boolean, int).................................. 100

CHAPTER 6 Database Access Tuning .. 103
Component design and implementation....................................... 103

Keep transactions short... 103
Minimize result set size ... 104
Use database server optimizations 104
Minimize use of two-phase commit 105
Clean up connections before releasing them to the cache ... 105
Avoid unnecessary database work.. 106

Server and component transaction settings................................. 106
Transaction timeout... 106
Transaction memory table size ... 107
Unexpected deadlock errors ... 107

Connection cache settings ... 108
Tuning the cache size ... 108
Remove unused connection caches 112
Sanity checking ... 112
SQL tracing ... 112
Using the caching APIs ... 113
Dynamic prepare on jConnect caches 113
Database and driver specific settings.................................... 113

CHAPTER 7 Cluster Tuning ... 115
When to use clusters.. 115
Cluster settings that affect performance 116

Heartbeat detection ... 116
Load balancing policy.. 117

IIOP client settings that affect load balancing 118
Web application settings .. 120

HTTP session replication mechanism................................... 121
Lazy session validation ... 121

Component settings ... 122
Automatic failover.. 122
Component state replication.. 123
EJB CMP entity bean instance and query caching 123

CHAPTER 8 Message Service Tuning... 125
Best practices for coding.. 125
Global message service settings ... 127

Database and connection cache ... 127
Tracing .. 127
vi EAServer

Contents
Other global settings ... 127
Queue and topic settings ... 128

REQUIRES_ACKNOWLEDGE ... 129
REQUIRES_TRANSACTION or SUPPORTS_TRANSACTION ..

129
Quality of protection .. 129
Tables for persistent messages .. 129
Queue size .. 130
Timeout settings .. 130

Thread pools .. 131
Shared listeners ... 132
The key log table.. 133

CHAPTER 9 Using the Performance Monitor... 135
How it works... 135
Configuring memory thresholds ... 137
Configuring response rate thresholds .. 137

Component settings .. 138
Listener settings .. 138
Tuning response rate thresholds... 139

Obtaining performance monitor statistics..................................... 141

Index ... 145
Performance and Tuning Guide vii

Contents
viii EAServer

About This Book

Subject This book contains information about configuring server and application
settings to achieve the highest application performance. This book also
describes implementation and design issues that affect performance.

Audience This book is for advanced administrators and developers who are familiar
with the basics of EAServer administration, development, and
deployment.

How to use this book Chapter 1, “Introduction,” explains key performance concepts, describes
tools to test and measure performance, and provides techniques for
measuring performance and identifying areas where your tuning efforts
will have the greatest impact on overall performance.

Chapter 2, “Server Tuning,” describes how to configure server and system
settings for best performance. These settings affect all applications,
regardless of architecture.

Chapter 3, “Component Tuning,” describes business component settings
and coding practices that you can optimize for best performance. These
settings affect applications that call business components from the Web
tier or directly from base clients.

Chapter 4, “EJB CMP Tuning,” describes how to tune the settings in the
EAServer EJB CMP engine and EJB CMP component properties. These
settings affect applications that use EJB entity beans with container
managed persistence (CMP).

Chapter 5, “Web Application Tuning,” describes tuning and coding best
practices to create high performance Web sites hosted in EAServer. These
settings affect applications that serve static content with EAServer and
make use of servlets and JavaServer Pages (JSPs) deployed on EAServer.

Chapter 6, “Database Access Tuning,” describes how to tune connection
cache settings and the EAServer transaction manager, and provides
coding best practices for interacting with remote databases. These settings
affect applications that call remote database servers from business
components, servlets, or JSPs deployed on EAServer.
Performance and Tuning Guide ix

Chapter 7, “Cluster Tuning,” describes how to tune application settings and
code to obtain high performance and load balancing in a clustered (multi-
server) deployment.

Chapter 8, “Message Service Tuning,” describes how to configure the
messages service for maximum performance and explains best coding
practices for high performance use of the JMS or message service APIs.

Chapter 9, “Using the Performance Monitor,” describes how to configure the
EAServer Performance Monitor to prevent degradation of server performance
under extreme load conditions.

Conventions The formatting conventions used in this manual are:

Related documents Core EAServer documentation The core EAServer documents are
available in HTML format in your EAServer software installation, and in PDF
and DynaText format on the Technical Library CD.

What’s New in EAServer summarizes new functionality in this version.

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using jagtool to configure applications
rather than EAServer Manager

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you
how to navigate menu selections. For example, File | Save indicates “select Save from
the File menu.”

package 1 Monospace font indicates:

• Information that you enter in Jaguar Manager, a command line, or as program text

• Example program fragments

• Example output fragments
x EAServer

 About This Book
The EAServer Cookbook contains tutorials and explains how to use the sample
applications included with your EAServer software.

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer System Administration Guide explains how to:

• Start the preconfigured Jaguar server and manage it with the EAServer
Manager plug-in for Sybase Central™

• Create, configure, and start new application servers

• Define connection caches

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with jagtool

The EAServer Programmer’s Guide explains how to:

• Create, deploy, and configure components and component-based
applications

• Create, deploy, and configure Web applications, Java servlets, and
JavaServer Pages

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Web Services Toolkit User’s Guide describes Web services
support in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections using the
Security Manager plug-in for Sybase Central
Performance and Tuning Guide xi

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes, ActiveX interfaces, and C routines.

The EAServer Troubleshooting Guide describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available only online; see the EAServer Troubleshooting Guide at
http://www.sybase.com/detail?id=1024509.

Message Bridge for Java™ Message Bridge for Java simplifies the parsing
and formatting of structured documents in Java applications. Message Bridge
allows you to define structures in XML or other formats, and generates Java
classes to parse and build documents and messages that follow the format. The
Message Bridge for Java User's Guide describes how to use the Message
Bridge tools and runtime APIs. This document is included in PDF and
DynaText format on your EAServer 5.0 Technical Library CD.

Adaptive Server Anywhere documents EAServer includes a limited-
license version of Adaptive Server Anywhere for use in running the samples
and tutorials included with EAServer. Adaptive Server Anywhere documents
are available on the Sybase Web site at http://sybooks.sybase.com/aw.html.

jConnect for JDBC documents EAServer includes the jConnect™ for
JDBC™ driver to allow JDBC access to Sybase database servers and gateways.
The Programmer’s Reference jConnect for JDBC is available on the Sybase
Web site at http://sybooks.sybase.com/jc.html.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.
xii EAServer

 About This Book
Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
HTML, JavaHelp, and Eclipse help formats, which you can navigate using a
screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Sybase Central Overview,” in the
EAServer System Administration Guide.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
information about these features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box

4 Select Accessible user interfaces or Accessibility features for Eclipse

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.
Performance and Tuning Guide xiii

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.
xiv EAServer

 About This Book
Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.
Performance and Tuning Guide xv

xvi EAServer

C H A P T E R 1 Introduction

This document provides an overview of ways to improve performance for
EAServer applications. There are many variables involved for application
throughput and response times. In addition to tweaking the code in your
application for optimum performance, you can tune EAServer based on
application specifics as well.

This chapter describes key performance concepts, tools to test and
measure performance, and techniques for measuring performance and
identifying areas where your tuning efforts will have the greatest impact
on overall performance.

The recommendations in this book are general guidelines. Results vary
depending on the design of your application, hardware and network
configuration, and other factors. For best results, you should monitor and
measure performance as you fine-tune the configuration and application.

Determining factors
Several factors determine how well your application and server
configuration perform.

Response time
Response time is the time required to execute a specified task, for
example, to call an EJB method or submit a JSP form request. For end
users, response time provides the key measurement of performance.

Topic Page
Determining factors 1

Measurement and diagnosis tools 6

The tuning process 10
Performance and Tuning Guide 1

Determining factors
In client-side coding, you can minimize perceived response time by displaying
partial results or status bars. However, in server-side coding, all you can do is
minimize the in-server response time to an acceptable level. It helps to break
down the response time into time spent in each component and subsystem.
Figure 1-1 illustrates the processing of a Web form request to a JSP that calls
an EJB component which in turn executes a remote database query. A
slowdown can occur in any of these components. When tuning, you must
isolate the part of your deployment that is causing the delay.

Figure 1-1: Response time breakdown

Scalability and throughput
Although a server configuration may perform well with a few users, response
times can increase as the number of connected users increases. Scalability is a
measure of how many simultaneous users your application and server
configuration can support under prescribed use patterns before response times
increase to unacceptable levels. Throughput is a measure of how many
operations the server or application can process in a given time period; for
example, database transactions per second or Web server page requests per
second.

EJB

Database

Network latency

JSP Processing
2 EAServer

CHAPTER 1 Introduction
Throughput can be useful in comparing benchmark results for servers from
different vendors, but scalability is a more useful measurement for tuning a
given application deployment. You can directly measure the number of users
and response times. End users are usually more concerned about how quickly
their own work gets done than they are about overall server performance.

Memory use
Many performance optimizations in EAServer use caching: once created,
objects such as component instances and database server connections are
pooled for reuse, avoiding the overhead of re-creating the object. EAServer
also caches servlet responses and static HTTP pages to avoid the overhead of
running the servlet or reading files from disk, respectively. Caching reduces
response time at the expense of increased memory use.

To maximize the performance gain from caching, Sybase recommends you run
EAServer with as much memory as possible, from 1GB minimum for large
deployments up to the limit of the machine architecture (4GB on most 32-bit
address systems).

Common performance problems related to memory use include:

• Memory leaks A memory leak occurs when code creates dynamically
allocated objects but never releases them. In a Java or EJB component, you
must set object references to null to release the memory associated with
them. When using JDBC connections, you must release statement objects
before releasing connections back to the connection cache (see “Clean up
connections before releasing them to the cache” on page 105). Since
EAServer pools and reuses component instances and connection caches, a
memory leak can slowly exhaust the available memory. You can diagnose
and find memory leaks using a profiling tool—see “Profiling software” on
page 7.
Performance and Tuning Guide 3

Determining factors
• Swapping Most operating systems support some form of virtual
memory, which allows programs to address more memory than is
physically available on the machine. Excess memory is mapped to data
stored on disk. Swapping occurs when the system exchanges in-memory
data for data stored on disk. Swapping should be avoided since the
resulting disk I/O slows down the server. Memory leaks can cause
swapping. If you have eliminated memory leaks, you can avoid swapping
by ensuring that the machine has enough memory to support the EAServer
configuration, and by making sure the system’s per-process memory limit
allows the server to use all of it. If you cannot increase physical memory,
reduce the server’s memory requirements by adjusting the parameters
listed in “EAServer memory requirements” on page 26.

• Object churning Large, complex objects such as EJB components and
database connections can take considerable time to allocate and construct.
Object churning refers to repeated allocation and deallocation of the same
object. For components, use instance pooling to avoid this phenomena, as
described in “Instance pooling” on page 33. For database connections, use
a connection cache. You can cache objects of other types within your
component, servlet, or JSP class instance.

Threading
EAServer scales well, primarily through the use of native platform threads.
Threading allows multiple components to execute concurrently with a
minimum of context-switching overhead. Threading issues that affect
performance include:

• Number of threads You can tune the total number of EAServer threads,
and partition the total to different tasks such as IIOP and HTTP request
handling. More threads allow the server to handle more clients. However,
if the number is too high, you may experience thrashing, which occurs
when each thread gets so little execution time that more time is spent
switching the thread context than running threads. You can avoid thrashing
by reducing the number of threads, adding CPUs to a multi-CPU machine,
or moving to a clustered EAServer deployment.
4 EAServer

CHAPTER 1 Introduction
• Concurrency When different threads share data structures or resources,
you must synchronize their execution so that access to the shared data or
resource is serialized, that is, accessed by only one thread at a time. If
access to the shared object is not serialized, you can cause race conditions,
where overlapping modifications yield unpredictable results, often
causing a crash due to the resulting nonsense data or resource state.
However, excessive serialization can slow down the application by
creating bottlenecks where many threads idle waiting to acquire
synchronization locks. To avoid this problem, do not use design patterns
that require synchronized code. When objects must be shared across
threads, minimize synchronization and design carefully to avoid deadlock.

• Deadlock Deadlock occurs when two or more threads create recursive
lock dependencies and wait indefinitely for each other to release the locks
held. Figure 1-2 illustrates a deadlock scenario. Component 1 has locked
object A while component 2 holds locks on object B. Now component 1
waits for B to be released while component 2 waits for A to be released.

Figure 1-2: Deadlock example

Deadlock is an extreme problem that can hang the server or at least the
threads that are deadlocked. You can eliminate deadlock by carefully
designing and following a locking protocol that avoids recursive
dependencies when a component locks more than one object at once. For
example, to lock the two objects in Figure 1-2, always lock A before
locking B.

A

Component 1 Component 2

B

Performance and Tuning Guide 5

Measurement and diagnosis tools
• Thread binding EAServer pools and reuses threads, allowing
component instances to run on any thread rather than being tied to the
same thread as a client connection or the thread that created the instance.
Since most client connections have significant idle time, thread pooling
allows fewer threads to serve more clients. However, if a component uses
thread-local storage, each component instance must be bound to the thread
that created it. Binding the thread significantly reduces scalability, since
the thread cannot be used to run other instances and sits idle when the
component is not running. For more information, see “Thread-related
issues” on page 30.

Measurement and diagnosis tools
There are several tools available to measure the performance of your code and
server configuration.

Instrumented code
In your code, add optional logic that you can enable to record timing
information. Measure the execution time for major tasks such as:

• Component business method entry and exit

• Entry and exit of JSP or servlet service invocations

• Calls to other components or EJBs

• Database command execution and result-set processing

• Requests for cached connections

• JNDI lookups that return EJB proxies or JDBC data sources

In Java code, you can record timings by calling System.currentTimeMillis().
Logging can degrade performance, so be sure to encapsulate the timing code in
logic that allows you or your administrators to selectively enable tracing for
areas where you are tuning. To allow configuration of the log options, you can
use Log4j or the Java Logging package. Both of these packages allow simple
configuration of logging options and can be integrated with EAServer. For
more information, see “Configuring log profiles” in the EAServer System
Administration Guide.
6 EAServer

CHAPTER 1 Introduction
Profiling software
Profiling software measures the frequency of execution of each method or
function in your code. Some profiles can also break down the execution time
and memory use by each object. Popular options include:

• OptimizeIt, from Borland at http://www.borland.com/. For detailed
instructions on using OptimizeIt with EAServer, see Integrating OptimizeIt
in Sybase EAServer, on the Sybase Web site at
http://www.sybase.com/detail?id=1011357.

• JProbe, available from Quest Software at
http://www.quest.com/jprobe/index.asp.

Load-testing tools
Load-testing software simulates multiple clients, allowing you to replicate
real-world timings and server loads in your test environment. These tools
typically allow you to run multiple scripted HTTP client sessions that simulate
typical end user request patterns. Popular options include:

• OpenSTA, which is available on the Web at http://www.opensta.org/

• Segue silkperformer from Segue Software at http://www.segue.com

• Winrunner, Loadrunner, and other test tools from Mercury Interactive at
http://www.mercuryinteractive.com

• e-TEST and other tools from Empirix at http://www.empirix.com/

Load-testing strategies
When setting performance goals, you must also specify a usage pattern that
reflects real-world use of the application. For example, interactive users do not
usually submit one request per second. A catalog shopper may download a part
description, read it, download another, add it to the shopping cart, and so forth
before checking out. To get accurate performance results, you must set up your
test tools to mimic typical request patterns, including the “think time” between
subsequent requests.
Performance and Tuning Guide 7

Measurement and diagnosis tools
Memory and CPU usage monitors
You can monitor memory and process CPU time using system tools such as top
on UNIX systems or the Task Manager or Performance Monitor on Windows.
Many profiling tools such as OptimizeIt track memory and can help you find
the source of memory leaks. In EAServer, you can configure memory
thresholds for each server as described in “Configuring memory thresholds”
on page 137.

In Java code, you can log the amount of free memory reported by the methods
freeMemory() and totalMemory() in the java.lang.RunTime class to track total
memory use in the Java dynamic allocation heap.

You can also turn on tracing for the Java garbage collector as described in
“Trace-logging options” on page 9.

EAServer monitoring and tracing tools
EAServer includes these monitoring and tracing tools.

Runtime monitoring with EAServer Manager

EAServer Manager includes a runtime monitor that shows component, Web
application, and connection cache statistics. For more information, see Chapter
11, “Runtime Monitoring,” in the EAServer System Administration Guide.

In a clustered deployment, you can monitor the per-server load as described in
“Viewing the current per-server load” in Chapter 7, “Load Balancing,
Failover, and Component Availability,” in the EAServer System
Administration Guide.

Runtime monitoring APIs

EAServer includes several APIs that you can use to create your own
monitoring applications, including:

• Jaguar::Monitoring provides methods to monitor the server state, connected
users, and performance statistics such as the number of active and pooled
component instances.
8 EAServer

CHAPTER 1 Introduction
• Jaguar::PerfMonitor provides performance statistics in a per-second, per-
minute, and per-hour bucket model for systems that have a statistics
provider component installed. EAServer includes statistics providers for
the connection caching and HTTP protocol handler subsystems. You can
implement additional statistics providers for your application code using
the Jaguar::StatProvider and Jaguar::StatProviderController interfaces.

• CtsComponents::CacheMonitor allows you to retrieve cache statistics for
HTTP response caching, EJB CMP entity bean instance caching, and EJB
CMP finder-results caching.

• The logPerfManagerStats method in the Jaguar::Management interface
reports statistics for components and network listeners that have
monitoring thresholds configured for the EAServer Performance Monitor.
For an example program that calls this method, see “Obtaining
performance monitor statistics” on page 141.

For additional documentation of these APIs, see the generated HTML
reference documentation in the html/ir subdirectory of your EAServer
installation.

Trace-logging options

You can configure some EAServer subsystems to log trace data to the server
log file, including:

• Thread monitors, to log performance data for the components to which
you have assigned the monitor. See “Thread monitors” on page 32 for
more information.

• For EJB CMP entity beans, you can configure the EAServer JDBC
wrapper driver to record query execution statistics. See “CMP runtime
monitoring” on page 75 for details.

• For in-server Java code, you can turn on tracing for the custom class
loader. You can use the trace to identify classes that are loaded redundantly
for different components and Web applications. To enable tracing, set the
server property com.sybase.jaguar.server.classloader.debug to true. For
information on configuring custom class lists, see Chapter 30,
“Configuring Custom Java Class Lists,” in the EAServer Programmer’s
Guide.
Performance and Tuning Guide 9

The tuning process
• For in-server Java code, you can turn on tracing for the Java garbage
collector by setting the com.sybase.jaguar.server.jvm.verboseGC server
property to true. The trace output describes how often the garbage
collector runs, how long it takes, and what objects are deallocated. For
information on the encoding of the output, see the documentation for the
JDK version that you are running the server with.

The tuning process
Tuning requires extensive testing to isolate bottlenecks and fix them. You must
be systematic and test each potential fix as it is applied. Trying to fix multiple
issues at once may introduce new problems. Use the tools described in this
chapter to test and tune as described below.

❖ The tuning process

1 Load test under expected peak load conditions, using a tool configured to
mimic the typical request timings expected in production.

2 Find and fix any memory leaks and deadlocks. These problems may be
discovered now if you have not load-tested before.

3 Identify problem areas in your code or configuration.

4 Focus efforts on tuning the relevant EAServer settings or application code.
After each code or configuration change, repeat your functional tests to
verify that the application still returns correct results, then repeat the
performance test to check for improvement.

Try to identify where your tuning efforts will yield maximum gain. If
tuning business logic or Web components, focus on the components and
methods that are invoked most often. For example, it is better to shave .1
second from a method that is called twice a second than to shave 1 second
from a method that is called once a minute. The latter optimization saves
60 seconds an hour, while the former saves 720.
10 EAServer

C H A P T E R 2 Server Tuning

This chapter describes how to tune server, Java virtual machine, and
system properties for the best server performance.

The performance tuning wizard
The performance tuning wizard walks you through the server settings that
affect application performance. The wizard provides a convenient way to
set all the settings described in this chapter. To start the wizard, highlight
the icon for your server, then choose File | Performance Tuning Wizard.
See the online help for more information on each setting.

General server tuning
These settings affect all applications.

Thread settings
The server threading properties affect the number of clients that can be
served simultaneously and the memory used by each executing thread.

Topic Page
The performance tuning wizard 11

General server tuning 11

Java virtual machine tuning 16

Listener tuning 20

Operating system settings 22

Factors that affect start-up and shutdown time 23

EAServer memory requirements 26
Performance and Tuning Guide 11

General server tuning
Number of threads

EAServer uses thread pooling rather than a thread-per-client model. Thread
pooling allows more clients to connect than threads. Threads are created at
server start-up, up to a specified maximum number. EAServer maintains
separate thread pools for processing HTTP requests, IIOP requests, and
internal processes that are not driven by client requests (services, garbage
collection, and so forth). If the thread pools are too small, the server refuses
client requests. If the size is too large, memory is wasted.

You can configure these properties to size thread pools:

Determining HTTP thread requirements

To determine how many HTTP threads are required, check the request pattern
in the httpstat.dat file for indications of a heavily loaded server. Adjust the
maximum thread setting as necessary. Ideally, this setting should be 10 – 20%
more than the number of simultaneous HTTP requests that you expect to
handle. (The additional threads accommodate the use of threads in Web
browsers to submit simultaneous requests for images and text). A value that is
too low can increase HTTP response time by causing requests to block while
waiting for a thread. A value that is too high wastes available threads that could
be used for other purposes.

Determining IIOP thread requirements

The number of IIOP threads must be greater than or equal to the maximum
number of IIOP clients that you expect. These clients include:

• Standalone Java, C++, PowerBuilder, or ActiveX clients

• EAServer Manager and other administrative or developer connections

• Web clients that run Java applets

Determining the required maximum threads setting

The rule for setting the maximum threads property is:

Property EAServer Manager location Full name

HTTP threads Server Properties/HTTP Config,
Maximum Threads

com.sybase.jaguar.server.http.maxthreads

IIOP threads Server Properties/Resources,
Max Number Client Sessions

com.sybase.jaguar.server.maxconnections

Maximum threads Server Properties/Resources,
Max Number Threads

com.sybase.jaguar.server.maxthreads
12 EAServer

CHAPTER 2 Server Tuning
max threads = HTTP threads + IIOP threads + extra threads

The extra threads include those required to run internal processes that are not
driven by client requests, including:

• The message service. The number of threads required can be configured in
thread pool properties.

• Any other service components installed in the server. Allow one thread per
service, or more if you configure a service to run in multiple threads.

• Components for which the Instances/Bind Thread option is enabled (that
is, the com.sybase.jaguar.component.bind.thread property is set to true).
Add one extra thread per component instance.

• The thread manager, if you use it in your application.

• The garbage collector.

Typically, 50 is a sufficient number of extra threads. You may need more if you
increase the number or size of the thread pools used by the message service,
you run additional service components, or if you use the thread manager. You
may get by with less if you do not use these features.

Thread stack size

In EAServer, the thread stack size property determines the amount of memory
reserved for the call stack associated with each thread. The stack size must be
sufficient to allow for nested intercomponent calls. However, if the stack size
is too large, memory is wasted.

The default stack size is 256K on UNIX and on 32-bit Windows operating
systems. This is appropriate for almost all situations, and provides adequate
reserve memory for the largest case loads that have been tested by Sybase
engineering and customers.

For production servers that see heavy use from large numbers of clients, you
may want to decrease the stack size from the default value. Doing so can make
the per-thread stack memory available for other uses. However, you must first
run load tests on a test server to ensure that the stack size is adequate for the
components running on the server. If the stack size is too small, client requests
may fail with thread stack overflow errors, which are recorded in the server log.

Sybase recommends that you do not reduce the stack size if you run:

• Components that call third-party DLLs or shared libraries
Performance and Tuning Guide 13

General server tuning
• Java components that call native classes (including JDBC drivers that call
out to native libraries)

For information on setting the stack size, see “Configuring server stack size”
in the EAServer System Administration Guide.

You can also configure the stack size for Java threads, as described in “JVM
memory allocation parameters” on page 18.

Solaris Java thread model

On Solaris 2.8 systems, specify the -altthrdlib option to serverstart.sh when starting the
server. This option causes EAServer to run with the alternate JDK thread library that
uses one-to-one mapping between kernel threads and Java threads. This threading
model can yield better performance and reliability than the default many-to-many
threading model.

On Solaris 2.9 and later Solaris versions, you do not need to specify this option
because the Java virtual machine defaults to one-to-one thread mapping. For
more information on Java thread models, see the Sun Java Threading
documentation at http://java.sun.com/docs/hotspot/threads/threads.html.

Flow control
When the server is very busy with many client connections, client request
threads may repeatedly conflict with each other for access to low-level system
resources. Flow control provides a coarser level of granularity for
synchronizing access to system resources by request threads. When enabled,
flow control can improve performance by replacing multiple, serial choke
points in the request processing sequence with a single choke point.

Alternatives to flow control
As an alternative to configuring flow control for network listeners, you can
configure response-time threshold monitoring for your application
components or network listeners. For more information, see Chapter 9, “Using
the Performance Monitor.”

Flow control is enabled separately for HTTP and IIOP clients, by setting these
properties on the Advanced tab in the Server Properties dialog box:
14 EAServer

CHAPTER 2 Server Tuning
• com.sybase.jaguar.server.flowcontrol.http enables flow control for HTTP
client threads. The default is false, which disables flow control. Set the
value to true to enable flow control for HTTP client requests.

• com.sybase.jaguar.server.flowcontrol.iiop enables flow control for IIOP
client threads. The default is false, which disables flow control. Set the
value to true to enable flow control for IIOP client requests.

 Warning! In some scenarios, IIOP client threads may deadlock when IIOP
flow control is enabled. Deadlock can happen when using client
demarcated transactions, in stateful component instances that lock shared
resources, and other cases where locks may be held across subsequent
client requests. Do not enable IIOP flow control in production servers
without first load testing your applications with scenarios that reflect peak
production loads.

• com.sybase.jaguar.server.flowcontrol.maxexethreads specifies the
maximum number of threads that can concurrently execute code that is
governed by flow control. The default is the value of the
com.sybase.jaguar.server.maxthreads property (Resources/Maximum
Threads in the Server Properties dialog box), which means all threads can
proceed. Tune this number to get the best performance under peak stress
conditions. Values between 15 and 30 are a good starting point. To tune the
setting, monitor response time at peak load conditions, and raise or lower
the value to find the setting that results in the best response time.

Debug and trace settings
While useful for diagnosing configuration or code problems, debug and trace
properties can reduce application performance when data is logged needlessly.
Disable any debug or tracing properties unless you are actively diagnosing a
related problem. You can easily disable all settings with the tuning wizard
described in “The performance tuning wizard” on page 11.
Performance and Tuning Guide 15

Java virtual machine tuning
Java virtual machine tuning
These settings tune the Java virtual machine (JVM) that runs Java code in the
server. These settings have a large effect on applications that are implemented
with Java, EJB, or Web components. Since many of the server internal
components are implemented in Java, these settings have some effect on
applications that are implemented in other languages such as PowerBuilder.

CLASSPATH and BOOTCLASSPATH settings
Check the CLASSPATH and BOOTCLASSPATH for the server to ensure that
they does not include unnecessary entries. You can check the runtime values
on the General tab in the EAServer Manager Server Properties dialog box.

The server start scripts assemble the CLASSPATH from the required files in
the EAServer installation and existing settings from your environment. The
scripts then set BOOTCLASSPATH to include the CLASSPATH settings.

You can set these variables in the bin\user_setenv.bat file (for Windows
platforms) or bin/user_setenv.sh script (for UNIX platforms). Create the file if
it does not already exist. If you require no additional CLASSPATH or
BOOTCLASSPATH entries, unset these variables. Otherwise, set them to
include the minimum required settings.

You can also configure the server class path by modifying the following server
properties, using the advanced tab in the EAServer Manager server properties
dialog box:

• com.sybase.jaguar.server.jvm.classpath to configure the CLASSPATH
setting.

• com.sybase.jaguar.server.jvm.classpath.jars to specify JAR files in the
java/lib directory to add to the CLASSPATH setting.

• com.sybase.jaguar.server.jvm.bootclasspath to configure the
BOOTCLASSPATH setting.

• com.sybase.jaguar.server.jvm.bootclasspath.jars to specify JAR files in the
java/lib directory to add to the BOOTCLASSPATH setting.

For syntax information, see the reference pages in Appendix B, “Repository
Properties Reference,” in the EAServer System Administration Guide.
16 EAServer

CHAPTER 2 Server Tuning
Custom class lists
EAServer uses custom Java class loaders to allow refreshing the Web
application classes and Java components, and to load classes from directories
and JAR files that are not specified in the CLASSPATH environment variable.
During the development cycle, this feature allows you to add or modify classes
without restarting the server. However, duplicate in the custom class list for
different components can waste memory by loading duplicate class instances.
Chapter 30, “Configuring Custom Java Class Lists,” in the EAServer
Programmer’s Guide describes how to configure common class lists for
components and Web applications.

Minimize Refresh in production servers
Refreshing components loads additional copies of all implementation classes.
EAServer leaves the previous implementation in memory for use by existing
client sessions. For this reason, it is best to restart your production server after
deploying a large number of new implementation classes, ensuring that the
memory required to load new classes is not reallocated.

Java VM type and version
EAServer supports several JDK versions, and each JDK version can support
multiple VM types such as Server Hotspot, Client Hotspot, and Classic. You
specify the JDK version and VM type when starting the server from the
command line, or for servers that run as Windows services, with the command
that you run to install the service. For details, see “Starting the server” in the
EAServer System Administration Guide.

As a general rule, you should use the Server Hotspot VM in the latest supported
JDK version. However, always consult the EAServer Release Bulletin for your
platform for updated recommendations.

For more information on Java Hotspot technology, see the Sun Microsystems
white paper Java HotSpot Performance Engine Architecture at
http://java.sun.com/products/hotspot/whitepaper.html.
Performance and Tuning Guide 17

Java virtual machine tuning
Just-in-time compilation
The Java just-in-time (JIT) compiler converts Java bytecode into native
machine code, which can run much faster than the interpreted bytecode. You
should enable the JIT compiler for the server, unless advised not to in the
EAServer Release Bulletin for your platform. You can set the property on the
Java VM tab in the EAServer Manager server properties dialog box, or by
using jagtool to set server property com.sybase.jaguar.server.jvm.nojit to false.

JVM memory allocation parameters
The Java virtual machine uses its heap storage for dynamic allocation memory.
In addition, each thread requires reserved memory for the stack used to pass
method parameters. You can tune the memory used by setting these properties
of the EAServer Manager Server Properties dialog box, or by using jagtool. To
set these properties, use the syntax documented in their reference pages in
Appendix B, “Repository Properties Reference,” in the EAServer System
Administration Guide:

• com.sybase.jaguar.server.jvm.maxHeapSize specifies the maximum heap
size. The JVM reserves this much memory at start-up. The memory used
for object allocation cannot exceed this amount. If the heap size is
exceeded, you see request failures accompanied by
java.lang.OutOfMemoryError errors in the error log.

• com.sybase.jaguar.server.jvm.minHeapSize specifies the minimum, or
initial heap size. While the maximum size is reserved at start-up, only the
minimum size is monitored and allocated from by the JVM. Set this value
to the same size as the maximum heap size. The maximum heap size is
reserved at server start-up regardless of the minimum size, and using equal
sizes avoids the CPU overhead of dynamically growing the heap.

• com.sybase.jaguar.server.jvm.options configures additional start-up
options for the Java VM. The -XssStackSize parameter can be tuned to
configure the stack size for Java threads. StackSize is the amount of virtual
memory reserved for the stack of each Java thread.

• Optionally set com.sybase.jaguar.server.jvm.verboseGC to true to enable
trace output from the Java garbage collector. The trace output describes
how often the garbage collector runs, how long it takes, and what objects
are deallocated. For information on the encoding of the output, see the
documentation for the JDK version that you are running the server with.
18 EAServer

CHAPTER 2 Server Tuning
The optimum heap size depends on your application and machine
configuration. To tune the value, first verify that you have removed any
memory leaks from your own code. Then test under expected peak load
conditions to determine the minimum size that allows the application to run
without errors. If the heap size is too large, it uses memory that could otherwise
be used for the call stack required to run each thread. Large heap sizes can also
incur a larger delay when the Java garbage collector runs. Never set the heap
size larger than the machine’s physical memory; if you do, the system will
swap memory to disk. Set the minimum and maximum sizes to equal values,
using the syntax described in the reference pages for these properties in the
EAServer System Administration Guide, Appendix B, “Repository Properties
Reference.”

Set the Java thread stack size to the smallest value that still allows the
application to run. Usual values are 256K or 512K for the applications used for
internal stress testing at Sybase. Most applications should never require more
than 1Mb. The stack must be large enough to accommodate parameters passed
in component dispatcher and intercomponent calls. However, if the value is too
high, it limits the maximum number of threads that can be spawned. To run N
threads, there must at least N x StackSize of free memory available.

Other Java VM settings and troubleshooting
You can configure additional Java VM options by adding them to the options
set in the server property com.sybase.jaguar.server.jvm.options, set on the
Advanced tab in the EAServer Manager Server Properties dialog box or using
jagtool. Use the syntax described in the com.sybase.jaguar.server.jvm.options
reference page in the EAServer System Administration Guide, Appendix B,
“Repository Properties Reference.”

To verify the Java VM options, set the server property
com.sybase.jaguar.server.jvm.displayOptions to true, then restart the server.
The server logs all the options at start-up, including those that are configured
by dedicated properties such as the Heap Size settings discussed above.
Performance and Tuning Guide 19

Listener tuning
Listener tuning
EAServer includes several preconfigured listeners, described in
“Preconfigured listeners” in the EAServer System Administration Guide.
Remove any listeners that you do not need. For example, if your application
does not need to support MASP or Open Server clients, remove these listeners.
Unused listeners waste memory and network resources.

The following listener properties affect performance:

For listeners that use the SSL protocol, you can tune the SSL session caching
parameters described in “SSL session caching” on page 21.

HTTP keep alive
This setting determines how long the server keeps idle HTTP connections
open. The same browser client may send several requests at periodic intervals,
for example, if the user is browsing linked documents or paging through
consecutive forms. In these cases, there is a performance benefit if the
connection remains open, since it takes time to reestablish a new connection.
The default value is 100 seconds. To change the setting, enter a different time
in seconds.

HTTP maximum requests
This setting specifies the maximum number of HTTP requests to service before
closing each connection. The default is 100. Tuning the value provides a way
to prevent clients from monopolizing HTTP threads and connections with a
series of short-duration requests.

Property
EAServer Manager
location Full name

Keep alive
HTTP only

Listener Properties/Advanced/
Keep alive

com.sybase.jaguar.listener.http.conn.keepalive

Maximum requests
HTTP only

Listener Properties/Advanced/
Maximum Requests

com.sybase.jaguar.listener.http.conn.maxrequests

Request pool size
Solaris platform only

Listener Properties/Advanced/
Request Pool Size

com.sybase.jaguar.listener.solaris.tli.maxoutcon
20 EAServer

CHAPTER 2 Server Tuning
Connection request pool size
On Solaris, you can configure the size of the pool used to handle outstanding
connection requests. When the server is very busy, all available threads may be
in use when a connect request arrives. These pending connect requests are
pooled until they can be handled. If the pool size is too small, client connection
requests may time out before the server can handle the request.

You can configure different request pool sizes for different protocols. For
example, if the server is handling mostly HTTP requests, you can increase the
request pool size for the HTTP listener while leaving the IIOP request pool size
at a low value.

Values must be a positive integer less than or equal to 4096. If this property is
not set, the default is 128. Values greater than 4096 are truncated to 4096 to
avoid excessive memory allocation at start-up.

The connection request pool size affects the server memory requirements:

mem = entries * 20K

That is, each entry requires about 20K of memory reserved at server start-up.

SSL session caching
For improved performance, EAServer caches SSL session identifiers and
allows clients to reuse them. Since creating an SSL session requires CPU-
intensive computations, SSL session reuse results in a relatively large
performance gain over setting up completely new security sessions for each
connection. The SSL settings for a listener are configured in the security profile
set in the listener Security Profile property (if using jagtool, the property
com.sybase.jaguar.listener.security). For details on creating security profiles,
see “Configuring security profiles” in Chapter 13, “Security Configuration
Tasks,” in the EAServer Security Administration and Programming Guide.

The settings below, on the Advanced tab in the EAServer Manager Security
Profile Properties dialog box, control how SSL clients can reuse sessions for
subsequent and simultaneous connections.

Setting Description

SSL Cache Size The number of entries in SSL session cache. If using jagtool, set as security profile
property com.sybase.jaguar.security.sesscachesize.

SSL Session Share The number of concurrent connections that can simultaneously use the same session
entry (ID) in the session cache. If using jagtool, set as security profile property
com.sybase.jaguar.security.sessshare.
Performance and Tuning Guide 21

Operating system settings
Cached sessions allow the client to reuse a session in a subsequent connection.
The SSL Cache Size setting controls how many entries can be cached. Set this
to a number less than or equal to the maximum connections setting for the
server. The default cache size for security profiles created in EAServer
Manager is 30. The cache requires approximately 64 bytes per entry. The SSL
Session Linger value specifies how long cached session IDs remain valid. The
default is 8 hours.

The SSL Session Share setting specifies how many simultaneous connections can share
one session ID. Session sharing can improve performance when the client opens
multiple connections simultaneously. For example, a browser client may open
several connections at once to download images linked to an HTML page.
Session sharing allows the client to reuse the session for the second and
subsequent connections, up to the number of concurrent connections specified
by the SSL Session Share value. The default value is 10.

Note These are advanced SSL parameters. They should be set only by
someone who is knowledgeable about SSL.

Operating system settings
These operating system settings can affect EAServer performance. For
additional information on system requirements, see the EAServer Release
Bulletin for your platform.

UNIX file descriptors
On UNIX, concurrent client connections to EAServer are limited by the
operating system limit for the number of file descriptors that can be opened in
one process. Before you start the server, set the file descriptor limit in the shell
where you will start the server. For example, to set the limit to 1024:

1 Use a text editor to open the bin/serverstart.sh file.

SSL Session Linger The duration for which a session entry is kept in the SSL session cache after the last
SSL session using this session ID was closed. If using jagtool, set as security profile
property com.sybase.jaguar.security.cachetime.

Setting Description
22 EAServer

CHAPTER 2 Server Tuning
2 Below the first comment block, add this line:

ulimit -n 1024

See your UNIX documentation for more details on the ulimit command.

Per-process memory limits
On some systems, the default configuration limits the memory available to the
server. You may need to raise the limit to make best use of memory intensive
features such as caching or a large Java heap. For more information, see:

• Your operating system documentation for details on per-process limits

• “EAServer memory requirements” on page 26

• For AIX systems, the Sybase technical document Configuring Memory
Parameters on AIX for EAServer at
http://www.sybase.com/detail?id=1024625

Factors that affect start-up and shutdown time
These settings affect how long it takes to shut down and restart the server.

Start-up performance
These settings affect how long it takes the server to start, that is, the time
between starting the process and when the server is ready to accept
connections:

• Random number seeding EAServer uses encryption algorithms that
generate pseudorandom number generation. EAServer generates a random
seed at start-up by collecting a variety of data from system sources. On
some machines, the default seeding mechanism can cause start-up lag
times. You can change the seeding mechanism as described in “Setting the
JAGUAR_RANDOMSEED variable” in the EAServer System
Administration Guide.
Performance and Tuning Guide 23

Factors that affect start-up and shutdown time
• Message service initialization If you are running the message service,
it must initialize before the server can accept connections. At start-up, the
message service reads unprocessed persistent messages into the in-
memory cache. A large message backlog can delay server start-up. To
control the number of messages read into memory, set the default.maximum
property for the message service, as described in “Other global settings”
on page 127.

• Service components All service components must return from their
start methods before EAServer accepts client connections. Lengthy
processing in the start method can delay server start-up. For more
information, see Chapter 33, “Creating Service Components,” in the
EAServer Programmer’s Guide.

• JSPs loaded at start-up JSPs that are configured to load at start-up are
compiled if necessary. Compilation of many JSPs can delay start-up. You
can reduce JSP compilation time by tuning the Web application settings
discussed in “Runtime compilation settings” on page 82.

• Servlets loaded at start-up Servlets that are configured to load at start-
up must return from their init method before the server continues. Lengthy
processing in this method can delay start-up. (If the servlet does not load
at start-up, lengthy processing in this method can delay the response to the
first client request). You can set a time limit for servlet initialization to
complete by setting these properties:

• For the server, the Timeout setting on the Servlets tab in the EAServer
Manager Server Properties dialog box specifies an initialization
timeout for servlets that are installed directly in the server. You can
also set this property as com.sybase.jaguar.server.servlet.init-timeout
using jagtool.

• For the Web application, the Timeout setting on the General tab in the
EAServer Manager Web Application Properties dialog box specifies
an initialization timeout for servlets in the Web application. You can
also set this property as com.sybase.jaguar.webapplication.init-timeout
using jagtool.

• For individual servlets, the com.sybase.jaguar.servlet.init.timeout
property, set using jagtool or on the Advanced tab in the EAServer
Manager Web Component or Servlet Properties dialog box.

To specify a timeout, set the property to a positive integer, which specifies
the number of seconds to wait. The default is 0, which indicates that there
is no time limit.
24 EAServer

CHAPTER 2 Server Tuning
Shutdown performance
These settings affect how long it takes the server to shut down.

Pooled component destruction

EAServer explicitly destroys pooled component instances before the server
shuts down. This allows you to perform cleanup operations in your component,
such as closing database connections. You can set the following server and
component properties to change this behavior:

• com.sybase.jaguar.server.destroyPooledInstancesOnShutdown for the
server specifies whether to destroy pooled component instances when
shutting down. A value of true indicates that pooled instances must be
destroyed explicitly before shutting down. For example, an EJB
component’s ejbRemove method is called. This allows the pooled instance
to clean up resources, such as closing database connections. A value of
false specifies that instances are not destroyed. The default is true.

If many component instances are pooled, explicit destruction of instances
may lengthen the time required to shut down or restart the server.

You can override the setting for individual components by setting the
com.sybase.jaguar.component.destroyPooledInstancesOnShutdown
component property.

• com.sybase.jaguar.server.destroyPooledInstancesOnShutdownTimeout for
the server specifies how long to wait for each instance destruction method
to return when destroying pooled instances during server shutdown. The
value specifies the time to wait, in seconds. If no value is specified, the
default is 5. You can override the setting for individual components by
setting the component property
com.sybase.jaguar.component.destroyPooledInstancesOnShutdownTimeo
ut.

Set these properties on the Advanced tab in the Server Properties or
Component Properties dialog boxes.
Performance and Tuning Guide 25

EAServer memory requirements
Servlet destruction

EAServer calls each servlet’s destroy method before shutting down or after you
have refreshed or stopped the servlet using EAServer Manager. If service calls
are still active, the Destroy Timeout setting specifies the number of seconds
that the server should wait for the service calls to return before calling the
destroy method. The default behavior specifies that the server wait indefinitely
for service calls to return. You can specify a finite timeout by setting these
properties:

• For the server, the Destroy Timeout setting on the Servlets tab in the
EAServer Manager Server Properties dialog box specifies a timeout for
servlets that are installed directly in the server. You can also set this
property as com.sybase.jaguar.server.servlet.destroy-wait-time using
jagtool.

• For the Web application, the Destroy Timeout setting on the General tab
in the EAServer Web Application Properties dialog box specifies a
timeout for servlets in the Web application. You can also set this property
as com.sybase.jaguar.webapplication.destroy-wait-time using jagtool.

• For individual servlets, the com.sybase.jaguar.servlet.destroy.wait-time
property, set using jagtool or on the Advanced tab in the EAServer
Manager Web Component Properties dialog box.

To specify a timeout, set the property to a positive integer, which specifies the
number of seconds to wait. The default is 0, which specifies that EAServer
calls destroy immediately.

EAServer memory requirements
The following configuration settings affect EAServer’s memory requirements.
While exact memory requirements depend on your component and servlet
implementations, this list tells you what options you can tune to affect the
server’s memory footprint:

• Java heap sizes The Java Virtual Machine (JVM) that EAServer uses
to run Java code has parameters to size its dynamic memory allocation
heap. For more information, see “JVM memory allocation parameters” on
page 18.
26 EAServer

CHAPTER 2 Server Tuning
• The number of threads and thread stack size Each thread requires a
small amount of reserved memory to store the stack for code running in
the thread. “Number of threads” on page 12 describes how to configure
the number of server threads. “Thread stack size” on page 13 describes
how to configure the thread stack size.

• HTTP response cache sizes EAServer supports several forms of
HTTP response caching. For more information, see “Understanding
HTTP response caching options” on page 84.

• Servlet buffer pools EAServer pools the internal buffers that are
required to build servlet responses. You can tune the number of buffers as
described in “Servlet buffer pools” on page 79.

• Entity bean instance and query caching EAServer can cache instance
data and finder-method results for EJB-CMP entity beans. See “Entity
instance and query caching” on page 63 for more information.

• Connection cache sizes You can configure the number of connections
stored in each cache as described in “Tuning the cache size” on page 108.

• Component instance pool sizes You can configure the pool size for
component instances as described in “Instance pooling” on page 33. The
memory required for each instance depends on your implementation.

• Mirror cache sizes In a clustered deployment, you can configure
EAServer to replicate HTTP session data and stateful component data in
memory. For more information, see:

• “HTTP session replication mechanism” on page 121

• “Component state replication” on page 123

• Custom class lists EAServer uses custom Java class loaders to allow
you to refresh the Web application classes and Java components, and to
load classes from directories and JAR files that are not specified in the
CLASSPATH environment variable. During the development cycle, this
feature allows you to add or modify classes without restarting the server.
However, duplicate entries in the custom class lists for different
components waste memory by loading duplicate class instances. Chapter
30, “Configuring Custom Java Class Lists,” in the EAServer
Programmer’s Guide describes how to configure common class lists for
components and Web applications.
Performance and Tuning Guide 27

EAServer memory requirements
• Use of the hot refresh feature Refreshing components and Web
applications loads additional copies of all implementation classes.
EAServer leaves the previous implementation in memory for use by
existing client sessions. In effect, refresh introduces a controlled memory
leak. For this reason, it is best to restart your production server after
deploying a large number of new implementation classes. If you have a
maintenance window when the server can be restarted, redeploy your
changed code at this time to allow a restart of the server. When you do
refresh, do so at the lowest level possible. For example, if you modified a
components, refresh the package that it is installed in rather than the whole
server.
28 EAServer

C H A P T E R 3 Component Tuning

Running the performance tuning wizard
EAServer Manager includes wizards to tune the settings discussed in this
chapter. To run the wizard, highlight the component icon and choose File
| Performance Tuning Wizard.

Common component performance issues
These recommendations apply to all components, regardless of their type.
Follow these suggestions for every component, in addition to the ones
provided for specific component types.

Tracing and debugging settings
Tracing properties enable additional logging, which can be useful when
debugging problems. However, tracing requires additional file I/O and
computation. For best performance, disable all tracing and debugging
properties. An easy way to do this is to run the performance and tuning
wizard on your components.

Topic Page
Running the performance tuning wizard 29
Common component performance issues 29
Java component performance 38
EJB component performance 38
C++ component performance 44
PowerBuilder component performance 44
Performance and Tuning Guide 29

Common component performance issues
Thread-related issues
EAServer is scalable because it is multithreaded and multiprocessor-safe,
using a thread pooling model to run components. Ideally, a component:

• Supports thread pooling, to run on any thread rather than being tied to the
same thread as a client connection. Since most client connections have
significant idle time, thread pooling allows fewer threads to serve more
clients.

• Supports concurrent execution, allowing multiple instances of the
implementation class to be invoked simultaneously to service different
clients.

These settings affect the threaded execution of your component.

Bind thread

The Instances/Bind Thread setting in the EAServer Manager Component
Properties dialog box specifies whether component instances must be bound to
the thread that creates the instance. You can also set this property as
com.sybase.jaguar.component.bind.thread using jagtool.

This option decreases scalability. Twice as many threads are needed to run the
component, since each instance requires the client thread plus another thread
bound to the component. Also, while the thread is bound to the instance, it
cannot be pooled and used to service requests involving other components.

Enable this option only for ActiveX components, PowerBuilder components if
required (see “PowerBuilder component performance” on page 44), and
components of other types that use thread-local storage. Otherwise, disable this
feature so EAServer can run the component on any available thread.

Concurrency

The Instances/Concurrency setting in the EAServer Manager Component
Properties dialog box specifies whether component instances can execute
concurrently on multiple threads. You can also set this property as
com.sybase.jaguar.component.thread.safe using jagtool.

Enable this option for any component that is thread-safe. Concurrent access
can decrease the response time of client method invocations. If this option is
disabled, EAServer serializes all method calls to the component. Concurrency
applies to execution of all instances. With concurrency disabled, a call to one
instance cannot overlap the execution of another instance.
30 EAServer

CHAPTER 3 Component Tuning
If the Sharing setting is enabled for your PowerBuilder component, disable the
Concurrency setting. PowerBuilder is thread-safe at the session level only. For
other component types, concurrency requires that your implementation be
thread-safe. The requirements depend on the value of the Sharing setting as
described in Table 3-1.

Table 3-1: Coding requirements to support concurrency

If you enable the Concurrency setting for a component that does not meet these
requirements, you may encounter hard-to-diagnose threading errors such as
race conditions. In a race condition, multiple threads update the same data
simultaneously. The outcome of conflicting updates is unpredictable and may
cause crashes or incorrect results.

Sharing

If the Instances/Sharing option is enabled in the EAServer Manager
Component Properties dialog box, a single instance serves all client requests.
You can also set this property as com.sybase.jaguar.component.sharing using
jagtool.

For best performance, this option requires that you also enable the concurrency
option. However, if your component has read-write static or instance variables,
you must synchronize all access to them. This can create bottlenecks where
threads wait to access synchronized data or methods. Such bottlenecks can
reduce performance and may lead to larger problems such as deadlock or
starvation. Also, in a cluster, the component is not a true singleton object: while
one instance runs per server, multiple instances run in the cluster, one instance
per server. For these reasons, Sybase recommends that you avoid the
Sharing/Singleton pattern if your implementation has read/write static or
instance variables.

Sharing enabled? Coding requirements

No Protect any static instance variables; synchronize access to
them to prevent concurrent access from different threads.
Exceptions to this rule are read-only static variables, such as
those that include the final modifier (meaning it is a constant
that cannot be changed), and static variables defined as a
primitive datatype that is 32 bits or less.

Yes Same as the above, but you must protect all instance
variables since one instance is called by multiple threads.
Performance and Tuning Guide 31

Common component performance issues
You can use sharing and concurrency without synchronization if your
implementation has no read/write static or instance variables. This can reduce
memory use since only one instance is loaded. However, the effect is likely to
be negligible unless the implementation class is very large.

Thread monitors

Thread monitors provide a means to limit the execution time devoted to
specified components and component methods. You can assign components
and methods to a thread monitor to ensure that no more than a specified
maximum number of threads will be active at any point executing the methods
and components assigned to the monitor.

You can also use thread monitors without a limit on the number of threads.
Doing so allows you to use the monitor trace properties to record performance
data.

Thread monitors are not active for component calls that use the lightweight
container (see “Lightweight container” on page 40).

Alternatives to thread monitors
As an alternative to configuring thread monitors to govern component load,
you can configure response-time threshold monitoring for your application
components or network listeners. For more information, see Chapter 9, “Using
the Performance Monitor.”

To create or configure a thread monitor, follow the instructions in Thread
monitor properties in the EAServer System Administration Guide.

❖ Assigning a component or method to a thread monitor

1 Display the properties for the component or method, then display the
Advanced tab.

2 For a component, if the com.sybase.jaguar.component.monitor property is
not present, add it. Otherwise modify this property. Set the value to the
name of the thread monitor.

For a method, if the com.sybase.jaguar.method.monitor property is not
present, add it. Otherwise modify this property. Set the value to the name
of the thread monitor.

3 Regenerate and recompile the component skeleton.
32 EAServer

CHAPTER 3 Component Tuning
Stateful versus stateless components
A component that remains bound to a client instance between consecutive
method invocations is called a stateful component. A component that can be
unbound from the client after each method call is said to be a stateless
component. Typically, an application built with stateless components offers the
greatest scalability. In the stateless model, each instance can serve different
clients during the “think time” that is typically seen in interactive applications.
In the stateful model, each client requires a dedicated component instance for
the lifetime of the client session.

You can either configure stateless behavior, or code the component to call the
appropriate lifecycle control method to unbind the component instance from
the client reference in each business method. For more information, see
“Component lifecycles” in the EAServer Programmer’s Guide for more
information.

The stateless model requires an implementation that supports stateless
execution. For example, if your component requires two subsequent
invocations to compute a result for the client, it will break if you change the
component properties to enable stateless behavior.

If you use stateful components, configure the Instance Timeout setting on the
Component properties: Resources tab in EAServer Manager or by setting the
com.sybase.jaguar.component.timeout property with jagtool. This setting limits
the time that an instance can be bound to a client session.

Instance pooling
Instance pooling allows a single component instance to service multiple
clients. Rather than creating a new instance for each client, EAServer
maintains a pool of instances for reuse to service multiple clients. Instance
pooling increases performance by eliminating the overhead of creating new
instances for each client session. EAServer supports pooling of EJB
components by default. “Component lifecycles” in the EAServer
Programmer’s Guide describes how you can implement components of other
types that support pooling.

Configuring component instance pool properties

To enable pooling, set the Pooling option on the Instances tab in the EAServer
Manager Component Properties dialog box. You can set this property as
com.sybase.jaguar.component.pooling if using jagtool.
Performance and Tuning Guide 33

Common component performance issues
You can configure the number of instances pooled for a component by
configuring the properties in Table 3-2. These properties are found on the
Resources tab in the EAServer Manager Component Properties dialog box.

Table 3-2: Component instance pooling properties

While instance pooling can decrease client response time, it can also increase
memory usage in the server. If pooled instances often sit idle, the memory used
for pooling is wasted.

You can configure the maximum and minimum pool size to constrain the
memory used to maintain an instance pool. For example, a heavily used
component should have higher minimum and maximum pool sizes than a less
commonly used component. If a component has periods of high use followed
by low use, you can set a minimum size to allow the instances to be released
during times of low use. Doing so frees memory for use by other components.

EAServer does not preallocate instances for the pool. The pool size grows as
additional instances are required to satisfy client requests, up to the maximum
specified size (if a maximum size is specified). Once the minimum pool size is
reached, the size will not shrink below this size. To release idle pooled
instances, EAServer has a garbage collector thread that runs periodically. Each
time it runs, the garbage collector removes one idle instance from the pool,
unless the minimum pool size has been reached.

Property Description

Maximum pooled instances Specifies the maximum pool size. If the maximum pool size is reached,
EAServer destroys excess instances after deactivation. The default is 0, which
means no limit.

Minimum pooled instances The minimum pool size. The default is 0.

Named instance pool Specifies that the component shares space in a named instance pool, as described
in “Named instance pools” on page 35.

Maximum active instances Specifies the maximum number of instances that can exist at the same time. For
a C++ component that runs as an external process, specifies the maximum
number of simultaneously running external processes. If a request arrives when
the maximum number of instances exist and are all busy, the request blocks, with
blocking time constrained by the Maximum Wait setting.

Maximum wait Specifies the maximum client wait time when the Maximum Active Instances
property is set to specify a limit on the number of simultaneous active instances
and the limit has been reached. The request blocks, with blocking time
constrained by the Maximum Wait property. If the blocking time expires, the
caller receives a CORBA::NO_RESOURCES exception.
34 EAServer

CHAPTER 3 Component Tuning
If you configure a minimum pool size, configure a maximum size that is
slightly larger. The difference between the maximum and minimum size
provides a damping factor that prevents repeated instance allocation and
deallocation if the actual pool size hovers near the minimum size.

If the maximum pool size is reached, EAServer still creates new instances, but
destroys them immediately rather than placing them in the pool. You can set
the Maximum Active Instances property to put an absolute limit on the number
of instances that can run. Doing so allows you to partition the server resources
among different components.

You can monitor the effectiveness of these settings by checking the Maximum
Pooled Instances and Peak Maximum Instances Pooled setting for the package
that contains your components. Ideally, the number of instances should rarely
rise above the number of pooled instances. See “Using the Runtime Monitor”
in the EAServer System Administration Guide for more information.

Named instance pools

Named instance pools provide more administrative control over how
components are pooled. This feature allows you to control the number of
component instances that EAServer creates for a set of components. Set the
com.sybase.jaguar.component.instancePool property to assign your component
to a pool other than the default. If this property is not set, the component runs
in one of the default pools described in Table 3-3.

Table 3-3: Preconfigured instance pools

By default, EAServer assigns components that do not have the Bind Thread
setting enabled to SystemPool. This pool imposes no limit on the number of
instances. For components placed in SystemPool, the component’s properties
control how many instances can be pooled.

The BindThread pool has a limited size that you can modify. As described in
“Bind thread” on page 30, components that run with Bind Thread are resource
intensive. Setting a limit on these instances prevents them from monopolizing
the available threads.

Name Description
Maximum number
of instances

SystemPool The default for components whose
Instances/Bind Thread property is
disabled.

infinite, denoted by -1

BindThread The default for components whose
Instances/Bind Thread property is enabled.

512
Performance and Tuning Guide 35

Common component performance issues
You can create new pools with different instance pool settings to partition the
memory used to run different components. For example, you can create a larger
instance pool for frequently used components and create smaller pools for
seldom used components.

In EAServer Manager, you can manage the instance pool settings in the top-
level Instance Pools folder. Sybase recommends that you do not modify the
SystemPool settings, or create new pools that have no size limit.

❖ Creating an instance pool

1 Highlight the Instance Pools folder.

2 Select File | New Instance Pool. The Instance Pool Wizard appears.

3 Follow the wizard pages to configure the properties.

❖ Viewing or modifying an instance pool

1 Expand the Instance Pools folder.

2 Highlight the instance pool you want to modify and choose File |
Properties.

3 In the Instance Pool Properties dialog box, on the General tab, enter a
description and the maximum number of instances. By default, the
maximum number of instances is set to 512. Sybase recommends that you
do not create an instance pool with the maximum number of instances set
to -1 (infinite). If you need an instance pool with an unlimited number of
instances, use the preconfigured SystemPool.

4 To enable debugging, which writes instance pool information to the server
log file:

a Select the Advanced tab.

b Click Add.

c Enter these values:

• Property – com.sybase.jaguar.instancepool.debug

• Value – true

Note You must refresh an instance pool or refresh the server before any
changes to instance pool properties take effect.
36 EAServer

CHAPTER 3 Component Tuning
❖ Refreshing an instance pool

1 Expand the Instance Pools folder, then highlight the instance pool you
want to refresh.

2 Choose File | Refresh.

❖ Assigning a component to an instance pool

If you do not specify an instance pool for a component, EAServer assigns one
of the default instance pools automatically using the following criteria. If a
component’s Instances/Bind Thread property is enabled, EAServer assigns the
component to the BindThread instance pool; otherwise, it assigns the
component to the SystemPool instance pool. If you enable the Instances/Bind
Thread option for a component in the SystemPool, EAServer changes the
instance pool selection so the component uses the BindThread instance pool.

Assign the component to an instance pool as follows:

1 In EAServer Manager, highlight the component to assign to an instance
pool.

2 Select File | Properties.

3 On the Resources tab, select a Named Instance Pool from the drop-down
list.

❖ Deleting an instance pool

1 Expand the Instance Pools folder.

2 Highlight the instance pool you want to modify and choose Edit | Delete.

Note You cannot delete the preconfigured SystemPool or BindThread pools.

❖ Managing instance pools using jagtool

• You can also use these jagtool commands to create and configure instance
pools: copy, create, delete, list, props, refresh, and set_props. For example,
to create a new instance pool called “MyPool,” use this syntax:

jagtool create InstancePool:MyPool

Optimizing intercomponent calls
If your components make many intercomponent calls, you can use one of the
following techniques to improve performance:
Performance and Tuning Guide 37

Java component performance
• For EJB components, use local interfaces, the EAServer lightweight
container, or call-by-reference. See “Optimizing in-server EJB calls” on
page 39 for more information.

• For components of other types, use pseudocomponents. Since
pseudocomponents are executed locally, in the same process, they do not
incur the network overhead of client/server communication. When used in
EAServer, pseudocomponents avoid the small thread- and context-
management overhead incurred when the EAServer component dispatcher
executes intercomponent calls. However, pseudocomponents are not
suitable for applications that require the transaction control, security
constraints, and other services provided by the EAServer component
dispatcher. For more information, see Chapter 34, “Creating and Using
EAServer Pseudocomponents,” in the EAServer Programmer’s Guide.

Java component performance
Java/CORBA and EJB components benefit from most of the settings described
in “Common component performance issues” on page 29.

You can improve the performance of Java and EJB components by configuring
common class loaders for the application’s components (including Web
components). EAServer uses custom class loaders to allow you to refresh
implementation classes without restarting the server. Loading multiple copies
of the same class uses memory unnecessarily. You can eliminate redundant
class loading by configuring an application-level or server-level class list, as
described in Chapter 30, “Configuring Custom Java Class Lists,” in the
EAServer Programmer’s Guide.

EJB component performance
EJB components benefit from most of the settings described in “Common
component performance issues” on page 29. You can also configure common
class loaders as described in “Java component performance” on page 38. You
can configure the settings below to further tune EJB components.
38 EAServer

CHAPTER 3 Component Tuning
The techniques described below are specific to EJB components. If you use
EJB CMP entity beans, you can further tune the persistence settings described
in Chapter 4, “EJB CMP Tuning.”

Optimizing in-server EJB calls
Most J2EE applications have EJB components that are called from other EJB
components and the Web tier (servlets and JSPs). You can use the following
techniques to optimize these calls:

• Local interfaces, introduced in the EJB 2.0 specification, improve
performance by eliminating the marshalling of parameter data; in other
words, parameters in component calls are passed as local data references
rather than copying the object.

• The EAServer Lightweight container offers further performance gain over
local interfaces alone, and can be used with EJB 1.1 components and EJB
2.0 components that lack a local interface.

• You can also enable Pass-by-reference semantics in EAServer to achieve
the same benefits as local interfaces when using EJB 1.1 components.

Local interfaces

Beginning in EJB version 2.0, clients can also execute EJB components using
local interfaces if the client and component execute in the same virtual
machine. Using the local interface can improve performance. You can use local
interfaces for intercomponent calls, and for component invocations made from
servlets and JSPs hosted by the same server as the component. For more
information, see “Calling local interface methods” in the EAServer
Programmer’s Guide.
Performance and Tuning Guide 39

EJB component performance
Lightweight container

EAServer provides a lightweight version of the standard EJB component
container. The performance of some intercomponent calls in EAServer can be
improved by enabling the lightweight container (LWC). The LWC coexists
with the standard container. The LWC provides optimized performance for in-
server EJB calls, while preserving all expected EJB semantics (such as pass by
value when using remote interfaces). You can use the LWC for calls that use
local or remote interfaces. The LWC can reduce CPU utilization for calls from
session beans to entity beans, such that EJB-standard entity beans become as
fast as lightweight persistence frameworks.

Comparing LWC to local interfaces

Both LWC and local interfaces improve performance by eliminating parameter
marshalling, but the LWC provides even better performance by eliminating
internal calls to enforce transactional and security requirements. You can also
use LWC on EJB components that lack local interfaces, including EJB 1.1
components.

Determining if your component can use LWC

Because the LWC eliminates standard dispatcher code to enforce transaction
semantics and security restrictions, you must verify that your components and
the application’s use of them satisfies these restrictions before enabling LWC.

The LWC is suitable for EJB components with transaction attribute set to
Required, when such components are called by other EJB components with
transaction attributes “Required” or “Requires New.” EAServer verifies the
following before using the lightweight container for EJB-to-EJB calls to ensure
that EJB 1.1/2.0 semantics are fully preserved:

• The calling (source) component, servlet, or JSP uses an EJB reference or
EJB local reference to make the call. No remote invocations are allowed.

• The LWC is compatible with the transaction and security properties of the
calling (source) and called (target) components, meaning that the target
inherits the same transaction context and calling identity from the caller.
The calling component must be executing a transaction, and the target
cannot have the run-as identity property set.

If the LWC is enabled for the called component, but the constraints are not
satisfied, the call fails and EAServer logs an error.
40 EAServer

CHAPTER 3 Component Tuning
When using the LWC, object references cannot be marshalled. For example, if
component A calls B using the remote interface, and B returns a reference to
component C, B will fail with exception java.io.NotSerializableException or
ClassCastException if LWC is enabled for component C. To avoid this issue,
disable LWC for the target components whose object references are passed as
parameters or return values, or use local interfaces to call these components.

Enabling LWC

You must enable the lightweight container in server and component properties.
To enable LWC for a server, select the LWC option on the Components tab in
EAServer Manager’s Server Properties dialog box. If using jagtool, set the
server property com.sybase.jaguar.server.lwc to true.

To enable LWC for components, select the LWC option on the Instances tab in
EAServer Manager’s Component Properties dialog box. If using jagtool, set the
component property com.sybase.jaguar.component.lwc to true.

By default, the LWC supports only EJB-to-EJB intercomponent calls. You can
additionally enable calls from the Web tier (servlets and JSPs) by selecting the
Enable Skeletons option in the Component Properties Instances tab and on the
Server Properties Components tab. This option causes EAServer to generate a
skeleton that allows non-LWC invocations from the Web tier. If using jagtool,
enable this option by setting the server property
com.sybase.jaguar.server.lwc.enableSkeletons to true and the component
property com.sybase.jaguar.component.lwc.enableSkeletons to true.

You must regenerate stubs and skeletons for your components after changing
any of these settings.

You can set the server property com.sybase.jaguar.server.lwc.debug to enable
logging of additional information about LWC invocations.

Pass-by-reference semantics

EAServer supports the proprietary EJB pass-by-reference mechanism
supported by some other J2EE vendors. To enable pass-by-reference for a
component, set the property com.sybase.jaguar.component.passByReference
to true. The default is false. When set to true, EJB stubs and skeletons for the
component and its home and remote interfaces use the same parameter passing
mode that EAServer normally uses for EJB 2.0 local interfaces. After changing
the value, you must regenerate stubs and skeletons.
Performance and Tuning Guide 41

EJB component performance
This feature is not intended for new development, which should use standard
EJB 2.0 local interfaces. When used, remote clients cannot call the component.
The feature cannot be used with components that already have a local interface.
If two or more components share the same home and remote interfaces, then
all or none of those components must be configured for pass-by-reference.

Entity bean read-only methods
For entity beans that use bean-managed persistence, you can mark business
methods that do not modify data. Doing so allows EAServer to skip calls to the
ejbStore method after the business method returns. Performance improves
through elimination of redundant database updates. Set this property using the
Read Only option in the EAServer Method Properties dialog box. If using
jagtool, set the method property com.sybase.jaguar.method.flags.

Read-only methods in CMP entity beans
When using EJB CMP entity beans, the persistence engine detects read-only
method invocations. You do not need to set the Read Only method property.
The ejbStore method is always called, but never performs data storage.

Entity bean database update frequency
For entity beans that use bean-managed persistence, you can configure when
EAServer calls the ejbStore method by setting the
com.sybase.jaguar.component.store property for the component, using jagtool
or the Advanced tab in the EAServer Manager Component Properties dialog
box.

This property specifies when ejbStore must be called. The default value of
afterCreate,afterInvoke is required for EJB 2.0 compliance and is safe
for all compliant entity bean implementations.

If you insert values in the ejbCreate method, and do not modify any field values
in the ejbPostCreate method, you can safely remove afterCreate from the
setting. Doing so improves performance by eliminating redundant updates to
the database.
42 EAServer

CHAPTER 3 Component Tuning
You can use the beforeCompletion setting rather than afterInvoke if all
updates to one table come from one entity bean, and you do not mind if finder
methods return stale values because updates are deferred during a transaction.
While this setting yields the best performance, you may get the wrong result in
architectures where more than one component can update a table, for example,
if two entity beans in one transaction update the same table, or if updates from
session and entity beans are mixed in one transaction.

Stateful session beans
Stateful session beans are more resource intensive than stateless session beans.
The stateful implementation remains bound to the client that creates them until
the client calls the remove method or EAServer removes the instance because
it has timed out. You can minimize the performance impact of using stateful
session beans by following these recommendations:

• Always call the remove method Code your clients to call remove so
that EAServer knows when the instance is no longer needed.

• Set an instance timeout Set the component Instance Timeout property
as described in he Instance Timeout setting on the Component properties:
Resources tab in EAServer Manager or by setting the
com.sybase.jaguar.component.timeout property with jagtool. The timeout
ensures removal or passivation of component instances when the client
crashes or the end user walks away from their desk.

• Optionally configure passivation By default, EAServer destroys
instances that time out. In single server deployments, you can optionally
configure passivation so that EAServer saves the instance state data to a
remote database before removing the instance from memory. Passivation
allows EAServer to free memory used by idle instances, while still
allowing clients to invoke the instance. If the client calls the instance
again, EAServer restores the state data from the database. For more
information, see “Using EJB activation and passivation” in Chapter 28,
“Configuring Persistence for Stateful Session Components,” in the
EAServer Programmer’s Guide.

• Configure replication for clustered deployments In a clustered
deployment, you must configure the mechanism that EAServer uses to
replicate state data between servers in the cluster. See “Component state
replication” on page 123 for more information.
Performance and Tuning Guide 43

C++ component performance
• Configure the maximum allowed instances If clients activate too
many instances at once, the server can run out of memory. To prevent this,
set a limit on the number of instances that can be active. Set the Maximum
Active Instances field on the Resources tab in the EAServer Manager Component
Properties dialog box or by using jagtool to set the
com.sybase.jaguar.component.objects property.

C++ component performance
Most C++ component performance issues are related to memory leaks. When
using C++ types that are mapped from IDL, follow the memory management
recommendations in “Using mapped IDL types” in the EAServer
Programmer’s Guide.

If you cannot remove memory leaks or instabilities from legacy or third-party
code called from your C++ components, you can run the component in its own
process. While doing so does not improve the performance of the component,
it can improve the overall server performance by isolating the effect of memory
leaks or instabilities. For more information, see “Running C++ components
externally” in the EAServer Programmer’s Guide.

The suggestions in “Common component performance issues” on page 29
apply to C++ components.

PowerBuilder component performance
PowerBuilder version 8.0.3, in tandem with EAServer changes introduced in
version 4.1.3, introduces many performance improvements such as improved
memory management, reduced virtual address space, and less system resource
use by DataStore objects. For details on which PowerBuilder versions Sybase
recommends for EAServer on your platform, see the EAServer Release
Bulletin for your platform. In addition, you can tune the following settings for
improved performance.
44 EAServer

CHAPTER 3 Component Tuning
Settings that affect system resource use
The system resource use of your PowerBuilder components determines how
many instances can run on a given system, which in turn determines how many
simultaneous clients the application can serve. Tune the settings in Table 3-4
to minimize resource use.

Table 3-4: PowerBuilder component settings that affect resource use

Setting Description

Component
class loader

By default, the PBVM uses per-component class loaders to run components. You can configure
components to share class loaders to reduce the memory footprint required to run components.
Doing so can improve scalability by allowing more component instances to run in the available
memory. For details, see the Sybase white paper Reducing Memory Requirements When Using
PowerBuilder Components in EAServer at http://www.sybase.com/detail?id=1019042.

DataStore
resource
footprint

DataStore objects used in components can consume system resources such as memory and
Windows user and kernel object handles. When many DataStore objects are instantiated, they can
exhaust the available resources unless you have tuned the DataStore settings to minimize resource
use. For details on tuning DataStore settings, see the Sybase white paper Operating System
Constraints Affecting the Scalability of PowerBuilder DataStores in EAServer at
http://www.sybase.com/detail?id=1019174.

DataWindow
memory
management

For large retrievals or imports into a DataWindow object, set the datawindow.storagepagesize
property to LARGE. Setting this property allows the DataWindow to most efficiently use the
available virtual memory. While the setting LARGE is recommended, a setting of MEDIUM is
also available. For more information, see the DataWindow Reference manual in the PowerBuilder
documentation.

Bind thread Disable Bind Thread for PowerBuilder components deployed to EAServer unless you are using
a Windows deployment with a PBVM version lower than 8.0.3 and you declare a DataStore as an
instance or global variable. Bind Thread is not required in UNIX deployments, Windows
deployments with PBVM 8.0.3 or later, or in earlier-version Windows deployments where you
only use local variables for DataStore references.

If the Bind Thread property is set to true when you deploy, be sure that the component is in the
BindThread instance pool. This is the default pool for components with Bind Thread enabled
unless you override the setting.

For more information on threading issues that affect PowerBuilder components, see the
Application Techniques manual in the PowerBuilder documentation.

Note The Bind Thread property must be set to TRUE in the PowerBuilder IDE if you are using
live editing to build your component. Remember to change it to FALSE when deploying your
components for production use.
Performance and Tuning Guide 45

PowerBuilder component performance
DataStore row height size
If you are retrieving a lot of rows of data, try setting the
datawindow.detail.height.autosize property for the DataStore object to false.
Depending on the number of rows being retrieved, this setting can have a
significant impact on performance. If you have autosize enabled for the height
or width of any specific objects, try disabling those settings as well. For more
information, see the DataWindow Reference manual in the PowerBuilder
documentation.

Web DataWindow settings
If you use Web DataWindows, tuning these settings can improve performance.

Tuning code generation settings You can tune the Web DataWindow
settings to minimize the size of the generated JavaScript code. Doing so
improves the client response time by avoiding the generation and network
transport of unneeded code. If you do not use a feature such as display
formatting, validation rules, or client-side scripting, disable code generation
for the unused feature. You can also cache client-side methods in JavaScript
files to reduce the size of the generated code and increase performance on both
the server and the client. Without JavaScript caching, each time a Web
DataWindow is rendered in a client browser, JavaScript code for DataWindow
methods is generated on the server and downloaded to the client. However,
there is no performance gain if the client Web browser settings prevent
caching. The DataWindow Programmer’s Guide in the PowerBuilder
documentation describes techniques for controlling the size of generated code.

Garbage
collection

The PBVM uses a garbage collection model to free memory used by unreferenced and orphaned
objects. A garbage collector thread runs periodically to perform this task. You can call the
GarbageCollect() PowerScript® function to force garbage collection to occur immediately. Doing
so may increase the performance of applications that use huge amounts of memory. For details
on how to code components to force garbage collection, see the Sybase white paper Forcing the
Garbage Collection Process in PowerBuilder 6.0/7.0/8.0 at
http://www.sybase.com/detail/1,6904,1013157,00.html.

For more information on how garbage collection happens in PowerBuilder, see the Application
Techniques manual in the PowerBuilder documentation.

Setting Description
46 EAServer

CHAPTER 3 Component Tuning
Using custom containers For improved performance, use a custom
component as the Web DataWindow container rather than the predefined
HTMLGenerator component. When using a custom component, you can
configure additional settings to reduce the number of method calls required to
configure the component. Doing so can result in improved performance,
maintainability, and scalability. Specifically, you can set the source file and
DataWindow object on the server so that the DataWindow object is loaded
when the component instance is created, resulting in fewer method calls from
server-side scripts in the Web page. You can also improve performance by
having your custom component maintain its state. For more information, see
the DataWindow Programmer’s Guide in the PowerBuilder documentation.

Changing the Web target default behavior By default, the
PSJaguarConnection methods for using a Web DataWindow make several trips
to the server. You can set the bOneTrip argument to make one trip to the server
instead. Doing so improves performance by reducing network traffic. For more
information, see the PSJaguarConnection reference pages in the Web and JSP
Target Reference manual in the PowerBuilder documentation.
Performance and Tuning Guide 47

PowerBuilder component performance
48 EAServer

C H A P T E R 4 EJB CMP Tuning

For EJB CMP entity beans, EAServer implements the persistence engine
that manages the mapping between the entity bean’s container-managed
fields and the underlying database. This chapter describes how to tune the
persistence settings for best performance.

Before reading this chapter, you should be familiar with the deployment
settings described in Chapter 27, “Creating Entity Components,” in the
EAServer Programmer’s Guide.

Generated entity bean subclasses
Beginning in EAServer 4.1.3, you can use the “Generated Class” option
for EJB 1.1 and 2.0 CMP entity beans. This option offers better
performance than the “Automatic Persistence” option, since the
interaction between the storage component and the CMP implementation
is more direct. If you import CMP entity beans from an EJB-JAR file, the
“Generated Class” option is enabled by default. For existing CMP entity
beans, you can configure it manually as described below.

To configure the “Generated Class” option in EAServer Manager:

1 Display the Persistence/General subtab in EAServer Manager.

2 Choose Generated Class for the Persistence option.

Topic Page
Generated entity bean subclasses 49
Creating and tuning database tables 50
Automatic key generation settings 51
Concurrency control options 51
Connection cache settings 60
Entity instance and query caching 63
CMP runtime monitoring 75
Performance and Tuning Guide 49

Creating and tuning database tables
3 Optionally enter a class name for the generated subclass in the Generated
Class field. If you do not specify a class name, the default is:

java-package._ps_package_component

Where java-package is the Java package of the implementation class,
package is the EAServer package name, and component is the component
name.

4 Configure the other Persistence tab options as described for Automatic
Persistence in the EAServer Programmer’s Guide. Click OK to save the
properties.

5 Generate (or regenerate) skeletons for the component. EAServer generates
the specified subclass.

To configure this option using jagtool or an EAServer XML configuration file,
set these component properties:

• com.sybase.jaguar.component.ps to “generated”

• com.sybase.jaguar.component.ps.class to the class name

Creating and tuning database tables
While EAServer automatically creates entity bean tables for most supported
databases, this feature is provided as a development time convenience. For
deployment to production servers, you or your DBA should create the tables,
using an optimized index model and any other necessary optimizations, such
as enabling row-level locking. You can also add tuning parameters to the SQL
and DML syntax that is configured in the table mapping properties for the
entity bean. For example, you might optimize the select query to force the use
of an index by adding proprietary DBMS keywords. For more information, see
“Configuring table-mapping properties” in Chapter 27, “Creating Entity
Components,” in the EAServer Programmer’s Guide.
50 EAServer

CHAPTER 4 EJB CMP Tuning
Automatic key generation settings
EAServer supports several mechanisms for automatic key generation,
described in “Enabling automatic key generation” in Chapter 27, “Creating
Entity Components,” in the EAServer Programmer’s Guide.

If your component uses the Adaptive Server Enterprise with the Sybase identity
column type, make sure the relevant database and table options are tuned, such
as the identity burning set factor database option or the identity_gap table
creation parameter.

If your component uses automatic key generation with a key-lookup table, tune
the key-use-rate setting described in “Configuring key generation to use a key
lookup table” in the EAServer Programmer’s Guide. To prevent different
threads from creating duplicate keys, EAServer uses a semaphore to
synchronize the key increment operation. Each thread reserves key_use_rate
key values per increment. The key use rate can be tuned to reduce inter-thread
contention for locks on the key table. The default of 100 results in good
performance for most applications. Very large values can result in large gaps
between key values. Gaps in the key sequence are possible if the key use rate
is greater than 1.

Concurrency control options
Concurrency control prevents overlapping updates from entity instances
running in different threads or different servers, or from applications running
outside of EAServer. There are two approaches for concurrency control:

• In the Pessimistic concurrency control (PCC) model, data rows are locked
when read, for the duration of the EAServer transaction. This method can
introduce database deadlocks and usually reduces the scalability of the
application.

• In the Optimistic concurrency control (OCC) model, data rows are not
locked when read. Timestamps are used for concurrency control; the
timestamp can be a timestamp column in the database that is updated every
time the row is modified, or it can be the row data itself. At the end of the
transaction, the in-memory timestamp value is compared to the timestamp
value in the database, and the transaction rolls back if the values do not
match.
Performance and Tuning Guide 51

Concurrency control options
OCC allows greater scalability than PCC for most CMP entity beans. However,
when using OCC, you must code your application to retry rejected updates, or
you must enable automatic transaction retry for the application components as
described below.

PCC can perform better than OCC when your beans are mapped to tables with
very high update contention. In these cases, the overhead of retrying
transactions that fail due to update collisions can outweigh that caused by using
database locks. If you have configured OCC as described below, and see many
“TRANSACTION_ROLLEDBACK: Optimistic Concurrency Control”
messages in the server log, you should try PCC on the component identified in
these messages.

Enabling PCC
To configure pessimistic concurrency control, you can do one of the following:

• Enable the Select With Lock option on the Persistence/General subtab.
When using jagtool or XML configuration files, set
com.sybase.jaguar.component.selectWithLock to true.

• Enable the Select for Update option by setting the
com.sybase.jaguar.component.selectForUpdate property to true on the
Advanced tab in the Component Properties dialog box or by using jagtool
or an XML configuration file. This setting requests an exclusive database
lock be obtained at select time to avoid deadlocks during lock promotion.
Also consider configuring the database table for row-level locking.

For databases such as Sybase Adaptive Server Enterprise that do not
support select for update locking syntax, EAServer locks rows by issuing
a no-change update statement. The component property
com.sybase.jaguar.component.touchColumn specifies which column to
update. If you do not set this property, EAServer uses the first non-key
column. For best performance, specify the column with the datatype that
can be updated most quickly. For example, int columns can be updated
more quickly than varchar columns.

• Configure the table-mapping select queries and add “holdlock” or the
appropriate lock syntax for your database. For more information, see
“Configuring table-mapping properties” in Chapter 27, “Creating Entity
Components,” in the EAServer Programmer’s Guide.

Also make sure that OCC is disabled by setting the Timestamp field to “none”
on the Persistence/General subtab in the Component Properties dialog box.
52 EAServer

CHAPTER 4 EJB CMP Tuning
Enabling OCC
When using OCC, each update statement contains SQL logic that determines
if the last-read timestamp matches the stored value, and rolls back the
transaction if the timestamp does not match. In other words, updates based on
stale data are rejected. There are several options for using timestamps:

• Use a timestamp column: each table contains a timestamp column, which
can be a database timestamp type (if supported) or an integer column that
is incremented for every update. This option provides good performance
if your database and table schema can support it.

• Use all-values comparison: on update, all row values are compared to the
last-read values to detect update collisions. OCC with all-values
comparison is the default concurrency control model. Performance with
this option is worse than when using a single timestamp column,
particularly if the table contains many columns or wide columns (such as
Sybase text or image columns). Whenever possible, the use of a timestamp
column is recommended in these cases.

• Use a table-level timestamp: the timestamp is a single integer counter that
is incremented for every update, insert, or delete in the main table. This
option provides the best performance for CMP entity beans that are
mapped to read-mostly (or read-only) tables when verified results are
required to meet transaction isolation requirements. For best results, use
table-level timestamps with a Sybase CMP wrapper driver to allow
verification queries to be batched with other deferred operations. See
“Using CMP JDBC wrapper drivers” on page 60 for more information.

Configuring OCC options

To enable OCC, first verify that PCC is disabled, then configure the timestamp
mechanism of your choice.

To check that PCC is disabled, verify that the Select With Lock option on the
Persistence/General subtab in the EAServer Manager Component Properties
dialog box is disabled. On the Advanced tab, verify that
com.sybase.jaguar.component.selectForUpdate is not set or set to false. When
using jagtool or XML configuration files, verify the properties
com.sybase.jaguar.component.selectWithLock and
com.sybase.jaguar.component.selectForUpdate are both false.
Performance and Tuning Guide 53

Concurrency control options
Specify the timestamp mechanism in the Timestamp field on the
Persistence/General subtab in the EAServer Manager Component Properties
dialog box. Table 4-1 describes the allowable values. When using jagtool or
XML configuration files, set the com.sybase.jaguar.component.timestamp
property. If multiple tables are used and you specify a timestamp column, all
tables must contain a column with the same name and datatype.

Table 4-1: Timestamp field values

To configure Set the timestamp value to

A timestamp column The name of a single column in each table that serves as the timestamp to detect update
collisions. If the component uses multiple tables, each must contain a timestamp column
with this name. The column type can be:

• A 4-byte integer – this is the default timestamp column type. All processes that update
the table(s) must increment the timestamp with each update, or your DBA can create an
update trigger to increment the timestamp automatically.

• The database timestamp type – you can use the timestamp datatype if using Sybase
Adaptive Server Enterprise or Adaptive Server Anywhere version 7.0 or later. You must
also define a field mapping property to specify the timestamp datatype as described in
“Setting field-mapping properties” in the EAServer Programmer’s Guide. For example,
if the column name is ts, specify the mapping as:

ts[dbts not null]

dbts is a logical type name mapped to the timestamp type in the Sybase_ASE and
Sybase_ASA database types. If the database does not support timestamps, a 4-byte
integer counter is used instead.

A table level timestamp A table and column name, in the form ts_table.ts_column, where ts_table specifies the
timestamp table and ts_column specifies the name of the timestamp column in the
timestamp table. The specified timestamp table must be separate from the main table. The
timestamp tables can contain multiple columns, to allow use of one timestamp table by
multiple entity beans. Timestamp tables are automatically created if they do not exist.

A timestamp table can be shared among multiple components even when only one column
is present in the timestamp table. In other words, a single timestamp value can be shared
by multiple tables. This helps further improve performance for a group of read-mostly
tables. However, any insert, delete, or update on any of the tables results in all cache entries
being discarded.

When using a timestamp table, database triggers are required to increment the timestamp
for each update, delete, or insert to tables that are mapped to the component or components
that require the timestamp. You can set the component property
com.sybase.jaguar.component.ts.triggers property so EAServer creates triggers, create
triggers yourself, or add code to existing triggers.

All values comparison Leave blank.

PCC Set the value to “none” to disable optimistic concurrency control. In this case, you are
strongly advised to configure locking as described in “Enabling PCC” on page 52.
54 EAServer

CHAPTER 4 EJB CMP Tuning
Enabling automatic transaction retry
EAServer can automatically retry transactions that are rolled back—method
calls back to the last transaction boundary are retried by the stub code. This
feature is useful for For EJB CMP entity beans and entity components that use
automatic persistence and optimistic concurrency control.

Auto-retry must be enabled for the component that initiates the transaction,
which is typically a session bean in EJB applications. Auto-retry works only
for intercomponent calls, not for direct invocations of entity beans from the
Web tier or base clients.

Auto-retry can be configured in component and server properties as follows:

• In component properties, use the Advanced tab to set the property
com.sybase.jaguar.component.tx_retry. A value of true enables auto-retry.
A value of false disables auto-retry. If this property is not set, the value of
the server property com.sybase.jaguar.server.tx_retry is used. If neither the
component property or server property is set, the default is false.

• In server properties, use the Advanced tab to set the property
com.sybase.jaguar.server.tx_retry. The default of false disables auto-retry
for all components for which auto-retry is not explicitly enabled. Specify
true to enable auto-retry for components for which auto-retry is not
explicitly set to false.

Auto-retry is not appropriate for all applications. For example, an end user may
want to cancel a purchase if the item price has risen. If auto-retry is disabled,
clients must be coded to retry or abort transactions that fail because of stale
data. The exception thrown is CORBA::TRANSIENT (for EJB clients, this
exception is the root cause of the java.rmi.RemoteException thrown by the EJB
stub).

Configuring CMP isolation level
When using OCC, you can set the component property
com.sybase.jaguar.component.cmp_iso_level to specify the effective transaction
isolation level for CMP entity beans. This setting allows the performance benefits of
OCC, while also enforcing an effective transaction isolation level as you would use with
pessimistic concurrency control. Table 4-2 lists the allowable isolation levels.
Performance and Tuning Guide 55

Concurrency control options
Table 4-2: CMP isolation level values

Setting Effect

read_cache ejbLoad is satisfied by reading from the object cache if possible. Otherwise,
data is loaded from the remote database.

Not recommended, as use of this isolation level can result in “lost” updates.
Instead, use read_cache_verify_updates.

read_cache_verify_updates ejbLoad is satisfied by reading from the object cache if possible. Otherwise,
data is loaded from the remote database. If the entity is changed or
removed, the corresponding SQL update or delete verifies that the data was
not changed after it was loaded from the DBMS.

This setting is suitable when it is acceptable for a read-only transaction to
use stale cache data. To limit the use of stale data, specify a cache timeout
for the object cache or configure database change notification as described
in “Enabling database change notification” on page 70.

read_committed ejbLoad is satisfied by reading from the remote database. If the entity is
changed or removed, the corresponding SQL update or delete does not
verify that the data was not changed after it was loaded from the DBMS.

Not recommended, as use of this isolation level can result in “lost” updates.
Instead, use read_committed_verify_updates.

read_committed_verify_updates ejbLoad is satisfied by reading from the remote database. If the entity is
changed or removed, the corresponding SQL update or delete verifies that
the data was not changed after it was loaded from the DBMS.

This setting provides a good balance of data integrity and performance.
However, for some application data models, the maintenance of full data
integrity requires a higher isolation level such as repeatable_read.

read_committed_verify_updates_with_cache may provide better
performance.

read_committed_with_cache ejbLoad is satisfied by reading from the object cache if possible. Otherwise,
data is loaded from the remote database. If the entity is changed or
removed, the corresponding SQL update or delete does not verify that the
data was not changed after it was loaded from the DBMS. Otherwise, for
read-only access, and only if ejbLoad was satisfied from cache, a commit-
time verification ensures that the data has not changed since it was
originally loaded from the DBMS. This ensures that any cached data that
was used is still current at commit time, but does not prevent concurrent or
conflicting updates.

This setting is not recommended, as it can result in lost updates. Instead, use
read_committed_verify_updates_with_cache.
56 EAServer

CHAPTER 4 EJB CMP Tuning
read_committed_verify_updates

_with_cache

ejbLoad is satisfied by reading from the object cache if possible. Otherwise,
data is loaded from the remote database. If the entity is changed or
removed, the corresponding SQL update or delete verifies that the data was
not changed after it was loaded from the DBMS. Otherwise, for read-only
access, and only if ejbLoad was satisfied from cache, a commit-time
verification ensures that the data has not changed since it was originally
loaded from the DBMS. This ensures that any cached data that was used is
still current at commit time. This setting does not prevent concurrent
updates but does prevent conflicting updates.

This setting is suitable when it is not acceptable for a read-only transaction
to use stale data, and where commit-time verification is cheaper than
satisfying ejbLoad from the DBMS; in particular, where a table timestamp
is used, or where a CMP wrapper driver is used (the CMP wrapper drivers
can batch verification statements together at commit time).

repeatable_read ejbLoad is satisfied by reading from the remote database. If the entity is
changed or removed, the corresponding SQL update or delete will verify
that the data was not changed after it was loaded from the DBMS.
Otherwise, for read-only access, a commit-time verification ensures that
the data has not changed since it was loaded from the DBMS.

If pessimistic locking is enabled with the Select With Lock or Select For
Update option, and is supported by the DBMS, verification is skipped as the
shared/exclusive locks that are obtained at load time will prevent
conflicting updates.

 Warning! Pessimistic locking may increase the occurrence of deadlock.

This setting is suitable for cases where uncontrolled concurrent updates
may result in data integrity problems (even for read-only access).

repeatable_read_with_cache may provide better performance,
although if many transactions are updating the same rows, pessimistic
locking with no cache is probably preferable.

Setting Effect
Performance and Tuning Guide 57

Concurrency control options
If the isolation level is not explicitly set, the default value depends on other
property settings, as follows:

• If the component Timestamp property is set to “none”, the default is
read_committed.

• If pessimistic concurrency control is enabled, the default is
repeatable_read.

• Otherwise, the default is the value of the server property
com.sybase.jaguar.server.cmp_iso_level, if set.

• Otherwise, the default is read_committed_verify_updates.

If object caching is enabled for the component
(com.sybase.jaguar.component.objectCache is set), and the selected isolation
level does not end with “_with_cache”, then EAServer uses the next higher
isolation level that has the “_with_cache” suffix.

repeatable_read_with_cache Uses the object cache: ejbLoad is satisfied by reading from the object cache
if possible. Otherwise, data is loaded from the remote database. If the entity
is changed or removed, the corresponding SQL update or delete verifies
that the data was not changed after it was loaded from the DBMS.
Otherwise, for read-only access, a commit-time verification ensures that
the data has not changed since it was originally loaded from the DBMS.

This setting is suitable for cases where uncontrolled concurrent updates
may result in data integrity problems (even for read-only access), where it
is not acceptable for a read-only transaction to use stale cache data, and
where commit-time verification is cheaper than satisfying ejbLoad from the
DBMS; in particular, where a table timestamp is used, or where a CMP
wrapper driver is used (the CMP wrapper drivers can batch verification
statements together at commit time).

If there are many concurrent updates from EAServer transactions in the
same server, you can configure soft-locking for the component to alleviate
update contention—see “Using soft locking” on page 59.

If many transactions from other sources are updating the same rows, you
may get better performance using repeatable_read with pessimistic
locking.

Setting Effect
58 EAServer

CHAPTER 4 EJB CMP Tuning
‘serializable’ isolation level
EAServer does not directly support the serializable isolation level. You can
achieve this level using a table timestamp and the repeatable_read or
repeatable_read_with_cache setting. However, the table timestamp
mechanism is not suitable for tables that are frequently changed. You can also
achieve this isolation level by using bean-managed transaction demarcation,
and setting the isolation level for the JDBC connection before each transaction
begins (you cannot change the isolation level during a transaction).

Using soft locking
You can configure in-server soft locking of database rows used by EJB CMP
entity beans that use the isolation level repeatable_read_with_cache.

If you enable soft locking for a component, EAServer applies a soft lock to
each row selected by an instance, which prevents other component instances
running in the server from updating the row. Soft locking must be used with
optimistic concurrency control (OCC). The soft lock prevents update collisions
between instances in the same server, while OCC prevents update collisions
with external applications and instances running in another server.

You can enable soft locking by setting the following component properties:

• com.sybase.jaguar.component.softLock – a value of true enables soft
locking. The default of false disables soft locking.

• com.sybase.jaguar.component.softLock.timeout – the timeout period for
soft-locked rows, specified in seconds. Soft locks use a timeout
mechanism to avoid deadlock. The default is 5. If too many “soft lock
timeout” errors are reported in the server log, increase the timeout.

As an alternative to pessimistic locking, OCC with soft locking may improve
performance if there is heavy update contention among entity bean instances
running in a single-server deployment or in small-to-medium sized clusters. In
clusters, if you see excessive OCC update failures, you may need to switch to
pessimistic database locking as described in “Enabling PCC” on page 52.
Performance and Tuning Guide 59

Connection cache settings
Connection cache settings
The cache used by EJB CMP entity beans is specified on the
Persistence/General subtab in the EAServer Manager component properties
dialog box. Tune the cache settings described below.

Tuning the cache size and database type
Tune the cache size parameters as described in “Connection cache settings” on
page 108. For EJB CMP entity beans, make sure you specify a Database Type
that matches your database server. The database type definition allows the
persistence engine to make use of database-specific features such as stored
procedures and statement batches. You can create additional database type
definitions as described in Database type properties in Appendix B,
“Repository Properties Reference,” in the EAServer System Administration
Guide.

Using CMP JDBC wrapper drivers
EAServer includes customized JDBC drivers for use by CMP entity beans. The
wrapper drivers offer better performance by allowing updates to be deferred to
the end of each transaction and sent together as a command batch. Doing so
improves performance by reducing network round trips between the database
server and EAServer. The Sybase wrapper driver also supports automatic
creation of semi-temporary stored procedures to further improve performance.

Two wrapper drivers are supported:

• Sybase This driver is a wrapper around the Sybase jConnect driver. To
use the driver, specify the class name com.sybase.ejb.cmp.SybaseDriver as
the driver in your connection cache. Connection cache properties for this
wrapper driver are the same as are used by
com.sybase.jdbc2.jdbc.SybDriver, plus those listed in Table 4-3.

• Oracle This driver is a wrapper around the Oracle JDBC driver. To use
the driver, specify the class name com.sybase.ejb.cmp.OracleDriver as the
driver in your connection cache. Connection cache properties for this
wrapper driver are the same as are used by oracle.jdbc.driver.OracleDriver,
plus those listed in Table 4-3.
60 EAServer

CHAPTER 4 EJB CMP Tuning
Oracle driver classes not included
The Oracle JDBC driver classes are not included in the EAServer
installation. Before using the Oracle wrapper driver, make sure these
classes are deployed to EAServer and that direct Oracle connection caches
can be pinged sucessfully.

Table 4-3 lists the additional properties supported by the wrapper drivers. Tune
these the settings in Table 4-3 in addition to the connection cache properties
described in “Connection cache settings” on page 108.

Table 4-3: Sybase CMP JDBC wrapper driver properties

Property
Legal
Values

Default
Value Description

CMP_DRIVER.
DEBUG

true/false false Enables debug trace output which is written
to the server log file.

CMP_DRIVER.
DATABASE_TYPE

(entity
name)

Sybase_ASE Type of database (should be the same as the
com.sybase.jaguar.conncache.db_type
property for the cache). Use Sybase_ASA
when connecting to Adaptive Server
Anywhere, as there are some subtle
differences between Adaptive Server
Enterprise and Adaptive Server Anywhere
in the handling of SQL batches.

CMP_DRIVER.
MAXIMUM_
BATCH_PARAMETERS

0 or
positive

99 (subject
to change)

Maximum number of parameters in a batch.

CMP_DRIVER.
MAXIMUM_BATCH_
STATEMENTS

0 or
positive

3 (subject to
change)

Maximum number of statements in a batch.

Any value less than 2 effectively disables
batching.

Larger values will give better performance
as long as memory is available. Setting this
too high may result in too many stored
procedures being created, and the database
server may run out of procedure cache.

CMP_DRIVER.
PREPARE_CALL
(Sybase only)

true/false true Set to true to enables the use of TDS-
protocol RPC calls instead of language
statements for more efficient
communication with the database server and
avoids repeated SQL statement parsing.

When set to false, commands are sent as
TDS-protocol language commands to
execute stored procedures.
Performance and Tuning Guide 61

Connection cache settings
Note The wrapper does not replace the underlying JDBC driver - it merely
permits CMP tuning at the level of JDBC prepared statements. All calls to the
database go through the underlying JDBC driver.

CMP_DRIVER.
PRINT_WARNINGS

true/false true Enables all database warning messages
received by wrapper driver to be printed in
server log.

CMP_DRIVER.
STATEMENT_CACHE_SIZE
(Oracle only)

0 or
positive

9 (subject to
change)

When using the Oracle wrapper driver,
specifies the maximum number of cached
prepared statements per connection.

Setting this too high may result in too many
JDBC prepared statements being cached,
and the DBMS may run out of procedure
cache or the server may run out of memory.
Larger values will give better performance
as long as memory is available.

CMP_DRIVER.
TRACE_COMMIT

true/false false Trace transaction commit, rollback and
autoCommit changes.

CMP_DRIVER.
TRACE_CONNECT

true/false false Trace connect and reconnect operations.

CMP_DRIVER.
TRACE_CREATE
(Sybase only)

true/false false When using the Sybase driver, trace the
creation of semi-permanent stored
procedures.

CMP_DRIVER.
TRACE_EXECUTE

true/false false Trace the execution of stored procedures
and SQL command batches.

CMP_DRIVER.
TRACE_EXECUTE_MS

0 or
positive

0 Trace the execution of stored procedures
and SQL command batches that take longer
than the specified number of milliseconds.
Specify 0 to disable. This setting takes
precedence over
CMP_DRIVER.TRACE_EXECUTE.

Property
Legal
Values

Default
Value Description
62 EAServer

CHAPTER 4 EJB CMP Tuning
Entity instance and query caching
EAServer supports object and query caching for EJB entity beans and entity
components that use automatic persistence. Caching can improve performance
by minimizing the number of database select queries required for ejbLoad
operations, finder method invocations, and ejbSelect method invocations. Most
database applications are governed by the 80:20 rule: 80% of users access 20%
of the data. Object caching increases performance and scalability by allowing
faster access to the most recently used data.

Assuming that the database access is the principal bottleneck, the expected
performance gain falls in these ranges, depending on the ratio of update to
read-only transactions:

• 1.5 to 2 times faster for applications where most transactions are updates.

• 3 to 30 times faster for applications where most transactions are read-only.

Besides the transaction mix, the actual performance gain depends on:

• The size of the database table

• The size of the object and query caches

• The cache time out value

In summary, the best use case for caching is data that is static. If the data
changes often, the overhead of updating caches can outweigh the performance
benefits of caching. If the data is updated too frequently, soft locking or hard
locking may yield better performance. Furthermore, the data consistency
requirements dictate how cached data can be used. Decide how much
consistency you require, then optimize within those constraints.

Cache synchronization can be enabled to minimize the occurrences of
transaction rollback due to overlapping updates. EAServer supports cache
synchronization between servers in a cluster and from the database to
EAServer. In some cases, the overhead of synchronization may outweigh the
benefits incurred.
Performance and Tuning Guide 63

Entity instance and query caching
Cache architecture
Object and query caching place an in-memory cache and a cache manager
component in between component instances and the associated database. You
can configure the object cache and cache manager used by each entity
component. You can configure the query cache used by each finder and
ejbSelect method. You can configure caches that are dedicated to a single
component or query method or shared by multiple components and query
methods.

For components, object caching is enabled if you have configured an isolation
level that requires caching. You can further customize the caching parameters
as described in “Configuring object caching” on page 65. Query caching must
be configured for each finder and ejbSelect method, on the Persistence/Query
Mapping subtab in the Component Properties dialog box. See “Enabling query
caching” on page 68. Query caching is disabled by default.

Cache coherency and transaction consistency
When data is maintained in the object cache as well as the source database, you
must take steps to ensure these transactional constraints are satisfied:

• Read consistency, to ensure that data read from the cache matches data in
the source database.

• Update consistency, to ensure that updates are not committed if the source
data has changed since it was last read.

Read consistency If your application requires read consistency, choose an
isolation level that requires it, such as read_committed_verify_updates or
read_committed_with_cache_verify_updates. See “Configuring CMP
isolation level” on page 55. When read consistency is required, caching should
be used only when the data changes infrequently. Caching volatile data can
make your application perform worse because the added overhead of retrying
queries that roll back because the data changed.

Update consistency When using caching, transactional update consistency
is ensured by:

• The timing of cache updates Cache entries are never modified or
deleted until the transaction associated with the change has committed.
64 EAServer

CHAPTER 4 EJB CMP Tuning
• Optimistic Concurrency Control (OCC) EAServer uses OCC
verification queries when you specify an isolation level that includes
verify in the name. At commit time, the verification query checks
whether the data has changed since it was originally selected. You should
not disable OCC when using object caching, and you should use a
timestamp column rather than using the default value-comparison
technique of concurrency control. For details on configuring the
timestamp column, see “Configuring OCC options” on page 53.

Read consistency using timeouts and synchronization For applications
that have a more lax requirement for read consistency, you can configure cache
timeouts and synchronization to minimize the use of stale data. The cache
timeout sets a time limit on how long cached data remains valid. Stale entries
are refreshed from the source database before the data is used in the
component. You can also configure your database to notify the cache manager
of updates, inserts, and deletes. Doing so allows EAServer to refresh the cache
contents after data is modified by another application. See “Enabling database
change notification” on page 70 for more information. The same notification
technique is used for both object caching and query caching.

In addition, if the component is deployed in a cluster, you can configure inter-
server synchronization, which uses the EAServer message service to replicate
data changes between servers in the cluster. This ensures that all caches have
the same data. To use this option, configure the Cache Synchronization
property described in “Configuring object caching” on page 65.

Configuring object caching
For each entity component that uses automatic persistence, enable object
caching on the Persistence/Object Cache subtab in the Component Properties
dialog box. The settings are:

• Enable Object Cache Enables object caching for the component. To
enable caching, you must also specify the name of the cache manager
component. To use the built-in implementation, enter:

CtsComponents/ObjectCache

The object cache is enabled implicitly if you configure an isolation level
that requires the use of the cache. See “Configuring CMP isolation level”
on page 55.
Performance and Tuning Guide 65

Entity instance and query caching
• Cache Name Specifies the name of a cache shared by multiple
components. Named caches must be configured as described in “Creating
a named cache” on page 68.

• Cache Size If a named cache is not used, specifies the size of a cache
that is dedicated to this component. If you specify both a Cache Name and
a Cache Size, the component uses the shared cache specified by the Cache
Name property, with the size specified in the named cache property file.

Specify the size in megabytes, kilobytes, or bytes with the syntax shown
in the following table:

• Cache Size Check Interval When writing to the object cache, EAServer
checks the size of the entry to see if the cache size would be exceeded. If
so, least recently used entries are flushed from the cache until there is room
for the new entry. The time spent calculating size can adversely affect
performance. If you specify a size check interval N, EAServer performs
the size calculation on only every Nth entry, and uses a running average
size for the interim entries. Setting a size check interval can improve
performance. However, if the size of the data varies a lot, setting a size
check interval may lead to inaccurate cache size estimations, resulting in
memory use beyond the configured cache size. To configure this setting,
set the com.sybase.jaguar.component.objectCache.sizeCheckInterval on
the Advanced tab in the Component Properties dialog box. The default is
1, which means the size of each entry is checked.

• Cache Timeout Specifies how long cache entries remain valid.
Components that use a named cache inherit the default timeout from the
named cache configuration, but you can override this default. Components
that use a dedicated cache have a default timeout of infinity. Specify the
timeout in seconds. A value of 0 indicates infinity.

Syntax To indicate
nM

or

nm

n megabytes, for example:

512M

nK

or

nk

n kilobytes, for example:

1024K

n n bytes, for example:

536870912
66 EAServer

CHAPTER 4 EJB CMP Tuning
• Cache Synchronization For components deployed in a cluster,
specifies whether caches on different servers in the cluster are
synchronized. Cache synchronization is not necessary if you have
configured an isolation level; in that case, the OCC verification queries
prevent the use of stale data in transactions. The isolation level setting is
easier to configure and provides a higher guarantee of data consistency.

 Table 4-4 describes the synchronization options. Components that use a
named cache inherit the named cache’s sync property; the inherited
setting can be overridden by setting the component property.

Table 4-4: Cache synchronization options

Cache synchronization requires a working message service
If using object caching in a cluster, make sure the EAServer message
service is configured and running on each server. The cache manager uses
the message service for cache synchronization between servers. Chapter
8, “Setting up the Message Service,” in the EAServer System
Administration Guide describes how to run the message service.

Option Explanation

None (The default.) Indicates no synchronization is performed. This value is
appropriate if the component is not deployed in a cluster, you have configured
a component isolation level, or the cache timeout provides adequate read
consistency for transactions.

Mirror Replication without transactional consistency. This value is appropriate for
entity components that maintain transient data (that is, the data is not saved to
persistent database). If you use this option, you must configure mirror pairs for
your cluster as described in “Cluster configuration for in-memory failover” in
the EAServer Programmer’s Guide.

Replicate Replication with transactional consistency. For updates, the complete instance
state is replicated between servers.

Invalidate Replication with transactional consistency. For updates, the instance state is not
replicated. Rather, updates are propagated by refreshing the cache entry from
the remote database. This value may yield better performance than the
replicate option if:

• Your component’s state is large, and

• The cluster has many members.

In this case, the overhead of replicating instance state may exceed that of
refreshing each cache from the database.
Performance and Tuning Guide 67

Entity instance and query caching
❖ Creating a named cache

If you want a cache to be shared by multiple components, finder methods or
ejbSelect methods, you must create a named cache as follows:

1 If the Repository/ObjectCache directory does not exist under your
EAServer installation, create it.

2 Create a text file in the Repository/ObjectCache directory named
Cache.props, where Cache is the cache name used in component
properties.

3 Add lines as shown below to configure the cache properties. All properties
are optional. If not set, the default values apply:

com.sybase.jaguar.objectcache.size=size-value
com.sybase.jaguar.objectcache.timeout=timeout-value
com.sybase.jaguar.objectcache.sync=sync-method

These values correspond to the component object caching properties, as
described in the table below. Each cache property uses the same value
syntax as the corresponding component property:

Enabling query caching
Query caching allows EAServer to cache the values returned by finder and
ejbSelect method queries. When caching is enabled for a query, the key values
returned by each invocation are cached in memory, with the method input
parameter values serving as the cache key. Together with entity object caching,
query caching can reduce the number of unnecessary database reads.

To enable caching for a finder or ejbSelect query, append [cache] to the end
of the Query Mapping property value that corresponds to the method. For
example:

[default][cache]

Named cache property
Component
property

com.sybase.jaguar.objectcache.size Cache Size. If not
specified, the default is
unlimited.

com.sybase.jaguar.objectcache.

timeout

Cache Timeout. If not
specified, the default is
infinity.

com.sybase.jaguar.objectcache.sync Cache Synchronization
68 EAServer

CHAPTER 4 EJB CMP Tuning
Or, for a query mapped to an EJB-QL query:

ejbQuery:[cache]

You can specify optional parameters with this syntax:

[cache cache-params]

Where cache-params is a list of parameters listed in Table 4-5, with each
parameter separated from the next by white space, for example:

[default][cache size=1M timeout=10]

Table 4-5: Query cache configuration parameters

Parameter To indicate

name=name The cache name. Specifying a named cache allows multiple
queries to use one cache. The named cache must be created and
configured as described for named object caches in
“Configuring object caching” on page 65.

Only one of name or size may be specified.

size=size The cache size. Only one of name or size may be specified. The
value syntax is:

• nM or nm to specify a size in Megabytes, for example: 1M

• nK or nk to specify a size in kilobytes, for example: 512k

• n to specify a size in bytes, for example: 1048576

timeout=second

s

The cache timeout in seconds. A value of 0 indicates infinity.

verify Specifies that finder results must be verified at the end of the
transaction. Restrictions apply—see “Verifying cached finder
method results” on page 70 for more information.

ignore insert If database change notification is enabled, inserts do not
invalidate the cache.

ignore delete If database change notification is enabled, deletes do not
invalidate the cache.

ignore update If database change notification is enabled, updates do not
invalidate the cache.
Performance and Tuning Guide 69

Entity instance and query caching
Verifying cached finder method results To obtain verified finder method
semantics, include the keyword verify in the cache settings for the finder
query. For example, use [cache verify] in place of [cache]. For
components using object caching, this setting specifies that any finder method
data used from cache should be verified at commit time with an appropriate
database query. The verification query runs with an isolation level that is
equivalent to higher than the component isolation level. Query cache
verification requires the use of a table-level timestamp, and all tables
referenced in the SQL query must use the same table timestamp as the entity
bean for which the finder method is defined.

Configuring transaction local cache settings
EAServer uses the transaction local cache to minimize the number of database
reads required when finder methods are called in a transaction. For example, if
a finder method returns 100 rows, the worst case requires 101 queries to
retrieve the data for each row. The transaction local cache helps achieve the
ideal of selecting all required data at the beginning of the transaction.

The transaction local cache is enabled automatically if finder queries return
enough data to populate the cache. In other words, the finder query returns all
rows in the table. The default query properties do this. If you have modified
them, verify that they return all rows. For more information, see “Specifying
finder- and ejbSelect-method queries” in Chapter 27, “Creating Entity
Components,” in the EAServer Programmer’s Guide.

You can set the component property com.sybase.jaguar.component.tlc.sort to
specify whether EAServer sorts entries before calling ejbStore. Setting this
property to true helps to avoid deadlock when separate transactions
concurrently update multiple instances of the same component. The default of
false may provide better performance by eliminating the sorting step. You
cannot enable sorting unless the primary key class implements the
java.lang.Comparable interface. Most java.lang utility classes implement this
interface, such as String, Integer and so forth.

Enabling database change notification
This feature allows the use of database triggers to notify EAServer's entity
object cache of changes to the underlying table rows. The notification
mechanism works as follows:
70 EAServer

CHAPTER 4 EJB CMP Tuning
1 Database triggers call a stored procedure sp_publish to publish a message
for each SQL insert, update or delete.

2 sp_publish “publishes” the messages by placing them in a table cms_notify.

3 A cluster-wide singleton service, CtsComponents/DatabaseNotify, pulls
notification messages from the cms_notify table using stored procedure
sp_notify. These messages are then published to the EAServer message
service. The expected latency for message delivery (from trigger to cache
entry removal) is approximately one second at most.

4 The storage component (when using CtsComponents/JdbcStorage) listens
for messages on selected topics, parses the messages for key fields, and
notifies the Object Cache to remove the relevant entries.

❖ Enabling database change notification

1 Install the required stored procedures in the target database(s). See
“Sample script for database stored procedures” on page 72.

2 In the EAServer Manager properties for your server, use the Advanced tab
to configure the property com.sybase.jaguar.server.services to
include the Message Service and Database Notify components, for
example:

CtsComponents/MessageService,CtsComponents/DatabaseNotify

If you have never run the message service in your installation, configure
the message service as described in Chapter 8, “Setting up the Message
Service,” in the EAServer System Administration Guide. Database change
notification requires a working message service.

3 Optionally add an entry to MessageServiceConfig.props to specify the
name(s) of connection caches for databases which need to be monitored
for notification messages. These connection caches must have type JDBC,
for example:

dn.caches=SybaseCache,OracleCache

By default, the cache referenced by the cms.cache property will be used.

4 Optionally add an entry to MessageServiceConfig.props to specify the
JDBC callable statement (or prepared statement) to be used to pull change
notification messages from the database, for example:

sp_notify={call my_own_notify_proc ?,?}

By default, the callable statement is:

{call sp_notify ?,?}
Performance and Tuning Guide 71

Entity instance and query caching
5 For each entity component that is to be configured for database
notification, enable the Create Database Triggers option on the
Persistence/General subtab in the Component Properties dialog box. This
option requests automatic creation of triggers.

6 Optionally change the message service topic names associated with
database tables. The default topic name is the unqualified table name. You
must change the topic name if multiple databases contain tables with the
same name. To change the topic name associated with a table, set the table
mapping property for the table’s notify operation, as described on
“Configuring table-mapping properties” in the EAServer Programmer’s
Guide.

Sample script for database stored procedures

For Oracle databases, a sample script is provided in the the file
DatabaseNotify_Oracle.sql in the Repository/Component/CtsComponents
subdirectory of your EAServer installation. The sample script below is for
Sybase Adaptive Server Enterprise. Modifications are required for use on other
databases:

use master
go

if not exists (select name from sysdatabases where name = "notifydb")
begin
create database notifydb
exec sp_dboption notifydb, "trunc log on chkpt", "true"

end
go

use notifydb
go

checkpoint
go

if not exists (select 1 from sysobjects where name="cms_notify" and type="U")
begin
create table cms_notify
(

id numeric(16,0) identity primary key,
type char(1) not null,
name varchar(100) not null,
message varchar(255) not null,
72 EAServer

CHAPTER 4 EJB CMP Tuning
options varchar(255) not null
)

end
go

if not exists (select 1 from sysusers where name="guest")
exec sp_adduser guest

go

use sybsystemprocs
go

if exists (select 1 from sysobjects where name="sp_notify" and type="P")
drop proc sp_notify

go

create proc sp_notify
(@from numeric(16,0),
@last numeric(16,0))

as
if @from <= @last

delete from notifydb..cms_notify where id >= @from and id <= @last
declare @loop int
select @loop = 1
while @loop <= 60

begin
declare @rows int
select @rows = count(*) from notifydb..cms_notify
if @rows > 0

begin
set rowcount 100
select id, type, name, message, options

from notifydb..cms_notify
order by id

return
end

waitfor delay "00:00:01"
select @loop = @loop + 1

end
go

sp_procxmode sp_notify, anymode
go

grant execute on sp_notify to public
go
Performance and Tuning Guide 73

Entity instance and query caching
if exists (select 1 from sysobjects where name="sp_publish" and type="P")
drop proc sp_publish

go

create proc sp_publish
(@topic varchar(255),
@message varchar(255),
@options varchar(255))

as
insert into notifydb..cms_notify (type, name, message, options)
values ("T", @topic, @message, @options)

go

sp_procxmode sp_publish, anymode
go

grant execute on sp_publish to public
go

if exists (select 1 from sysobjects where name="sp_send" and type="P")
drop proc sp_send

go

create proc sp_send
(@topic varchar(255),
@message varchar(255),
@options varchar(255))

as
insert into notifydb..cms_notify (type, name, message, options)
values ("Q", @topic, @message, @options)

go

sp_procxmode sp_send, anymode
go

grant execute on sp_send to public
go
74 EAServer

CHAPTER 4 EJB CMP Tuning
Customizing the implementation

The storage component responds to any suitably formatted messages that are
published to the configured topic names for each mapped table. You can
provide you own implementation of the stored procedures or the notification
component.

To publish a change message, the Message Service 'text' property should be
“insert”, “delete” or “update”, each key column should have a corresponding
property (unless multiple rows were affected in which case key columns should
be omitted). If using the Java Message Service (JMS) to publish the messages,
use a TextMessage and use header properties for the key column values.

CMP runtime monitoring
You can enable logging of statistics from the CMP engine by setting the
com.sybase.jaguar.conncache.cmp_stats property for the connection cache
that your component uses. Set the value to a time interval in seconds; the CMP
engine logs statistics at the specified interval. Statistics output includes table
statistics, cache usage statistics, and query statistics. This data can be useful for
tuning other connection cache and component properties for best performance.

You can also configure the CMP wrapper driver trace properties described in
“Using CMP JDBC wrapper drivers” on page 60.
Performance and Tuning Guide 75

CMP runtime monitoring
76 EAServer

C H A P T E R 5 Web Application Tuning

This chapter describes the settings that you can tune to optimize the
performance of your Web applications.

Using the performance tuning wizard
EAServer Manager includes wizards to tune the performance-related
settings of Web applications and Web components. These wizards walk
you through the configuration of many of the settings discussed in this
chapter. To run the wizards:

• For a Web component, highlight the Web component icon and choose
File | Performance Tuning Wizard.

• For a Web application, highlight the Web application icon and choose
File | Performance Tuning Wizard.

See the online help for each wizard page if you need more information.

Tuning server and Web application settings
These Web application and server settings can affect the performance of
your Web-based application.

Topic Page
Using the performance tuning wizard 77
Tuning server and Web application settings 77
Tuning servlet and JSP settings and code 80
Understanding HTTP response caching options 84
Dynamic page caching 92
Using the servlet Java cache 92
Using partial page caching 93
Class CacheManager 96
Performance and Tuning Guide 77

Tuning server and Web application settings
Tracing properties
Tracing properties enable additional logging, which can be useful when
debugging problems. However, tracing requires additional file I/O and
computation. For best performance, disable these trace properties unless you
are troubleshooting a related issue:

• Servlet engine tracing The server property
com.sybase.jaguar.server.servlet.trace enables tracing in the servlet
engine. You can set this property in the Log/Trace tab of the Server
Properties dialog box, or on the Advanced tab.

• Web application security tracing The Web application property
com.sybase.jaguar.webapplication.sectrace enables tracing in the security
subsystem of the EAServer Web application container. Set this property on
the Advanced tab in the Web application properties dialog box.

• Response cache debugging The server property
com.sybase.jaguar.server.http.cache.debug enables tracing in the static
page caching engine. You can set this property on the Static Page Caching
tab in the Server Properties dialog box, using the Enable Server Log
Debug Messages check box. You can also use the Advanced tab.

An easy way to verify that all tracing properties are disabled is to run the server
and Web application performance tuning wizards.

Session timeouts
Servlets and JSPs can use sessions to store temporary data required to maintain
a Web user’s session. EAServer also uses sessions internally in the Web
application security implementation. The Web application Session Timeout
property specifies how long a session can remain inactive, with no requests
issued from the client. Since sessions consume memory resources, you should
tune this setting to balance memory requirements against the possibility of
users losing their session.

To configure this property, set the Session Timeout property in the EAServer
Manager Web Application Properties dialog box, or by setting the
com.sybase.jaguar.webapplication.session-config property.
78 EAServer

CHAPTER 5 Web Application Tuning
Class loader settings
EAServer uses custom class loaders to allow you to refresh implementation
classes without restarting the server. Loading multiple copies of the same class
uses memory unnecessarily. To avoid this issue, configure a common class
loader for use by the Web application and the components that it calls. To do
this, configure an application-level or server-level class list, as described in
Chapter 30, “Configuring Custom Java Class Lists,” in the EAServer
Programmer’s Guide.

Servlet buffer pools
Internally, EAServer uses 4K and 8K temporary buffers when assembling
servlet responses. These buffers are pooled and reused to avoid the overhead
of repeated buffer allocation and garbage collection. To tune the number of
buffers pooled, you can set the server properties below, using the Advanced tab
in the Servlet properties window:

• com.sybase.jaguar.server.servlet.max8kbuffers specifies the number of
internal 4K servlet response buffers.

• com.sybase.jaguar.server.servlet.max4kbuffers specifies the number of
internal 4K servlet response buffers.

The default for both is 128. You can override the default by setting the value to
a positive integer. A value of 0 means buffers are never pooled

The required buffers are allocated on an as-needed basis, rather than being
preallocated as server start-up. Once allocated, buffers are pooled and reused
until the specified size is reached. If a peak in client activity requires more
buffers than the pool size, additional buffers are allocated, then released for
garbage collection after use.

The default configuration suffices for most applications. If the buffer pool size
is too small, performance.may decline due to allocation of new buffers.
Allocation is costly because the Java VM initializes the allocated byte arrays
to 0, which is not required by EAServer. Garbage collection is also costly. On
the other hand, if the buffer size is too large, buffers allocated during periods
of peak activity may be rarely used while consuming memory that would
otherwise be available for other tasks.
Performance and Tuning Guide 79

Tuning servlet and JSP settings and code
For request processing, EAServer uses 8K buffers by default, and uses 4K
buffers only when a servlet calls ServletResponse.setBufferSize() to request a
buffer size other than 8K. If your application never or seldom changes the
buffer size, you can set com.sybase.jaguar.server.servlet.max4kbuffers to 0 so
that 4K buffers are not pooled.

To determine whether the settings are correct, examine the servlet request
patterns to see if the number of concurrent requests often exceeds the buffer
pool sizes. If so, consider increasing the value.

Clustered deployments
If you deploy your Web application in a cluster, tune the settings described in
“Web application settings” on page 120.

HTTP and HTTPS listener configuration
The HTTP listener parameters can affect the performance of your application.
“Listener tuning” on page 20 describes how to tune these settings.

SSL and performance
You can configure Web pages to require SSL as described in Chapter 3, “Using
Web Application Security,” in the EAServer Security Administration and
Programming Guide. SSL encryption can protect critical client data, such as
passwords and credit card numbers. However, SSL adds overhead to the
network transfer phase. Use SSL only when the extra security is required.

Tuning servlet and JSP settings and code
Use these tips to tune the implementation of servlets and JSPs and their
deployment properties in EAServer.
80 EAServer

CHAPTER 5 Web Application Tuning
Use local interfaces for EJB calls
If the Web application calls EJB components, local interface invocations offer
the best performance since they pass parameters on the stack rather than
marshalling parameter values into an IIOP stream. For information on using
local interfaces, see these sections in the EAServer Programmer’s Guide, from
Chapter 8, “Creating Enterprise JavaBeans Clients”:

• “Instantiating remote or local interface proxies”

• “Calling local interface methods”

Threading
Avoid using servlets that must be single-threaded. One instance of a single-
threaded servlet can serve only one client at a time, while thread-safe servlets
can serve all clients with one instance.

If you cannot avoid using a single-threaded servlet, configure the number of
instances to minimize blocked client requests (requests block if there are more
requests than available instances). For more information, see “Threading
settings” in Chapter 22, “Creating Java Servlets,” in the EAServer
Programmer’s Guide.

Preloading classes
If your servlets that take a long time to load and initialize, configure them to
load when the server starts. Otherwise, the first client that calls the servlet
experiences poor response time when the servlet is loaded to satisfy the
request. You can also configure JSPs to load at start-up. If a JSP is loaded at
start-up, it is compiled if necessary.

Set the Load During start-up option on the General tab in the Web Component
Properties dialog box, or set the com.sybase.jaguar.servlet.load-on-startup
property for the servlet or JSP in the Web application deployment properties.
Performance and Tuning Guide 81

Tuning servlet and JSP settings and code
JSP compilation options
JSP runtime compilation is expensive. While this feature is convenient during
the development phase, you should precompile JSPs when deploying them to
production server. If you precompile JSPs, you can further improve
performance by disabling runtime timestamp checking. If your application
design requires runtime compilation, you can tune the JSP compilation settings
to reduce compile time.

Precompiling JSPs

There are two ways to precompile JSPs:

• Configure the JSP to load at start-up, as described in “Preloading classes”
on page 81. The JSPs are compiled when the server starts up. This
technique requires that you have Web components defined for each JSP in
your application.

• Compile the JSPs using the jagtool compilejsp command. You can do this
from deployment scripts or batch files, or in an Ant build file. For more
information, see Chapter 12, “Using jagtool and jagant,” in the EAServer
System Administration Guide.

JSP file timestamp checking

If you have precompiled all JSPs, you can turn off JSP file timestamp checking
for the Web application. Doing so can increase performance by eliminating the
required system calls. The com.sybase.jaguar.webapplicaton.jspc-interval Web
application property controls how often EAServer checks to see if the JSP
should be recompiled. The default is 0, which means the server must check the
file timestamp every time the JSP is invoked. To disable checking, set the
property to -1. To check after every n seconds, set the value to a positive integer
n. For more information, see the description of this property in Appendix B,
“Repository Properties Reference,” in the EAServer System Administration
Guide.

Runtime compilation settings

If your application design requires runtime JSP compilation, you can configure
the settings described here to decrease the time required to compile. These
settings can also reduce server start-up time if you have configured JSPs to
compile at start-up.
82 EAServer

CHAPTER 5 Web Application Tuning
To reduce the compilation time for JavaServer Pages (JSPs), you can configure
the class path for JSPs separately from the EAServer class path. By default, the
JSP compiler class path includes the EAServer process class path plus these
class entries and JAR files that are specific to the Web application:

• The work/servername/servlet/WebApp-webapp directory, where
EAServer generated servlet classes for JSPs. Here, servername is the name
of the server, and webapp is the name of the Web application.

• The Repository/WebApplication/webapp/WEB-INF/classes directory,
where you deploy classes used by servlets and JSPs in the Web
application. Here, webapp is the Web application name.

• The JAR files in the Repository/WebApplication/webapp/WEB-INF/lib
directory. Here, webapp is the Web application name.

• The JAR files in the extensions directory of your EAServer installation.

For the fastest JSP compile times, you must configure the compiler class path
to eliminate unnecessary entries. To do so, set these properties on the Advanced
tab in the Web Application Properties and Web Component Properties dialog
boxes:

• com.sybase.jaguar.webapplication.jsp.compile-use-eas-cp

For the Web application, set this property to false to exclude entries from
the EAServer process CLASSPATH setting in the JSP compiler class path.
The default of true indicates that the server class path should be included.

• com.sybase.jaguar.servlet.jsp.compile-use-eas-cp

For individual JSPs (Web components in EAServer Manager), set this
property to false to exclude entries from the EAServer process
CLASSPATH setting in the JSP compiler class path. The default of true
indicates that the server class path should be used.

• com.sybase.jaguar.webapplication.jsp.compile-use-third-party

For the Web application, set this property to specify whether JAR files in
the EAServer java/lib subdirectory are included in the JSP compiler class
path. If this property is true, all JAR files in this directory are included. The
default is false. This property is ignored if the
com.sybase.jaguar.webapplication.jsp.compile-use-eas-cp property is set
to true.

• com.sybase.jaguar.servlet.jsp.compile-use-third-party
Performance and Tuning Guide 83

Understanding HTTP response caching options
For individual JSPs (Web components), set this property to specify
whether JAR files in the EAServer java/lib subdirectory are included in
the JSP compiler class path. If this property is true, all JAR files in this
directory are included. The default is false. This property is ignored if the
com.sybase.jaguar.webapplication.jsp.compile-use-eas-cp property is set
to true for the Web application or the
com.sybase.jaguar.servlet.jsp.compile-use-eas-cp is set to true for the Web
component.

• com.sybase.jaguar.webapplication.jsp.compile-extra-cp

For the Web application, specifies additional JAR files and directories to
include in the JSP compiler class path. Specify the paths in a comma-
separated list, with paths relative to the EAServer installation directory.
For example, to include $JAGUAR/java/lib/iaws.jar and
$JAGUAR/java/classes/extra.jar, set the property to:

java/lib/iaws.jar,java/classes/extra.jar

• com.sybase.jaguar.servlet.jsp.compile-extra-cp

For individual JSPs, specifies additional JAR files and directories to
include in the JSP compiler class path, using the same syntax as the
com.sybase.jaguar.webapplication.jsp.compile-extra-cp property.

Understanding HTTP response caching options
EAServer supports caching of static content and servlet responses.

Static page caching
Caching of static content improves performance by eliminating file I/O. You
configure the static page cache at the server level, as described in “Static Page
Caching” in the EAServer System Administration Guide. Follow these
guidelines to get the best performance from your cache:

• Exclude seldom-used files Review your server’s request logs and
identify files that are rarely requested. These files should be excluded from
cache, so that when requested, they do not cause more frequently
requested content to be removed from the cache.
84 EAServer

CHAPTER 5 Web Application Tuning
• Tune the timeout value The cache timeout value determines how long
an entry can remain in cache before EAServer checks for updated content
on disk. If you post a new version of a cached file, clients receive the old
version from cache until the timeout expires or you flush the cache.
Configure the timeout to allow content updates while minimizing the
occurrence of cache misses. You can also configure the server to never
timeout (using a very large value), and use the following strategy to post
updated content:

a Post updated content at regular intervals.

b After posting, flush the static page cache using EAServer Manager or
by running a client that calls the flushStaticPageCache method in the
Jaguar::Management component.

• Tune the cache size The cache size must be sufficient to cache the most
frequently requested content (assuming you have excluded seldom-
requested files). To estimate the required size, calculate the total size of
your static content files, minus the size of excluded files, then multiply by
your required hit/miss ratio.

When the cache is tuned, you can further improve the speed at which static
page contents are served by disabling the HTTP request log (using the HTTP
Config properties in the Server Properties dialog box). However, consider this
option carefully as the request data can be helpful to diagnose performance
problems that arise from changes in your configuration or user interests. For
example, you may find newly posted content creates a large spike in the request
pattern. The request log helps you identify popular content that you should add
to the cache.

Servlet response caching
When caching is enabled for servlets and JSP Web components, EAServer
checks for a cached response before calling the Web component. For servlets
and JSPs that are called often, caching improves performance by skipping the
processing required to produce the response. EAServer supports three
mechanisms for response caching:

• Dynamic page caching Responses are cached in a hash table, using a
multi-part key. By default, the key includes the request path, but you can
configure additional key parameters such as request or session attributes.
“Dynamic page caching” on page 87 describes how to configure this
mechanism.
Performance and Tuning Guide 85

Understanding HTTP response caching options
• Servlet Java cache This mechanism caches servlet and JSP responses
in core memory. It offers the best performance, but has stricter
requirements on what can be cached. For example, you cannot cache
servlets that return different content based on request or session
parameters. “Using the servlet Java cache” on page 92 describes how to
configure this mechanism.

• Partial page caching Partial page caching allows you to cache parts of
a response. This mechanism is useful when pages contain volatile content,
such as calculation results, but otherwise have static content such as
headers and footers. The response cannot be cached effectively using other
mechanisms because of the volatile content, but partial page caching
allows you to cache only the static parts of a response. Partial page caching
is supported by a tag library for use in JSPs, and a public API for use in
servlets. “Using partial page caching” on page 93 describes how to use
this mechanism.

Which components
should use caching?

Not all Web components should be cached. Caching the output of seldom-
called Web components can sometimes reduce performance. If the cache is
full, the rarely accessed output can bump more frequently accessed data out of
the cache. On the other hand, if a servlet takes a long time to execute, you may
still benefit from caching a servlet that it is not called as frequently as others,
as long as there is sufficient space to cache the servlet. When the cache is too
full to add or refresh a response, EAServer removes enough entries to make
room, removing entries in least-recently-used order.

There is some overhead required to create and remove cache entries. If a Web
component runs quickly, you may get better results with caching disabled, thus
avoiding the overhead of maintaining additional cache entries and reserving
more memory for the caching of other Web components.

To decide which Web components should be cached, review your request log
patterns and Java profiling data (or timing trace data) to answer the following
questions:

• How often is the Web component invoked?

• How long does it usually take?

• How often can requests use the cached data? If not always, can you define
a key based on request and session parameters to allow the correct
response to be cached and reused? Does a timeout suffice to satisfy the
requirements for accurate data?
86 EAServer

CHAPTER 5 Web Application Tuning
Based on these answers, you can determine which Web components are
appropriate to cache and estimate the time that can be saved by caching them.
For example, if you specify a timeout of 1 minute, the response takes 5 seconds
to process, and the matching request occurs 4 times per minute, you can
eliminate up to 15 seconds of processing time per minute (based on the fact that
there are 3 cache hits per minute before the matching entry times out and must
be recalculated).

How do I cache JSPs
not defined in
EAServer Manager?

To enable caching, you must define EAServer Web components for JSPs as
well as servlets. Although a JSP can run when it is not installed as a Web
component, you cannot enable caching unless you have defined a Web
component that is mapped to the JSP. For example, to create and map a Web
component for a JSP defined in myJSP.jsp:

1 Create a JSP Web component called “myJSP”.

2 Set the file property to “myJSP.jsp”.

3 Create a Web application servlet mapping where servlet = “myJSP” and
URL Pattern = “/myJSP.jsp”.

For more information, see “Creating and configuring JSPs in EAServer” in
Chapter 24, “Creating JavaServer Pages,” in the EAServer Programmer’s
Guide.

Dynamic page caching
Dynamic page caching decreases a servlet’s or JSP’s response times by caching
the output with a multi-part, user-configured key value. This caching
mechanism stores responses in their entirety. For pages that return both volatile
content and content that rarely changes, use partial page caching instead—see
“Using partial page caching” on page 93.

When page caching is enabled for a servlet or JSP, EAServer checks the cache
before invoking the Web component, looking for an entry that matches the key
that you have defined for the servlet or JSP. If an appropriate response is found
in the cache, EAServer returns the contents of the cache, instead of calling the
servlet. If the cache contains no matching key, EAServer invokes the servlet,
and caches the response and response headers while returning them to the
client.
Performance and Tuning Guide 87

Dynamic page caching
You can define the key that EAServer uses to store and retrieve cached entries.
By default, a key consists of only the servlet’s or JSP’s location on disk. You
can further refine key values by adding up to six optional parameters. Doing so
allows caching of separate responses from the same servlet or JSP, based on
request characteristics such as locale or HTTP session ID. In addition, you can
configure a timeout for cache entries associated with the JSP or servlet to
prevent the use of stale data. If you do not require this level of refinement in
the cache key, consider using the servlet Java cache instead—see “Using the
servlet Java cache” on page 92.

Configuring page caching for servlets and JSPs
Use EAServer Manager to enable caching for your servlets and JSPs. To enable
caching for JSPs, you must have a Web component defined for the JSP in
EAServer Manager. To configure default values for the Web component
caching properties, see “Configuring Web application page caching
properties” on page 90.

❖ To configure page caching for a servlet or JSP:

1 Expand the Web application folder and highlight the servlet or JSP.

2 Choose File | Web Component Properties.

3 Select the Caching tab.

4 Check Enable Cache. By default, page caching is disabled.

Note The first time you configure page caching for a Web component, the
page caching property values default to the same as those in the Web
application.

5 To replace the current property values with those in the Web application,
select Get WebApp Settings.

6 To include the output from all the pages that the Web component includes
or forwards requests to, select Cache Entire Tree. For more information,
see “Caching an entire tree” on page 90.

7 Optionally, edit the timeout value, and enter the parameters that you want
to use in the key as listed in Table 5-1.
88 EAServer

CHAPTER 5 Web Application Tuning
Table 5-1: Page caching properties

Parameter Description

Cache Timeout Enter the number of seconds to keep the Web component’s content in the cache;
the default is 600; a value of 0 indicates no timeout. The timeout value is stored
in the com.sybase.jaguar.servlet.cache.timeout property.

Session Local To include the session ID in the key, select this option; by default, it is not
included. The session ID can identify session specific items, such as shopping
carts. The value is saved in the com.sybase.jaguar.servlet.cache.use-sessionid
property.

Locale Sensitive Select to include the accept-languages header in the key; by default, it is not
included. The value is saved in the
com.sybase.jaguar.servlet.cache.locale-sensitive property.

Request Parameters To include request parameters in the key, enter the parameter names as a
comma-separated list. To include all the request parameters, select the Enable
All box; it is selected by default. A single servlet can produce different
responses based on which parameters it receives. A key that includes the
request parameters allows different responses from the same servlet to be
cached separately. The request parameters are saved in the
com.sybase.jaguar.servlet.cache.request-parameters property.

Session Attributes To include session attributes in the key, enter the attributes as a
comma-separated list. To include all the session attributes, check the Enable All
box. The session attributes list is saved in the
com.sybase.jaguar.servlet.cache.session-attributes property.

Request Headers To include request headers in the key, enter the header names as a
comma-separated list. For example, if you include the date header, EAServer
looks for cache entries whose date headers match the request’s date header. The
request headers list is saved in the
com.sybase.jaguar.servlet.cache.request-headers property.

Message Topics For a key that includes the number of times a message has been published to a
particular topic, enter the message topic. To use this as a key parameter, the
message service must be configured; for details, see Chapter 31, “Using the
Message Service.”

This option is useful when a servlet constructs its response based on the values
in a database table. A database trigger can be used to call the message service
and publish a message to the topic each time the database table is updated.
When a servlet or JSP is requested, EAServer can call the message service’s
getStatistics method to get the total number of messages published to the topic
and compare the value to those in the cache entries. The message topics are
stored in the
com.sybase.jaguar.servlet.cache.message-topics property.
Performance and Tuning Guide 89

Dynamic page caching
Configuring Web application page caching properties
You can configure page caching for a Web application, as well as for a Web
component. EAServer first checks the component-level page caching
properties, and if none exists, checks the application-level properties. In other
words, the Web application settings serve as defaults for the Web component
properties described in “Configuring page caching for servlets and JSPs” on
page 88.

❖ Configuring page caching for a Web application

1 Display the Page Caching tab in the Web Application Properties dialog
box.

2 Optionally, edit the timeout value, and enter the parameters that you want
to use in the key. The parameters you enter here are the default settings for
all the servlets and JSPs in the Web application. See Table 5-1 on page 89
for a description of the page caching properties.

Note By default, page caching is disabled, and you cannot enable page caching
at the Web application-level.

Caching an entire tree
To use page caching for a JSP that forwards request to, or dynamically
includes, other JSPs or static files, consider these factors. By default, when you
enable page caching for a JSP Web component, only its content is cached. If a
JSP includes, or forwards requests to, other pages or static files, their output is
not cached. To include the output of all the pages or files that are invoked, you
can select to cache a Web component’s entire tree. This example illustrates
portions of three JSP files; two use the <jsp:include> tag to include other JSPs:

// page1.jsp
<HTML>
<H1>This is page 1</H1></p>
<jsp:include page="/page2.jsp" />
</HTML>

// page2.jsp
<HTML>
<H2>This is page 2</H2></p>
<jsp:include page="/page3.jsp" />
</HTML>
90 EAServer

CHAPTER 5 Web Application Tuning
// page3.jsp
<HTML>
<H3>This is page 3</H3></p>
</HTML>

If you enable page caching for the Web component mapped to page1.jsp and
choose to cache the entire tree, the cached entry displays this in the browser:

This is page 1
This is page 2
This is page 3

If you enable page caching for page1.jsp but not for the entire tree, the cached
entry displays this in the browser:

This is page 1

When a client requests the Web component mapped to page1.jsp and it is
configured to cache the entire tree, the output from page1.jsp, page2.jsp, and
page3.jsp is cached as a single entry. EAServer creates a separate cache entry
for a single page when:

• A client requests the page directly, and

• The Web component is configured to not cache the entire tree.

For example, if the Web component “Page2” is mapped to page2.jsp and it is
not configured to cache the entire tree, its output is cached as a separate entry
when a client specifically requests Page2.

Using page caching with filters that modify a response
When using page caching with filters that wrap a servlet response, EAServer
must have access to the response. To provide access to the response, the
wrapper must implement a getResponse method that returns a ServletResponse
object. To implement the wrapper, you can either:

• Extend the Servlet 2.3 API javax.servlet.http.HttpServletResponseWrapper
class, which implements the getResponse method, or

• Extend the javax.servlet.http.HttpServletResponse class and implement the
getResponse method yourself.

Also, EAServer caches a servlet response immediately after the servlet
executes. Therefore, if a filter modifies a response after the servlet executes,
the modifications are not saved to the cache.
Performance and Tuning Guide 91

Using the servlet Java cache
For more information about creating and using filters, see Chapter 23, “Using
Filters and Event Listeners,” in the EAServer Programmer’s Guide.

Using the servlet Java cache
The servlet Java cache stores servlet output in Java core memory, which offers
a faster response than page caching for servlets that can run under these
limitations:

• The output does not change during the cache timeout period, and does not
depend on request method, parameters, or headers.

• The servlet runs with exact path mappings. Responses are not cached if the
servlet uses prefix mappings, default mappings, or extension mappings.

• Cached content is returned without modification.

• Cached response headers are returned without modification, except for:

• The Set-Cookie header, which depends on the
com.sybase.jaguar.servlet.javacache.session property described
below.

• The Connection header, which depends on the request Connection
header.

• Return code 200 is used for all cached replies. If the original response uses
any other return code, it is not cached.

• Chunked replies are not cached.

• Only responses to GET requests are cached.

Servlets that cannot run under these limitations may still use the page cache.

To enable and configure the servlet Java cache, configure the following servlet
properties for each servlet to be cached, using the Advanced tab in the Servlet
Properties window:

• com.sybase.jaguar.servlet.javacache.enabled enables the Java cache for
the servlet. A value of true enables the Java cache. The default value of
false disables the cache. If the Java cache and the page cache are both
enabled, the Java cache takes precedence.
92 EAServer

CHAPTER 5 Web Application Tuning
• com.sybase.jaguar.servlet.javacache.session specifies how session cookie
settings are treated by checking Set-Cookie headers in the request and
response headers. Allowable values for this property are:

• com.sybase.jaguar.servlet.javacache.maxsize specifies the size, in
kilobytes, of the largest reply that can be cached. Responses larger than
this are not cached. The default is 8. The hard upper limit is 100. If you set
a value greater than 100, the effective cache size is 100K.

• com.sybase.jaguar.servlet.javacache.timeout specifies the time, in
seconds, that cached responses remain valid. The default is 60. A negative
value specifies an infinite timeout, that is, cached responses do not expire.

Using partial page caching
Partial page caching allows you to cache parts of a response. This mechanism
is useful when pages contain volatile content, such as calculation results, but
otherwise have static content such as headers and footers. Partial page caching
is supported by a tag library for use in JSPs, and a public API for use in servlets.

Value To indicate

no (the default) No session support. EAServer does
not check request Set-Cookie headers
or return response Set-Cookie
headers.

keep Attempt to preserve valid sessions. If
the request includes a session
identifier, EAServer checks if the
session is valid. If it is not, the
response Set-Cookie header is set to
indicate an invalid session.
Otherwise, no Set-Cookie header is
returned.

create Preserve valid session and create a
new session if the previous session is
invalid. If the request includes a
session identifier, EAServer checks if
the session is valid. If it is not, the
response Set-Cookie header is set to
indicate a new session. Otherwise, no
Set-Cookie header is returned.
Performance and Tuning Guide 93

Using partial page caching
Using the caching tag library
The tag library implementation is provided in CacheTags.jar, installed in the
extensions subdirectory of your EAServer installation. To use the library in a
JSP, add the following directive:

<%@ taglib uri="http://www.sybase.com/EAServer/cachetags.tld" prefix="ct"%>

The library includes the tags described below.

The cache tag

To cache a portion of a page, surround it with this tag, as in:

<prefix:cache attributes>
... page content ...
</prefix:cache>

Where prefix is the tag prefix that you assigned the tag library when declaring
it in the taglib directive in your page source, and attributes is a list of attribute-
value pairs to set the attributes described in Table 5-2.

Table 5-2: Cache tag attributes

Attribute Comments

parameters A comma-delimited list of request parameters to include in the key. A
value of “*” includes all parameters in the key. If not specified, all
parameters are included in the key.

attributes A comma-delimited list of session attributes to include in the key. A
value of “*” includes all session attributes. If not specified, no session
attributes are included in the key.

messageTopics A comma-delimited list of message topics to include in the key. If not
specified, no message topics are included in the key.

This option is useful when a servlet constructs its response based on
the values in a database table. A database trigger can be used to call
the message service and publish a message to the topic each time the
database table is updated. When a servlet or JSP is requested,
EAServer can call the message service’s getStatistics method to get
the total number of messages published to the topic and compare the
value to those in the cache entries.

To use this as a key parameter, the EAServer message service must be
configured and running.

localeSensitive Set this attribute to true if locale-sensitive headers are to be included
as part of the key. The default is false, which omits locale-sensitive
headers from the key.

headers A comma-delimited list of request headers to include in the key. The
default is to include no headers in the key.
94 EAServer

CHAPTER 5 Web Application Tuning
When recompiling a JSP, EAServer flushes any cache entries that are used in
the page. When refreshing the Web application, EAServer refreshes all caches
that are scoped to the application. You can also flush caches programmatically
using the flushCacheByKey or flushCacheByScope tags.

The flushCacheByKey tag

You can use this tag to flush caches for which you have specified a name. You
can specify a name, scope, and key parameters as described in Table 5-3. The
entry that matches the specified key values and scope is flushed when the tag
executes.

Table 5-3: flushCacheBykey tag attributes

timeout Specifies how long, in seconds, an entry in the cache remains valid.
The default value is 600.

name Allows you to specify a unique name, so that a cache can be shared
across multiple pages. If you do not specify a name, the default value
is computed so that each page has one cache for all the tags within that
page, and each occurrence of the cache tag is assigned an ID that is
unique within the page. You can specify a name to cache parts of a
response that occur on several pages: data computed on one page can
be read from cache and used in another page.

namespace Specifies what name space the cache is part of. EAServer tracks usage
to determine which entry is the least recently used when entries must
be removed. Caches in the same name space share the same use
statistics, and EAServer evicts the least recently used entry from all
the caches in the name space. The default value is “jspfragmentcache”
which means unless otherwise specified, every cache is part of the
same name space.

scope Specifies the scope in which data is stored in the cache. Can be either
session or application. The value session indicates that only pages in
the same session can view the cached data. The default, application,
indicates that all pages in the Web application have access to the
cached data.

size Specifies the size for this cache. Once the cache is full, entries are
evicted based on a least recently used policy. Size is specified as a
string using either Mb for megabytes or Kb for kilobytes, for example
“10Mb” means 10 megabytes. If not specified, the default is 1Mb.

Attribute Comments

Attribute Comments

name The cache name.

scope The cache scope. If not specified, the default is application.
Performance and Tuning Guide 95

Class CacheManager
The flushCacheByScope tag

You can use this tag to flush all entries from all caches in the specified scope.
Specify the scope as the scope attribute. The default is application, which
flushes all caches in the application. Specify session to flush all caches that are
scoped to the user’s session. Specify page to flush all cache entries that are used
in the current page.

Portability considerations

The J2EE specifications do not address HTTP response caching. Therefore,
any caching implementation is proprietary. To allow portability of JSPs that use
the caching tag library, EAServer includes a nonoperational implementation
that you can include when exporting WAR files for deployment to other
servers. This JAR file is EmptyCacheTags.jar in the java/taglibs directory of
your EAServer installation. To include it in a WAR file, select the Export
Empty Cache Tags option when exporting the Web application as a WAR file
or within an EAR file. If you are using jagtool, specify -emptycachetags true in
the jagtool options.

Using the caching API
You can call the caching API to cache response parts in servlets. The API is
implemented by class CacheManager, described below.

Class CacheManager
Description package com.sybase.jaguar.servlet;

public class CacheManager

Allows you to cache responses or parts of a response in Java servlets.

parameters Same as for the cache tag.

attributes Same as for the cache tag.

messageTopics Same as for the cache tag.

localeSensitive Same as for the cache tag.

headers Same as for the cache tag.

Attribute Comments
96 EAServer

CHAPTER 5 Web Application Tuning
Constructors None. Call the CacheManager.getInstance(ServletContext) method.

CacheManager.getInstance(ServletContext)
Description Gets the instance of the CacheManager for a given servlet context. Each

context has a single CacheManager instance.

Syntax

public static CacheManager getInstance(ServletContext context)

Parameters context
The servlet context.

Return value The CacheManager instance for the context, or null if the specified context is
not a valid EAServer servlet context.

CacheManager.createCache(String, String, String)
Description Creates a new cache.

Syntax

public void createCache(String cacheName, String nameSpace, String size)
throws CacheNameException

Parameters cacheName
The name of the cache to create. The method throws CacheNameException
if the name is invalid.

nameSpace
Specifies what name space the cache is part of. Caches in the same name
space share the same MRU/LRU chains so that when an entry is evicted, it
evicts the least recently used in all the caches in the same namespace. If you
pass as null, the cache is in the default name space.

size
The cache size, specified as a string using either Mb for megabytes or Kb for
kilobytes, for example “10Mb” means 10 megabytes.

Package com.sybase.jaguar.servlet

Class CacheManager

Package com.sybase.jaguar.servlet

Class CacheManager
Performance and Tuning Guide 97

Class CacheManager
CacheManager.getData(String, PageCacheKey)
Description Retrieves data from the cache.

Syntax

public String getData(String cacheName, PageCacheKey key)
throws CacheNotFoundException, CacheNameException

Parameters cacheName
The name of the cache to use.

key
The key for the entry. Call getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int) to get a key instance.

Return value The cached text, or null if no entry matches the key. Throws
CacheNotFoundException if there is no cache with the specified name. Throws
CacheNameException if the name is invalid.

CacheManager.putData(String, PageCacheKey, String, int)
Description Places data in the cache.

Syntax

public void putData(String cacheName, PageCacheKey key, String data, int
timeout) throws CacheNotFoundException, CacheNameException

Parameters cacheName
The name of the cache to use.

key
The key for the entry. Call getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int) to get a key instance.

data
The text to cache.

timeout
The timeout for the entry, in seconds.

Package com.sybase.jaguar.servlet

Class CacheManager

Package com.sybase.jaguar.servlet

Class CacheManager
98 EAServer

CHAPTER 5 Web Application Tuning
CacheManager.flushCacheByKey(String, PageCacheKey)
Description Flushes the entry for the specified key from the cache.

Syntax

public void flushCache(String cacheName, PageCacheKey key) throws
CacheNotFoundException, CacheNameException

Parameters cacheName
The name of the cache to flush from.

key
The key for the entry to flush. Call getCacheKey(HttpServletRequest, String,
String, String, String, String, boolean, int) to get a key instance.

CacheManager.flushCacheByScope(HttpServletRequest, String)
Description Flushes caches associated with the specified scope.

Syntax

public void flushCacheByScope(HttpServletRequest request, String scope)

Parameters request
The request associated with the page that you are caching content for.

scope
A value from the following table:

Package com.sybase.jaguar.servlet

Class CacheManager

Package com.sybase.jaguar.servlet

Class CacheManager

Value To indicate

application To flush all caches in the Web application.

session To flush all caches whose session ID matches the session ID of
the current session. If there is not an active session, nothing is
flushed.

page Flush all caches for the specified page.
Performance and Tuning Guide 99

Class CacheManager
CacheManager.getCacheKey(HttpServletRequest, String, String,
String, String, String, boolean, int)
Description Creates a cache key for the specified inputs.

Syntax

public PageCacheKey getCacheKey(HttpServletRequest request, String
parameters, String attributes, String headers, String messageTopics, String
scope, Boolean localeSensitive, String tagID)

Parameters request
The request associated with the page that you are caching content for.

parameters
A comma-separated list of request parameters to include in the key. Specify
“*” to include all parameters.

attributes
A comma-separated list of session attributes to include in the key. Specify
“*” to include all attributes.

headers
A comma-separated list of request headers to include in the key. Pass as null
to omit all headers from the key.

messageTopics
A comma-separated list of message topics to include in the key. Pass as null
to omit all headers from the key.

scope
Controls the scope in which data is stored in the cache. Pass a value from the
following table:

localeSensitive
Pass as true if locale-sensitive headers are to be included in the key, and false
otherwise.

tagID
A string containing the unique tag ID for the tag.

Package com.sybase.jaguar.servlet

Class CacheManager

Value To indicate

application All pages in the Web application have
access to the cached data.

session Only requests in the same session can
view the cached data.
100 EAServer

CHAPTER 5 Web Application Tuning
Return value A com.sybase.jaguar.servlet.PageCacheKey instance containing the input data.
Performance and Tuning Guide 101

Class CacheManager
102 EAServer

C H A P T E R 6 Database Access Tuning

This chapter describes how to tune connection caches and the settings that
affect the performance of the EAServer transaction manager. See Chapter
2, “Understanding Transactions and Component Lifecycles,” in the
EAServer Programmer’s Guide for more information on EAServer
transactions.

In addition to the suggestions in this chapter, consult your database
performance and tuning documentation. If you are using Sybase Adaptive
Server Enterprise, the Performance and Tuning Guide is available on the
Sybase Product Manuals Web site at http://sybooks.sybase.com/as.html.

Component design and implementation
The design and implementation of your code to access databases can have
a significant effect on performance.

Keep transactions short
Avoid component designs that require the use of long-running
transactions. For each transaction that your application runs, the database
server may lock tables, rows, indexes, and other resources required to
guarantee the required transaction outcome. Long-running transactions
reduce the scalability of the application, since the required locks may be
held for the duration of the transaction and other users must wait for them
to be released.

Topic Page
Component design and implementation 103

Server and component transaction settings 106

Connection cache settings 108
Performance and Tuning Guide 103

Component design and implementation
In EJB components, minimize the use of bean-managed transactions. If you do
use bean-managed transactions, avoid implementations that allow the
transaction to remain open when a method returns. In stateful components of
other types, avoid designs that require transactions to span client method
invocations. If the transaction remains open when the business method returns,
it can remain open if the client hangs or the user changes their mind. If you
cannot avoid these design patterns, configure a transaction timeout as
described in “Transaction timeout” on page 106.

Many design patterns that depend on long-running transactions can be easily
modified to use optimistic concurrency control. That is, rather than running all
the database work in one transaction, select the initial values and perform all
computations without starting a transaction. Use a timestamp or value
comparisons before updates to verify that data has not been modified since it
was first selected.

Minimize result set size
Tune your queries and schemas to ensure that you do not waste network
resources and memory by selecting unneeded data. For example, do not select
100 rows, then search them in your component to find the one row that you
need. Use the query language to direct the database to find and return only the
data you need.

When you must return large result sets to the client, you may get better
performance by batching the result set into smaller groups of rows, then
reassembling them on the client. Doing so avoids the need to construct large
TabularResults.ResultSet objects in memory.

Use database server optimizations
Tune your queries to minimize database response time. Take advantage of any
performance features available in your database, such as stored procedures if
using Sybase Adaptive Server Enterprise. Consult your database performance
and tuning documentation. If you are using Sybase Adaptive Server Enterprise,
the Performance and Tuning Guide is available on the Sybase Product Manuals
Web site at http://sybooks.sybase.com/as.html.
104 EAServer

CHAPTER 6 Database Access Tuning
Minimize use of two-phase commit
Multiple database transactions require two-phase commit, and consequently
execute more slowly than those that use only a single database. Review your
application design and component transaction settings to make sure that two-
phase commit is used only when the component work involved must be part of
the same atomic unit of database work.

If a component inherits a transaction in an intercomponent call involving two
or more database connections, EAServer uses two-phase commit. The
component’s transaction attribute determines whether transactions can be
inherited through intercomponent calls. For more information, see
“Component properties: Transactions” in the EAServer Programmer’s Guide.
For example, two-phase commit is required if the component’s transaction
attribute is “Supports,” the component has been called from another
component that has attribute “Requires,” and the components use different
connection caches.

To avoid use of two-phase commit for a component’s database work, set the
transaction attribute to “Requires New” after verifying that the work can be
commit or rollback independently of the calling components transaction
outcome. If a component performs updates to a noncritical database you can
choose “Not Supported” as the component's transaction attribute to eliminate
the overhead of using EAServer transactions at all. For example, the
component may log usage statistics to a remote database.

If a component requires different transaction attributes for different contexts,
you can create a copy of the component definition in EAServer Manager and
change only the transaction attribute.

Clean up connections before releasing them to the cache
Many JDBC programs do not explicitly clean up java.sql.Statement objects.
Instead, they rely on the JDBC driver to clean up Statement objects when the
connection is closed. This strategy does not work with cached connections; you
must explicitly clean up Statement objects before releasing a connection back
into the cache. To clean up Statement objects, call Statement.close() and set the
Statement reference to null.

 Warning! To prevent memory leaks, you must explicitly clean up a
connection’s Statement objects before releasing the connection back into the
cache. Do not release the same connection more than once.
Performance and Tuning Guide 105

Server and component transaction settings
Avoid unnecessary database work
For PowerBuilder and CORBA components that participate in transactions,
you can call isRollBackOnly to test if the transaction is doomed before the
method executes more logic that would have to be rolled back. For more
information, see “Using transaction state primitives” in the EAServer
Programmer’s Guide.

Server and component transaction settings
These server properties affect the performance of the EAServer transaction
manager and components that use server-managed transactions.

Transaction timeout
Make sure you have configured a transaction timeout if your application uses
EJB bean-managed transactions, or if you use components of other types that
keep transactions open across method calls. The transaction timeout setting
specifies the maximum duration of an EAServer transaction. The default
configuration allows transactions to remain open indefinitely. A finite timeout
allows transactions to be closed when the client crashes or hangs during an
open transaction.

You can set the timeout for components on the Resources tab in the EAServer
Manager Component Properties dialog box. If you are using jagtool, the
property name is com.sybase.jaguar.component.tx_timeout.

You can set a default timeout at the server level by setting server property
com.sybase.jaguar.server.tx_timeout (set on the Advanced tab in the Server
Properties dialog box). EAServer determines the transaction timeout period as
follows:

• If the component transaction timeout property is set to a nonzero value,
this is the timeout period.

• Otherwise, the server transaction timeout property is checked (the server
transaction timeout is specified by the
com.sybase.jaguar.server.tx_timeout property). If the server transaction
timeout is non-zero, this specifies the timeout period.
106 EAServer

CHAPTER 6 Database Access Tuning
• Otherwise, the component Instance Timeout value is checked. A nonzero
value specifies the transaction timeout period as well as the instance
timeout period.

• Otherwise, the transaction timeout is infinite.

For both the component and server setting, the timeout period is configured in
seconds, with 0 indicating no timeout. The default for a new server is 0. When
specifying timeouts, Sybase recommends a resolution of 5 seconds. Network
transport time is included in the measured timeout period. You may need to
configure a larger timeout period if clients connect over slow networks.

EAServer checks for timeouts after each method returns. Your component will
not be deactivated in the middle of an invocation because of a timeout. When
a transaction times out, the next method invocation in the client-side ORB
throws the CORBA::TRANSACTION_ROLLEDBACK system exception.

Transaction memory table size
The transaction manager uses an internal table to track the status of pending
transactions. You can tune the size of the table by setting the server property
com.sybase.jaguar.server.jta.tranTableSize. The default is 1024.

This table provides cached storage of the transaction information. If the
number of pending transactions exceeds the table size, new memory is
allocated and deallocated as needed. For best performance, set the value to at
least one-half the maximum number of simultaneous transactions expected in
your application.

Unexpected deadlock errors
If you see unexpected deadlock or slow database throughput when executing
transactional components, check for the following setting in the properties of
the component that initiates the transaction:

com.sybase.jaguar.component.iso_level=serializable

This setting causes the transaction to run with serializable isolation level,
which can cause deadlocks or degraded performance for any component that
uses JDBC connections, other than EJB 1.0 session beans. For components that
are not EJB 1.0 session beans, delete this setting using the Advanced tab in the
component properties dialog box. This setting was erroneously used as a
default for new components in earlier versions of EAServer.
Performance and Tuning Guide 107

Connection cache settings
If the component is an EJB 1.0 session bean, verify that the Transaction
Isolation Level setting on the Transactions tab matches your application
requirements.

Connection cache settings
Connection caches increase performance by allowing reuse of database
connections, eliminating the overhead of repeatedly creating and destroying
connections to the same database. For general information on connection
caches, see:

• Chapter 4, “Database Access,” in the EAServer System Administration
Guide describes how to create and configure connection caches.

• Chapter 26, “Using Connection Management,” in the EAServer
Programmer’s Guide describes how to code your applications to use
connection caches.

The following sections describe how to tune connection cache settings for the
best performance.

Tuning the cache size
Connection caches have 10 connections by default. For applications with many
clients, this number is often too small. For lightly used caches, you can lower
the size to free up memory and network connections that would be wasted by
rarely used database connections. To tune the cache size, monitor the cache
statistics as described in Chapter 11, “Runtime Monitoring,” in the EAServer
System Administration Guide. Tune the cache size by setting the properties
listed in Table 6-1.

Table 6-1: Properties to configure connection cache size

Property Description

Minimum Connection
Pool Size

The minimum number of pooled connections, allocated at server start-up. If not set,
the default is 0.

With jagtool, you can set as com.sybase.jaguar.conncache.poolsize.min.
108 EAServer

CHAPTER 6 Database Access Tuning
Set the pool size so the majority of database connections are taken from the
cache. You can tune the minimum pool size and refresh rate parameters to
reduce the number of database connections that are held during off-peak hours.
You can raise the maximum size if you see many failed connection requests or
waits.

Figure 6-1 illustrates how these settings affect the growth of the connection
cache.

Maximum Connections The absolute maximum number of connections that can be created from the cache.
Requests for excess connections either block or fail. A value of 0 indicates that there is
no limit.

With jagtool, you can set as
com.sybase.jaguar.conncache.poolmanager.maxconnection.

Maximum Connection
Pool Sizes

The maximum number of connections that can be cached. If connections are allocated
beyond this number, the cache manager drops the excess connections when they are
released.

With jagtool, you can set as com.sybase.jaguar.conncache.poolsize.max.

Wait for Connections When the maximum connections limit is reached, specifies whether requests for excess
connections fail immediately or wait until a connection is released. If this setting is
enabled, the request waits.

With jagtool, you can set as com.sybase.jaguar.conncache.wait.

Pooled Connection Idle
Timeout

Specifies the number of seconds an idle connection remains in the pool before it is
dropped. The default is 300 seconds (5 minutes). Idle connections are dropped until the
minimum pool size is reached.

Note If the minimum connection pool size is set to 0, connections are not dropped.

To disable the monitoring of idle connections, set to a negative value. For more
information, see “Disabling the cache size monitor thread” on page 111.

With jagtool, you can set as com.sybase.jaguar.conncache.idletimeout.

Pooled Connection
Refresh Rate

The refresh rate for the cache, that is, how often the cache manager checks for excess
connections that have been idle longer than the idle timeout period. The default is 600
seconds (10 minutes).

To disable the monitoring of idle connections, set to a negative value. For more
information, see “Disabling the cache size monitor thread” on page 111.

With jagtool, you can set as com.sybase.jaguar.conncache.refreshrate.

Property Description
Performance and Tuning Guide 109

Connection cache settings
Figure 6-1: Connection cache growth patterns

When the server starts, it preallocates the minimum number of connections,
allowing faster response times to the initial client requests that require a
database connection.

If all connections are in use simultaneously, the cache manager creates new
connections. When released, these connections are added to the cache, causing
it to grow towards its maximum pool size.

Minimum
pool size

Absolute
maximum size

start-up

Normal use

Peak use

Maximum
pool size

Normal use
110 EAServer

CHAPTER 6 Database Access Tuning
During peak use, additional connections may be required beyond the maximum
pool size, up to the absolute maximum. When these excess connections are
released, they are closed rather than placed in the cache. Setting an absolute
maximum prevents your application from overwhelming the database with too
many connections or exceeding database license limits. You can set the Wait
for Connections setting to determine what happens when your application asks
for connections in excess of the absolute maximum size. You can also set the
absolute maximum to 0 to indicate no limit.

Note When many connections are created in excess of the maximum pool size,
you may see a drop in performance. You may also see a drop in performance if
excess, unpooled connections are rapidly created and destroyed to service short
transactions. To avoid these scenarios, raise the maximum pool size.

When the activity level drops, the cache manager removes idle connections if
you have configured a refresh rate and idle connection limit. If there is no
activity, the cache size drops back down to the minimum.

Monitoring cache activity

You can monitor the cache activity in EAServer Manager to determine how
effective the cache settings are. See “Monitoring connection caches and
managed connection factories” in Chapter 11, “Runtime Monitoring,” in the
EAServer System Administration Guide for more information.

Disabling the cache size monitor thread

The cache manager runs a thread to monitor the number of connections and
close those that are in excess of the minimum size when they have been idle
longer than the idle timeout period. If you do not want the cache size reduced
below the maximum pool size, you can set the Idle Timeout and Refresh Rate
to negative values. When you use these settings, the cache monitor thread
terminates when the maximum pool size is reached.

Tuning caches used by EJB CMP entity beans

For EJB CMP entity beans, EAServer provides wrapper drivers that improve
performance by using statement batches and stored procedures. For more
information, see “Using CMP JDBC wrapper drivers” on page 60.
Performance and Tuning Guide 111

Connection cache settings
Remove unused connection caches
Remove unused connection caches or set the Minimum Pool Size setting to 0.
EAServer allocates the minimum pool size for each cache, and unused
connections waste memory and network resources.

Sanity checking
If sanity checking is enabled, the cache manager runs a stock query to verify
that connections are ready for use before placing them back in the cache. Sanity
checking prevents errors that occur when components release a connection that
is not ready for use by another component. For example, there may be pending
results on the connection, causing an error when the next component to use the
connection tries to send a command.

If you have debugged the results handling in your application, you can improve
performance by disabling sanity checking on the Caching tab in the EAServer
Manager Cache Properties dialog box or by using jagtool to set the
com.sybase.jaguar.conncache.checkallowed property to false.

SQL tracing
You can enable tracing of the commands issued through each connection in a
cache on the SQL Tracing tab in the EAServer Manager Connection Properties
dialog box. For details, see “SQL tracing properties” in the EAServer System
Administration Guide.

SQL tracing can help you debug performance issues that are caused by poor
database response times. However, the file I/O does increase the response time
of EAServer, so disable SQL tracing unless you are debugging database
performance issues.
112 EAServer

CHAPTER 6 Database Access Tuning
Using the caching APIs
In Java/CORBA, C, C++, and ActiveX components, you must use the
EAServer APIs to obtain a cache reference and retrieve connections from the
cache. For best performance, use by-name lookup to obtain cache handles and
pass the cache handle when obtaining and releasing connections. Doing so
avoids internal table searches in the cache manager. For information on using
these APIs, see Chapter 26, “Using Connection Management,” in the
EAServer Programmer’s Guide.

Dynamic prepare on jConnect caches
Ensure that connection caches that utilize a com.sybase driver class are defined
with the DYNAMIC_PREPARE property set to FALSE for optimal
performance. In EAServer 4.1.1 and later, this property is set to FALSE by
default. However, it was set to TRUE by default in some earlier versions. In
EAServer 4.1.1 and later, a warning is printed in the log file if a connection
cache has this property set to TRUE.

Database and driver specific settings
See the documentation for your database and the connectivity driver or library
for performance tuning recommendations. For example, if you are using
Sybase jConnect for JDBC, the Programmer’s Reference includes a chapter on
performance and tuning. This document is available in the jConnect
documentation on the Sybase Web site at http://sybooks.sybase.com/jc.html. If
using Sybase Adaptive Server Enterprise, see the Performance and Tuning
Guide, available in the Adaptive Server Enterprise Documentation on the Sybase
Web site at http://sybooks.sybase.com/as.html.

Unless you are actively debugging problems, ensure that the trace and debug
settings are disabled for your connectivity driver or library.
Performance and Tuning Guide 113

Connection cache settings
114 EAServer

C H A P T E R 7 Cluster Tuning

This chapter describes the performance benefits of EAServer clusters and
tells you what settings to tune for the best performance when your
application runs in a cluster.

When to use clusters
An EAServer cluster is a group of servers that share replicated repository
information to run the same components and Web applications. A
clustered deployment provides load balancing and high availability, at the
cost of slightly increased overhead to replicate client session information
between servers in the cluster. If you are not familiar with these concepts,
see these chapters in the EAServer System Administration Guide:

• Chapter 6, “Clusters and Synchronization”

• Chapter 7, “Load Balancing, Failover, and Component Availability”

If your application cannot support the required number of clients running
on one machine, moving to a cluster allows EAServer to balance the load
across several machines. Depending on the hardware you choose, a cluster
of low priced machines may be less expensive than upgrading to a single
machine with multiple CPUs. Clusters also provide failover support when
you run servers on multiple machines: no single machine failure takes
your application offline.

Topic Page
When to use clusters 115

Cluster settings that affect performance 116

IIOP client settings that affect load balancing 118

Web application settings 120

Component settings 122
Performance and Tuning Guide 115

Cluster settings that affect performance
Clusters incur a slight overhead increase due to the need to replicate client
session data between servers. You can minimize the performance impact by
minimizing your use of stateful components and HTTP session storage, and by
tuning the state replication mechanisms.

Cluster settings that affect performance
You can tune these cluster properties for best performance.

Heartbeat detection
Heartbeat detection determines how often the cluster’s name servers test
whether each server is online. When the name server detects a server has gone
offline, it stops directing IIOP clients to that server.

Heartbeat detection affects only IIOP clients and interserver calls. If you
partition components, that is, you do not install all components into every
server, interserver calls are required when a component calls another
components that is not available on the same server. In these cases, enable
heartbeat detection and tune the test interval. A shorter interval minimizes the
chance that clients attempt to connect to servers that have gone offline, but if
the interval is too short, you can waste resources with excessive broadcasting
from the name servers to the member servers. The default of two minutes
works well for most applications.

If your application does not have any IIOP clients or use interserver calls, you
can disable heartbeat detection in EAServer. (Note HTTP client load balancing
and failover are performed outside of EAServer.)

To change these setting in EAServer Manager, follow the instructions in
“Heartbeat detection” in Chapter 6, “Clusters and Synchronization,” in the
EAServer System Administration Guide. To change this setting with jagtool,
use the set_props command to set these properties for the primary server:

• com.sybase.jaguar.server.CosNaming.heartbeat

• com.sybase.jaguar.server.CosNaming.heartbeatfrequency

Synchronize the cluster after modifying these settings.
116 EAServer

CHAPTER 7 Cluster Tuning
Load balancing policy
EAServer supports several algorithms to balance the IIOP client load between
servers in the cluster. The EAServer name service uses the specified algorithm
to determine which server each client connects to when the client resolves the
component name. For more details, see “Understanding load balancing” in
Chapter 7, “Load Balancing, Failover, and Component Availability,” in the
EAServer System Administration Guide.

These settings affect only applications that use IIOP clients or that require
inter-server calls between cluster members. The settings do not affect Web
applications, since HTTP client load balancing is done outside of EAServer.

You can configure the load balancing policy to ensure the IIOP client load is
evenly distributed. You can also change connection settings in your client
programs to help ensure an even load distribution, as described in “IIOP client
settings that affect load balancing” on page 118. EAServer supports these
distribution policies:

• Random weighted Static, even distribution of naming requests using a
random selection algorithm to map name requests to destination servers.
The load is likely to balance evenly over time, but can vary due to the
random nature of the distribution algorithm and the fact that some
components load the server more heavily than others.

• Round-robin Static, even distribution of naming requests using a
round-robin selection algorithm to map name requests to destination
servers. The load is likely balance evenly over time, but can vary due to
the fact that some components load the server more than others.

• Weighted Same as random, but the selection is weighted using the
weights you assign to each server. Over time, each server carries a portion
of the load in proportion to the weight that you assign to each server. Use
this algorithm if some machines in the cluster can support more clients
than others.

• Adaptive Same as random, but the selection is weighted using weights
that are calculated based on a sampling of each server’s existing load. This
policy provides the highest assurance that the load will balance evenly
across servers at any time. However, the broadcasting and collection of
sampled load data does add slight overhead.

To configure these settings in EAServer Manager, follow the instructions in
“Configuring load balancing” in Chapter 7, “Load Balancing, Failover, and
Component Availability,” in the EAServer System Administration Guide. To
configure these settings with jagtool, use the set_props command to set these
properties for the cluster:
Performance and Tuning Guide 117

IIOP client settings that affect load balancing
• com.sybase.jaguar.cluster.DLBbroadcastInterval

• com.sybase.jaguar.cluster.DLBcalculateInterval

• com.sybase.jaguar.cluster.DLBenable

• com.sybase.jaguar.cluster.DLBmaxWeight

• com.sybase.jaguar.cluster.DLBpolicy

• com.sybase.jaguar.cluster.DLBrefreshInterval

• com.sybase.jaguar.cluster.DLBsampleInterval

• com.sybase.jaguar.cluster.DLBweights

Synchronize the cluster after modifying these settings.

Using partitioning You can also further balance the load by partitioning
components and Web applications between different logical servers. For
example, you might install your Web application in the logical server Jaguar1,
using this server name to start with this configuration on two machines in the
cluster, and install the packages containing your components in the logical
server Jaguar2, using this server name to start the Jaguar2 configuration on four
machines in the cluster. A drawback of this configuration is that component
invocations from the Web tier and intercomponent calls can require interserver
communication over the network, which is slower than in-server invocations
and prevents the use of some optimizations such as EJB local interfaces.

IIOP client settings that affect load balancing
In a cluster, the load balancing policy decides the algorithm used to map client
naming requests to destination servers. While the load balancing policy can
evenly distribute the initial client connections, long running IIOP clients can
create unbalanced loads by building an affinity for the server that they are
initially directed to by the name service. To avoid this problem, configure these
settings in the client runtime:
118 EAServer

CHAPTER 7 Cluster Tuning
• Socket reuse limit Limits how many times the client runtime reuses a
network connection to call methods from one server. The default is 0, which
indicates no limit. The default is inappropriate for a long-running client program
that calls many methods from servers in a cluster. If sockets are reused indefinitely,
the client can build an affinity for servers that it has already connected to rather
than randomly distributing its server-side processing load among all the servers in
the cluster. In these cases, tune the property to best balance client performance
against cluster load distribution. In Sybase testing, settings between 10 and 30
proved to be a good starting point. If the reuse limit is too low, client performance
degrades. The following table describes how to set this property for each client
type:

• Idle connection timeout Specifies the time, in seconds, that a connection is
allowed to sit idle. When the timeout expires, the ORB closes the connection. The
default is 0, which specifies that connections can never timeout. The connection
timeout does not affect the life of proxy instance references; the ORB may close
and reopen connections transparently between proxy method calls. Specifying a
finite timeout for your client applications can improve server performance. If many
instances of the client run simultaneously, a finite client connection timeout limits
the number of server connections that are devoted to idle clients. A finite timeout
also allows rebalancing of server load in an application that uses a cluster of
servers. The following table describes how to set this property for each client type:

Client type Property name

Java com.sybase.CORBA.socketReuseLimit

EJB com.sybase.ejb.socketReuseLimit

C++,
ActiveX, and
PowerBuilder

ORBsocketReuseLimit

You can also set the environment variable
JAG_SOCKETREUSELIMIT.

Client type Property name

Java com.sybase.CORBA.idleConnectionTimeout

You must also specify a garbage collection period by setting
the com.sybase.CORBA.GCInterval property to an equal or
lesser value. Connections are only closed when garbage
collected.

EJB com.sybase.ejb.idleConnectionTimeout

You must also specify a garbage collection period by setting
the com.sybase.ejb.GCInterval property to an equal or lesser
value. Connections are only closed when garbage collected.

C++,
ActiveX, and
PowerBuilder

ORBidleConnectionTimeout

You can also set the environment variable
JAG_IDLECONNECTIONTIMEOUT.
Performance and Tuning Guide 119

Web application settings
• Connection timeout Sets a time limit to receive a server response before the
connection fails over to try another server in the cluster. Setting this property
ensures that failover happens without an unreasonable delay. Specify the timeout
period in seconds. The default of 0 indicates no time limit. The following table
describes how to set this property for each client type:

For information on setting client runtime properties for EJB, Java, C++, and
ActiveX clients, see these chapters in the EAServer Programmer’s Guide:

• Chapter 8, “Creating Enterprise JavaBeans Clients”

• Chapter 12, “Creating CORBA Java Clients”

• Chapter 15, “Creating CORBA C++ Clients”

• Chapter 20, “Creating ActiveX Clients”

For information on PowerBuilder clients, see the PowerBuilder Application
Techniques manual.

Web application settings
Web applications in a clustered deployment can provide better performance
since multiple machines can handle more load than one. Clusters also provide
high availability: if one machine goes off-line, clients can connect to another
server in the cluster. To run your Web application in a cluster, you must
configure a mechanism to support load balancing of HTTP requests, and
optionally failover. For more information, see “Deploying Web applications to
a cluster” in Chapter 7, “Load Balancing, Failover, and Component
Availability,” in the EAServer System Administration Guide.

Chapter 5, “Web Application Tuning,” describes the Web application settings
that you can tune for single-server deployments. In a clustered deployment,
these additional settings affect performance:

• Your choice of session replication options

Client type Property name

Java com.sybase.CORBA.connectionTimeout

EJB com.sybase.ejb.connectionTimeout

C++,
ActiveX, and
PowerBuilder

Not supported.
120 EAServer

CHAPTER 7 Cluster Tuning
• The cache size, if replicating sessions in memory

HTTP session replication mechanism
In a clustered deployment, EAServer replicates user session data stored in
HTTP sessions so that the same data is available on other servers in the cluster.
Replication can use a remote database server or in-memory storage.

If using in-memory replication, EAServer replicates data between mirror
pairs, that is, a pair of servers configured to share the same user session. In-
memory replication can perform better than using a database, but requires more
memory on each server. Specify a cache size to constrain the memory required
by the cache, and specify a timeout to free up memory used by idle sessions.
To set these parameters, follow the instructions in “Deploying Web
applications to a cluster” in Chapter 7, “Load Balancing, Failover, and
Component Availability,” in the EAServer System Administration Guide.

If using database replication, all servers in the cluster store session data in a
remote database. This mechanism can perform slower than in-memory
replication, but requires less memory. Also, EAServer can share a client’s
session data on more than two servers. If using this technique:

• Tune the connection cache settings as described in “Connection cache
settings” on page 108.

• Make sure the table used is indexed. For information on creating the
database table, see “Table schema for binary storage” in Chapter 29,
“Configuring Persistence Mechanisms,” in the EAServer Programmer’s
Guide.

Lazy session validation
In the default configuration, EAServer validates a client’s HTTP session during
each request. In a clustered deployment, session validation is more resource
intensive since EAServer stores the session in a database or using a replicated
cache. If you enable lazy validation, EAServer validates the session only when
a servlet or JSP calls ServletRequest.getSession() or
ServletRequest.getSession(boolean). To enable this setting, set the
com.sybase.jaguar.webapplication.lazydistributedhttpsessionvalidation Web
application property to true.
Performance and Tuning Guide 121

Component settings
Lazy validation can improve performance. However, enabling lazy
authentication has the following side effects:

• The last-accessed-time session attribute is set only when the servlet or JSP
accesses the session. Consequently, the session may expire sooner than
expected if the client accesses only static pages or servlets and JSPs that
do not access the session data.

• When the session is invalidated, the client is not assigned a new session
until they request a page that requires a session.

• The client’s security credentials (if any) are available only to JSPs and
servlets that are marked protected via the security constraints property.
Other pages cannot retrieve the client’s credentials—the
ServletRequest.getUserPrincipal() method returns null even though the
client is logged in.

Component settings
Chapter 3, “Component Tuning,” describes the component settings and
implementation techniques that you can tune for single-server deployments. In
a clustered deployment, these additional settings affect performance.

Automatic failover
To allow load balancing when deployed in a cluster, your components must
have the Automatic Failover option enabled on the Transactions tab in the
EAServer Manager Component Properties dialog box. To configure this setting
with jagtool or in the EJB deployment descriptor, set the property
com.sybase.jaguar.component.auto.failover to true.
122 EAServer

CHAPTER 7 Cluster Tuning
Component state replication
If your application uses stateful components such as EJB stateful session
beans, you must configure a mechanism for EAServer to replicate state data
between servers in the cluster. You can use a remote database server or in-
memory replication. For more information, see Chapter 28, “Configuring
Persistence for Stateful Session Components,” in the EAServer Programmer’s
Guide.

If using in-memory replication, EAServer replicates state data between mirror
pairs, that is, a pair of servers configured to share the same user session. In-
memory replication can perform better than using a database, but requires more
memory on each server. Configure the cache size and session timeout to control
how much memory the cache uses. For instructions, see “Requirements for in-
memory stateful failover” in Chapter 29, “Configuring Persistence
Mechanisms,” in the EAServer Programmer’s Guide:

If using database replication, all servers in the cluster store session data in a
remote database. This mechanism can perform slower than in-memory
replication, but requires less memory. Also, EAServer can share a client’s
session data on more than two servers. If using this technique:

• Tune the connection cache settings as described in “Connection cache
settings” on page 108.

• Make sure the table used is indexed. For information on creating the
database table, see “Table schema for binary storage” in Chapter 29,
“Configuring Persistence Mechanisms,” in the EAServer Programmer’s
Guide.

EJB CMP entity bean instance and query caching
EJB CMP entity bean caching is described in “Entity instance and query
caching” on page 63. When using this feature in a clustered deployment, you
can configure the cache settings to determine whether cached data is
synchronized between servers in the cluster. “Cache coherency and transaction
consistency” on page 64 discusses the pros and cons of cache synchronization.
To configure this setting, follow the instructions in “Configuring object
caching” on page 65.
Performance and Tuning Guide 123

Component settings
124 EAServer

C H A P T E R 8 Message Service Tuning

This chapter describes how to tune the EAServer message service for best
performance. Before reading this chapter, you should be familiar with
message service configuration and programming, as described in these
chapters:

• Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide

• Chapter 31, “Using the Message Service,” in the EAServer
Programmer’s Guide

Best practices for coding
For best performance, follow these recommendations when coding to the
JMS or message service APIs:

• Consider storage types carefully EAServer supports two options
for message storage and delivery:

• Persistent messages are stored in a remote database and also
cached in memory. Since the messages are stored in a database,
they are not lost when the server goes offline or restarts.

• Transient messages are stored in memory only, and can be lost if
the server goes offline or restarts.

Topic Page
Best practices for coding

Global message service settings 127

Queue and topic settings 128

Thread pools 131

Shared listeners 132

The key log table 133
Performance and Tuning Guide 125

Best practices for coding
EAServer processes transient messages faster because they do not require
database interaction. However persistent messages offer more reliable
delivery (depending on the settings described “Queue and topic settings”
on page 128).

Use transient messages if your application requirements allow the
possibility of lost messages. For example, transient storage may suffice if
the message is intended to notify retail customers of new catalog items. On
the other hand, if the message represents a change to a customer’s account
balance, use persistent storage for the most reliable delivery.

• Use transactions only when necessary Transacted sessions create
additional overhead. If some messages require transacted sessions but
others do not, create a separate session for the nontransactional messages.

• Use message selectors If using the publish/subscribe model, message
selectors save bandwidth by preventing the delivery of messages that the
subscriber does not need. Do not scan and delete messages in your client
code. Instead, create a selector so that the server filters messages before
they cross the network.

• Start consumers before producers Messages that you send before a
consumer is available can create backlogs in the queue. If you can control
the timing, make sure the consumer starts first.

• Set the expiration time If appropriate, set the message time-to-live
property. Doing so allows EAServer to free resources associated with the
message when it expires. For example, in an automated trading
application, you might set the time-to-live to 10 seconds for price-change
messages, assuming this is the acceptable window for execution of trades
that result from message receipt.

• Set message priority If some messages must be delivered ahead of
others, set the message priority property. Priority values are application
assigned relative values ranging from 0 to 9. You must use them
consistently in your application.

• Minimize message size Longer messages consume more network
bandwidth and take longer to process in memory. Design your message
formats to eliminate unnecessary data. For large values, consider using
compression.

• Clean up after yourself Close resources such as connections, sessions,
queues, and topics as soon as you no longer need them.
126 EAServer

CHAPTER 8 Message Service Tuning
Global message service settings
These settings can be configured by running the Message Service
Configuration wizard in EAServer Manager or by editing the
MessageServiceConfig.props file in the EAServer
Repository/Components/CtsComponents subdirectory. For more information,
see Chapter 8, “Setting up the Message Service,” in the EAServer System
Administration Guide.

Database and connection cache
You can specify the connection cache used by the message service in the
configuration wizard. Tune the cache settings as described in “Connection
cache settings” on page 108. To support development use, the default message
service configuration connects to the Adaptive Server Anywhere database
server runtime that is included with EAServer. For large scale production use,
Sybase recommends that you use an enterprise-grade database server such as
Sybase Adaptive Server Enterprise.

Tracing
For best performance, make sure tracing is disabled. Set the properties listed in
Table 8-1 to false; these properties are set in the MessageServiceConfig.props
file.

Table 8-1: Message service tracing properties

Other global settings
You can modify these settings by editing the MessageServiceConfig.props file.

Property Specifies

cms.debug General tracing

cms.debug.session Session level tracing

cms.debug.network Network level tracing
Performance and Tuning Guide 127

Queue and topic settings
default.maximum

This global property configures a maximum limit for persistent messages
stored in the <system> queue and user defined queues with the queue maximum
property set to 0 or a negative number (see “Queue size” on page 130). To set
the global property, specify the message limit, for example:

default.maximum=120

The default is 100. This setting restricts in-memory caching of persistent
messages; you can change it to tune the memory used to hold persistent
messages in the <system> queue and user defined queues where the maximum
property is 0 or a negative value.

This setting also determines how many persistent messages EAServer reads
into memory during message service initialization. A large default size can
delay server startup when there is a large backlog of unprocessed messages,
since the message service reads this many messages into memory when
initializing.

The setting does not restrict the number of transient messages in the system
queue or in user defined queues where the maximum property is 0 or a negative
value.

session.timeout

This property specifies the default timeout for temporary message queues for
which you have not set an explicit timeout. Specify the timeout in seconds. The
default is 60. The minimum value is 5; values less than this have the same
effect as setting the timeout to 5 seconds.

Queue and topic settings
These settings affect the performance of the applications message consumers
and message producers. You can configure them in the message queue and
connection factories that you create in EAServer Manager. To associate
message queue properties with a topic, specify the message queue name in the
connection factory properties, then use the connection factory to create topics
in your application.
128 EAServer

CHAPTER 8 Message Service Tuning
REQUIRES_ACKNOWLEDGE
In queue properties, this setting specifies whether EAServer must redeliver
messages that the consumer has not acknowledged. If set to false, messages can
be lost if the client fails while the message is being delivered. A value of true
guarantees delivery of persistent messages, and guarantees delivery of
transient messages as long as the server does not fail or shut down (contingent
on the queue settings and message time-to-live property). Setting this property
to false for the connection factory yields significantly improved throughput for
bulk publishing of transient messages.

REQUIRES_TRANSACTION or SUPPORTS_TRANSACTION
In queue properties, if you set REQUIRES_TRANSACTION to true, EAServer
guarantees that persistent messages are delivered only once. In the connection
factory properties, the REQUIRES_TRANSACTION and
SUPPORTS_TRANSACTION properties determine whether EAServer
processes persistent messages in the context of component- or client-initiated
transactions. To improve throughput for bulk publishing, sending, or receiving
transient messages, set these properties to false.

Quality of protection
In queue properties, the qop setting specifies the required level of SSL security.
The default of “none” allows the use of plain IIOP. For best performance, use
the default unless the application requires the additional security provided by
SSL.

Tables for persistent messages
By default, all persistent messages are stored in one database table named
message_queue. To specify a different table, set the table property for the
message queue in EAServer Manager. You may get better performance using
dedicated tables for each queue and topic. In any case, make sure the table used
is indexed in the database.
Performance and Tuning Guide 129

Queue and topic settings
Queue size
Set the queue maximum property to constrain the size of the in-memory queue.
A positive number specifies how many messages can be stored in memory at
once. When the number of messages exceeds the specified limit, EAServer
discards messages in the order that they would have been retrieved.

A negative number or the default of 0 specifies that there is no size limit (other
than that imposed by available memory) for the number of transient messages
in the queue. In this case, the number of persistent messages in the queue is
limited by the default.maximum setting in the MessageServiceConfig.props
file—see “Other global settings” on page 127.

Tune the queue size to balance memory constraints against the possibility of
lost messages. Persistent messages that are discarded from memory can be
retrieved from the database. Transient messages are lost when discarded from
the queue.

You can also control the memory used by queues and topics by:

• Configuring timeout settings

• Setting the time-to-live message property in your application code

• Minimizing the message size

Timeout settings
In queue or topic properties, the timeout setting specifies number of seconds
that the message queue remains in memory when it is not being accessed by a
consumer and has no registered listener. The default of 0 specifies no timeout.
Any transient messages that are in memory when a timeout occurs are
discarded.

If your application uses temporary queues or topics, the global session.timeout
property specifies the default timeout–see “Other global settings” on page 127.
If this value is not set, the default is 60 seconds. You can override the default
by using a connection factory to create the temporary queue or topic, with a
timeout specified in the EAServer Manager queue indicated by the connection
factory’s CONFIG_QUEUE property.
130 EAServer

CHAPTER 8 Message Service Tuning
Thread pools
Using a thread pool can significantly improve performance. For applications
that use the JMS API, create thread pools in EAServer Manager as described
in “Thread pools” in the EAServer System Administration Guide. If using
jagtool, create and configure thread pools with the jmscreate and jmsset_props
commands, respectively. In applications that call the EAServer
CtsComponents::MessageService API, you can create thread pools
programmatically. For details, see “Creating thread pools programmatically”
in the EAServer Programmer’s Guide.

For EJB MDB components and other components that you install as message
listeners, EAServer by default delivers messages using a single worker thread
(the default thread pool is <system> and cannot be modified). The default
configuration guarantees first-in-first-out (FIFO) processing of messages in the
queue, based on message priority: EAServer delivers messages serially to one
component instance. If you do not require FIFO message ordering, use a
customized thread pool to increase throughput. When you use a thread pool
with multiple worker threads, EAServer creates multiple component instances
that run in different worker threads to process messages concurrently.

When a thread pool is used for client notification, the message queue object is
implemented with a specialized server IIOP handler that uses only a few
waiting threads to handle blocking receive calls, so it avoids waking large
numbers of threads for client notification.

❖ Assigning a thread pool to an MDB

Assigning a thread pool to an MDB component allows EAServer to create
multiple instances for concurrent message processing on different threads.
Create and assign the thread pool as follows:

1 Create a thread pool for component notification, and set the workers
property to a value greater than 1.

2 Assign this thread pool to the MDB:

1 In EAServer Manager, highlight the MDB, and select File | Properties.

2 On the MDB Type tab, append the name of the thread pool you just
created to the Listener name. For example, if you created a thread pool
called “threads1” and the Listener Name is MyPkg/MyComp, change
the Listener Name to MyPkg/MyComp[threadsl].

See Chapter 31, “Using the Message Service,” in the EAServer
Programmer’s Guide for more information about configuring MDBs.
Performance and Tuning Guide 131

Shared listeners
❖ Assigning a thread pool to a message listener using non-EJB
components

EAServer allows you to create non-EJB components that act as message
listeners, as described in “Listeners” in the EAServer System Administration
Guide. Use a thread pool to allow concurrent message processing by multiple
instances of the component. To create and assign the thread pool:

1 Verify that the component supports concurrent execution. For more
information, see “Concurrency” on page 30.

2 Create a thread pool for component notification, and set the workers
property to a value greater than 1.

3 In the message queue where you installed the component as a listener,
specify the thread pool name in brackets after the component name, using
the format:

package_name/component_name[threadpool_name]

❖ Using a thread pool for client notifications

Using thread pools to improve performance is generally suitable only for high-
volume client notification with transient messages. When message delivery is
transactional or IIOP/SSL via the QOP property, the thread pool’s reader and
writer threads are not used. To create client applications that use the thread
pool:

1 Create a thread pool. For initial testing, set the value of readers to “3”,
writers to “2”, and workers to “0”. Later, based on your own performance
measurements, you can increase the number of reader and writer threads
if the change improves throughput.

2 Create a connection factory or modify the one you already use, and set the
THREAD_POOL property to the name of the thread pool.

3 In your client code, use this connection factory to create the topics or
queues that you use to create and receive messages.

Shared listeners
In client applications, a shared listener can greatly improve performance for
nondurable topic subscribers by creating a single message queue for all the
topic subscriptions. To use this feature:
132 EAServer

CHAPTER 8 Message Service Tuning
1 In EAServer Manager create a topic connection factory (or modify the one
that you use already). Set the SHARED_LISTENER property to true.

2 In your code:

a Use this connection factory to create your topic subscriptions.

b Install a message listener on the first topic subscription, then each
nondurable subscription that uses the connection, receives messages
from this listener.

EAServer imposes two restrictions for shared listeners:

• Do not call setMessageListener with a null parameter. This shuts down the
current listener, which may be in use by other subscribers.

• Do not call setMessageListener with the name of another listener, which
shuts down the current listener and registers the new listener.

The key log table
The message service uses a database table named key_log to control the
processing of messages with duplicate key values. If you set the
IGNORE_DUPLICATE_KEY option for the queue properties, or pass this option
to the send or publish methods, EAServer must check for duplicate keys. To do
so, the message service inserts the key to the key_log table, which has a unique
index on the message key value and queue name. A failed insert indicates that
the key is a duplicate.

The key_log table can grow large enough to affect database and message
service performance. In this case, you should periodically remove entries that
are old enough that the key is unlikely to be reused.

❖ To control the size of the key log:

1 Add a column to the key_log table using the database date type, such as
datetime for Sybase databases. Modify the kl.create property in
MessageServiceConfig.props so that the column is included when
EAServer creates the table.

2 Set the column default to the current date and time. For example, specify
getdate() if using a Sybase database server. Specify the default in the
database table schema, or modify the kl.create property in
MessageServiceConfig.props to insert the value.
Performance and Tuning Guide 133

The key log table
3 Periodically run a database command to delete rows that are more than X
days old, where X is a value determined heuristically to specify entries that
are old enough that the key is unlikely to be reused. If you obtain message
keys from an external system and forward them to the EAServer message
service, consider the likelihood that the external system will send a
message with the same key more than once.
134 EAServer

C H A P T E R 9 Using the Performance Monitor

The EAServer Performance Monitor can prevent degradation of server
performance under extreme load conditions. You can configure the
Performance Monitor settings to heuristically govern the processing
requests to prevent performance degradation due to overuse of available
resources.

How it works
Ideally, an applications request rate relates linearly to response rate as
shown in Figure 9-1.

However, performance of any application depends on availability of
resources like CPU, memory, network connections, and swap space.
These resources are limited, and when they are exhausted, the response
rate degrades. Due to resource limits, the response rate is expected to level
off when the number of incoming requests reaches the point where
resources are exhausted, as shown in Figure 9-2. However, in practice, an
unlimited increase in incoming requests can cause performance to
degrade; the response rate can drop in this case. In extreme cases, the
application may run out of memory and abend or hang.

Topic Page
How it works 135

Configuring memory thresholds 137

Configuring response rate thresholds 137

Obtaining performance monitor statistics 141
Performance and Tuning Guide 135

How it works
Figure 9-1: Ideal response rate curve

Figure 9-2: Expected response rate curve

Performance Monitor allows you to configure the system to operate at a
constant response rate and avoid out-of-memory conditions under high load
conditions. Performance Monitor uses these algorithms to heuristically govern
the request rate when high load conditions are detected:
136 EAServer

CHAPTER 9 Using the Performance Monitor
• Memory monitoring You can configure thresholds for memory usage.
EAServer monitors the memory used and blocks external requests when
the critical threshold is reached.

• Response time monitoring You can configure expected average
response times for network requests and component method invocations.
EAServer keeps a running average of the actual response time, and
temporarily blocks creation of additional component instances or network
connections when the response time rises above the configured maximum.
When the average response time drops below the maximum, blocked
requests are allowed to continue.

Configuring memory thresholds
Configure memory thresholds on the Resources tab in the EAServer Manager
Server Properties dialog box by setting the fields listed in Table 9-1.

Table 9-1: Server memory threshold settings

Configuring response rate thresholds
Response rate thresholds specify the maximum allowable average response
time before the server blocks requests for new component instances or network
connections. You can configure response rate thresholds for individual
business components and each network protocol.

Field Description

Alarm Level The percentage of system memory that can be used before the server begins blocking external
requests. The default is 70.

If using jagtool or an external configuration file, you can configure this setting as
com.sybase.jaguar.server.memory.alarmLimit.

Critical Level The percentage of system memory that can be used before the server blocks external requests
and begins cancelling in-process requests to bring usage below the specified critical threshold.
The default is 90.

If using jagtool or an external configuration file, you can configure this setting as
com.sybase.jaguar.server.memory.lockLimit.
Performance and Tuning Guide 137

Configuring response rate thresholds
Component settings
For components, you can configure response rate thresholds on the Resources
tab in the EAServer Manager Component Properties dialog box. Set the fields
listed in Table 9-2.

Table 9-2: Component response rate threshold settings

Listener settings
To configure thresholds for network throughput, configure the listener
properties for the client protocol that requires the threshold. Set the fields listed
in Table 9-3 on the Resources tab in the EAServer Manager Listener Properties
dialog box.

Table 9-3: Listener response rate threshold settings

Field Description

Maximum
Response Time

The maximum allowable average response time for the component, in seconds. If the average
method completion time rises above this limit, EAServer blocks creation of additional instances
of this component until the average drops below the specified limit. The default is -1, which
indicates no time limit.

If using jagtool or an external configuration file, you can configure this setting as
com.sybase.jaguar.component.monitor.MaxRespTime.

Minimum
Number of
Instances

When the Maximum Response Time is set to a non-default value, specifies the minimum number
of instances that must be allowed to execute regardless of observed response times. The default
is -1, which means no new instances are blocked by the Performance Monitor.

If using jagtool or an external configuration file, you can configure this setting as
com.sybase.jaguar.component.monitor.MinInstance.

Field Description

Maximum
Response Time

The maximum allowable average response time for each request, in seconds. If the average
response time rises above this limit, EAServer blocks additional connections until the average
drops below the specified limit. The default is -1, which indicates no time limit.

If using jagtool or an external configuration file, you can configure this setting as
com.sybase.jaguar.listener.monitor.MaxRespTime.

Minimum
Number of
Connections

When the Maximum Response Time is set to a non-default value, specifies the minimum number
of clients that must be allowed to execute regardless of observed response times. The default is
-1, which means no new connections are blocked by the Performance Monitor.

If using jagtool or an external configuration file, you can configure this setting as
com.sybase.jaguar.listener.monitor.MinInstance.
138 EAServer

CHAPTER 9 Using the Performance Monitor
Tuning response rate thresholds
Tune the response rate threshold settings when your performance testing
indicates a severe degradation of server performance under load. When tuning,
consider the following:

• Deciding where to apply the settings

You can apply response time thresholds to components or listeners.
Choose the entity that has the greatest affect on client load and that has the
least unintended effects on other applications running in the same server.
For example:

• If the application front end is a Web application, apply the settings to
your HTTP listener since all client requests pass through it.

• If clients connect to EJB session beans, apply the settings to the
session bean components, so that the number of session bean
instances governs the applied load.

• If a component accesses a database, and the client load tends to
overwhelm the database, apply a response-time threshold to this
component to throttle the database load to manageable levels. (You
could also tune the connection cache size as described in “Connection
cache settings” on page 108.)

 Warning! When applying response rate thresholds to components, some
configurations can introduce the possibility of deadlock—see “Avoiding
deadlock scenarios” on page 140.

• Choosing a response time threshold

Use performance testing under controlled client loads to determine a
realistic value for response times under high load conditions. Apply this
setting as the allowable Maximum Response Time for the component or
listener. This setting prevents response times from growing exponentially
under worst-case load conditions; it does not make the server run faster.

• Specifying a minimum number of instances or network connections

Decide how many clients your application should serve, even under worst-
case load conditions. Configure this value as the minimum number of
instances or network connections.
Performance and Tuning Guide 139

Configuring response rate thresholds
Avoiding deadlock scenarios

When you apply response time thresholds to components and specify a low
number of minimum instances, the server may deadlock with some application
architectures, including:

• Components that make intercomponent calls and that are invoked directly
by base clients.

• Components that call themselves recursively and are also invoked by base
clients.

To understand how deadlock can occur and how to avoid it, you must first
understand how the Performance Monitor governs client load. During normal
operation (after server start-up), Performance Monitor governs load as follows:

1 Before an entity starts executing a request, it calls the Performance
Monitor to check whether it should proceed.

2 The Performance Monitor checks the entity’s threshold properties and
measured average response time. Based on these values, the entity is
blocked temporarily or allowed to execute.

3 After the request completes, the entity again calls the Performance
Monitor, allowing measurement of the actual execution time. Performance
Monitor adds this to the average time for the entity.

If the average time is lower than the configured threshold, Performance
Monitor increases the maximum allowable simultaneous instances for the
entity by one. On the other hand, if average time is higher than allowed, it
reduces maximum allowable instances by one.

This reduction in maximum allowable instances will continue until
maximum allowable Instances is equal to configured Minimum Number
of Instances.

During server start-up, Performance monitor uses the same algorithm, but
starts with the configured value for Minimum Number of Instances as the
maximum number of instances that can execute. The number of instances can
grow if initial response times are lower than the specified threshold.

When components make intercomponent calls and are invoked directly by base
clients, deadlock can occur when client invocations have exhausted the
allowable number of instances, and intercomponent calls require the creation
of additional instances. Consider components A and B, both with response-
time thresholds configured and a value of 5 for Minimum Allowable Instances,
and the following sequence of events:

1 Five clients invoke A and B, creating five instances of each component.
140 EAServer

CHAPTER 9 Using the Performance Monitor
2 A attempts to call B, but is blocked because measured response times are
over the threshold (or the server is just starting, and no response times have
been measured).

3 B attempts to call A, but is blocked because measured response times are
over the threshold. A and B are deadlocked.

To avoid this pitfall, you can either remove response time monitoring from the
components and apply it to the network listener, or split the component logic
into two sets of components. Create a thin wrapper to be invoked by base
clients, calling the original component to invoke the logic that requires
intercomponent calls. Configure response time monitoring only on the wrapper
components that are invoked directly by the base clients.

A component that calls itself recursively can deadlock in a similar scenario.
The cure is also similar. Remove response time monitoring from the
components and apply it to the network listener, or create a wrapper component
to be invoked by base clients and call the recursive component, with response
time monitoring configured for the wrapper component instead of the recursive
component.

If you suspect your components may be deadlocked due to response time
monitoring, analyze the stack traces in the performance monitor statistics.

Obtaining performance monitor statistics
To obtain performance monitor statistics, call the logPerfManagerStats method
in the Jaguar/Management built in component. The code below is a sample
Java client program to call this method:

// PerfDump.java
// This program is supplied on as is basis
// without any guarantees.
// This Program is not guaranteed to by
// Sybase to produce required results
// any or all of the time.
//
// Usage: java PerfDump iiop://<hostname>:<iiop port#>

import org.omg.CosTransactions.*;
import org.omg.CORBA.*;
import SessionManager.*;
import com.sybase.jaguar.system.*;
Performance and Tuning Guide 141

Obtaining performance monitor statistics
public class PerfDump
{

public static void main(String[] str)
{

try {
java.util.Properties props = new java.util.Properties();
props.put("org.omg.CORBA.ORBClass", "com.sybase.CORBA.ORB");
ORB orb = ORB.init((String[])null,props);
Manager manager = ManagerHelper.narrow(orb.string_to_object(str[0

]));
Session session = manager.createSession("jagadmin","");
Management _mg = ManagementHelper.narrow(session.create("Jaguar/M

anagement"));
try {

_mg.logPerfManagerStats();
}catch (Exception ex)
{

ex.printStackTrace();
}

}catch (Throwable th)
{

th.printStackTrace();
}
System.out.println("Now Refer to EAServer's Log file for Performance

Monitor Information");
}

}

EAServer writes statistics to the server log file. These include statistics for each
component and stack traces for each thread. Statistics for each component
include the component name, number of current active instances, number of
instances waiting to execute and average response time. A response time value
of -1.00 indicates that the component is not being monitored. Here is example
output:

Apr 15 20:45:32 2004: [0000004692] ******** PERFORMANCE MONITOR STATISTICS START

Apr 15 20:45:32 2004: [0000004692] Name Active Waiting
Response
Apr 15 20:45:32 2004: [0000004692] Instances Instances
Time
Apr 15 20:45:32 2004: [0000004692] ---

Apr 15 20:45:32 2004: [0000004692] CosNaming/JNameService 00000 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] Jaguar/HttpStatProviderCon 00000 00000
142 EAServer

CHAPTER 9 Using the Performance Monitor
-1.00
Apr 15 20:45:32 2004: [0000004692] JaguarOTS/OtsService 00000 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] CtsComponents/MessageServi 00032 00000
-1.00
Apr 15 20:45:32 2004: [0000004692] ---

The stack trace listing shows the execution stack for each thread. When you
suspect a deadlock condition, the stack shows which entity is being blocked
and the calling sequence that caused the block. As show in the stack trace
below, the ***BLOCKED*** token is printed when the entity execution is
blocked. In this example, the call is blocked when trying to execute the
j2eebookstore/customer component. The stack sequence indicates that this
component is recursive: j2eebookstore/customer has called
j2eebookstore/customer. Also from the stack it is evident that the client is
connected to the port defined by Jaguar_iiop listener:

Apr 15 20:45:32 2004: [0000004692] *************STACK TRACES START

Apr 15 20:45:32 2004: [0000004692] Thread:134938976
Apr 15 20:45:32 2004: [0000004692] CtsComponents/MessageService
Apr 15 20:45:32 2004: [0000004692] CtsComponents/MessageThread
Apr 15 20:45:32 2004: [0000004692] ---
Apr 15 20:45:32 2004: [0000004692] Thread:134642792
Apr 15 20:45:32 2004: [0000004692] *******BLOCKED*******
Apr 15 20:45:32 2004: [0000004692] j2eebookstore/customer
Apr 15 20:45:32 2004: [0000004692] j2eebookstore/customer
Apr 15 20:45:32 2004: [0000004692] Jaguar_iiop
Apr 15 20:45:32 2004: [0000004692] ---
Performance and Tuning Guide 143

Obtaining performance monitor statistics
144 EAServer

Index
A
APIs

for partial page caching 96
architecture

for entity object caching 64
for finder query caching 64

Automatic Failover
component setting 122

automatic transaction retry
EJB CMP setting 55

B
Bind Thread

component setting 30
PowerBuilder component setting 45

BOOTCLASSPATH
server setting 16

buffer pools, servlet 79
buffers

for servlet response 79

C
C++

component tuning 44
CacheManager

Java class 96
caches

synchronization of 67
caching

benefits of 3
database rows 64
dynamic page 87
entity bean instance data 63
HTTP responses 84
instance and query 123
Performance and Tuning Guide
mirror 123
of EJB finder query results 63
of EJB finder results 68
of JSP fragments 93
of servlet responses 85
of static Web content 84
partial page 93
tag libraries for 94
transaction local cache 70
using servlet Java cache 92

caching, dynamic page
configuring 87
explanation of 87

caching, mirror 123
caching, object 63
caching, partial page 93
caching, query 63
class loaders

component 38
PowerBuilder 45
server 17
Web application 79

CLASSPATH
for JSP compilation 82
server setting 16

client settings
connection timeout 120
for clusters 118
idle connection timeout 119
socket reuse limit 119

cluster settings
for clients 118
heartbeat detection 116
HTTP session replication 121
load balancing policy 117
partitioning 118
tuning 116

clusters
and instance cache settings 67
benefits of 115
145

Index
client settings for 118
component settings for 122
EJB CMP settings for 123
explanation of 115
running Web applications in 120
tuning 116

compilation
of JSPs 82

component settings
automatic failover 122
Bind Thread 30, 45
class loading 38
Concurrency 30
for C++ components 44
for clustered deployment 122
for debugging 29
for EJB CMP entity beans 49
for EJB entity beans 42
for EJBs 38
for PowerBuilder 44
for stateful session beans 43
for transactions 106
instance pooling 33
instance timeout 33, 43
Maximum Active Instances 34
Maximum Pooled Instances 34
Maximum Wait 34
Minimum Pooled Instances 34
mirror cache 123
Named Instance Pool 34
passivation 43
performance tuning wizard 29
read-only methods 42
session state replication 123
Sharing 31
Stateless 33
thread monitor 32
tracing 29
transaction timeout 106

components
assigning to a thread monitor 32
C++ 44
collecting performance data for 32
debugging 29
lifecycle of 33
optimizing in-server invocations 37
146
performance tuning wizard 29
pooling of instances 33
PowerBuilder 44
reuse of instances 33
stateful vs. stateless 33
stateless 33
thread settings for 30
tracing 29
tuning 29

components, EJB 38
components, stateful

definition of 33
deploying in clusters 123
EJB 43
memory used by 44
passivation of 43
timeouts for 33, 43

Concurrency
component setting 30, 31

concurrency control, database 51
connection caches

APIs for 113
for EJB CMP 60
idle timeout setting 109, 111
sanity checking 112
size of 108
SQL tracing 112
tuning 108

connection timeout
client setting 120

conventions x
CORBA::TRANSACTION_ROLLEDBACK 107
CPU usage

monitoring 8

D
database settings

for EJB CMP 50
database updates

from EJB entity beans 42
databases

deadlock errors 107
locking 51

DataStore
EAServer

Index
settings for 46
DataWindow

settings for 46
deadlock

avoiding 5
explanation of 5

deadlock, database 107
debugging

component settings for 29
server settings for 15
Web application settings for 78

default.maximum
message service setting 128

disk swapping 4
dynamic page caching

and filters 91
APIs for 96
caching an entire tree 90
configuring 87, 88
explanation of 87
for Web components 87
keys for 88
timeout for 89

E
EJB

component settings 38
lightweight container 40, 41
local interfaces 39, 81
optimizing in-server calls 39
pass-by-reference semantics 41
stateful session beans 43

EJB CMP settings
automatic transaction retry 55
concurrency control 51
connection cache 60
database 50
finder query caching 63
for clustered deployment 123
instance and query caching 63
instance caching 63
isolation level 55
key generation 51
optimistic concurrency control 53
Performance and Tuning Guide
pessimistic concurrency control 52
Select For Update 52
Select With Lock 52
soft locking 59
tracing 61, 75
transaction tracing 62

EJB finder methods
caching results for 68

EJBs
and read-only methods 42

ejbStore method
optimizations involving 42
when called 42

entity instance caching
configuring 63
explanation of 63

F
file descriptors

limits on 22
filters, servlet

and dynamic page caching 91
using with page caching 91

flow control
configuring 14
explanation of 14

G
garbage collection

in PowerBuilder 46
tracing 18

H
heap size

for Java VM 18
heartbeat detection

cluster setting 116
hot refresh

memory used by 28
147

Index
I
idle connection timeout

client setting 119
IIOP

client settings 118
load balancing 115
thread limit for 11

instance pool
and memory use 34
assigning a component to 37
configuring 35
creating 36
definition of 33
destruction of 25
maximum size of 34
minimum size of 34
monitoring 35

instance pools, named 35
instance timeout

component setting 33, 43
instances, component

destruction of 25
pooling 33
reusing 33
shared 31
timeouts for 33, 43

isolation level
EJB CMP setting 55

J
Java VM

heap size 18
Hotspot technology 17
JIT compilation 18
types of 17

JDBC
and connection reuse 105

JMS
and duplicate key processing 133
and transactions 126
best practices 125
storage options 125
tracing 127
using threads with 131
148
JSP settings
compilation CLASSPATH 82
for compilation 82
load at start-up 81

JSPs
and EJB invocations 81
caching parts of the response 93
compilation CLASSPATH 82
compilation of 82
configuring page caching for 88
file timestamp checking 82
loading at start-up 81
precompiling 82
response caching 85, 87

K
Keep Alive

listener setting 20
key log

message service table 133
keys

creating for CMP entity beans 133
duplicate message 133
for EJB CMP entity beans 51
for partial page caching 98
for servlet response caching 88
message 133
sorting of 70

L
leaks, memory 3, 105
lifecycles

component 33
lightweight container

configuring 41
enabling 41
explanation of 40
restrictions on 40

limits
component instance timeout 33, 43
connection cache size 108
file descriptors 22
EAServer

Index
for component instances 34
for entity instance caching 66
for instance pools 34
for memory 23
for message queues 130
for message service queues 128
for server memory 26
for server threads 11, 12
Java VM heap size 18
operating system 22
thread number 4
transaction timeout 106

listener settings
and Web application performance 80
keep alive 20
maximum requests 20
request pool size 20, 21
SSL session caching 21

listeners
message service 132

load at start-up
JSP setting 24
servlet and JSP setting 81
servlet setting 24

load balancing
algorithms for 117
cluster settings for 117
of component invocations 115
of HTTP requests 120
of IIOP requests 115

load testing
procedure for 10
tools for 7

local interfaces, EJB
explanation of 39
using in Web applications 81

locales
and dynamic page caching 89

locking
of database rows 52

locks, database
avoiding 51
Performance and Tuning Guide
M
Maximum Active Instances

component setting 34
Maximum Pooled Instances

component setting 34
Maximum Requests

listener setting 20
Maximum Wait

component setting 34
MDB components

running multiple instances 131
memory

and allocation costs 4
and object churning 4
and servlet buffer pools 79
and the hot refresh feature 28
cycling of 4
disk swapping 4
monitoring tools 8
operating system limits for 23
paging 4
performance and 3
to run servers 26
used by instance pooling 34
used by Java VM 18
used by stateful components 44
used to process transactions 107

memory leak
and JDBC usage 105
definition of 3

message service
and duplicate key processing 133
and transactions 126
best practices 125
initialization of 24
storage options 125
tracing 127

message service settings
default.maximum 128
queue size 130
queue timeout 130
REQUIRES_ACKNOWLEDGE 129
session.timeout 128
shared listeners 132
thread pools 131

method settings
149

Index
Read-only 42
Minimum Pooled Instances

component setting 34
mirror cache

component settings 123
monitoring

EJB CMP engine 75
instance pooling 35

monitoring tools
CPU usage 8
for EAServer 8
memory 8
thread monitors 32

monitors
thread 32

N
Named Instance Pool

component setting 34
named instances pools 35
network

and file descriptor limits 22
keep alive setting 20
listener settings 20
load balancing 115
maximum requests listener setting 20
SSL session caching 21

network listeners
tuning 20

O
object caching

architecture of 64
object churning

definition of 4
optimistic concurrency control

enabling 53
explanation of 51
150
P
page caching

configuring 88
properties 89
using with filters 91

paging, memory 4
partial page caching

API for 96
using in JSPs 93

partitioning
in clusters 118

passivation
configuring 43

performance tuning wizard
component 29
server 11
Web application 77

pessimistic concurrency control
enabling 52
explanation of 51

pooling
of component instances 33
of network requests 20, 21
of servlet response buffers 79
of threads 30

PowerBuilder
component settings 44
DataStore settings 46
DataWindow settings 46

precompiling JSPs 82
profiling

tools for 7
pseudocomponents

benefits of 38

Q
query caching

configuring 63, 68
explanation of 63, 68

R
race condition
EAServer

Index
avoiding 31
definition of 31

Read-only
method property 42

Request Pool Size
listener setting 20, 21

REQUIRES_ACKNOWLEDGE
message service setting 129

response time
definition of 1

S
sanity checking

connection cache setting 112
scalability

definition of 2
Select For Update

EJB CMP setting 52
Select With Lock

EJB CMP setting 52
serialization

of threads 5
server settings

and memory use 26
and operating system limits 22
BOOTCLASSPATH 16
CLASSPATH 16
debugging 15
file descriptor limit 22
flow control 14
for Java virtual machine 16
for network listeners 20
for transactions 106
HTTP threads 11
IIOP threads 11
Java VM type 17
JIT compilation 18
Max Number Threads 11
number of threads 11, 12
performance tuning wizard 11
static page caching 84
thread limits 12
thread stack size 13
tracing 15
Performance and Tuning Guide
servlet buffer pools 79
servlet filters

and dynamic page caching 91
using with page caching 91

servlet Java cache
configuring 92
enabling 92
explanation of 92

servlet settings
destroy timeout 26
load at start-up 81
threading 81

servlets
and EJB invocations 81
configuring page caching for 88
loading at start-up 81
response caching 85, 87
thread settings for 81
tracing 78

session.timeout
message service setting 128

sessions, HTTP
and dynamic page caching 89
and servlet Java cache 93
replicating 120
timeout for 78
using in clusters 121
validation of 121

setMessageListener method, message service 133
shared listeners

message service 132
Sharing

component setting 31
socket reuse limit

client setting 119
soft locking

explanation of 59
timeout period for 59

SQL tracing
connection cache setting 112

SSL
and performance 80
tuning session parameters 21

SSL Cache Size
security profile property 21

SSL Session Linger
151

Index
security profile property 22
SSL Session Sharing

security profile property 21
stack size

for Java threads 18, 19
for native threads 13

state, component
replication of 123

stateful components
definition of 33
deploying in clusters 123
memory used by 44
passivation of 43
timeouts for 33, 43

stateless components
creating 33
definition of 33

static Web content
caching 84

swapping, disk 4

T
table-level timestamps 53, 54
tag libraries

for partial page caching 94
to support response caching 94

thread local storage
and component settings 30

thread monitor
assigning to components 32
creating 32
definition of 32
using 32

thread pools, message service
and MDB concurrency 131
and multiple listener instances 132
benefits of using 131
creating 131
definition of 131
tuning the number of threads 132
using for client notification 132

threading
and bound objects 6
and component Bind Thread setting 30
152
and component concurrency 30
and component settings 31
and component Sharing setting 31
and deadlock 5
and Java stack size 18, 19
and race conditions 31
and shared component instances 31
and thread pooling 30
as used by the message service 131
as used to run components 30
benefits of 4
binding threads to components 30
component settings for 30
limits for 12
monitors for 32
server settings for 11
server thread limits 11
servlet settings for 81
stack size for 13

threads
binding of 6
deadlocked 5
number of 4, 12
synchronization of 5

throughput
definition of 2

timeouts
for client connections 120
for dynamic page caching 88, 89
for EJB CMP cached finder data 69
for EJB CMP instance and query cache 65, 66
for idle client connections 119
for idle database connections 109, 111
for JMS sessions 128
for message service queues 130
for message service topics 130
for partial page caching 95, 98
for servlet destruction 26
for servlet initialization 24
for servlet Java cache 93
for soft-locked EJB CMP data 59
for stateful components 33, 43
for stateful session beans 43
for static page caching 85
for transactions 106
HTTP session 78
EAServer

Index
timestamps
database column 54
for JSP files 82
for optimistic concurrency control 51, 53
table-level 53, 54

tools
diagnostic 6
load testing 7
memory monitors 8
monitoring tools 8
profiling 7
to measure performance 6

tracing
component settings for 29
HTTP response cache 78
message service 127
of EJB CMP database commands 61
of EJB CMP stored procedures 62
of EJB CMP transactions 62
of Java garbage collection 18
of SQL commands 112
server settings for 15
servlet engine 78
tools for 8
Web applications 78

tracing tools
for EAServer 8

transaction local cache
configuring 70
explanation of 70

Transaction Timeout
component property 106

transactions
and EJB CMP 64
automatic retry 55
component settings for 106
consistency of 64
design issues for 103
isolation level 55
memory table size 107
performance of 103
server settings for 106
timeouts for 106
used by message service 126

typographical conventions x
Performance and Tuning Guide
W
Web application settings

and listener configuration 80
buffer pools 79
caching 85
class loader 79
CLASSPATH for JSP compilation 82
debugging 78
destroy timeout 26
for clustered deployment 120
for JSP compilation 82
JSP timestamp checking 82
lazy session validation 121
page caching 90
performance tuning wizard 77
response caching 84
servlet threading 81
session timeout 78
static page caching 84
tracing 78

wizards
component performance tuning 29
server performance tuning 11
Web application performance tuning 77
153

Index
154
 EAServer

	About This Book
	CHAPTER 1 Introduction
	Determining factors
	Response time
	Scalability and throughput
	Memory use
	Threading

	Measurement and diagnosis tools
	Instrumented code
	Profiling software
	Load-testing tools
	Memory and CPU usage monitors
	EAServer monitoring and tracing tools

	The tuning process

	CHAPTER 2 Server Tuning
	The performance tuning wizard
	General server tuning
	Thread settings
	Flow control
	Debug and trace settings

	Java virtual machine tuning
	CLASSPATH and BOOTCLASSPATH settings
	Custom class lists
	Java VM type and version
	Just-in-time compilation
	JVM memory allocation parameters
	Other Java VM settings and troubleshooting

	Listener tuning
	HTTP keep alive
	HTTP maximum requests
	Connection request pool size
	SSL session caching

	Operating system settings
	UNIX file descriptors
	Per-process memory limits

	Factors that affect start-up and shutdown time
	Start-up performance
	Shutdown performance

	EAServer memory requirements

	CHAPTER 3 Component Tuning
	Running the performance tuning wizard
	Common component performance issues
	Tracing and debugging settings
	Thread-related issues
	Stateful versus stateless components
	Instance pooling
	Optimizing intercomponent calls

	Java component performance
	EJB component performance
	Optimizing in-server EJB calls
	Entity bean read-only methods
	Entity bean database update frequency
	Stateful session beans

	C++ component performance
	PowerBuilder component performance
	Settings that affect system resource use
	DataStore row height size
	Web DataWindow settings

	CHAPTER 4 EJB CMP Tuning
	Generated entity bean subclasses
	Creating and tuning database tables
	Automatic key generation settings
	Concurrency control options
	Enabling PCC
	Enabling OCC
	Enabling automatic transaction retry
	Configuring CMP isolation level
	Using soft locking

	Connection cache settings
	Tuning the cache size and database type
	Using CMP JDBC wrapper drivers

	Entity instance and query caching
	Cache architecture
	Cache coherency and transaction consistency
	Configuring object caching
	Enabling query caching
	Configuring transaction local cache settings
	Enabling database change notification

	CMP runtime monitoring

	CHAPTER 5 Web Application Tuning
	Using the performance tuning wizard
	Tuning server and Web application settings
	Tracing properties
	Session timeouts
	Class loader settings
	Servlet buffer pools
	Clustered deployments
	HTTP and HTTPS listener configuration
	SSL and performance

	Tuning servlet and JSP settings and code
	Use local interfaces for EJB calls
	Threading
	Preloading classes
	JSP compilation options

	Understanding HTTP response caching options
	Static page caching
	Servlet response caching

	Dynamic page caching
	Configuring page caching for servlets and JSPs
	Configuring Web application page caching properties
	Caching an entire tree
	Using page caching with filters that modify a response

	Using the servlet Java cache
	Using partial page caching
	Using the caching tag library
	Using the caching API

	Class CacheManager
	CacheManager.getInstance(ServletContext)
	CacheManager.createCache(String, String, String)
	CacheManager.getData(String, PageCacheKey)
	CacheManager.putData(String, PageCacheKey, String, int)
	CacheManager.flushCacheByKey(String, PageCacheKey)
	CacheManager.flushCacheByScope(HttpServletRequest, String)
	CacheManager.getCacheKey(HttpServletRequest, String, String, String, String, String, boolean, int)

	CHAPTER 6 Database Access Tuning
	Component design and implementation
	Keep transactions short
	Minimize result set size
	Use database server optimizations
	Minimize use of two-phase commit
	Clean up connections before releasing them to the cache
	Avoid unnecessary database work

	Server and component transaction settings
	Transaction timeout
	Transaction memory table size
	Unexpected deadlock errors

	Connection cache settings
	Tuning the cache size
	Remove unused connection caches
	Sanity checking
	SQL tracing
	Using the caching APIs
	Dynamic prepare on jConnect caches
	Database and driver specific settings

	CHAPTER 7 Cluster Tuning
	When to use clusters
	Cluster settings that affect performance
	Heartbeat detection
	Load balancing policy

	IIOP client settings that affect load balancing
	Web application settings
	HTTP session replication mechanism
	Lazy session validation

	Component settings
	Automatic failover
	Component state replication
	EJB CMP entity bean instance and query caching

	CHAPTER 8 Message Service Tuning
	Best practices for coding
	Global message service settings
	Database and connection cache
	Tracing
	Other global settings

	Queue and topic settings
	REQUIRES_ACKNOWLEDGE
	REQUIRES_TRANSACTION or SUPPORTS_TRANSACTION
	Quality of protection
	Tables for persistent messages
	Queue size
	Timeout settings

	Thread pools
	Shared listeners
	The key log table

	CHAPTER 9 Using the Performance Monitor
	How it works
	Configuring memory thresholds
	Configuring response rate thresholds
	Component settings
	Listener settings
	Tuning response rate thresholds

	Obtaining performance monitor statistics

	Index

