
Performance and Tuning Series:
Basics

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC20020-01-1570-01

LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning Series: Basics iii

CHAPTER 1 Introduction to the Basics.. 1
Good performance ... 1

Response time .. 1
Throughput .. 2
Designing for performance .. 2

Tuning performance ... 3
Tuning levels ... 4

Identifying system limits ... 9
Threads, thread pools, engines and CPUs 9
Varying logical page sizes... 10
Number of columns and column size 10
Maximum length of expressions, variables, and stored procedure

arguments... 11
Number of logins ... 11
Performance implications for limits.. 11

Size of kernel resource memory... 12
Analyzing performance .. 12

Normal forms... 13
Locking .. 14
Special considerations .. 14

CHAPTER 2 Networks and Performance.. 17
Potential performance problems .. 17

Basic questions on network performance 18
Techniques summary .. 18

Engine and thread affinity .. 19
Network listeners... 19

How Adaptive Server uses the network ... 20
Configuring the I/O controller ... 21

Dynamically reconfiguring I/O tasks .. 23
Changing network packet sizes ... 23
Large versus default packet sizes for user connections................. 24

Number of packets is important... 24
Adaptive Server evaluation tools... 25

Contents

iv Adaptive Server Enterprise

Other evaluation tools ... 26
Server-based techniques for reducing network traffic 26

Impact of other server activities ... 27
Single user versus multiple users.. 27

Improving network performance... 28
Isolate heavy network users.. 28
Set tcp no delay on TCP networks .. 29
Configure multiple network listeners 29

CHAPTER 3 Using Engines and CPUs.. 31
Background concepts... 31

How Adaptive Server processes client requests 32
Client task implementation .. 33

Single-CPU process model .. 34
Scheduling engines to the CPU .. 34
Scheduling tasks to the engine ... 36
Execution task scheduling... 37

Adaptive Server SMP process model .. 39
Scheduling engines to CPUs... 40
Scheduling Adaptive Server tasks to engines 40
Multiple network engines... 41
Task priorities and run queues .. 41
Processing scenario .. 42

Asynchronous log service .. 43
Understanding the user log cache (ULC) architecture 44
When to use ALS .. 45
Using the ALS ... 45

Housekeeper wash task improves CPU utilization......................... 46
Side effects of the housekeeper wash task............................. 47
Configuring the housekeeper wash task 47

Measuring CPU usage ... 48
Single-CPU machines ... 49
Determining when to configure additional engines.................. 50
Taking engines offline ... 51

Enabling engine-to-CPU affinity ... 51
Multiprocessor application design guidelines................................. 53

CHAPTER 4 Distributing Engine Resources .. 55
Successfully distributing resources .. 55

Environment analysis and planning... 59
Performing benchmark tests ... 61
Setting goals.. 61
Results analysis and tuning... 61

Contents

Performance and Tuning Series: Basics v

Managing preferred access to resources....................................... 62
Types of execution classes .. 63
Execution class attributes .. 64

Base priority .. 64
Task-to-engine affinity ... 66

Setting execution class attributes... 67
Assigning execution classes ... 68
Scheduling service tasks... 69
Creating user-defined execution class task affinity 69
How execution class bindings affect scheduling 71
Setting attributes for a session only .. 73
Getting information about execution classes........................... 73

Determining precedence and scope .. 74
Multiple execution objects and ECs .. 74
Resolving a precedence conflict.. 76
Examples: determining precedence .. 77

Example scenario using precedence rules 79
Planning .. 80
Configuration ... 81
Execution characteristics... 81

Considerations for engine resource distribution............................. 82
Client applications: OLTP and DSS .. 83
Adaptive Server logins: high-priority users.............................. 84
Stored procedures: “hot spots”.. 84

CHAPTER 5 Memory Use and Performance .. 85
How memory affects performance ... 85
How much memory to configure .. 86
Dynamic reconfiguration .. 88

How memory is allocated .. 89
Large allocation in Adaptive Server... 89

Caches in Adaptive Server... 89
Cache sizes and buffer pools .. 90

Procedure cache .. 90
Getting information about the procedure cache size............... 91
Procedure cache sizing ... 92
Estimating stored procedure size .. 93
Estimating the procedure cache size for a sort 93
Estimating the amount of procedure cache used by create index

94
Reducing query processing latency .. 95

Statement cache .. 96
Data cache ... 97

Page aging in data cache.. 97

Contents

vi Adaptive Server Enterprise

Effect of data cache on retrievals .. 98
Effect of data modifications on the cache................................ 99
Data cache performance ... 100
Testing data cache performance... 100

Configuring the data cache to improve performance 101
Commands to configure named data caches........................ 103
Tuning named caches ... 104
Cache configuration goals... 105
Gather data, plan, and then implement 105
Evaluating cache needs .. 107
Large I/O and performance ... 107
Reducing spinlock contention with cache partitions 110
Cache replacement strategies and policies........................... 110

Named data cache recommendations ... 112
Sizing caches for special objects, tempdb, and transaction logs .

114
Basing data pool sizes on query plans and I/O 118
Configuring buffer wash size ... 120
Overhead of pool configuration and binding objects 121

Maintaining data cache performance for large I/O 122
Diagnosing excessive I/O counts .. 122
Using sp_sysmon to check large I/O performance................ 123

Speed of recovery .. 123
Tuning the recovery interval .. 124
Effects of the housekeeper wash task on recovery time 125

Auditing and performance .. 125
Sizing the audit queue... 126
Auditing performance guidelines ... 127

Text and image pages.. 127

CHAPTER 6 Tuning Asynchronous Prefetch ... 129
How asynchronous prefetch improves performance.................... 129

Improving query performance by prefetching pages 130
Prefetching control mechanisms in a multiuser environment 131
Look-ahead set during recovery.. 132
Look-ahead set during sequential scans............................... 132
Look-ahead set during nonclustered index access 133
Look-ahead set during dbcc checks...................................... 133
Look-ahead set minimum and maximum sizes 134

When prefetch is automatically disabled...................................... 135
Flooding pools ... 136
I/O system overloads... 136
Unnecessary reads ... 137

Tuning goals for asynchronous prefetch 139

Contents

Performance and Tuning Series: Basics vii

Commands for configuration ... 140
Other Adaptive Server performance features 140

Large I/O ... 140
Fetch-and-discard (MRU) scans ... 142
Parallel scans and large I/Os .. 142

Special settings for asynchronous prefetch limits 143
Setting limits for recovery .. 144
Setting limits for dbcc .. 144

Maintenance activities for high prefetch performance.................. 145
Eliminating kinks in heap tables .. 145
Eliminating kinks in clustered index tables 145
Eliminating kinks in nonclustered indexes............................. 145

Performance monitoring and asynchronous prefetch 146

Index ... 147

Contents

viii Adaptive Server Enterprise

Performance and Tuning Series: Basics 1

C H A P T E R 1 Introduction to the Basics

Good performance
Performance is the measure of efficiency for an application or for multiple
applications running in the same environment. Performance is usually
measured in response time and throughput.

Response time
Response time is the number of milliseconds, seconds, minutes, hours, or
days that a single task takes to complete. You can improve response times
by:

• Making queries, transactions, and batches more efficient through
query tuning and indexes

• Using faster components (for example, faster client and server
processors, and faster disks and storage).

• Minimizing wait times (for example, by improving network,
physical, and logical lock contention)

In some cases, Adaptive Server® is automatically optimized to reduce
initial response time, that is, the time it takes to return the first row to the
user. This is especially useful when a user retrieves several rows with a
query and then uses a front-end tool to browse them slowly.

Topic Page
Good performance 1

Tuning performance 3

Identifying system limits 9

Analyzing performance 12

Good performance

2 Adaptive Server Enterprise

Throughput
Throughput refers to the volume of work completed per unit of time. For
example, the amount of work performed by:

• The number of a single transactions (for example, 100 transactions per
second inserting trades from Wall Street).

• All transactions across the server (for example, 10,000 read transactions
per second plus 1,500 write transactions per second).

• The number of reads performed (for example, the number of specific
queries or reports per hour).

However, when you tune Adaptive Server for improved response times, you
may decrease throughput, and vice versa. For example:

• Adding indexes improves performance for queries and updates and deletes
that use those indexes to avoid more expensive scans. However, you must
maintain indexes during data manipulation language (DML) operations,
which can decrease performance.

• Using synchronous disk writes improves response times in a single
transaction that includes a single user, but synchronous disk writes
degrade multiuser throughput.

Designing for performance
Most performance gains derive from good database design, thorough query
analysis, and appropriate indexing. You can realize the largest performance
gains by establishing a good database design and working with the Adaptive
Server query optimizer as you develop your applications.

You can also improve performance by analyzing how an application works
with Adaptive Server. For example, a client may initially send rows with a size
of 1KB to Adaptive Server and then wait for Adaptive Server to acknowledge
receiving the rows before it sends the next row. You may find that the
performance between the client and Adaptive Server improves if the client
consolidates or batches the rows it sends to Adaptive Server, greatly
simplifying the process and requiring less interaction between Adaptive Server
and the client.

You can also use hardware and network analysis, to locate performance
bottlenecks in your installation.

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 3

Tuning performance
Tuning improves performance and decreases contention and resource
consumption. System administrators view:

• System tuning – tuning the system as a whole. See Performance and
Tuning Series: Physical Database Tuning.

• Query tuning – making queries and transactions faster, and making the
logical and physical database design more efficient. See Performance and
Tuning Series: Query Processing and Abstract Plans.

Use this system model of Adaptive Server and its environment to identify
performance problems at each layer.

Figure 1-1: Adaptive Server system model

A major part of system tuning is reducing contention for system resources. As
the number of users increases, contention for resources such as data and
procedure caches, spinlocks on system resources, and the CPUs increases. The
probability of logical lock contention also increases.

Application code
Open Client

N
e
tw

o
rk

 in
te

rf
a
ce

Response
Request

RPC

Data

Procedure

sql compiler

cache

Transaction Indexes

Data tables

System
procedures

cache

Shared memory

log

Access Manager

sql exutive

Tuning performance

4 Adaptive Server Enterprise

Tuning levels
Adaptive Server and its environment and applications can be broken into
components, or tuning layers, to isolate components of the system for analysis.
In many cases, you must tune two or more layers so that they work optimally
together.

In some cases, removing a resource bottleneck at one layer reveals another
problem area. More optimistically, resolving one problem sometimes alleviates
other problems. For example, if physical I/O rates are high for queries, and you
add more memory to speed response time and increase your cache hit ratio, you
may ease problems with disk contention.

Application layer

Most performance gains come from query tuning, based on good database
design. At the application layer, these issues are relevant:

• Decision-support systems (DSS) and online transaction processing
(OLTP) require different performance strategies.

• Transaction design can reduce performance, since long-running
transactions hold locks and reduce access to data.

• Relational integrity requires joins for data modification.

• Indexing to support selects increases the time required to modify data.

• Auditing for security purposes can limit performance.

Options to address these issues include:

• Remote or replicated processing to move decision support off the OLTP
machine

• Stored procedures that reduce compilation time and network usage

• The minimum locking level that meets application needs

Database layer

Applications share resources at the database layer, including disks, the
transaction log, and data cache.

One database may have 231 (2,147,483,648) logical pages. These logical pages
are divided among devices, up to the limit available on each device. Therefore,
the maximum possible size of a database depends on the number and size of
available devices.

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 5

“Overhead” is space reserved to the server, and is not available for any user
database. The overhead is calculated by summing the:

• Size of the master database, plus

• The size of the model database, plus

• The size of tempdb, plus

• (For Adaptive Server version 12.0 and later) the size of sybsystemdb, plus

• 8KB for the server’s configuration area.

At the database layer, issues that affect overhead include:

• Developing a backup and recovery scheme

• Distributing data across devices

• Running auditing

• Efficiently scheduling maintenance activities that can slow performance
and lock users out of tables

Address these issues by:

• Automating log dumps with transaction log thresholds to avoid space
problems

• Monitoring space with thresholds in data segments

• Adding partitions to speed loading of data and query execution

• Distributing objects across devices to avoid disk contention or to take
advantage of I/O parallelism

• Caching for high availability of critical tables and indexes

Adaptive Server layer

At the server layer, there are many shared resources, including the data and
procedure caches, thread pools, locks, and CPUs.

Issues at the Adaptive Server layer include:

• The application types to be supported: OLTP, DSS, or a mix.

• The number of users to be supported —as the number of users increases,
contention for resources can shift.

• Number of threads in the thread pool.

• Network loads.

Tuning performance

6 Adaptive Server Enterprise

• Replication Server® or other distributed processing can be an issue when
the number of users and transaction rate reach high levels.

Address these issues by:

• Tuning memory (the most critical configuration parameter) and other
parameters

• Deciding some processing can take place at the client side

• Configuring cache sizes and I/O sizes

• Reorganizing the thread pools

• Adding multiple CPUs

• Scheduling batch jobs and reporting for off-hours

• Reconfiguring certain parameters for shifting workload patterns

• Determining whether DSS and move to another Adaptive Server

Devices layer

The devices layer relates to the disk and controllers that store your data.
Adaptive Server can manage a virtually unlimited number of devices.

Issues at the devices layer include:

• The distribution of system databases, user databases, and database logs
across devices

• Whether partitions for parallel query performance or high insert
performance on heap tables are necessary

Address these issues by:

• Using more medium-sized devices and controllers; doing so may provide
better I/O throughput than a few large devices

• Distributing databases, tables, and indexes to create even I/O load across
devices

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 7

• Using segments and partitions for I/O performance on large tables used in
parallel queries

Note Adaptive Server devices are mapped to operating system files or raw
partitions, and depend on the performance of the underlying physical devices
and disks. Contention can occur at the operating system level: controllers can
be saturated and the disks organized under storage area network logical unit
numbers (SAN LUNs) can be over-worked. When analyzing performance,
balance the physical load to properly distribute load over operating system
devices, controller, storage entities, and logical unit numbers.

Network layer

The network layer relates to the network or networks that connect users to
Adaptive Server.

Virtually all Adaptive Server users access their data via a network.

Issues at this layer include:

• The amount of network traffic

• Network bottlenecks

• Network speed

Address these issues by:

• Configuring packet sizes to match application needs

• Configuring subnets

• Isolating heavy network uses

• Moving to a higher-capacity network

• Designing applications to limit the amount of network traffic required

Hardware layer

The hardware layer concerns the CPUs and memory available.

Issues at the hardware layer include:

• CPU throughput

• Disk access: controllers as well as disks

Tuning performance

8 Adaptive Server Enterprise

• Disk backup

• Memory usage

• Virtual machine configuration: resource allotment and allocation

Address these issues by:

• Adding CPUs to match workload

• Configuring the housekeeper tasks to improve CPU utilization

• Following multiprocessor application design guidelines to reduce
contention

• Configuring multiple data caches

Operating system layer

Ideally, Adaptive Server is the only major application on a machine, and must
share CPU, memory, and other resources only with the operating system and
other Sybase® software such as Backup Server™.

Issues the operating system layer include:

• The file systems available to Adaptive Server

• Memory management – accurately estimating operating system overhead
and other program memory use

• CPU availability and allocation to Adaptive Server

Address these issues by:

• Considering the network interface

• Choosing between files and raw partitions

• Increasing the memory size

• Moving client operations and batch processing to other machines

• Using multiple CPUs for Adaptive Server

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 9

Identifying system limits
The physical limits of the CPU, disk subsystems, and networks impose
performance limits. Latency or bandwidth limitations are imposed by device
driver, controllers, switches, and so on. You can overcome some of these limits
by adding memory, using faster disk drives, switching to higher bandwidth
networks, and adding CPUs.

Threads, thread pools, engines and CPUs
In process mode, Adaptive Server typically consumes one CPU per configured
engine. In threaded mode, Adaptive Server typically consumes one CPU per
configured engine thread, plus additional CPU for nonengine threads, such as
I/O handling threads in syb_system_pool.

However, the definition of a CPU is ambiguous in modern systems. What the
operating system reports as a CPU may be a core of a multicore processor or a
subcore thread, where each core supports multiple threads (often called
hyperthreading, SMT, or CMT). For example, a system that has two 4-core
processors with two threads per core, reports that it has 16 CPUs. This does not
mean that all 16 CPUs are available for Adaptive Server.

Sybase recommends that you determine how much actual CPU is available to
Adaptive Server, and how much CPU power each engine and each nonengine
thread requires. A good estimate is to allow one CPU for the operating system.
In threaded mode, also allow one CPU for I/O threads.

Based on this recommendation, configure no more than 15 engines on a 16-
CPU system in process mode, and no more than 14 engines in threaded mode
on the same system (in threaded mode, each engine can do more useful work
than in process mode).

When configuring the CPU, consider that:

• Servers with high I/O loads may require that you reserve more CPU for I/O
threads.

• Not all CPUs are equal,and you may not be able to reserve all subcore
threads. For example, you may need to treat an 8-core, 16-thread system
as if it has only 12 CPUs.

• You may be required to reserve CPU for other applications on the host.

Identifying system limits

10 Adaptive Server Enterprise

Sybase recommends that you use sp_sysmon to validate your configuration. If
you see a high degree of nonvoluntary context switching, or an engine tick
utilization that is higher than the OS thread utilization, you may have over-
configured Adaptive Server relative to the underlying CPU, which can lead to
a significant loss of throughput.

Varying logical page sizes
The dataserver binary builds the master device (located in $SYBASE/ASE-
15_0/bin). The dataserver command allows you to create master devices and
databases with logical pages of size 2KB, 4KB, 8KB, or 16KB. Larger logical
pages can provide benefits for some applications:

• You can create longer columns and rows than with smaller page sizes,
allowing wider tables.

• Depending on the nature of your application, you may improve
performance, since Adaptive Server can access more data each time it
reads a page. For example, reading a single 16K page brings 8 times the
amount of data into cache as reading as a 2K page; reading an 8K page
brings in twice as much data as a 4K page, and so on.

However, when you use larger pages, queries that access only one row in
a table (called point queries) use rows that occupy more memory. For
example, each row you save to memory in a server configured for 2k
logical pages uses 2k, but if the server is configured for 8k logical pages,
each row you save to memory uses 8k.

Analyze individual cases to verify whether using logical pages larger than
2KB is beneficial.

Number of columns and column size
The maximum number of columns you can create in a table is:

• Fixed-length columns in allpages-locked and data-only-locked tables –
1024.

• Variable-length columns in an allpages-locked table – 254.

• Variable-length columns in a data-only-locked table – 1024.

The maximum size of a column depends on:

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 11

• Whether the table includes variable- or fixed-length columns.

• The logical page size of the database. For example, in a database with 2K
logical pages, the maximum size of a column in an allpages-locked table
can be as large as a single row, about 1962 bytes, less the row format
overheads. Similarly, for a 4K page, the maximum size of a column in an
allpages-locked table can be as large as 4010 bytes, less the row format
overheads.

Maximum length of expressions, variables, and stored procedure
arguments

The maximum size for expressions, variables, and arguments passed to stored
procedures is 16384 (16K) bytes, for any page size for character or binary data.
You can insert variables and literals up to this maximum size into text columns
without using the writetext command.

Number of logins
Table 1-1 lists the limits for the number of logins, users, and groups for
Adaptive Server.

Table 1-1: Limits for number of logins, users, and groups

Performance implications for limits
The limits set for Adaptive server mean that the server may have to handle
large volumes of data for a single query, DML operation, or command. For
example, if you use a data-only-locked table with a char(2000) column,
Adaptive Server must allocate memory to perform column copying while
scanning the table. Increased memory requests during the life of a query or
command mean a potential reduction in throughput.

Item Version 15.0 limit

Number of logins per server
(SUID)

2147516416

Number of users per database 2146585223

Number of groups per database 1032193

Size of kernel resource memory

12 Adaptive Server Enterprise

Size of kernel resource memory
The kernel resource memory is a cache. Adaptive Server reserves the kernel
resource memory as a pool from which all thread pools receive their memory.
The maximum size you can allocate to the kernel resource memory is
2147483647 2K logical pages.

Analyzing performance
When you have performance problems, determine the sources of the problems
and your goals in resolving them.

To analyze performance problems:

1 Collect performance data to get baseline measurements. For example, you
might use one or more of the following tools:

• Internally developed benchmark tests or industry-standard third-party
tests.

• sp_sysmon, a system procedure that monitors Adaptive Server
performance and provides statistical output describing the behavior of
your Adaptive Server system.

See Performance and Tuning Series: Monitoring Adaptive Server
with sp_sysmon.

• Monitoring tables, which describe resource utilization and contention
from a server-wide to a user- or object-level perspective.

• Any other appropriate tools.

2 Analyze the data to understand the system and any performance problems.
Create and answer a list of questions to analyze your Adaptive Server
environment. The list might include questions such as:

• What are the symptoms of the problem?

• What components of the system model affect the problem?

• Does the problem affect all users or only users of certain applications?

• Is the problem intermittent or constant?

3 Define system requirements and performance goals:

• How often is this query executed?

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 13

• What response time is required?

4 Define the Adaptive Server environment – know the configuration and
limitations at all layers.

5 Analyze application design – examine tables, indexes, and transactions.

6 Formulate a hypothesis about possible causes of the performance problem
and possible solutions, based on performance data.

7 Test the hypothesis by implementing the solutions from the last step:

• Adjust configuration parameters.

• Redesign tables.

• Add or redistribute memory resources.

8 Use the same tests used to collect baseline data in step 1 to determine the
effects of tuning. Performance tuning is usually a repetitive process.

If the actions taken based on step 7 do not meet the performance
requirements and goals set in step 3, or if adjustments made in one
area cause new performance problems, repeat this analysis starting
with step 2. You may need to reevaluate system requirements and
performance goals.

9 If testing shows that your hypothesis is correct, implement the solution in
your development environment.

www.sybase.com includes whitepapers that discuss additional ways to analyze
performance.

Normal forms
Normalization is an integral part of the relational database design process and
can be employed to reorganize a database to minimize and avoid inconsistency
and redundancy.

The different normal forms organizes administrator information so that it
promotes efficient maintenance, storage, and data modification. Normalization
simplifies query and update management, including the security and integrity
of the database. However, normalization usually creates a larger number of
tables which may, in turn, increase the size of the database.

Database designers and administrators must decide on the various techniques
best suited their environment.

Analyzing performance

14 Adaptive Server Enterprise

Locking
Adaptive Server locks the tables, data pages, or data rows currently used by
active transactions to protect them. Locking is necessary in a multiuser
environment, since several users may be working with the same data at the
same time.

Locking affects performance when one process holds locks that prevent
another process from accessing data. The process that is blocked by the lock
sleeps until the lock is released. This is called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have a lock on a separate page
or table and each wants to acquire a lock on the same page or table held by the
other process. The transaction with the least accumulated CPU time is killed
and all of its work is rolled back.

Understanding the types of locks in Adaptive Server can help you reduce lock
contention and avoid or minimize deadlocks.

The Performance and Tuning Series: Locking and Concurrency Control
discusses the performance implications of locking.

Special considerations
When you create a database in Adaptive Server, you can assign its storage to
one or more data storage devices (see Chapter 7, “Initializing Database
Devices in System Administration Guide: Volume 1). Information about these
devices is stored in master.dbo.sysdevices. Declare which device to use for the
database, and how much of each device this database uses. A database can
occupy all available space on the device, or other databases can share space on
the device, or any combination of the two. Segments (logical groupings of
storage within a database) allow you to keep some data logically or physically
separate from other data. For example, to aid in disaster recovery, Sybase
strongly recommends that you physically separate the transaction log from
other data within a database.

CHAPTER 1 Introduction to the Basics

Performance and Tuning Series: Basics 15

Logical and physical data groupings can help your database perform better. For
example, you can reserve part of the database for a data set that you know will
grow much larger over time by assigning this data set, and no other, a particular
segment. You can also physically separate heavily used indexes from their data
to help prevent disk “thrashing,” which slows down read and write response
times.

Note For Adaptive Server, devices provide a logical map of a database to
physical storage, while segments provide a logical map of database objects to
devices. To achieve your space allocation goals, it is important that you
understand the interplay between these logical layers.

Each database can have up to 32 named segments. Adaptive Server creates and
uses three of these segments:

• system segment– contains most system catalogs.

• default segment – used if you do not specify one when creating an object.

• logsegment – stores the transaction log.

You can store user tables in the system segment, but the logsegment is reserved
entirely for the log.

Adaptive Server keeps track of the various pieces of each database in
master.dbo.sysusages. Each entry in sysusages describes one fragment of a
database. Fragments are a contiguous group of logical pages, all on the same
device, that permit storage for the same group of segments. Fragments are also
known as “disk pieces.”

Analyzing performance

16 Adaptive Server Enterprise

Because of the way Adaptive Server allocates and maintains database space,
these disk fragments are even multiples of 256 logical pages, which is one
allocation unit. When you decide how large to make a device, consider the
number of allocation units that are required, since the device size should be
evenly divisible by the allocation unit size (256 times the logical page size). If
it is not, the space at the end of that device is wasted, since Adaptive Server
cannot allocate it. For example, if your server uses a 16K page, then one
allocation unit is 4MB (16K times 256). If you create a device of 103MB on
that server, the last 3 MB cannot be allocated and are wasted.

Note The master device is an exception to this rule. The master device is the
first device you create when you install a new server. Adaptive Server reserves
8K of space at the beginning of the master device for a configuration area that
is not part of any database. Take this space into account when you create your
master device. 8K is 0.0078125MB (about .008MB). You will waste the least
space in your master device if, for example, you specify 200.008MB, as its
size, rather than 200MB.

A database cannot be larger than 2,147,483,648 pages. The logical page size
determines the number of bytes: using a 2K page, it is 4 terabytes, on a 16K
page Adaptive Server, it is 32 terabytes.

You can divide the storage for your databases between devices in any way you
want. The theoretical limit for the number of disk fragments per database is
8,388,688. However, the practical limit depends on the Adaptive Server
memory configuration. To use a database, Adaptive Server must hold the
database’s storage description in memory. This includes a description of the
database’s “disk map,” which includes all the disk fragments you have
assigned storage to for the database. In practice, a database’s storage
complexity is limited by the amount of memory configured for Adaptive
Server, and is not normally a problem.

However, databases with disk maps that contain thousands of disk fragments
may pay a penalty in performance. When Adaptive Server needs to read or
write a page, it converts the page’s logical page number to a location on disk
by looking it up in the disk map. Although this lookup is fast, it does take time,
and the amount of time gets longer as you add more disk fragments to the map.

Performance and Tuning Series: Basics 17

C H A P T E R 2 Networks and Performance

This chapter discusses the role that networks play in the performance of
applications using Adaptive Server.

Usually, the system administrator is the first to recognize a problem on the
network or in performance, including such things as

• Process response times vary significantly for no apparent reason.

• Queries that return a large number of rows take longer than expected.

• Operating system processing slows down during normal Adaptive
Server processing periods.

• Adaptive Server processing slows down during certain operating
system processing periods.

• A particular client process seems to slow all other processes.

Potential performance problems
Some of the underlying problems that can be caused by networks are:

• Adaptive Server uses network services inefficiently.

• The physical limits of the network have been reached.

• Processes retrieve unneeded data values, which unnecessarily
increase network traffic.

Topic Page
Potential performance problems 17

How Adaptive Server uses the network 20

Engine and thread affinity 19

Configuring the I/O controller 21

Changing network packet sizes 23

Impact of other server activities 27

Improving network performance 28

Potential performance problems

18 Adaptive Server Enterprise

• Processes open and close connections too often, increasing network load.

• Processes frequently submit the same SQL transaction, causing excessive
and redundant network traffic.

• Adaptive Server does not have enough network memory.

• Adaptive Server network packet sizes are not big enough to handle the
type of processing needed by certain clients.

Basic questions on network performance
When looking at network-related problems, ask yourself these questions:

• Which processes usually retrieve a large amount of data?

• Are a large number of network errors occurring?

• What is the overall performance of the network?

• What is the mix of transactions being performed using SQL and stored
procedures?

• Are a large number of processes using the two-phase commit protocol?

• Are replication services being performed on the network?

• How much of the network is being used by the operating system?

Techniques summary
Once you have gathered the data, you can take advantage of several techniques
that should improve network performance, including:

• Using small packets for most database activity

• Using larger packet sizes for tasks that perform large data transfers

• Using stored procedures to reduce overall traffic

• Filtering data to avoid large transfers

• Isolating heavy network users from ordinary users

• Using client control mechanisms for special cases

CHAPTER 2 Networks and Performance

Performance and Tuning Series: Basics 19

Use sp_sysmon while making network configuration changes to observe the
effects on performance. See Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon.

Engine and thread affinity
When configured for threaded mode, Adaptive Server tasks have a limited
affinity to a specific engine.

Network listeners
A network listener is a system task that listens on a given network port for
incoming client connections, and creates one database management system
task for each client connection. Adaptive Server creates one listener task for
each network port on which Adaptive Server listens for incoming client
connection requests. Initially, these ports consist of the master entries in the
interfaces file.

The initial number of network listener tasks is equal to the number of master
entries in the interfaces file. The maximum number of network listeners
(including those created at start-up) is 32. For example, if there are two master
entries in the interfaces file under the server name at startup, you can create 30
more listener tasks.

Each additional listener task that you create consumes resources equal to a user
connection. So, after creating a network listener, Adaptive Server can accept
one less user connection. The number of user connections configuration
parameter includes both the number of network listeners and the number of
additional listener ports.

The number of listener ports is determined at startup by the number of master
entries in the interfaces file.

For more information about the interfaces file, see Chapter 1, “Overview of
System Administration,” in the System Administration Guide: Volume 1.

How Adaptive Server uses the network

20 Adaptive Server Enterprise

Network listeners in process mode

In process mode, each Adaptive Server engine is a separate process; therefore,
network listeners run slightly differently than they do in threaded mode, when
Adaptive Server is a single process.

In process mode:

• Adaptive Server uses one listener task per port. Each listener task
functions as multiple logical listeners by switching from engine to engine,
attempting to balance the load. For example, a 64-engine Adaptive Server
with two master ports has two listener tasks, but these two listener tasks
act as 128 logical listener tasks, so the server has two physical and 128
logical listeners. Starting a listener on engine 3 does not result in Adaptive
Server spawning a new listener task unless the port does not already have
a listener

• A listener task accepts connections on engines on which it is enabled. So
a single listener task corresponds to many logical listeners.

• Stopping a listener on a specific engine terminates the logical listener for
this engine since the listener task no longer switches to that engine.
Adaptive Server terminates the listener task in case this was the last engine
on which it was allowed to operate.

How Adaptive Server uses the network
All client/server communication occurs over a network, by way of packets.
Packets contain a header and routing information, as well as the data they carry.

Clients initiate a connection to the server. The connection sends client requests
and server responses. Applications can have as many connections open
concurrently as they need to perform the required task.

The protocol used between the client and server is known as the Tabular Data
Stream™ (TDS), which forms the basis of communication for many Sybase
products.

CHAPTER 2 Networks and Performance

Performance and Tuning Series: Basics 21

Configuring the I/O controller
Adaptive Server includes I/O controllers and an I/O controller manager.

The I/O controller issues, tracks, polls, and completes I/Os. Each Adaptive
Server I/O type—disk, network, Client-Library, and, for the Cluster Edition,
CIPC—has its own I/O controller.

Adaptive Server can include multiple instances of disk or network controllers
(multiple CIPC or Client-Library controllers are not allowed). Each task
represents one controller. For example, configuring three network tasks means
network I/O uses three controllers.

Each controller task is allocated a dedicated operating system thread.
Additional tasks mean more CPU resources are dedicated to polling and
completing I/O.

A single I/O controller per system is usually sufficient. However, you may
need additional controllers on systems with very high I/O rates or low single-
thread performance. In this situation, engines may become starved for I/O, and
throughput decreases.

Use the sp_sysmon “Kernel Utilization” section to determine if additional I/O
tasks are necessary.

Consider additional I/O tasks if:

• The “Thread Utilization (OS %)” for the I/O tasks exceeds the “Engine
Busy Utilization”.

• The “Thread Utilization (OS %)” for the I/O tasks exceeds 50%.

• The polls returning “max events” in the Controller Activity section is
greater than zero.

• The “average events per poll” in the Controller Activity section is greater
than three.

The mode for which you configure Adaptive Server determines how it handles
I/O. In threaded mode—the default—Adaptive Server uses threaded polling
for I/O; in process mode, Adaptive Server uses a polling scheduler for I/O.

In process mode, Adaptive Server assigns each engine its own network,
disk, and Open Client controller. When the scheduler polls for I/O, it searches
only the engine’s local controllers (except for CIPC, for which all engines share
a single controller).

Configuring the I/O controller

22 Adaptive Server Enterprise

One benefit to process mode polling is that, when you scale the number of
engines, you scale the amount of CPU available to manage I/Os (that is, more
engines = more CPU). However, you can configure too much CPU to manage
the I/Os, devoting more time to a higher number of engines than is necessary
to perform the tasks. Another performance implication is that the engine on
which the I/O starts must finish the I/O (that is, if a task running on engine 2
issues a disk I/O, that I/O must be completed by engine 2, even if other engines
are idle). This means that engines may remain idle even while there are tasks
to perform, and I/Os may incur additional latency if the responsible engine is
running a CPU-bound task.

When configured for threaded polling, the controller manager assigns each
controller a task, and this task is placed into syb_system_pool. Because
syb_system_pool is a dedicated pool, it creates a thread to service each task.
This thread runs the polling and completion routine exclusively for the I/O
controller. Because this thread is dedicated to performing this task, the task can
block waiting for I/O completions, reducing the number of system calls and
empty polls.

You can create multiple threads to service each I/O controller, allowing you to
avoid single-thread saturation problems during which a single thread cannot
keep up with a high rate of I/Os.

Process-mode polling introduces I/O latency when the I/O completes at the
operating system level. However, the engine does not detect I/O latency
because the engine is running another task. Threaded-mode polling eliminates
this latency because the I/O thread task processes the completion immediately,
and any I/O latency is a function of the device, and is not affected by the CPU
load the query thread execution places on the system.

In threaded mode, the query processor and user tasks need not context switch
for I/O polling when they go through the scheduler. Threaded polling reduces
the amount of time spent polling as a percentage of total CPU time for all
threads, making Adaptive Server more efficient in CPU consumption.

Use sp_configure with number of disk tasks and number of network taks to
determine the number of tasks dedicated to handling I/O and the thread polling
method the tasks use.

See Chapter 5, “Setting Configuration Parameters,” in System Administration
Guide, Volume 1.

CHAPTER 2 Networks and Performance

Performance and Tuning Series: Basics 23

By default, each I/O task uses a thread from syb_system_pool, allowing the task
to block during the I/O polling, reducing overhead from busy polling. During
periods of low I/O load, these threads consume little physical CPU time. The
CPU time for the I/O thread increases as the I/O load increases, but the amount
of load increase depends on the processor performance and the I/O
implementation.

Dynamically reconfiguring I/O tasks
When you increase the number of I/O tasks, there may be a slight lag before
Adaptive Server balances the load across tasks. When you increase the number
of disk I/Os, Adaptive Server quickly balances the distribution across the
controllers. However, network tasks have an affinity between the connection
and the task, so when you increase the number of network tasks, they are not
rebalanced across the new higher number of tasks. Instead, Adaptive Server
rebalances the load as existing connections disconnect and new connections
are made.

You must restart Adaptive Server to reduce the number of I/O tasks.

Changing network packet sizes
Typically, OLTP sends and receives large numbers of packets that contain very
little data. A typical insert or update statement may be only 100 or 200 bytes.
A data retrieval, even one that joins several tables, may bring back only one or
two rows of data, and still not completely fill a packet. Applications using
stored procedures and cursors also typically send and receive small packets.

Decision-support applications often include large query batches and return
larger result sets.

In both OLTP and DSS environments, there may be special needs, such as
batch data loads or text processing, that can benefit from larger packets.

For most applications, the default network packet size of 2048 works well.
Change the default network packet size to 512 if the application uses only short
queries and receives small result sets.

Chapter 5, “Setting Configuration Parameters,” in System Administration
Guide: Volume 1 describes how to change these configuration parameters:

Changing network packet sizes

24 Adaptive Server Enterprise

• The default network packet size

• The max network packet size and additional network memory, which provide
additional memory space for large packet connections

Only a system administrator can change these configuration parameters.

Large versus default packet sizes for user connections
Adaptive Server reserves enough space for all configured user connections to
log in at the default packet size. Large network packets cannot use that space.
Connections that use the default network packet size always have three buffers
reserved for the connection.

Connections that request large packet sizes acquire the space for their network
I/O buffers from the additional network memory region. If there is not enough
space in this region to allocate three buffers at the large packet size,
connections use the default packet size instead.

Number of packets is important
Generally, the number of packets being transferred is more important than the
size of the packets. Network performance includes the time needed by the CPU
and operating system to process a network packet. This per-packet overhead
has the most effect on performance. Larger packets reduce the overall overhead
costs and achieve higher physical throughput, provided that you have enough
data to be sent.

The following big transfer sources may benefit from large packet sizes:

• Bulk copy

• readtext and writetext commands

• select statements with large result sets

• Insertions that use larger row sizes

CHAPTER 2 Networks and Performance

Performance and Tuning Series: Basics 25

There is always a point at which increasing the packet size stops improving
performance, and may, in fact, decrease performance, because the packets are
not always full. Although there are analytical methods for predicting that point,
it is more common to vary the size experimentally and plot the results. If you
conduct such experiments over a period of time and a variety of conditions, you
can determine a packet size that works well for many processes. However,
since the packet size can be customized for every connection, you may also
want to conduct specific experiments for specific processes.

Results can vary significantly between applications. You may find that bulk
copy works best at one packet size, while large image data retrievals perform
better at a different packet size.

If testing shows that some applications can achieve better performance with
larger packet sizes, but that most applications send and receive small packets,
clients request the larger packet size.

Adaptive Server evaluation tools
The sp_monitor system procedure reports on packet activity. This report shows
only the packet-related output:

...
packets received packets sent packet errors
---------------- ------------ --------------
10866(10580) 19991(19748) 0(0)
...

You can also use these global variables:

• @@pack_sent – number of packets sent by Adaptive Server.

• @@pack_received – number of packets received.

• @@packet_errors – number of errors.

These SQL statements show how you can use these counters:

select "before" = @@pack_sent
select * from titles
select "after" = @@pack_sent

Both sp_monitor and the global variables report all packet activity for all users
since the last restart of Adaptive Server.

Changing network packet sizes

26 Adaptive Server Enterprise

See Chapter 14 “Using Batches and Control-of-Flow Language,” in the
Transact-SQL Users Guide for more information about sp_monitor and these
global variables.

Other evaluation tools
Operating system commands also provide information about packet transfers.
See your operating system documentation.

Server-based techniques for reducing network traffic
Using stored procedures, views, and triggers can reduce network traffic. These
Transact-SQL tools can store large chunks of code on the server so that only
short commands need to be sent across the network.

• Stored procedures – applications that send large batches of Transact-SQL
commands may place less load on the network if the SQL is converted to
stored procedures. Views can also help reduce the amount of network
traffic.

You may be able to reduce network overhead by turning off doneinproc
packets.

• Ask for only the information you need – applications should request only
the rows and columns they need, filtering as much data as possible at the
server to reduce the number of packets that need to be sent. In many cases,
this can also reduce the disk I/O load.

• Large transfers – simultaneously decrease overall throughput and increase
the average response time. If possible, perform large transfers during off-
hours. If large transfers are common, consider acquiring network
hardware that is suitable for such transfers. Table 2-1 shows the
characteristics of some network types.

CHAPTER 2 Networks and Performance

Performance and Tuning Series: Basics 27

Table 2-1: Network options

• Network overload – network managers rarely detect problems before
database users start complaining to their system administrator.

Be prepared to provide local network managers with predicted or actual
network requirements when they are considering adding resources. Also,
monitor the network and try to anticipate problems that result from newly
added equipment or application requirements.

Impact of other server activities
You should be aware of the impact of other server activity and maintenance on
network activity, especially:

• Two-phase commit protocol

• Replication processing

• Backup processing

These activities, especially replication processing and the two-phase commit
protocol, involve network communication. Systems that make extensive use of
these activities may see network-related problems. Accordingly, try to perform
these activities only as necessary. Try to restrict backup activity to times when
other network activity is low.

Single user versus multiple users
You must take the presence of other users into consideration before trying to
solve a database problem, especially if those users are using the same network.

Type Characteristics

Token ring Token ring hardware responds better than Ethernet hardware
during periods of heavy use.

Fiber optic Fiber-optic hardware provides very high bandwidth, but is
usually too expensive to use throughout an entire network.

Separate
network

Use a separate network to handle traffic between the highest
volume workstations and Adaptive Server.

Improving network performance

28 Adaptive Server Enterprise

Since most networks can transfer only one packet at a time, many users may be
delayed while a large transfer is in progress. Such a delay may cause locks to
be held longer, which causes even more delays.

When response time is abnormally high, and normal tests indicate no problem,
it could be due to other users on the same network. In such cases, ask the user
when the process was being run, if the operating system was generally
sluggish, if other users were doing large transfers, and so on.

In general, consider multiuser impacts, such as the delay caused by a long
transaction, before digging more deeply into the database system to solve an
abnormal response time problem.

Improving network performance
There are several ways you may be able to improve network performance.

Isolate heavy network users
Isolate heavy network users from ordinary network users by placing them on a
separate network, as shown in Figure 2-1.

CHAPTER 2 Networks and Performance

Performance and Tuning Series: Basics 29

Figure 2-1: Isolating heavy network users

In the “Before” diagram, clients accessing two different Adaptive Servers use
one network card. Clients accessing Servers A and B must compete over the
network and past the network card.

In the “After” diagram, clients accessing Server A use one network card and
clients accessing Server B use another.

Set tcp no delay on TCP networks
By default, tcp no delay is set to on, meaning that packet batching is disabled.

When tcp no delay is set to off, the network batches packets, briefly delaying
the dispatch of partial packets over the network. While this improves network
performance in terminal-emulation environments, it can slow performance for
Adaptive Server applications that send and receive small batches. To enable
packet batching, set tcp no delay to 0, or off.

Configure multiple network listeners
Use two (or more) ports listening for a single Adaptive Server. Direct front-end
software to any configured network port by setting the DSQUERY
environment variable.

Using multiple network ports spreads out the network load and eliminates or
reduces network bottlenecks, thus increasing Adaptive Server throughput.

Client accessing
Server A

Clients accessing
Server B

Before

After

A B

A B

Clients accessing
Server B

Client accessing
Server A

Single
network
card

Two
network
cards

Improving network performance

30 Adaptive Server Enterprise

See the Adaptive Server Configuration Guide for your platform for information
on configuring multiple network listeners.

Performance and Tuning Series: Basics 31

C H A P T E R 3 Using Engines and CPUs

The Adaptive Server multithreaded architecture is designed for high
performance in both uniprocessor and multiprocessor systems. This
chapter describes how Adaptive Server uses engines and CPUs to fulfill
client requests and manage internal operations. It introduces Adaptive
Server’s use of CPU resources, describes the Adaptive Server symmetric
multiprocessing (SMP) model, and illustrates task scheduling with a
processing scenario.

This chapter also gives guidelines for multiprocessor application design
and describes how to measure and tune CPU- and engine-related features.

Background concepts
A relational database management system (RDBMS) must be able to
respond to the requests of many concurrent users. An RDBMS must also
maintain its transaction state while ensuring all transactional properties.
Adaptive Server is based on a multithreaded, single-process architecture
that manages thousands of client connections and multiple concurrent
client requests without overburdening the operating system.

In a system with multiple CPUs, enhance performance by configuring
Adaptive Server to use multiple Adaptive Server engines. In threaded
kernel mode (the default), each engine is an operating system thread. In
process mode, each engine is a separate operating system process.

Topic Page
Background concepts 31

Single-CPU process model 34

Adaptive Server SMP process model 39

Asynchronous log service 43

Housekeeper wash task improves CPU utilization 46

Measuring CPU usage 48

Enabling engine-to-CPU affinity 51

Multiprocessor application design guidelines 53

Background concepts

32 Adaptive Server Enterprise

All engines are peers that communicate through shared memory as they act
upon common user databases and internal structures such as data caches and
lock chains. Adaptive Server engines service client requests. They perform all
database functions, including searching data caches, issuing disk I/O read and
write requests, requesting and releasing locks, updating, and logging.

Adaptive Server manages the way in which CPU resources are shared between
the engines that process client requests. It also manages system services (such
as database locking, disk I/O, and network I/O) that impact processing
resources.

How Adaptive Server processes client requests
Adaptive Server creates a new client task for every new connection. This is
how it fulfills a client request:

1 The client program establishes a network socket connection to Adaptive
Server.

2 Adaptive Server assigns a task from the pool of tasks, which are allocated
at start-up time. The task is identified by the Adaptive Server process
identifier, or spid, which is tracked in the sysprocesses system table.

3 Adaptive Server transfers the context of the client request, including
information such as permissions and the current database, to the task.

4 Adaptive Server parses, optimizes, and compiles the request.

5 If parallel query execution is enabled, Adaptive Server allocates subtasks
to help perform the parallel query execution. The subtasks are called
worker processes, which are discussed in the Performance & Tuning
Series: Query Processing and Abstract Plans.

6 Adaptive Server executes the task. If the query was executed in parallel,
the task merges the results of the subtasks.

7 The task returns the results to the client, using TDS packets.

For each new user connection, Adaptive Server allocates a private data storage
area, a dedicated stack, and other internal data structures.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 33

Adaptive Server uses the stack to keep track of each client task’s state during
processing, and uses synchronization mechanisms such as queueing, locking,
semaphores, and spinlocks to ensure that only one task at a time has access to
any common, modifiable data structures. These mechanisms are necessary
because Adaptive Server processes multiple queries concurrently. Without
these mechanisms, if two or more queries were to access the same data, data
integrity would be compromised.

The data structures require minimal memory resources and minimal system
resources for context-switching overhead. Some of these data structures are
connection-oriented and contain static information about the client.

Other data structures are command-oriented. For example, when a client sends
a command to Adaptive Server, the executable query plan is stored in an
internal data structure.

Client task implementation
Adaptive Server client tasks are implemented as subprocesses, or “lightweight
processes,” instead of operating system processes. Subprocesses use only a
small fraction of the resources that processes use.

Multiple processes executing concurrently require more memory and CPU
time than multiple subprocesses. Processes also require operating system
resources to switch context from one process to the next.

Using subprocesses eliminates most of the overhead of paging, context
switching, locking, and other operating system functions associated with a one-
process-per-connection architecture. Subprocesses require no operating
system resources after they are launched, and they can share many system
resources and structures.

Figure 3-1 illustrates the difference in system resources required by client
connections implemented as processes and client connections implemented as
subprocesses. Subprocesses exist and operate within a single instance of the
executing program process and its address space in shared memory.

Single-CPU process model

34 Adaptive Server Enterprise

Figure 3-1: Process versus subprocess architecture

To give Adaptive Server the maximum amount of processing power, run only
essential non-Adaptive Server processes on the database machine.

Single-CPU process model
In a single-CPU system, Adaptive Server runs as a single process, sharing CPU
time with other processes, as scheduled by the operating system.

Scheduling engines to the CPU
Figure 3-2 shows a run queue for a single-CPU environment in which process
8 (proc 8) is running on the CPU and processes 6, 1, 7, and 4 are in the
operating system run queue waiting for CPU time. Process 7 is an Adaptive
Server process; the others can be any operating system process.

Client

Server process

Server process

Server process

 Process-based Subprocess-based

Server process

Shared
memory

client implementation client implementation

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 35

Figure 3-2: Processes queued for a single CPU

In a multitasking environment, multiple processes or subprocesses execute
concurrently, alternately sharing CPU resources.

Figure 3-3 shows three subprocesses in a multitasking environment. The
subprocesses share a single CPU by switching onto and off the engine over
time.

At any one time, only one process is executing. The other processes sleep in
various stages of progress.

Figure 3-3: Multithreaded processing

CPU
Operating system

Run queue

proc 6 proc 1 proc 7 proc 4proc 8

Subprocess 1 Subprocess 2

Time

Legend:

Context switching Sleeping/waitingExecuting subprocess
solid line.using CPU, In run queue, waiting

to execute or resources

Subprocess 3

Single-CPU process model

36 Adaptive Server Enterprise

Scheduling tasks to the engine
Figure 3-4 shows internally processing for tasks (or worker processes) queued
for an Adaptive Server engine in a single-CPU environment. Adaptive Server,
not the operating system, dynamically schedules client tasks from the run
queue onto the engine. When the engine finishes processing one task, it
executes the task at the beginning of the run queue.

When a task begins running, the engine continues processing it until one of the
following events occurs:

• The task completes, returns data (if any), metadata and statuses to the
client. When the task completes, it appears in the sp_sysmon section Task
Context Switches Due To as Network Packet Received.

• If an Adaptive Server engine does not find any runnable tasks, it can either
relinquish the CPU to the operating system or continue to look for a task
to run by looping for the number of times set by runnable process search
count.

Adaptive Server engines attempt to remain scheduled for the processor as
long as possible. The engine runs until it is emptied by the operating
system. However, if there is insufficient work available, the engine checks
I/O and runnable tasks.

• The task runs for a configurable period of time and reaches a yield point
Voluntary Yields in sp_sysmon). The task relinquishes the engine, and
the next process in the queue starts to run. “Scheduling client task
processing time” on page 38 discusses in more detail how this works.

When you execute sp_who on a single-CPU system with multiple active tasks,
sp_who output shows only a single task as “running”—it is the sp_who task
itself. All other tasks in the run queue have the status “runnable.” The sp_who
output also shows the cause for any sleeping tasks.

Figure 3-4 also shows the sleep queue with two sleeping tasks, as well as other
objects in shared memory. Tasks are put to sleep while they wait for resources
or for the results of a disk I/O operation.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 37

Figure 3-4: Tasks queue up for the Adaptive Server engine

Execution task scheduling
The scheduler manages processing time for client tasks and internal
housekeeping.

Sleep queueRun queue Adaptive Server

 Disk I/O

Lock sleep

Data cache

Procedure

 cache

Index cache

 7task 3

 7

Adaptive Server Engine

Operating- system

RUNNING

 7task 5

Shared memory

 Adaptive Server structures

Pending I/Os

D
I
S
K

N
E
T

task 8

task 2

task 6

task 7

task 4

Single-CPU process model

38 Adaptive Server Enterprise

Scheduling client task processing time

The time slice configuration parameter prevents executing tasks from
monopolizing engines during execution. The scheduler allows a task to execute
on an Adaptive Server engine for a maximum amount of time equal to the time
slice and cpu grace time values combined, using default times for time slice (100
milliseconds, 1/10 of a second, or equivalent to one clock tick) and cpu grace
time (500 clock ticks, or 50 seconds).

Adaptive Server scheduler does not force tasks off an Adaptive Server engine.
Tasks voluntarily relinquish the engine at a yield point, when the task does not
hold a vital resource such as a spinlock.

Each time the task comes to a yield point, it checks to see if time slice has been
exceeded. If it has not, the task continues to execute. If execution time does
exceed time slice, the task voluntarily relinquishes the engine. However, if the
task does not yield even after exceeding time slice, Adaptive Server terminates
the task after it exceeds cpu grace time. The most common cause for a task not
yielding is a system call that does not return in a timely manner.

For more information about using sp_sysmon to determine how many times
tasks yield voluntarily, see “Scheduling tasks to the engine” on page 36.

To increase the amount of time that CPU-intensive applications run on an
engine before yielding, assign execution attributes to specific logins,
applications, or stored procedures.

If the task has to relinquish the engine before fulfilling the client request, the
task goes to the end of the run queue, unless there are no other tasks in the run
queue. If no tasks are in the queue when an executing task reaches a yield point
during grace time, Adaptive Server grants the task another processing interval.

Normally, tasks relinquish the engine at yield points prior to completion of the
cpu grace time interval. It is possible for a task not to encounter a yield point
and to exceed the time slice interval. If time slice is set too low, an engine may
spend too much time switching between tasks, which tends to increase
response time. If time slice is set too high, CPU-intensive processes may
monopolize the CPU, which can increase response time for short tasks. If your
applications encounter timeslice errors, adjusting the value for time slice has no
affect, but adjusting the value for cpu grace time does. However, research the
cause of the time slice error before adjusting the value for cpu grace time. You
may need to contact Sybase Technical Support.

When the cpu grace time ends, Adaptive Server terminates the task with a time
slice error. If you receive a time slice error, try increasing the time up to four
times the current time for cpu grace time. If the problem persists, call Sybase
Technical Support.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 39

See Chapter 4, “Distributing Engine Resources.”

Maintaining CPU availability during idle time

The idle timout parameter for create thread pool and alter thread pool determines
the amount of time, in microseconds, a thread in this pool looks for work before
going to sleep. You can set idle timout for engine pools only, not for RTC pools.
See “Setting Configuration Parameters” in the System Administration Guide:
Volume 1.

The default for idle timout is 100 microseconds. However, Adaptive Server may
not precisely honor the timeout period, especially at lower values (lower than
100).

Once you set the value for idle timeout, Adaptive Server registers the value in
the configuration file under the Thread Pool heading:

[Thread Pool:new_pool]
number of threads = 1
idle timeout = 500

Setting idle timeout to -1 prevents the engines from yielding. At this setting, the
engines consume 100% of the CPU.

Note The idle timeout parameter replaces the runnable process search count
configuration parameter used in versions of Adaptive Server earlier than 15.7.
idle timeout is available for threaded mode only. However, runnable process
search count remains available for process mode.

Adaptive Server SMP process model
Adaptive Server’s symmetric multiprocessing (SMP) implementation extends
the performance benefits of Adaptive Server’s multithreaded architecture to
multiprocessor systems. In the SMP environment, multiple CPUs cooperate to
perform work faster than a single processor can.

 SMP is intended for machines with the following features:

• A symmetric multiprocessing operating system

• Shared memory over a common bus

Adaptive Server SMP process model

40 Adaptive Server Enterprise

• Two to 1024 processors (128 processors in process mode)

• Very high throughput

Scheduling engines to CPUs
The symmetric aspect of SMP is a lack of affinity between processes and
CPUs—processes are not attached to a specific CPU. Without CPU affinity, the
operating system schedules engines to CPUs in the same way as it schedules
non-Adaptive Server processes to CPUs. Scheduling any process to a
processor, including Adaptive Server engines, is done by the operating system,
which can, at any time, preempt an Adaptive Server engine to run an arbitrary
task. If an Adaptive Server engine does not find any runnable tasks, it can either
relinquish the CPU to the operating system or continue to look for a task to run
according to the amount of time specified by the idle timeout parameter.

In some situtations,you may improve performace by forcing an association
between Adaptive Server threads and a specific CPU or set of CPUs. For
example, grouping engines into the fewest number of physical sockets
improves the hit rate on the L2 and L3 caches, improving performance.

In configurations where a single socket has sufficient parallelism for all engine
and I/O threads (such as an 8-core socket running a 4-engine Adaptive Server),
consider binding the Adaptive Server engine to a single socket with dbcc tune
or with your operating system (generally recommended). Consult your
operating system documentation for instructions on binding threads or
processes to CPUs.

Scheduling Adaptive Server tasks to engines
Scheduling Adaptive Server tasks to engines in the SMP environment is similar
to scheduling tasks in the single-CPU environment, as described in
“Scheduling tasks to the engine” on page 36. However, in the SMP
environment:

• Each engine has a run queue. Tasks have soft affinities to engines. When
a task runs on an engine, it creates an affinity to the engine. If a task yields
the engine and then is queued again, it tends to be queued on the same
engine’s run queue.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 41

• Any engine can process the tasks in the global run queue, unless logical
process management has been used to assign the task to a particular engine
or set of engines.

• When an engine looks for a task to execute, it first looks in the local and
global run queues, then in run queues for other engines, where it steals a
task with appropriate properties.:

Multiple network engines
In process mode, when a user logs in to Adaptive Server, the task is assigned
in round-robin fashion to one of the engines is serving as the task’s network
engine. This engine establishes the packet size, language, character set, and
other login settings. All network I/O for a task is managed by its network
engine until the task logs out.

In threaded mode, any engine can issue network I/O for any task. Network
polling is performed by the dedicated network tasks in the syb_system_pool.

Task priorities and run queues
Adaptive Server may increase the priority of some tasks, especially if they are
holding an important resource or have had to wait for a resource. In addition,
logical process management allows you to assign priorities to logins,
procedures, or applications using sp_bindexeclass and related system
procedures.

See Chapter 4, “Distributing Engine Resources,” for more information on
performance tuning and task priorities.

Each task has a priority assigned to it; the priority can change over the life of
the task. When an engine looks for a task to run, it first scans its own high-
priority queue and then the high-priority global run queue.

If there are no high-priority tasks, it looks for tasks at medium priority, then at
low priority. If it finds no tasks to run on its own run queues or the global run
queues, it can examine the run queues for another engine, and steal a task from
another engine. This combination of priorities, local and global queues, and the
ability to move tasks between engines when workload is uneven provides load
balancing.

Tasks in the global or engine run queues are all in a runnable state. Output from
sp_who lists tasks as “runnable” when the task is in any run queue.

Adaptive Server SMP process model

42 Adaptive Server Enterprise

Processing scenario
These steps describe how a task is scheduled in the SMP environment. The
execution cycle for single-processor systems is very similar. A single-
processor system handles task switching, putting tasks to sleep while they wait
for disk or network I/O, and checking queues in the same way.

1 In process mode, when a connection logs in to Adaptive Server, it is
assigned to a task that manages its network I/O.

The task assigns the connection to an engine or engine group and
establishes packet size, language, character set, and other login settings. A
task sleeps while waiting for the client to send a request.

2 Checking for client requests.

In process mode, another task checks for incoming client requests once
every clock tick.

In threaded mode, Adaptive Server wakes a dedicated thread as soon as a
new request arrives.

When this second task finds a command (or query) from the connection, it
wakes up the first task and places it on the end of its run queue.

3 Fulfilling a client request.

When a task becomes first in the queue, the query processor parses,
compiles, and begins executing the steps defined in the task’s query plan.

4 Performing disk I/O.

If the task needs to access a page locked by another user, it is put to sleep
until the page is available. After such a wait, the task’s priority is
increased, and it is placed in the global run queue so that any engine can
run it.

5 Performing network I/O.

In threaded mode, because there is no network affinity, tasks return results
from any engine.

In process mode, if a task is executing on its network engine, the results
are returned. If the task is executing on an engine other than its network
engine, the executing engine adds the task to the network engine’s high-
priority queue.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 43

Asynchronous log service
Asynchronous log service, or ALS, enables scalability in Adaptive Server,
providing higher throughput in logging subsystems for high-end symmetric
multiprocessor systems.

For every database on which ALS is enabled, one engine predominantly
performs log I/O, so ALS is beneficial only when the contention on the log
semaphore is higher than the processing power of one engine.

You cannot use ALS if you have fewer than four engines.

Enabling ALS Use sp_dboption to enable, disable, or configure ALS

sp_dboption database_name, "async log service", "true|false"

checkpoint (which writes all dirty pages to the database device) is automatically
executed as part of sp_dboption.

This example enables ALS for mydb:

sp_dboption "mydb", "async log service", "true"

Disabling ALS Before you disable ALS, make sure there are no active users in the database. If
there are, you receive an error message.

This example disables ALS:

sp_dboption "mydb", "async log service", "false"

Displaying ALS Use sp_helpdb to see whether ALS is enabled in a specified database:

sp_helpdb "mydb"
name db_size owner dbid created durability
status
---- ------------- ----- ---- ------------ ----------

mydb 3.0 MB sa 5 July 09, 2010 full
select into/bulkcopy/pllsort, trunc log on chkpt, async log service

device_fragments size usage
created free kbytes
------------------------------ ------------ --------------------
------------------------- ----------------
master 2.0 MB data only
Jul 2 2010 1:59PM 320
log_disk 1.0 MB log only
Jul 2 2010 1:59PM not applicable

--

Asynchronous log service

44 Adaptive Server Enterprise

log only free kbytes = 1018
device segment
-------- ----------
log_disk logsegment
master default
master system

Understanding the user log cache (ULC) architecture
Adaptive Server’s logging architecture features the user log cache, or ULC, by
which each task owns its own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever a transaction
generates a log record. When the transaction commits or aborts, or the user log
cache is full, the user log cache is flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushing the ULC is the first part of a commit or abort operation. It requires the
following steps, each of which can cause delay or increase contention:

1 Obtaining a lock on the last log page.

2 Allocating new log pages if necessary.

3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require a lock to be held on the last log page,
which prevents any other tasks from writing to the log cache or performing
commit or abort operations.

4 Flushing the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which the log is bound. Under a large transaction load, contention on this
spinlock can be significant.

When to use ALS
You can enable ALS on any database that has at least one of the following
performance issues, as long as your systems runs four or more online engines:

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 45

• Heavy contention on the last log page – sp_sysmon output in the Task
Management Report section shows a significantly high value. This
example shows a log page under contention:

Task Management per sec per xact count % of total
----------------------- ---------- ---------- -------- --------
Log Semaphore Contention 58.0 0.3 34801 73.1

• Heavy contention on the cache manager spinlock for the log cache –
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:

Task Management per sec per xact count % of total
----------------------- ---------- ---------- -------- --------
Spinlock Contention n/a n/a n/a 40.0

• Underutilized bandwidth in the log device.

Note Use ALS only when you identify a single database with high transaction
requirements, since setting ALS for multiple databases may cause unexpected
variations in throughput and response times. If you want to configure ALS on
multiple databases, first check that your throughput and response times are
satisfactory.

Using the ALS
Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

• The user log cache (ULC) flusher

• The log writer.

Housekeeper wash task improves CPU utilization

46 Adaptive Server Enterprise

ULC flusher

The ULC flusher is a system task thread dedicated to flushing the user log
cache of a task into the general log cache. When a task is ready to commit, the
user enters a commit request into the flusher queue. Each entry has a handle,
by which the ULC flusher can access the ULC of the task that queued the
request. The ULC flusher task continuously monitors the flusher queue,
removing requests from the queue and servicing them by flushing ULC pages
into the log cache.

Log writer

When the ULC flusher has finished flushing the ULC pages into the log cache,
it queues the task request into a wakeup queue. The log writer patrols the dirty
buffer chain in the log cache, issuing a write command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Housekeeper wash task improves CPU utilization
The housekeeper wash task (which sp_who reports as HK WASH) typically runs
as a low-priority task, and runs only during idle cycles when Adaptive Server
has no user tasks to process. While running, the wash task automatically writes
dirty buffers to disk (called free writes) and performs other maintenance tasks.
These writes result in improved CPU utilization and a decreased need for
buffer washing during transaction processing. They also reduce the number
and duration of checkpoint spikes— times when the checkpoint process causes
a short, sharp rise in disk writes.

By default, the housekeeper garbage collection operates at the priority level of
an ordinary user and cleans up data that was logically deleted and resets the
rows so the tables have space again. If Adaptive Server is configured for
threaded mode, use sp_bindexeclass or sp_setpsexe to set the housekeeper task
to a higher priority level.

See Chapter 11, “Diagnosing System Problems,” in the System Administration
Guide: Volume 1 for more information on the housekeeper tasks and for
information about resetting their priorities.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 47

Side effects of the housekeeper wash task
If the housekeeper wash task can flush all active buffer pools in all configured
caches, it wakes up the checkpoint task.

The checkpoint task determines whether it can checkpoint the database. If it
can, it writes a checkpoint log record indicating that all dirty pages have been
written to disk. The additional checkpoints that occur as a result of the
housekeeper wash task may improve recovery speed for the database.

In applications that repeatedly update the same database page, the housekeeper
wash may initiate some database writes that are not necessary. Although these
writes occur only during the server’s idle cycles, they may be unacceptable on
systems with overloaded disks.

Configuring the housekeeper wash task
System administrators can use the housekeeper free write percent configuration
parameter to control the side effects of the housekeeper wash task. This
parameter specifies the maximum percentage by which the housekeeper wash
task can increase database writes. Valid values are 0 – 100.

By default, housekeeper free write percent is set to 1, which allows the
housekeeper wash task to continue to wash buffers as long as database writes
do not increase by more than 1 percent. On most systems, work done by the
housekeeper wash task at the default setting results in improved performance
and recovery speed. Setting housekeeper free write percent too high can
degrade performance. If you want to increase the value, increase by only 1 or
2 percent each time.

A dbcc tune option, deviochar, controls the size of batches that the housekeeper
can write to disk at one time.

See “Increasing the Housekeeper Batch Limit” in Chapter 2, “Monitoring
Performance with sp_sysmon,” in Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon.

Changing the percentage by which writes can be increased

Use sp_configure to change the percentage by which database writes can be
increased as a result of the housekeeper wash task:

sp_configure "housekeeper free write percent", value

Measuring CPU usage

48 Adaptive Server Enterprise

For example, to stop the housekeeper wash task from working when the
frequency of database writes reaches 2 percent above normal enter:

sp_configure "housekeeper free write percent", 2

Disabling the housekeeper wash task

Disable the housekeeper wash task to establish a more controlled environment
in which primarily user tasks are running. To disable the housekeeper wash
task, set the value of the housekeeper free write percent parameter to 0:

sp_configure "housekeeper free write percent", 0

There is no configuration parameter to shut down the housekeeper chores task,
although you can set sp_setpsexe to lower its priority.

Allowing the housekeeper wash task to work continuously

To allow the housekeeper wash task to work whenever there are idle CPU
cycles, regardless of the percentage of additional database writes, set the value
of the housekeeper free write percent parameter to 100:

sp_configure "housekeeper free write percent", 100

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Measuring CPU usage
This section describes how to measure CPU usage on machines with a single
processor and on those with multiple processors.

Single-CPU machines
There is no correspondence between your operating system’s reports on CPU
usage and the Adaptive Server internal “CPU busy” information.

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 49

A multithreaded database engine in process mode is not allowed to block on
I/O. While asynchronous disk I/O is being performed, Adaptive Server
services other user tasks that are waiting to be processed. If there are no tasks
to perform, Adaptive Server enters a busy-wait loop, waiting for completion of
the asynchronous disk I/O. This low-priority busy-wait loop can result in high
CPU usage, but because of its low priority, it is generally harmless.

Adaptive Serves in threaded mode can block on I/O.

Note In process mode, it is normal for an Adaptive Server to exhibit high CPU
usage while performing an I/O-bound task.

Using sp_monitor to measure CPU usage

Use sp_monitor to see the percentage of time Adaptive Server uses the CPU
during an elapsed time interval:

last_run current_run seconds
------------------------- ------------------------ ----------

Jul 25 2009 5:25PM Jul 28 2009 5:31PM 360

cpu_busy io_busy idle
----------------------- ---------------------- -----------------
5531(359)-99% 0(0)-0% 178302(0)-0%

packets_received packets_sent packet_errors
----------------------- ---------------------- ------------------
57650(3599) 60893(7252) 0(0)

total_read total_write total_errors connections
----------------- ---------------- --------------- --------------
190284(14095) 160023(6396) 0(0) 178(1)

For more information about sp_monitor, see the Adaptive Server Enterprise
Reference Manual.

Using sp_sysmon to measure CPU usage

sp_sysmon provides more detailed information than sp_monitor. The “Kernel
Utilization” section of the sp_sysmon report displays how busy the engine was
during the sample run. The percentage in this output is based on the time that
CPU was allocated to Adaptive Server; it is not a percentage of the total sample
interval.

Measuring CPU usage

50 Adaptive Server Enterprise

The CPU Yields by Engine section displays information about how often
the engine yielded to the operating system during the interval.

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Operating system commands and CPU usage

Operating system commands for displaying CPU usage are documented in the
Adaptive Server installation and configuration guides.

If your operating system tools show that CPU usage is more than 85 percent
most of the time, consider using a multi-CPU environment or offloading some
work to another Adaptive Server.

Determining when to configure additional engines
When you are determining whether to add additional engines, consider:

• Load on existing engines

• Contention for resources, such as locks on tables, disks, and cache
spinlocks

• Response time

If the load on existing engines is more than 80 percent, adding an engine should
improve response time, unless contention for resources is high or the additional
engine causes contention.

Before configuring more engines, use sp_sysmon to establish a baseline. Look
at the sp_sysmon output for the following sections in Monitoring Performance
with sp_sysmon in Performance and Tuning Series: Monitoring Adaptive
Server with sp_sysmon. In particular, study the lines or sections in the output
that may reveal points of contention:

• Logical Lock Contention

• Address Lock Contention

• ULC Semaphore Requests

• Log Semaphore Requests

• Page Splits

• Lock Summary

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 51

• Spinlock Contention

• I/Os Delayed by

After increasing the number of engines, run sp_sysmon again under similar
load conditions, and check the “Engine Busy Utilization” section in the report
and the possible points of contention listed above.

Taking engines offline
If you are running Adaptive Server in process mode, use sp_engine to take
engines online and offline. Adaptive Server does not accept sp_engine in
threaded mode. See the sp_engine entry in the Adaptive Server Enterprise
Reference Manual: Procedures.

Enabling engine-to-CPU affinity
By default, there is no affinity between CPUs and engines in Adaptive Server.
You may see slight performance gains in high-throughput environments by
establishing affinity of engines to CPUs.

Not all operating systems support CPU affinity; on such systems, the dbcc tune
command is silently ignored. You must reissue dbcc tune each time Adaptive
Server is restarted. Each time CPU affinity is turned on or off, Adaptive Server
prints a message in the error log indicating the engine and CPU numbers
affected:

Engine 1, cpu affinity set to cpu 4.
Engine 1, cpu affinity removed.

The syntax is:

dbcc tune(cpuaffinity, start_cpu [, on | off])

start_cpu specifies the CPU to which engine 0 is to be bound. Engine 1 is
bound to the CPU numbered (start_cpu + 1). The formula for determining the
binding for engine n is:

((start_cpu + n) % number_of_cpus

Valid CPU numbers are 0 – the number of CPUs minus 1.

On a four-CPU machine (with CPUs numbered 0 – 3) and a four-engine
Adaptive Server, this command:

Enabling engine-to-CPU affinity

52 Adaptive Server Enterprise

dbcc tune(cpuaffinity, 2, "on")

Gives this result:

On the same machine, with a three-engine Adaptive Server, the same command
causes the following affinity:

CPU 1 is not used by Adaptive Server.

To disable CPU affinity, use -1 instead of start_cpu, and specify off for the
setting:

dbcc tune(cpuaffinity, -1, "off")

Enable CPU affinity without changing the value of start_cpu by using -1 and
on for the setting:

dbcc tune(cpuaffinity, -1, "on")

The default value for start_cpu is 1 if CPU affinity has not been previously set.

To specify a new value of start_cpu without changing the on/off setting, use:

dbcc tune (cpuaffinity, start_cpu)

If CPU affinity is currently enabled, and the new start_cpu differs from its
previous value, Adaptive Server changes the affinity for each engine.

If CPU affinity is off, Adaptive Server notes the new start_cpu value, and the
new affinity takes effect the next time CPU affinity is turned on.

To see the current value and whether affinity is enabled, use:

dbcc tune(cpuaffinity, -1)

This command prints only current settings to the error log and does not change
the affinity or the settings.

Engine CPU

0 2 (the start_cpu number specified)

1 3

2 0

3 1

Engine CPU

0 2

1 3

2 0

CHAPTER 3 Using Engines and CPUs

Performance and Tuning Series: Basics 53

Multiprocessor application design guidelines
If you are moving applications from a single-CPU environment to an SMP
environment, this section discusses some issues to consider.

Increased throughput on multiprocessor Adaptive Servers makes it more likely
that multiple processes may try to access a data page simultaneously. Adhere
to the principles of good database design to avoid contention. These are some
of the application design considerations that are especially important in an
SMP environment.

• Multiple indexes – the increased throughput of SMP may result in
increased lock contention when allpages-locked tables with multiple
indexes are updated. Allow no more than two or three indexes on any table
that is updated often.

For information about the effects of index maintenance on performance,
see Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

• Managing disks – the additional processing power of SMP may increase
demands on the disks. Spread data across multiple devices for heavily used
databases.

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

• Adjusting the fillfactor for create index commands – because of the added
throughput with multiple processors, setting a lower fillfactor may
temporarily reduce contention for the data and index pages.

• Transaction length – transactions that include many statements or take a
long time to run may result in increased lock contention. Keep transactions
as short as possible, and avoid holding locks—especially exclusive or
update locks—while waiting for user interaction. Ensure that the
underlying storage provides both adequate bandwidth and sufficiently low
latencies.

• Temporary tables – do not cause contention, because they are associated
with individual users and are not shared. However, if multiple user
processes use tempdb for temporary objects, there may be some contention
on the system tables in tempdb. Use multiple temporary databases or
Adaptive Server version 15.0.2 and later to alleviate contention on
tempdb’s system tables.

See Chapter 7, “tempdb Performance Issues,” in Performance and Tuning
Series: Physical Database Tuning.

Multiprocessor application design guidelines

54 Adaptive Server Enterprise

Performance and Tuning Series: Basics 55

C H A P T E R 4 Distributing Engine Resources

This chapter explains how to assign execution attributes, how Adaptive
Server interprets combinations of execution attributes, and how to predict
the impact of various execution attribute assignments on the system.

Understanding how Adaptive Server uses CPU resources is a prerequisite
for understanding the discussion about distributing engine resources. For
more information, see Chapter 3, “Using Engines and CPUs.”

Successfully distributing resources
The interactions among execution objects in an Adaptive Server
environment are complex. Furthermore, every environment is different:
each involves its own mix of client applications, logins, and stored
procedures, and is characterized by the interdependencies between these
entities.

Implementing execution precedence without having studied the
environment and the possible implications can lead to unexpected (and
negative) results.

Topic Page
Successfully distributing resources 55

Managing preferred access to resources 62

Types of execution classes 63

Execution class attributes 64

Setting execution class attributes 67

Determining precedence and scope 74

Example scenario using precedence rules 79

Considerations for engine resource distribution 82

Successfully distributing resources

56 Adaptive Server Enterprise

For example, say you have identified a critical execution object and you want
to raise its execution attributes to improve performance, either permanently or
on a per-session basis. If the execution object accesses the same set of tables as
one or more other execution objects, raising its execution priority can lead to
performance degradation due to lock contention among tasks at different
priority levels.

Because of the unique nature of every Adaptive Server environment, Sybase
cannot provide a detailed procedure for assigning execution precedence that
makes sense for all systems. However, this section provides guidelines,
procedures to try, and a discussion of common issues.

Figure 4-1 shows the steps involved in assigning execution attributes.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 57

Figure 4-1: Process for assigning execution precedence

1 Study the Adaptive Server environment:

• Analyze the behavior of all execution objects and categorize them as
much as possible.

Analyze the environment, perform

Understand concepts well enough
to predict possible consequences.

Assign performance attributes to
establish an execution hierarchy.

Goals
accomplished

?

benchmark tests, and set goals.

Yes

No

Is
performance
satisfactory

No

?

Yes

1

2

3

4

6

Does it
makes sense to

continue using resources
for tuning

End

No

Yes

?

5 Monitor and
analyze results.

Successfully distributing resources

58 Adaptive Server Enterprise

• Understand interdependencies and interactions between execution
objects.

• Perform benchmark tests to use as a baseline for comparison after
establishing precedence.

• Think about how to distribute processing in a multiprocessor
environment.

• Identify the critical execution objects for which you want to enhance
performance.

• Identify the noncritical execution objects that can afford decreased
performance.

• Establish a set of quantifiable performance goals for the execution
objects identified in the last two items.

See “Environment analysis and planning” on page 59.

2 Understand the effects of using execution classes:

• Understand the basic concepts associated with execution class
assignments.

• Decide whether to create one or more user defined-execution classes.

• Understand the implications of different class level assignments—
how do assignments affect the environment in terms of performance
gains, losses, and interdependencies?

See n.

3 Assign execution classes and any independent engine affinity attributes.

4 After making execution precedence assignments, analyze the running
Adaptive Server environment:

• Run the benchmark tests you used in step 1 and compare the results.

• If the results are not what you expect, take a closer look at the
interactions between execution objects, as outlined in step 1.

• Investigate dependencies that you might have missed.

See “Results analysis and tuning” on page 61.

5 Fine-tune the results by repeating steps 3 and 4 as many times as
necessary.

6 Monitor the environment over time.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 59

Environment analysis and planning
Environment analysis and planning involves:

• Analyzing the environment

• Performing benchmark tests to use as a baseline

• Setting performance goals

Analyzing the environment

Study and understand how Adaptive Server objects interact with your
environment so that you can make decisions about how to achieve the
performance goals you set.

Analysis involves these two phases:

• Phase 1 – analyze the behavior of each execution object.

• Phase 2 – use the results from the object analysis to make predictions
about interactions between execution objects within the Adaptive Server
system.

First, make a list containing every execution object that can run in the
environment. Then, classify each execution object and its characteristics.
Categorize the execution objects with respect to each other in terms of
importance. For each, decide which of the following applies:

• It is a highly critical execution object needing enhanced response time,

• It is an execution object of medium importance, or

• It is a noncritical execution object that can afford slower response time.

Phase 1 – execution object behavior

Typical classifications include intrusive/unintrusive, I/O-intensive, and CPU-
intensive. For example, identify each object as intrusive or unintrusive, I/O
intensive or not, and CPU intensive or not. You will probably need to identify
additional issues specific to the environment to gain useful insight.

Two or more execution objects running on the same Adaptive Server are
intrusive when they use or access a common set of resources.

Successfully distributing resources

60 Adaptive Server Enterprise

If the applications in the Adaptive Server environment use different resources,
they are unintrusive.

I/O-intensive and CPU-intensive execution objects

When an execution object is I/O intensive, it might help to give it the EC1
predefined execution class attributes (see “Types of execution classes” on page
63). An object performing I/O does not normally use an entire time period, and
yields the CPU before waiting for I/O to complete.

By giving preference to I/O-bound Adaptive Server tasks, Adaptive Server
ensures that these tasks are runnable as soon as the I/O is finished. By letting
the I/O take place first, the CPU should be able to accommodate both I/O-
bound and compute-bound types of applications and logins.

Phase 2 – the entire environment

Follow up on phase 1, in which you identified the behavior of the execution
objects, by thinking about how applications interact.

Typically, a single application behaves differently at different times; that is, it
might be alternately intrusive and unintrusive, I/O bound, and CPU intensive.
This makes it difficult to predict how applications will interact, but you can
look for trends.

Organize the results of the analysis so that you understand as much as possible
about each execution object with respect to the others. For example, you might
create a table that identifies the objects and their behavior trends.

Intrusive applications

Effect of
assigning
attributes

Assigning high-execution attributes to intrusive applications might degrade performance.

Example Consider a situation in which a noncritical application is ready to release a resource, but
becomes blocked when a highly-critical application starts executing. If a second critical
application needs to use the blocked resource, then execution of this second critical
application is also blocked

Unintrusive applications

Effect of
assigning
attributes

You can expect enhanced performance when you assign preferred execution attributes to
an unintrusive application.

Example Simultaneous distinct operations on tables in different databases are unintrusive. Two
operations are also unintrusive if one is compute bound and the other is I/O bound.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 61

Using Adaptive Server monitoring tools (for example, the monitoring tables)
is one of the best ways to understand how execution objects affect the
environment. See Performance and Tuning Series: Monitoring Tables.

Performing benchmark tests
Perform benchmark tests before assigning any execution attributes so that you
have the results to use as a baseline after making adjustments.

Tools that can help you understand system and application behavior include:

• Monitoring tables – provide both a system-wide view or performance and
details about objects and users. See Performance and Tuning Series:
Monitoring Tables.

• sp_sysmon – is a system procedure that monitors system performance for
a specified time interval, then prints an ASCII text-based report. See
Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Setting goals
Establish a set of quantifiable performance goals. These should be specific
numbers based on the benchmark results and your expectations for improving
performance. Use these goals to direct you in assigning execution attributes.

Results analysis and tuning
After you configure the execution hierarchy, analyze the running Adaptive
Server environment:

1 Run the same benchmark tests you ran before assigning the execution
attributes, and compare the results to the baseline results.

2 Use Adaptive Server Monitor or sp_sysmon to ensure there is good
distribution across all the available engines. Check the “Kernel
Utilization”. See Performance and Tuning Series: Monitoring Adaptive
Server with sp_sysmon.

Managing preferred access to resources

62 Adaptive Server Enterprise

3 If the results are not what you expected, take a closer look at the
interactions between execution objects. Look for inappropriate
assumptions and dependencies that you might have missed.

4 Make adjustments to performance attributes.

5 Fine-tune the results by repeating these steps as many times as necessary
to monitor your environment over time.

Managing preferred access to resources
Most performance tuning techniques give you control at either the system level
or at the specific query level. Adaptive Server also gives you control over the
relative performance of simultaneously running tasks.

Unless you have superfluous resources, the need for control at the task level is
greater in parallel execution environments because there is more competition
for limited resources.

Use system procedures to assign execution attributes that indicate which tasks
should be given preferred access to resources. The logical process manager
uses the execution attributes when it assigns priorities to tasks and tasks to
engines.

In effect, assigning execution attributes lets you suggest to Adaptive Server
how to distribute engine resources between client applications, logins, and
stored procedures in a mixed workload environment.

Each client application or login can initiate many Adaptive Server tasks. In a
single-application environment, you can distribute resources at the login and
task levels to enhance performance for chosen connections or sessions. In a
multiple application environment, you can distribute resources to improve
performance for selected applications and for chosen connections or sessions.

 Warning! Assign execution attributes with caution.

Arbitrary changes in the execution attributes of one client application, login, or
stored procedure can adversely affect the performance of others.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 63

Types of execution classes
An execution class is a specific combination of execution attributes that specify
values for task priority and task-to-thread pool affinity (or task-to-engine
affinity in process mode). You can bind an execution class to one or more
execution objects, which are client applications, logins, service classes, and
stored procedures.

There are two types of execution classes—predefined and user-defined.
Adaptive Server provides three predefined execution classes:

• EC1 – has the most preferred attributes.

• EC2 – has average values of attributes.

• EC3 – has nonpreferred values of attributes.

Objects associated with EC2 are given average preference for engine resources.
If an execution object is associated with EC1, Adaptive Server considers it to
be critical and tries to give it preferred access to resources.

Any execution object associated with EC3 is considered to be least critical and
does not receive resources until the execution objects associated with EC1 and
EC2 are executed. By default, execution objects have EC2 attributes.

To change an execution object’s execution class from the EC2 default, use
sp_bindexeclass, described in “Assigning execution classes” on page 68.

Create user-defined execution classes by combining the execution attributes in
ways that best reflect your site’s needs. Reasons for doing this include:

• EC1, EC2, and EC3 do not accommodate all combinations of attributes that
might be useful.

• Associating execution objects with a particular group of engines would
improve performance.

• Binding service tasks like the housekeeper task, LICENSE HEARTBEAT,
and so on to their own thread pool

Execution class attributes

64 Adaptive Server Enterprise

Execution class attributes
Each predefined or user-defined execution class comprises of a combination of
three attributes: base priority, timeslice, and thread pool affinity (engine
affinity in process mode). These attributes determine performance
characteristics during execution.

The attributes for the predefined execution classes, EC1, EC2, and EC3, are
fixed, as shown in Table 4-1.

Table 4-1: Fixed-attribute composition of predefined execution classes

By default, a task on Adaptive Server operates with the same attributes as EC2:
its base priority is medium, its time slice is set to one tick, and it can run on any
engine.

Base priority
Assign base priority when you create a task. The values are “high,” “medium,”
and “low.” There is a run queue for each priority for each engine, and the global
run queue also has a queue for each priority.

When a thread pool looks for a task to run, it first checks its own high priority
run queue, then the high priority global run queue, then its own medium
priority run queue, and so on. The result is, runnable tasks in the high priority
run queues are scheduled onto thread pools more quickly than tasks in the other
queues.

The scheduler search space refers to where engine schedulers look for work
(run queue checking):

• In process mode, the scheduler search space is server-wide, meaning all
engines share a global run queue. Engines check the run queues of all other
engines.

• In threaded mode, the scheduler search space is specific to the thread pool.
Each engine thread pool has its own global queue, and the engines within
that pool look for tasks associated only with that pool.

Execution class
level

Base priority
attribute

Time slice
attribute

Engine affinity
attribute

EC1 High Time slice > t None

EC2 Medium Time slice = t None

EC3 Low Time slice < t Engine with the highest
engine ID number

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 65

During execution, Adaptive Server can temporarily change a task’s priority if
necessary. A task’s priority can be greater than or equal to, but never lower
than, its base priority.

When you create a user-defined execution class, you can assign the values
high, medium, or low to the task.

Setting the task priority

Task priority is an attribute of an execution class that is set with
sp_bindexeclass. The current_priority column from sp_showpsexe output shows
the priority level for the current task execution settings:

sp_showpsexe
spid appl_name login_name

exec_class current_priority
task_affinity

------ ------------------------------ ------------------------------
------------------------------ ----------------

6 NULL NULL

NULL LOW
syb_default_pool

7 NULL NULL
NULL MEDIUM

syb_default_pool
8 NULL NULL

NULL LOW
syb_default_pool

13 isql sa
EC2 MEDIUM

syb_default_pool

In threaded mode, the task_affinity column indicates the name of the
thread pool. In process mode, it indicates the name of the engine group.

Use sp_setpsexe to set the priority for a specific task. For example, to set the
isql task in the example above to a priority level of HIGH, use:

sp_setpsexe 13, 'priority', 'HIGH'

When you set task priorities, consider that:

• You set priorities for Adaptive Server tasks, not operating system threads.

• Priorities are relative to other tasks. For example, if a user thread pool
contains only tasks from a single execution class, setting the priority of
that class has no effect since all tasks are running at the same priority.

Execution class attributes

66 Adaptive Server Enterprise

Task-to-engine affinity
In a multiengine environment, any available engine can process the next task
in the global run queue. The engine affinity attribute lets you assign a task to
an engine or to a group of engines (in threaded mode, this is done with thread
pools).

To organize task-to-engine affinity:

• Associate less critical execution objects with a defined group of engines to
restrict the object to a subset of the total number of engines. This reduces
processor availability for those objects. The more critical execution
objects can execute on any Adaptive Server engine, so performance for
them improves because they have the benefit of the resources that the less
critical ones are deprived of.

• Associate more critical execution objects with a defined group of engines
to which less critical objects do not have access. This ensures that the
critical execution objects have access to a known amount of processing
power.

• In process mode, when optimal performance for a network-intensive task
is the primary concern, administrators can use task-to-engine affinity
coupled with dynamic listeners to ensure that tasks run on the same engine
as all the tasks’ network I/O. In threaded mode, this is not required due to
the lack of dedicated network engines.

EC1 and EC2 do not set engine affinity for the execution object; however, EC3
sets affinity to the Adaptive Server engine with the highest engine number in
the current configuration.

Use sp_addengine to create engine groups and sp_addexeclass to bind
execution objects to an engine group. If you do not want to assign engine
affinity for a user-defined execution class, use ANYENGINE as the engine
group parameter.

In threaded mode, use create thread pool to create a new thread pool. Use
sp_addexeclass to bind execution objects to thread pools.

Note The engine affinity attribute is not used for stored procedures.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 67

Engine group affinity when switching modes

Engine groups do not exist in threaded mode. When you switch from threaded
to process mode, execution classes are assigned to the default engine groups.
For example, if you switch from threaded to process mode and then add the
Eng_Group execution class and associate it with engine number 3, the default
execution classes EC1 and EC2 are associated with the ANYENGINE engine
group, and EC3, with the highest engine number, is associated with the
LASTONLINE engine group:

sp_showexeclass
classname priority engine_group

engines
------------------------------ ---------- ------------------------------

EC1 HIGH ANYENGINE

ALL
EC2 MEDIUM ANYENGINE

ALL
EC3 LOW LASTONLINE

0
Eng_Group LOW new_engine_group

3

When you switch to threaded mode, execution classes lose their engine group
affinity and are assigned to syb_default_pool. In threaded mode, the example
above becomes:

sp_showexeclass
classname priority threadpool
------------------------------ ---------- ------------------------------
EC1 HIGH syb_default_pool
EC2 MEDIUM syb_default_pool
EC3 LOW syb_default_pool
Eng_Group LOW new_engine_group

Setting execution class attributes
Implement and manage execution hierarchy for client applications, logins,
service tasks, and stored procedures using the categories of system procedures
listed in Table 4-2.

Setting execution class attributes

68 Adaptive Server Enterprise

Table 4-2: System procedures for managing execution object
precedence

See the Reference Manual: Procedures.

Assigning execution classes
The following example illustrates how to assign preferred access to resources
to an execution object by associating it with the EC1 execution class. In this
case, the execution object is a combination of application and login.

For example, if you decide the “sa” login must get results from isql as quickly
as possible, issue sp_bindexeclass with the preferred execution class, EC1, so
Adaptive Server grants execution preference to login “sa” when it executes
isql:

sp_bindexeclass sa, LG, isql, EC1

This statement specifies that whenever a login (LG) called “sa” executes the
isql application, the “sa” login task executes with EC1 attributes. Adaptive
Server improves response time for the “sa” login by placing it in a high-priority
run queue, so it is assigned to an engine more quickly

Category Description System procedures

User-defined execution
class

Create and drop a user-defined class with
custom attributes or change the attributes
of an existing class.

• sp_addexeclass

• sp_dropexeclass

Execution class binding Bind and unbind predefined or user-
defined classes to client applications,
service tasks, and logins.

• sp_bindexeclass

• sp_unbindexeclass

For the session only
(“on the fly”)

Set and clear attributes of an active session
only.

• sp_setpsexe

• sp_clearpsexe

Engines Add engines to and drop engines from
engine groups; create and drop engine
groups.

• sp_addengine

• sp_dropengine

Reporting Report on engine group assignments,
application bindings, and execution class
attributes.

• sp_showcontrolinfo

• sp_showexeclass

• sp_showpsexe

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 69

Scheduling service tasks
Adaptive Server allows you to manage service tasks (housekeeper, checkpoint,
Replication Agent threads, and so on) with the sp_bindexeclass ‘sv’ execution
class parameter. Binding individual service tasks to execution classes binds
these tasks to thread pools, which lets you control dedicated resources for high-
priority tasks, and keep service tasks from competing with user tasks.

Note In process mode, you cannot schedule service tasks.

For example, you can:

• Bind the HK WASH housekeeping task to a specific service task.

• Establish a Replication Agent pool and execution class with one thread per
Replication Agent, giving dedicated resources, but simultaneously
creating a more generic thread pool named service_pool, granting one
thread to other tasks of lesser importance.

The monServiceTask monitoring table includes information about all service
tasks that are bound to an execution class. This example shows the HK WASH
and NETWORK HANDLER service tasks bound to the SC execution class:

task_id spid name
description execution_class
----------- ----------- ------------------------------
------------------------------ -----------------------
3932190 6 HK WASH

NULL SC
4456482 10 NETWORK HANDLER

NULL SC

Creating user-defined execution class task affinity
The following steps illustrate how to use system procedures to create a thread
pool associated with a user-defined execution class and bind that execution
class to user sessions. In this example, the server is used by technical support
staff, who must respond as quickly as possible to customer needs, and by
managers who are usually compiling reports, and can afford slower response
time.

To create the user-defined execution class for this example:

Setting execution class attributes

70 Adaptive Server Enterprise

1 Create the thread pool named DS_GROUP that governs the task. For
example:

create thread pool DS_GROUP with thread count = 4

2 Use sp_addexeclass to create a user-defined execution classes that have
names and attributes you choose. For example:

sp_addexeclass DS, LOW, 0, DS_GROUP

3 Use sp_bindexeclass to associate the user-defined execution class with an
execution object. For example with three logins:

sp_bindexeclass mgr1, LG, NULL, DS
sp_bindexeclass mgr2, LG, NULL, DS
sp_bindexeclass mgr3, LG, NULL, DS

Perform these steps to create a user-defined execution class if Adaptive Server
is configured for process mode:

1 Create an engine group called DS_GROUP, consisting of engine 3:

sp_addengine 3, DS_GROUP

Expand the group so that it also includes engines 4 and 5:

sp_addengine 4, DS_GROUP
sp_addengine 5, DS_GROUP

2 Create a user-defined execution class called DS with a priority of “low”
and associate it with the DS_GROUP engine group.

sp_addexeclass DS, LOW, 0, DS_GROUP

3 Bind the less critical execution objects to the new execution class.

For example, bind the manager logins, “mgr1,” “mgr2,” and “mgr3,” to
the DS execution class using sp_bindexeclass three times:

sp_bindexeclass mgr1, LG, NULL, DS
sp_bindexeclass mgr2, LG, NULL, DS
sp_bindexeclass mgr3, LG, NULL, DS

The second parameter, LG, indicates that the first parameter is a login
name. The third parameter, NULL, indicates that the association applies to
any application that the login might be running. The fourth parameter, DS,
indicates that the login is bound to the DS execution class.

The result of this example is that the technical support group (not bound to an
engine group) is given access to more immediate processing resources than the
managers.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 71

How execution class bindings affect scheduling
You can use logical process management to increase the priority of specific
logins, of specific applications, or of specific logins executing specific
applications. This example looks at:

• An order_entry application, an OLTP application critical to taking
customer orders.

• A sales_report application that prepares various reports. Some managers
run this application with default characteristics, but other managers run the
report at lower priority.

• Other users, who are running other applications at default priorities.

Execution class bindings

The following statement binds order_entry with EC1 attributes, giving higher
priority to the tasks running it:

sp_bindexeclass order_entry, AP, NULL, EC1

The following sp_bindexeclass statement specifies EC3 when “mgr” runs the
sales_reportapplication:

sp_bindexeclass mgr, LG, sales_report, EC3

This task can execute only when there are no runnable tasks with the EC1 or
EC2 attributes.

Figure 4-2 shows four execution objects running tasks. Several users are
running the order_entry and sales_report applications. Two other logins are
active, “mgr” (logged in once using the sales_report application, and twice
using isql) and “cs3” (not using the affected applications).

Setting execution class attributes

72 Adaptive Server Enterprise

Figure 4-2: Execution objects and their tasks

When the “mgr” login uses isql (tasks 1 and 2), the task runs with default
attributes. But when the “mgr” login uses sales_report, the task runs at EC3.
Other managers running sales_report (tasks 6 and 7) run with the default
attributes. All tasks running order_entry run at high priority, with EC1 attributes
(tasks 3, 4, and 8). “cs3” runs with default attributes.

Engine affinity can affect scheduling in process mode

An engine looking for a task to run first looks in its own high-priority run
queues, then in the high-priority global run queue. If there are no high-priority
tasks, the engine then checks for medium-priority tasks in its own run queue,
then in the medium-priority global run queue, and finally for low-priority tasks.

What happens if a task has affinity to a particular engine? Assume that task 7
in Figure 4-2, a high-priority task in the global run queue, has a user-defined
execution class with high priority and affinity to engine number 2, but this
engine currently has high-priority tasks queued and is running another task.

If engine 1 has no high-priority tasks queued when it finishes processing task
8 in Figure 4-2, it checks the global run queue, but cannot process task 7 due
to the engine binding. Engine 1 then checks its own medium-priority queue,
and runs task 15. Although a system administrator assigned the preferred
execution class EC1, engine affinity temporarily lowered task 7’s execution
precedence to below that of a task with EC2.

1

6 7 8

2 3

5
sales_report

mgr

order_entry

4

9

cs3

H H

H DDD

D D

L

Priority:
H High
L Low
D Default

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 73

This effect might be undesirable, or it might be what was intended. You can
assign engine affinity and execution classes so that task priority is not what you
intended. You can also make assignments so that tasks with low priority might
not ever run, or might wait for extremely long times—an important reason to
plan and test thoroughly when assigning execution classes and engine affinity.

Note In threaded mode, engines and their assigned tasks exist in completely
separate search spaces.

Setting attributes for a session only
Use sp_setpsexe to temporarily change any attribute value temporarily for an
active session.

The change in attributes is valid only for the specified spid and is in effect only
for the duration of the session, whether it ends naturally or is terminated.
Setting attributes using sp_setpsexe neither alters the definition of the
execution class for any other process nor does it apply to the next invocation of
the active process on which you use it.

To clear attributes set for a session, use sp_clearpsexe.

Getting information about execution classes
Adaptive Server stores the information about execution class assignments in
the system tables sysattributes and sysprocesses, and supports several system
procedures for determining what assignments have been made.

Use sp_showcontrolinfo to display information about the execution objects
bound to execution classes, the Adaptive Server engines in an engine group,
and session-level attribute bindings. If you do not specify parameters,
sp_showcontrolinfo displays the complete set of bindings and the composition
of all engine groups.

sp_showexeclass displays the attribute values of an execution class or all
execution classes.

You can also use sp_showpsexe to see the attributes of all running processes.

Determining precedence and scope

74 Adaptive Server Enterprise

Determining precedence and scope
Determining the ultimate execution hierarchy between two or more execution
objects can be complicated. What happens when a combination of dependent
execution objects with various execution attributes makes the execution order
unclear?

For example, an EC3 client application can invoke an EC1 stored procedure.
Do both execution objects take EC3 attributes, EC1 attributes, or EC2
attributes?

Understanding how Adaptive Server determines execution precedence is
important for getting what you want out of your execution class assignments.
Two fundamental rules, the precedence rule and the scope rule, can help you
determine execution order.

Multiple execution objects and ECs
Adaptive Server uses precedence and scope rules to determine which
specification, among multiple conflicting ones, to apply.

Use the rules in this order:

1 Use the precedence rule when the process involves multiple execution
object types.

2 Use the scope rule when there are multiple execution class definitions for
the same execution object.

Precedence rule

The precedence rule sorts out execution precedence when an execution object
belonging to one execution class invokes an execution object of another
execution class.

The precedence rule states that the execution class of a stored procedure
overrides that of a login, which, in turn, overrides that of a client application.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 75

If a stored procedure has a more preferred execution class than that of the client
application process invoking it, the precedence of the client process is
temporarily raised to that of the stored procedure for the period of time during
which the stored procedure runs. This also applies to nested stored procedures.

Note Exception to the precedence rule: If an execution object invokes a stored
procedure with a less preferred execution class than its own, the execution
object’s priority is not temporarily lowered.

Precedence rule
example

This example illustrates the use of the precedence rule. Suppose there is an EC2
login, an EC3 client application, and an EC1 stored procedure.

The login’s attributes override those of the client application, so the login is
given preference for processing. If the stored procedure has a higher base
priority than the login, the base priority of the Adaptive Server process
executing the stored procedure goes up temporarily for the duration of the
stored procedure’s execution. Figure 4-3 shows how the precedence rule is
applied.

Figure 4-3: Use of the precedence rule

What happens when a login with EC2 invokes a client application with EC1 and
the client application calls a stored procedure with EC3? The stored procedure
executes with the attributes of EC2 because the execution class of a login
precedes that of a client application. Using the exception to the precedence rule
described in the note above, the priority is not temporarily lowered.

Scope rule

In addition to specifying the execution attributes for an object, you can define
its scope when you use sp_bindexeclass scope. The object’s scope specifies the
entities for which the execution class bindings are effective

login
Stored Client

application procedure
EC2 EC1EC3

Stored procedure runs with EC1

Determining precedence and scope

76 Adaptive Server Enterprise

For example, you can specify that an isql client application run with EC1
attributes, but only when it is executed by an “sa” login. This statement sets the
scope of the EC1 binding to the isql client application as the “sa” login (AP
indicates an application):

sp_bindexeclass isql, AP, sa, EC1

Conversely, you can specify that the “sa” login run with EC1 attributes, but
only when it executes the isql client application. In this example, the scope of
the EC1 binding to the “sa” login is the isql client application:

sp_bindexeclass sa, LG, isql, EC1

If the scope is set to NULL, the binding is for all interactions.

When a client application has no scope, the execution attributes bound to it
apply to any login that invokes the client application.

When a login has no scope, the attributes apply to the login for any process that
the login invokes.

The isql parameter in the following command specifies that Transact-SQL
applications execute with EC3 attributes for any login that invokes isql, unless
the login is bound to a higher execution class:

sp_bindexeclass isql, AP, NULL, EC3

Combined with the bindings above that grant the “sa” user of isql EC1
execution attributes, and using the precedence rule, an isql request from the
“sa” login executes with EC1 attributes. Other processes servicing isql requests
from logins that are not “sa” execute with EC3 attributes.

The scope rule states that when a client application, login, service class, or
stored procedure is assigned multiple execution class levels, the one with the
narrowest scope has precedence. Using the scope rule, you can get the same
result if you use:

sp_bindexeclass isql, AP, sa, EC1

Resolving a precedence conflict
Adaptive Server uses the following rules to resolve conflicting precedence
when multiple execution objects and execution classes have the same scope.

• Execution objects not bound to a specific execution class are assigned
these default values:

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 77

• An execution object for which an execution class is assigned has higher
precedence than defaults. (An assigned EC3 has precedence over an
unassigned EC2).

• If a client application and a login have different execution classes, the
login has higher execution precedence than the client application (from the
precedence rule).

• If a stored procedure and a client application or login have different
execution classes, Adaptive Server uses the one with the higher execution
class to derive the precedence when it executes the stored procedure (from
the precedence rule).

• If there are multiple definitions for the same execution object, the one with
a narrower scope has the highest priority (from the scope rule). For
example, the first statement gives precedence to the “sa” login running isql
over “sa” logins running any other task:

sp_bindexeclass sa, LG, isql, EC1
sp_bindexeclass sa, LG, NULL, EC2

Examples: determining precedence

Each row in Table 4-3 contains a combination of execution objects and their
conflicting execution attributes.

The “Execution class attributes” columns show execution class values
assigned to a process application “AP” belonging to login “LG.”

The remaining columns show how Adaptive Server resolves precedence.

Table 4-3: Conflicting attribute values and Adaptive Server assigned
values

Entity type Attribute name Default value

Client application Execution class EC2

Login Execution class EC2

Stored procedure Execution class EC2

Execution class attributes Adaptive Server-assigned values

Application
(AP)

Login
(LG)

Stored
procedure
(sp_ec) Application

Login
base
priority

Stored
procedure
base priority

EC1 EC2 EC1

(EC3)

EC2 Medium High

(Medium)

Determining precedence and scope

78 Adaptive Server Enterprise

To test your understanding of the rules of precedence and scope, cover the
“Adaptive Server-assigned values” columns in Table 4-3, and predict the
values in those columns. To help get you started, this is a description of the
scenario in the first row:

• Column 1 – client application, AP, is specified as EC1.

• Column 2 – login, “LG”, is specified as EC2.

• Column 3 – stored procedure, sp_ec, is specified as EC1.

At runtime:

• Column 4 – task belonging LG, executing the client application AP, uses
EC2 attributes because the class for a login precedes that of an application
(precedence rule).

• Column 5 – value of column 5 implies a medium base priority for the
login.

• Column 6 – execution priority of the stored procedure sp_ec is raised to
high from medium (because it is EC1).

If the stored procedure is assigned EC3 (as shown in parentheses in
column 3), then the execution priority of the stored procedure is medium
(as shown in parentheses in column 6) because Adaptive Server uses the
highest execution priority of the client application or login and stored
procedure.

EC1 EC3 EC1

(EC2)

EC3 Low High

(Medium)

EC2 EC1 EC2

(EC3)

EC1 High High

(High)

EC2 EC3 EC1

(EC2)

EC3 Low High

(Medium)

EC3 EC1 EC2

(EC3)

EC1 High High

(High)

EC3 EC2 EC1

(EC3)

EC2 Medium High

(Medium)

Execution class attributes Adaptive Server-assigned values

Application
(AP)

Login
(LG)

Stored
procedure
(sp_ec) Application

Login
base
priority

Stored
procedure
base priority

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 79

Example scenario using precedence rules
This section presents an example that illustrates how the system administrator
interprets execution class attributes, including:

• Planning – the system administrator analyzes the environment, performs
benchmark tests, sets goals, and understands the concepts well enough to
predict consequences.

• Configuration – the system administrator runs sp_bindexeclass with
parameters based on the information gathered in the Planning section.

• Execution characteristics – applications connect with Adaptive Server,
using the configuration the system administrator has created.

Figure 4-4 shows two client applications, OLTP and isql, and three Adaptive
Server logins, “L1”, “sa”, and “L2”.

sp_xyz is a stored procedure that both the OLTP application and the isql
application need to execute.

Example scenario using precedence rules

80 Adaptive Server Enterprise

Figure 4-4: Conflict resolution

Planning
The system administrator performs the analysis described in steps 1 and 2 in
“Successfully distributing resources” on page 55 and decides on this hierarchy
plan:

• The OLTP application is an EC1 application and the isql application is an
EC3 application.

• Login “L1” can run different client applications at different times and has
no special performance requirements.

sp_xyz

L1 SA L2

OLTP isql

Adaptive Server environment

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 81

• Login “L2” is a less critical user and should always run with low
performance characteristics.

• Login “sa” must always run as a critical user.

• Stored procedure sp_xyz should always run with high performance
characteristics. Because the isql client application can execute the stored
procedure, giving sp_xyz a high-performance characteristics is an attempt
to avoid a bottleneck in the path of the OLTP client application.

Table 4-1 summarizes the analysis and specifies the execution class to be
assigned by the system administrator. The tuning granularity gets finer as you
descend the table. Applications have the greatest granularity, or the largest
scope. The stored procedure has the finest granularity, or the narrowest scope.

Table 4-4: Example analysis of an Adaptive Server environment

Configuration
The system administrator executes the following system procedures to assign
execution classes (step 3 on page 56):

sp_bindexeclass OLTP, AP, NULL, EC1
sp_bindexeclass ISQL, AP, NULL, EC3
sp_bindexeclass sa, LG, NULL, EC1
sp_bindexeclass L2, LG, NULL, EC3
sp_bindexeclass SP_XYZ, PR, sp_owner, EC1

Execution characteristics
Following is a series of events that could take place in an Adaptive Server
environment with the configuration described in this example:

Identifier Interactions and comments
Execution
class

OLTP • Same tables as isql

• Highly critical

EC1

isql • Same tables as OLTP

• Low priority

EC3

L1 • No priority assignment None

sa • Highly critical EC1

L2 • Not critical EC3

sp_xyz • Avoid “hot spots” EC1

Considerations for engine resource distribution

82 Adaptive Server Enterprise

1 A client logs in to Adaptive Server as “L1” using OLTP.

• Adaptive Server determines that OLTP is EC1.

• “L1”does not have an execution class. However, because “L1” logs in
to the OLTP application, Adaptive Server assigns the execution class
EC1.

• “L1” executes the stored procedure at a high priority since the object
has been assigned execution class EC1.

2 A client logs in to Adaptive Server as “L1” using isql.

• Because isql is EC3, and “L1” is not bound to an execution class,
“L1”executes with EC3 characteristics. This means it runs at low
priority and has affinity with the highest numbered engine (as long as
there are multiple engines).

• When “L1”executes sp_xyz, its priority is raised to high because the
stored procedure is EC1.

3 A client logs in to Adaptive Server as “sa” using isql.

• Adaptive Server determines the execution classes for both isql and
“sa”, using the precedence rule. Adaptive Server runs the system
administrator’s instance of isql with EC1 attributes. When the system
administrator executes sp_xyz, the priority does not change.

4 A client logs in to Adaptive Server as “L2” using isql.

• Because both the application and login are EC3, there is no conflict.
“L2” executes sp_xyz at high priority.

Considerations for engine resource distribution
Making execution class assignments indiscriminately does not usually yield
what you expect. Certain conditions yield better performance for each
execution object type. Table 4-5 indicates when assigning an execution
precedence might be advantageous for each type of execution object.

Table 4-5: When assigning execution precedence is useful

Execution object Description

Client application There is little contention for non-CPU resources among client applications.

Adaptive Server login One login should have priority over other logins for CPU resources.

CHAPTER 4 Distributing Engine Resources

Performance and Tuning Series: Basics 83

It is more effective to lower the execution class of less-critical execution
objects than to raise the execution class of a highly critical execution object.

Client applications: OLTP and DSS
Assigning higher execution preference to client applications can be
particularly useful when there is little contention for non-CPU resources
among client applications.

For example, if an OLTP application and a DSS application execute
concurrently, you might be willing to sacrifice DSS application performance if
that results in faster execution for the OLTP application. You can assign non-
preferred execution attributes to the DSS application so that it gets CPU time
only after OLTP tasks are executed.

Unintrusive client applications

Inter-application lock contention is not a problem for an unintrusive
application that uses or accesses tables that are not used by any other
applications on the system.

Assigning a preferred execution class to such an application ensures that
whenever there is a runnable task from this application, it is first in the queue
for CPU time.

I/O-bound client applications

If a highly-critical application is I/O bound and the other applications are
compute-bound, the compute bound process can use the CPU for full timeslice
if it is not blocked for some other reason.

An I/O-bound process, however, yields the CPU each time it performs an I/O
operation. Assigning a unpreferred execution class to the compute-bound
application enables Adaptive Server to run the I/O-bound process sooner.

Stored procedure There are well-defined stored procedure “hot spots.”

Execution object Description

Considerations for engine resource distribution

84 Adaptive Server Enterprise

Critical applications

If there are one or two critical execution objects among several noncritical
ones, try setting affinity to a specific thread pool for the less critical
applications. This can result in better throughput for the critical applications.

Adaptive Server logins: high-priority users
If you assign preferred execution attributes to a critical user and maintain
default attributes for other users, Adaptive Server does what it can to execute
all tasks associated with the high-priority user first.

In process mode, one result of scheduling is that when an engine does not find
a task in its local run or a global run queue, it attempts to steal a task from
another engine’s local run queue. Engines can steal only tasks that have a
normal priority, and can never steal a high-priority task for high-priority users.
If engine loads are not well-balanced, and the engines running high-priority
tasks are heavily loaded, the task-stealing can lead to high-priority tasks being
starved of CPU, which is opposite of the intended affect of scheduling, but a
natural side effect.

Stored procedures: “hot spots”
Performance issues associated with stored procedures arise when a stored
procedure is heavily used by one or more applications. When this happens, the
stored procedure is characterized as a hot spot in the path of an application.

Usually, the execution priority of the applications executing the stored
procedure is in the medium to low range, so assigning more preferred
execution attributes to the stored procedure might improve performance for the
application that calls it.

Performance and Tuning Series: Basics 85

C H A P T E R 5 Memory Use and Performance

This chapter describes how Adaptive Server uses the data and procedure
caches and other issues affected by memory configuration. In general, the
more memory available, the faster Adaptive Server’s response time.

Chapter 3, “Configuring Memory,” in System Administration Guide:
Volume 2 describes how to determine the best memory configuration
values for Adaptive Server, and the memory needs of other server
configuration options.

How memory affects performance
Having ample memory reduces disk I/O, which improves performance,
since memory access is much faster than disk access. When a user issues
a query, data and index pages must be in memory, or read into memory, to
examine the values on them. If the pages already reside in memory,
Adaptive Server does not need to perform disk I/O.

Topic Page
How memory affects performance 85

How much memory to configure 86

Dynamic reconfiguration 88

Caches in Adaptive Server 89

Procedure cache 90

Data cache 97

Configuring the data cache to improve performance 101

Named data cache recommendations 112

Maintaining data cache performance for large I/O 122

Speed of recovery 123

Auditing and performance 125

Text and image pages 127

How much memory to configure

86 Adaptive Server Enterprise

Adding more memory is inexpensive and easy, but developing around memory
problems is expensive. Give Adaptive Server as much memory as possible.

Memory conditions that can cause poor performance include:

• Total data cache size is too small.

• Procedure cache size is too small.

• Only the default cache is configured on an SMP system with several active
CPUs, leading to contention for the data cache.

• User-configured data cache sizes are inappropriate for specific user
applications.

• Configured I/O sizes are inappropriate for specific queries.

• Audit queue size is inappropriate if auditing feature is installed.

How much memory to configure
Memory is the most important consideration when you are configuring
Adaptive Server. Memory is consumed by various configuration parameters,
thread pools, procedure caches, and data caches. Correctly setting the values of
the configuration parameters and the caches is critical to good system
performance.

The total memory allocated during start up is the sum of the memory required
for all Adaptive Server configuration requirements. This value is accumulated
by Adaptive Server from the read-only configuration parameter total logical
memory. The configuration parameter max memory must be greater than or
equal to total logical memory. max memory indicates the amount of memory you
allow for Adaptive Server needs.

Adaptive Server allocates memory based on the value of total logical memory at
start up. However, if you have set the configuration parameter allocate max
shared memory, the amount of memory Adaptive Server allocates is based on
the value of max memory. This allows a system administrator to tell Adaptive
Server to allocate, at start up, the maximum allowed, which may be
considerably more than the value of total logical memory at that time.

The key points for memory configuration are:

• The system administrator should determine the size of shared memory
available to Adaptive Server and set max memory to this value.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 87

• Set the value for the allocate max shared memory at startup configuration
parameter to the fewest number of shared memory segments. This may
improve performance, because operating with a large number of shared
memory segments may cause performance degradation on certain
platforms. See your operating system documentation to determine the
optimal number of shared memory segments. Once a shared memory
segment is allocated, it cannot be released until the next time you start
Adaptive Server.

• The amount of memory available for a new thread pool is determined by
the amount of free memory available from max memory. If Adaptive
Server has insufficient memory to create the thread pool, it displays an
error message indicating the amount you must raise max memory before
creating the thread pool. In this example

• If the defaults are insufficient, reconfigure the configuration parameters.

• The difference between max memory and total logical memory is additional
memory available for procedure, for data caches, thread pools, or for other
configuration parameters.

The amount of memory to be allocated by Adaptive Server during boot-
time is determined by either total logical memory or max memory. If this
value is too high:

• Adaptive Server may not start if the physical resources on your
machine are insufficient.

• If Adaptive Server starts, the operating system page fault rates may
rise significantly and you may need to reconfigure the operating
system to compensate.

What remains after all other memory needs have been met is available for the
procedure cache and the data cache. Figure 5-1 shows how memory is divided.

Dynamic reconfiguration

88 Adaptive Server Enterprise

Figure 5-1: How Adaptive Server uses memory

Dynamic reconfiguration
Adaptive Server allows you to allocate total physical memory dynamically.
Many of the configuration parameters that consume memory are dynamic,
which means you do not need to restart the server for them to take effect. For
example, number of user connections, number of worker processes, and time
slice can all be changed dynamically. See Chapter 5: “Setting Configuration
Parameters,” in System Administration Guide: Volume 1 for a complete
discussion of configuration parameters, including information on which are
dynamic and which are static.

OS and other programs

Procedure cache
Adaptive
Server

Physical
memory

Cache

Internal
structures

Adaptive Server Executable

Static overhead

Kernel and
server structures

Data cache

Data cache overhead

Total physical memory

Ma
xim

um
 me

mo
ry

Total

memory
logical

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 89

How memory is allocated
Prior to version 12.5 of Adaptive Server, the size of the procedure cache was
based on a percentage of the available memory. After you configured the data
cache, whatever was left over was allocated to the procedure cache. For
Adaptive Server 12.5 and later, the data cache and the procedure cache are
specified as absolute values. The sizes of the caches do not change until you
reconfigure them.

Use the configuration parameter max memory to establish a maximum setting,
beyond which you cannot configure Adaptive Server’s total physical memory.

Large allocation in Adaptive Server
Adaptive Server automatically tunes the size of procedure cache allocations to
optimize memory use and reduce external fragmentation. When serving
repeated internal requests for memory, Adaptive Server initially allocates 2K
chunks, then scales up the allocation size to a maximum of 16K chunks, based
on past allocation history. This optimization is transparent to the end user,
except as it contributes to improved performance.

Caches in Adaptive Server
Adaptive Server includes the procedure and data cache:

• The procedure cache is used for stored procedures and triggers and for
short-term memory needs such as statistics and query plans for parallel
queries.

Set the procedure cache size to an absolute value using sp_configure,
“procedure cache size”. See Chapter 5, “Setting Configuration
Parameters,” in the System Administration Guide: Volume 1.

• The data cache is used for data, index, and log pages. The data cache can
be divided into separate, named caches, with specific databases, or
database objects bound to specific caches.

Once the procedure cache and the data cache are configured, there is no
division of leftover memory.

Procedure cache

90 Adaptive Server Enterprise

Cache sizes and buffer pools
Adaptive Server uses different page sizes for cache and buffer pools:

• Memory pages – (max memory, total logical memory, and so on) are
multiples of 2K

• Procedure cache – configured in 2K pages

• Buffer cache – expressed in units of logical page size

• Large I/O – scaled in terms of extents (each extent is 8 pages). For
example, if Adaptive Server is configured for an 8K logical page size,
large I/O uses a read or write that is 64K.

If you start Adaptive Server and the caches are defined with buffer pools that
are not valid for the current logical page size, all memory for such inapplicable
buffer pools is reallocated when configuring caches to the default buffer pool
in each named cache.

Be careful in how you set up logical page sizes and what you allow for in the
buffer pool sizes.

Procedure cache
Adaptive Server maintains an MRU/LRU (most recently used/least recently
used) chain of stored procedure query plans. As users execute stored
procedures, Adaptive Server looks in the procedure cache for a query plan to
use. If a query plan is available, it is placed on the MRU end of the chain, and
execution begins.

If no plan is in memory, or if all copies are in use, the query tree for the
procedure is read from the sysprocedures table. The query tree is then
optimized, using the parameters provided to the procedure, and placed at the
MRU end of the chain, and execution begins. Plans at the LRU end of the page
chain that are not in use are aged out of the cache.

Logical page size Possible buffer pool sizes

2K 2K, 4K, 16K

4K 4K, 8K, 16K, 32K

8K 8K, 16K, 32K, 64K

16K 16K, 32K, 64K, 128K

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 91

The memory allocated for the procedure cache holds the optimized query plans
(and occasionally trees) for all batches, including any triggers.

If more than one user uses a procedure or trigger simultaneously, there will be
multiple copies of it in cache. If the procedure cache is too small, a user trying
to execute stored procedures or queries that fire triggers receives an error
message and must resubmit the query. Space becomes available when unused
plans age out of the cache.

Adaptive Server uses the default procedure cache size (in memory pages) at
start up. The optimum value for the procedure cache varies from application to
application, and it may also vary as usage patterns change. Use procedure
cache size to determine the current size of the procedure cache (see Chapter 5,
“Setting Configuration Parameters,” in System Administration Guide: Volume
1).

Getting information about the procedure cache size
When you start Adaptive Server, the error log states how much procedure
cache is available.

• proc buffers represents the maximum number of compiled procedural
objects that can simultaneously reside in the procedure cache.

• proc headers represents the number of pages dedicated to the procedure
cache. Each object in cache requires at least one page.

Monitoring procedure cache performance

sp_sysmon reports on stored procedure executions and the number of times
that stored procedures must be read from disk.

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

If there is not enough memory to load another query tree or plan, or if the
maximum number of compiled objects is already in use, Adaptive Server
reports Error 701.

Procedure cache

92 Adaptive Server Enterprise

Procedure cache sizing
On a production server, minimize the number of procedure reads from disk.
When a user needs executes a procedure, Adaptive Server should be able to
find an unused tree or plan in the procedure cache for the most common
procedures. The percentage of times the server finds an available plan in cache
is called the cache hit ratio. Keeping a high cache hit ratio for procedures in
cache improves performance.

The formulas in Figure 5-2 suggest a good starting point.

Figure 5-2: Formulas for sizing the procedure cache

If you have nested stored procedures—procedure A calls procedure B, which
calls procedure C—all of them must be in the cache at the same time. Add the
sizes for nested procedures, and use the largest sum instead of “Size of largest
plan” in the formula in Figure 5-2.

The minimum procedure cache size is the smallest amount of memory that
allows at least one copy of each frequently used compiled object to reside in
cache. However, the procedure cache can also be used as additional memory at
execution time for sorting and query optimization as well as for other purposes.
Furthermore, the memory required is based on the type of the query.

Use of sp_monitorconfig to configure procedure cache:

1 Configure procedure cache to the minimum size as determined above.

2 Run your normal database load. If you get error 701, increase procedure
cache size. Tune the size of the increase to avoid over-allocation. The
recommended increase is (128 * (size of procedure cache, in GB)). For
procedure cache size less than 1GB, increase in 128MB increments. For
procedure cache size greater than 1GB but less than 2GB, increase in
256MB increments, and so on.

3 Run sp_monitorconfig “procedure cache size” when Adaptive Server has
reached or passed the peak load.

=

Procedure
cache size

Minimum procedure
cache size needed

(Max # of concurrent users) *
(4 + Size of largest plan) * 1.25=

(# of main procedures) *
(Average plan size)

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 93

4 If sp_monitorconfig indicates that Max_Used is considerably less than the
current value for procedure cache from sp_configure, then procedure cache
is over-allocated. Consider reducing the procedure cache size
configuration value so that a smaller procedure cache may be allocated
during the next restart.

5 A value other than zero for the Num_Reuse output from sp_monitorconfig
also indicates a shortage of procedure cache. If this value increases over a
period of time, consider increasing procedure cache size as suggested in
step 2 above.

Estimating stored procedure size
sysprocedures stores the normalized query tree for procedures. Including other
overheads, this size allows for 2 rows per 2K page. To estimate the size of a
single stored procedure, view, or trigger, use:

select count(*) as "approximate size in KB"
from sysprocedures
where id = object_id("procedure_name")

For example, to find the size of the titleid_proc in pubs2:

select count(*)
from sysprocedures
where id = object_id("titleid_proc")

approximate size in KB

3

If the plan is in cache, the monCachedProcedures monitoring table includes its
size.

Estimating the procedure cache size for a sort
To find the size of the procedure cache used for a sort (used by create index,
update statistics, order by,distinct, sort and merge join), first determine the
number of rows per page:

Rows per page =
minimum length of row

Page size

Procedure cache

94 Adaptive Server Enterprise

Determine the procedure cache size used for a sort with this formula:

Note If you use a 64-bit system, use 100 bytes in this formula.

Estimating the amount of procedure cache used by create index
create index sorts data within the index key. This sort may require one or more
in-memory sorts and one or more disk-based sorts. Adaptive Server loads the
data create index sorts into the data cache associated with the table upon which
it is creating an index. The number of data cache buffers the sort uses is limited
by the value of number of sort buffers. If all keys being sorted fit into the value
for number of sort buffers, Adaptive Server peforms a single, in-memory sort
operation. If the keys being sorted do not fit into the sort buffers, Adaptive
Server must write the results of the in-memory sort to disk so Adaptive Server
can load the next set of index keys into the sort buffers to be sorted.

In addition to the sort buffers allocated from the data cache, this sort operation
also requires about 66 bytes of metadata from the procedure cache. The
formula for the amount of procedure cache used, assuming all of the sort
buffers are used, is:

Example 1 In this example,

• The number of sort buffers set to 500

• create index creates a 15 byte field, yielding 131 rows per page

As a result, all 500 2K buffers are used to hold the data being sorted, and the
procedure cache uses 2,111 2K buffers:

(131 X 500 X66) / 2048 = 2,111 2K buffers

Example 2 In this example,

• The number of sort buffers set to 5000

=
Procedure
cache size (# of sort buffers) x (rows per page) x 85 bytes

Number of 2K
procedure cache
buffers required

(rows_per_page) X (number_of_sort_buffers) X 66 bytes
= 2048 (assuming 2K page size)

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 95

• create index creates a 8 byte field, yielding about 246 rows per page

As a result, all 5,000 2K buffers are used to hold the data being sorted, and the
procedure cache uses 39, 639 2K buffers:

(246 X 5,000 X 66) / 2048 = 39,639 2K buffers

Example 3 In this example:

• The number of sort buffers set to 1000

• The table is small, and you can load it completely in to a 800 2K sort buffer
data cache, leaving 200 data cache sort buffers available for overhead

• create index creates a 50 byte field, yielding about 39 rows per page

As a result, all 5000 2K buffers are used to hold the data being sorted:

(39 X 1,000 X 66) / 2048 = 1,257 2K buffers

But the data cache has 200 2K buffers left over for overhead, so the procedure
cache uses 1057 2K buffers.

Reducing query processing latency
The query processing layer in Adaptive Server 15.7 enables multiple client
connections to reuse or share dynamic SQL lightweight procedures (LWPs).

Reusing dynamic SQL LWPs across multiple connections

In versions earlier than 15.7, Adaptive Server stored dynamic SQL statements
(prepared statements) and their corresponding LWP in the dynamic SQL cache.
Each LWP for a dynamic SQL statement was identified based on the
connection metadata. Because connections had different LWPs associated with
the same SQL statement, they could not reuse or share the same LWP. In
addition, all LWPS and query plans created by the connection were lost when
the Dynamic SQL cache was released.

In versions 15.7 and later, Adaptive Server uses the statement cache to also
store dynamic SQL statements converted to LWPs. Because the statement
cache is shared among all connections, dynamic SQL statements can be reused
across connections. These statements are not cached:

• select into statements.

• insert-values statements with all literal values and no parameters.

Statement cache

96 Adaptive Server Enterprise

• Queries that do not reference any tables.

• Individual prepared statements that contain multiple SQL statements. For
example:

statement.prepare(‘insert t1 values (1) insert
t2 values (3)’);

• Statements that cause instead-of triggers to fire.

To enable using the statement cache to store dynamic SQL statements, set the
enable functionality group or streamlined dynamic SQL configuration options to
1. See “Setting Configuration Parameters” in the System Administration
Guide: Volume 1.

Using the statement cache has several benefits:

• LWPs and their associated plans are not purged from the statement cache
when the connection that created the entry exits.

• LWPs can be shared across connections, further improving performance.

• Reusing LWPs also improves performance in execute cursors.

• Dynamic SQL statements can be monitored from the monitoring table
monCachedStatement.

Note Reusing dynamic SQL LWPs may have a negative impact on
performance because the reused plan is generated with the original set of
supplied parameter values.

Statement cache
The statement cache saves SQL text and plans previously generated for ad hoc
SQL statements, enabling Adaptive Server to avoid recompiling incoming
SQL that matches a previously cached statement. When enabled, the statement
cache reserves a portion of the procedure cache. See the System Administration
Guide: Volume 2 for a complete discussion of the statement cache, including
its memory usage.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 97

Data cache
Default data cache and other caches are configured as absolute values. The data
cache contains pages from recently accessed objects, typically:

• sysobjects, sysindexes, and other system tables for each database

• Active log pages for each database

• The higher levels and parts of the lower levels of frequently used indexes

• Recently accessed data pages

When you install Adaptive Server, it has a single data cache that is used by all
Adaptive Server processes and objects for data, index, and log pages. The
default size is 8MB.

The following pages describe the way this single data cache is used. Most of
the concepts on aging, buffer washing, and caching strategies apply to the user-
defined data caches and the default data cache.

 “Configuring the data cache to improve performance” on page 101 describes
how to improve performance by dividing the data cache into named caches and
how to bind particular objects to these named caches.

Page aging in data cache
The Adaptive Server data cache is managed on a most recently used/least
recently used (MRU/LRU) basis. As pages in the cache age, they enter a wash
area, where any dirty pages (pages that have been modified while in memory)
are written to disk. There are some exceptions to this:

• Caches configured with relaxed LRU replacement policy use the wash
section as described above, but are not maintained on an MRU/LRU basis.

Typically, pages in the wash section are clean; that is, the I/O on these
pages has been completed. When a task or query obtains a page from the
LRU end, it expects the page to be clean. If not, the query must wait for
the I/O to complete on the page, which impairs performance.

• A special strategy ages out index pages and OAM pages more slowly than
data pages. These pages are accessed frequently in certain applications and
keeping them in cache can significantly reduce disk reads.

See Chapter 10, “Checking Database Consistency,” in System
Administration Guide: Volume 2 for more information.

Data cache

98 Adaptive Server Enterprise

• Adaptive Server may choose to use the LRU cache replacement strategy
that does not flush other pages out of the cache with pages that are used
only once for an entire query.

• The checkpoint process ensures that, if Adaptive Server needs to be
restarted, the recovery process can be completed in a reasonable period of
time.

When the checkpoint process estimates that the number of changes to a
database will take longer to recover than the configured value of the
recovery interval configuration parameter, it traverses the cache, writing
dirty pages to disk.

• Recovery uses only the default data cache, making it faster.

• The housekeeper wash task writes dirty pages to disk when idle time is
available between user processes.

Effect of data cache on retrievals
Figure 5-3 shows the effect of data caching on a series of random select
statements executed over a period of time. If the cache is empty initially, the
first select statement is guaranteed to require disk I/O. Be sure to adequately
size the data cache for the number of transactions you expect against the
database.

As more queries are executed and the cache is filled, there is an increasing
probability that one or more page requests can be satisfied by the cache,
thereby reducing the average response time of the set of retrievals.

When the cache is filled, there is a fixed probability of finding a desired page
in the cache from that point forward.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 99

Figure 5-3: Effects of random selects on the data cache

If the cache is smaller than the total number of pages that are being accessed in
all databases, there is a chance that a given statement must perform some disk
I/O. A cache does not reduce the maximum possible response time—some
queries may still need to perform physical I/O for all of the pages they need.
But caching decreases the likelihood that the maximum delay will be suffered
by a particular query—more queries are likely to find at least some of the
required pages in cache.

Effect of data modifications on the cache
The behavior of the cache in the presence of update transactions is more
complicated than for retrievals.

There is still an initial period during which the cache fills. Then, because cache
pages are being modified, there is a point at which the cache must begin writing
those pages to disk before it can load other pages. Over time, the amount of
writing and reading stabilizes, and subsequent transactions have a given
probability of requiring a disk read and another probability of causing a disk
write.

The steady-state period is interrupted by checkpoints, which cause the cache to
write all dirty pages to disk.

Fill
cache

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Random selects over time

Steady
state

Data cache

100 Adaptive Server Enterprise

Data cache performance
You can observe data cache performance by examining the cache hit ratio, the
percentage of page requests that are serviced by the cache.

One hundred percent is outstanding, but implies that your data cache is as large
as the data or at least large enough to contain all the pages of your frequently
used tables and indexes.

A low percentage of cache hits indicates that the cache may be too small for the
current application load. Very large tables with random page access generally
show a low cache hit ratio.

Testing data cache performance
Consider the behavior of the data and procedure caches when you measure the
performance of a system. When a test begins, the cache can be in any one of
the following states:

• Empty

• Fully randomized

• Partially randomized

• Deterministic

An empty or fully randomized cache yields repeatable test results because the
cache is in the same state from one test run to another.

A partially randomized or deterministic cache contains pages left by
transactions that were just executed. Such pages could be the result of a
previous test run. In these cases, if the next test steps request those pages, then
no disk I/O is needed.

Such a situation can bias the results away from a purely random test and lead
to inaccurate performance estimates.

The best testing strategy is to start with an empty cache or to make sure that all
test steps access random parts of the database. For precise testing, execute a
mix of queries that is consistent with the planned mix of user queries on your
system.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 101

Cache hit ratio for a single query

To see the cache hit ratio for a single query, use set statistics io on to see the
number of logical and physical reads, and set showplan on to see the I/O size
used by the query.

Figure 5-4: Formula to compute cache hit ratio

With statistics io, physical reads are reported in I/O-size units. If a query uses
16K I/O, it reads 8 pages with each I/O operation.

If statistics io reports 50 physical reads, it has read 400 pages. Use showplan to
see the I/O size used by a query.

Cache hit ratio information from sp_sysmon

sp_sysmon reports on cache hits and misses for:

• All caches on Adaptive Server

• The default data cache

• Any user-configured caches

The server-wide report provides the total number of cache searches and the
percentage of cache hits and cache misses.

For each cache, the report contains the number of cache searches, cache hits,
and cache misses, and the number of times that a needed buffer was found in
the wash section.

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Configuring the data cache to improve performance
When you install Adaptive Server, it has single default data cache, with a 2K
memory pool, one cache partition, and a single spinlock.

To improve performance, add data caches and bind databases or database
objects to them:

Cache hit ratio =
Logical reads - (Physical reads * Pages)

Logical reads

Configuring the data cache to improve performance

102 Adaptive Server Enterprise

1 To reduce contention on the default data cache spinlock, divide the cache
into n where n is 1, 2, 4, 8,16, 32 or 64. If you have contention on the
spinlock (designated here with “x”) with one cache partition, the spinlock
contention is expected to reduce to x/n, where n is the number of partitions.

2 When a particular cache partition spinlock table that is hot—a table in high
demand by user applications—consider splitting the default cache into
named caches.

3 If there is still contention, consider splitting the named cache into named
cache partitions.

You can configure 4K, 8K, and 16K buffer pools from the logical page size in
both user-defined data caches and the default data caches, allowing Adaptive
Server to perform large I/O. In addition, caches that are sized to completely
hold tables or indexes can use the relaxed LRU cache policy to reduce
overhead.

You can also split the default data cache or a named cache into partitions to
reduce spinlock contention.

Try configuring the data cache for improved performance in these ways:

• Configure named data caches to be large enough to hold critical tables and
indexes. This keeps other server activity from contending for cache space
and speeds queries using these tables, since the needed pages are always
found in cache.

You can configure these caches to use the relaxed LRU replacement
policy, reducing the cache overhead.

• To increase concurrency, bind a hot table to one cache and the indexes on
the table to other caches.

• Create a named data cache large enough to hold the hot pages of a table
where a high percentage of the queries reference only a portion of the
table.

For example, if a table contains data for a year, but 75% of the queries
reference data from the most recent month (about 8% of the table),
configuring a cache of about 10% of the table size provides room to keep
the most frequently used pages in cache and leaves some space for the less
frequently used pages.

• Assign tables or databases used in decision-support systems (DSS) to
specific caches with large I/O configured.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 103

This keeps DSS applications from contending for cache space with OLTP
applications. DSS applications typically access large numbers of
sequential pages, and OLTP applications typically access relatively few
random pages.

• Bind tempdb to its own cache to keep it from contending with other user
processes.

Proper sizing of the tempdb cache can keep most tempdb activity in
memory for many applications. If this cache is large enough, tempdb
activity can avoid performing I/O.

• Bind text pages to named caches to improve the performance on text
access.

• Bind a database’s log to a cache, again reducing contention for cache space
and access to the cache.

• When a user process makes changes to a cache, a spinlock denies all other
processes access to the cache.

Although spinlocks are held for extremely brief durations, they can slow
performance in multiprocessor systems with high transaction rates. When
you configure multiple caches, each cache is controlled by a separate
spinlock, increasing concurrency on systems with multiple CPUs.

Within a single cache, adding cache partitions creates multiple spinlocks
to further reduce contention. Spinlock contention is not an issue on single-
engine servers.

Most of these possible uses for named data caches have the greatest impact on
multiprocessor systems with high transaction rates or with frequent DSS
queries and multiple users. Some of them can increase performance on single
CPU systems when they lead to improved utilization of memory and reduce
I/O.

Commands to configure named data caches
The commands used to configure caches and pools are shown in Table 5-1

Table 5-1: Commands used to configure caches

Command Function

sp_cacheconfig Creates or drops named caches and set the size, cache type, cache policy
and local cache partition number. Reports on sizes of caches and pools.

Configuring the data cache to improve performance

104 Adaptive Server Enterprise

For a full description of configuring named caches and binding objects to
caches, see Chapter 4, “Configuring Data Caches,” in System Administration
Guide: Volume2. Only a system administrator can configure named caches and
bind database objects to them.

Tuning named caches
Creating named data caches and memory pools, and binding databases and
database objects to the caches, can dramatically hurt or improve Adaptive
Server performance. For example:

• A cache that is poorly used hurts performance.

If you allocate 25% of your data cache to a database that services a very
small percentage of the query activity on your server, I/O increases in
other caches.

• An unused pool hurts performance.

If you add a 16K pool, but none of your queries use it, you have taken
space away from the 2K pool. The 2K pool’s cache hit ratio is reduced, and
I/O is increased.

• An overused pool hurts performance.

If you configure a 16K pool, and virtually all of your queries use it, I/O
rates are increased. The 2K cache will be under used, while pages are
rapidly cycled through the 16K pool. The cache hit ratio in the 16K pool
will be very poor.

• When you balance pool usage within a cache, performance can increase
dramatically.

sp_poolconfig Creates and drops I/O pools and changes their size, wash size, and
asynchronous prefetch limit.

sp_bindcache Binds databases or database objects to a cache.

sp_unbindcache Unbinds the specified database or database object from a cache.

sp_unbindcache_all Unbinds all databases and objects bound to a specified cache.

sp_helpcache Reports summary information about data caches and lists the databases
and database objects that are bound to a cache. Also reports on the
amount of overhead required by a cache.

sp_sysmon Reports statistics useful for tuning cache configuration, including cache
spinlock contention, cache utilization, and disk I/O patterns.

Command Function

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 105

Both 16K and 2K queries experience improved cache hit ratios. The large
number of pages often used by queries that perform 16K I/O do not flush
2K pages from disk. Queries using 16K perform approximately one-eighth
the number of I/Os required by 2K I/O.

When tuning named caches, always measure current performance, make your
configuration changes, and measure the effects of the changes with similar
workload.

Cache configuration goals
Goals for configuring caches include:

• Reduced contention for spinlocks on multiple engine servers.

• Improved cache hit ratios and reduced disk I/O. As a bonus, improving
cache hit ratios for queries can reduce lock contention, since queries that
do not need to perform physical I/O usually hold locks for shorter periods
of time.

• Fewer physical reads, due to the effective use of large I/O.

• Fewer physical writes, because recently modified pages are not flushed
from cache by other processes.

• Reduced cache overhead and reduced CPU bus latency on SMP systems,
when relaxed LRU policy is appropriately used.

• Reduced cache spinlock contention on SMP systems, when cache
partitions are used.

In addition to commands such as showplan and statistics io that help tune on a
per-query basis, use a performance monitoring tool such as sp_sysmon to look
at how multiple queries and multiple applications share cache space when they
run simultaneously.

Gather data, plan, and then implement
The first step in developing a plan for cache usage is to provide as much
memory as possible for the data cache:

• Determine the maximum amount of memory you can allocate to Adaptive
Server. Set max memory to that value.

Configuring the data cache to improve performance

106 Adaptive Server Enterprise

• After you have set all the parameters that use Adaptive Server memory, the
difference between max memory and the run value of total logical memory
is the memory available for additional configuration and for data and
procedure caches. If you have sufficiently configured all the other
configuration parameters, you can allocate this additional memory to data
caches. Most changes to the data cache are dynamic and do not require a
restart.

• If you allocate all the additional memory to data caches, there may not be
any memory available to reconfigure other configuration parameters.
However, if there is additional memory available, you can dynamically
increase max memory and other dynamic configuration parameters like
procedure cache size, user connections, and so on.

• Use your performance monitoring tools to establish baseline performance,
and to establish your tuning goals.

Determine the size of memory you can allocate to data caches, as mentioned in
the above steps. Include the size of already configured caches, like the default
data cache and any named caches.

Determine data cache size by looking at existing objects and applications.
Adding new caches or increasing configuration parameters that consume
memory does not reduce the size of the default data cache. When you have
decided what memory is available for data caches and the size of each
individual cache, add new caches and increase or decrease size of existing data
caches.

• Evaluate cache needs by analyzing I/O patterns, and evaluate pool needs
by analyzing query plans and I/O statistics.

• Configure the easiest choices that will gain the most performance first:

• Choose a size for a tempdb cache.

• Choose a size for any log caches, and tune the log I/O size.

• Choose a size for the specific tables or indexes that you want to keep
entirely in cache.

• Add large I/O pools for index or data caches, as appropriate.

• After you determine these sizes, examine remaining I/O patterns, cache
contention, and query performance. Configure caches proportional to I/O
usage for objects and databases.

Keep performance goals in mind as you configure caches:

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 107

• If the major goal is to reduce spinlock contention, increasing the number
of cache partitions for heavily used caches may be the only step.

Moving a few high-I/O objects to separate caches also reduces spinlock
contention and improves performance.

• If the major goal is to improve response time by improving cache hit ratios
for particular queries or applications, creating caches for the tables and
indexes used by those queries should be guided by a thorough
understanding of access methods and I/O requirements.

Evaluating cache needs
Generally, configure caches in proportion to the number of times that the pages
in the caches will be accessed by queries, and configure pools within caches in
proportion to the number of pages used by queries that choose I/O of that pool’s
size.

If your databases and their logs are on separate logical devices, you can
estimate cache proportions using sp_sysmon or operating system commands to
examine physical I/O by device.

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Large I/O and performance
You can configure the default cache and any named caches you create for large
I/O by splitting a cache into pools. The default I/O size is 2K, one Adaptive
Server data page.

Note Reference to large I/Os are on a 2K logical page size server. If you have
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page
size server, the basic unit for the I/O is 16K.

For queries where pages are stored and accessed sequentially, Adaptive Server
reads up to eight data pages in a single I/O. Since the majority of I/O time is
spent doing physical positioning and seeking on the disk, large I/O can greatly
reduce disk access time. In most cases, configure a 16K pool in the default data
cache.

Configuring the data cache to improve performance

108 Adaptive Server Enterprise

Certain types of Adaptive Server queries are likely to benefit from large I/O.
Identifying these queries can help determine the correct size for data caches
and memory pools.

In the following examples, either the database or the specific table, index, or
large object (LOB) page change (used for text, image, and Java off-row
columns) must be bound to a named data cache that has large memory pools,
or the default data cache must have large I/O pools. Types of queries that can
benefit from large I/O include:

• Queries that scan entire tables. For example:

select title_id, price from titles
select count(*) from authors
 where state = "CA" /* no index on state */

• Range queries on tables with clustered indexes. For example:

where indexed_colname >= value

• Queries that scan the leaf level of an index, both matched and unmatched
scans. If there is a nonclustered index on type, price, this query could use
large I/O on the leaf level of the index, since all the columns used in the
query are contained in the index:

select type, sum(price)
 from titles
 group by type

• Queries that join entire tables, or large portions of tables. Different I/O
sizes may be used on different tables in a join.

• Queries that select text or image or Java off-row columns. For example:

select au_id, copy from blurbs

• Queries that generate Cartesian products. For example:

select title, au_lname
from titles, authors

This query needs to scan all of one table, and scan the other table
completely for each row from the first table. Caching strategies for these
queries follow the same principles as for joins.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 109

• Queries such as select into that allocate large numbers of pages.

Note Adaptive Server version 12.5.0.3 or later enables large-page
allocation in select into. It allocates pages by extent rather than by
individual page, thus issuing fewer logging requests for the target table.

If you configure Adaptive Server with large buffer pools, it uses large I/O
buffer pools when writing the target table pages to disk.

• create index commands.

• Bulk copy operations on heaps—both copy in and copy out.

• The update statistics, dbcc checktable, and dbcc checkdb commands.

The optimizer and cache choices

If the cache for a table or index has a 16K pool, the optimizer determines the
I/O size to use for data and leaf-level index pages based on the number of pages
that must be read, and the cluster ratios for the table or index.

The optimizer’s knowledge is limited to the single query it is analyzing and to
statistics about the table and cache. It does not know how many other queries
are simultaneously using the same data cache. It has no statistics on whether
table storage is fragmented such that large I/Os or asynchronous prefetch
would be less effective.

In some cases, this combination of factors can lead to excessive I/O. For
example, users may experience higher I/O and poor performance if
simultaneous queries with large result sets are using a very small memory pool.

Choosing the right mix of I/O sizes for a cache

You can configure up to four pools in any data cache, but, in most cases, caches
for individual objects perform best with only a 2K pool and a 16K pool. A
cache for a database where the log is not bound to a separate cache should also
have a pool configured to match the log I/O size configured for the database;
often the best log I/O size is 4K.

Configuring the data cache to improve performance

110 Adaptive Server Enterprise

Reducing spinlock contention with cache partitions
As the number of engines and tasks running on an SMP system increases,
contention for the spinlock on the data cache can also increase. Any time a task
needs to access the cache to find a page in cache or to relink a page on the
LRU/MRU chain, it holds the cache spinlock to prevent other tasks from
modifying the cache at the same time.

With multiple engines and users, tasks must wait for access to the cache.
Adding cache partitions separates the cache into partitions, each of which is
protected by its own spinlock. When a page needs to be read into cache or
located, a hash function is applied to the database ID and page ID to identify
the partition that holds the page.

The number of cache partitions is always a power of 2. Each time you increase
the number of partitions, you reduce the spinlock contention by approximately
1/2. If spinlock contention is greater than 10 to 15%, consider increasing the
number of partitions for the cache. This example creates 4 partitions in the
default data cache:

sp_cacheconfig "default data cache",
"cache_partition=4"

You must restart the server for changes in cache partitioning to take effect.

See Chapter 4, “Configuring Data Caches,” in System Administration Guide:
Volume 2.

For information on monitoring cache spinlock contention with sp_sysmon, see
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Each pool in the cache is partitioned into a separate LRU/MRU chain of pages,
with its own wash marker.

Cache replacement strategies and policies
The Adaptive Server optimizer uses two cache replacement strategies to keep
frequently used pages in cache while flushing the less frequently used pages.
To reduce cache overhead, you may want to consider setting the cache
replacement policy for some caches.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 111

Strategies

Replacement strategies determine where the page is placed in cache when it is
read from disk. The optimizer decides on the cache replacement strategy to be
used for each query:

• The fetch-and-discard, or MRU replacement, strategy links the newly read
buffers at the wash marker in the pool.

• The LRU replacement strategy links newly read buffers at the most-
recently used (MRU) end of the pool.

Cache replacement strategies can affect the cache hit ratio for your query mix:

• Pages that are read into cache with the fetch-and-discard strategy remain
in cache a much shorter time than queries read in at the MRU end of the
cache. If such a page is needed again (for example, if the same query is run
again very soon), the pages will probably need to be read from disk again.

• Pages that are read into cache with the fetch-and-discard strategy do not
displace pages that already reside in cache before the wash marker. This
means that the pages already in cache before the wash marker are not
flushed out of cache by pages that are needed only once by a query.

See Chapter 7, “Controlling Optimization,” in Performance and Tuning Series:
Query Processing and Abstract Plans.

Policies

A system administrator can specify whether a cache is going to be maintained
as an MRU/LRU-linked list of pages (strict) or whether relaxed LRU
replacement policy can be used.

• Strict replacement policy – replaces the least recently used page in the
pool, linking the newly read pages at the beginning (MRU end) of the page
chain in the pool.

• Relaxed replacement policy – attempts to avoid replacing a recently used
page, but without the overhead of keeping buffers in LRU/MRU order.

The default cache replacement policy is strict replacement. Use the relaxed
replacement policy only when both of these conditions are true:

• There is little or no replacement of buffers in the cache.

• The data is never, or infrequently, updated.

Named data cache recommendations

112 Adaptive Server Enterprise

Relaxed LRU policy saves the overhead of maintaining the cache in
MRU/LRU order. On SMP systems, where copies of cached pages may reside
in hardware caches on the CPUs themselves, relaxed LRU policy can reduce
bandwidth on the bus that connects the CPUs.

If you have created a cache to hold all of, or most, certain objects, and the cache
hit rate is above 95%, using relaxed cache replacement policy for the cache can
improve performance slightly.

See Chapter 4, “Configuring Data Caches,” in System Administration Guide:
Volume2.

Configuring relaxed LRU replacement for database logs

Log pages are filled with log records and are immediately written to disk.
When applications include triggers, deferred updates, or transaction rollbacks,
some log pages may be read, but usually they are very recently used pages,
which are still in the cache.

Since accessing these pages in cache moves them to the MRU end of a strict-
replacement policy cache, log caches may perform better with relaxed LRU
replacement.

Relaxed LRU replacement for lookup tables and indexes

User-defined caches that are sized to hold indexes and frequently used lookup
tables are good candidates for relaxed LRU replacement. If a cache is a good
candidate, but you find that the cache hit ratio is slightly lower than the
performance guideline of 95%, determine whether slightly increasing the size
of the cache can provide enough space to completely hold the table or index.

Named data cache recommendations
These cache recommendations can improve performance on both single and
multiprocessor servers:

• Because Adaptive Server writes log pages according to the size of the
logical page size, larger log pages potentially reduce the rate of commit-
sharing writes for log pages.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 113

Commit-sharing occurs when, instead of performing many individual
commits, Adaptive Server waits until it can perform a batch of commits.
Per-process user log caches are sized according to the logical page size and
the user log cache size configuration parameter. The default size of the user
log cache is one logical page.

For transactions that generate many log records, the time required to flush
the user log cache is slightly higher for larger logical page sizes. However,
because the log-cache sizes are also larger, Adaptive Server does not need
to perform as many log-cache flushes to the log page for long transactions.

See Chapter 4, “Configuring Data Caches,” in System Administration
Guide: Volume2.

• Create a named cache for tempdb and configure the cache for 16K I/O for
use by select into queries and sorts.

• Create a named cache for the logs for high-use databases. Configure pools
in this cache to match the log I/O size set with sp_logiosize.

See “Choosing the I/O size for the transaction log” on page 116.

• If a table or its index is small and constantly in use, create a cache for only
that object or for a few objects.

• For caches with cache hit ratios of more than 95%, configure relaxed LRU
cache replacement policy if you are using multiple engines.

• Keep cache sizes and pool sizes proportional to the cache utilization
objects and queries:

• If 75% of the work on your server is performed in one database, that
allocate approximately 75% of the data cache, in a cache created
specifically for the database, in caches created for its busiest tables
and indexes, or in the default data cache.

• If approximately 50% of the work in your database can use large I/O,
configure about 50% of the cache in a 16K memory pool.

• View the cache as a shared resource rather than attempt to micromanage
the caching needs of every table and index.

Start cache analysis and testing at the database level, concentrating on
particular tables and objects with high I/O needs or high application
priorities and those with special uses, such as tempdb and transaction logs.

• On SMP servers, use multiple caches to avoid contention for the cache
spinlock:

Named data cache recommendations

114 Adaptive Server Enterprise

• Use a separate cache for the transaction log for busy databases, and
use separate caches for some of the tables and indexes that are
accessed frequently.

• If spinlock contention is greater than 10% on a cache, split it into
multiple caches or use cache partitions.

Use sp_sysmon periodically during high-usage periods to check for
cache contention. See Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon.

• Set relaxed LRU cache policy on caches with cache hit ratios of more
than 95%, such as those configured to hold an entire table or index.

Sizing caches for special objects, tempdb, and transaction logs
Creating caches for tempdb, the transaction logs, and for a few tables or indexes
that you want to keep completely in cache can reduce cache spinlock
contention and improve cache hit ratios.

Use sp_spaceused to determine the size of the tables or indexes that you want
to keep entirely in cache. If you know how fast these tables increase in size,
allow some extra cache space for their growth. To see the size of all the indexes
for a table, use:

sp_spaceused table_name, 1

Examining cache needs for tempdb

Look at the use of tempdb:

• Estimate the size of the temporary tables and worktables generated by
your queries.

Look at the number of pages generated by select into queries.

These queries can use 16K I/O, so you can use this information to help you
size a 16K pool for the tempdb cache.

• Estimate the duration (in wall-clock time) of the temporary tables and
worktables.

• Estimate how often queries that create temporary tables and worktables
are executed.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 115

• Try to estimate the number of simultaneous users, especially for queries
that generate very large result sets in tempdb.

With this information, you can a form a rough estimate of the amount of
simultaneous I/O activity in tempdb. Depending on your other cache needs,
you can size tempdb so that virtually all tempdb activity takes place in cache,
and few temporary tables are actually written to disk.

In most cases, the first 2MB of tempdb are stored on the master device, with
additional space allocated to a logical device. Use sp_sysmon to check those
devices to help determine physical I/O rates.

Examining cache needs for transaction logs

On SMP systems with high transaction rates, bind the transaction log to its own
cache to reduce cache spinlock contention in the default data cache. In many
cases, the log cache can be very small.

The current page of the transaction log is written to disk when transactions
commit, so try to size the log to reduce the number of times that processes that
need to reread log pages must go to disk because the pages have been flushed
from the cache.

These Adaptive Server processes need to read log pages:

• Triggers that use the inserted and deleted tables, which are built from the
transaction log when the trigger queries the tables

• Deferred updates, deletes, and inserts, since these require rereading the log
to apply changes to tables or indexes

• Transactions that are rolled back, since log pages must be accessed to roll
back the changes

When sizing a cache for a transaction log:

• Examine the duration of processes that need to reread log pages.

Estimate how long the longest triggers and deferred updates last.

If some of your long-running transactions are rolled back, check the length
of time they ran.

• Check transaction log size with sp_spaceused at regular intervals to
estimate how fast the log grows.

Named data cache recommendations

116 Adaptive Server Enterprise

Use this log growth estimate and the time estimate to size the log cache. For
example, if the longest deferred update takes 5 minutes, and the transaction log
for the database grows at 125 pages per minute, 625 pages are allocated for the
log while this transaction executes.

If a few transactions or queries are especially long-running, you may want to
size the log for the average, rather than the maximum, length of time.

Choosing the I/O size for the transaction log

When a user performs operations that require logging, log records are first
stored in a user log cache until events flush the user’s log records to the current
transaction log page in cache. Log records are flushed when:

• A transaction ends

• The user log cache is full

• The transaction changes tables in another database

• Another process needs to write a page referenced in the user log cache

• Certain system events occur

To economize on disk writes, Adaptive Server holds partially filled transaction
log pages for a very brief span of time so that records of several transactions
can be written to disk simultaneously. This process is called group commit.

In environments with high transaction rates or with transactions that create
large log records, the 2K transaction log pages fill quickly. A large proportion
of log writes are due to full log pages, rather than group commits.

Creating a 4K pool for the transaction log can greatly reduce the number of log
writes in these environments.

sp_sysmon reports on the ratio of transaction log writes to transaction log
allocations. Try using 4K log I/O if all these conditions are true:

• The database uses 2K log I/O.

• The number of log writes per second is high.

• The average number of writes per log page is slightly more than one.

Here is some sample output showing that a larger log I/O size might help
performance:

 per sec per xact count % of total
Transaction Log Writes 22.5 458.0 1374 n/a
Transaction Log Alloc 20.8 423.0 1269 n/a

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 117

Avg # Writes per Log Page n/a n/a 1.08274 n/a

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Configuring for large log I/O size

The log I/O size for each database is reported in the server’s error log when
Adaptive Server starts. You can also use sp_logiosize.

To see the size for the current database, execute sp_logiosize with no
parameters. To see the size for all databases on the server and the cache in use
by the log, use:

sp_logiosize "all"

To set the log I/O size for a database to 4K, the default, you must be using the
database. This command sets the size to 4K:

sp_logiosize "default"

If no 4K pool is available in the cache used by the log, 2K I/O is used instead.

If a database is bound to a cache, all objects not explicitly bound to other caches
use the database’s cache. This includes the syslogs table.

To bind syslogs to another cache, you must first put the database in single-user
mode, with sp_dboption, and then use the database and execute sp_bindcache:

sp_bindcache pubs_log, pubtune, syslogs

Additional tuning tips for log caches

For further tuning after configuring a cache for the log, check sp_sysmon
output for:

• The cache used by the log

• The disk the log is stored on

• The average number of writes per log page

When looking at the log cache section, check “Cache Hits” and “Cache
Misses” to determine whether most of the pages needed for deferred
operations, triggers, and rollbacks are being found in cache.

In the “Disk Activity Detail” section, look at the number of “Reads” performed
to see how many times tasks that need to reread the log had to access the disk.

Named data cache recommendations

118 Adaptive Server Enterprise

Basing data pool sizes on query plans and I/O
Divide a cache into pools based on the proportion of the I/O performed by
queries that use the corresponding I/O sizes. If most queries can benefit from
16K I/O, and you configure a very small 16K cache, you may see worse
performance.

Most of the space in the 2K pool remains unused, and the 16K pool experiences
high turnover. The cache hit ratio is significantly reduced.

The problem is most severe with nested-loop join queries that must repeatedly
reread the inner table from disk.

Making a good choice about pool sizes requires:

• Knowledge of the application mix and the I/O size your queries can use

• Careful study and tuning, using monitoring tools to check cache
utilization, cache hit rates, and disk I/O

Checking I/O size for queries

You can examine query plans and I/O statistics to determine which queries are
likely to perform large I/O, and the amount of I/O those queries perform. This
information can form the basis for estimating the amount of 16K I/O the
queries should perform with a 16K memory pool. I/Os are done in terms of
logical page sizes; if large I/O uses 2K pages, it retrieves in 2K sizes, if 8K
pages, it retrieves in the 8K size, as shown:

For another example, consider that a query that scans a table and performs 800
physical I/Os using a 2K pool should perform about 100 8K I/Os.

See “Large I/O and performance” on page 107 for a list of query types.

To test your estimates, configure the pools and run individual queries and your
target mix of queries to determine optimum pool sizes. Choosing a good initial
size for your first test using 16K I/O depends on a good sense of the types of
queries in your application mix.

Logical page size Memory pool

2K 16K

4K 32K

8K 64K

16K 128K

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 119

This estimate is especially important if you are configuring a 16K pool for the
first time on an active production server. Make the best possible estimate of
simultaneous uses of the cache.

These guidelines provide some points of reference:

• If most I/O occurs in point queries using indexes to access a small number
of rows, make the 16K pool relatively small, perhaps 10 to 20% of the
cache size.

• If you estimate that a large percentage of the I/Os will use the 16K pool,
configure 50 to 75% of the cache for 16K I/O.

Queries that use 16K I/O include any query that scans a table, uses the
clustered index for range searches and order by, and queries that perform
matching or nonmatching scans on covering nonclustered indexes.

• If you are unsure about the I/O size that will be used by your queries,
configure about 20% of your cache space in a 16K pool, and use showplan
and statistics i/o while you run your queries.

Examine the showplan output for the “Using 16K I/O” message. Check
statistics i/o output to see how much I/O is performed.

• If you think that your typical application mix uses both 16K I/O and 2K
I/O simultaneously, configure 30 to 40% of your cache space for 16K I/O.

Your optimum may be higher or lower, depending on the actual mix and
the I/O sizes chosen by the query.

If many tables are accessed by both 2K I/O and 16K I/O, Adaptive Server
cannot use 16K I/O, if any page from the extent is in the 2K cache. It
performs 2K I/O on the other pages in the extent that are needed by the
query. This adds to the I/O in the 2K cache.

After configuring for 16K I/O, check cache usage and monitor the I/O for
the affected devices, using sp_sysmon or Adaptive Server Monitor. Also,
use showplan and statistics io to observe your queries.

• Look for nested-loop join queries where an inner table would use 16K
I/O, and the table is repeatedly scanned using the fetch-and-discard
(MRU) strategy.

This can occur when neither the outer or inner table fits completely in
cache. You can significantly reduce I/O by increasing the size of the
16K pool to allow the inner table to fit completely in cache. You might
also consider binding the two tables to separate caches.

• Look for excessive 16K I/O, when compared to table size in pages.

Named data cache recommendations

120 Adaptive Server Enterprise

For example, if you have an 8000-page table, and a 16K I/O table scan
performs significantly more than 1000 I/Os to read this table, you may see
improvement by re-creating the clustered index on this table.

• Look for times when large I/O is denied. Many times, this is because pages
are already in the 2K pool, so the 2K pool is used for the rest of the I/O for
the query.

See Chapter 7, “Controlling Optimization,” in Performance and Tuning
Series: Query Processing and Abstract Plans.

Configuring buffer wash size
You can configure the wash area for each pool in each cache. If you set the
wash size is set too high, Adaptive Server may perform unnecessary writes. If
you set the wash area too small, Adaptive Server may not be able to find a clean
buffer at the end of the buffer chain and may have to wait for I/O to complete
before it can proceed. Generally, wash size defaults are correct and need to be
adjusted only in large pools that have very high rates of data modification.

Adaptive Server allocates buffer pools in units of logical pages. For example,
on a server using 2K logical pages, 8MB is allocated to the default data cache.
By default, this constitutes approximately 4096 buffers.

If you allocate the same 8MB for the default data cache on a server using a 16K
logical page size, the default data cache is approximately 512 buffers. On a
busy system, this small number of buffers might result in a buffer always being
in the wash region, causing a slowdown for tasks requesting clean buffers.

In general, to obtain the same buffer management characteristics on larger page
sizes as with 2K logical page sizes, scale the cache size to the larger page size.
In other words, if you increase logical page size by four times, increase cache
and pool sizes by about four times larger as well.

Queries performing large I/O, extent-based reads and writes, and so on, benefit
from the use of larger logical page sizes. However, as catalogs continue to be
page-locked, there is greater contention and blocking at the page level on
system catalogs.

Row and column copying for data-only locked tables results in a greater
slowdown when used for wide columns. Memory allocation to support wide
rows and wide columns marginally slows the server.

See Performance and Tuning Series: Locking and Concurrency Control.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 121

Overhead of pool configuration and binding objects
Configuring memory pools and binding objects to caches can affect users on a
production system, so perform these activities during off-hours if possible.

Pool configuration overhead

When a pool is created, deleted, or changed, the plans of all stored procedures
and triggers that use objects bound to the cache are recompiled the next time
they are run. If a database is bound to the cache, this affects all of the objects
in a database.

There is a slight amount of overhead involved in moving buffers between
pools.

Cache binding overhead

When you bind or unbind an object, all the object’s pages that are currently in
the cache are flushed to disk (if dirty) or dropped from the cache (if clean)
during the binding process.

The next time the pages are needed by user queries, they must be read from the
disk again, slowing the performance of the queries.

Adaptive Server acquires an exclusive lock on the table or index while the
cache is being cleared, so binding can slow access to the object by other users.
The binding process may have to wait to acquire the lock until transactions
complete.

Note Binding and unbinding objects from caches removes them from memory.
This can be useful when you are tuning queries during development and
testing.

If you need to check physical I/O for a particular table, and earlier tuning
efforts have brought pages into cache, you can unbind and rebind the object.
The next time the table is accessed, all pages used by the query must be read
into the cache.

The plans of all stored procedures and triggers using the bound objects are
recompiled the next time they are run. If a database is bound to the cache, this
affects all the objects in the database.

Maintaining data cache performance for large I/O

122 Adaptive Server Enterprise

Maintaining data cache performance for large I/O
When heap tables, clustered indexes, or nonclustered indexes are newly
created, they show optimal performance when large I/O is being used. Over
time, the effects of deletes, page splits, and page deallocation and reallocation
can increase the cost of I/O. optdiag reports a statistic called “Large I/O
efficiency” for tables and indexes.

A large I/O is very efficient when this value is 1, or close to 1. As the value
decreases, more I/O is required to access data pages needed for a query, and
large I/O may be bringing pages into cache that are not needed by the query.

Consider rebuilding indexes when large I/O efficiency drops or when activity
in the pool increases due to increased 16K I/O.

When large I/O efficiency decreases, you can:

• Run reorg rebuild on tables that use data-only-locking. You can also use
reorg rebuild on the index of data-only-locked tables.

• For allpages-locked tables, drop and re-create the indexes.

See Chapter 6, “Database Maintenance,” in Performance and Tuning Series:
Physical Database Tuning.

Diagnosing excessive I/O counts
There are several reasons why a query that performs large I/O might require
more reads than you anticipate:

• The cache used by the query has a 2K cache and other processes have
brought pages from the table into the 2K cache.

If Adaptive Server finds one of the pages it would read using 16K I/Os
already in the 2K cache, it performs 2K I/O on the other pages in the extent
that are required by the query.

• The first extent on each allocation unit stores the allocation page, so if a
query needs to access all the pages on the extent, it must perform 2K I/O
on the 7 pages that share the extent with the allocation page.

The other 31 extents can be read using 16K I/O. The minimum number of
reads for an entire allocation unit is always 38, not 32.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 123

• In nonclustered indexes and clustered indexes on data-only-locked tables,
an extent may store both leaf-level pages and pages from higher levels of
the index. 2K I/O is performed on the higher levels of indexes, and on leaf-
level pages when few pages are needed by a query.

When a covering leaf-level scan performs 16K I/O, it is likely that some
of the pages from some extents will be in the 2K cache. The rest of the
pages in the extent will be read using 2K I/O.

Using sp_sysmon to check large I/O performance
The sp_sysmon output for each data cache includes information that can help
you determine the effectiveness for large I/Os. See Performance and Tuning
Series: Monitoring Adaptive Server with sp_sysmon, and Chapter 7,
“Controlling Optimization,” in Performance and Tuning Series: Query
Processing and Abstract Plans.

• “Large I/O usage” reports the number of large I/Os performed and denied
and provides summary statistics.

• “Large I/O detail” reports the total number of pages that were read into the
cache by a large I/O and the number of pages that were actually accessed
while they were in the cache.

Speed of recovery
As users modify data in Adaptive Server, only the transaction log is written to
disk immediately, to ensure that given data or transactions can be recovered.
The changed or “dirty” data and index pages stay in the data cache until one of
these events causes them to be written to disk:

• The checkpoint process wakes up, determines that the changed data and
index pages for a particular database need to be written to disk, and writes
out all the dirty pages in each cache used by the database.

The combination of the setting for recovery interval and the rate of data
modifications on your server determine how often the checkpoint process
writes changed pages to disk.

• As pages move into the buffer wash area of the cache, dirty pages are
automatically written to disk.

Speed of recovery

124 Adaptive Server Enterprise

• Adaptive Server has spare CPU cycles and disk I/O capacity between user
transactions, and the housekeeper wash task uses this time to write dirty
buffers to disk.

• Recovery happens only on the default data cache.

• A user issues a checkpoint command.

You can use checkpoint to identify one or more databases or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

The combination of checkpoints, the housekeeper, and writes started at the
wash marker has these benefits:

• Many transactions may change a page in the cache or read the page in the
cache, but only one physical write is performed.

• Adaptive Server performs many physical writes when the I/O does not
cause contention with user processes.

Tuning the recovery interval
The default recovery interval in Adaptive Server is five minutes per database.
Changing the recovery interval affects performance because it impacts the
number of times Adaptive Server writes pages to disk.

Table 5-2 shows the effects of changing the recovery interval from its current
setting on your system.

Table 5-2: Effects of recovery interval on performance and recovery
time

Setting Effects on performance Effects on recovery

Lower May cause more reads and writes and may lower
throughput. Adaptive Server writes dirty pages
to the disk more often. Any checkpoint I/O
spikes will be smaller.

Setting the recovery interval lower
expedites recovery if there are no long-
running open transactions that Adaptive
Server must roll back.

If there are long-running open
transactions, more frequent checkpoints
could slow the recovery process
because the disks contains more
modifications that Adaptive Server
must roll back.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 125

See Chapter 11, “Developing a Backup and Recovery Plan,” in System
Administration Guide: Volume 2 for information on setting the recovery
interval. sp_sysmon reports the number and duration of checkpoints. See
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Effects of the housekeeper wash task on recovery time
Adaptive Server’s housekeeper wash task automatically begins cleaning dirty
buffers during the server’s idle cycles. If the task can flush all active buffer
pools in all configured caches, it wakes up the checkpoint process. This may
result in faster checkpoints and shorter database recovery time.

System administrators can use the housekeeper free write percent configuration
parameter to tune or disable the housekeeper wash task. This parameter
specifies the maximum percentage by which the housekeeper task can increase
database writes.

For more information on tuning the housekeeper and the recovery interval, see
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Auditing and performance
Heavy auditing can affect performance as follows:

• Audit records are written first to a queue in memory and then to the
sybsecurity database. If the database shares a disk used by other busy
databases, it can slow performance.

• If the in-memory audit queue fills up, the user processes that generate
audit records sleep. See Figure 5-5 on page 127.

Higher Minimizes writes and improves system
throughput. Checkpoint I/O spikes will be
higher.

Automatic recovery may take more time
on start-up. Adaptive Server may have
to reapply a large number of transaction
log records to the data pages.

Setting Effects on performance Effects on recovery

Auditing and performance

126 Adaptive Server Enterprise

Sizing the audit queue
The size of the audit queue can be set by a system security officer. The default
configuration is as follows:

• A single audit record requires a minimum of 32 bytes, up to a maximum
of 424 bytes.

This means that a single data page stores between 4 and 80 records.

• The default size of the audit queue is 100 records, requiring approximately
42K.

The minimum size of the queue is 1 record; the maximum size is 65,335
records.

There are trade-offs in sizing the audit queue, as shown in Figure 5-5.

If the audit queue is large, so that you do not risk having user processes sleep,
you run the risk of losing any audit records in memory if there is a system
failure. The maximum number of records that can be lost is the maximum
number of records that can be stored in the audit queue.

If security is your chief concern, keep the queue small. If you can risk the loss
of more audit records, and you require high performance, make the queue
larger.

Increasing the size of the in-memory audit queue takes memory from the total
memory allocated to the data cache.

CHAPTER 5 Memory Use and Performance

Performance and Tuning Series: Basics 127

Figure 5-5: Trade-offs in auditing and performance

Auditing performance guidelines
• Heavy auditing slows overall system performance. Audit only the events

you need to track.

• If possible, place the sysaudits database on its own device. If that is
impossible, place it on a device that is not used for your most critical
applications.

Text and image pages
Text and image pages can use large portions of memory and are commonly
known as space wasters. They exist as long as a parent data row points to the
text and image pages. These pages come into existence when a null update is
done against the columns.

Find the current status for the table:

sp_help table_name

Use sp_chcattribure to deallocate text and image pages to open the space they
occupy:

sp_chgattribute table_name, “deallocate_first_txtpg”,1

Audit

Audit queue size

If the system crashes,

If the audit queue is full,

sysaudits

record

this process sleeps until
space is available

these records are lost

Text and image pages

128 Adaptive Server Enterprise

This switches the deallocation on. To switch the deallocation off enter:

sp_chgattribute table_name, “deallocate_first_txtpg”,0

Performance and Tuning Series: Basics 129

C H A P T E R 6 Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves I/O
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

How asynchronous prefetch improves performance
Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities for which
access patterns are predictable. The I/O requests for these pages are issued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

• Sequential scans, such as table scans, clustered index scans, and
covered nonclustered index scans

• Access via nonclustered indexes

• Some dbcc checks and update statistics

• Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision-support applications, as
long as the I/O subsystems on the machine are not saturated.

Topic Page
How asynchronous prefetch improves performance 129

When prefetch is automatically disabled 135

Tuning goals for asynchronous prefetch 139

Other Adaptive Server performance features 140

Special settings for asynchronous prefetch limits 143

Maintenance activities for high prefetch performance 145

Performance monitoring and asynchronous prefetch 146

How asynchronous prefetch improves performance

130 Adaptive Server Enterprise

Asynchronous prefetch cannot help (or may help only slightly) when the
I/O subsystem is already saturated or when Adaptive Server is CPU-
bound. Asynchronous prefetch can be used in some OLTP applications,
but to a much lesser degree, since OLTP queries generally perform fewer
I/O operations.

When a query in Adaptive Server needs to perform a table scan, it:

• Examines the rows on a page and the values in the rows.

• Checks the cache for the next page to be read from a table. If that page
is in cache, the task continues processing. If the page is not in cache,
the task issues an I/O request and sleeps until the I/O completes.

• When the I/O completes, the task moves from the sleep queue to the
run queue. When the task is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

This cycle of executing and stalling for disk reads continues until the table
scan completes. In a similar way, queries that use a nonclustered index
process a data page, issue the I/O for the next page referenced by the index,
and sleep until the I/O completes, if the page is not in cache.

This pattern of executing and then waiting for I/O slows performance for
queries that issue physical I/Os for large number of pages. In addition to
the waiting time for the physical I/Os to complete, the task repeatedly
switches on and off the engine, adding overhead to processing.

Improving query performance by prefetching pages
Asynchronous prefetch issues I/O requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to access the page. If required pages are already in cache, the query
does not yield the engine to wait for the physical read. The query may still
yield for other reasons, but it yields less frequently.

Based on the type of query being executed, asynchronous prefetch builds
a look-ahead set of pages that it predicts will be needed very soon.
Adaptive Server defines different look-ahead sets for each processing type
where asynchronous prefetch is used.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 131

In some cases, look-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only a small percentage of unneeded pages are read into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for the wasted reads. If the number of unused pages becomes large,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment
When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is a risk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracks the buffers brought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffers is configurable on a
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous
prefetch to keep the cache-hit ratio high and reduce unneeded I/O. Overall,
the effect ensures that most queries experience a high cache-hit ratio and
few stalls due to disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, allocation pages are used to build
the look-ahead set.

For information on how allocation pages record information about object
storage, see Chapter 2, “Data Storage,” in Performance and Tuning Series:
Physical Database Tuning.

How asynchronous prefetch improves performance

132 Adaptive Server Enterprise

Look-ahead set during recovery
During recovery, Adaptive Server reads each log page that includes
records for a transaction and then reads all the data and index pages
referenced by that transaction, to verify timestamps and to roll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until all transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extents in each
allocation unit. Each time the recovery process reads a log page from a
new allocation unit, it prefetches all the pages on that allocation unit that
are in use by the log.

In databases that do not have a separate log segment, log and data extents
may be mixed on the same allocation unit. Asynchronous prefetch still
fetches all the log pages on the allocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsequent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery uses only the pool in the default data cache. See “Setting
limits for recovery” on page 144 for more information.

Look-ahead set during sequential scans
Sequential scans include table scans, clustered index scans, and covered
nonclustered index scans.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 133

During table scans and clustered index scans, asynchronous prefetch uses
allocation page information about the pages used by the object to construct
the look-ahead set. Each time a page is fetched from a new allocation unit,
the look-ahead set is built from all the pages on that allocation unit that are
used by the object.

The number of times a sequential scan hops between allocation units is
kept to measure fragmentation of the page chain. This value is used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. See “Page chain fragmentation” on
page 137.

Look-ahead set during nonclustered index access
When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for all qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the unique list of all the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If a nonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

• dbcc checkalloc, which checks allocation for all tables and indexes in
a database, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

• dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checks individual tables and their indexes

How asynchronous prefetch improves performance

134 Adaptive Server Enterprise

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page allocations, validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters a different
allocation unit for the object, the look-ahead set is built from all the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbcc checkdb and dbcc checktable commands check the page chains
for a table, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, the indexes are
scanned recursively, starting at the root page and following all pointers to
the data pages. When checking the pointers from the leaf pages to the data
pages, the dbcc commands use asynchronous prefetch in a way that is
similar to nonclustered index scans. When a leaf-level index page is
accessed, the look-ahead set is built from the page IDs of all the pages
referenced on the leaf-level index page.

Look-ahead set minimum and maximum sizes
The size of a look-ahead set for a query at a given point in time is
determined by:

• The type of query, such as a sequential scan or a nonclustered index
scan

• The size of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

• The fragmentation of tables or indexes, in the case of operations that
perform scans

• The recent success rate of asynchronous prefetch requests and
overload conditions on I/O queues and server I/O limits

Table 6-1 summarizes the minimum and maximum sizes for different type
of asynchronous prefetch usage.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 135

Table 6-1: Look-ahead set sizes

When prefetch is automatically disabled
Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the I/O subsystem, and without reading
unneeded pages. If Adaptive Server detects that prefetched pages are
being read into cache but not used, it temporarily limits or discontinues
asynchronous prefetch.

Access type Action Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf-level scan

Reading a page from a
new allocation unit

Minimum is eight pages needed by the query

Maximum is the smaller of:

• The number of pages on an allocation unit that
belong to an object.

• The pool prefetch limits

Nonclustered index scan Locating qualified
rows on the leaf page
and preparing to
access data pages

Minimum is two qualified rows

Maximum is the smaller of:

• The number of unique page numbers on
qualified rows on the leaf index page

• The pool’s prefetch limit

Recovery Recovering a
transaction

Maximum is the smaller of:

• All of the data and index pages touched by a
transaction undergoing recovery

• The prefetch limit of the pool in the default
data cache

Scanning the
transaction log

Maximum is all pages on an allocation unit
belonging to the log

dbcc tablealloc, indexalloc, and
checkalloc

Scanning the page
chain

Same as table scan

dbcc checktable and checkdb Scanning the page
chain

Checking
nonclustered index
links to data pages

Same as table scan

All of the data pages referenced on a leaf-level
page.

When prefetch is automatically disabled

136 Adaptive Server Enterprise

Flooding pools
For each pool in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until the buffers’ first use.
For example, if a 2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 buffers can be read in by asynchronous prefetch
and remain unused in the pool. If the number of nonaccessed prefetched
buffers in the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

As the pages in the pool are accessed by queries, the count of unused
buffers in the pool drops, and asynchronous prefetch resumes operation. If
the number of available buffers is smaller than the number of buffers in the
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffers are in a pool that allows 400, and a query’s
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous I/Os that cannot be issued due to the per-pool
limits is reported by sp_sysmon.

I/O system overloads
Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as a whole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control these limits for Adaptive Server.

See your operating system documentation for more information about
configuring I/Os for your hardware.

The configuration parameter disk i/o structures controls the number of disk
control blocks that Adaptive Server reserves. Each physical I/O (each
buffer read or written) requires one control block while it is in the I/O
queue.

See Chapter 5, “Setting Configuration Parameters,” in the System
Administration Guide: Volume 1.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 137

If Adaptive Server tries to issue asynchronous prefetch requests that would
exceed max async i/os per server, max async i/os per engine, or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk I/O structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See Performance and Tuning Series:
Monitoring Adaptive Server with sp_sysmon.

Try to tune the system so there are no delayed I/Os. If there are I/Os
delayed by:

• Disk I/O structures, increase the number of disk i/o structures
configuration parameter

• The server or engine limit, increase the max max async i/os per engine
and max async i/os per server configuration parameters.

• The operating system, tune the operating system so it can handle more
concurrent I/Os.

Unnecessary reads
Asynchronous prefetch tries to avoid unnecessary physical reads. During
recovery and during nonclustered index scans, look-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

Look-ahead sets for table scans, clustered index scans, and dbcc checks are
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary I/O can take place due to:

• Page chain fragmentation on allpages-locked tables

• Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server page allocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
allocating new extents on allocation units already used by the object.

When prefetch is automatically disabled

138 Adaptive Server Enterprise

However, as pages are allocated and deallocated, page chains on data-
only-locked tables can develop kinks. Figure 6-1 shows an example of a
kinked page chain between extents in two allocation units.

Figure 6-1: A kink in a page chain crossing allocation units

In Figure 6-1, when a scan first needs to access a page from allocation unit
0, it checks the allocation page and issues asynchronous I/Os for all the
pages used by the object it is scanning, up to the limit set on the pool. As
the pages become available in cache, the query processes them in order by
following the page chain. When the scan reaches page 10, the next page in
the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and
asynchronous prefetch requests are issued for all the pages in that
allocation unit that belong to the object.

When the page chain points back to a page in allocation unit 0, there are
two possibilities:

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255 OAM page

Pages used by
object

Other pages

Allocation page

...

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 139

• The prefetched pages from allocation unit 0 are still in cache, and the
query continues processing with no unneeded physical I/Os.

• The prefetch pages from allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other I/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

• Adaptive Server’s count of the hops between allocation pages
now equals two. Adaptive Server uses the ratio between the count
of hops and the prefetched pages to reduce the size of the look-
ahead set, so fewer I/Os are issued.

• The count of prefetched but unused pages in the pool is likely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning goals for asynchronous prefetch
Choosing optimal pool sizes and prefetch percentages for buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish:

• Improved system throughput

• Better performance by applications that use asynchronous prefetch

• No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or dbcc checking and reconfigure
afterward without needing to restart Adaptive Server.

See “Setting limits for recovery” on page 144 and “Setting limits for
dbcc” on page 144.

Other Adaptive Server performance features

140 Adaptive Server Enterprise

Commands for configuration
Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

• The server-wide default, set with the configuration parameter global
async prefetch limit. When you install Adaptive Server, the default
value for global async prefetch limit is 10 (percent).

• A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

See Chapter 5, “Setting Configuration Parameters,” in the System
Administration Guide: Volume1.

Changing asynchronous prefetch limits takes effect immediately, and does
not require a restart. You can configure the global and per-pool limits in
the configuration file.

Other Adaptive Server performance features
This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

Large I/O
The combination of large I/O and asynchronous prefetch can provide rapid
query processing with low I/O overhead for queries performing table scans
and for dbcc operations.

When large I/O prefetches all the pages on an allocation unit, the minimum
number of I/Os for the entire allocation unit is:

• 31 16K I/Os

• 7 2K I/Os, for the pages that share an extent with the allocation page

Note Reference to Large I/Os are on a 2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is 8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 141

Sizing and limits for the 16K pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffers in the pool requires a pool with at least
310 16K buffers. If the pool is smaller, or if the limit is lower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, configure either a larger pool or a larger prefetch limit
for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the pool needs to be
higher. The queries are probably issuing prefetch requests at slightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pages in the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queries in the pool.

Limits for the 2K pool

Queries using large I/O during sequential scans may still need to perform
2K I/O:

• When a scan enters a new allocation unit, it performs 2K I/O on the 7
pages in the unit that share space with the allocation page.

• If pages from the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K pool.

If the 2K pool has its asynchronous prefetch limit set to 0, the first 7 reads
are performed by normal asynchronous I/O, and the query sleeps on each
read if the pages are not in cache. Set the limits on the 2K pool high enough
that it does not slow prefetching performance.

Other Adaptive Server performance features

142 Adaptive Server Enterprise

Fetch-and-discard (MRU) scans
When a scan uses MRU replacement policy, buffers are handled in a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffers are
relinked into the pool at the wash marker. This strategy helps to avoid
cases where heavy use of a cache flushes prefetched buffers linked at the
wash marker before the buffers can be used. It has little impact on
performance, unless large numbers of unneeded pages are being
prefetched. In this case, the prefetched pages are more likely to flush other
pages from cache.

Parallel scans and large I/Os
The demand on buffer pools can become higher with parallel queries. With
serial queries operating on the same pools, it is safe to assume that queries
are issued at slightly different times and that the queries are in different
stages of execution: some are accessing pages are already in cache, and
others are waiting on I/O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue a large number of prefetch requests simultaneously.

Hash-based table scans

Hash-based table scans on allpages-locked tables have multiple worker
processes that all access the same page chain. Each worker process checks
the page ID of each page in the table, but examines only the rows on those
pages where page ID matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes also need pages from that allocation unit, the scans
will either find that the pages they need are already in I/O or already in
cache. As the first scan to complete enters the next unit, the process is
repeated.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 143

As long as one worker process in the family performing a hash-based scan
does not become stalled (waiting for a lock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than a serial process does, they change the status of the pages
from unused to used more quickly.

Partition-based scans

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different allocation units. On partitioned tables on multiple
devices, the per-server and per-engine I/O limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker
processes. If a table with 4 partitions is being scanned by 4 worker
processes, each worker process attempts to prefetch all the pages in its first
allocation unit. For the performance of this single query, the most
desirable outcome is that the size and limits on the 16K pool are
sufficiently large to allow 124 (31*4) asynchronous prefetch requests, so
all of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

Special settings for asynchronous prefetch limits
You may want to change asynchronous prefetch configuration temporarily
for specific purposes, including:

• Recovery

• dbcc operations that use asynchronous prefetch

Special settings for asynchronous prefetch limits

144 Adaptive Server Enterprise

Setting limits for recovery
During recovery, Adaptive Server uses only the 2K pool of the default data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, edit the configuration file to do one or both of the
following:

• Increase the size of the 2K pool in the default data cache by reducing
the size of other pools in the cache

• Increase the prefetch limit for the 2K pool

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery completes,
without restarting Adaptive Server. The recovery process allows users to
log in to the server as soon as recovery of the master database is complete.
Databases are recovered one at a time and users can begin using a
particular database as soon as it is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc
If you are performing database consistency checking when other activity
on the server is low, configuring high asynchronous prefetch limits on the
pools used by dbcc can speed consistency checking.

dbcc checkalloc can use special internal 16K buffers if there is no 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to 0 for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

CHAPTER 6 Tuning Asynchronous Prefetch

Performance and Tuning Series: Basics 145

Maintenance activities for high prefetch performance
Page chains for all pages-locked tables and the leaf levels of indexes
develop kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the original rows in a table have been
modified, determine if kinked page chains are reducing the effectiveness
of asynchronous prefetch. If you suspect that page chain kinks are
reducing asynchronous prefetch performance, you may need to re-create
indexes or reload tables to reduce kinks.

Eliminating kinks in heap tables
For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by deletions that remove all rows from a page. These
pages may be reused when additional space is allocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the data in
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

Eliminating kinks in clustered index tables
For clustered indexes, page splits and page deallocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-allocation page linkages. Use fillfactor for clustered indexes where
you expect growth, to reduce the number of kinks resulting from data
modifications.

Eliminating kinks in nonclustered indexes
If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch

146 Adaptive Server Enterprise

Performance monitoring and asynchronous prefetch
The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous I/O. In addition, statistics io reports the number of times that
a search for a page in cache was found by the asynchronous prefetch
without holding the cache spinlock.

See Chapter 1, Using the set statistics Commands” of the Performance and
Tuning Series: Improving Performance with Statistical Analysis.

The sp_sysmon report contains information on asynchronous prefetch in
both the “Data Cache Management” section and the “Disk I/O
Management” section.

If you use sp_sysmon to evaluate asynchronous prefetch performance, you
may see improvements in other performance areas, such as:

• Much higher cache hit ratios in the pools where asynchronous
prefetch is effective.

• A corresponding reduction in context switches due to cache misses,
with voluntary yields increasing.

• A possible reduction in lock contention. Tasks keep pages locked
during the time it takes for perform I/O for the next page needed by
the query. If this time is reduced because asynchronous prefetch
increases cache hits, locks are held for a shorter time.

See Performance and Tuning Series: Monitoring Adaptive Server with
sp_sysmon.

Performance and Tuning Series: Basics 147

Numerics
4K memory pool, transaction log and 116

A
access

memory and disk speeds 85
Adaptive Server

column size 10
number of groups 11
number of logins 11
number of users 11

affinity
CPU 40, 51
engine example 72

aging
data cache 97
procedure cache 90

algorithm
guidelines 57

allocating memory 89
allocation

dynamic allocation 88
ALS

log writer 46
user log cache 44
when to use 45

application design
DSS and OLTP 102
network packet size and 25
procedure cache sizing 92
SMP servers 53

application execution precedence 62, 82–84
environment analysis 60
scheduling and 71
system procedures 67

application queues. See application execution
precedence

architecture
multithreaded 31

asynchronous log service 43
asynchronous prefetch 129, 140

dbcc and 133, 144
during recovery 132
fragmentation and 137
hash-based scans and 142
large I/O and 140
look-ahead set 130
maintenance for 145
MRU replacement strategy and 142
nonclustered indexes and 133
page chain fragmentation and 137
page chain kinks and 138, 145
parallel query processing and 142
partition-based scans and 143
performance monitoring 146
pool limits and 136
recovery and 144
sequential scans and 132
tuning goals 139

@@pack_received global variable 25
@@pack_sent global variable 25
@@packet_errors global variable 25
attributes

execution classes 64
auditing

performance effects 125
queue, size of 127

B
backups

network activity from 27
planning 5

base priority 64
bcp (bulk copy utility)

large I/O for 109

Index

Index

148 Adaptive Server Enterprise

benchmark tests 61
binding

caches 102, 121
tempdb 103
transaction logs 103

C
cache hit ratio

cache replacement policy and 113
data cache 100
procedure cache 92

cache replacement policy 111
defined 111
indexes 112
lookup tables 112
strategy 111
transaction logs 112

cache, procedure
cache hit ratio 92
errors 91
query plans in 90
size report 91
sizing 92

caches, data 97–123
cache hit ratio 100
data modification and 99
guidelines for named 112
hot spots bound to 102
I/O configuration 109
large I/O and 107
named 101–121
page aging in 97
pools in 109
spinlocks on 103
strategies chosen by optimizer 110
tempdb bound to own 103
transaction log bound to own 103

checkpoint process 98
housekeeper task and 47

client
connections 31
packet size specification 25
task 32

client/server architecture 20

clustered indexes
asynchronous prefetch and scans 132
scans and asynchronous prefetch 132

column size 10
commands for configuration 140
compiled objects 91

data cache size and 92
concurrency

SMP environment 53
configuration (server)

housekeeper task 47
I/O 107
memory 86
named data caches 101
network packet size 23

connections
client 31

contention
data cache 114
disk I/O 124
SMP servers and 53
spinlock 114

covering nonclustered indexes
asynchronous prefetch and 132
configuring I/O size for 119

CPU
affinity 51

cpu grace time configuration parameter
CPU yields and 38

CPU usage
housekeeper task and 46
monitoring 48
sp_monitor system procedure 49

cpuaffinity (dbcc tune parameter) 51

D
data caches 97–123

cache hit ratio 100
data modification and 99
guidelines for named 112
hot spots bound to 102
large I/O and 107
named 101–121
page aging in 97

Index

Performance and Tuning Series: Basics 149

sizing 104–120
spinlocks on 103
strategies chosen by optimizer 110
tempdb bound to own 103
transaction log bound to own 103

data modification
data caches and 99
recovery interval and 123

databases
See also database design

dbcc (database consistency checker)
asynchronous prefetch and 133
configuring asynchronous prefetch for 144
large I/O for 109

dbcc tune
cpuaffinity 52

decision-support system (DSS) applications
execution preference 83
named data caches for 102
network packet size for 23

default settings
audit queue size 127
auditing 126

devices
using separate 53

dirty pages
checkpoint process and 98
wash area and 97

disk I/O 42
performing 42

disk i/o structures configuration parameter
asynchronous prefetch and 136

DSS applications
 See decision-support systems

dynamic memory allocation 88

E
EC

attributes 64
engine affinity, task 64, 66

example 69
engine resources

distribution 55
results analysis and tuning 61

engines 31
CPU affinity 51
defined 31

environment analysis 60
and planning 59
I/O-intensive and CPU-intensive execution objects

60
intrusive and unintrusive 59

error logs
procedure cache size in 91

error messages
packet 25
procedure cache 91

execution 42
attributes 62
mixed workload precedence 83
precedence and users 84
ranking applications for 62
stored procedure precedence 84
system procedures for 67

execution class 63
attributes 64
predefined 63
user-defined 63

execution objects 63
behavior 59
performance hierarchy 62
scope 74

execution precedence
among applications 68
scheduling and 71

expressions, maximum length 11

F
fragmentation, data

effects on asynchronous prefetch 137
page chain 137

free writes 46

G
groups, number of for 12.5 11

Index

150 Adaptive Server Enterprise

H
hardware

network 26
ports 29

hash-based scans
asynchronous prefetch and 142

header information
packet 20

high priority users 84
hot spots 84

binding caches to 102
housekeeper free write percent configuration parameter

47
housekeeper task 46–48

recovery time and 125

I
I/O

asynchronous prefetch 129, 146
buffer pools and 102
CPU and 49
disk 42
memory and 85
named caches and 102

indexes
cache replacement policy for 112
SMP environment and multiple 53

information (sp_sysmon)
CPU usage 49

L
large I/O

asynchronous prefetch and 140
named data caches and 107

levels
tuning 4–8

lightweight process 33
listeners, network 29
locking 14
log I/O size

matching 109
tuning 106

using large 117
logical process manager 62
logins

number of for 12.5 11
look-ahead set 130

dbcc and 133
during recovery 132
nonclustered indexes and 133
sequential scans and 132

lookup tables, cache replacement policy for 112

M
max async i/os per engine configuration parameter

asynchronous prefetch and 136
max async i/os per server configuration parameter

asynchronous prefetch and 136
memory

how to allocate 89
I/O and 85
named data caches and 101
network packets and 24
performance and 85–127
shared 40

messages
See also errors

mixed workload execution priorities 83
model, SMP process 39
monitoring

CPU usage 48
data cache performance 100
network activity 25
performance 4

MRU replacement strategy
asynchronous prefetch and 142

multiple
network listeners 29

multitasking 35
multithreading 31

N
network packets

global variables 25

Index

Performance and Tuning Series: Basics 151

sp_monitor system procedure 25, 49
networks 17

hardware for 26
multiple listeners 29
performance and 17–30
ports 29
reducing traffic on 26
server based techniques 26

nonclustered indexes
asynchronous prefetch and 133

normal forms 13
number (quantity of)

packet errors 25
processes 34

number of groups 11
number of logins 11
number of users 11

O
online transaction processing (OLTP)

execution preference assignments 83
named data caches for 102
network packet size for 23

optimizer
cache strategies and 110

overhead
network packets and 24
pool configuration 121
single process 33

P
@@pack_received global variable 25
@@pack_sent global variable 25
packet size 23
@@packet_errors global variable 25
packets

default 24
network 20
number 24
size specification 25

page chain kinks
asynchronous prefetch and 138, 145

clustered indexes and 145
defined 138
heap tables and 145
nonclustered indexes and 145

pages, index
aging in data cache 97

pages, OAM (object allocation map)
aging in data cache 97

parallel query processing
asynchronous prefetch and 142

partition-based scans
asynchronous prefetch and 143

performance 1
analysis 12
cache hit ratio 100
designing 2
networks 17
problems 17
techniques 18

pools, data cache
large I/Os and 107
overhead 121

ports, multiple 29
precedence

rule (execution hierarchy) 74
precedence rule, execution hierarchy 74
predefined execution class 63
prefetch

asynchronous 129–146
priority 64

application 62
precedence rule 74
run queues 72
task 63

procedure cache
cache hit ratio 92
errors 91
query plans in 90
size report 91
sizing 92

procedure cache sizing configuration parameter 89
process model 39
processes (server tasks) 35

identifier (PID) 34
lightweight 33
number of 34

Index

152 Adaptive Server Enterprise

overhead 33
run queue 35

Q
query plans

procedure cache storage 90
unused and procedure cache 91

query processing
large I/O for 109

queues
run 42
scheduling and 36
sleep 36

R
reads

named data caches and 122
recompilation

cache binding and 121
recovery

asynchronous prefetch and 132
configuring asynchronous prefetch for 144
housekeeper task and 47

recovery interval in minutes configuration parameter 98,
123

relaxed LRU replacement policy
indexes 112
lookup tables 112
transaction logs 112

replacement policy. See cache replacement policy
replication

network activity from 27
tuning levels and 4

reports
procedure cache size 91

response time
definition of 1
other users affecting 27

run queue 34, 35, 42

S
scheduling, Server

tasks 36
scope rule 74, 75
select into command

large I/O for 109
sequential prefetch 107
servers

other tools 26
scheduler 38
uniprocessor and SMP 53

single CPU 34
single-process overhead 33
size

I/O 107
procedure cache 91, 92
stored procedure 93
triggers 93
views 93

sleep queue 36
SMP (symmetric multiprocessing) systems

application design in 53
architecture 39
disk management in 53
named data caches for 104
temporary tables and 54

sp_addengine system procedure 70
sp_addexeclass system procedure 69
sp_bindexeclass system procedure 63
sp_logiosize system procedure 117
sp_monitor system procedure 49

network packets 25
speed (server)

memory compared to disk 85
spinlocks

contention 114
data caches and 103

steps
problem analysis 12

stored procedures
hot spots and 84
maximum length 11
procedure cache and 90
size estimation 93

subprocesses 35
switching context 35

Index

Performance and Tuning Series: Basics 153

sybsecurity database
audit queue and 125

symmetric multi processing system. See SMP 40
sysprocedures table

query plans in 90

T
table scans

asynchronous prefetch and 132
Tabular Data Stream (TDS) protocol 20
task level tuning

algorithm 55
tasks

client 32
execution 42
queued 36
scheduling 36

TDS. See Tabular Data Stream
tempdb database

named caches and 103
in SMP environment 54

temporary tables
SMP systems 54

testing
data cache performance 100

throughput 2
time interval

recovery 124
since sp_monitor last run 49

time slice 64
configuration parameter 38

time slice configuration parameter
CPU yields and 38

tools
packet monitoring with sp_monitor 25

transaction length 54
transaction logs

cache replacement policy for 112
log I/O size and 116
named cache binding 103

triggers
procedure cache and 91
size estimation 93

tuning

Adaptive Server layer 5
application layer 4
asynchronous prefetch 139
database layer 4
definition of 3
devices layer 6
hardware layer 7
levels 4–8
network layer 7
operating system layer 8
recovery interval 124

two-phase commit
network activity from 27

U
uniprocessor system 34
update statistics command

large I/O for 109
user connections

network packets and 24
user log cache

in ALS 44
user log cache (ULC)

log size and 116
user-defined execution class 63
users

assigning execution priority 84
users, number of for 12.5 11

V
variables, maximum length 11
views

size estimation 93

W
wash area 97

configuring 120
worker processes 32
write operations

free 46

Index

154 Adaptive Server Enterprise

housekeeper process and 48

Y
yields, CPU

cpu grace time configuration parameter 38
time slice configuration parameter 38
yield points 38

	Performance and Tuning Series: Basics
	CHAPTER 1 Introduction to the Basics
	Good performance
	Response time
	Throughput
	Designing for performance

	Tuning performance
	Tuning levels
	Application layer
	Database layer
	Adaptive Server layer
	Devices layer
	Network layer
	Hardware layer
	Operating system layer

	Identifying system limits
	Threads, thread pools, engines and CPUs
	Varying logical page sizes
	Number of columns and column size
	Maximum length of expressions, variables, and stored procedure arguments
	Number of logins
	Performance implications for limits

	Size of kernel resource memory
	Analyzing performance
	Normal forms
	Locking
	Special considerations

	CHAPTER 2 Networks and Performance
	Potential performance problems
	Basic questions on network performance
	Techniques summary

	Engine and thread affinity
	Network listeners
	Network listeners in process mode

	How Adaptive Server uses the network
	Configuring the I/O controller
	Dynamically reconfiguring I/O tasks

	Changing network packet sizes
	Large versus default packet sizes for user connections
	Number of packets is important
	Adaptive Server evaluation tools
	Other evaluation tools
	Server-based techniques for reducing network traffic

	Impact of other server activities
	Single user versus multiple users

	Improving network performance
	Isolate heavy network users
	Set tcp no delay on TCP networks
	Configure multiple network listeners

	CHAPTER 3 Using Engines and CPUs
	Background concepts
	How Adaptive Server processes client requests
	Client task implementation

	Single-CPU process model
	Scheduling engines to the CPU
	Scheduling tasks to the engine
	Execution task scheduling
	Scheduling client task processing time
	Maintaining CPU availability during idle time

	Adaptive Server SMP process model
	Scheduling engines to CPUs
	Scheduling Adaptive Server tasks to engines
	Multiple network engines
	Task priorities and run queues
	Processing scenario

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer

	Housekeeper wash task improves CPU utilization
	Side effects of the housekeeper wash task
	Configuring the housekeeper wash task
	Changing the percentage by which writes can be increased
	Disabling the housekeeper wash task
	Allowing the housekeeper wash task to work continuously

	Measuring CPU usage
	Single-CPU machines
	Using sp_monitor to measure CPU usage
	Using sp_sysmon to measure CPU usage
	Operating system commands and CPU usage

	Determining when to configure additional engines
	Taking engines offline

	Enabling engine-to-CPU affinity
	Multiprocessor application design guidelines

	CHAPTER 4 Distributing Engine Resources
	Successfully distributing resources
	Environment analysis and planning
	Analyzing the environment
	Phase 1 - execution object behavior
	Phase 2 - the entire environment

	Performing benchmark tests
	Setting goals
	Results analysis and tuning

	Managing preferred access to resources
	Types of execution classes
	Execution class attributes
	Base priority
	Setting the task priority

	Task-to-engine affinity
	Engine group affinity when switching modes

	Setting execution class attributes
	Assigning execution classes
	Scheduling service tasks
	Creating user-defined execution class task affinity
	How execution class bindings affect scheduling
	Execution class bindings
	Engine affinity can affect scheduling in process mode

	Setting attributes for a session only
	Getting information about execution classes

	Determining precedence and scope
	Multiple execution objects and ECs
	Precedence rule
	Scope rule

	Resolving a precedence conflict
	Examples: determining precedence

	Example scenario using precedence rules
	Planning
	Configuration
	Execution characteristics

	Considerations for engine resource distribution
	Client applications: OLTP and DSS
	Unintrusive client applications
	I/O-bound client applications
	Critical applications

	Adaptive Server logins: high-priority users
	Stored procedures: “hot spots”

	CHAPTER 5 Memory Use and Performance
	How memory affects performance
	How much memory to configure
	Dynamic reconfiguration
	How memory is allocated
	Large allocation in Adaptive Server

	Caches in Adaptive Server
	Cache sizes and buffer pools

	Procedure cache
	Getting information about the procedure cache size
	Monitoring procedure cache performance

	Procedure cache sizing
	Estimating stored procedure size
	Estimating the procedure cache size for a sort
	Estimating the amount of procedure cache used by create index
	Reducing query processing latency
	Reusing dynamic SQL LWPs across multiple connections

	Statement cache
	Data cache
	Page aging in data cache
	Effect of data cache on retrievals
	Effect of data modifications on the cache
	Data cache performance
	Testing data cache performance
	Cache hit ratio for a single query
	Cache hit ratio information from sp_sysmon

	Configuring the data cache to improve performance
	Commands to configure named data caches
	Tuning named caches
	Cache configuration goals
	Gather data, plan, and then implement
	Evaluating cache needs
	Large I/O and performance
	The optimizer and cache choices
	Choosing the right mix of I/O sizes for a cache

	Reducing spinlock contention with cache partitions
	Cache replacement strategies and policies
	Strategies
	Policies

	Named data cache recommendations
	Sizing caches for special objects, tempdb, and transaction logs
	Examining cache needs for tempdb
	Examining cache needs for transaction logs
	Choosing the I/O size for the transaction log
	Configuring for large log I/O size
	Additional tuning tips for log caches

	Basing data pool sizes on query plans and I/O
	Checking I/O size for queries

	Configuring buffer wash size
	Overhead of pool configuration and binding objects
	Pool configuration overhead
	Cache binding overhead

	Maintaining data cache performance for large I/O
	Diagnosing excessive I/O counts
	Using sp_sysmon to check large I/O performance

	Speed of recovery
	Tuning the recovery interval
	Effects of the housekeeper wash task on recovery time

	Auditing and performance
	Sizing the audit queue
	Auditing performance guidelines

	Text and image pages

	CHAPTER 6 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation

	Tuning goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16K pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans

	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	Index

