SYBASE

Company

Performance and Tuning Series:
Basics

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC20020-01-1570-01
LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

CHAPTER 1 INtroduction t0 the BASICS ...uuiiiiiiiiiiiiiiiiiiecee e 1
GOOd PEMOIMANCEceeeiiiiiiieie et a e e e e e e e e e anees 1
RESPONSE TIME ...uvviiieei ittt aa e 1
TRrOUGNPUL ... 2
Designing for performanceccoocuvvvveiiiiiniiiiiieee e 2
TUNING PEIfOIMANCEviiiiiiiiiiiiiie e 3
TUNING [EVEIS ... 4
Identifying system lImitscccouveiiieiiini e 9
Threads, thread pools, engines and CPUScccoocvviveeeeennn. 9
Varying logical page SiZeS.........cccuvviviieiiiiiiiiiiee e 10
Number of columns and column Sizeccccooceeeiiiieeeiiieen, 10
Maximum length of expressions, variables, and stored procedure
ANQUIMENES ...ttt e e e e ee e e e e eeeeaas 11
NUMDBEr Of [0QINS ..evviiiieiice e 11
Performance implications for limitS.............c.cccccvveiieeesiiciiinnen. 11
Size of kernel resource MEMOTY.........cvveeeiiiiiiiieeeee e siiiieee e e e e e seanes 12
Analyzing performancCeueeviieiiiiiii e 12
NOIMAl FOMMIS ...t 13
LOCKING «etttiiie et 14
Special CoNSIAErationsSoocvviiiiieeeiiiiiiee e 14
CHAPTER 2 Networks and PerformancCe.......cccccoviiiiiiiiiiiiiiieeeee e 17
Potential performance problems ..o, 17
Basic questions on network performanceccccccevvviiinneen. 18
TechnNIQUES SUMMEAIYuuviiiiieeeiiiiiiiiiee e e e e e e e e e siarreeeees 18
Engine and thread affinityccccceeiviiiiiii e, 19
NEtWOIK lISLENEIS ..ottt 19
How Adaptive Server uses the networkccccccvveeviieiiiiiiinnnnn, 20
Configuring the I/O controllercccvvvveee i 21
Dynamically reconfiguring 1/O taskscccoccvvveerieeeiiiivvnnnnn. 23
Changing network packet Sizescccccceeeeeiiiiiiiieec e 23
Large versus default packet sizes for user connections................. 24
Number of packets is important............cccccevviiiiiieiieenn e, 24
Adaptive Server evaluation t00IS..........ccoovuvviieriieiiiiiiiiieeeeeen 25

Performance and Tuning Series: Basics iii

Contents

Other evaluation to0ISccceeviiiiiiiic e 26
Server-based techniques for reducing network traffic............. 26
Impact of other server activities ..o, 27
Single user versus Multiple USEers........ccccceevvicciiiierieee s, 27
Improving network performance..........ccccvvveeeeeesciiiieee e 28
Isolate heavy NEtWOTrK USEIS.........ccvvvveeeeeeeiiiiiiiiee e 28

Set tcp no delay on TCP networksccoeeevviciviieiieees i, 29
Configure multiple network liStenerscccccvveeveeeeiicivinenn, 29
CHAPTER 3 Using ENgines and CPUSc.coiiiiiiiiiiiiiiiieeeeeeee e 31
Background CONCEPLS......cuveeiiiiiiiieiee ettt 31
How Adaptive Server processes client requests..........ccccee..... 32
Client task implementationcccccooevviiiiee e 33
Single-CPU process MOdeluveeviveiiiiiiiiieiiee i 34
Scheduling engines to the CPUcccccccieiiiiiiiiiiieee e 34
Scheduling tasks to the enginecccccccveev i, 36
Execution task scheduling...........cccocccceiiiiiiiiiiie, 37
Adaptive Server SMP process Modeloccvvvveeeeeiiiiciiieeeneeenn, 39
Scheduling engines to0 CPUS..........ccuvvvieeeeciiiiiiieee e 40
Scheduling Adaptive Server tasks to engines...............ccuue.... 40
Multiple Network eNgiNES.........cccovvuviiieeee e 41
Task priorities and run QUEUESccceeviiiviiieeeeeesiiiiiieeeeeeeenns 41
Processing SCENANOuuevieeeiiiiiiiiieie e e s st e e e e s esiiraeeea e 42
ASYNCNIONOUS 10Qg SEIVICEvvviiiiieiiiiiiiiiiiiee e 43
Understanding the user log cache (ULC) architecture 44
When t0 USE ALSoiiiiiiii et 45
USING e ALS ..ot 45
Housekeeper wash task improves CPU utilization......................... 46
Side effects of the housekeeper wash task...........ccccccovuvnnen. 47
Configuring the housekeeper wash taskcccccceeevienvnneen. a7
Measuring CPU USAQJEcovcuriiiiieeeeiiiiiieee e e e s sestieaee e e e e s anssanees 48
Single-CPU Machingesvvveiiiiiiiiiience e 49
Determining when to configure additional engines.................. 50
Taking engines offlinecccvveevii e 51
Enabling engine-to-CPU affinityccccocciviiiieee e 51
Multiprocessor application design guidelines...........ccccccceevviiiinnenn. 53
CHAPTER 4 Distributing ENgine RESOUICESccuuvviiiiiiiiiiiiiiiiiiiiieiee e 55
Successfully distributing reSOUrCesoovviiivieiiiiiiiiiiie e 55
Environment analysis and planning..........ccccccceeeeniniiiienneenn, 59
Performing benchmark testsccccveveiiiiiiiiiic e, 61
SettiNg QOAIS.....ciiiiiiiiiie e 61
Results analysis and tuning..........ccccvvvveeiieniiiiiiene e, 61

iv Adaptive Server Enterprise

Contents

Managing preferred acCess t0 r€SOUICES........ccevvvvivirerieeeeiiiiiinnnns 62
Types Of eXECULION CIASSESccceeveiiiiiiiiee e 63
Execution class attributes ..o 64
BasSe PrOMILY «.oooviiiiiiiee et 64
Task-to-engine affinitycccccoovvuviiiiiiiiiii e 66
Setting execution class attribUtesS............oocvivviiiei i 67
Assigning execution ClasSescccvvveeeeeiiiiiiiiiieiee e, 68
Scheduling Service tasks.......ccuuvviiieiiiiiiiiiie e 69
Creating user-defined execution class task affinity 69
How execution class bindings affect scheduling 71
Setting attributes for a session onlyccccccoeecvvieeeeeeeviciiineen, 73
Getting information about execution classes................cccuvvee.. 73
Determining precedence and SCOPEccuvvevveeeiieiiiiinereeeessisiniennns 74
Multiple execution objects and ECScccccvvveeeeeeeeiiivinnenn. 74
Resolving a precedence conflict.........cccccceeviiciiiiiniee i, 76
Examples: determining precedenceccovvvvvveevieeesiiiivnnnnn, 77
Example scenario using precedence rulesccccvveeveeeeniniinieenn. 79
PIANNING ©.eiiiiieii e 80
CoNfIQUIALION ..o 81
Execution characteristiCs............covvviiiieiiniie e 81
Considerations for engine resource distribution...........cc.cc.ooecuvveeen. 82
Client applications: OLTP and DSSccccccoovcvvviieeeeeeiieiiinnen, 83
Adaptive Server logins: high-priority USErs........ccccccoecvvvveereenn. 84
Stored procedures: “hot SPOLS”........cccvvvvivieees i 84
CHAPTER 5 Memory Use and Performancecccccccceveeeeeiisvcciviiiiineecee e, 85
How memory affects performancecccccceeeeiiiciiienie e, 85
How much memory to configureccccoccvveiieee e 86
Dynamic reconfigurationccccevveeiiiciiiieee e 88
How memory is allocatedcccoovvviiiiiineiiiiiiiiiiee e, 89
Large allocation in Adaptive Server.........cccooiiieeiieeininiivineenn. 89
Caches in AJaptive SErVer.........cccuviiiiiiiiiiiiiiiie e 89
Cache sizes and buffer pooISccoviiiiiii s 90
Procedure CaCheccooiiii i 90
Getting information about the procedure cache size............... 91
Procedure cache Sizingcccccceviviiiiiiiiii e, 92
Estimating stored procedure Sizecccccceeeviiiiiveerieees i 93
Estimating the procedure cache size for a sort....................... 93
Estimating the amount of procedure cache used by create index
94

Reducing query processing latencycccoeccvvvvevieeesiiiciinnnnn, 95
StatemeNnt CACHEoeiiiiii 96
Data CACNE ... 97
Page aging in data cache...........ccoocvviiiiiiiiiniiiii e, 97

Performance and Tuning Series: Basics v

Contents

CHAPTER 6

Vi

Effect of data cache on retrievals...........cccccvvciiiiiie s 98
Effect of data modifications on the cache..............ccccccoveens 99
Data cache performance.........cccocuvvviieeie i 100
Testing data cache performance...........ccccvvvveeeeeeiiiciiiieeeeeen, 100
Configuring the data cache to improve performance.................... 101
Commands to configure named data caches........................ 103
Tuning NAmMed CACNESccoiiiiiiiiiiie e 104
Cache configuration goals............cccccceeiiiiiiiienie e, 105
Gather data, plan, and then implement............ccccccevveeeeiins 105
Evaluating cache Needsoovvvviiiieiiiiiiiiiiiicee e 107
Large I/O and performancecccvvvevieeiiiiiiieeeiee e 107
Reducing spinlock contention with cache partitions.............. 110
Cache replacement strategies and policies...........ccccccceernnnnns 110
Named data cache recommendationsccccocveeeinieeeeiinneen. 112
Sizing caches for special objects, tempdb, and transaction logs .
114

Basing data pool sizes on query plans and I/O...................... 118
Configuring buffer wash Sizeccccccoviiiiiiieiiiieee e, 120
Overhead of pool configuration and binding objects.............. 121
Maintaining data cache performance for large 1/O............cc......... 122
Diagnosing excessive 1/O CoUNtScoccvvvvivieeeiiiciiineeeenn. 122
Using sp_sysmon to check large I/O performance................ 123
Speed Of FECOVETY ..ccooiiiiiiie e 123
Tuning the recovery interval..........ccccceeeeiviiiiiieee e, 124
Effects of the housekeeper wash task on recovery time....... 125
Auditing and performanceccccco i 125
Sizing the audit QUEUE............vveeiiiiie e 126
Auditing performance guidelines...........ccccvvveeeeeeiiiiciiiieeeeeen, 127
Text and iIMAgE PAGES......ccueiieeeiieiiiiirie e e e e re e e e e e ssarrereee e e 127
Tuning Asynchronous Prefetchccoooicii s 129
How asynchronous prefetch improves performance.................... 129
Improving query performance by prefetching pages............. 130
Prefetching control mechanisms in a multiuser environment 131
Look-ahead set during reCOVEIYcevveeeviiiirieeeeeeesiiiieeenns 132
Look-ahead set during sequential SCanSs..............oovcvvvveeeeennn. 132
Look-ahead set during nonclustered index access............... 133
Look-ahead set during dbcc checks.........cccvevveiiiiiiiiiienienn, 133
Look-ahead set minimum and maximum Sizes 134
When prefetch is automatically disabled............cccccccevviiiiiniennnnnn, 135
FIoOdiNg POOIScceviiiiiiiiiiie e 136

1/O system overloads.........ccccooecvviiiiiee i 136
UNNECESSANY rEAUS ...ceeeiivviiiieieeeeiiiiiiieeeaa e e s ssiiaeee e e e e e ennneaeees 137
Tuning goals for asynchronous prefetch..........ccoccceeeiiiiciinnnnnn, 139

Adaptive Server Enterprise

Contents

Commands for configurationccccccvvivieeeeeiiiciiiiie e 140
Other Adaptive Server performance featuresccccecvvveeeiinnnns 140
LArge 1O oottt 140
Fetch-and-discard (MRU) SCaNSccccceevvviiiiiiiieee i, 142
Parallel scans and large 1/OSccccvviviieeiiiiiiiiiiee s 142
Special settings for asynchronous prefetch limitsc.oo.. 143
Setting liMits for reCoOVEryccvvveviiiiiiii e 144
Setting limits for dDCCcooviiiiiiiiii 144
Maintenance activities for high prefetch performance.................. 145
Eliminating kinks in heap tablescccccccovviiiiieiie i, 145
Eliminating kinks in clustered index tables..................cc........ 145
Eliminating kinks in nonclustered indexes..........cccccccoeevvvee.. 145
Performance monitoring and asynchronous prefetch 146
1T L= PSPPSR 147

Performance and Tuning Series: Basics Vii

Contents

viii Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

Topic Page
Good performance 1
Tuning performance 3

I dentifying system limits 9
Analyzing performance 12

Good performance

Performanceisthe measure of efficiency for an application or for multiple
applications running in the same environment. Performance is usually
measured in response time and throughput.

Response time
Response time is the number of milliseconds, seconds, minutes, hours, or
daysthat asingle task takesto complete. You can improve response times
by:
« Making queries, transactions, and batches more efficient through
query tuning and indexes

» Using faster components (for example, faster client and server
processors, and faster disks and storage).

e Minimizing wait times (for example, by improving network,
physical, and logical lock contention)

In some cases, Adaptive Server® is automatically optimized to reduce

initial response time, that is, the time it takes to return the first row to the

user. Thisis especially useful when a user retrieves several rows with a
query and then uses a front-end tool to browse them slowly.

Performance and Tuning Series: Basics 1

Good performance

Throughput

Throughput refers to the volume of work completed per unit of time. For
example, the amount of work performed by:

e The number of asingle transactions (for example, 100 transactions per
second inserting trades from Wall Street).

» All transactions across the server (for example, 10,000 read transactions
per second plus 1,500 write transactions per second).

e The number of reads performed (for example, the number of specific
queries or reports per hour).

However, when you tune Adaptive Server for improved response times, you
may decrease throughput, and vice versa. For example;

e Addingindexesimprovesperformancefor queriesand updatesand deletes
that use those indexes to avoid more expensive scans. However, you must
maintain indexes during data manipulation language (DML) operations,
which can decrease performance.

e Using synchronous disk writesimproves response timesin asingle
transaction that includes a single user, but synchronous disk writes
degrade multiuser throughput.

Designing for performance

Most performance gains derive from good database design, thorough query
analysis, and appropriate indexing. You can redlize the largest performance
gains by establishing a good database design and working with the Adaptive
Server query optimizer as you develop your applications.

You can also improve performance by analyzing how an application works
with Adaptive Server. For example, aclient may initially send rowswith asize
of 1KB to Adaptive Server and then wait for Adaptive Server to acknowledge
receiving the rows before it sends the next row. You may find that the
performance between the client and Adaptive Server improvesif the client
consolidates or batches the rows it sends to Adaptive Server, greatly
simplifying the process and requiring lessinteraction between Adaptive Server
and the client.

You can also use hardware and network analysis, to locate performance
bottlenecks in your installation.

Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

Tuning performance

Tuning improves performance and decreases contention and resource
consumption. System administrators view:
System tuning — tuning the system as a whole. See Performance and
Tuning Series. Physical Database Tuning.
¢ Query tuning — making queries and transactions faster, and making the
logical and physical database design more efficient. See Performance and
Tuning Series. Query Processing and Abstract Plans.

Use this system model of Adaptive Server and its environment to identify

performance problems at each layer.
Figure 1-1: Adaptive Server system model

-

[0}
Q
Application code =
Open Client E

Request | x ’
- |
Response | £ @ccess ManageD Data :
z cache |

P

A
I
\ Progedure :
cache !
Data tables

@ Indexe ran%aé:tlon ,
an |

LOG

System

A major part of system tuning is reducing contention for system resources. As
the number of usersincreases, contention for resources such as data and
procedure caches, spinlockson system resources, and the CPUs increases. The

probability of logical lock contention also increases.

Performance and Tuning Series: Basics

Tuning performance

Tuning levels

Application layer

Database layer

Adaptive Server and its environment and applications can be broken into
components, or tuning layers, to isolate components of the system for analysis.
In many cases, you must tune two or more layers so that they work optimally
together.

In some cases, removing a resource bottleneck at one layer reveals another
problem area. Moreoptimistically, resolving one problem sometimes alleviates
other problems. For example, if physical 1/0 ratesare high for queries, and you
add more memory to speed responsetimeand increase your cache hit ratio, you
may ease problems with disk contention.

Most performance gains come from query tuning, based on good database
design. At the application layer, these issues are rel evant:

» Decision-support systems (DSS) and online transaction processing
(OLTP) require different performance strategies.

» Transaction design can reduce performance, since long-running
transactions hold locks and reduce access to data.

» Relational integrity requires joins for data modification.

* Indexing to support selects increases the time required to modify data.
» Auditing for security purposes can limit performance.

Options to address these issues include:

» Remote or replicated processing to move decision support off the OLTP
machine

* Stored procedures that reduce compilation time and network usage
* The minimum locking level that meets application needs

Applications share resources at the database layer, including disks, the
transaction log, and data cache.

One database may have 231 (2,147,483,648) logical pages. Theselogical pages
aredivided among devices, up to the limit avail able on each device. Therefore,
the maximum possible size of a database depends on the number and size of
available devices.

Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

“Overhead” is space reserved to the server, and is not available for any user
database. The overhead is calculated by summing the:

Size of the master database, plus

The size of the model database, plus

The size of tempdb, plus

(For Adaptive Server version 12.0 and | ater) the size of sybsystemdb, plus

8KB for the server’s configuration area.

At the database layer, issues that affect overhead include:

Developing a backup and recovery scheme
Distributing data across devices
Running auditing

Efficiently scheduling maintenance activities that can slow performance
and lock users out of tables

Address these issues by:

Adaptive Server layer

Automating log dumps with transaction log thresholds to avoid space
problems

Monitoring space with thresholds in data segments
Adding partitions to speed loading of data and query execution

Distributing objects across devices to avoid disk contention or to take
advantage of /O paralelism

Caching for high availability of critical tables and indexes

At the server layer, there are many shared resources, including the data and
procedure caches, thread pools, locks, and CPUs.

I ssues at the Adaptive Server layer include:

The application types to be supported: OLTP, DSS, or a mix.

The number of usersto be supported —as the number of usersincreases,
contention for resources can shift.

Number of threads in the thread pool.
Network |oads.

Performance and Tuning Series: Basics 5

Tuning performance

Devices layer

* Replication Server® or other distributed processing can be an issue when
the number of users and transaction rate reach high levels.

Address these issues by:

e Tuning memory (the most critical configuration parameter) and other
parameters

» Deciding some processing can take place at the client side

e Configuring cache sizesand 1/0 sizes

» Reorganizing the thread pools

e Adding multiple CPUs

e Scheduling batch jobs and reporting for off-hours

» Reconfiguring certain parameters for shifting workload patterns

e Determining whether DSS and move to another Adaptive Server

The devices layer relates to the disk and controllers that store your data.
Adaptive Server can manage a virtually unlimited number of devices.

Issues at the devices layer include:

» Thedistribution of system databases, user databases, and database logs
across devices

* Whether partitions for parallel query performance or high insert
performance on heap tables are necessary

Address these issues by:

» Using more medium-sized devices and controllers; doing so may provide
better 1/0 throughput than afew large devices

» Distributing databases, tables, and indexes to create even 1/O load across
devices

Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

e Using segmentsand partitionsfor I/O performance on large tablesused in
parallée queries

Note Adaptive Server devices are mapped to operating system files or raw
partitions, and depend on the performance of the underlying physical devices
and disks. Contention can occur at the operating system level: controllers can
be saturated and the disks organized under storage area network logical unit
numbers (SAN LUNS) can be over-worked. When analyzing performance,
bal ance the physical load to properly distribute load over operating system
devices, controller, storage entities, and logical unit numbers.

Network layer

The network layer relates to the network or networks that connect usersto
Adaptive Server.

Virtually all Adaptive Server users access their data via a network.
I ssues at this layer include:

e Theamount of network traffic

* Network bottlenecks

e Network speed

Address these issues by:

» Configuring packet sizesto match application needs

« Configuring subnets

» |solating heavy network uses

e Moving to a higher-capacity network

« Designing applicationsto limit the amount of network traffic required

Hardware layer
The hardware layer concerns the CPUs and memory available.

Issues at the hardware layer include:
e CPU throughput

* Disk access: controllers aswell as disks

Performance and Tuning Series: Basics 7

Tuning performance

e Disk backup

« Memory usage

e Virtual machine configuration: resource allotment and allocation
Address these issues by:

e Adding CPUs to match workload

e Configuring the housekeeper tasks to improve CPU utilization

e Following multiprocessor application design guidelines to reduce
contention

e Configuring multiple data caches

Operating system layer

Ideally, Adaptive Server isthe only major application on a machine, and must
share CPU, memory, and other resources only with the operating system and
other Sybase® software such as Backup Server™.

I ssues the operating system layer include:
» Thefile systems available to Adaptive Server

* Memory management — accurately estimating operating system overhead
and other program memory use

» CPU availability and allocation to Adaptive Server

Address these issues by:

» Considering the network interface

» Choosing between files and raw partitions

* Increasing the memory size

» Moving client operations and batch processing to other machines

» Using multiple CPUs for Adaptive Server

8 Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

ldentifying system limits

The physical limits of the CPU, disk subsystems, and networks impose
performance limits. Latency or bandwidth limitations are imposed by device
driver, controllers, switches, and so on. You can overcome some of theselimits
by adding memory, using faster disk drives, switching to higher bandwidth
networks, and adding CPUs.

Threads, thread pools, engines and CPUs

In process mode, Adaptive Server typically consumesone CPU per configured
engine. In threaded mode, Adaptive Server typically consumes one CPU per
configured engine thread, plus additional CPU for nonengine threads, such as
1/0 handling threads in syb_system_pool.

However, the definition of a CPU is ambiguous in modern systems. What the
operating system reports as a CPU may be a core of a multicore processor or a
subcore thread, where each core supports multiple threads (often called
hyperthreading, SMT, or CMT). For example, a system that has two 4-core
processors with two threads per core, reportsthat it has 16 CPUs. This does not
mean that all 16 CPUs are available for Adaptive Server.

Sybase recommends that you determine how much actual CPU isavailableto
Adaptive Server, and how much CPU power each engine and each nonengine
thread requires. A good estimateisto allow one CPU for the operating system.
In threaded mode, also allow one CPU for 1/O threads.

Based on this recommendation, configure no more than 15 engines on a 16-
CPU system in process mode, and no more than 14 engines in threaded mode
on the same system (in threaded mode, each engine can do more useful work
than in process mode).

When configuring the CPU, consider that:

e Serverswithhigh|/Oloadsmay requirethat you reserve more CPU for 1/0O
threads.

* Not all CPUsare equal,and you may not be able to reserve all subcore
threads. For example, you may need to treat an 8-core, 16-thread system
asif it hasonly 12 CPUs.

* You may be required to reserve CPU for other applications on the host.

Performance and Tuning Series: Basics 9

Identifying system limits

Sybase recommends that you use sp_sysmon to validate your configuration. If
you see a high degree of nonvoluntary context switching, or an engine tick
utilization that is higher than the OS thread utilization, you may have over-
configured Adaptive Server relative to the underlying CPU, which can lead to
asignificant loss of throughput.

Varying logical page sizes

The dataserver binary builds the master device (located in $SYBASE/ASE-

15 0/bin). The dataserver command allows you to create master devices and
databases with logical pages of size 2KB, 4KB, 8KB, or 16KB. Larger logical
pages can provide benefits for some applications:

You can create longer columns and rows than with smaller page sizes,
allowing wider tables.

Depending on the nature of your application, you may improve
performance, since Adaptive Server can access more data each timeiit
reads a page. For example, reading a single 16K page brings 8 times the
amount of datainto cache asreading as a 2K page; reading an 8K page
brings in twice as much data as a 4K page, and so on.

However, when you use larger pages, queries that access only one row in
atable (called point queries) use rows that occupy more memory. For
example, each row you save to memory in a server configured for 2k
logical pages uses 2k, but if the server is configured for 8k logical pages,
each row you save to memory uses 8k.

Analyzeindividual casesto verify whether using logical pageslarger than
2K B is beneficial.

Number of columns and column size
The maximum number of columns you can createin atableis:

Fixed-length columnsin allpages-locked and data-only-locked tables —
1024.

Variable-length columnsin an allpages-locked table — 254.
Variable-length columnsin a data-only-locked table — 1024.

The maximum size of a column depends on:

10

Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

e Whether the table includes variable- or fixed-length columns.

e Thelogica page size of the database. For example, in adatabase with 2K
logical pages, the maximum size of a column in an allpages-locked table
can be aslarge as a single row, about 1962 bytes, less the row format
overheads. Similarly, for a4K page, the maximum size of acolumninan
allpages-locked table can be as large as 4010 bytes, less the row format
overheads.

Maximum length of expressions, variables, and stored procedure
arguments

The maximum size for expressions, variables, and arguments passed to stored
proceduresis 16384 (16K) bytes, for any page sizefor character or binary data.
You can insert variables and literal s up to this maximum size into text columns
without using the writetext command.

Number of logins

Table 1-1 lists the limits for the number of logins, users, and groups for

Adaptive Server.
Table 1-1: Limits for number of logins, users, and groups
Item Version 15.0 limit
Number of logins per server 2147516416
(SUID)
Number of users per database 2146585223
Number of groups per database 1032193

Performance implications for limits

The limits set for Adaptive server mean that the server may haveto handle
large volumes of datafor a single query, DML operation, or command. For
example, if you use a data-only-locked table with a char(2000) column,
Adaptive Server must allocate memory to perform column copying while
scanning the table. Increased memory reguests during the life of a query or
command mean a potential reduction in throughput.

Performance and Tuning Series: Basics 11

Size of kernel resource memory

Size of kernel resource memory

The kernel resource memory is a cache. Adaptive Server reserves the kernel
resource memory as apool from which all thread pools receive their memory.
The maximum size you can allocate to the kernel resource memory is
2147483647 2K logical pages.

Analyzing performance

When you have performance problems, determine the sources of the problems
and your goalsin resolving them.

12

To analyze performance problems:

1

Collect performance datato get baseline measurements. For example, you
might use one or more of the following tools:

» Internally devel oped benchmark testsor industry-standard third-party
tests.

* sp_sysmon, asystem procedure that monitors Adaptive Server
performance and provides statistical output describing the behavior of
your Adaptive Server system.

See Performance and Tuning Series: Monitoring Adaptive Server
with sp_sysmon.

* Monitoring tables, which describe resource utilization and contention
from a server-wide to a user- or object-level perspective.

» Any other appropriate tools.

Analyzethedatato understand the system and any performance problems.
Create and answer alist of questions to analyze your Adaptive Server
environment. The list might include questions such as:

* What are the symptoms of the problem?

* What components of the system model affect the problem?

» Doestheproblem affect all usersor only usersof certain applications?
* Isthe problem intermittent or constant?

Define system requirements and performance goals:

» How often isthis query executed?

Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

Normal forms

e What responsetimeis required?

4 Define the Adaptive Server environment — know the configuration and
limitations at all layers.

5 Anayze application design — examine tables, indexes, and transactions.

6 Formulate ahypothesisabout possible causes of the performance problem
and possible solutions, based on performance data.

7 Test the hypothesis by implementing the solutions from the last step:
e Adjust configuration parameters.
e Redesigntables.
e Add or redistribute memory resources.

8 Usethe same tests used to collect baseline datain step 1 to determine the
effects of tuning. Performance tuning is usually a repetitive process.

If the actions taken based on step 7 do not meet the performance
requirements and goals set in step 3, or if adjustments made in one
area cause new performance problems, repeat this analysis starting
with step 2. You may need to reeval uate system requirements and
performance goals.

9 If testing showsthat your hypothesisis correct, implement the solution in
your development environment.

www.sybase.com includes whitepapersthat discuss additional waysto analyze
performance.

Normalization is an integral part of the relational database design process and
can be employed to reorganize adatabase to minimize and avoid inconsistency
and redundancy.

The different normal forms organizes administrator information so that it
promotes efficient maintenance, storage, and data modification. Normalization
simplifies query and update management, including the security and integrity
of the database. However, normalization usually creates alarger number of
tables which may, in turn, increase the size of the database.

Database designers and administrators must decide on the various techniques
best suited their environment.

Performance and Tuning Series: Basics 13

Analyzing performance

Locking

Adaptive Server locks the tables, data pages, or data rows currently used by
active transactions to protect them. Locking is necessary in a multiuser
environment, since several users may be working with the same data at the
same time.

Locking affects performance when one process holds locks that prevent
another process from accessing data. The process that is blocked by the lock
sleeps until the lock isreleased. Thisis called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have alock on a separate page
or table and each wants to acquire alock on the same page or table held by the
other process. The transaction with the least accumulated CPU timeiskilled
and al of itswork is rolled back.

Understanding the types of locks in Adaptive Server can help you reduce lock
contention and avoid or minimize deadlocks.

The Performance and Tuning Series: Locking and Concurrency Control
discusses the performance implications of locking.

Special considerations

14

When you create a database in Adaptive Server, you can assign its storage to
one or more data storage devices (see Chapter 7, “Initializing Database
Devicesin System Administration Guide: Volume 1). Information about these
devicesis stored in master.dbo.sysdevices. Declare which deviceto usefor the
database, and how much of each device this database uses. A database can
occupy all available space on the device, or other databases can share space on
the device, or any combination of the two. Segments (logical groupings of
storage within a database) allow you to keep some datalogically or physically
separate from other data. For example, to aid in disaster recovery, Sybase
strongly recommends that you physically separate the transaction log from
other data within a database.

Adaptive Server Enterprise

CHAPTER 1 Introduction to the Basics

Logical and physical datagroupings can help your database perform better. For
example, you can reserve part of the database for a data set that you know will
grow much larger over time by assigning this data set, and no other, aparticular
segment. You can also physically separate heavily used indexes from their data
to help prevent disk “thrashing,” which slows down read and write response
times.

Note For Adaptive Server, devices provide alogical map of a database to
physical storage, while segments provide alogical map of database objectsto
devices. To achieve your space alocation goals, it isimportant that you
understand the interplay between these logical layers.

Each database can have up to 32 named segments. Adaptive Server createsand
uses three of these segments:

e system segment— contains most system catal ogs.
e default segment —used if you do not specify one when creating an object.
e logsegment — stores the transaction log.

You can store user tablesin the system segment, but the logsegment isreserved
entirely for the log.

Adaptive Server keeps track of the various pieces of each databasein
master.dbo.sysusages. Each entry in sysusages describes one fragment of a
database. Fragments are a contiguous group of logical pages, all on the same
device, that permit storage for the same group of segments. Fragmentsare also
known as “disk pieces.”

Performance and Tuning Series: Basics 15

Analyzing performance

16

Because of the way Adaptive Server allocates and maintains database space,
these disk fragments are even multiples of 256 logical pages, which is one
allocation unit. When you decide how large to make a device, consider the
number of allocation units that are required, since the device size should be
evenly divisible by the allocation unit size (256 timesthe logical page size). If
it is not, the space at the end of that deviceis wasted, since Adaptive Server
cannot allocate it. For example, if your server uses a 16K page, then one
allocation unitis4MB (16K times 256). If you create a device of 103MB on
that server, the last 3 MB cannot be allocated and are wasted.

Note The master deviceisan exception to this rule. The master deviceisthe
first device you create when you install anew server. Adaptive Server reserves
8K of space at the beginning of the master device for a configuration areathat
isnot part of any database. Take this space into account when you create your
master device. 8K is 0.0078125M B (about .008MB). You will waste the least
space in your master device if, for example, you specify 200.008MB, asits
size, rather than 200MB.

A database cannot be larger than 2,147,483,648 pages. The logical page size
determines the number of bytes: using a 2K page, it is 4 terabytes, on a 16K
page Adaptive Server, it is 32 terabytes.

You can divide the storage for your databases between devicesin any way you
want. The theoretical limit for the number of disk fragments per databaseis
8,388,688. However, the practical limit depends on the Adaptive Server
memory configuration. To use a database, Adaptive Server must hold the
database’s storage description in memory. This includes a description of the
database’s “disk map,” which includes all the disk fragments you have
assigned storage to for the database. In practice, a database’s storage
complexity is limited by the amount of memory configured for Adaptive
Server, and is not normally a problem.

However, databases with disk maps that contain thousands of disk fragments
may pay a penalty in performance. When Adaptive Server needsto read or
write apage, it converts the page’s logical page number to alocation on disk
by looking it up in the disk map. Although thislookup isfast, it doestake time,
and the amount of time gets longer as you add more disk fragmentsto the map.

Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

This chapter discusses the role that networks play in the performance of
applications using Adaptive Server.

Topic Page
Potential performance problems 17
How Adaptive Server uses the network 20
Engine and thread affinity 19
Configuring the I/O controller 21
Changing network packet sizes 23
Impact of other server activities 27
Improving network performance 28

Usually, the system administrator isthefirst to recognize aproblem on the
network or in performance, including such things as

Process response times vary significantly for no apparent reason.
Queriesthat return alarge number of rowstake longer than expected.

Operating system processing slows down during normal Adaptive
Server processing periods.

Adaptive Server processing slows down during certain operating
system processing periods.

A particular client process seemsto slow all other processes.

Potential performance problems

Some of the underlying problems that can be caused by networks are;

Performance and Tuning Series:

Adaptive Server uses network services inefficiently.
The physical limits of the network have been reached.

Processes retrieve unneeded data val ues, which unnecessarily
increase network traffic.

Basics 17

Potential performance problems

» Processes open and close connections too often, increasing network load.

» Processes frequently submit the same SQL transaction, causing excessive
and redundant network traffic.

e Adaptive Server does not have enough network memory.

e Adaptive Server network packet sizes are not big enough to handle the
type of processing needed by certain clients.

Basic questions on network performance

When looking at network-related problems, ask yourself these questions:
* Which processes usually retrieve alarge amount of data?

» Arealarge number of network errors occurring?

* What isthe overall performance of the network?

» What isthe mix of transactions being performed using SQL and stored
procedures?

» Arealarge number of processes using the two-phase commit protocol ?
» Arereplication services being performed on the network?

* How much of the network is being used by the operating system?

Techniques summary

18

Once you have gathered the data, you can take advantage of several techniques
that should improve network performance, including:

e Using small packets for most database activity

e Using larger packet sizes for tasks that perform large data transfers
e Using stored procedures to reduce overall traffic

» Filtering datato avoid large transfers

» Isolating heavy network users from ordinary users

e Using client control mechanisms for special cases

Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

Use sp_sysmon while making network configuration changes to observe the
effects on performance. See Performance and Tuning Series; Monitoring
Adaptive Server with sp_sysmon.

Engine and thread affinity

When configured for threaded mode, Adaptive Server tasks have alimited
affinity to a specific engine.

Network listeners

A network listener is a system task that listens on a given network port for
incoming client connections, and creates one database management system
task for each client connection. Adaptive Server creates one listener task for
each network port on which Adaptive Server listens for incoming client
connection requests. Initially, these ports consist of the master entriesin the
interfacesfile.

Theinitial number of network listener tasks is equal to the number of master
entriesin theinterfaces file. The maximum number of network listeners
(including those created at start-up) is 32. For example, if there are two master
entriesin theinterfacesfile under the server name at startup, you can create 30
more listener tasks.

Each additional listener task that you create consumes resources equal to auser
connection. So, after creating a network listener, Adaptive Server can accept
one less user connection. The number of user connections configuration
parameter includes both the number of network listeners and the number of
additional listener ports.

The number of listener portsis determined at startup by the number of master
entriesin theinterfacesfile.

For more information about the interfaces file, see Chapter 1, “Overview of
System Administration,” in the System Administration Guide: Volume 1.

Performance and Tuning Series: Basics 19

How Adaptive Server uses the network

Network listeners in process mode

In process mode, each Adaptive Server engine is a separate process; therefore,
network listeners run dightly differently than they do in threaded mode, when
Adaptive Server isasingle process.

In process mode:

» Adaptive Server uses one listener task per port. Each listener task
functions as multiple logical listeners by switching from engineto engine,
attempting to balance the load. For example, a 64-engine Adaptive Server
with two master ports has two listener tasks, but these two listener tasks
act as 128 logical listener tasks, so the server has two physical and 128
logical listeners. Starting alistener on engine 3 does not result in Adaptive
Server spawning anew listener task unless the port does not already have
alistener

» A listener task accepts connections on engines on which it is enabled. So
asingle listener task corresponds to many logical listeners.

» Stopping alistener on a specific engine terminates the logical listener for
this engine since the listener task no longer switches to that engine.
Adaptive Server terminatesthelistener task in case thiswasthelast engine
on which it was allowed to operate.

How Adaptive Server uses the network

All client/server communication occurs over a network, by way of packets.
Packets contain aheader and routing information, aswell asthe datathey carry.

Clientsinitiate aconnection to the server. The connection sends client requests
and server responses. Applications can have as many connections open
concurrently as they need to perform the required task.

The protocol used between the client and server is known as the Tabular Data
Stream™ (TDS), which forms the basis of communication for many Sybase
products.

20 Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

Configuring the 1/O controller

Adaptive Server includes I/O controllers and an 1/O controller manager.

The 1/O controller issues, tracks, polls, and completes I/Os. Each Adaptive
Server 1/O type—disk, network, Client-Library, and, for the Cluster Edition,
CIPC—hasits own 1/O controller.

Adaptive Server can include multiple instances of disk or network controllers
(multiple CIPC or Client-Library controllers are not allowed). Each task
represents one controller. For example, configuring three network tasks means
network /O uses three controllers.

Each controller task is allocated a dedicated operating system thread.
Additional tasks mean more CPU resources are dedicated to polling and
completing I/O.

A single 1/O controller per system is usualy sufficient. However, you may
need additional controllers on systemswith very high I/O rates or low single-
thread performance. In this situation, engines may become starved for 1/O, and
throughput decreases.

Usethesp_sysmon “Kernel Utilization” section to determineif additional 1/0
tasks are necessary.

Consider additional 1/0 tasksif:

e The"Thread Utilization (OS %)” for the I/O tasks exceeds the “Engine
Busy Utilization™.

e The"Thread Utilization (OS %)” for the I/O tasks exceeds 50%.

e Thepollsreturning “max events’ in the Controller Activity sectionis
greater than zero.

* The"average events per poll” in the Controller Activity section is greater
than three.

The mode for which you configure Adaptive Server determines how it handles
1/O. In threaded mode—the default—Adaptive Server uses threaded polling
for 1/O; in process mode, Adaptive Server uses a polling scheduler for /0.

In process mode, Adaptive Server assigns each engine its own network,

disk, and Open Client controller. When the scheduler pollsfor I/O, it searches
only theengine'slocal controllers(except for CIPC, for which all enginesshare
asingle controller).

Performance and Tuning Series: Basics 21

Configuring the I/O controller

22

One benefit to process mode polling is that, when you scale the number of
engines, you scale the amount of CPU available to manage 1/Os (that is, more
engines = more CPU). However, you can configure too much CPU to manage
the 1/Os, devoting more time to a higher number of engines than is necessary
to perform the tasks. Another performance implication is that the engine on
which the 1/0 starts must finish the I/O (that is, if atask running on engine 2
issuesadisk 1/0O, that 1/0 must be completed by engine 2, even if other engines
areidle). This means that engines may remain idle even while there are tasks
to perform, and 1/0Os may incur additional latency if the responsible engineis
running a CPU-bound task.

When configured for threaded polling, the controller manager assigns each
controller atask, and thistask is placed into syb_system_pool. Because
syb_system_pool is a dedicated poal, it creates a thread to service each task.
This thread runs the polling and completion routine exclusively for the [/O
controller. Because thisthread is dedicated to performing thistask, thetask can
block waiting for 1/0 completions, reducing the number of system calls and
empty polls.

You can create multiple threads to service each 1/O controller, allowing you to
avoid single-thread saturation problems during which a single thread cannot
keep up with a high rate of 1/Os.

Process-mode polling introduces 1/0 latency when the I/O completes at the
operating system level. However, the engine does not detect 1/0 latency
because the engine is running another task. Threaded-mode polling eliminates
thislatency because the 1/0O thread task processes the completion immediately,
and any 1/O latency is afunction of the device, and is not affected by the CPU
load the query thread execution places on the system.

In threaded mode, the query processor and user tasks need not context switch
for 1/O polling when they go through the scheduler. Threaded polling reduces
the amount of time spent polling as a percentage of total CPU time for all
threads, making Adaptive Server more efficient in CPU consumption.

Use sp_configure with number of disk tasks and number of network taks to
determine the number of tasks dedicated to handling I/O and the thread polling
method the tasks use.

See Chapter 5, “ Setting Configuration Parameters,” in System Administration
Guide, Volume 1.

Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

By default, each I/O task usesathread from syb_system_pool, allowing thetask
to block during the 1/0 polling, reducing overhead from busy polling. During
periods of low 1/0 load, these threads consume little physical CPU time. The
CPU timefor the /O thread increases asthe 1/0 | oad increases, but the amount
of load increase depends on the processor performance and the 1/0
implementation.

Dynamically reconfiguring 1/O tasks

When you increase the number of 1/0 tasks, there may be a slight lag before
Adaptive Server balancestheload across tasks. When you increase the number
of disk 1/0s, Adaptive Server quickly balances the distribution across the
controllers. However, network tasks have an affinity between the connection
and the task, so when you increase the number of network tasks, they are not
rebalanced across the new higher number of tasks. Instead, Adaptive Server
rebalances the load as existing connections disconnect and new connections
are made.

You must restart Adaptive Server to reduce the number of 1/0 tasks.

Changing network packet sizes

Typically, OLTP sends and receiveslarge numbers of packetsthat contain very
little data. A typical insert or update statement may be only 100 or 200 bytes.
A dataretrieval, even onethat joins several tables, may bring back only one or
two rows of data, and still not completely fill a packet. Applications using
stored procedures and cursors also typically send and receive small packets.

Decision-support applications often include large query batches and return
larger result sets.

In both OLTP and DSS environments, there may be special needs, such as
batch data loads or text processing, that can benefit from larger packets.

For most applications, the default network packet size of 2048 works well.
Change the default network packet size to 512 if the application uses only short
queries and receives small result sets.

Chapter 5, “ Setting Configuration Parameters,” in System Administration
Guide: Volume 1 describes how to change these configuration parameters:

Performance and Tuning Series: Basics 23

Changing network packet sizes

e Thedefault network packet size

e Themax network packet size and additional network memory, which provide
additional memory space for large packet connections

Only a system administrator can change these configuration parameters.

Large versus default packet sizes for user connections

Adaptive Server reserves enough space for all configured user connections to
log in at the default packet size. Large network packets cannot use that space.
Connectionsthat use the default network packet size always have three buffers
reserved for the connection.

Connectionsthat request large packet sizes acquire the space for their network
I/O buffers from the additional network memory region. If there is not enough
spacein thisregion to allocate three buffers at the large packet size,
connections use the default packet size instead.

Number of packets is important

Generally, the number of packets being transferred is more important than the
size of the packets. Network performanceincludesthetime needed by the CPU
and operating system to process a network packet. This per-packet overhead
hasthe most effect on performance. Larger packetsreducetheoverall overhead
costs and achieve higher physical throughput, provided that you have enough
data to be sent.

The following big transfer sources may benefit from large packet sizes:
e Bulk copy

e readtext and writetext commands

e select statements with large result sets

» Insertionsthat use larger row sizes

24 Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

Thereis aways a point at which increasing the packet size stops improving
performance, and may, in fact, decrease performance, because the packets are
not alwaysfull. Although there are analytical methods for predicting that point,
it is more common to vary the size experimentally and plot the results. If you
conduct such experimentsover aperiod of timeand avariety of conditions, you
can determine a packet size that works well for many processes. However,
since the packet size can be customized for every connection, you may also
want to conduct specific experiments for specific processes.

Results can vary significantly between applications. You may find that bulk
copy works best at one packet size, while large image data retrievals perform
better at a different packet size.

If testing shows that some applications can achieve better performance with
larger packet sizes, but that most applications send and receive small packets,
clients request the larger packet size.

Adaptive Server evaluation tools

The sp_monitor system procedure reports on packet activity. Thisreport shows
only the packet-related output:

packets received packets sent packet errors

10866 (10580) 19991 (19748) 0(0)

You can also use these global variables:

s @@pack_sent —number of packets sent by Adaptive Server.
e @@pack_received — number of packets received.

s @@packet_errors—number of errors.

These SQL statements show how you can use these counters:

select "before" = @@pack_sent
select * from titles
select "after" = @@pack_sent

Both sp_monitor and the global variablesreport all packet activity for all users
since the last restart of Adaptive Server.

Performance and Tuning Series: Basics 25

Changing network packet sizes

See Chapter 14 “Using Batches and Control-of-Flow Language,” in the
Transact-SQL Users Guide for more information about sp_monitor and these
global variables.

Other evaluation tools

Operating system commands also provide information about packet transfers.
See your operating system documentation.

Server-based techniques for reducing network traffic

Using stored procedures, views, and triggers can reduce network traffic. These
Transact-SQL tools can store large chunks of code on the server so that only
short commands need to be sent across the network.

e Stored procedures— applications that send large batches of Transact-SQL
commands may place less|oad on the network if the SQL is converted to
stored procedures. Views can also help reduce the amount of network
traffic.

You may be able to reduce network overhead by turning off doneinproc
packets.

» Askfor only theinformation you need — applications should request only
the rows and columns they need, filtering as much data as possible at the
server to reduce the number of packetsthat need to be sent. In many cases,
this can a so reduce the disk 1/0 load.

e Largetransfers—simultaneously decrease overall throughput and increase
the average response time. If possible, perform large transfers during off-
hours. If large transfers are common, consider acquiring network
hardware that is suitable for such transfers. Table 2-1 shows the
characteristics of some network types.

26 Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

Table 2-1: Network options
Type Characteristics
Token ring Token ring hardware responds better than Ethernet hardware
during periods of heavy use.
Fiber optic Fiber-optic hardware provides very high bandwidth, but is
usually too expensive to use throughout an entire network.

Separate Use a separate network to handle traffic between the highest
network volume workstations and Adaptive Server.

* Network overload — network managers rarely detect problems before
database users start complaining to their system administrator.

Be prepared to provide local network managers with predicted or actual
network requirements when they are considering adding resources. Also,
monitor the network and try to anticipate problems that result from newly
added equipment or application requirements.

Impact of other server activities

You should be aware of theimpact of other server activity and maintenance on
network activity, especially:

e Two-phase commit protocol
* Replication processing
e Backup processing

These activities, especialy replication processing and the two-phase commit
protocol, involve network communication. Systemsthat make extensive use of
these activities may see network-related problems. Accordingly, try to perform
these activities only as necessary. Try to restrict backup activity to timeswhen
other network activity islow.

Single user versus multiple users

You must take the presence of other usersinto consideration before trying to
solve a database problem, especially if those users are using the same network.

Performance and Tuning Series: Basics 27

Improving network performance

Since most networks can transfer only one packet at atime, many users may be
delayed while alarge transfer isin progress. Such a delay may cause locks to
be held longer, which causes even more delays.

When responsetimeisabnormally high, and normal testsindicate no problem,
it could be due to other users on the same network. In such cases, ask the user
when the process was being run, if the operating system was generally
sluggish, if other users were doing large transfers, and so on.

In general, consider multiuser impacts, such as the delay caused by along
transaction, before digging more deeply into the database system to solve an
abnormal response time problem.

Improving network performance

There are several ways you may be able to improve network performance.

Isolate heavy network users

I solate heavy network users from ordinary network users by placing them on a
separate network, as shown in Figure 2-1.

28 Adaptive Server Enterprise

CHAPTER 2 Networks and Performance

Figure 2-1: Isolating heavy network users

Before
N r] .
A B Single
network . .
@ @) Client accessing
| |)/ card < Server A
Clients accessing
< ServerB
After
AN B | Two .
networ . .
Client accessing
@ @ y's cards <4 Server A
| |
Clients accessing
<% Server B

Inthe “Before” diagram, clients accessing two different Adaptive Servers use
one network card. Clients accessing Servers A and B must compete over the
network and past the network card.

Inthe“After” diagram, clients accessing Server A use one network card and
clients accessing Server B use another.

Set tcp no delay on TCP networks
By default, tcp no delay is set to on, meaning that packet batching is disabled.

When tcp no delay is set to off, the network batches packets, briefly delaying
the dispatch of partial packets over the network. While thisimproves network
performance in terminal -emul ation environments, it can slow performance for
Adaptive Server applications that send and receive small batches. To enable
packet batching, set tcp no delay to O, or off.

Configure multiple network listeners

Usetwo (or more) portslistening for asingle Adaptive Server. Direct front-end
software to any configured network port by setting the DSQUERY
environment variable.

Using multiple network ports spreads out the network load and eliminates or
reduces network bottlenecks, thus increasing Adaptive Server throughput.

Performance and Tuning Series: Basics 29

Improving network performance

Seethe Adaptive Server Configuration Guidefor your platform for information
on configuring multiple network listeners.

30 Adaptive Server Enterprise

CHAPTER 3

Using Engines and CPUs

The Adaptive Server multithreaded architecture is designed for high
performance in both uniprocessor and multiprocessor systems. This
chapter describes how Adaptive Server uses engines and CPUs to fulfill
client requests and manage internal operations. It introduces Adaptive
Server’s use of CPU resources, describes the Adaptive Server symmetric
multiprocessing (SMP) model, and illustrates task scheduling with a
processing scenario.

This chapter also gives guidelines for multiprocessor application design
and describes how to measure and tune CPU- and engine-rel ated features.

Topic Page
Background concepts 31
Single-CPU process model 34
Adaptive Server SMP process model 39
Asynchronous log service 43
Housekeeper wash task improves CPU utilization 46
Measuring CPU usage 48
Enabling engine-to-CPU affinity 51
Multiprocessor application design guidelines 53

Background concepts

A relational database management system (RDBMS) must be able to
respond to the requests of many concurrent users. An RDBMS must also
maintain its transaction state while ensuring al transactional properties.
Adaptive Server is based on a multithreaded, single-process architecture
that manages thousands of client connections and multiple concurrent
client requests without overburdening the operating system.

In a system with multiple CPUs, enhance performance by configuring
Adaptive Server to use multiple Adaptive Server engines. In threaded
kernel mode (the default), each engine is an operating system thread. In
process mode, each engineis a separate operating system process.

Performance and Tuning Series: Basics 31

Background concepts

All engines are peers that communicate through shared memory asthey act
upon common user databases and internal structures such as data caches and
lock chains. Adaptive Server engines service client requests. They perform all
database functions, including searching data caches, issuing disk 1/0O read and
write requests, requesting and releasing locks, updating, and logging.

Adaptive Server managesthe way in which CPU resources are shared between
the enginesthat process client requests. It also manages system services (such
as database locking, disk I/0O, and network 1/0O) that impact processing
resources.

How Adaptive Server processes client requests

32

Adaptive Server creates anew client task for every new connection. Thisis
how it fulfills a client request:

1 Theclient program establishes a network socket connection to Adaptive
Server.

2 Adaptive Server assigns atask from the pool of tasks, which are alocated
at start-up time. The task isidentified by the Adaptive Server process
identifier, or spid, which istracked in the sysprocesses system table.

3 Adaptive Server transfers the context of the client request, including
information such as permissions and the current database, to the task.

4 Adaptive Server parses, optimizes, and compiles the request.

If parallel query execution is enabled, Adaptive Server allocates subtasks
to help perform the parallel query execution. The subtasks are called
worker processes, which are discussed in the Performance & Tuning
Series: Query Processing and Abstract Plans.

6 Adaptive Server executes the task. If the query was executed in parallel,
the task merges the results of the subtasks.

7 Thetask returnsthe results to the client, using TDS packets.

For each new user connection, Adaptive Server allocates a private data storage
area, a dedicated stack, and other internal data structures.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

Adaptive Server uses the stack to keep track of each client task’s state during
processing, and uses synchronization mechanisms such as queueing, locking,
semaphores, and spinlocks to ensure that only one task at atime has accessto
any common, modifiable data structures. These mechanisms are necessary
because Adaptive Server processes multiple queries concurrently. Without
these mechanisms, if two or more queries were to access the same data, data
integrity would be compromised.

The data structures require minimal memory resources and minimal system
resources for context-switching overhead. Some of these data structures are
connection-oriented and contain static information about the client.

Other data structures are command-oriented. For example, when aclient sends
acommand to Adaptive Server, the executable query planis stored in an
internal data structure.

Client task implementation

Adaptive Server client tasks are implemented as subprocesses, or “lightweight
processes,” instead of operating system processes. Subprocesses use only a
small fraction of the resources that processes use.

Multiple processes executing concurrently require more memory and CPU
time than multiple subprocesses. Processes also require operating system
resources to switch context from one process to the next.

Using subprocesses eliminates most of the overhead of paging, context
switching, locking, and other operating system functions associated with aone-
process-per-connection architecture. Subprocesses require no operating
system resources after they are launched, and they can share many system
resources and structures.

Figure 3-1 illustrates the difference in system resources required by client
connectionsimplemented as processes and client connectionsimplemented as
subprocesses. Subprocesses exist and operate within a single instance of the
executing program process and its address space in shared memory.

Performance and Tuning Series: Basics 33

Single-CPU process model

Figure 3-1: Process versus subprocess architecture

Process-based Client Subprocess-based
client implementation client implementation

Server process

Server process

Shared
memory

Server process

To give Adaptive Server the maximum amount of processing power, run only
essential non-Adaptive Server processes on the database machine.

Single-CPU process model

Inasingle-CPU system, Adaptive Server runsasasingle process, sharing CPU
time with other processes, as scheduled by the operating system.

Scheduling engines to the CPU

Figure 3-2 shows arun queue for asingle-CPU environment in which process
8 (proc 8) isrunning on the CPU and processes 6, 1, 7, and 4 are in the
operating system run queue waiting for CPU time. Process 7 is an Adaptive
Server process; the others can be any operating system process.

34 Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

Figure 3-2: Processes queued for a single CPU

CPU

Operating system

Run queue

In a multitasking environment, multiple processes or subprocesses execute

concurrently, alternately sharing CPU resources.

Figure 3-3 shows three subprocesses in a multitasking environment. The
subprocesses share a single CPU by switching onto and off the engine over

time.

At any onetime, only one processis executing. The other processes sleep in

various stages of progress.

Figure 3-3: Multithreaded processing

i@ Subpi)cess 1 Subprocess 2 Subprocess 3

Time

v

«l---l*--l

ﬁ-

«l-----

Y
Legend:

Executing subprocess Context switching
using CPU,solid line.

 — —_—

Performance and Tuning Series: Basics

Sleeping/waiting

In run queue, waiting
to execute or resources

----’

35

Single-CPU process model

Scheduling tasks to the engine

36

Figure 3-4 showsinternally processing for tasks (or worker processes) queued
for an Adaptive Server enginein asingle-CPU environment. Adaptive Server,
not the operating system, dynamically schedules client tasks from the run
gueue onto the engine. When the engine finishes processing one task, it
executes the task at the beginning of the run queue.

When atask begins running, the engine continues processing it until one of the
following events occurs:

e Thetask completes, returns data (if any), metadata and statuses to the
client. When thetask completes, it appearsin the sp_sysmon section Task
Context Switches Due To aSNetwork Packet Received.

e If an Adaptive Server engine does not find any runnable tasks, it can either
relinquish the CPU to the operating system or continue to look for atask
to run by looping for the number of times set by runnable process search
count.

Adaptive Server engines attempt to remain scheduled for the processor as
long as possible. The engine runs until it is emptied by the operating
system. However, if thereisinsufficient work available, the engine checks
I/0 and runnabl e tasks.

e Thetask runsfor a configurable period of time and reaches ayield point
Voluntary Yieldsinsp_sysmon). Thetask relinquishestheengine, and
the next process in the queue starts to run. “ Scheduling client task
processing time” on page 38 discusses in more detail how this works.

When you execute sp_who on asingle-CPU system with multiple active tasks,
sp_who output shows only a single task as “running”—it is the sp_who task
itself. All other tasksin the run queue have the status “runnable.” The sp_who
output also shows the cause for any deeping tasks.

Figure 3-4 also showsthe sleep queue with two sleeping tasks, aswell as other
objects in shared memory. Tasks are put to sleep while they wait for resources
or for the results of adisk 1/0O operation.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

Figure 3-4: Tasks queue up for the Adaptive Server engine

Operating- system

Adaptive Server Engine

D

RUNNING

Run queue

Sleep queue Adaptive Server

— H-=
i I
—Eaa NS
&= it
a0 L5
(R Ht=
e Procedure
—t cache
;ﬂja = Eﬂ—ﬁl
= H-EEh
Data cache &

Index cache

%
PSP

Shared memory
Disk 1/0
Lock sleep
Pending 1/Os
IE == 'E'_El_EIl
Hi=m= 55 ==

Adaptive Server structures

I I I

Execution task scheduling

The scheduler manages processing time for client tasks and internal
housekeeping.

Performance and Tuning Series: Basics

37

Single-CPU process model

Scheduling client task processing time

38

The time slice configuration parameter prevents executing tasks from
monopolizing enginesduring execution. The scheduler allows atask to execute
on an Adaptive Server engine for amaximum amount of time equal to the time
slice and cpu grace time values combined, using default timesfor time slice (100
milliseconds, 1/10 of a second, or equivaent to one clock tick) and cpu grace
time (500 clock ticks, or 50 seconds).

Adaptive Server scheduler does not force tasks off an Adaptive Server engine.
Tasks voluntarily relinquish the engine at ayield point, when the task does not
hold avital resource such as a spinlock.

Each time the task comesto ayield point, it checksto seeif time slice has been
exceeded. If it has not, the task continues to execute. If execution time does
exceed time slice, the task voluntarily relinquishes the engine. However, if the
task does not yield even after exceeding time slice, Adaptive Server terminates
the task after it exceeds cpu grace time. The most common cause for atask not
yielding isasystem call that does not return in atimely manner.

For more information about using sp_sysmon to determine how many times
tasks yield voluntarily, see “ Scheduling tasks to the engine” on page 36.

To increase the amount of time that CPU-intensive applications run on an
engine before yielding, assign execution attributes to specific logins,
applications, or stored procedures.

If the task has to relinquish the engine before fulfilling the client request, the

task goesto the end of the run queue, unless there are no other tasksin the run
gueue. If no tasks arein the queue when an executing task reachesayield point
during grace time, Adaptive Server grants the task another processing interval.

Normally, tasks relinquish the engine at yield points prior to completion of the
cpu grace time interval. It is possible for atask not to encounter ayield point
and to exceed the time slice interval. If time slice is set too low, an engine may
spend too much time switching between tasks, which tends to increase
response time. If time slice is set too high, CPU-intensive processes may
monopolize the CPU, which can increase response time for short tasks. If your
applications encounter timeslice errors, adjusting the valuefor time slice hasno
affect, but adjusting the value for cpu grace time does. However, research the
cause of the time slice error before adjusting the value for cpu grace time. You
may need to contact Sybase Technical Support.

When the cpu grace time ends, Adaptive Server terminates the task with atime
diceerror. If you receive atime dice error, try increasing the time up to four
times the current time for cpu grace time. If the problem persists, call Sybase
Technical Support.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

See Chapter 4, “Distributing Engine Resources.”

Maintaining CPU availability during idle time

Theidle timout parameter for create thread pool and alter thread pool determines
the amount of time, in microseconds, athread in this pool looksfor work before
going to sleep. You can set idle timout for engine pools only, not for RTC pools.
See “ Setting Configuration Parameters’ in the System Administration Guide:
\olume 1.

Thedefault for idle timout is 100 microseconds. However, Adaptive Server may
not precisely honor the timeout period, especially at lower values (lower than
100).

Onceyou set the value for idle timeout, Adaptive Server registersthevaluein
the configuration file under the Thread Pool heading:

[Thread Pool:new pool]
number of threads = 1
idle timeout = 500

Setting idle timeout to -1 preventsthe engines from yielding. At this setting, the
engines consume 100% of the CPU.

Note Theidle timeout parameter replaces the runnable process search count
configuration parameter used in versions of Adaptive Server earlier than 15.7.
idle timeout is available for threaded mode only. However, runnable process
search count remains available for process mode.

Adaptive Server SMP process model

Adaptive Server’'s symmetric multiprocessing (SMP) implementation extends
the performance benefits of Adaptive Server’s multithreaded architecture to
multiprocessor systems. In the SMP environment, multiple CPUs cooperate to
perform work faster than a single processor can.

SMP isintended for machines with the following features:
e A symmetric multiprocessing operating system

e Shared memory over acommon bus

Performance and Tuning Series: Basics 39

Adaptive Server SMP process model

e Twoto 1024 processors (128 processors in process mode)

* Very high throughput

Scheduling engines to CPUs

The symmetric aspect of SMPisalack of affinity between processes and
CPUs—processesare not attached to aspecific CPU. Without CPU affinity, the
operating system schedules engines to CPUs in the same way as it schedules
non-Adaptive Server processes to CPUs. Scheduling any processto a
processor, including Adaptive Server engines, is done by the operating system,
which can, at any time, preempt an Adaptive Server engine to run an arbitrary
task. If an Adaptive Server engine does not find any runnabletasks, it can either
relinguish the CPU to the operating system or continue to look for atask to run
according to the amount of time specified by the idle timeout parameter.

In some situtations,you may improve performace by forcing an association
between Adaptive Server threads and a specific CPU or set of CPUs. For
example, grouping enginesinto the fewest number of physical sockets
improves the hit rate on the L2 and L3 caches, improving performance.

In configurations where asingle socket has sufficient parallelism for al engine
and |/0 threads (such as an 8-core socket running a4-engine Adaptive Server),
consider binding the Adaptive Server engine to asingle socket with dbcc tune
or with your operating system (generally recommended). Consult your
operating system documentation for instructions on binding threads or
processes to CPUs.

Scheduling Adaptive Server tasks to engines

40

Scheduling Adaptive Server tasksto enginesinthe SMPenvironment issimilar
to scheduling tasks in the single-CPU environment, as described in
“Scheduling tasks to the engine” on page 36. However, in the SMP
environment:

e Each engine has arun queue. Tasks have soft affinities to engines. When
atask runson an engine, it creates an affinity to theengine. If atask yields
the engine and then is queued again, it tends to be queued on the same
engine's run queue.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

< Any engine can process the tasks in the global run queue, unlesslogical
process management has been used to assign the task to aparticular engine
or set of engines.

« When an engine looks for atask to execute, it first looksin the local and
global run queues, then in run queues for other engines, where it stealsa
task with appropriate properties.:

Multiple network engines

In process mode, when a user logs in to Adaptive Server, the task is assigned
in round-robin fashion to one of the enginesis serving as the task’s network
engine. This engine establishes the packet size, language, character set, and
other login settings. All network 1/0 for atask is managed by its network
engine until the task logs out.

In threaded mode, any engine can issue network 1/O for any task. Network
polling is performed by the dedicated network tasksin the syb_system_pool.

Task priorities and run queues

Adaptive Server may increase the priority of sometasks, especialy if they are
holding an important resource or have had to wait for a resource. In addition,
logical process management allows you to assign prioritiesto logins,
procedures, or applications using sp_bindexeclass and related system
procedures.

See Chapter 4, “Distributing Engine Resources,” for more information on
performance tuning and task priorities.

Each task has a priority assigned to it; the priority can change over thelife of
the task. When an engine looks for atask to run, it first scans its own high-
priority queue and then the high-priority global run queue.

If there are no high-priority tasks, it looks for tasks at medium priority, then at
low priority. If it finds no tasks to run on its own run queues or the global run
gueues, it can examine the run queues for another engine, and steal atask from
another engine. Thiscombination of priorities, local and global queues, and the
ability to move tasks between engines when workload is uneven provides |oad
balancing.

Tasksintheglobal or enginerun queuesareall in arunnable state. Output from
sp_who liststasks as “runnable” when the task isin any run queue.

Performance and Tuning Series: Basics 41

Adaptive Server SMP process model

Processing scenario

42

These steps describe how atask is scheduled in the SMP environment. The
execution cycle for single-processor systemsisvery similar. A single-
processor system handles task switching, putting tasksto sleep whilethey wait
for disk or network 1/O, and checking queues in the same way.

1 Inprocess mode, when aconnection logsin to Adaptive Server, it is
assigned to atask that manages its network 1/0.

The task assigns the connection to an engine or engine group and
establishes packet size, language, character set, and other login settings. A
task sleeps while waiting for the client to send a request.

2 Checking for client requests.

In process mode, another task checks for incoming client requests once
every clock tick.

In threaded mode, Adaptive Server wakes a dedicated thread as soon as a
new request arrives.

When this second task finds acommand (or query) from the connection, it
wakes up the first task and placesit on the end of its run queue.

3 Fulfilling a client request.

When atask becomes first in the queue, the query processor parses,
compiles, and begins executing the steps defined in the task’s query plan.

4 Performing disk 1/0.

If the task needs to access a page |ocked by another user, it is put to sleep
until the page is available. After such await, thetask’s priority is
increased, and it is placed in the global run queue so that any engine can
run it.

5 Performing network 1/O.

In threaded mode, because thereisno network affinity, tasksreturn results
from any engine.

In process mode, if atask is executing on its network engine, the results
arereturned. If the task is executing on an engine other than its network
engine, the executing engine adds the task to the network engine's high-
priority queue.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

Asynchronous log service

Asynchronous log service, or ALS, enables scalability in Adaptive Server,
providing higher throughput in logging subsystems for high-end symmetric
multiprocessor systems.

For every database on which AL S is enabled, one engine predominantly
performslog /O, so ALSisbeneficia only when the contention on the log
semaphore is higher than the processing power of one engine.

You cannot use AL Sif you have fewer than four engines.

Enabling ALS Use sp_dboption to enable, disable, or configure ALS

sp_dboption database name, "async log service", "true|false"

checkpoint (which writesall dirty pagesto the database device) isautomatically
executed as part of sp_dboption.

This example enables AL S for mydb:

sp_dboption "mydb", "async log service", "true"
Disabling ALS Beforeyou disable AL S, make sure there are no active usersin the database. If
there are, you receive an error message.
Thisexample disablesALS:
sp_dboption "mydb", "async log service", "false"
Displaying ALS Use sp_helpdb to see whether ALS is enabled in a specified database:
sp_helpdb "mydb"
name db_size owner dbid created durability
status
mydb 3.0 MB sa 5 July 09, 2010 full

select into/bulkcopy/pllsort, trunc log on chkpt, async log service

device fragments size usage

created free kbytes

master 2.0 MB data only
Jul 2 2010 1:59PM 320

log disk 1.0 MB log only
Jul 2 2010 1:59PM not applicable

Performance and Tuning Series: Basics 43

Asynchronous log service

log only free kbytes = 1018

device segment
log disk logsegment
master default
master system

Understanding the user log cache (ULC) architecture

Adaptive Server’slogging architecture features the user log cache, or ULC, by
which each task ownsits own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever a transaction
generates alog record. When the transaction commits or aborts, or the user log
cacheisfull, the user log cacheis flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushing the UL Cisthefirst part of acommit or abort operation. It requiresthe
following steps, each of which can cause delay or increase contention:

1 Obtaining alock on thelast log page.
2 Allocating new log pages if necessary.
3 Copying thelog records from the ULC to the log cache.

The processesin steps 2 and 3 requirealock to be held onthelast 1og page,
which preventsany other tasksfrom writing to thelog cache or performing
commit or abort operations.

4 Flushing the log cache to disk.

Step 4 requires repeated scanning of thelog cache to issue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which thelog is bound. Under alarge transaction load, contention on this
spinlock can be significant.

When to use ALS

You can enable AL S on any database that has at |east one of the following
performance issues, as long as your systems runs four or more online engines:

44 Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

« Heavy contention on the last log page — sp_sysmon output in the Task
Management Report section shows a significantly high value. This
example shows alog page under contention:

)

Task Management per sec per xact count % of total

Log Semaphore Contention 58.0 0.3 34801 73.1

« Heavy contention on the cache manager spinlock for the log cache —
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:

°

Task Management per sec per xact count % of total

Spinlock Contention n/a n/a n/a 40.0

« Underutilized bandwidth in the log device.

Note Use AL S only when you identify a single database with high transaction
reguirements, since setting AL S for multiple databases may cause unexpected
variations in throughput and response times. If you want to configure ALS on
multiple databases, first check that your throughput and response times are
satisfactory.

Using the ALS

Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

e Theuser log cache (ULC) flusher

e Thelog writer.

Performance and Tuning Series: Basics 45

Housekeeper wash task improves CPU utilization

ULC flusher

Log writer

The ULC flusher is a system task thread dedicated to flushing the user 1og
cache of atask into the general log cache. When atask isready to commit, the
user enters a commit request into the flusher queue. Each entry has ahandle,
by which the ULC flusher can access the UL C of the task that queued the
request. The UL C flusher task continuously monitors the flusher queue,
removing regquests from the queue and servicing them by flushing ULC pages
into the log cache.

When the UL C flusher has finished flushing the UL C pagesinto the log cache,
it queues the task request into awakeup queue. Thelog writer patrolsthe dirty
buffer chainin the log cache, issuing awrite command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are al written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Housekeeper wash task improves CPU utilization

46

The housekeeper wash task (which sp_who reportsasaxk wasH) typically runs
as alow-priority task, and runs only during idle cycles when Adaptive Server
has no user tasksto process. While running, the wash task automatically writes
dirty buffersto disk (called free writes) and performs other maintenance tasks.
These writes result in improved CPU utilization and a decreased need for
buffer washing during transaction processing. They also reduce the number
and duration of checkpoint spikes— timeswhen the checkpoint process causes
ashort, sharp rise in disk writes.

By default, the housekeeper garbage collection operates at the priority level of
an ordinary user and cleans up data that was logically deleted and resets the
rows so the tables have space again. If Adaptive Server is configured for
threaded mode, use sp_bindexeclass or sp_setpsexe to set the housekeeper task
to ahigher priority level.

See Chapter 11, “ Diagnosing System Problems,” in the System Administration
Guide: Volume 1 for more information on the housekeeper tasks and for
information about resetting their priorities.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

Side effects of the housekeeper wash task

If the housekeeper wash task can flush all active buffer poolsin al configured
caches, it wakes up the checkpoint task.

The checkpoint task determines whether it can checkpoint the database. If it
can, it writes a checkpoint log record indicating that all dirty pages have been
written to disk. The additional checkpoints that occur as aresult of the
housekeeper wash task may improve recovery speed for the database.

In applicationsthat repeatedly update the same database page, the housekeeper
wash may initiate some database writes that are not necessary. Although these
writes occur only during the server’sidle cycles, they may be unacceptable on
systems with overloaded disks.

Configuring the housekeeper wash task

System administrators can use the housekeeper free write percent configuration
parameter to control the side effects of the housekeeper wash task. This
parameter specifies the maximum percentage by which the housekeeper wash
task can increase database writes. Valid values are 0 — 100.

By default, housekeeper free write percent is set to 1, which allows the
housekeeper wash task to continue to wash buffers as long as database writes
do not increase by more than 1 percent. On most systems, work done by the
housekeeper wash task at the default setting results in improved performance
and recovery speed. Setting housekeeper free write percent too high can
degrade performance. If you want to increase the value, increase by only 1 or
2 percent each time.

A dbcc tune option, deviochar, controlsthe size of batches that the housekeeper
can write to disk at onetime.

See “Increasing the Housekeeper Batch Limit” in Chapter 2, “Monitoring
Performancewith sp_sysmon,” in Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon.

Changing the percentage by which writes can be increased

Use sp_configure to change the percentage by which database writes can be
increased as aresult of the housekeeper wash task:

sp_configure "housekeeper free write percent", value

Performance and Tuning Series: Basics 47

Measuring CPU usage

For example, to stop the housekeeper wash task from working when the
frequency of database writes reaches 2 percent above normal enter:

sp_configure "housekeeper free write percent", 2

Disabling the housekeeper wash task

Disable the housekeeper wash task to establish amore controlled environment
in which primarily user tasks are running. To disable the housekeeper wash
task, set the value of the housekeeper free write percent parameter to O:

sp_configure "housekeeper free write percent", 0

Thereisno configuration parameter to shut down the housekeeper chorestask,
although you can set sp_setpsexe to lower its priority.

Allowing the housekeeper wash task to work continuously

To allow the housekeeper wash task to work whenever there are idle CPU
cycles, regardless of the percentage of additional database writes, set the value
of the housekeeper free write percent parameter to 100:

sp_configure "housekeeper free write percent", 100

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

Measuring CPU usage

This section describes how to measure CPU usage on machines with asingle
processor and on those with multiple processors.

Single-CPU machines

There is no correspondence between your operating system’s reports on CPU
usage and the Adaptive Server internal “CPU busy” information.

48 Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

A multithreaded database engine in process mode is not allowed to block on
1/0. While asynchronous disk /O is being performed, Adaptive Server
services other user tasks that are waiting to be processed. If there are no tasks
to perform, Adaptive Server entersabusy-wait |oop, waiting for compl etion of
the asynchronous disk 1/0. Thislow-priority busy-wait |oop can result in high
CPU usage, but because of itslow priority, it is generally harmless.

Adaptive Servesin threaded mode can block on 1/O.

Note Inprocess mode, itisnormal for an Adaptive Server to exhibit high CPU
usage while performing an 1/0O-bound task.

Using sp_monitor to measure CPU usage

Use sp_monitor to see the percentage of time Adaptive Server uses the CPU
during an elapsed timeinterval:

last_run current_run seconds

"""" oul 25 2009 5:25PM gul 28 2009 5:31BM 360
cpu_busy io busy idle

ss3i(ase)-sox 0(0)-0% 178302(0)-0%
packets received packets sent packet errors
s76s0(3599) coss3(7252) 0(0)
total read total write total errors connections

150284 (14085) 160023 (6356) o 178 (1)

For more information about sp_monitor, see the Adaptive Server Enterprise
Reference Manual.

Using sp_sysmon to measure CPU usage

sp_sysmon provides more detailed information than sp_monitor. The “Kernel
Utilization” section of the sp_sysmon report displays how busy the engine was
during the sample run. The percentage in this output is based on the time that
CPU was allocated to Adaptive Server; it isnot apercentage of thetotal sample
interval.

Performance and Tuning Series: Basics 49

Measuring CPU usage

Thecpu vields by Engine section displaysinformation about how often
the engine yielded to the operating system during the interval.

See Performance and Tuning Series. Monitoring Adaptive Server with
Sp_sysmon.

Operating system commands and CPU usage

Operating system commands for displaying CPU usage are documented in the
Adaptive Server installation and configuration guides.

If your operating system tools show that CPU usage is more than 85 percent
most of the time, consider using amulti-CPU environment or offloading some
work to another Adaptive Server.

Determining when to configure additional engines

50

When you are determining whether to add additional engines, consider:
e Load on existing engines

» Contention for resources, such as locks on tables, disks, and cache
spinlocks

* Responsetime

If theload on existing enginesis morethan 80 percent, adding an engine should
improve response time, unless contention for resourcesishigh or the additional
engine causes contention.

Before configuring more engines, use sp_sysmon to establish abaseline. Look
at the sp_sysmon output for the following sectionsin Monitoring Performance
with sp_sysmon in Performance and Tuning Series: Monitoring Adaptive
Server with sp_sysmon. In particular, study the lines or sectionsin the output
that may reveal points of contention:

e Logica Lock Contention
* AddressLock Contention
e ULC Semaphore Requests
* Log Semaphore Requests
» Page Splits

e Lock Summary

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

e Spinlock Contention
e |/OsDelayed by

After increasing the number of engines, run sp_sysmon again under similar
load conditions, and check the “ Engine Busy Utilization” section in the report
and the possible points of contention listed above.

Taking engines offline

If you are running Adaptive Server in process mode, use sp_engine to take
engines online and offline. Adaptive Server does not accept sp_engine in
threaded mode. See the sp_engine entry in the Adaptive Server Enterprise
Reference Manual: Procedures.

Enabling engine-to-CPU affinity

By default, there is no affinity between CPUs and enginesin Adaptive Server.
You may see dlight performance gains in high-throughput environments by
establishing affinity of enginesto CPUs.

Not all operating systems support CPU affinity; on such systems, the dbcc tune
command is silently ignored. You must reissue dbcc tune each time Adaptive
Server isrestarted. Each time CPU affinity isturned on or off, Adaptive Server
prints a message in the error log indicating the engine and CPU numbers
affected:

Engine 1, cpu affinity set to cpu 4.
Engine 1, cpu affinity removed.

The syntax is:
dbcc tune(cpuaffinity, start_cpu [, on | off])

start_cpu specifies the CPU to which engine O is to be bound. Engine 1 is
bound to the CPU numbered (start_cpu + 1). The formulafor determining the
binding for enginenis:

)

((start _cpu + n) % number of cpus
Valid CPU numbers are 0 — the number of CPUs minus 1.

On afour-CPU machine (with CPUs numbered 0 — 3) and a four-engine
Adaptive Server, this command:

Performance and Tuning Series: Basics 51

Enabling engine-to-CPU affinity

52

dbcc tune (cpuaffinity, 2, "on")

Gives thisresult:

Engine CPU
0

(the start_cpu number specified)

2
1 3
2 0
3 1

On the same machine, with athree-engine Adaptive Server, the same command
causes the following affinity:

Engine CPU
0 2
1 3
2 0

CPU 1 isnot used by Adaptive Server.

To disable CPU affinity, use -1 instead of start_cpu, and specify off for the
setting:

dbcc tune (cpuaffinity, -1, "off")

Enable CPU affinity without changing the value of start_cpu by using -1 and
on for the setting:

dbcc tune (cpuaffinity, -1, "on")
The default valuefor start_cpuis1if CPU affinity has not been previously set.
To specify anew value of start_cpu without changing the on/off setting, use:
dbcc tune (cpuaffinity, start cpu)

If CPU affinity is currently enabled, and the new start_cpu differs from its
previous value, Adaptive Server changes the affinity for each engine.

If CPU affinity is off, Adaptive Server notes the new start_cpu value, and the
new affinity takes effect the next time CPU affinity is turned on.

To see the current value and whether affinity is enabled, use:
dbcc tune (cpuaffinity, -1)

Thiscommand prints only current settingsto the error log and does not change
the affinity or the settings.

Adaptive Server Enterprise

CHAPTER 3 Using Engines and CPUs

Multiprocessor application design guidelines

If you are moving applications from a single-CPU environment to an SMP
environment, this section discusses some issues to consider.

Increased throughput on multiprocessor Adaptive Servers makesit morelikely
that multiple processes may try to access a data page simultaneously. Adhere
to the principles of good database design to avoid contention. These are some
of the application design considerations that are especially important in an
SMP environment.

Multiple indexes — the increased throughput of SMP may result in
increased lock contention when allpages-locked tables with multiple
indexes are updated. Allow no more than two or threeindexes on any table
that is updated often.

For information about the effects of index maintenance on performance,
see Performance and Tuning Series: Monitoring Adaptive Server with

Sp_sysmon.

Managing disks — the additional processing power of SMP may increase
demandson thedisks. Spread dataacross multiple devicesfor heavily used
databases.

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

Adjusting the fillfactor for create index commands — because of the added
throughput with multiple processors, setting alower fillfactor may
temporarily reduce contention for the data and index pages.

Transaction length — transactions that include many statements or take a
long timeto run may resultinincreased lock contention. Keep transactions
as short as possible, and avoid holding locks—especially exclusive or
update locks—while waiting for user interaction. Ensure that the
underlying storage provides both adequate bandwidth and sufficiently low
latencies.

Temporary tables— do not cause contention, because they are associated
with individual users and are not shared. However, if multiple user
processes usetempdb for temporary objects, there may be some contention
on the system tables in tempdb. Use multiple temporary databases or
Adaptive Server version 15.0.2 and later to alleviate contention on
tempdb’s system tables.

See Chapter 7, “tempdb Performance Issues,” in Performance and Tuning
Series: Physical Database Tuning.

Performance and Tuning Series: Basics 53

Multiprocessor application design guidelines

54 Adaptive Server Enterprise

CHAPTER 4

Distributing Engine Resources

This chapter explains how to assign execution attributes, how Adaptive
Server interprets combinations of execution attributes, and how to predict
the impact of various execution attribute assignments on the system.

Understanding how Adaptive Server uses CPU resourcesisaprerequisite
for understanding the discussion about distributing engine resources. For
more information, see Chapter 3, “Using Engines and CPUs.”

Topic Page
Successfully distributing resources 55
Managing preferred access to resources 62
Types of execution classes 63
Execution class attributes 64
Setting execution class attributes 67
Determining precedence and scope 74
Example scenario using precedence rules 79
Considerations for engine resource distribution 82

Successfully distributing resources

The interactions among execution objects in an Adaptive Server
environment are complex. Furthermore, every environment is different;
each involvesits own mix of client applications, logins, and stored
procedures, and is characterized by the interdependencies between these
entities.

Implementing execution precedence without having studied the
environment and the possible implications can lead to unexpected (and
negative) results.

Performance and Tuning Series: Basics 55

Successfully distributing resources

56

For example, say you have identified acritical execution object and you want
to raiseits execution attributes to improve performance, either permanently or
on aper-session basis. If the execution object accesses the same set of tablesas
one or more other execution objects, raising its execution priority can lead to
performance degradation due to lock contention among tasks at different
priority levels.

Because of the unique nature of every Adaptive Server environment, Sybase
cannot provide a detailed procedure for assigning execution precedence that
makes sense for all systems. However, this section provides guidelines,
procedures to try, and a discussion of common issues.

Figure 4-1 shows the stepsinvolved in assigning execution attributes.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Figure 4-1: Process for assighing execution precedence

Analyze the environment, perform
benchmark tests, and set goals.

Understand concepts well enough
to predict possible consequences.

Assign performance attributes to
establish an execution hierarchy.

Does it
makes sense to
continue using resources

for tuning
?

Monitor and
analyze results.
Goals
accomplished

Yes

performance
satisfactory

1 Study the Adaptive Server environment:

« Anayzethe behavior of all execution objects and categorize them as
much as possible.

Performance and Tuning Series: Basics 57

Successfully distributing resources

58

e Understand interdependencies and interactions between execution
objects.

e Perform benchmark tests to use as a baseline for comparison after
establishing precedence.

» Think about how to distribute processing in a multiprocessor
environment.

» ldentify thecritical execution objects for which you want to enhance
performance.

» ldentify the noncritical execution objects that can afford decreased
performance.

e Establish a set of quantifiable performance goals for the execution
objectsidentified in the last two items.

See “Environment analysis and planning” on page 59.
Understand the effects of using execution classes:

» Understand the basic concepts associated with execution class
assignments.

» Decide whether to create one or more user defined-execution classes.

* Understand the implications of different class level assignments—
how do assignments affect the environment in terms of performance
gains, losses, and interdependencies?

Seen.
Assign execution classes and any independent engine affinity attributes.

After making execution precedence assignments, analyze the running
Adaptive Server environment:

* Runthe benchmark tests you used in step 1 and compare the results.

» If theresults are not what you expect, take a closer look at the
interactions between execution objects, as outlined in step 1.

» Investigate dependencies that you might have missed.
See “Results analysis and tuning” on page 61.

Fine-tune the results by repeating steps 3 and 4 as many times as
necessary.

Monitor the environment over time.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Environment analysis and planning

Environment analysis and planning involves:
e Anayzing the environment
e Performing benchmark teststo use as a baseline

e Setting performance goals

Analyzing the environment

Phase 1 — execution

Study and understand how Adaptive Server objects interact with your
environment so that you can make decisions about how to achieve the
performance goals you set.

Analysisinvolves these two phases:
e Phase 1 —analyze the behavior of each execution object.

e Phase 2 — use the results from the object analysis to make predictions
about interactions between execution objects within the Adaptive Server
system.

First, make alist containing every execution object that can runin the
environment. Then, classify each execution object and its characteristics.
Categorize the execution objects with respect to each other in terms of
importance. For each, decide which of the following applies:

« Itisahighly critical execution object needing enhanced response time,
* Itisan execution object of medium importance, or

e Itisanoncritical execution object that can afford slower response time.

object behavior

Typical classifications include intrusive/unintrusive, 1/O-intensive, and CPU-
intensive. For example, identify each object asintrusive or unintrusive, 1/0
intensive or not, and CPU intensive or not. You will probably need to identify
additional issues specific to the environment to gain useful insight.

Two or more execution objects running on the same Adaptive Server are
intrusive when they use or access acommon set of resources.

Performance and Tuning Series: Basics 59

Successfully distributing resources

Intrusive applications

Effect of Assigning high-execution attributes to intrusive applications might degrade performance.
assigning

attributes

Example Consider asituation in which anoncritical application is ready to release aresource, but

becomes blocked when a highly-critical application starts executing. If a second critical
application needs to use the blocked resource, then execution of this second critical
application is also blocked

If the applications in the Adaptive Server environment use different resources,
they are unintrusive.

Unintrusive applications

Effect of You can expect enhanced performance when you assign preferred execution attributes to
assigning an unintrusive application.

attributes

Example Simultaneous distinct operations on tables in different databases are unintrusive. Two

operations are also unintrusive if oneis compute bound and the other is 1/0 bound.

I/O-intensive and CPU-intensive execution objects

When an execution object is1/O intensive, it might help to give it the EC1
predefined execution class attributes (see“ Types of execution classes’ on page
63). An object performing I/O does not normally use an entire time period, and
yields the CPU before waiting for 1/0 to complete.

By giving preference to 1/0-bound Adaptive Server tasks, Adaptive Server
ensures that these tasks are runnable as soon as the I/O is finished. By letting
the 1/0 take place first, the CPU should be able to accommodate both 1/0-
bound and compute-bound types of applications and logins.

Phase 2 —the entire environment

60

Follow up on phase 1, in which you identified the behavior of the execution
objects, by thinking about how applications interact.

Typically, asingle application behaves differently at different times; that is, it
might be alternately intrusive and unintrusive, 1/0 bound, and CPU intensive.
This makesit difficult to predict how applications will interact, but you can
look for trends.

Organize the results of the analysis so that you understand as much as possible
about each execution object with respect to the others. For example, you might
create atable that identifies the objects and their behavior trends.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Using Adaptive Server monitoring tools (for example, the monitoring tables)
is one of the best ways to understand how execution objects affect the
environment. See Performance and Tuning Series: Monitoring Tables.

Performing benchmark tests

Perform benchmark tests before assigning any execution attributes so that you
have the results to use as a baseline after making adjustments.

Setting goals

Toolsthat can help you understand system and application behavior include:

Monitoring tables— provide both a system-wide view or performance and
details about objects and users. See Performance and Tuning Series:
Monitoring Tables.

sp_sysmon —isasystem procedure that monitors system performance for
a specified time interval, then prints an ASCII text-based report. See
Performance and Tuning Series. Monitoring Adaptive Server with

Sp_sysmon.

Establish a set of quantifiable performance goas. These should be specific
numbers based on the benchmark results and your expectations for improving
performance. Use these goals to direct you in assigning execution attributes.

Results analysis and tuning

After you configure the execution hierarchy, analyze the running Adaptive
Server environment:

1 Run the same benchmark tests you ran before assigning the execution

attributes, and compare the results to the baseline results.

Use Adaptive Server Monitor or sp_sysmon to ensure there is good
distribution across all the available engines. Check the “Kernel
Utilization”. See Performance and Tuning Series: Monitoring Adaptive
Server with sp_sysmon.

Performance and Tuning Series: Basics 61

Managing preferred access to resources

3 If theresults are not what you expected, take a closer ook at the
interactions between execution objects. Look for inappropriate
assumptions and dependencies that you might have missed.

4 Make adjustments to performance attributes.

Fine-tune the results by repeating these steps as many times as necessary
to monitor your environment over time.

Managing preferred access to resources

62

M ost performance tuning techniques give you control at either the system level
or at the specific query level. Adaptive Server also gives you control over the
relative performance of simultaneously running tasks.

Unless you have superfluous resources, the need for control at thetask level is
greater in parallel execution environments because there is more competition
for limited resources.

Use system procedures to assign execution attributes that indicate which tasks
should be given preferred access to resources. The logical process manager
uses the execution attributes when it assigns priorities to tasks and tasks to
engines.

In effect, assigning execution attributes lets you suggest to Adaptive Server
how to distribute engine resources between client applications, logins, and
stored procedures in a mixed workload environment.

Each client application or login can initiate many Adaptive Server tasks. In a
single-application environment, you can distribute resources at the login and
task levels to enhance performance for chosen connections or sessions. In a
multiple application environment, you can distribute resources to improve
performance for selected applications and for chosen connections or sessions.

Warning! Assign execution attributes with caution.

Arbitrary changesin the execution attributes of one client application, login, or
stored procedure can adversely affect the performance of others.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Types of execution classes

An execution classisaspecific combination of execution attributesthat specify
values for task priority and task-to-thread pool affinity (or task-to-engine
affinity in process mode). You can bind an execution class to one or more
execution objects, which are client applications, logins, service classes, and
stored procedures.

There are two types of execution classes—predefined and user-defined.
Adaptive Server provides three predefined execution classes:

e EC1-—hasthe most preferred attributes.
e EC2-—hasaverage values of attributes.
e EC3-—hasnonpreferred values of attributes.

Objectsassociated with EC2 are given average preferencefor engine resources.
If an execution object is associated with EC1, Adaptive Server considersit to
be critical and triesto give it preferred access to resources.

Any execution object associated with EC3 is considered to be least critical and
does not receive resources until the execution objects associated with EC1 and
EC2 are executed. By default, execution objects have EC2 attributes.

To change an execution object’s execution class from the EC2 default, use
sp_bindexeclass, described in “ Assigning execution classes’ on page 68.

Create user-defined execution classes by combining the execution attributesin
ways that best reflect your site's needs. Reasons for doing thisinclude:

e EC1,EC2, and EC3 do not accommodate all combinationsof attributesthat
might be useful.

« Associating execution objects with a particular group of engines would
improve performance.

» Binding service tasks like the housekeeper task, LICENSE HEARTBEAT,
and so on to their own thread pool

Performance and Tuning Series: Basics 63

Execution class attributes

Execution class attributes

Each predefined or user-defined execution class comprises of acombination of
three attributes: base priority, timedlice, and thread pool affinity (engine
affinity in process mode). These attributes determine performance
characteristics during execution.

The attributes for the predefined execution classes, EC1, EC2, and EC3, are
fixed, as shown in Table 4-1.

Table 4-1: Fixed-attribute composition of predefined execution classes

Execution class Base priority Time slice Engine affinity

level attribute attribute attribute

EC1 High Timedice>t None

EC2 Medium Timedice=t None

EC3 Low Timedice<t Engine with the highest

Base priority

64

engine ID number

By default, atask on Adaptive Server operateswith the same attributesas EC2:
itsbase priority ismedium, itstime sliceis set to onetick, and it can run on any
engine.

" ow

Assign base priority when you create atask. Thevaluesare“high,” “medium,”
and“low.” Thereisarun queuefor each priority for each engine, and the global
run queue also has a queue for each priority.

When athread pool looks for atask to run, it first checksits own high priority
run queue, then the high priority global run queue, then its own medium
priority run queue, and so on. Theresult is, runnable tasks in the high priority
run queues are schedul ed onto thread pools more quickly than tasksin the other
queues.

The scheduler search space refers to where engine schedulers ook for work
(run queue checking):

e Inprocess mode, the scheduler search spaceis server-wide, meaning all
enginesshareaglobal run queue. Engines check the run queues of all other
engines.

» Inthreaded mode, the schedul er search spaceis specific to the thread poal.
Each engine thread pool hasits own global queue, and the engineswithin
that pool ook for tasks associated only with that pool.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

During execution, Adaptive Server can temporarily change atask’s priority if
necessary. A task’s priority can be greater than or equal to, but never lower
than, its base priority.

When you create a user-defined execution class, you can assign the values
high, medium, or low to the task.

Setting the task priority

Task priority is an attribute of an execution classthat is set with
sp_bindexeclass. Thecurrent_priority column from sp_showpsexe output shows
the priority level for the current task execution settings:

sp_showpsexe
spid appl name login name
exec_class current priority
task _affinity

6 NULL NULL
NULL LOwW
syb_default pool
7 NULL NULL
NULL MEDIUM
syb_default_pool
8 NULL NULL
NULL LOowW
syb_default pool
13 isqgl sa
EC2 MEDIUM

syb_default_ pool

In threaded mode, the task_affinity column indicates the name of the
thread pool. In process mode, it indicates the name of the engine group.

Use sp_setpsexe to set the priority for a specific task. For example, to set the
isql task in the example above to apriority level of HIGH, use:

sp_setpsexe 13, 'priority', 'HIGH'
When you set task priorities, consider that:
e You set prioritiesfor Adaptive Server tasks, not operating system threads.

« Prioritiesare relative to other tasks. For example, if a user thread pool
contains only tasks from a single execution class, setting the priority of
that class has no effect since all tasks are running at the same priority.

Performance and Tuning Series: Basics 65

Execution class attributes

Task-to-engine affinity

In a multiengine environment, any available engine can process the next task
in the global run queue. The engine affinity attribute lets you assign atask to
an engine or to a group of engines (in threaded mode, thisis done with thread
poals).

66

To organize task-to-engine affinity:

Associatelesscritical execution objectswith adefined group of enginesto
restrict the object to a subset of the total number of engines. This reduces
processor availability for those objects. The more critical execution
objects can execute on any Adaptive Server engine, so performance for
them improves because they have the benefit of the resourcesthat the less
critical ones are deprived of.

Associate more critical execution objects with a defined group of engines
to which less critical objects do not have access. This ensures that the
critical execution objects have access to a known amount of processing
power.

In process mode, when optimal performance for a network-intensive task
isthe primary concern, administrators can use task-to-engine affinity
coupled with dynamic listenersto ensure that tasks run on the sameengine
asall thetasks' network I/O. In threaded mode, thisis not required dueto
the lack of dedicated network engines.

EC1 and EC2 do not set engine affinity for the execution object; however, EC3
sets affinity to the Adaptive Server engine with the highest engine number in
the current configuration.

Use sp_addengine to create engine groups and sp_addexeclass to bind

execution objects to an engine group. If you do not want to assign engine
affinity for a user-defined execution class, use ANYENGINE as the engine
group parameter.

In threaded mode, use create thread pool to create a new thread pool. Use
sp_addexeclass to bind execution objects to thread pools.

Note The engine affinity attribute is not used for stored procedures.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Engine group affinity when switching modes

Engine groups do not exist in threaded mode. When you switch from threaded
to process mode, execution classes are assigned to the default engine groups.
For example, if you switch from threaded to process mode and then add the
Eng_Group execution class and associate it with engine number 3, the default
execution classes EC1 and EC2 are associated with the ANYENGINE engine
group, and EC3, with the highest engine number, is associated with the
LASTONLINE engine group:

sp_showexeclass

classname priority engine group
engines
EC1 HIGH ANYENGINE
ALL
EC2 MEDIUM ANYENGINE
ALL
EC3 LOW LASTONLINE
0
Eng_ Group LOW new_engine group
3

When you switch to threaded mode, execution classes |ose their engine group
affinity and are assigned to syb_default_pool. In threaded mode, the example

above becomes:
sp_showexeclass
classname priority threadpool
EC1 HIGH syb_default pool
EC2 MEDIUM syb_default pool
EC3 Low syb_default pool
Eng_ Group LOW new_engine group

Setting execution class attributes

Implement and manage execution hierarchy for client applications, logins,
service tasks, and stored procedures using the categories of system procedures
listed in Table 4-2.

Performance and Tuning Series: Basics 67

Setting execution class attributes

Table 4-2: System procedures for managing execution object
precedence

Category

Description System procedures

User-defined execution
class

Create and drop a user-defined classwith ¢ sp_addexeclass
custom attributes or change the attributes . g gropexeclass
of an existing class. -

Execution class binding

Bind and unbind predefined or user- ¢ sp_bindexeclass
defined classes to client applications, « sp_unbindexeclass
service tasks, and logins. -

For the session only

Set and clear attributes of an activesession * sp_setpsexe

(“onthefly”) only. + sp_clearpsexe

Engines Add enginesto and drop engines from ¢ sp_addengine
engine groups; create and drop engine « sp_dropengine
groups. h

Reporting Report on engine group assignments, ¢ sp_showcontrolinfo

application bindings, and execution class sp_showexeclass

attributes.
* sp_showpsexe

See the Reference Manual: Procedures.

Assigning execution classes

68

Thefollowing exampleillustrates how to assign preferred access to resources
to an execution object by associating it with the EC1 execution class. In this
case, the execution object is a combination of application and login.

For example, if you decide the “sa”’ login must get results from isql as quickly
as possible, issue sp_bindexeclass with the preferred execution class, EC1, so
Adaptive Server grants execution preferenceto login “sa” when it executes
isql:

sp_bindexeclass sa, LG, isqgl, EC1

This statement specifies that whenever alogin (LG) called “sa” executesthe
isql application, the “sa’ login task executes with EC1 attributes. Adaptive
Server improvesresponsetimefor the“ sa’ login by placingitinahigh-priority
run queue, so it is assigned to an engine more quickly

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Scheduling service tasks

Adaptive Server allowsyou to manage service tasks (housekeeper, checkpoint,
Replication Agent threads, and so on) with the sp_bindexeclass ‘sv’ execution
class parameter. Binding individual service tasks to execution classes binds
these tasksto thread pools, which lets you control dedicated resourcesfor high-
priority tasks, and keep service tasks from competing with user tasks.

Note In process mode, you cannot schedule service tasks.

For example, you can:
* Bind the HK WASH housekeeping task to a specific service task.

« Establish aReplication Agent pool and execution classwith onethread per
Replication Agent, giving dedicated resources, but simultaneously
creating a more generic thread pool named service_pool, granting one
thread to other tasks of lesser importance.

The monServiceTask monitoring table includes information about all service
tasks that are bound to an execution class. This example shows the HK WASH
and NETWORK HANDLER service tasks bound to the SC execution class:

task id spid name

description execution class

3932190 6 HK WASH
NULL scC

4456482 10 NETWORK HANDLER
NULL SC

Creating user-defined execution class task affinity

The following stepsillustrate how to use system proceduresto create a thread
pool associated with a user-defined execution class and bind that execution
classto user sessions. In this example, the server is used by technical support
staff, who must respond as quickly as possible to customer needs, and by
managers who are usually compiling reports, and can afford slower response
time.

To create the user-defined execution class for this example:

Performance and Tuning Series: Basics 69

Setting execution class attributes

1 Createthethread pool named DS_GROUP that governs the task. For
example:

create thread pool DS GROUP with thread count = 4

2 Usesp_addexeclass to create a user-defined execution classes that have
names and attributes you choose. For example:

sp_addexeclass DS, LOW, 0, DS _GROUP

3 Usesp_bindexeclass to associate the user-defined execution class with an
execution object. For example with three logins:

sp_bindexeclass mgrl, LG, NULL, DS
sp_bindexeclass mgr2, LG, NULL, DS
sp_bindexeclass mgr3, LG, NULL, DS

Perform these stepsto create a user-defined execution classif Adaptive Server
is configured for process mode:

1 Create an engine group called DS_GROUP, consisting of engine 3:
sp_addengine 3, DS_GROUP
Expand the group so that it also includes engines 4 and 5:

sp_addengine 4, DS GROUP
sp_addengine 5, DS GROUP

2 Create auser-defined execution class called DS with a priority of “low”
and associate it with the DS_GROUP engine group.

sp_addexeclass DS, LOW, 0, DS _GROUP
3 Bindthelesscritical execution objectsto the new execution class.

For example, bind the manager logins, “mgrl,” “mgr2,” and “mgr3,” to
the DS execution class using sp_bindexeclass three times:

sp_bindexeclass mgrl, LG, NULL, DS
sp_bindexeclass mgr2, LG, NULL, DS
sp_bindexeclass mgr3, LG, NULL, DS

The second parameter, LG, indicates that the first parameter isalogin
name. Thethird parameter, NULL, indicates that the association appliesto
any application that the login might be running. The fourth parameter, DS,
indicates that the login is bound to the DS execution class.

The result of this exampleis that the technical support group (not bound to an
engine group) isgiven accessto moreimmediate processing resources than the
managers.

70 Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

How execution class bindings affect scheduling

You can use logical process management to increase the priority of specific
logins, of specific applications, or of specific logins executing specific
applications. This example looks at:

e Anorder_entry application, an OLTP application critical to taking
customer orders.

e A sales_report application that prepares various reports. Some managers
run this application with default characteristics, but other managersrunthe
report at lower priority.

e Other users, who are running other applications at default priorities.

Execution class bindings

The following statement binds order_entry with EC1 attributes, giving higher
priority to the tasks running it:

sp_bindexeclass order entry, AP, NULL, EC1

The following sp_bindexeclass statement specifies EC3 when “mgr” runsthe
sales_reportapplication:

sp_bindexeclass mgr, LG, sales report, EC3

Thistask can execute only when there are no runnable tasks with the EC1 or
EC2 attributes.

Figure 4-2 shows four execution objects running tasks. Several users are
running the order_entry and sales_report applications. Two other logins are
active, “mgr” (logged in once using the sales_report application, and twice
using isql) and “cs3” (not using the affected applications).

Performance and Tuning Series: Basics 71

Setting execution class attributes

Figure 4-2: Execution objects and their tasks

order_entry

Priority:
H High
L Low
D Default

When the “mgr” login usesisql (tasks 1 and 2), the task runs with default
attributes. But when the “mgr” login uses sales_report, the task runs at EC3.
Other managers running sales_report (tasks 6 and 7) run with the default
attributes. All tasksrunning order_entry run at high priority, with EC1 attributes
(tasks 3, 4, and 8). “cs3” runs with default attributes.

Engine affinity can affect scheduling in process mode

72

An engine looking for atask to run first looks in its own high-priority run
gueues, then in the high-priority global run queue. If there are no high-priority
tasks, the engine then checks for medium-priority tasks in its own run queue,
then inthe medium-priority global run queue, and finally for low-priority tasks.

What happens if atask has affinity to a particular engine? Assume that task 7
in Figure 4-2, ahigh-priority task in the global run queue, has a user-defined
execution class with high priority and affinity to engine number 2, but this
engine currently has high-priority tasks queued and is running another task.

If engine 1 has no high-priority tasks queued when it finishes processing task
8in Figure 4-2, it checks the global run queue, but cannot process task 7 due
to the engine binding. Engine 1 then checks its own medium-priority queue,
and runstask 15. Although a system administrator assigned the preferred
execution class EC1, engine affinity temporarily lowered task 7's execution
precedence to below that of atask with EC2.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

This effect might be undesirable, or it might be what was intended. You can

assign engine affinity and execution classes so that task priority isnot what you
intended. You can also make assignments so that tasks with low priority might
not ever run, or might wait for extremely long times—an important reason to
plan and test thoroughly when assigning execution classes and engine affinity.

Note In threaded mode, engines and their assigned tasks exist in completely
separate search spaces.

Setting attributes for a session only

Use sp_setpsexe to temporarily change any attribute value temporarily for an
active session.

The changein attributesisvalid only for the specified spid and isin effect only
for the duration of the session, whether it ends naturally or isterminated.
Setting attributes using sp_setpsexe neither alters the definition of the
execution classfor any other process nor doesit apply to the next invocation of
the active process on which you use it.

To clear attributes set for a session, use sp_clearpsexe.

Getting information about execution classes

Adaptive Server stores the information about execution class assignmentsin
the system tables sysattributes and sysprocesses, and supports several system
procedures for determining what assignments have been made.

Use sp_showcontrolinfo to display information about the execution objects
bound to execution classes, the Adaptive Server enginesin an engine group,
and session-level attribute bindings. If you do not specify parameters,
sp_showcontrolinfo displays the complete set of bindings and the composition
of al engine groups.

sp_showexeclass displays the attribute values of an execution class or al
execution classes.

You can also use sp_showpsexe to see the attributes of all running processes.

Performance and Tuning Series: Basics 73

Determining precedence and scope

Determining precedence and scope

Determining the ultimate execution hierarchy between two or more execution
objects can be complicated. What happens when a combination of dependent
execution objects with various execution attributes makes the execution order
unclear?

For example, an EC3 client application can invoke an EC1 stored procedure.
Do both execution objects take EC3 attributes, EC1 attributes, or EC2
attributes?

Understanding how Adaptive Server determines execution precedenceis
important for getting what you want out of your execution class assignments.
Two fundamental rules, the precedence rule and the scope rule, can help you
determine execution order.

Multiple execution objects and ECs

Precedence rule

74

Adaptive Server uses precedence and scope rules to determine which
specification, among multiple conflicting ones, to apply.

Use the rulesin this order:

1 Usethe precedence rule when the process involves multiple execution
object types.

2 Usethe scope rule when there are multiple execution class definitions for
the same execution object.

The precedence rule sorts out execution precedence when an execution object
belonging to one execution class invokes an execution object of another
execution class.

The precedence rule states that the execution class of a stored procedure
overridesthat of alogin, which, in turn, overrides that of a client application.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Precedence rule
example

Scope rule

If astored procedure hasamore preferred execution classthan that of theclient
application process invoking it, the precedence of the client processis

temporarily raised to that of the stored procedure for the period of time during
which the stored procedure runs. This also appliesto nested stored procedures.

Note Exception tothe precedencerule: If an execution object invokes a stored
procedure with aless preferred execution class than its own, the execution
object’s priority is not temporarily lowered.

Thisexampleillustratesthe use of the precedencerule. Supposethereisan EC2
login, an EC3 client application, and an EC1 stored procedure.

The login’s attributes override those of the client application, so theloginis
given preference for processing. If the stored procedure has a higher base
priority than the login, the base priority of the Adaptive Server process
executing the stored procedure goes up temporarily for the duration of the
stored procedure’s execution. Figure 4-3 shows how the precedenceruleis

applied.
Figure 4-3: Use of the precedence rule

) Client Stored
login application procedure
EC2 EC3 EC1

Stored procedure runs with EC1

What happenswhen aloginwith EC2 invokesaclient application withEC1 and
the client application calls a stored procedure with EC3? The stored procedure
executes with the attributes of EC2 because the execution class of alogin
precedesthat of aclient application. Using the exception to the precedencerule
described in the note above, the priority is not temporarily lowered.

In addition to specifying the execution attributes for an object, you can define
itsscopewhen you use sp_bindexeclass scope. The object’s scope specifiesthe
entities for which the execution class bindings are effective

Performance and Tuning Series: Basics 75

Determining precedence and scope

For example, you can specify that an isgl client application run with EC1
attributes, but only when it is executed by an“sa’ login. Thisstatement setsthe
scope of the EC1 binding to theisql client application asthe “sa’ login (AP
indicates an application):

sp_bindexeclass isgl, AP, sa, EC1

Conversely, you can specify that the “sa’ login run with EC1 attributes, but
only when it executes the isgl client application. In this example, the scope of
the EC1 binding to the “sa” login is the isqgl client application:

sp_bindexeclass sa, LG, isql, EC1
If the scopeis set to NULL, the binding isfor all interactions.

When a client application has no scope, the execution attributes bound to it
apply to any login that invokes the client application.

When alogin has no scope, the attributes apply to thelogin for any processthat
the login invokes.

Theisql parameter in the following command specifies that Transact-SQL
applications execute with EC3 attributes for any login that invokesisgl, unless
thelogin is bound to a higher execution class:

sp_bindexeclass isgl, AP, NULL, EC3

Combined with the bindings above that grant the “sa” user of isql EC1
execution attributes, and using the precedence rule, an isql request from the
“sa” login executeswith EC1 attributes. Other processes servicingisql requests
from logins that are not “sa’ execute with EC3 attributes.

The scope rule states that when a client application, login, service class, or
stored procedure is assigned multiple execution class levels, the one with the
narrowest scope has precedence. Using the scope rule, you can get the same
result if you use:

sp_bindexeclass isqgl, AP, sa, EC1

Resolving a precedence conflict

Adaptive Server uses the following rules to resolve conflicting precedence
when multiple execution objects and execution classes have the same scope.

» Execution objects not bound to a specific execution class are assigned
these default values:

76 Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Entity type Attribute name Default value
Client application Execution class EC2
Login Execution class EC2
Stored procedure Execution class EC2

An execution object for which an execution classis assigned has higher
precedence than defaults. (An assigned EC3 has precedence over an
unassigned EC2).

If aclient application and alogin have different execution classes, the
login has higher execution precedence than the client application (from the
precedence rule).

If astored procedure and a client application or login have different
execution classes, Adaptive Server uses the one with the higher execution
classto derive the precedence when it executesthe stored procedure (from
the precedence rule).

If there are multiple definitions for the same execution object, the onewith
a narrower scope has the highest priority (from the scope rul€). For
example, thefirst statement gives precedenceto the“sa” login running isq|
over “sa’ logins running any other task:

sp_bindexeclass sa, LG, isql, EC1
sp_bindexeclass sa, LG, NULL, EC2

Examples: determining precedence

Each row in Table 4-3 contains a combination of execution objects and their
conflicting execution attributes.

The “Execution class attributes’ columns show execution class val ues
assigned to a process application “AP’ belonging to login “LG.”

The remaining columns show how Adaptive Server resolves precedence.

Table 4-3: Conflicting attribute values and Adaptive Server assigned

values
Execution class attributes Adaptive Server-assigned values
Stored Login Stored
Application Login procedure base procedure
(AP) (LG) (sp_ec) Application priority base priority
EC1 EC2 EC1 EC2 Medium High
(EC3) (Medium)

Performance and Tuning Series: Basics 77

Determining precedence and scope

78

Execution class attributes Adaptive Server-assigned values

Stored Login Stored
Application Login procedure base procedure
(AP) (LG) (sp_ec) Application priority base priority
EC1 EC3 EC1 EC3 Low High

(EC2) (Medium)
EC2 EC1 EC2 EC1 High High

(EC3) (High)
EC2 EC3 EC1 EC3 Low High

(EC2) (Medium)
EC3 EC1 EC2 EC1 High High

(EC3) (High)
EC3 EC2 EC1 EC2 Medium High

(EC3) (Medium)

To test your understanding of the rules of precedence and scope, cover the
“ Adaptive Server-assigned values’ columnsin Table 4-3, and predict the
valuesin those columns. To help get you started, thisis a description of the
scenario in the first row:

e Column 1 —client application, AP, is specified asEC1.

e Column2-—login, “LG", is specified as EC2.

e Column 3 —stored procedure, sp_ec, is specified asEC1.
At runtime:

e Column 4 —task belonging LG, executing the client application AP, uses
EC2 attributes because the classfor alogin precedes that of an application
(precedencerule).

e Column 5 —value of column 5 implies a medium base priority for the
login.

e Column 6 — execution priority of the stored procedure sp_ec israised to
high from medium (because it iSEC1).

If the stored procedure is assigned EC3 (as shown in parenthesesin
column 3), then the execution priority of the stored procedure is medium
(as shown in parentheses in column 6) because Adaptive Server uses the
highest execution priority of the client application or login and stored
procedure.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Example scenario using precedence rules

This section presents an example that illustrates how the system administrator
interprets execution class attributes, including:

e Planning — the system administrator analyzes the environment, performs
benchmark tests, sets goals, and understands the concepts well enough to
predict consequences.

« Configuration — the system administrator runs sp_bindexeclass with
parameters based on the information gathered in the Planning section.

« Execution characteristics — applications connect with Adaptive Server,
using the configuration the system administrator has created.

Figure 4-4 shows two client applications, OLTP and isgl, and three Adaptive
Server logins, “L1", “sa’, and “L2".

sp_xyz isastored procedure that both the OLTP application and the isql
application need to execute.

Performance and Tuning Series: Basics 79

Example scenario using precedence rules

Planning

80

Figure 4-4: Conflict resolution

The system administrator performs the analysis described in steps 1 and 2 in
“Successfully distributing resources’ on page 55 and decides on thishierarchy
plan:

¢ TheOLTP applicationisan EC1 application and the isgl applicationisan
EC3 application.

e Login“L1" canrun different client applications at different timesand has
no special performance requirements.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

e Login“L2" isalesscritical user and should aways run with low
performance characteristics.

e Login*“sa’ must dwaysrun asacritical user.

e Stored procedure sp_xyz should always run with high performance
characteristics. Because the isqgl client application can execute the stored
procedure, giving sp_xyz a high-performance characteristicsis an attempt
to avoid a bottleneck in the path of the OLTP client application.

Table 4-1 summarizes the analysis and specifies the execution classto be
assigned by the system administrator. The tuning granularity gets finer asyou
descend the table. Applications have the greatest granularity, or the largest
scope. The stored procedure has the finest granularity, or the narrowest scope.

Table 4-4: Example analysis of an Adaptive Server environment

Execution

Identifier Interactions and comments class
OLTP ¢ Sametablesasisql EC1

« Highly critical
isql ¢ SametablesasOLTP EC3

* Low priority
L1 « No priority assignment None
sa » Highly critica EC1
L2 ¢ Not critical EC3
Sp_Xyz « Avoid “hot spots” EC1

Configuration

The system administrator executes the following system procedures to assign
execution classes (step 3 on page 56):

sp_bindexeclass OLTP, AP, NULL, EC1
sp_bindexeclass ISQL, AP, NULL, EC3
sp_bindexeclass sa, LG, NULL, EC1
sp_bindexeclass L2, LG, NULL, EC3
sp_bindexeclass SP_XYZ, PR, sp owner, EC1l

Execution characteristics

Following is a series of eventsthat could take place in an Adaptive Server
environment with the configuration described in this example:

Performance and Tuning Series: Basics 81

Considerations for engine resource distribution

A client logsin to Adaptive Server as“L1" using OLTP.
e Adaptive Server determinesthat OLTP iSECL.

e “L1"doesnot have an execution class. However, because“L 1" logsin
to the OLTP application, Adaptive Server assigns the execution class
EC1.

e “L1" executesthe stored procedure at a high priority since the object
has been assigned execution class EC1.

A client logsin to Adaptive Server as“L1" usingisq|.

* BecauseisqglisEC3, and “L1" isnot bound to an execution class,
“L 1" executes with EC3 characteristics. This meansit runs at low
priority and has affinity with the highest numbered engine (aslong as
there are multiple engines).

* When “L1"executes sp_xyz, itspriority israised to high because the
stored procedure iSEC1.

A client logsin to Adaptive Server as“sa’ using isql.

e Adaptive Server determines the execution classes for both isgl and
“sa’, using the precedence rule. Adaptive Server runs the system
administrator’s instance of isql with EC1 attributes. When the system
administrator executes sp_xyz, the priority does not change.

A client logsin to Adaptive Server as“L2" usingisq|.

» Because both the application and login are EC3, there is no conflict.
“L2" executes sp_xyz at high priority.

Considerations for engine resource distribution

Making execution class assignments indiscriminately does not usually yield
what you expect. Certain conditions yield better performance for each
execution object type. Table 4-5 indicates when assigning an execution
precedence might be advantageous for each type of execution object.

Table 4-5: When assigning execution precedence is useful

Execution object

Description

Client application

Thereislittle contention for non-CPU resources among client applications.

Adaptive Server login

82

One login should have priority over other logins for CPU resources.

Adaptive Server Enterprise

CHAPTER 4 Distributing Engine Resources

Execution object Description
Stored procedure There are well-defined stored procedure “hot spots.”

It is more effective to lower the execution class of |ess-critical execution
objects than to raise the execution class of a highly critical execution object.

Client applications: OLTP and DSS

Assigning higher execution preference to client applications can be
particularly useful when thereis little contention for non-CPU resources
among client applications.

For example, if an OLTP application and a DSS application execute
concurrently, you might bewilling to sacrifice DSS application performanceif
that resultsin faster execution for the OLTP application. You can assign non-
preferred execution attributes to the DSS application so that it gets CPU time
only after OLTP tasks are executed.

Unintrusive client applications

Inter-application lock contention is not a problem for an unintrusive
application that uses or accesses tables that are not used by any other
applications on the system.

Assigning a preferred execution class to such an application ensures that
whenever there is arunnable task from this application, it isfirst in the queue
for CPU time.

I/O-bound client applications

If ahighly-critical applicationis I/O bound and the other applications are
compute-bound, the compute bound process can use the CPU for full timeslice
if itisnot blocked for some other reason.

An 1/O-bound process, however, yields the CPU each time it performsan 1/0
operation. Assigning a unpreferred execution class to the compute-bound
application enables Adaptive Server to run the 1/0-bound process sooner.

Performance and Tuning Series: Basics 83

Considerations for engine resource distribution

Critical applications

If there are one or two critical execution objects among several noncritical
ones, try setting affinity to a specific thread pool for the less critical
applications. This can result in better throughput for the critical applications.

Adaptive Server logins: high-priority users

If you assign preferred execution attributes to a critical user and maintain
default attributes for other users, Adaptive Server does what it can to execute
all tasks associated with the high-priority user first.

In process mode, one result of scheduling isthat when an engine does not find
atask initslocal run or aglobal run queue, it attemptsto steal atask from
another engine’'s local run queue. Engines can steal only tasksthat have a
normal priority, and can never steal ahigh-priority task for high-priority users.
If engine loads are not well-balanced, and the engines running high-priority
tasks are heavily loaded, the task-stealing can lead to high-priority tasks being
starved of CPU, which is opposite of the intended affect of scheduling, but a
natural side effect.

Stored procedures: “hot spots”

Performance issues associated with stored procedures arise when a stored
procedureis heavily used by one or more applications. When this happens, the
stored procedure is characterized as a hot spot in the path of an application.

Usually, the execution priority of the applications executing the stored
procedure isin the medium to low range, so assigning more preferred
execution attributesto the stored procedure might improve performancefor the
application that callsit.

84 Adaptive Server Enterprise

CHAPTER 5

Memory Use and Performance

This chapter describes how Adaptive Server uses the data and procedure
caches and other issues affected by memory configuration. In general, the
more memory available, the faster Adaptive Server’s response time.

Topic Page
How memory affects performance 85
How much memory to configure 86
Dynamic reconfiguration 88
Cachesin Adaptive Server 89
Procedure cache 90
Data cache 97
Configuring the data cache to improve performance 101
Named data cache recommendations 112
Maintaining data cache performance for large 1/0 122
Speed of recovery 123
Auditing and performance 125
Text and image pages 127

Chapter 3, “Configuring Memory,” in System Administration Guide:
\olume 2 describes how to determine the best memory configuration
values for Adaptive Server, and the memory needs of other server
configuration options.

How memory affects performance

Having ample memory reduces disk 1/0O, which improves performance,
since memory access is much faster than disk access. When a user issues
aquery, dataand index pages must be in memory, or read into memory, to
examine the values on them. If the pages already reside in memory,
Adaptive Server does not need to perform disk 1/O.

Performance and Tuning Series: Basics 85

How much memory to configure

Adding more memory isinexpensive and easy, but devel oping around memory
problemsis expensive. Give Adaptive Server as much memory as possible.

Memory conditions that can cause poor performance include:
e Total datacachesizeistoo small.
* Procedure cache sizeistoo small.

e Onlythedefault cacheisconfigured on an SMP system with several active
CPUs, leading to contention for the data cache.

» User-configured data cache sizes are inappropriate for specific user
applications.

e Configured I/O sizes are inappropriate for specific queries.

e Audit queue sizeisinappropriateif auditing feature is installed.

How much memory to configure

86

Memory is the most important consideration when you are configuring
Adaptive Server. Memory is consumed by various configuration parameters,
thread pools, procedure caches, and data caches. Correctly setting the val ues of
the configuration parameters and the caches is critical to good system
performance.

The total memory alocated during start up is the sum of the memory required
for all Adaptive Server configuration requirements. Thisvalueisaccumulated
by Adaptive Server from the read-only configuration parameter total logical
memory. The configuration parameter max memory must be greater than or
equal to total logical memory. max memory indicates the amount of memory you
allow for Adaptive Server needs.

Adaptive Server allocates memory based on the val ue of total logical memory at
start up. However, if you have set the configuration parameter allocate max
shared memory, the amount of memory Adaptive Server alocatesis based on
the value of max memory. This alows a system administrator to tell Adaptive
Server to alocate, at start up, the maximum allowed, which may be
considerably more than the value of total logical memory at that time.

The key points for memory configuration are:

* The system administrator should determine the size of shared memory
available to Adaptive Server and set max memory to thisvalue.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

e Set the value for the allocate max shared memory at startup configuration
parameter to the fewest number of shared memory segments. This may
improve performance, because operating with alarge number of shared
memory segments may cause performance degradation on certain
platforms. See your operating system documentation to determine the
optimal number of shared memory segments. Once a shared memory
segment is allocated, it cannot be released until the next time you start
Adaptive Server.

e Theamount of memory available for a new thread pool is determined by
the amount of free memory available from max memory. If Adaptive
Server has insufficient memory to create the thread pool, it displays an
error message indicating the amount you must raise max memory before
creating the thread pool. In this example

e If the defaults are insufficient, reconfigure the configuration parameters.

* Thedifference between max memory and total logical memory is additional
memory availablefor procedure, for data caches, thread pools, or for other
configuration parameters.

The amount of memory to be allocated by Adaptive Server during boot-
time is determined by either total logical memory or max memory. If this
valueistoo high:

e Adaptive Server may not start if the physical resources on your
machine are insufficient.

e |f Adaptive Server starts, the operating system page fault rates may
rise significantly and you may need to reconfigure the operating
system to compensate.

What remains after all other memory needs have been met is available for the
procedure cache and the data cache. Figure 5-1 showshow memory isdivided.

Performance and Tuning Series: Basics 87

Dynamic reconfiguration

Figure 5-1: How Adaptive Server uses memory

Physical
memory

Adaptive
Server

Total
logical
memory

Dynamic reconfiguration

Adaptive Server allows you to alocate total physical memory dynamically.
Many of the configuration parameters that consume memory are dynamic,
which means you do not need to restart the server for them to take effect. For
example, number of user connections, number of worker processes, and time
slice can all be changed dynamically. See Chapter 5: “ Setting Configuration
Parameters,” in System Administration Guide: Volume 1 for a complete
discussion of configuration parameters, including information on which are
dynamic and which are static.

88

OS and other programs

Adaptive Server Executable

Static overhead o

Internal

Kernel and structures

server structures
'

A

Procedure cache

Data cache overhead Cache

Data cache

Maximum memory

Total physical memory

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

How memory is allocated

Prior to version 12.5 of Adaptive Server, the size of the procedure cache was
based on a percentage of the available memory. After you configured the data
cache, whatever was left over was allocated to the procedure cache. For
Adaptive Server 12.5 and later, the data cache and the procedure cache are
specified as absolute values. The sizes of the caches do not change until you
reconfigure them.

Use the configuration parameter max memory to establish a maximum setting,
beyond which you cannot configure Adaptive Server’stotal physical memory.

Large allocation in Adaptive Server

Adaptive Server automatically tunes the size of procedure cache allocationsto
optimize memory use and reduce external fragmentation. When serving
repeated internal requests for memory, Adaptive Server initialy allocates 2K
chunks, then scales up the all ocation size to amaximum of 16K chunks, based
on past allocation history. This optimization is transparent to the end user,
except as it contributes to improved performance.

Caches in Adaptive Server
Adaptive Server includes the procedure and data cache:

e Theprocedure cacheis used for stored procedures and triggers and for
short-term memory needs such as statistics and query plans for parallel
queries.

Set the procedure cache size to an absolute value using sp_configure,
“procedure cache size”. See Chapter 5, “ Setting Configuration
Parameters,” in the System Administration Guide: Volume 1.

« Thedatacacheisused for data, index, and log pages. The data cache can
be divided into separate, named caches, with specific databases, or
database objects bound to specific caches.

Once the procedure cache and the data cache are configured, there is no
division of leftover memory.

Performance and Tuning Series: Basics 89

Procedure cache

Cache sizes and buffer pools

Adaptive Server uses different page sizes for cache and buffer pools:

e Memory pages— (max memory, total logical memory, and so on) are
multiples of 2K

» Procedure cache — configured in 2K pages
» Buffer cache — expressed in units of logical page size

e Largel/O—scaled interms of extents (each extent is 8 pages). For
example, if Adaptive Server is configured for an 8K logical page size,
large I/0 uses aread or write that is 64K.

If you start Adaptive Server and the caches are defined with buffer pools that
arenot valid for the current logical page size, all memory for such inapplicable
buffer poolsis reallocated when configuring caches to the default buffer pool

in each named cache.

Be careful in how you set up logical page sizes and what you allow for in the
buffer pool sizes.

Logical page size Possible buffer pool sizes
2K 2K, 4K, 16K

4K 4K, 8K, 16K, 32K

8K 8K, 16K, 32K, 64K

16K 16K, 32K, 64K, 128K

Procedure cache

90

Adaptive Server maintains an MRU/LRU (most recently used/least recently
used) chain of stored procedure query plans. As users execute stored
procedures, Adaptive Server looksin the procedure cache for a query plan to
use. If aquery planisavailable, it is placed on the MRU end of the chain, and
execution begins.

If no planisin memory, or if al copies arein use, the query tree for the
procedure is read from the sysprocedures table. The query treeisthen
optimized, using the parameters provided to the procedure, and placed at the
MRU end of the chain, and execution begins. Plans at the LRU end of the page
chain that are not in use are aged out of the cache.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Thememory allocated for the procedure cache hol dsthe optimized query plans
(and occasionally trees) for al batches, including any triggers.

If more than one user uses a procedure or trigger simultaneously, there will be
multiple copies of it in cache. If the procedure cache istoo small, auser trying
to execute stored procedures or queries that fire triggers receives an error
message and must resubmit the query. Space becomes available when unused
plans age out of the cache.

Adaptive Server uses the default procedure cache size (in memory pages) at
start up. The optimum value for the procedure cache varies from application to
application, and it may also vary as usage patterns change. Use procedure
cache size to determine the current size of the procedure cache (see Chapter 5,
“ Setting Configuration Parameters,” in System Administration Guide: Volume
1).

Getting information about the procedure cache size

When you start Adaptive Server, the error log states how much procedure
cacheisavailable.

e proc buffers represents the maximum number of compiled procedura
objects that can simultaneously reside in the procedure cache.

e proc headers represents the number of pages dedicated to the procedure
cache. Each object in cache requires at least one page.

Monitoring procedure cache performance

sp_sysmon reports on stored procedure executions and the number of times
that stored procedures must be read from disk.

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

If thereis not enough memory to load another query tree or plan, or if the
maximum number of compiled objectsis already in use, Adaptive Server
reports Error 701.

Performance and Tuning Series: Basics 91

Procedure cache

Procedure cache sizing

92

On a production server, minimize the number of procedure reads from disk.
When a user needs executes a procedure, Adaptive Server should be able to
find an unused tree or plan in the procedure cache for the most common
procedures. The percentage of timesthe server findsan available planin cache
is called the cache hit ratio. Keeping a high cache hit ratio for proceduresin
cache improves performance.

The formulas in Figure 5-2 suggest a good starting point.

Figure 5-2: Formulas for sizing the procedure cache

Procedure (Max # of concurrent users) *
cache size = (4 + Size of largest plan) * 1.25

Minimum procedure (# of main procedures) *
cache size needed = (Average plan size)

If you have nested stored procedures—procedure A calls procedure B, which
calls procedure C—all of them must be in the cache at the same time. Add the
sizesfor nested procedures, and use the largest sum instead of “ Size of largest
plan” in the formulain Figure 5-2.

The minimum procedure cache sizeis the smallest amount of memory that
allows at least one copy of each frequently used compiled object to reside in
cache. However, the procedure cache can also be used as additional memory at
execution timefor sorting and query optimization aswell asfor other purposes.
Furthermore, the memory required is based on the type of the query.

Use of sp_monitorconfig to configure procedure cache:
1 Configure procedure cache to the minimum size as determined above.

2 Runyour normal database load. If you get error 701, increase procedure
cache size. Tune the size of the increase to avoid over-allocation. The
recommended increase is (128 * (size of procedure cache, in GB)). For
procedure cache size less than 1GB, increase in 128MB increments. For
procedure cache size greater than 1GB but less than 2GB, increasein
256M B increments, and so on.

3 Runsp_monitorconfig “procedure cache size” when Adaptive Server has
reached or passed the peak load.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

4 If sp_monitorconfig indicates that Max_Used is considerably less than the
current valuefor procedure cachefrom sp_configure, then procedure cache
is over-allocated. Consider reducing the procedure cache size
configuration value so that a smaller procedure cache may be allocated
during the next restart.

5 A value other than zero for the Num_Reuse output from sp_monitorconfig
also indicates a shortage of procedure cache. If thisvalue increasesover a
period of time, consider increasing procedure cache size as suggested in
step 2 above.

Estimating stored procedure size

sysprocedures storesthe normalized query treefor procedures. Including other
overheads, this size allows for 2 rows per 2K page. To estimate the size of a
single stored procedure, view, or trigger, use:

select count (*) as "approximate size in KB"
from sysprocedures
where id = object id("procedure name")

For example, to find the size of the titleid_proc in pubs2:

select count (*)
from sysprocedures
where id = object id("titleid proc")

approximate size in KB

If the plan isin cache, the monCachedProcedures monitoring table includesits
size.

Estimating the procedure cache size for a sort

To find the size of the procedure cache used for a sort (used by create index,
update statistics, order by,distinct, sort and merge join), first determine the
number of rows per page:

Rows per page = Page size
minimum length of row

Performance and Tuning Series: Basics 93

Procedure cache

Determine the procedure cache size used for a sort with this formula:

Procedure

cache size = (# of sort buffers) x (rows per page) x 85 bytes

Note If you use a64-hit system, use 100 bytesin thisformula.

Estimating the amount of procedure cache used by create index

create index sorts data within the index key. This sort may require one or more
in-memory sorts and one or more disk-based sorts. Adaptive Server loads the
data create index sortsinto the data cache associated with the table upon which
it iscreating anindex. The number of datacache buffersthe sort usesislimited
by the value of number of sort buffers. If al keys being sorted fit into the value
for number of sort buffers, Adaptive Server peforms a single, in-memory sort
operation. If the keys being sorted do not fit into the sort buffers, Adaptive
Server must write the results of thein-memory sort to disk so Adaptive Server
can load the next set of index keysinto the sort buffers to be sorted.

In addition to the sort buffers allocated from the data cache, this sort operation
also requires about 66 bytes of metadata from the procedure cache. The
formula for the amount of procedure cache used, assuming all of the sort
buffersare used, is:

Numbéer of 2K o (rows_per_page) X (number_of_sort_buffers) X 66 bytes
procedure cache = , ,

buffers required 2048 (assuming 2K page size)
Example 1 In this example,

e The number of sort buffers set to 500
e create index creates a 15 bytefield, yielding 131 rows per page

Asaresult, all 500 2K buffers are used to hold the data being sorted, and the
procedure cache uses 2,111 2K buffers:

(131 X 500 X66) / 2048 = 2,111 2K buffers
Example 2 In this example,

e The number of sort buffers set to 5000

94 Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Example 3

e create index creates a 8 byte field, yielding about 246 rows per page

Asaresult, all 5,000 2K buffers are used to hold the data being sorted, and the
procedure cache uses 39, 639 2K buffers:

(246 X 5,000 X 66) / 2048 = 39,639 2K buffers
In this example:
* The number of sort buffers set to 1000

e Thetableissmall, and you canload it completely into a800 2K sort buffer
data cache, leaving 200 data cache sort buffers available for overhead

e create index creates a 50 byte field, yielding about 39 rows per page
Asaresult, all 5000 2K buffers are used to hold the data being sorted:
(39 X 1,000 X 66) / 2048 = 1,257 2K buffers

But the data cache has 200 2K buffers|eft over for overhead, so the procedure
cache uses 1057 2K buffers.

Reducing query processing latency

The query processing layer in Adaptive Server 15.7 enables multiple client
connections to reuse or share dynamic SQL lightweight procedures (LWPs).

Reusing dynamic SQL LWPs across multiple connections

Inversions earlier than 15.7, Adaptive Server stored dynamic SQL statements
(prepared statements) and their corresponding LWPin the dynamic SQL cache.
Each LWP for a dynamic SQL statement was identified based on the
connection metadata. Because connections had different LWPsassociated with
the same SQL statement, they could not reuse or share the same LWP. In
addition, all LWPS and query plans created by the connection were lost when
the Dynamic SQL cache was released.

Inversions 15.7 and later, Adaptive Server uses the statement cache to also
store dynamic SQL statements converted to LWPs. Because the statement
cacheisshared among all connections, dynamic SQL statements can be reused
across connections. These statements are not cached:

* select into Statements.

e insert-values statements with all literal values and no parameters.

Performance and Tuning Series: Basics 95

Statement cache

* Queriesthat do not reference any tables.

* Individual prepared statementsthat contain multiple SQL statements. For
example:

statement .prepare (‘insert tl values (1) insert
t2 values (3)');

» Statementsthat cause instead-of triggersto fire.

To enable using the statement cache to store dynamic SQL statements, set the
enable functionality group or streamlined dynamic SQL configuration options to
1. See " Setting Configuration Parameters’ in the System Administration
Guide: Volume 1.

Using the statement cache has several benefits:

* LWPsand their associated plans are not purged from the statement cache
when the connection that created the entry exits.

* LWHPs can be shared across connections, further improving performance.
* Reusing LWPs also improves performance in execute CUrsors.

» Dynamic SQL statements can be monitored from the monitoring table
monCachedStatement.

Note Reusing dynamic SQL LWPs may have a negative impact on
performance because the reused plan is generated with the original set of
supplied parameter values.

Statement cache

96

The statement cache saves SQL text and plans previously generated for ad hoc
SQL statements, enabling Adaptive Server to avoid recompiling incoming
SQL that matchesa previously cached statement. When enabled, the statement
cachereserves aportion of the procedure cache. Seethe System Administration
Guide: Volume 2 for a complete discussion of the statement cache, including
its memory usage.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Data cache

Default data cache and other cachesare configured as absol ute values. Thedata
cache contains pages from recently accessed objects, typically:

e sysobjects, sysindexes, and other system tables for each database

« Activelog pages for each database

* The higher levels and parts of the lower levels of frequently used indexes
* Recently accessed data pages

When you install Adaptive Server, it has asingle data cache that is used by all
Adaptive Server processes and objects for data, index, and log pages. The
default sizeis BMB.

The following pages describe the way this single data cache is used. Most of
the concepts on aging, buffer washing, and caching strategies apply to the user-
defined data caches and the default data cache.

“Configuring the data cache to improve performance” on page 101 describes
how to improve performance by dividing the data cache into named caches and
how to bind particular objects to these named caches.

Page aging in data cache

The Adaptive Server data cache is managed on a most recently used/least
recently used (MRU/LRU) basis. As pagesin the cache age, they enter awash
area, where any dirty pages (pages that have been modified while in memory)
are written to disk. There are some exceptionsto this:

» Caches configured with relaxed LRU replacement policy use the wash
section as described above, but are not maintained on an MRU/LRU basis.

Typically, pages in the wash section are clean; that is, the I/O on these
pages has been completed. When atask or query obtains a page from the
LRU end, it expects the page to be clean. If not, the query must wait for
the 1/0O to compl ete on the page, which impairs performance.

* A gpecial strategy agesout index pagesand OAM pages more slowly than
datapages. These pagesare accessed frequently in certain applicationsand
keeping them in cache can significantly reduce disk reads.

See Chapter 10, “ Checking Database Consistency,” in System
Administration Guide: Volume 2 for more information.

Performance and Tuning Series: Basics 97

Data cache

e Adaptive Server may choose to use the LRU cache replacement strategy
that does not flush other pages out of the cache with pages that are used
only once for an entire query.

e The checkpoint process ensures that, if Adaptive Server needs to be
restarted, the recovery process can be completed in areasonable period of
time.

When the checkpoint process estimates that the number of changesto a
database will take longer to recover than the configured value of the
recovery interval configuration parameter, it traverses the cache, writing
dirty pagesto disk.

» Recovery uses only the default data cache, making it faster.

e The housekeeper wash task writes dirty pagesto disk when idletimeis
available between user processes.

Effect of data cache on retrievals

98

Figure 5-3 shows the effect of data caching on a series of random select
statements executed over a period of time. If the cache is empty initially, the
first select statement is guaranteed to require disk 1/O. Be sure to adequately
size the data cache for the number of transactions you expect against the
database.

As more queries are executed and the cacheisfilled, there is an increasing
probability that one or more page requests can be satisfied by the cache,
thereby reducing the average response time of the set of retrievals.

When the cache isfilled, thereis afixed probability of finding a desired page
in the cache from that point forward.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Figure 5-3: Effects of random selects on the data cache

Fill I

I cache

<4——Steady —»p
state

Average response time

Random selects over time

If the cache is smaller than the total number of pagesthat are being accessed in
all databases, there is a chance that a given statement must perform some disk
1/0. A cache does not reduce the maximum possible response time—some
queries may still need to perform physical 1/0 for all of the pages they need.
But caching decreases the likelihood that the maximum delay will be suffered
by a particular query—more queries are likely to find at |east some of the
required pages in cache.

Effect of data modifications on the cache

The behavior of the cache in the presence of update transactionsis more
complicated than for retrievals.

Thereisdtill aninitial period during which the cachefills. Then, because cache
pages are being modified, thereisapoint at which the cache must beginwriting
those pages to disk before it can load other pages. Over time, the amount of
writing and reading stabilizes, and subsequent transactions have a given
probability of requiring adisk read and another probability of causing a disk
write.

The steady-state period isinterrupted by checkpoints, which cause the cacheto
write all dirty pagesto disk.

Performance and Tuning Series: Basics 99

Data cache

Data cache performance

You can observe data cache performance by examining the cache hit ratio, the
percentage of page requests that are serviced by the cache.

One hundred percent is outstanding, but impliesthat your datacacheisaslarge
asthe data or at least large enough to contain al the pages of your frequently
used tables and indexes.

A low percentage of cache hitsindicates that the cache may betoo small for the
current application load. Very large tables with random page access generally
show alow cache hit ratio.

Testing data cache performance

100

Consider the behavior of the dataand procedure caches when you measure the
performance of a system. When atest begins, the cache can bein any one of
the following states:

Empty

* Fully randomized

» Partialy randomized
* Deterministic

An empty or fully randomized cache yields repeatabl e test results because the
cacheisin the same state from one test run to another.

A partially randomized or deterministic cache contains pages left by
transactions that were just executed. Such pages could be the result of a
previoustest run. In these cases, if the next test steps request those pages, then
no disk 1/O is needed.

Such a situation can bias the results away from a purely random test and lead
to inaccurate performance estimates.

The best testing strategy isto start with an empty cache or to make surethat all
test steps access random parts of the database. For precise testing, execute a
mix of queriesthat is consistent with the planned mix of user queries on your
system.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Cache hit ratio for a single query

To see the cache hit ratio for a single query, use set statistics io on to see the
number of logical and physical reads, and set showplan on to seethe I/O size
used by the query.

Figure 5-4: Formula to compute cache hit ratio

Logical reads - (Physical reads * Pages)

Cache hit ratio = :
Logical reads

With statistics io, physical reads are reported in [/O-size units. If a query uses
16K 1/0O, it reads 8 pages with each I/O operation.

If statistics io reports 50 physical reads, it has read 400 pages. Use showplan to
seethe I/O size used by aquery.

Cache hit ratio information from sp_sysmon
sp_sysmon reports on cache hits and misses for:

e All caches on Adaptive Server
* Thedefault data cache
e Any user-configured caches

The server-wide report provides the total number of cache searches and the
percentage of cache hits and cache misses.

For each cache, the report contains the number of cache searches, cache hits,
and cache misses, and the number of times that a needed buffer was found in
the wash section.

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

Configuring the data cache to improve performance

When you install Adaptive Server, it has single default data cache, with a 2K
memory pool, one cache partition, and a single spinlock.

To improve performance, add data caches and bind databases or database
objects to them:

Performance and Tuning Series: Basics 101

Configuring the data cache to improve performance

102

1 Toreduce contention on the default data cache spinlock, divide the cache
intonwherenisl, 2, 4, 8,16, 32 or 64. If you have contention on the
spinlock (designated here with “x™) with one cache partition, the spinlock
contention isexpected to reduce to x/n, where nisthe number of partitions.

2 Whenaparticular cache partition spinlock tablethat ishot—atablein high
demand by user applications—consider splitting the default cache into
named caches.

3 If thereistill contention, consider splitting the named cache into named
cache partitions.

You can configure 4K, 8K, and 16K buffer pools from the logical page sizein
both user-defined data caches and the default data caches, allowing Adaptive
Server to perform large 1/0O. In addition, caches that are sized to completely
hold tables or indexes can use the relaxed LRU cache policy to reduce
overhead.

You can also split the default data cache or a named cache into partitions to
reduce spinlock contention.

Try configuring the data cache for improved performance in these ways:

e Configure named data cachesto be large enough to hold critical tablesand
indexes. This keeps other server activity from contending for cache space
and speeds queries using these tables, since the needed pages are always
found in cache.

You can configure these caches to use the relaxed LRU replacement
policy, reducing the cache overhead.

» Toincrease concurrency, bind a hot table to one cache and the indexes on
the table to other caches.

e Create anamed data cache large enough to hold the hot pages of atable
where a high percentage of the queries reference only a portion of the
table.

For example, if atable contains data for ayear, but 75% of the queries
reference data from the most recent month (about 8% of the table),
configuring a cache of about 10% of the table size provides room to keep
the most frequently used pagesin cache and | eaves some spacefor theless
frequently used pages.

e Assign tables or databases used in decision-support systems (DSS) to
specific caches with large I/O configured.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

This keeps DSS appli cations from contending for cache space with OLTP
applications. DSS applications typically access large numbers of
sequential pages, and OLTP applications typically access relatively few
random pages.

e Bind tempdb to its own cache to keep it from contending with other user
processes.

Proper sizing of the tempdb cache can keep most tempdb activity in
memory for many applications. If this cache is large enough, tempdb
activity can avoid performing 1/0.

e Bind text pages to named caches to improve the performance on text
access.

« Bindadatabase'slogto acache, again reducing contention for cache space
and access to the cache.

e When auser process makes changesto a cache, aspinlock deniesall other
processes access to the cache.

Although spinlocks are held for extremely brief durations, they can slow
performance in multiprocessor systems with high transaction rates. When
you configure multiple caches, each cache is controlled by a separate
spinlock, increasing concurrency on systems with multiple CPUs.

Within a single cache, adding cache partitions creates multiple spinlocks
to further reduce contention. Spinlock contention isnot an issue on single-
engine servers.

Most of these possible uses for named data caches have the greatest impact on
multiprocessor systems with high transaction rates or with frequent DSS
gueries and multiple users. Some of them can increase performance on single
CPU systems when they lead to improved utilization of memory and reduce
1/0.

Commands to configure named data caches
The commands used to configure caches and pools are shown in Table 5-1

Table 5-1: Commands used to configure caches
Command Function

sp_cacheconfig Creates or drops named caches and set the size, cache type, cache policy
and local cache partition number. Reports on sizes of caches and pools.

Performance and Tuning Series: Basics 103

Configuring the data cache to improve performance

Command

Function

sp_poolconfig

Creates and drops I/O pools and changes their size, wash size, and
asynchronous prefetch limit.

sp_bindcache

Binds databases or database objects to a cache.

sp_unbindcache

Unbinds the specified database or database object from a cache.

sp_unbindcache_all

Unbinds all databases and objects bound to a specified cache.

sp_helpcache

Reports summary information about data caches and lists the databases
and database objects that are bound to a cache. Also reports on the
amount of overhead required by a cache.

Sp_sysmon

Reports statistics useful for tuning cache configuration, including cache
spinlock contention, cache utilization, and disk 1/O patterns.

For afull description of configuring named caches and binding objectsto
caches, see Chapter 4, “ Configuring Data Caches,” in System Administration
Guide: Volume2. Only asystem administrator can configure named caches and
bind database objects to them.

Tuning named caches

Creating named data caches and memory pools, and binding databases and
database objects to the caches, can dramatically hurt or improve Adaptive
Server performance. For example:

104

A cachethat is poorly used hurts performance.

If you allocate 25% of your data cache to a database that services avery
small percentage of the query activity on your server, I/O increasesin
other caches.

An unused pool hurts performance.

If you add a 16K pool, but none of your queries use it, you have taken
space away fromthe 2K pool. The 2K pool’scache hit ratio isreduced, and
I/Oisincreased.

An overused pool hurts performance.

If you configure a 16K pool, and virtually all of your queriesuseit, 1/0
rates are increased. The 2K cache will be under used, while pages are
rapidly cycled through the 16K pool. The cache hit ratio in the 16K pool
will be very poor.

When you balance pool usage within a cache, performance can increase
dramatically.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Both 16K and 2K queries experience improved cache hit ratios. Thelarge
number of pages often used by queriesthat perform 16K /O do not flush
2K pagesfrom disk. Queriesusing 16K perform approximately one-eighth
the number of 1/Os required by 2K 1/0.

When tuning named caches, always measure current performance, make your
configuration changes, and measure the effects of the changes with similar
workload.

Cache configuration goals

Goalsfor configuring caches include:

Reduced contention for spinlocks on multiple engine servers.

Improved cache hit ratios and reduced disk I/0O. As abonus, improving
cache hit ratios for queries can reduce lock contention, since queries that
do not need to perform physical 1/0 usually hold locksfor shorter periods
of time.

Fewer physical reads, due to the effective use of large I/0.

Fewer physical writes, because recently modified pages are not flushed
from cache by other processes.

Reduced cache overhead and reduced CPU bus latency on SMP systems,
when relaxed LRU policy is appropriately used.

Reduced cache spinlock contention on SMP systems, when cache
partitions are used.

In addition to commands such as showplan and statistics io that help tune on a
per-query basis, use a performance monitoring tool such assp_sysmon to look
at how multiple queries and multiple applications share cache space when they
run simultaneously.

Gather data, plan, and then implement

Thefirst step in developing a plan for cache usage isto provide as much
memory as possible for the data cache:

Determine the maximum amount of memory you can allocate to Adaptive
Server. Set max memory to that value.

Performance and Tuning Series: Basics 105

Configuring the data cache to improve performance

106

After you have set all the parametersthat use Adaptive Server memory, the
difference between max memory and the run value of total logical memory
isthe memory available for additional configuration and for data and
procedure caches. If you have sufficiently configured al the other
configuration parameters, you can alocate this additional memory to data
caches. Most changes to the data cache are dynamic and do not require a
restart.

If you allocate all the additional memory to data caches, there may not be
any memory available to reconfigure other configuration parameters.
However, if there is additional memory available, you can dynamically
increase max memory and other dynamic configuration parameters like
procedure cache size, user connections, and so on.

Use your performance monitoring toolsto establish baseline performance,
and to establish your tuning goals.

Determine the size of memory you can allocate to data caches, as mentioned in
the above steps. Include the size of already configured caches, like the default
data cache and any named caches.

Determine data cache size by looking at existing objects and applications.
Adding new caches or increasing configuration parameters that consume
memory does not reduce the size of the default data cache. When you have
decided what memory is available for data caches and the size of each
individual cache, add new cachesand increase or decrease size of existing data
caches.

Evaluate cache needs by analyzing 1/O patterns, and eval uate pool needs
by analyzing query plans and 1/0 statistics.

Configure the easiest choices that will gain the most performance first:
e Chooseasizefor atempdb cache.
e Chooseasizefor any log caches, and tune the log I/O size.

e Chooseasizefor the specific tables or indexes that you want to keep
entirely in cache.

e Addlarge /O pooalsfor index or data caches, as appropriate.

After you determine these sizes, examine remaining |/O patterns, cache
contention, and query performance. Configure caches proportional to I/0O
usage for objects and databases.

K eep performance goals in mind as you configure caches:

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

e If themajor goal isto reduce spinlock contention, increasing the number
of cache partitions for heavily used caches may be the only step.

Moving afew high-1/0 objects to separate caches al so reduces spinlock
contention and improves performance.

e Ifthemajor goal istoimprove responsetime by improving cachehit ratios
for particular queries or applications, creating caches for the tables and
indexes used by those queries should be guided by a thorough
understanding of access methods and 1/0 requirements.

Evaluating cache needs

Generally, configure cachesin proportion to the number of timesthat the pages
inthe cacheswill be accessed by queries, and configure poolswithin cachesin
proportion to the number of pages used by queriesthat choose /O of that pool’s
size.

If your databases and their logs are on separate logical devices, you can
estimate cache proportions using sp_sysmon or operating system commandsto
examine physical 1/0 by device.

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

Large I/O and performance

You can configure the default cache and any named cachesyou createfor large
1/0 by splitting a cache into pools. The default 1/0 sizeis 2K, one Adaptive
Server data page.

Note Referencetolargel/Osareona2K logical page size server. If you have
an 8K page size server, the basic unit for the 1/0Ois8K. If you have a 16K page
size server, the basic unit for the 1/0 is 16K.

For querieswhere pages are stored and accessed sequentially, Adaptive Server
reads up to eight data pagesin asingle 1/0. Since the mgjority of /O timeis
spent doing physical positioning and seeking on the disk, large I/O can greatly
reduce disk accesstime. In most cases, configure a16K pool inthe default data
cache.

Performance and Tuning Series: Basics 107

Configuring the data cache to improve performance

108

Certain types of Adaptive Server queries are likely to benefit from large 1/0.
Identifying these queries can help determine the correct size for data caches
and memory pools.

In the following examples, either the database or the specific table, index, or
large object (LOB) page change (used for text, image, and Java off-row
columns) must be bound to a named data cache that has large memory pools,
or the default data cache must have large I/O pools. Types of queries that can
benefit from large 1/0 include:

* Queriesthat scan entire tables. For example:

select title id, price from titles
select count (*) from authors
where state = "CA" /* no index on state */

» Range queries on tables with clustered indexes. For example:
where indexed colname >= value

e Queriesthat scan the leaf level of an index, both matched and unmatched
scans. If there is anonclustered index on type, price, this query could use
large I/0 on the leaf level of theindex, since al the columns used in the
query are contained in the index:

select type, sum(price)
from titles
group by type

* Queriesthat join entire tables, or large portions of tables. Different I/O
sizes may be used on different tablesin ajoin.

* Queriesthat select text or image or Java off-row columns. For example:
select au_id, copy from blurbs
* Queriesthat generate Cartesian products. For example:

select title, au_lname
from titles, authors

This query needs to scan all of onetable, and scan the other table
completely for each row from the first table. Caching strategies for these
queries follow the same principles as for joins.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

e Queries such as select into that allocate large numbers of pages.

Note Adaptive Server version 12.5.0.3 or later enables large-page
alocation in select into. It allocates pages by extent rather than by
individual page, thusissuing fewer logging requests for the target table.

If you configure Adaptive Server with large buffer pools, it useslarge |/O
buffer pools when writing the target table pages to disk.

e create index commands.
* Bulk copy operations on heaps—both copy in and copy out.

¢ Theupdate statistics, dbcc checktable, and dbcc checkdb commands.

The optimizer and cache choices

If the cache for atable or index has a 16K pool, the optimizer determines the
1/0 sizetousefor dataand leaf-level index pages based on the number of pages
that must be read, and the cluster ratios for the table or index.

The optimizer’s knowledge is limited to the single query it isanalyzing and to
statistics about the table and cache. It does not know how many other queries
are simultaneously using the same data cache. It has no statistics on whether
table storage is fragmented such that large 1/0Os or asynchronous prefetch
would be less effective.

In some cases, this combination of factors can lead to excessive I/O. For
example, users may experience higher I/0 and poor performance if
simultaneous querieswith large result setsare using avery small memory pool.

Choosing the right mix of I/O sizes for a cache

You can configure up to four poolsin any datacache, but, in most cases, caches
for individual objects perform best with only a 2K pool and a 16K pool. A
cache for a database where the log is not bound to a separate cache should also
have a pool configured to match the log 1/0 size configured for the database;
often the best log I/0 sizeis 4K.

Performance and Tuning Series: Basics 109

Configuring the data cache to improve performance

Reducing spinlock contention with cache partitions

Asthe number of engines and tasks running on an SMP system increases,
contention for the spinlock on the data cache can also increase. Any time atask
needs to access the cache to find a page in cache or to relink a page on the
LRU/MRU chain, it holds the cache spinlock to prevent other tasks from
modifying the cache at the same time.

With multiple engines and users, tasks must wait for access to the cache.
Adding cache partitions separates the cache into partitions, each of whichis
protected by its own spinlock. When a page needs to be read into cache or
located, a hash function is applied to the database ID and page ID to identify
the partition that holds the page.

The number of cache partitionsis always apower of 2. Each time you increase
the number of partitions, you reduce the spinlock contention by approximately
1/2. If spinlock contention is greater than 10 to 15%, consider increasing the
number of partitions for the cache. This example creates 4 partitionsin the
default data cache:

sp_cacheconfig "default data cache",
"cache partition=4"

You must restart the server for changes in cache partitioning to take effect.

See Chapter 4, “Configuring Data Caches,” in System Administration Guide:
Volume 2.

For information on monitoring cache spinlock contention with sp_sysmon, see
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Each pool inthe cacheis partitioned into a separate LRU/MRU chain of pages,
with its own wash marker.

Cache replacement strategies and policies

110

The Adaptive Server optimizer uses two cache replacement strategies to keep
frequently used pages in cache while flushing the less frequently used pages.
To reduce cache overhead, you may want to consider setting the cache
replacement policy for some caches.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Strategies

Policies

Replacement strategies determine where the page is placed in cache wheniitis
read from disk. The optimizer decides on the cache replacement strategy to be
used for each query:

Thefetch-and-discard, or MRU replacement, strategy linksthe newly read
buffers at the wash marker in the pool.

The LRU replacement strategy links newly read buffers at the most-
recently used (MRU) end of the pool.

Cache replacement strategies can affect the cache hit ratio for your query mix:

Pages that are read into cache with the fetch-and-discard strategy remain
in cache a much shorter time than queries read in at the MRU end of the
cache. If such apageisneeded again (for example, if the same query isrun
again very soon), the pages will probably need to be read from disk again.

Pages that are read into cache with the fetch-and-discard strategy do not
displace pages that already reside in cache before the wash marker. This
means that the pages already in cache before the wash marker are not
flushed out of cache by pages that are needed only once by a query.

See Chapter 7, “ Controlling Optimization,” in Performance and Tuning Series:
Query Processing and Abstract Plans.

A system administrator can specify whether a cache is going to be maintained
as an MRU/LRU-linked list of pages (strict) or whether relaxed LRU
replacement policy can be used.

Strict replacement policy — replaces the least recently used page in the
pool, linking the newly read pages at the beginning (MRU end) of the page
chain in the pool.

Relaxed replacement policy —attemptsto avoid replacing arecently used
page, but without the overhead of keeping buffersin LRU/MRU order.

The default cache replacement policy is strict replacement. Use the relaxed
replacement policy only when both of these conditions are true;

Thereislittle or no replacement of buffersin the cache.

The datais never, or infrequently, updated.

Performance and Tuning Series: Basics 111

Named data cache recommendations

Relaxed LRU policy saves the overhead of maintaining the cachein
MRU/LRU order. On SMP systems, where copies of cached pages may reside
in hardware caches on the CPUs themselves, relaxed LRU policy can reduce
bandwidth on the bus that connects the CPUs.

If you have created acacheto hold all of, or most, certain objects, and the cache
hit rateis above 95%, using relaxed cache replacement policy for the cache can
improve performance slightly.

See Chapter 4, “Configuring Data Caches,” in System Administration Guide:
\olume2.

Configuring relaxed LRU replacement for database logs

Log pages are filled with log records and are immediately written to disk.
When applicationsinclude triggers, deferred updates, or transaction rollbacks,
some log pages may be read, but usually they are very recently used pages,
which are still in the cache.

Since accessing these pages in cache moves them to the MRU end of a strict-
replacement policy cache, log caches may perform better with relaxed LRU
replacement.

Relaxed LRU replacement for lookup tables and indexes

User-defined caches that are sized to hold indexes and frequently used lookup
tables are good candidates for relaxed LRU replacement. If a cache is a good
candidate, but you find that the cache hit ratio is dightly lower than the
performance guideline of 95%, determine whether slightly increasing the size
of the cache can provide enough space to completely hold the table or index.

Named data cache recommendations

112

These cache recommendations can improve performance on both single and
multiprocessor servers:

» Because Adaptive Server writes log pages according to the size of the
logical page size, larger log pages potentially reduce the rate of commit-
sharing writes for log pages.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Commit-sharing occurs when, instead of performing many individual
commits, Adaptive Server waits until it can perform a batch of commits,
Per-process user |og caches are sized according to thelogical pagesizeand
theuser log cache size configuration parameter. The default size of the user
log cache isonelogical page.

For transactions that generate many |og records, the time required to flush
the user log cacheisslightly higher for larger logical page sizes. However,
because the log-cache sizesare also larger, Adaptive Server does not need
to perform as many log-cache flushesto the log page for long transactions.

See Chapter 4, “Configuring Data Caches,” in System Administration
Guide: Volume2.

e Createanamed cache for tempdb and configure the cache for 16K 1/O for
use by select into queries and sorts.

e Createanamed cachefor thelogsfor high-use databases. Configure pools
in this cache to match the log 1/0 size set with sp_logiosize.

See “Choosing the I/O size for the transaction log” on page 116.

e Ifatableoritsindex issmall and constantly in use, create acachefor only
that object or for afew objects.

« For cacheswith cache hit ratios of more than 95%, configurerelaxed LRU
cache replacement policy if you are using multiple engines.

« Keep cache sizes and pool sizes proportional to the cache utilization
objects and queries:

e |f 75% of the work on your server is performed in one database, that
allocate approximately 75% of the data cache, in a cache created
specifically for the database, in caches created for its busiest tables
and indexes, or in the default data cache.

e |f approximately 50% of the work in your database can use large I/O,
configure about 50% of the cache in a 16K memory pool.

* View the cache as a shared resource rather than attempt to micromanage
the caching needs of every table and index.

Start cache analysis and testing at the database level, concentrating on
particular tables and objects with high 1/0 needs or high application
priorities and those with special uses, such astempdb and transaction logs.

e On SMP servers, use multiple caches to avoid contention for the cache
spinlock:

Performance and Tuning Series: Basics 113

Named data cache recommendations

» Useaseparate cache for the transaction log for busy databases, and
use separate caches for some of the tables and indexes that are
accessed frequently.

» If spinlock contention is greater than 10% on a cache, split it into
multiple caches or use cache partitions.

Use sp_sysmon periodically during high-usage periods to check for
cache contention. See Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon.

e Setrelaxed LRU cache policy on cacheswith cache hit ratios of more
than 95%, such as those configured to hold an entire table or index.

Sizing caches for special objects, tempdb, and transaction logs

Creating cachesfor tempdb, the transaction logs, and for afew tablesor indexes
that you want to keep completely in cache can reduce cache spinlock
contention and improve cache hit ratios.

Use sp_spaceused to determine the size of the tables or indexes that you want
to keep entirely in cache. If you know how fast these tables increasein size,
allow some extra cache space for their growth. To seethe size of al theindexes
for atable, use:

sp_spaceused table name, 1

Examining cache needs for tempdb

114

Look at the use of tempdb:

» Estimate the size of the temporary tables and worktables generated by
your queries.

L ook at the number of pages generated by select into queries.

These queries can use 16K 1/0, so you can use thisinformation to help you
size a 16K pooal for the tempdb cache.

e Estimate the duration (in wall-clock time) of the temporary tables and
worktables.

« Estimate how often queries that create temporary tables and worktables
are executed.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

e Try to estimate the number of simultaneous users, especially for queries
that generate very large result setsin tempdb.

With this information, you can aform arough estimate of the amount of
simultaneous 1/0 activity in tempdb. Depending on your other cache needs,
you can size tempdb so that virtually all tempdb activity takes placein cache,
and few temporary tables are actually written to disk.

In most cases, the first 2MB of tempdb are stored on the master device, with
additional space alocated to alogica device. Use sp_sysmon to check those
devicesto help determine physical 1/0 rates.

Examining cache needs for transaction logs

On SMP systemswith high transaction rates, bind the transaction log to itsown
cache to reduce cache spinlock contention in the default data cache. In many
cases, the log cache can be very small.

The current page of the transaction log is written to disk when transactions
commit, so try to size thelog to reduce the number of times that processes that
need to reread log pages must go to disk because the pages have been flushed
from the cache.

These Adaptive Server processes need to read log pages:

« Triggersthat use theinserted and deleted tables, which are built from the
transaction log when the trigger queries the tables

» Deferred updates, deletes, and inserts, since these require rereading thelog
to apply changesto tables or indexes

* Transactionsthat arerolled back, sincelog pages must be accessed to roll
back the changes

When sizing a cache for atransaction log:
« Examinethe duration of processes that need to reread log pages.
Estimate how long the longest triggers and deferred updates last.

If some of your long-running transactions are rolled back, check thelength
of time they ran.

» Check transaction log size with sp_spaceused at regular intervals to
estimate how fast the log grows.

Performance and Tuning Series: Basics 115

Named data cache recommendations

Use thislog growth estimate and the time estimate to size the log cache. For
example, if thelongest deferred update takes 5 minutes, and the transaction log
for the database grows at 125 pages per minute, 625 pages are allocated for the
log while this transaction executes.

If afew transactions or queries are especially long-running, you may want to
size the log for the average, rather than the maximum, length of time.

Choosing the I/O size for the transaction log

When a user performs operations that require logging, log records are first
storedin auser log cache until eventsflush the user’slog recordsto the current
transaction log page in cache. Log records are flushed when:

* A transaction ends

* Theuser log cacheisfull

» Thetransaction changes tables in another database

» Another process needs to write a page referenced in the user log cache
» Certain system events occur

To economize on disk writes, Adaptive Server holds partially filled transaction
log pages for a very brief span of time so that records of several transactions
can be written to disk simultaneously. This processis called group commit.

In environments with high transaction rates or with transactions that create
large log records, the 2K transaction log pages fill quickly. A large proportion
of log writes are due to full log pages, rather than group commits.

Creating a4K pool for the transaction log can greatly reduce the number of log
writesin these environments.

sp_sysmon reports on the ratio of transaction log writes to transaction log
alocations. Try using 4K log 1/O if al these conditions are true:

* The database uses 2K log I/O.
» The number of log writes per second is high.
» Theaverage number of writes per log page is slightly more than one.

Here is some sample output showing that alarger log 1/0 size might help

performance:
per sec per xact count % of total
Transaction Log Writes 22.5 458.0 1374 n/a
Transaction Log Alloc 20.8 423.0 1269 n/a

116 Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Avg # Writes per Log Page n/a n/a 1.08274 n/a

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

Configuring for large log I/O size

Thelog 1/0 size for each database is reported in the server’s error log when
Adaptive Server starts. You can also use sp_logiosize.

To see the size for the current database, execute sp_logiosize with no
parameters. To see the size for all databases on the server and the cache in use
by the log, use:

sp_logiosize "all"

To set the log 1/0 size for adatabase to 4K, the default, you must be using the
database. This command sets the size to 4K:

sp_logiosize "default"
If no 4K pool isavailable in the cache used by the log, 2K 1/O is used instead.

If adatabaseisbound to acache, all objectsnot explicitly bound to other caches
use the database’s cache. This includes the syslogs table.

To bind syslogs to another cache, you must first put the database in single-user
mode, with sp_dboption, and then use the database and execute sp_bindcache:

sp_bindcache pubs log, pubtune, syslogs

Additional tuning tips for log caches

For further tuning after configuring a cache for the log, check sp_sysmon
output for:

e The cache used by the log
e Thedisk thelogisstored on
e Theaverage number of writes per log page

When looking at the log cache section, check “ Cache Hits’ and “ Cache
Misses’ to determine whether most of the pages needed for deferred
operations, triggers, and rollbacks are being found in cache.

Inthe“Disk Activity Detail” section, look at the number of “ Reads’ performed
to see how many times tasks that need to reread the log had to access the disk.

Performance and Tuning Series: Basics 117

Named data cache recommendations

Basing data pool sizes on query plans and 1/O

Divide a cache into pools based on the proportion of the I/O performed by
queries that use the corresponding 1/0 sizes. If most queries can benefit from
16K 1/0, and you configure a very small 16K cache, you may see worse
performance.

Most of the spaceinthe 2K pool remains unused, and the 16K pool experiences
high turnover. The cache hit ratio is significantly reduced.

The problem is most severe with nested-loop join queries that must repeatedly
reread the inner table from disk.

Making a good choice about pool sizes requires:
» Knowledge of the application mix and the I/O size your queries can use

e Careful study and tuning, using monitoring toolsto check cache
utilization, cache hit rates, and disk I/0

Checking I/O size for queries

118

You can examine query plansand 1/0O statistics to determine which queries are
likely to perform large I/O, and the amount of 1/O those queries perform. This
information can form the basis for estimating the amount of 16K 1/O the
queries should perform with a 16K memory pool. |/Os are done in terms of
logical page sizes; if large I/0 uses 2K pages, it retrievesin 2K sizes, if 8K
pages, it retrieves in the 8K size, as shown:

Logical page size Memory pool
2K 16K

4K 32K

8K 64K

16K 128K

For another example, consider that aquery that scansatable and performs 800
physical 1/0susing a 2K pool should perform about 100 8K 1/Os.

See “Large I/O and performance” on page 107 for alist of query types.

To test your estimates, configure the pools and run individual queriesand your
target mix of queriesto determine optimum pool sizes. Choosing agood initial
sizefor your first test using 16K 1/O depends on a good sense of the types of
queriesin your application mix.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Thisestimate is especially important if you are configuring a 16K pool for the
first time on an active production server. Make the best possible estimate of
simultaneous uses of the cache.

These guidelines provide some points of reference:

e If most I/O occursin point queries using indexes to access asmall number
of rows, make the 16K pool relatively small, perhaps 10 to 20% of the
cachesize.

« If you estimate that alarge percentage of the I/Os will use the 16K pooal,
configure 50 to 75% of the cache for 16K 1/0.

Queriesthat use 16K 1/O include any query that scans atable, usesthe
clustered index for range searches and order by, and queries that perform
matching or nonmatching scans on covering nonclustered indexes.

e If you are unsure about the I/O size that will be used by your queries,
configure about 20% of your cache space in a16K pool, and use showplan
and statistics i/o while you run your queries.

Examine the showplan output for the “Using 16K 1/0” message. Check
statistics i/o output to see how much 1/O is performed.

e If youthink that your typical application mix uses both 16K 1/0 and 2K
1/0 simultaneously, configure 30 to 40% of your cache space for 16K /0.

Your optimum may be higher or lower, depending on the actual mix and
the /0 sizes chosen by the query.

If many tables are accessed by both 2K 1/0 and 16K 1/O, Adaptive Server
cannot use 16K 1/0, if any page from the extent isin the 2K cache. It
performs 2K /O on the other pagesin the extent that are needed by the
query. Thisaddsto the I/O in the 2K cache.

After configuring for 16K 1/0O, check cache usage and monitor the I/O for
the affected devices, using sp_sysmon or Adaptive Server Monitor. Also,
use showplan and statistics io to observe your queries.

« Look for nested-loop join querieswhere an inner table would use 16K
1/0, and the table is repeatedly scanned using the fetch-and-discard
(MRU) strategy.

This can occur when neither the outer or inner tablefitscompletely in
cache. You can significantly reduce 1/O by increasing the size of the
16K pooal to alow theinner tableto fit completely in cache. You might
also consider binding the two tables to separate caches.

e Look for excessive 16K 1/0O, when compared to table size in pages.

Performance and Tuning Series: Basics 119

Named data cache recommendations

For example, if you have an 8000-page table, and a 16K 1/O table scan
performs significantly more than 1000 I/Osto read thistable, you may see
improvement by re-creating the clustered index on this table.

e Look for timeswhenlargel/Oisdenied. Many times, thisisbecause pages
areaready inthe 2K pool, so the 2K pool isused for therest of the I/O for
the query.

See Chapter 7, “Controlling Optimization,” in Performance and Tuning
Series. Query Processing and Abstract Plans.

Configuring buffer wash size

120

You can configure the wash area for each pool in each cache. If you set the
wash sizeis set too high, Adaptive Server may perform unnecessary writes. If
you set thewash areatoo small, Adaptive Server may not beabletofindaclean
buffer at the end of the buffer chain and may have to wait for 1/0 to complete
before it can proceed. Generally, wash size defaults are correct and need to be
adjusted only in large pools that have very high rates of data modification.

Adaptive Server alocates buffer poolsin units of logical pages. For example,
on aserver using 2K logical pages, 8MB isalocated to the default data cache.
By defaullt, this constitutes approximately 4096 buffers.

If you allocate the same 8MB for the default data cache on aserver using a 16K
logical page size, the default data cache is approximately 512 buffers. On a
busy system, this small number of buffers might result in abuffer alwaysbeing
in the wash region, causing a slowdown for tasks requesting clean buffers.

In general, to obtain the same buffer management characteristicson larger page
sizesaswith 2K logical page sizes, scale the cache sizeto the larger page size.
In other words, if you increase logical page size by four times, increase cache
and pool sizes by about four times larger as well.

Queries performing large 1/O, extent-based reads and writes, and so on, benefit
from the use of larger logical page sizes. However, as catal ogs continue to be
page-locked, there is greater contention and blocking at the page level on
system catal ogs.

Row and column copying for data-only locked tables resultsin a greater
slowdown when used for wide columns. Memory allocation to support wide
rows and wide columns marginally slows the server.

See Performance and Tuning Series: Locking and Concurrency Control.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Overhead of pool configuration and binding objects

Configuring memory pools and binding objects to caches can affect userson a
production system, so perform these activities during off-hours if possible.

Pool configuration overhead

When apool is created, deleted, or changed, the plans of all stored procedures
and triggers that use objects bound to the cache are recompiled the next time

they are run. If a database is bound to the cache, this affects all of the objects
in a database.

Thereisaslight amount of overhead involved in moving buffers between
pools.

Cache binding overhead

When you bind or unbind an object, all the object’s pages that are currently in
the cache are flushed to disk (if dirty) or dropped from the cache (if clean)
during the binding process.

The next time the pages are needed by user queries, they must be read from the
disk again, slowing the performance of the queries.

Adaptive Server acquires an exclusive lock on the table or index while the
cacheisbeing cleared, so binding can slow access to the object by other users.
The binding process may have to wait to acquire the lock until transactions
complete.

Note Binding and unbinding objectsfrom cachesremovesthem from memory.
This can be useful when you are tuning queries during development and
testing.

If you need to check physical 1/0O for a particular table, and earlier tuning
efforts have brought pages into cache, you can unbind and rebind the object.
The next time the table is accessed, all pages used by the query must be read
into the cache.

The plans of all stored procedures and triggers using the bound objects are
recompiled the next time they are run. If a database is bound to the cache, this
affects all the objects in the database.

Performance and Tuning Series: Basics 121

Maintaining data cache performance for large 1/0

Maintaining data cache performance for large 1/O

When heap tables, clustered indexes, or nonclustered indexes are newly
created, they show optimal performance when large 1/0 is being used. Over
time, the effects of deletes, page splits, and page deallocation and reallocation
can increase the cost of 1/0O. optdiag reports a statistic called “Large 1/0
efficiency” for tables and indexes.

A largel/O isvery efficient when thisvalueis 1, or closeto 1. Asthe value
decreases, more /O is required to access data pages needed for a query, and
large I/0O may be bringing pages into cache that are not needed by the query.

Consider rebuilding indexes when large 1/0 efficiency drops or when activity
in the pool increases due to increased 16K 1/0.

When large |/O efficiency decreases, you can:

* Runreorg rebuild on tables that use data-only-locking. You can also use
reorg rebuild on the index of data-only-locked tables.

» For alpages-locked tables, drop and re-create the indexes.

See Chapter 6, “Database Maintenance,” in Performance and Tuning Series:
Physical Database Tuning.

Diagnosing excessive I/O counts

122

There are several reasons why a query that performslarge 1/0O might require
more reads than you anticipate:

» The cache used by the query has a 2K cache and other processes have
brought pages from the table into the 2K cache.

If Adaptive Server finds one of the pages it would read using 16K 1/0Os
already inthe 2K cache, it performs 2K /O on the other pagesin the extent
that are required by the query.

» Thefirst extent on each allocation unit stores the allocation page, so if a
guery needs to access all the pages on the extent, it must perform 2K 1/0
on the 7 pages that share the extent with the allocation page.

The other 31 extents can be read using 16K 1/0. The minimum number of
reads for an entire allocation unit is always 38, not 32.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

* Innonclustered indexes and clustered indexes on data-only-locked tables,
an extent may store both leaf-level pages and pages from higher levels of
theindex. 2K 1/0 is performed on the higher level s of indexes, and on | eaf-
level pages when few pages are needed by a query.

When a covering leaf-level scan performs 16K 1/0, it islikely that some
of the pages from some extents will bein the 2K cache. The rest of the
pages in the extent will be read using 2K 1/0.

Using sp_sysmon to check large I/O performance

The sp_sysmon output for each data cache includes information that can help
you determine the effectiveness for large I/0s. See Performance and Tuning
Series: Monitoring Adaptive Server with sp_sysmon, and Chapter 7,
“Controlling Optimization,” in Performance and Tuning Series. Query
Processing and Abstract Plans.

e “Largel/Ousage” reportsthe number of large 1/0s performed and denied
and provides summary statistics.

e “Largel/O detail” reportsthetotal number of pagesthat were read into the
cache by alarge 1/0 and the number of pages that were actually accessed
while they were in the cache.

Speed of recovery

Asusersmodify datain Adaptive Server, only the transaction log iswritten to
disk immediately, to ensure that given data or transactions can be recovered.
The changed or “dirty” dataand index pages stay in the data cache until one of
these events causes them to be written to disk:

* The checkpoint process wakes up, determines that the changed data and
index pagesfor aparticular database need to be written to disk, and writes
out all the dirty pagesin each cache used by the database.

The combination of the setting for recovery interval and the rate of data
maodifications on your server determine how often the checkpoint process
writes changed pages to disk.

* Aspages move into the buffer wash area of the cache, dirty pages are
automatically written to disk.

Performance and Tuning Series: Basics 123

Speed of recovery

e Adaptive Server has spare CPU cyclesand disk 1/0O capacity between user
transactions, and the housekeeper wash task uses thistime to write dirty

buffersto disk.

» Recovery happens only on the default data cache.

e A user issues acheckpoint command.

You can use checkpoint to identify one or more databases or use an alll

clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

The combination of checkpoints, the housekeeper, and writes started at the

wash marker has these benefits:

* Many transactions may change a page in the cache or read the page in the

cache, but only one physical write is performed.

» Adaptive Server performs many physical writes when the 1/0O does not
cause contention with user processes.

Tuning the recovery interval

The default recovery interval in Adaptive Server is five minutes per database.

Changing the recovery interval affects performance because it impacts the
number of times Adaptive Server writes pages to disk.

Table 5-2 shows the effects of changing the recovery interval from its current

setting on your system.

Table 5-2: Effects of recovery interval on performance and recovery

time
Setting Effects on performance Effects on recovery
Lower May cause morereadsand writesand may lower ~ Setting the recovery interval lower
throughput. Adaptive Server writesdirty pages expedites recovery if there are no long-
to the disk more often. Any checkpoint I/0 running open transactionsthat Adaptive
spikes will be smaller. Server must roll back.
If there are long-running open
transactions, morefrequent checkpoints
could slow the recovery process
because the disks contains more
modifications that Adaptive Server
must roll back.
124 Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Setting Effects on performance Effects on recovery

Higher Minimizes writes and improves system Automaticrecovery may takemoretime
throughput. Checkpoint 1/O spikeswill be on start-up. Adaptive Server may have
higher. to reapply alarge number of transaction

log records to the data pages.

See Chapter 11, “Developing a Backup and Recovery Plan,” in System
Administration Guide: Volume 2 for information on setting the recovery
interval. sp_sysmon reports the number and duration of checkpoints. See
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Effects of the housekeeper wash task on recovery time

Adaptive Server’'s housekeeper wash task automatically begins cleaning dirty
buffers during the server’sidle cycles. If the task can flush all active buffer
poolsin all configured caches, it wakes up the checkpoint process. This may
result in faster checkpoints and shorter database recovery time.

System administrators can use the housekeeper free write percent configuration
parameter to tune or disable the housekeeper wash task. This parameter
specifies the maximum percentage by which the housekeeper task canincrease
database writes.

For more information on tuning the housekeeper and the recovery interval, see
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Auditing and performance

Heavy auditing can affect performance as follows:

e Audit records are written first to a queue in memory and then to the
sybsecurity database. If the database shares a disk used by other busy
databases, it can slow performance.

« If thein-memory audit queue fills up, the user processes that generate
audit records sleep. See Figure 5-5 on page 127.

Performance and Tuning Series: Basics 125

Auditing and performance

Sizing the audit queue

126

The size of the audit queue can be set by a system security officer. The default
configuration is as follows:

e A singleaudit record requires a minimum of 32 bytes, up to a maximum
of 424 bytes.

This means that a single data page stores between 4 and 80 records.

e Thedefault size of the audit queueis 100 records, requiring approximately
42K.

The minimum size of the queue is 1 record; the maximum size is 65,335
records.

There are trade-offs in sizing the audit queue, as shown in Figure 5-5.

If the audit queueislarge, so that you do not risk having user processes sleep,
you run the risk of losing any audit records in memory if thereis a system
failure. The maximum number of records that can be lost is the maximum
number of records that can be stored in the audit queue.

If security isyour chief concern, keep the queue small. If you can risk the loss
of more audit records, and you require high performance, make the queue
larger.

Increasing the size of the in-memory audit queue takes memory from the total
memory allocated to the data cache.

Adaptive Server Enterprise

CHAPTER 5 Memory Use and Performance

Figure 5-5: Trade-offs in auditing and performance

If the audit queue is full,
’— this process sleeps until

space is available
A If the system crashes,
} r— these records are lost
1 ppEEE l\’

record Audit queue size

sysaudits

Auditing performance guidelines

* Heavy auditing slows overall system performance. Audit only the events
you need to track.

* If possible, place the sysaudits database on its own device. If that is
impossible, placeit on adevice that is not used for your most critical
applications.

Text and image pages

Text and image pages can use large portions of memory and are commonly
known as space wasters. They exist aslong as a parent data row points to the
text and image pages. These pages come into existence when a null update is
done against the columns.

Find the current status for the table:
sp_help table name

Use sp_chcattribure to deall ocate text and image pages to open the space they
occupy:

sp_chgattribute table name, “deallocate first txtpg”,1

Performance and Tuning Series: Basics 127

Text and image pages

This switches the deallocation on. To switch the deall ocation off enter:

sp_chgattribute table name, “deallocate first txtpg”,0

128 Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves 1/0
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

Topic Page
How asynchronous prefetch improves performance 129
When prefetch is automatically disabled 135
Tuning goals for asynchronous prefetch 139
Other Adaptive Server performance features 140
Specia settings for asynchronous prefetch limits 143
Maintenance activities for high prefetch performance 145
Performance monitoring and asynchronous prefetch 146

How asynchronous prefetch improves performance

Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities for which
access patternsare predictable. Thel/O requestsfor these pages areissued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

e Sequential scans, such astable scans, clustered index scans, and
covered nonclustered index scans

e Access vianonclustered indexes
e Some dbce checks and update statistics
¢ Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision-support applications, as
long as the 1/0 subsystems on the machine are not saturated.

Performance and Tuning Series: Basics 129

How asynchronous prefetch improves performance

Asynchronous prefetch cannot help (or may help only dightly) when the
I/0 subsystem is already saturated or when Adaptive Server is CPU-
bound. Asynchronous prefetch can be used in some OLTP applications,
but to a much lesser degree, since OLTP queries generally perform fewer
I/O operations.

When a query in Adaptive Server needs to perform atable scan, it:
» Examinesthe rows on a page and the values in the rows.

e Checksthe cachefor the next pageto beread from atable. If that page
isin cache, the task continues processing. If the page isnot in cache,
the task issues an /O request and sleeps until the 1/0 compl etes.

* When the I/O completes, the task moves from the sleep queue to the
run queue. When thetask is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

Thiscycle of executing and stalling for disk reads continues until the table
scan completes. In asimilar way, queries that use a nonclustered index
processadatapage, issuethel/O for the next pagereferenced by theindex,
and sleep until the I/0O completes, if the pageis not in cache.

This pattern of executing and then waiting for 1/0 slows performance for
queries that issue physical 1/Os for large number of pages. In addition to
the waiting time for the physical 1/0Os to complete, the task repeatedly
switches on and off the engine, adding overhead to processing.

Improving query performance by prefetching pages

130

Asynchronous prefetch issues 1/0 requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to access the page. If required pages are already in cache, the query
does not yield the engine to wait for the physical read. The query may still
yield for other reasons, but it yields less frequently.

Based on the type of query being executed, asynchronous prefetch builds
alook-ahead set of pagesthat it predicts will be needed very soon.
Adaptive Server defines different look-ahead setsfor each processing type
where asynchronous prefetch is used.

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

In some cases, |ook-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only asmall percentage of unneeded pages areread into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for thewasted reads. If the number of unused pagesbecomeslarge,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment

When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is arisk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracksthe buffers brought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffersis configurable on a
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous

prefetch to keep the cache-hit ratio high and reduce unneeded I/O. Overall,
the effect ensures that most queries experience a high cache-hit ratio and
few stalls due to disk 1/0 sleeps.

The following sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, allocation pages are used to build
the look-ahead set.

For information on how allocation pages record information about object
storage, see Chapter 2, “ DataStorage,” in Performance and Tuning Series:
Physical Database Tuning.

Performance and Tuning Series: Basics 131

How asynchronous prefetch improves performance

Look-ahead set during recovery

Prefetching log pages

During recovery, Adaptive Server reads each log page that includes
records for atransaction and then reads al the data and index pages
referenced by that transaction, to verify timestampsandto roll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until al transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

The transaction log is stored sequentially on disk, filling extents in each
allocation unit. Each time the recovery process reads alog page from a
new allocation unit, it prefetches all the pages on that allocation unit that
arein use by thelog.

In databases that do not have a separate |og segment, log and data extents
may be mixed on the same allocation unit. Asynchronous prefetch still
fetchesall thelog pages on the allocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsequent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery usesonly the pool in the default data cache. See “ Setting
limits for recovery” on page 144 for more information.

Look-ahead set during sequential scans

132

Sequential scansinclude table scans, clustered index scans, and covered
nonclustered index scans.

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

During table scans and clustered index scans, asynchronous prefetch uses
allocation pageinformation about the pages used by the object to construct
the look-ahead set. Each time apage isfetched from anew allocation unit,
thelook-ahead set isbuilt from all the pages on that allocation unit that are
used by the object.

The number of times a sequential scan hops between alocation unitsis
kept to measure fragmentation of the page chain. Thisvalueis used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. See “Page chain fragmentation” on
page 137.

Look-ahead set during nonclustered index access

When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for all qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the unique list of all the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If anonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

* dbcc checkalloc, which checks allocation for all tables and indexesin
a database, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

* dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checks individual tables and their indexes

Performance and Tuning Series: Basics 133

How asynchronous prefetch improves performance

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page alocations, validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters adifferent
allocation unit for the object, the look-ahead set is built from all the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbcc checkdb and dbce checktable commands check the page chains

for atable, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, the indexes are
scanned recursively, starting at the root page and following all pointersto
the data pages. When checking the pointers from the leaf pagesto the data
pages, the dbcc commands use asynchronous prefetch in away that is
similar to nonclustered index scans. When aleaf-level index pageis
accessed, the look-ahead set is built from the page IDs of al the pages
referenced on the leaf-level index page.

Look-ahead set minimum and maximum sizes

134

The size of alook-ahead set for aquery at agiven pointintimeis
determined by:

e Thetype of query, such as a sequential scan or a nonclustered index
scan

» Thesize of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

» Thefragmentation of tables or indexes, in the case of operations that
perform scans

e Therecent success rate of asynchronous prefetch requests and
overload conditions on /O queues and server 1/0O limits

Table 6-1 summarizes the minimum and maximum sizesfor different type
of asynchronous prefetch usage.

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

Table 6-1: Look-ahead set sizes

Access type

Action

Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf-level scan

Reading apagefroma
new allocation unit

Minimum is eight pages needed by the query
Maximum is the smaller of:

* Thenumber of pages on an allocation unit that
belong to an object.

» Thepool prefetch limits

Nonclustered index scan

Locating qualified
rows on the leaf page
and preparing to

Minimum is two qualified rows
Maximum is the smaller of:
* The number of unique page numbers on

access data pages qualified rows on the leaf index page
* Thepool’s prefetch limit
Recovery Recovering a Maximum isthe smaller of:
transaction « All of the data and index pages touched by a
transaction undergoing recovery
» The prefetch limit of the pool in the default
data cache
Scanning the Maximum is all pages on an allocation unit
transaction log belonging to the log
dbcc tablealloc, indexalloc, and Scanning the page Same as table scan
checkalloc chain
dbcc checktable and checkdb Scanning the page Same as table scan
chain
Checking All of the data pages referenced on aleaf-level
nonclustered index page.
links to data pages

When prefetch is automatically disabled

Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the 1/0 subsystem, and without reading
unneeded pages. If Adaptive Server detects that prefetched pages are
being read into cache but not used, it temporarily limits or discontinues

asynchronous prefetch.

Performance and Tuning Series: Basics

135

When prefetch is automatically disabled

Flooding pools

For each poal in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until the buffers’ first use.
For example, if a2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 bufferscan beread in by asynchronous prefetch
and remain unused in the poal. If the number of nonaccessed prefetched
buffersin the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

Asthe pagesin the pool are accessed by queries, the count of unused
buffersinthe pool drops, and asynchronous prefetch resumes operation. If
the number of available buffersissmaller than the number of buffersinthe
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffersarein apool that allows 400, and aquery’s
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous|/Osthat cannot beissued dueto the per-pool
limitsis reported by sp_sysmon.

I/O system overloads

136

Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as awhole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control these limits for Adaptive Server.

See your operating system documentation for more information about
configuring 1/Os for your hardware.

The configuration parameter disk i/o structures controlsthe number of disk
control blocks that Adaptive Server reserves. Each physical 1/0 (each
buffer read or written) requires one control block whileit isinthe I/O
queue.

See Chapter 5, “ Setting Configuration Parameters,” in the System
Administration Guide: Volume 1.

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

Unnecessary reads

If Adaptive Server triesto issue asynchronous prefetch requeststhat would
exceed max async i/os per server, max async i/os per engine, Or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk 1/0 structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See Performance and Tuning Series:
Monitoring Adaptive Server with sp_sysmon.

Try to tune the system so there are no delayed 1/Os. If there are I/0s

delayed by:

e Disk I/O structures, increase the number of disk i/o structures
configuration parameter

e Theserver or enginelimit, increase the max max async i/os per engine
and max async i/os per server configuration parameters.

e Theoperating system, tunethe operating system so it can handle more
concurrent 1/0s.

Asynchronous prefetch triesto avoid unnecessary physical reads. During
recovery and during nonclustered index scans, look-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

L ook-ahead setsfor table scans, clustered index scans, and dbcc checksare
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary 1/0O can take place due to:

« Page chain fragmentation on allpages-locked tables

» Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server page allocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
alocating new extents on allocation units already used by the object.

Performance and Tuning Series: Basics 137

When prefetch is automatically disabled

However, as pages are allocated and deall ocated, page chains on data-
only-locked tables can develop kinks. Figure 6-1 shows an example of a
kinked page chain between extents in two allocation units.

Figure 6-1: A kink in a page chain crossing allocation units

N E

4

FL

819

10

11

v

13

14

15

16 | 17

18

19

20

21

22

23

24 25/

26

27

28

29

30

31

|

248 249

250

251

252

253

254

255

A

258

259

260

261

262

263

264 :#65

266

267

268

269

270

271

272|273

274

275

276

277

278

279

280|281

282

283

284

285

286

287

504505

506

507

508

509

510

511

Pages used by
object

OAM page

Allocation page

Other pages

In Figure 6-1, when ascan first needsto access a page from allocation unit
0, it checks the allocation page and issues asynchronous 1/Os for all the
pages used by the object it is scanning, up to the limit set on the pool. As
the pages become availablein cache, the query processesthem in order by
following the page chain. When the scan reaches page 10, the next pagein
the page chain, page 273, belongs to allocation unit 256.

When page 273 is heeded, allocation page 256 is checked, and
asynchronous prefetch requests are issued for al the pagesin that

allocation unit that belong to the object.

When the page chain points back to a page in allocation unit 0, there are
two possibilities:

138

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

« The prefetched pagesfrom allocation unit 0 are still in cache, and the
query continues processing with no unneeded physical 1/0s.

e The prefetch pagesfrom allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other |/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

e Adaptive Server's count of the hops between all ocation pages
now equal stwo. Adaptive Server usestheratio between the count
of hops and the prefetched pages to reduce the size of the look-
ahead set, so fewer 1/Os are issued.

e Thecount of prefetched but unused pagesin the pool islikely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning goals for asynchronous prefetch

Choosing optimal pool sizesand prefetch percentagesfor buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish:

e Improved system throughput
« Better performance by applications that use asynchronous prefetch

* No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or dbcc checking and reconfigure
afterward without needing to restart Adaptive Server.

See “ Setting limits for recovery” on page 144 and “ Setting limits for
dbcc” on page 144.

Performance and Tuning Series: Basics 139

Other Adaptive Server performance features

Commands for configuration

Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

* The server-wide default, set with the configuration parameter global
async prefetch limit. When you install Adaptive Server, the default
value for global async prefetch limit is 10 (percent).

e A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

See Chapter 5, “ Setting Configuration Parameters,” in the System
Administration Guide: Volumel.

Changing asynchronous prefetch limitstakes effect immediately, and does
not require arestart. You can configure the global and per-pool limitsin
the configuration file.

Other Adaptive Server performance features

Large I/O

140

This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

The combination of large I/O and asynchronous prefetch can provide rapid
query processing withlow 1/0 overhead for queries performing table scans
and for dbcc operations.

When largel/O prefetchesall the pages on an allocation unit, the minimum
number of 1/Os for the entire allocation unit is:

+ 3116K I/0Os
* 72K 1/Os, for the pages that share an extent with the allocation page

Note ReferencetoLargel/Osareona2K logical page size server. If you
have an 8K page size server, the basic unit for the 1/0 is8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

Sizing and limits for the 16K pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffersin the pool requires a pool with at least
310 16K buffers. If the pool issmaller, or if the limit islower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, configure either alarger pool or alarger prefetch limit
for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the pool needsto be
higher. The queries are probably issuing prefetch requests at dightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pagesin the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queriesin the pool.

Limits for the 2K pool

Queriesusing large 1/0 during sequential scans may still need to perform
2K 1/0:

e When ascan entersanew allocation unit, it performs 2K 1/0 onthe 7
pages in the unit that share space with the allocation page.

e |f pagesfrom the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K pool.

If the 2K pooal hasits asynchronous prefetch limit set to 0, thefirst 7 reads
are performed by normal asynchronous 1/0O, and the query sleeps on each
read if the pagesare not in cache. Set thelimitsonthe 2K pool high enough
that it does not slow prefetching performance.

Performance and Tuning Series: Basics 141

Other Adaptive Server performance features

Fetch-and-discard (MRU) scans

When a scan uses MRU replacement policy, buffersare handledin a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffers are
relinked into the pool at the wash marker. This strategy helps to avoid
cases where heavy use of a cache flushes prefetched buffers linked at the
wash marker before the buffers can be used. It haslittle impact on
performance, unless large numbers of unneeded pages are being
prefetched. Inthiscase, the prefetched pagesare morelikely to flush other
pages from cache.

Parallel scans and large 1/Os

Hash-based table scans

142

The demand on buffer pool s can become higher with parallel queries. With
seria queries operating on the same pools, it is safe to assumethat queries
areissued at dlightly different times and that the queries are in different
stages of execution: some are accessing pages are already in cache, and
others are waiting on 1/O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue alarge number of prefetch requests simultaneoudly.

Hash-based table scans on all pages-locked tables have multiple worker
processesthat all access the same page chain. Each worker process checks
the page ID of each pagein thetable, but examines only therows on those
pages where page |D matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes also need pages from that allocation unit, the scans
will either find that the pages they need are aready in 1/O or already in
cache. Asthefirst scan to complete enters the next unit, the processis
repeated.

Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

Partition-based scans

Special settings

Aslong as oneworker processin the family performing a hash-based scan
does not become stalled (waiting for alock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than aseria processdoes, they changethe status of the pages
from unused to used more quickly.

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different allocation units. On partitioned tables on multiple
devices, the per-server and per-engine I/O limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once aparallel query is parsed and compiled, it launches its worker
processes. If atable with 4 partitions is being scanned by 4 worker
processes, each worker process attemptsto prefetch all the pagesinitsfirst
alocation unit. For the performance of this single query, the most
desirable outcomeis that the size and limits on the 16K pool are
sufficiently large to allow 124 (31* 4) asynchronous prefetch requests, so
all of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

for asynchronous prefetch limits

You may want to change asynchronous prefetch configurati on temporarily
for specific purposes, including:

e Recovery

« dbcc operations that use asynchronous prefetch

Performance and Tuning Series: Basics 143

Special settings for asynchronous prefetch limits

Setting limits for recovery

During recovery, Adaptive Server usesonly the 2K pool of thedefault data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, edit the configuration file to do one or both of the
following:

» Increase the size of the 2K pool in the default data cache by reducing
the size of other poolsin the cache

» Increase the prefetch limit for the 2K pool

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery compl etes,
without restarting Adaptive Server. The recovery process alows usersto
log into the server as soon as recovery of the master database is compl ete.
Databases are recovered one at a time and users can begin using a
particular database as soon asit is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc

If you are performing database consistency checking when other activity
on the server islow, configuring high asynchronous prefetch limits on the
pools used by dbcc can speed consistency checking.

dbcc checkalloc can use specia internal 16K buffersif thereisno 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to O for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

144 Adaptive Server Enterprise

CHAPTER 6 Tuning Asynchronous Prefetch

Maintenance activities for high prefetch performance

Page chains for all pages-locked tables and the leaf |evels of indexes
devel op kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the original rows in atable have been
modified, determine if kinked page chains are reducing the effectiveness
of asynchronous prefetch. If you suspect that page chain kinks are
reducing asynchronous prefetch performance, you may need to re-create
indexes or reload tables to reduce kinks.

Eliminating kinks in heap tables

For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by del etionsthat remove all rowsfrom apage. These
pages may be reused when additional spaceisallocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the datain
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

Eliminating kinks in clustered index tables

For clustered indexes, page splits and page deall ocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-allocation pagelinkages. Usefillfactor for clustered indexeswhere
you expect growth, to reduce the number of kinks resulting from data
modifications.

Eliminating kinks in nonclustered indexes

If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance and Tuning Series: Basics 145

Performance monitoring and asynchronous prefetch

Performance monitoring and asynchronous prefetch

146

The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous I/O. In addition, statistics io reportsthe number of timesthat
asearch for a page in cache was found by the asynchronous prefetch
without holding the cache spinlock.

See Chapter 1, Using the set statistics Commands” of the Performance and
Tuning Series: Improving Performance with Satistical Analysis.

The sp_sysmon report contains information on asynchronous prefetch in
both the “Data Cache Management” section and the “Disk |/O
Management” section.

If you use sp_sysmon to eval uate asynchronous prefetch performance, you
may see improvementsin other performance areas, such as:

* Much higher cache hit ratios in the pools where asynchronous
prefetch is effective.

* A corresponding reduction in context switches due to cache misses,
with voluntary yieldsincreasing.

» A possible reduction in lock contention. Tasks keep pages locked
during the time it takes for perform 1/O for the next page needed by
the query. If thistime is reduced because asynchronous prefetch
increases cache hits, locks are held for a shorter time.

See Performance and Tuning Series: Monitoring Adaptive Server with
Sp_sysmon.

Adaptive Server Enterprise

Index

Numerics
4K memory pool, transactionlogand 116

A

access
memory and disk speeds 85
Adaptive Server
columnsize 10
number of groups 11
number of logins 11
number of users 11
affinity
CPU 40,51
engineexample 72
aging
datacache 97
procedure cache 90
algorithm
guidelines 57
alocating memory 89
allocation
dynamic allocation 88
ALS
log writer 46
user log cache 44
whentouse 45
application design
DSSand OLTP 102
network packet sizeand 25
procedure cachesizing 92
SMP servers 53
application execution precedence 62, 82-84
environment anaysis 60
schedulingand 71
system procedures 67
application queues. See application execution
precedence

Performance and Tuning Series: Basics

architecture
multithreaded 31
asynchronous log service 43
asynchronous prefetch 129, 140
dbccand 133, 144
during recovery 132
fragmentationand 137
hash-based scansand 142
largel/Oand 140
look-ahead set 130
maintenance for 145
MRU replacement strategy and 142
nonclustered indexesand 133
page chain fragmentationand 137
page chainkinksand 138, 145
parallel query processingand 142
partition-based scansand 143
performance monitoring 146
pool limitsand 136
recovery and 144
sequential scansand 132
tuning goals 139
@@pack_received global variable 25
@@pack_sent global variable 25
@@packet_errorsglobal variable 25
attributes
execution classes 64
auditing
performance effects 125
queue, sizeof 127

B

backups
network activity from 27
planning 5

base priority 64
bep (bulk copy utility)
largel/Ofor 109

147

Index

benchmark tests 61

binding
caches 102, 121
tempdb 103

transactionlogs 103

C

cache hit ratio

cachereplacement policy and 113
datacache 100

procedure cache 92
cachereplacement policy 111
defined 111

indexes 112
lookup tables 112
strategy 111

transactionlogs 112
cache, procedure

cachehit ratio 92

errors 91

query plansin 90
sizereport 91

sizing 92

caches, data 97-123
cachehit ratio 100

data modificationand 99
guidelinesfor named 112
hot spotsboundto 102
1/0 configuration 109
largel/Oand 107

named 101-121
pageagingin 97
poolsin 109
spinlockson 103
strategies chosen by optimizer 110
tempdb boundtoown 103
transaction log bound to own 103
checkpoint process 98
housekeeper task and 47
client

connections 31

packet size specification 25
task 32

client/server architecture 20

148

clustered indexes
asynchronous prefetch and scans 132
scans and asynchronous prefetch 132
columnsize 10
commands for configuration 140
compiled objects 91
datacachesizeand 92
concurrency
SMP environment 53
configuration (server)
housekeeper task 47
110 107
memory 86
named data caches 101
network packet size 23

connections

client 31
contention

datacache 114
disk /O 124
SMPserversand 53
spinlock 114

covering nonclustered indexes
asynchronous prefetchand 132
configuring /O sizefor 119

CPU
affinity 51

cpu grace time configuration parameter
CPUyieldsand 38

CPU usage
housekeeper task and 46
monitoring 48
sp_monitor system procedure 49

cpuaffinity (dbcc tune parameter) 51

D

datacaches 97-123
cache hitratio 100
datamodificationand 99
guidelinesfor named 112
hot spotsboundto 102
largel/Oand 107
named 101-121

pageagingin 97

Adaptive Server Enterprise

sizing 104-120
spinlockson 103
strategies chosen by optimizer 110
tempdb bound toown 103
transaction log bound toown 103
data modification
datacachesand 99
recovery interval and 123
databases
See also database design
dbcc (database consistency checker)
asynchronous prefetchand 133
configuring asynchronous prefetch for 144
largel/Ofor 109
dbcc tune
cpuaffinity 52
decision-support system (DSS) applications
execution preference 83
named data cachesfor 102
network packet sizefor 23
default settings
audit queuesize 127
auditing 126
devices
using separate 53
dirty pages
checkpoint processand 98
washareaand 97
disk /10 42
performing 42
disk i/o structures configuration parameter
asynchronous prefetchand 136
DSS applications
See decision-support systems
dynamic memory allocation 88

E

EC
attributes 64

engine affinity, task 64, 66
example 69

engine resources
distribution 55
results analysisand tuning 61

Performance and Tuning Series: Basics

engines 31

CPU affinity 51
defined 31
environment analysis 60
and planning 59

Index

1/0-intensive and CPU-intensive execution objects

60

intrusive and unintrusive 59
error logs

procedure cachesizein 91
€rror messages

packet 25

procedure cache 91
execution 42

attributes 62

mixed workload precedence 83

precedence and users 84

ranking applicationsfor 62

stored procedure precedence 84

system proceduresfor 67
execution class 63

attributes 64

predefined 63

user-defined 63
execution objects 63

behavior 59

performance hierarchy 62

scope 74
execution precedence

among applications 68

schedulingand 71
expressions, maximum length 11

F

fragmentation, data
effects on asynchronous prefetch
page chain 137

freewrites 46

G

groups, number of for 125 11

137

149

Index

H

hardware
network 26
ports 29
hash-based scans
asynchronous prefetchand 142
header information
packet 20
high priority users 84
hot spots 84
binding cachesto 102

housekeeper free write percent configuration parameter

47
housekeeper task 4648
recovery timeand 125

110
asynchronous prefetch 129, 146
buffer poolsand 102
CPUand 49
disk 42
memory and 85
named cachesand 102
indexes
cache replacement policy for 112
SMP environment and multiple 53
information (sp_sysmon)
CPU usage 49

L

large 1/0
asynchronous prefetchand 140
named data cachesand 107
levels
tuning 4-8
lightweight process 33
listeners, network 29
locking 14
log 1/0 size
matching 109
tuning 106

150

using large 117
logical process manager 62
logins
number of for 125 11
look-ahead set 130
dbccand 133
during recovery 132
nonclustered indexesand 133
sequential scansand 132
lookup tables, cache replacement policy for 112

M

max async i/os per engine configuration parameter
asynchronous prefetchand 136

max async i/os per server configuration parameter
asynchronous prefetchand 136

memory
how to allocate 89
I/Oand 85

named data cachesand 101
network packetsand 24
performanceand 85-127
shared 40
messages
See also errors
mixed workload execution priorities 83
model, SMP process 39
monitoring
CPU usage 48
data cache performance 100
network activity 25
performance 4
MRU replacement strategy
asynchronous prefetchand 142

multiple
network listeners 29
multitasking 35

multithreading 31

N

network packets
global variables 25

Adaptive Server Enterprise

sp_monitor system procedure 25, 49
networks 17

hardwarefor 26

multiple listeners 29
performanceand 17-30
ports 29

reducing trafficon 26

server based techniques 26
nonclustered indexes

asynchronous prefetchand 133
norma forms 13

number (quantity of)

packet errors 25

processes 34

number of groups 11

number of logins 11

number of users 11

O

online transaction processing (OLTP)
execution preference assignments 83
named data cachesfor 102
network packet sizefor 23

optimizer
cache strategiesand 110

overhead
network packetsand 24
pool configuration 121
singleprocess 33

P

@@pack_received global variable 25
@@pack_sent global variable 25
packet size 23
@@packet_errorsgloba variable 25
packets

default 24

network 20

number 24

size specification 25
page chain kinks

asynchronous prefetchand 138, 145

Performance and Tuning Series: Basics

Index

clustered indexesand 145
defined 138
heap tablesand 145
nonclustered indexesand 145
pages, index
aging in datacache 97
pages, OAM (object allocation map)
aging indatacache 97
parallel query processing
asynchronous prefetchand 142
partition-based scans
asynchronous prefetchand 143
performance 1

analysis 12
cachehit ratio 100
designing 2
networks 17
problems 17
techniques 18

pools, data cache
largel/Osand 107

overhead 121
ports, multiple 29
precedence

rule (execution hierarchy) 74
precedence rule, execution hierarchy 74
predefined execution class 63
prefetch

asynchronous 129-146
priority 64

application 62

precedencerule 74

run queues 72

task 63
procedure cache

cachehitratio 92

errors 91

query plansin 90

sizereport 91

sizing 92
procedure cache sizing configuration parameter
processmodel 39
processes (server tasks) 35

identifier (PID) 34

lightweight 33

number of 34

89

151

Index

overhead 33
runqueue 35

Q

query plans
procedure cache storage 90
unused and procedure cache 91
guery processing
largel/Ofor 109
queues
run 42
schedulingand 36
deep 36

R

reads
named datacachesand 122
recompilation
cachebindingand 121
recovery
asynchronous prefetchand 132
configuring asynchronous prefetch for 144
housekeeper task and 47
recovery interval in minutes configuration parameter 98,

123
relaxed LRU replacement policy
indexes 112

lookup tables 112

transactionlogs 112
replacement policy. See cache replacement policy
replication

network activity from 27

tuning levelsand 4

reports

procedure cachesize 91
response time

definitionof 1

other users affecting 27
run queue 34, 35,42

152

S

scheduling, Server
tasks 36
scoperule 74,75
select into command
largel/Ofor 109
sequential prefetch 107
servers
other tools 26
scheduler 38
uniprocessor and SMP 53
singleCPU 34
single-processoverhead 33
size
110 107
procedure cache 91, 92
stored procedure 93

triggers 93
views 93
deepqueue 36

SMP (symmetric multiprocessing) systems
applicationdesignin 53
architecture 39
disk managementin 53
named data cachesfor 104
temporary tablesand 54

sp_addengine system procedure 70

sp_addexeclass system procedure 69

sp_bindexeclass system procedure 63

sp_logiosize system procedure 117

sp_monitor system procedure 49
network packets 25

speed (server)
memory compared to disk 85

spinlocks
contention 114
datacachesand 103

steps
problem analysis 12

stored procedures
hot spotsand 84
maximum length 11
procedure cacheand 90
sizeestimation 93

subprocesses 35
switching context 35

Adaptive Server Enterprise

sybsecurity database

audit queueand 125
symmetric multi processing system. See SMP
sysprocedures table

query plansin 90

T

table scans

asynchronous prefetchand 132
Tabular Data Stream (TDS) protocol 20
task level tuning

algorithm 55
tasks

client 32

execution 42

queued 36

scheduling 36
TDS. See Tabular Data Stream
tempdb database

named cachesand 103

in SMP environment 54
temporary tables

SMPsystems 54
testing

data cache performance 100
throughput 2
timeinterval

recovery 124

sincesp_monitor lastrun 49
time slice 64

configuration parameter 38
time slice configuration parameter

CPUyieldsand 38
tools

packet monitoring with sp_monitor 25
transaction length 54
transaction logs

cache replacement policy for 112

logl/Osizeand 116

named cache binding 103
triggers

procedure cacheand 91

sizeestimation 93
tuning

Performance and Tuning Series: Basics

40

Index

Adaptive Server layer 5
application layer 4
asynchronous prefetch 139
database layer 4
definitionof 3
deviceslayer 6
hardware layer 7
levels 4-8

network layer 7
operating system layer 8
recovery interval 124
two-phase commit

network activity from 27

U

uniprocessor system 34
update statistics command
largel/Ofor 109
user connections
network packetsand 24
user log cache
inALS 44
user log cache (ULC)
logsizeand 116
user-defined execution class 63
users
assigning execution priority 84
users, number of for 125 11

Vv

variables, maximum length 11
views
sizeestimation 93

W

washarea 97
configuring 120
worker processes 32
write operations
free 46

153

Index

housekeeper processand 48

Y

yields, CPU
cpu grace time configuration parameter 38
time slice configuration parameter 38
yield points 38

154 Adaptive Server Enterprise

	Performance and Tuning Series: Basics
	CHAPTER 1 Introduction to the Basics
	Good performance
	Response time
	Throughput
	Designing for performance

	Tuning performance
	Tuning levels
	Application layer
	Database layer
	Adaptive Server layer
	Devices layer
	Network layer
	Hardware layer
	Operating system layer

	Identifying system limits
	Threads, thread pools, engines and CPUs
	Varying logical page sizes
	Number of columns and column size
	Maximum length of expressions, variables, and stored procedure arguments
	Number of logins
	Performance implications for limits

	Size of kernel resource memory
	Analyzing performance
	Normal forms
	Locking
	Special considerations

	CHAPTER 2 Networks and Performance
	Potential performance problems
	Basic questions on network performance
	Techniques summary

	Engine and thread affinity
	Network listeners
	Network listeners in process mode

	How Adaptive Server uses the network
	Configuring the I/O controller
	Dynamically reconfiguring I/O tasks

	Changing network packet sizes
	Large versus default packet sizes for user connections
	Number of packets is important
	Adaptive Server evaluation tools
	Other evaluation tools
	Server-based techniques for reducing network traffic

	Impact of other server activities
	Single user versus multiple users

	Improving network performance
	Isolate heavy network users
	Set tcp no delay on TCP networks
	Configure multiple network listeners

	CHAPTER 3 Using Engines and CPUs
	Background concepts
	How Adaptive Server processes client requests
	Client task implementation

	Single-CPU process model
	Scheduling engines to the CPU
	Scheduling tasks to the engine
	Execution task scheduling
	Scheduling client task processing time
	Maintaining CPU availability during idle time

	Adaptive Server SMP process model
	Scheduling engines to CPUs
	Scheduling Adaptive Server tasks to engines
	Multiple network engines
	Task priorities and run queues
	Processing scenario

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer

	Housekeeper wash task improves CPU utilization
	Side effects of the housekeeper wash task
	Configuring the housekeeper wash task
	Changing the percentage by which writes can be increased
	Disabling the housekeeper wash task
	Allowing the housekeeper wash task to work continuously

	Measuring CPU usage
	Single-CPU machines
	Using sp_monitor to measure CPU usage
	Using sp_sysmon to measure CPU usage
	Operating system commands and CPU usage

	Determining when to configure additional engines
	Taking engines offline

	Enabling engine-to-CPU affinity
	Multiprocessor application design guidelines

	CHAPTER 4 Distributing Engine Resources
	Successfully distributing resources
	Environment analysis and planning
	Analyzing the environment
	Phase 1 - execution object behavior
	Phase 2 - the entire environment

	Performing benchmark tests
	Setting goals
	Results analysis and tuning

	Managing preferred access to resources
	Types of execution classes
	Execution class attributes
	Base priority
	Setting the task priority

	Task-to-engine affinity
	Engine group affinity when switching modes

	Setting execution class attributes
	Assigning execution classes
	Scheduling service tasks
	Creating user-defined execution class task affinity
	How execution class bindings affect scheduling
	Execution class bindings
	Engine affinity can affect scheduling in process mode

	Setting attributes for a session only
	Getting information about execution classes

	Determining precedence and scope
	Multiple execution objects and ECs
	Precedence rule
	Scope rule

	Resolving a precedence conflict
	Examples: determining precedence

	Example scenario using precedence rules
	Planning
	Configuration
	Execution characteristics

	Considerations for engine resource distribution
	Client applications: OLTP and DSS
	Unintrusive client applications
	I/O-bound client applications
	Critical applications

	Adaptive Server logins: high-priority users
	Stored procedures: “hot spots”

	CHAPTER 5 Memory Use and Performance
	How memory affects performance
	How much memory to configure
	Dynamic reconfiguration
	How memory is allocated
	Large allocation in Adaptive Server

	Caches in Adaptive Server
	Cache sizes and buffer pools

	Procedure cache
	Getting information about the procedure cache size
	Monitoring procedure cache performance

	Procedure cache sizing
	Estimating stored procedure size
	Estimating the procedure cache size for a sort
	Estimating the amount of procedure cache used by create index
	Reducing query processing latency
	Reusing dynamic SQL LWPs across multiple connections

	Statement cache
	Data cache
	Page aging in data cache
	Effect of data cache on retrievals
	Effect of data modifications on the cache
	Data cache performance
	Testing data cache performance
	Cache hit ratio for a single query
	Cache hit ratio information from sp_sysmon

	Configuring the data cache to improve performance
	Commands to configure named data caches
	Tuning named caches
	Cache configuration goals
	Gather data, plan, and then implement
	Evaluating cache needs
	Large I/O and performance
	The optimizer and cache choices
	Choosing the right mix of I/O sizes for a cache

	Reducing spinlock contention with cache partitions
	Cache replacement strategies and policies
	Strategies
	Policies

	Named data cache recommendations
	Sizing caches for special objects, tempdb, and transaction logs
	Examining cache needs for tempdb
	Examining cache needs for transaction logs
	Choosing the I/O size for the transaction log
	Configuring for large log I/O size
	Additional tuning tips for log caches

	Basing data pool sizes on query plans and I/O
	Checking I/O size for queries

	Configuring buffer wash size
	Overhead of pool configuration and binding objects
	Pool configuration overhead
	Cache binding overhead

	Maintaining data cache performance for large I/O
	Diagnosing excessive I/O counts
	Using sp_sysmon to check large I/O performance

	Speed of recovery
	Tuning the recovery interval
	Effects of the housekeeper wash task on recovery time

	Auditing and performance
	Sizing the audit queue
	Auditing performance guidelines

	Text and image pages

	CHAPTER 6 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation

	Tuning goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16K pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans

	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	Index

