
Troubleshooting Guide

EAServer
6.0

DOCUMENT ID: DC10113-01-0600-02

LAST REVISED: June 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Troubleshooting Guide iii

About This Book .. vii

CHAPTER 1 Monitoring Techniques... 1
Overview .. 1
Gathering information... 1
Logging and statistics... 4

EAServer log ... 4
HTTP statistics .. 6
IIOP statistics .. 7
Other useful data... 8

Using stack traces .. 8
Obtaining stack traces... 9
EAServer tracing ... 9
Java exception traces.. 11

Tracing network problems.. 12
TCP/IP... 12
IIOP ... 13
HTTP ... 13

CHAPTER 2 Common Problem Areas .. 15
Installation issues ... 15

Migrating from earlier EAServer versions................................ 16
Server crashes, hangs, or disappears.. 16

Server crashes .. 16
Server hangs ... 20
Server disappears ... 22

Server slows or runs out of memory... 23
Connection problems ... 24
Application issues .. 24

Generic issues... 24
Java component issues... 25
C++ component issues.. 26
PowerBuilder component issues ... 26

Contents

iv EAServer

Avoiding memory leaks ... 28
Applications that use Xerces ... 29
Other design issues... 30

Security keys and certificates... 30
Web server redirector plug-in issues.. 31

Apache and Sun Java System Web server redirectors........... 31
Microsoft IIS Web server redirector plug-in 32

Configuration issues... 34
Verifying your configuration... 34
Running EAServer as a service .. 36

System-level issues ... 36
Operating system issues ... 37
CPU sizing... 37
Multiprocessors ... 37
UNIX file descriptors.. 37
Windows virtual bytes.. 38
Running on a 64-bit platform ... 38

CHAPTER 3 Performance Issues... 39
Resources .. 39

CHAPTER 4 Exception Handling ... 41
Overview .. 41
Error handling in CORBA Java components.................................. 42
Handling exceptions in CORBA Java clients 42

CORBA system exceptions ... 43
User-defined exceptions.. 44

Error handling in CORBA C++ components................................... 45
CORBA system exceptions in C++ ... 45
User-defined exceptions in C++ .. 46

ActiveX clients.. 46
Using error pages... 47

Error pages for Web applications .. 47
Error pages for JavaServer Pages.. 47
Using an error page JSP... 48

PowerBuilder error handling... 49
Unhandled PowerBuilder exceptions 49

CHAPTER 5 Common Error Messages ... 51
Introduction .. 51
Error messages.. 52
System exceptions ... 60

Contents

Troubleshooting Guide v

EJB components ... 60
CORBA system exceptions ... 61

CHAPTER 6 Advanced Topics .. 65
Operational management tools .. 65

Memory management tools ... 66
Runtime monitoring tools... 67

Debugging tools ... 71
Java debugging tools .. 71
Windows debugging tools ... 72
UNIX debugging tools ... 73
Attaching a debugger to EAServer.. 74

Stack traces, dump files, and core files.. 74
Windows dump files .. 74
UNIX core files .. 75

Class loader configuration issues .. 76
Common problems with custom class lists.............................. 76
Custom class loader tracing .. 77
JAR file locking and copying ... 77

Troubleshooting Web services... 77
Check logs and error messages.. 78
Verify WSDL files and SOAP addresses................................. 78
Invoke operations and create a test client............................... 79
View incoming and outgoing SOAP messages 80
PowerBuilder Web service considerations 80

EAServer plug-in for JBuilder... 81
JBuilder JSPs and ResultSets... 82

WINS and server response time .. 83
Windows XP and Service Pack 2 .. 84
Cisco VPN clients.. 84
Personal firewalls and router ACLs ... 84

Installing and compiling Apache on HP RISC 84
Miscellaneous topics .. 88

Testing and debugging classes... 88
Additional tools and utilities ... 88
Internet Explorer security patch... 88
Drivers that use the DataSource interface 88
Java Message Service .. 89

Index ... 91

Contents

vi EAServer

Troubleshooting Guide vii

About This Book

About This Book This book contains procedures for troubleshooting problems that
EAServer users may encounter. The problems addressed here are those
that the Sybase® Technical Support staff hear about most often. This
guide is applicable to EAServer version 6.0, and its purpose is to provide:

• Information about common errors so you can resolve problems
without help from Technical Support.

• A list of information that you can gather before calling Technical
Support so they may be able to help resolve your problem more
quickly.

• A greater understanding of EAServer.

Audience This book is for EAServer administrators, and those responsible for
administering, supporting, developing, or deploying client applications or
components that run on EAServer.

How to use this book This book includes these chapters:

• Chapter 1, “Monitoring Techniques,” introduces the tools and
techniques available for logging events and errors, and monitoring
the server.

• Chapter 2, “Common Problem Areas,” describes common problem
areas such as start-up and connection problems, server crashes and
hangs, and configuration issues.

• Chapter 3, “Performance Issues,” provides an overview of resources
available for performance tuning and troubleshooting.

• Chapter 4, “Exception Handling,” explains how to handle errors in
EAServer components and applications.

• Chapter 5, “Common Error Messages,” contains a listing of server
errors with links to additional information.

• Chapter 6, “Advanced Topics,” surveys more advanced topics like
debuggers, stack traces, and tools for memory management and
runtime monitoring.

viii EAServer

Related documents Core EAServer documentation The core EAServer documents are
available in HTML and PDF format in your EAServer software installation and
on the SyBooks™ CD.

What’s New in EAServer 6.0 summarizes new functionality in this version.

The EAServer API Reference Manual contains reference pages for proprietary
EAServer Java classes and C routines.

The EAServer Automated Configuration Guide explains how to use Ant-based
configuration scripts to:

• Define and configure entities, such as EJB modules, Web applications,
data sources, and servers

• Perform administrative and deployment tasks

The EAServer CORBA Components Guide explains how to:

• Create, deploy, and configure CORBA and PowerBuilder® components
and component-based applications

• Use the industry-standard CORBA and Java APIs supported by EAServer

The EAServer Enterprise JavaBeans User Guide describes how to:

• Configure and deploy EJB modules

• Develop EJB clients, and create and configure EJB providers

• Create and configure applications clients

• Run the EJB tutorial

The EAServer Feature Guide explains application server concepts and
architecture, such as supported component models, network protocols, server-
managed transactions, and Web applications.

The EAServer Java Message Service User Guide describes how to create Java
Message Service (JMS) clients and components to send, publish, and receive
JMS messages.

The EAServer Migration Guide contains information about migrating
EAServer 5.x resources and entities to an EAServer 6.0 installation.

The EAServer Performance and Tuning Guide describes how to tune your
server and application settings for best performance.

The EAServer Security Administration and Programming Guide explains how
to:

• Understand the EAServer security architecture

 About This Book

Troubleshooting Guide ix

• Configure role-based security for components and Web applications

• Configure SSL certificate-based security for client connections

• Implement custom security services for authentication, authorization, and
role membership evaluation

• Implement secure HTTP and IIOP client applications

• Deploy client applications that connect through Internet proxies and
firewalls

The EAServer System Administration Guide explains how to:

• Start the preconfigured server and manage it with the Sybase Management
Console

• Create, configure, and start new application servers

• Define database types and data sources

• Create clusters of application servers to host load-balanced and highly
available components and Web applications

• Monitor servers and application components

• Automate administration and monitoring tasks with command line tools

The EAServer Web Application Programming Guide explains how to create,
deploy, and configure Web applications, Java servlets, and JavaServer Pages.

The EAServer Web Services Toolkit User Guide describes Web services support
in EAServer, including:

• Support for standard Web services protocols such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and
Uniform Description, Discovery, and Integration (UDDI)

• Administration tools for deployment and creation of new Web services,
WSDL document creation, UDDI registration, and SOAP management

The EAServer Troubleshooting Guide (this book) describes procedures for
troubleshooting problems that EAServer users may encounter. This document
is available on the SyBooks Online Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc10113_0600/ht
ml/eastg/title.htm.

x EAServer

jConnect for JDBC documents EAServer includes the jConnect™ 6.0.5
driver to allow JDBC access to Sybase database servers and gateways. The
jConnect 6.0.5 Programmer’s Reference is available on the SyBooks Online
Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc39001_0605/ht
ml/prjdbc/title.htm.

Sybase Software Asset Management User Guide EAServer includes the
Sybase Software Asset Management license manager for managing and
tracking your Sybase software license deployments. The Sybase Software Asset
Management User’s Guide is available on the Getting Started CD and in the
EAServer 6.0 collection on the SyBooks Online Web site at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc00530_0200/ht
ml/sysamug/title.htm.

Conventions The formatting conventions used in this manual are:

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

Formatting example To indicate

commands and methods When used in descriptive text, this font indicates keywords such as:

• Command names used in descriptive text

• C++ and Java method or class names used in descriptive text

• Java package names used in descriptive text

• Property names in the raw format, as when using Ant or jagtool to configure
applications rather than the Management Console

variable, package, or
component

Italic font indicates:

• Program variables, such as myCounter

• Parts of input text that must be substituted, for example:

Server.log

• File names

• Names of components, EAServer packages, and other entities that are registered in
the EAServer naming service

File | Save Menu names and menu items are displayed in plain text. The vertical bar shows you how
to navigate menu selections. For example, File | Save indicates “select Save from the File
menu.”

package 1 Monospace font indicates:

• Information that you enter in the Management Console, a command line, or as
program text

• Example program fragments

• Example output fragments

 About This Book

Troubleshooting Guide xi

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

xii EAServer

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
Eclipse help formats, which you can navigate using a screen reader.

The Web console supports working without a mouse. For more information,
see “Keyboard navigation” in Chapter 2, “Management Console Overview,”
in the EAServer System Administration Guide.

 About This Book

Troubleshooting Guide xiii

The Web Services Toolkit plug-in for Eclipse supports accessibility features for
those that cannot use a mouse, are visually impaired, or have other special
needs. For information about these features see the Eclipse help:

1 Start Eclipse.

2 Select Help | Help Contents.

3 Enter Accessibility in the Search dialog box.

4 Select Accessible User Interfaces or Accessibility Features for Eclipse.

Note You may need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xiv EAServer

Troubleshooting Guide 1

C H A P T E R 1 Monitoring Techniques

Overview
This chapter introduces several useful tools and techniques for monitoring
and analyzing your EAServer applications and environment.

Some of the resources described in this chapter serve more than one
purpose. For example, a tool may provide both monitoring and analysis
features, and therefore is mentioned in multiple sections.

Note Some techniques and suggestions in this document require that you
restart the server for changes to take effect, or to test the result and impact.
This is noted when required.

Gathering information
When you are investigating an EAServer error, gather the following
information to convey to Sybase Technical Support; it may help them
expedite a solution:

1 Full text of error message and crash details, as appropriate.

2 Information about your EAServer installation:

Topic Page
Overview 1

Gathering information 1

Logging and statistics 4

Using stack traces 8

Tracing network problems 12

Gathering information

2 EAServer

• Version number

• Build number

• Edition

This information appears at the start of the server log. See “Logging and
statistics” on page 4 for more information about log files.

3 Information about the EAServer process that is running in your
environment, including version numbers of the DLLs or libraries loaded—
see “ListDLLs” on page 69. To list which libraries are loaded and their
load locations, use pmap, or a similar command for your platform.

4 Relevant log files, located in the logs subdirectory:

• Server log The server log may contain:

• Console output

• DriverManager messages

• Exception cross-references

• Transaction cross-references

• Application exceptions

• System exceptions

• Remote IIOP and RMI-IIOP method invocations

• Local RMI method invocations

• EJB component invocations

• Web component invocations

• Java Message Service (JMS) operations

• JDBC driver activity

• HTTP request log HTTP request logs are named
serverName-http-YYYY-MM-DD.log, where serverName is the name
of the server, and YYYY-MM-DD is the current date.

5 Information about your platform:

• Number of CPUs

• Operating system version and patch levels

• Memory

CHAPTER 1 Monitoring Techniques

Troubleshooting Guide 3

6 Environment variables, many of which are defined in the setup script
djc-setenv.sh (UNIX) or djc-setenv.bat (Windows):

• DJC_HOME

• JAGUAR_HOST_NAME

• CLASSPATH

• LD_LIBRARY_PATH

• DJC_JDK_14 and DJC_JDK_15

Not all variables are defined in the setup script. The server and tools
start-up scripts configure PATH, CLASSPATH, BOOTCLASSPATH, and
other settings.

Also check the user-defined scripts local-setenv.sh (UNIX) or
local-setenv.bat (Windows) for additional settings.

See “Configuration issues” on page 34 for more information on
environment variables.

7 Information about the server JDK; including:

• Java version (from the server log file)

• VM type (from the server log file)

• Other server properties that configure the Java VM

8 Database:

• Database server

• Database version/driver

• Connection type (ODBC, JDBC, native)

9 Application information:

• Nature of the application (for example, an order entry system)

• Application type: client/server or Web application

• Number of concurrent users that access the application during peak
time

• Maximum amount of data that the components retrieve

• Amount of data returned to the clients

• If service components exist, their function (verify that they are not
transactional)

Logging and statistics

4 EAServer

• If shared components (versus multiple instance components) exist,
their purpose

• Whether components are being pooled

• If stateful components exist, their function; also, whether
SetComplete and SetAbort functions are called for these components

• Types of components in use: PowerBuilder®, Web applications,
servlets, JSPs, and so on

• For applications that include PowerBuilder components, the number
of:

• PowerBuilder components used in the application

• Whether any PowerBuilder components are invoked by a non-
PowerBuilder client; and if so, the type of client

• Whether the SetComplete and SetAbort functions are being called
for stateful components, or whether the auto-demarcation
deactivation component property is set for the components

Logging and statistics
Log files and statistics provide useful troubleshooting information.

EAServer log
This log file contains the server version, build number, listener addresses, Java
virtual machine (VM) version and type, trace and debug messages, all other
messages logged by the server, and component output.

Use any of these techniques to output messages to the EAServer log file from
an EAServer component or application:

• Enable debug, trace, or other properties as outlined in “EAServer tracing”
on page 9.

• Call System.out.print from a Java component.

• Call jaguar.server.Jaguar.writeLog method in a Java component. See the
com.sybase.jaguar.server.Jaguar class documentation in Chapter 1, “Java
Classes and Interfaces,” in the EAServer API Reference Manual.

CHAPTER 1 Monitoring Techniques

Troubleshooting Guide 5

• Call JagLog from a C or C++ component. See JagLog in Chapter 2, “C
Routines Reference,” in the EAServer API Reference Manual.

• Utilize the ErrorLogging object for a PowerBuilder component. See “Error
logging service” in the PowerBuilder Application Techniques manual for
usage information.

The server writes messages to the <serverName>.log file.

The server may exit immediately without logging errors if there are errors in
the server configuration; in this case, the server prints error messages to the
shell window (console) where it was started.

Integrating with other logging systems

EAServer includes a configurable logging mechanism that allows integration
with the JDK 1.4 or JDK 1.5 Java logging package, or the Apache Log4j
logging system. A server’s logging properties are defined in a log profile,
which defines the logging subsystem used, as well as other properties, such as
output destinations, formats, and the level of severity required before a
message is recorded.

You can use the following logging subsystems:

• The built-in EAS subsystem, which provides:

• The ability to configure log levels so that messages below a specified
level of severity are discarded

• Optional archiving and compression of previous log file versions

• Apache Log4j, which is commonly used on large projects. For more
information, see the Apache Log4j Documentation at
http://jakarta.apache.org/log4j/docs/api/overview-summary.html.

• The Java Logging package, included in JDK versions 1.4 and 1.5. This
API is the Sun-proposed standard for logging in Java applications. For
more information, see the Java Logging documentation at
http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html. To use
this package, your server must be running JDK 1.4 or a later JDK version.

Logging and statistics

6 EAServer

If you use the Log4j or Java Logging packages, you can extend default
behavior by plugging in your own code that implements the required
interfaces. For example, you can install Log4j log handler classes that write
messages to the Windows System event log or to a database. Also, if you use
one of these packages to log messages from your own component or
application code, you can configure the server’s log profile so that server log
messages go to the same destinations.

Logging APIs

Regardless of the logging system you use, you can write messages to the log
using all of the methods supported in earlier versions of EAServer, such as:

• System.out.println or Jaguar.writeLog from Java code running in the server

• ErrorLogging.log from PowerBuilder NVO (nonvisual object) components

• JagLog from C or C++ components

In addition, if you use Log4j or the Java Logging system, you can log messages
from in-server Java code by calling the logging API directly.

Managing system logging

“Configuring system logging” in Chapter 3, “Creating and Configuring
Servers,” in the EAServer System Administration Guide describes how to
manage system logging.

Component logging

To enable tracing for all the components that have trace flags available under
the com.sybase.djc package, start EAServer using:

-Ddjc.trace=com.sybase.djc.*

Note Component logging can degrade server performance; therefore, Sybase
suggests that you use it only for short durations, and turn it off as soon as you
obtain the necessary information.

HTTP statistics
Use the Management Console to view the HTTP statistics for a server.

CHAPTER 1 Monitoring Techniques

Troubleshooting Guide 7

You can enable or disable HTTP request logging on the server’s Log/Trace tab.

IIOP statistics
To trace IIOP traffic between EAServer and an IIOP client, use the rmiiopTrace
flag when you start the server.

Use the Management Console to view IIOP statistics for a server.

You can enable or disable IIOP session activity on the server’s Log/Trace tab.

IIOP statistics may be helpful in diagnosing:

• Client application issues, such as login failures

• Component issues, including:

• Method invocation errors

• Result sets not returned as expected

• Trouble connecting to the target database

Statistic Description

Accepted Connections The number of HTTP connection requests
accepted by the server

Number of Active Requests The number of requests that are currently active

Average Requests per Connection The average number of requests for each HTTP
connection

Number of Bytes Written The total number of bytes written for all HTTP
connections since starting the server

Average Duration of Connections The average duration (in milliseconds) of
HTTP connections

Number of Errors The number of HTTP connection requests that
resulted in an error

Open Connections The number of open HTTP connections

Average Duration of Requests The average duration (in milliseconds) of
HTTP requests

Number of Requests The total number of HTTP requests

Statistic Description

Accepted Connections The number of IIOP connection requests accepted by
the server

Open Connections The number of open IIOP connections

Using stack traces

8 EAServer

• Intercomponent call errors

The log may be difficult to decipher when multiple clients are talking to the
server in parallel. If possible, run only one client when using the IIOP log
information.

IIOP logging is verbose IIOP logging can quickly fill up the disk and
degrade server performance. Use IIOP logging only for short durations; turn it
off as soon as you gather the information you need.

Other useful data
Other useful data comes from:

• Server console messages, which may provide additional error information.

• Licensing output in the log file.

• Client-side log files. See “EAServer tracing” on page 9 for more
information.

Using stack traces
Stack traces, dump files, and core files contain useful information about what
a server process is doing at a given time, such as:

• Methods called

• Memory information

• Active thread information

These files are time consuming to read and not always easy to understand. Try
simple troubleshooting techniques first. Use the server log first, which is much
more readable, to review server and component output and check any errors
raised. Next, check the dump file to get an idea of which debug/trace flags
should be turned on. This may help identify things like operating system signal
issues.

CHAPTER 1 Monitoring Techniques

Troubleshooting Guide 9

For information about how to obtain various trace files for troubleshooting, see
“Stack traces, dump files, and core files” on page 74.

Note Stack traces, dump files, and core files are not mutually exclusive.
Depending on the platform and tools or options you use, the output file may
contain one or more types of detail.

Obtaining stack traces
The EAServer process stack trace contains information about the active threads
for the process.

❖ Obtaining a stack trace in UNIX

• In UNIX, to generate a JVM full thread dump, enter:

kill -QUIT EAServer_process_id

This does not work if you use “-Xrs” as a JVM parameter.

Note AIX may need special configuration for a full dump.

On the Solaris platform, to generate a C back trace, you can use pstack,
which is located in /usr/proc/bin.

Another alternative is to generate a core file—see “UNIX core files” on page
75.

EAServer tracing
Tracing provides information about activities carried out by an application.
Trace output is sent to the server’s log file. To establish the level of detail for
logging and tracing:

1 Use the Management Console to connect to EAServer.

2 Expand the Servers folder, and select the server.

3 On the Log/Trace tab, select or unselect the following properties:

• Capture Console Output in Log Writes messages that display in
the console to the server log file.

Using stack traces

10 EAServer

• Enable HTTP Request Log Generates an HTTP request log. Logs
are named serverName-http-YYYY-MM-DD.log and created in the
logs subdirectory. serverName is replaced with the name of the server
and YYYY-MM-DD is replaced with the current date.

• Enable java.sql.DriverManager Log Writes DriverManager log
messages to the server log.

• Generate Exception Cross-Reference Cross-references
exceptions in the server log file.

• Generate Transaction Cross-Reference Cross-references
transactions in the server log file. To start transaction tracing from the
command line, use the logTransaction flag when you start EAServer

• Log Application Exceptions Writes application exceptions to the
server log. If a deployed module requires that application exceptions
be logged, set either the ejb.logExceptions (EJB) or web.logExceptions
(Web applications) property in the module’s XML configuration
script to true. You can edit this script in the Management Console,
using the module’s Configuration tab.

• Log System Exceptions Writes system exceptions to the server
log. To log system exceptions, use the same technique described in
Log Application Exceptions, above.

• JMX Logging Level The logging level for the Systems
Management JMX agent. See “Running the SNMP subagent” in
Chapter 14, “Systems Management,” in the EAServer System
Administration Guide.

• Enable RMI-IIOP Trace Traces remote method invocations for IIOP
and RMI-IIOP in the server log. You can also enable RMI-IIOP
tracing from the command line, which does not change the value in
the server properties file. To start IIOP tracing from the command
line, use the rmiiiopTrace flag when you start the server.

 Warning! Enabling RMI-IIOP trace may result in plain-text
passwords appearing in the server log, depending on the
authentication mechanism used by remote clients.

• Enable RMI Local Trace Traces local RMI method invocations
(intercomponent calls) in the server log. To start tracing from the
command line, use the rmiiiopTraceLocal flag when you start the
server.

CHAPTER 1 Monitoring Techniques

Troubleshooting Guide 11

• Enable EJB Trace Traces EJB component invocations in the server
log. To start EJB tracing from the command line, use the ejbTrace flag
when you start EAServer.

• Enable Web Trace Traces Web component invocations in the
server log.

• Enable JMS Trace Traces Java Message Service (JMS) operations
in the server log. All public and protected JMS provider methods are
traced. To start JMS tracing from the command line, use the jmsTrace
flag when you start EAServer.

• Enable SQL Trace Traces JDBC driver activity in the server log,
including JDBC prepared statement operations, parameter and result
information for container managed persistence operations (queries
and updates), and transaction commit/rollback operations. To start
SQL tracing from the command line, use the sqlTrace flag when you
start EAServer.

You can also enable these logging and tracing properties from the command
line or in the setenv.bat[sh] file—see “Managing system logging” on page 6.

For information on viewing the log files, see “Viewing server log files” in
Chapter 11, “Runtime Monitoring,” in the EAServer System Administration
Guide.

Java exception traces
There are two types of stack traces, thread-level and process-level. When you
catch an exception in your component, you can print the thread-level stack
trace using the printStackTrace method in the component’s try/catch block:

try {
// whatever
}
catch (Exception e) {
{
// Important to avoid empty catch blocks
// Remember to output error information

e.printStackTrace();
}

Many APIs such as JDBC and JNDI throw generic exceptions, with the
original error information embedded as a nested exception. For JDBC, you can
retrieve the nested exception using the java.sql.SQLException.getNextException
method. Record the nested exception message and stack trace.

Tracing network problems

12 EAServer

You may also need to print naming exceptions. For example, when creating
proxies in an EJB client, a naming exception may be thrown. Since the lookup
method must throw a NamingException, other errors can be embedded, such as
the NamingException root cause. Often, you must retrieve details about the
embedded error before you can diagnose the problem. The code below
demonstrates how to retrieve and print the root cause information for a JNDI
NamingException:

catch (NamingException ne)
{

System.out.println("Naming exception: " +
ne.toString());

ne.printStackTrace();
throwable rc = ne.getRootCause();
if (rc != null)
{
System.out.println("\nRoot cause: + rc.toString();
rc.printStackTrace();

}
}

If you do not catch exceptions in component code, EAServer catches the
exception, logs the error, and aborts method execution. However, the server
may not record all information required to debug the problem, such as nested
exceptions. For this reason, catch exceptions in your own code and log the
information required to diagnose the problem.

If serious internal errors occur, the Java VM may abort and produce a process-
level stack trace that contains trace information for all Java threads, signals
received, and thread states at the time of the error.

Tracing network problems
A number of tools and techniques are available to monitor the operation of the
server, its environment, and applications. Some useful network and protocol-
level monitoring tools and resources are described below.

TCP/IP
Network tracing tools for the TCP/IP layer include:

CHAPTER 1 Monitoring Techniques

Troubleshooting Guide 13

• netstat – displays current TCP/IP network connections and protocol
statistics.

• TDImon – an application that lets you monitor TCP and UDP (User
Datagram Protocol) activity, track network-related configuration
problems, and analyze application network usage. This tool is available at
the Sysinternals Web site at http://www.sysinternals.com.

• ping – attempts to elicit a response from a specified host.

• traceroute – helps you determine the route IP packets take to a network
host.

IIOP
Network tracing tools for IIOP include:

• Management Console monitoring—see “IIOP statistics” on page 7.

• IIOP output logging, which traces remote method invocations for IIOP
and RMI-IIOP in the server log. See “EAServer tracing” on page 9.

HTTP
Network tracing tools for HTTP include:

• Management Console monitoring—see “HTTP statistics” on page 6.

• HTTP request log—see “EAServer tracing” on page 9.

Tracing network problems

14 EAServer

Troubleshooting Guide 15

C H A P T E R 2 Common Problem Areas

Installation issues
If you encounter installation issues, consult the EAServer Installation
Guide for your platform, which can help you resolve problems and answer
questions about:

• Installing

• Upgrading

• Licensing

• Adding components

• Reinstalling

To locate the EAServer Installation Guide:

1 Go to the Product Manuals site at http://infocenter.sybase.com.

2 Select EAServer 6.0, then select the Installation Guide for your
platform.

Topic Page
Installation issues 15

Server crashes, hangs, or disappears 16

Server slows or runs out of memory 23

Connection problems 24

Application issues 24

Security keys and certificates 30

Web server redirector plug-in issues 31

Configuration issues 34

System-level issues 36

Server crashes, hangs, or disappears

16 EAServer

Migrating from earlier EAServer versions
To migrate EAServer entities from an earlier version to version 6.0, begin with
EAServer version 5.5 or later, and run the EAServer 6.0 migration tool. To
migrate from an EAServer version earlier than 5.5, first migrate to version 5.5,
then run the 6.0 migration tool.

See the EAServer Migration Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc00485_0600/ht
ml/easmig/title.htm.

Server crashes, hangs, or disappears
This section describes techniques for isolating the cause if a server crashes,
hangs, or disappears. These are guidelines only, subject to your application or
environment; they may or may not help isolate the cause.

Server crashes
A server failure (crash) may occur for various reasons. Failure typically
happens during native code execution; for example, EAServer native code,
JVM, or PBVM code. These issues are most difficult to trace when they occur
on the client side. The following debugging suggestions may help you analyze
the problem and enable you to provide enough information to the engineering
team so it can either fix the issue or suggest other debugging steps:

• Look at all the logs carefully, including the JVM crash logs in the bin
directory, to determine which operation could have caused the crash.

• Try to identify the steps that led up to the crash.

• Check the PATH and LIBRARY_PATH settings to verify that nothing
unusual is present. You can do this by modifying the run-server.bat[sh]
script to print the environment variables. LIBRARY_PATH, which is read
at server start-up, should not include any JVM directories.

• Run EAServer in debug mode to see whether any helpful information is
printed.

• If the previous suggestions do not help:

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 17

• Start EAServer using the -stopOnError flag. This flag suspends the
JVM whenever a crash-causing failure occurs. A message displays in
the console (or in a message box on Windows) indicating that a fault
condition has occurred. Next, attach a debugger or other tool (such as
pstack on Solaris) to get the stack trace of the entire process of the
thread on which the crash occurs. See “Using stack traces” on page 8.

• Enable IIOP tracing to find which operations are causing the crash.
This might be tedious to decipher in a multiuser environment. See
“EAServer tracing” on page 9.

• Check memory usage to verify that the crash is not related to lack of
memory on the native end.

• Check the Internet to see if other users have reported similar problems
with the current version of the JVM.

• If a PowerBuilder component causes EAServer to crash, the pointers
provided for crash analysis may be helpful.

• Try other (newer or older) versions of the JVM.

Note This can be risky, because an untested JVM may cause some
functionality to work incorrectly.

More tips for debugging server failures

Server failure can take several forms:

• Server crashes on start-up

• Server fails at a specific point that is reproducible

• Server crashes intermittently

Server crashes on start-up

To resolve or analyze a start-up crash:

1 Make sure that the PATH and CLASSPATH variables are correctly set.

Verify which DLL or library versions have been loaded, and class load
locations. For Windows, see “ListDLLs” on page 69. For UNIX, use pmap
or another command or tool appropriate for your platform.

2 If you are operating in a cluster environment:

• Check cluster start-up/check settings.

Server crashes, hangs, or disappears

18 EAServer

• Ensure all members have the same listener names and types.

3 Check the server log file. Besides reporting errors, the log file can also
help determine how far along the start-up process was. The start-up tasks
include:

a Loading licensing files, check options

b Loading network libraries for listeners

c Initializing the JVM

d Initializing various data structures

e Loading server ClassLoader

f Loading JCM (Java Connection Management) caches, connectors,
and resources

g Starting services:

• Repository, GC, JCM, and Naming ServletService

• User services; for example, the message service

If there are no problems, the server begins accepting regular client
connections, as indicated by the console message “Accepting
connections.”

4 In the server start batch file, set ECHO to on. This provides additional
output and may help determine the point of failure.

5 Gather crash information, such as the load address. For Windows, see
“ListDLLs” on page 69; for UNIX, use pmap or another command or tool
appropriate for your platform.

When the server crashes, identify the crash address using the console or
log file. Use the address to identify the crash area or the module being
executed. When an executable is launched, it tends to use the same set of
base addresses, as virtual addresses normally do not change. This helps
determine the specific product or application to investigate. The address
may show that the crash occurred outside of EAServer; for example, in a
system module. If the crash occurred in EAServer or a Sybase module, the
address may be helpful to Technical Support, and may point to a known
issue.

6 If EAServer crashes while running as a service, start EAServer in a
console instead. A service typically runs under different resource
constraints and permissions than a console.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 19

7 If the message service is configured, set cms.debug to true.

Server fails at a specific point that is reproducible

If the server fails at a specific, reproducible point:

1 Verify that the server started correctly, as indicated by these console
messages:

Accepting Connections: iiop://host:2000
Accepting Connections: iiops://host:2001
Accepting Connections: iiops://host:2002
The Management Console can be accessed at http://host:8000/console
The Management Console can be accessed at https://host:8001/console
Accepting Connections: http://host:8000
Accepting Connections: https://host:8001
Accepting Connections: https://host:8002
Server Started

where host is the EAServer host machine.

2 Check the server log for errors, to assess when the crash occurred, and to
determine areas for further investigation.

3 In the Management Console, check the MessageProfiler tab to find out
which components are active, the connections being used, and so on—see
“Runtime monitoring tools” on page 67.

4 Using the information from steps 1 and 2, turn on debug and trace flags for
specific components, connections, and so on.

5 Explore what is happening in the application or component. Look for
common application trouble spots—see “Generic issues” on page 24.

6 Check the component and server property settings.

7 Debug the component.

8 Check the server configuration, specifically:

• Patch levels—see “EAServer log” on page 4 for details.

• Resource and memory usage.

• DLL versions, library versions, and Java class loading—see
“Verifying your configuration” on page 34 for library and class
information, and “ListDLLs” on page 69.

Server crashes, hangs, or disappears

20 EAServer

9 Invoke a service component in the code just before where the crash is
taking place to write information to the EAServer log—see “ListDLLs”
on page 69:

• JVM properties

• Free and total memory

• EAServer monitoring data

• EAServer memory dump

10 Use the stack trace, dump file, and crash address for advanced
troubleshooting—see “Stack traces, dump files, and core files” on page
74.

Server crashes intermittently

If EAServer runs for a while, then crashes intermittently, use a similar plan as
for reproducible crashes above.

• Ensure that sanity checks are enforced on the connection; otherwise, the
cache may hand out invalid connections.

• Use a service component to periodically write information to the server
log.

• Look for common application trouble spots.

• Monitor for memory leaks.

• Check peaks, maximums, and exhausted system resources.

Server hangs
If EAServer runs for a while, then stops responding to requests, first follow the
debugging suggestions described in “Server crashes” on page 16. If these do
not solve the problem:

1 Check whether the issue exists only with specific types of requests
(listeners, connections, and so on) or with everything (EAServer is not
responding at all). If it is specific, continue with step 2; otherwise, go to
step 4.

Check listeners, including IIOP, TDS, and HTTP as follows:

• Use the Management Console to connect to the IIOP listener port. A
successful connection means that IIOP is working.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 21

If you cannot connect, check to see whether the maximum number of
IIOP or total sessions have been reached. If not, obtain a stack trace.

• Check the HTTP listener port at http://machine_name:8000 for
default documentation. If the document is visible, HTTP is working.
If you cannot view the default documentation:

• Check whether the maximum HTTP or total sessions have been
reached.

• Turn on HTTP request logging.

• If you are using a Web server redirector, set verbose logging in
the configuration file.

• Check the HTTP request log, HTTP error log, and the server log.

2 Check the data source:

• Use the Management Console to ping the data source. If ping fails, use
isql (or a vendor-supplied tool for a non-Sybase database) to try a
simple SQL request outside EAServer.

Use a database monitoring tool to investigate what is happening on
the database server side. Check locks held.

• In the Management Console, look at the server’s DataSource tab.
Verify that you have not reached the maximum number of
connections for the data source. Check the number of connections:
active, pooled, forced, peak, and so on.

• If you are trying to connect to Adaptive Server Enterprise, check that
the log file is not full; this can cause EAServer to hang. Trace the
connection using the Ribo utility to verify that the last SQL request
passed. For information about using Ribo, see the jConnect for JDBC
Installation Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.jco
nnjdbc_6.05.jconnig/html/jconnig/title.htm.

• If you are making a JDBC connection, turn on the JCM debug flag to
identify any SQL requests that may be causing the problem; try
connecting through isql (or a vendor-supplied tool for a non-Sybase
database) to check the response time.

3 Check whether a specific component or Web application may be
responsible:

• Try another component.

Server crashes, hangs, or disappears

22 EAServer

• Review component properties. Is the component shared? Are
variables set unexpectedly?

• Review the component code to look for:

• A non-threadsafe sleep call

• Synchronization for static variables

• Proper release of resources

• Try using the Apache Tomcat servlet engine to host your Web
components, delegating EJB requests to EAServer. See white paper
#1016589: Using EAServer 4.0 with Apache Tomcat 3.3 at
http://www.sybase.com/detail?id=1016589 for details.

4 If there is no response from any facility, including HTTP and IIOP
listeners, connection caches, or components:

• Verify whether EAServer maximums are being reached; specifically,
check if IIOP client sessions are at their maximum, or if the maximum
thread limit (IIOP + HTTP) is reached.

• Check whether other tasks are running, and whether operating system
peaks are being hit.

• Get a stack trace or dump. You must first kill the java process, run the
core image, or generate the dump using a debugger. See Chapter 6,
“Advanced Topics” for more information.

Server disappears
If the server runs for a while, then disappears:

1 Check log files for errors. See “Logging and statistics” on page 4 for
details.

2 On UNIX, check to see if a core file has been generated. On Windows,
check for a .log or .dbg file.

3 Check the console for errors.

4 If there are no errors, restart the server to capture information next time.

• Start the server from the command line, and redirect the output:

UNIX:

start-server.sh > err.out 2>&1

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 23

Windows:

start-server.bat >info.out 2 >err.out

• On Windows, set the crash handler to userdmp.exe instead of
Dr. Watson (drwatson.exe or drwtsn32.exe). See Chapter 6,
“Advanced Topics,” for more on debugging tools.

• Run the server in debug mode:

start-server.sh[bat] [server] -debug

5 Implement a service component to periodically write information to the
server log. See Chapter 4, “Creating Service Components,” in the
EAServer Automated Configuration Guide.

Server slows or runs out of memory
If the server is slow to start, the problem may be the license manager, which
may take one or two minutes to start.

If the server starts as expected, then slows down or runs out of memory,
investigate these areas:

1 In the server log, search for “MEMORY MONITOR STATISTICS” to find
the current Java memory usage and virtual memory usage.

2 In the Management Console, select Servers | <Server Name> | Statistics,
and monitor the system to check pooling, peaks, maximums, sessions, and
so on.

3 Check system sizing (virtual memory and paging file).

4 Use system tools to see which resource is failing. Check virtual bytes,
CPU utilization, threads waiting, and so on. For each of these steps, see
“Runtime monitoring tools” on page 67.

5 Review EAServer timeout properties. If no timeout is set, which is often
the EAServer default, this leads to indefinite wait for transactions,
components, or methods ().

6 Look for application trouble spots—see “Application issues” on page 24.

7 Check for memory leaks. For Java profiling, use Borland OptimizeIt. On
Windows, use the Performance Monitor.

Connection problems

24 EAServer

8 Implement a service component to periodically write information to the
server log.

Connection problems
If you have trouble connecting to EAServer, check these items:

• If your server’s listeners use “localhost” for the machine name, rather than
the actual network host address, you can connect only from clients running
on the same machine, and connecting clients must use “localhost.” To
connect from other machines, change the server listeners to use the actual
network name rather than “localhost.”

• Some clients may have trouble resolving DNS host names to IP addresses.
In this case, change the server’s listeners to use the host IP address rather
than the DNS host name.

• If you have trouble connecting from Java clients, check for exceptions
related to Java class loading. See “Deploying and running Java clients” in
Chapter 13, “Developing CORBA/Java Clients,” in the EAServer CORBA
Components Guide for details.

If you are trying to connect from a Java applet, check your Web browser’s Java
console for error messages.

Application issues
This section describes common application issues for all component types.

Generic issues
Common application problems for all component types include:

Non-threadsafe sleep calls Cause the server, instead of a specific thread, to
sleep. Always use jagsleep.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 25

User-spawned threads Use a thread monitor to allow EAServer to manage
threads that must be spawned by a component. See “Monitoring threads” in
Chapter 3, “Creating and Configuring Servers,” in the EAServer System
Administration Guide.

ResultSets You must explicitly free the structures that you use to process
result sets. A ResultSet object is closed only when the Statement object that
generated it is closed.

Shared components A single shared component instance services all client
requests. A shared component can store data in instance variables. However, if
the component’s Concurrency option is also selected, you must add code to
synchronize access to instance variables.

If a PowerBuilder component is Shared, disable Concurrency. PowerBuilder is
thread-safe only at the session level.

Lack of error handling Code that does not check for errors, and invalid
object references and calls are common problems. For more information, see
Chapter 4, “Exception Handling.”

No timeout on stateful components, or no remove() to disconnect the
client proxy Before destroying the client proxy, deactivate the component
instance using the SetComplete method. Do not leave a component instance
bound to the client without a reference to it.

Variables holding references Set variables that hold references to null,
particularly pooled components or connections.

Java component issues
Deploying from an EAR, JAR, or WAR If you have trouble deploying from
an EAR, JAR, or WAR, use the verifier tool to verify that it is valid. For details,
see Verifier Tool at http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Tools11.html.

If you are having trouble deploying a Web application, check the J2EE
requirements. If an application does not adhere to the J2EE rules, you may not
be able to deploy it. For example, because they require local access, entity
beans that participate in a container-managed relationship must all reside in the
same EJB-JAR.

On Solaris and Linux, deploying a JAR file may fail if the class path includes
“$JAGUAR,” an environment variable that was used in versions of EAServer
earlier than 6.0, and which therefore may include some 5.x classes in the class
path.

Application issues

26 EAServer

Static variables in Java Static variables must be final or primitive, and
cannot be larger than 32 bits. They can lead to potential race conditions: a
variable is defined at the class level rather than the instance level; two threads
try to modify a variable simultaneously. Race conditions are difficult to
troubleshoot, and cause intermittent problems. You can use synchronization to
prevent race conditions, but synchronization can cause performance
bottlenecks.

Synchronizing component skeletons A skeleton class interprets
component invocation requests and calls the corresponding method in your
component with the parameter values supplied by the client. When a client
sends an invocation request, the skeleton reads the parameter data and calls the
Java method. When the method returns, the skeleton sends output parameter
values, return values, and exception status to the client.

Problems can arise if component skeletons get out of sync. Generate a new
skeleton class if you do any of the following:

• Install the component in a different EAServer package

• Change the name of the implementation class or move it to a different Java
package

• Add a method to the component interface

• Delete a method from the component interface

• Change the signature of an existing method in the component interface

C++ component issues
Incorrectly coded C++ components can corrupt EAServer memory. If you are
having trouble with C++ components, Sybase suggests that you try moving
them to another server and repository, so that if they crash, other components
are not impacted.

PowerBuilder component issues
If a PowerBuilder component causes EAServer to crash, the pointers provided
for crash analysis may be helpful. If EAServer does not crash, insert debug
statements into the PowerBuilder component.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 27

Migrating PowerBuilder components When you migrate PowerBuilder
components from EAServer 5.x to 6.0, the migration tool does not generate
CORBA/Java stubs automatically. If stubs are required, you must generate and
compile them manually:

1 From the command line, run:

idl-compiler.bat p_test.idl -f DJC_HOME\genfiles\java\src -java

where DJC_HOME is the EAServer installation directory.

2 Change to %DJC_HOME%\genfiles\java\src\p_test, and run:

JDK_HOME\bin\javac -d DJC_HOME\genfiles\java\classes -classpath
DJC_HOME\lib\eas-servr-14.jar;DJC_HOME\java\classes *.java

where JDK_HOME is the JDK installation directory

Web DataWindow™ stability You may see stability issues or hanging
behavior in the Web DataWindow component, in some pre-9 PowerBuilder
versions. See white paper #1023707: Web DataWindow Stability Issue at
http://www.sybase.com/detail?id=1023707 for details.

EAServer/PowerBuilder memory tuning See white paper #1027319:
EAServer/PowerBuilder Memory Tuning and Troubleshooting at
http://www.sybase.com/detail?id=1027319.

PBOnFatalError variable The PBOnFatalError system environment
variable allows you to specify whether EAServer should continue, restart, or
shut down when an internal exception occurs in the PBVM. For more
information, see “Unhandled PowerBuilder exceptions” on page 49.

PBRollbackOnRTError variable If a runtime exception is raised by a
PowerBuilder component running in EAServer, the value of
PBRollbackOnRTError determines the outcome of the transaction. If set to
true, the transaction is rolled back; if set to false, the transaction is committed.
After the transaction is either rolled back or committed, the exception is thrown
back to the client.

The default behavior in PowerBuilder 8 prior to Build 10656 and in versions
of PowerBuilder 9 prior to build 7151 is to commit the transaction.

Threading models on Sun Solaris Using a many-to-many threading model
on Solaris may cause EAServer to hang or crash, if the server is highly stressed.
Consider using a one-to-one threading model. See white paper #1026268:
EAServer on Solaris - Troubleshooting Tip for Crashes or Hangs at
http://www.sybase.com/detail?id=1026268.

Application issues

28 EAServer

Performance guidelines If you have trouble running PowerBuilder
components under a heavy load, see “PowerBuilder component performance”
in Chapter 3, “Component Tuning,” in the EAServer Performance and Tuning
Guide.

Code sets Use the following guidelines when deploying PowerBuilder
clients or components to EAServer, and when troubleshooting issues related to
code sets:

• In PowerBuilder clients that use char values greater than 127, specify the
code set using the -ORBCodeSet property. The default code set (UTF-8)
does not work, because PowerBuilder strings cannot handle 3-byte
encodings. To specify the code set, set the Connection object’s Options
property; for example, to handle Korean characters in the eucksc code set,
use the following syntax, where myConnection represents the Connection
object:

myConnection.Options =”ORBCodeSet=’eucksc’”

• Specify the component- or server-level default code set.

• For PowerBuilder clients and components, verify that the specified code
set is compatible with the operating system locale where they are running.
That is, a client’s code set must be compatible with the client’s locale, and
a component’s code set must be compatible with the component’s locale.
The client’s and component’s locales need not be the same.

• If you encounter a character-conversion problem, verify that the character
is valid in the selected code set, and that it has a well-defined encoding in
Unicode; for example, the euro character is not valid in ISO 8859-1.

For more information about working with code sets, see white paper #1028793:
Guidelines for Code Set Interoperability with PowerBuilder and EAServer at
http://www.sybase.com/detail?id=1028793.

Trace flags All EAServer trace flags are described in “EAServer tracing” on
page 9.

Error handling See “PowerBuilder error handling” on page 49.

Avoiding memory leaks
Here are some ways to avoid memory leaks when designing your EAServer
applications. Some points are more relevant to PowerBuilder applications and
others to Java.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 29

• Stateful objects have a one-to-one relationship with the client, so if the
client disconnects, the object persists until the server times out. Stateless
objects are preferable.

• Close database connections when finished; otherwise, the transaction
manager cannot give connection resources to another requestor until a
timeout occurs.

• Keep variable scope as small as possible. Limit the use of instance
variables. Even if a component instance is not currently active, its storage
persists for the lifetime of the instance.

• Use the appropriate event to create and destroy objects. If stateful, create
instance objects in the constructor event and destroy them in the destructor
event. If stateless, reset instance objects in the activate and deactivate
events. In the deactivate event, set instance variables in Java components
to null. When using DataStores in PowerBuilder components, reset the
DataWindowObject to an empty string: ds.dataobject = “”, where ds
is a data store reference to an instance variable.

• Minimize refreshing EAServer components and Web applications in
production environments. Refreshing leaves the prior implementation
loaded in memory, and excessive refreshing can overuse memory. When
you do refresh components or Web applications in a production server,
perform the refresh operation at the lowest level possible. For example, if
you change one component, refresh that component only.

Note Never refresh a server in a production environment, as this reloads
all components and Web applications.

• Destroy any objects you create; do not rely on the garbage collector.

• Clean up after database activity, closing database connections and
managing transactions to ensure correct life-cycle execution of
components.

• Set blobs to null when finished.

Applications that use Xerces
If a self-contained application that uses Xerces and other Axis classes deploys
correctly but displays errors when running, the problem is a class-version
conflict between the classes shipped with EAServer and those used by the
application. To solve this problem, you can either:

Security keys and certificates

30 EAServer

• Use the disableResolveFirstBySystem option when you deploy an
application, to tell EAServer to resolve classes using the internal class
loader first, or

• Remove the application’s copy of the classes. This may not work, because
the application may run only with its own classes.

Other design issues
For a discussion of the performance aspects of client applications, see Section
5, Client Applications, in white paper #1019504: EAServer Performance Tuning
Techniques at http://www.sybase.com/detail?id=1019504.

Security keys and certificates
You can configure EAServer to accept client connections over the secure
protocols IIOPS and HTTPS by managing certificates and the keys in a
keystore. See Chapter 11, “Managing Keys and Certificates,” in the Security
Administration and Programming Guide.

Table 2-1: Common key/certificate questions

Questions Answer

Where can I find private key and
certificate information?

In the Management Console, select the server, then select the Security
tab. The key and certificate information displays. The keystore holds all
server-side certificates (private keys); the truststore holds the trusted
certificates.

What types of keystores and truststores
does EAServer support?

If the JDK with which EAServer is running is unmodified, the supported
types are “pkcs12” and “jks.” If a third-party plug-in is installed,
additional types may be supported.

What tool can I use to maintain keystores
and truststores?

EAServer supports the management tool keytool, which is a component
of the JDK. See the keytool documentation at
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html. The
keystore and truststore targets are defined on the server’s Security tab.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 31

Web server redirector plug-in issues
This section describes issues you may encounter if you use one of the Web
server redirector plug-ins that are included with EAServer.

To access the EAServer Installation Guide, which describes how to install and
configure the Web server redirector plug-ins:

1 Go to the Product Manuals site at http://infocenter.sybase.com.

2 Select EAServer 6.0, then select the Installation Guide for your platform.

Apache and Sun Java System Web server redirectors
If you are using the Apache or Sun Java System redirector plug-in, you can
trace requests by setting this directive in the redirector configuration file:

Connector.SessionId <ConnectorSessionId>

When this directive is set, the value of ConnectorSessionId is appended to the
URL that is forwarded to EAServer. EAServer writes the URL to the server’s
HTTP request log, which can be helpful for debugging. For example, if you
add this to the redirector configuration file:

Connector.SessionId ConnSID

EAServer writes this information to the HTTP request log:

10.22.85.66 - - “GET /TestHTTPS/?ConnSID=2696_000000000000 HTTP/1.0” 200 51

How can I assign a certificate to a
listener?

In the Management Console:

1 Select the listener you want to use.

2 On the General tab, note the name of the Security Profile.

3 In the left pane, expand the Security | Profiles node, and select the
security profile that the listener uses.

4 On the General tab, set the Certificate Label to the ID of the
certificate you want the listener to use.

Note The certificate ID is a valid private key alias name that is
available in the keystore.

Questions Answer

Web server redirector plug-in issues

32 EAServer

10.22.85.66 - - “GET /TestHTTPS/?ConnSID=2888_000000000000 HTTP/1.0” 304 0
10.22.85.66 - - “GET /TestHTTPS/?ConnSID=2889_000000000000 HTTP/1.0” 304 0
10.22.85.66 - - “GET /TestHTTPS/?ConnSID=2888_000000000001 HTTP/1.0” 304 0
10.22.85.66 - - “GET /TestHTTPS/?ConnSID=2889_000000000001 HTTP/1.0” 304 0

In this example, the Apache Web server process 2696 sent one request, process
2888 sent two requests, and process 2889 sent two requests. The connector’s
session ID is computed as:

process identifier of the Web server’s process + request count

Microsoft IIS Web server redirector plug-in
If you are having trouble using the IIS Web server redirector plug-in, verify that
your environment is configured correctly.

❖ Verifying the environment for an IIS redirector

1 Verify these files exist in the EAServer lib directory:

• lijctssecct.dll

• libjcc.dll

• libjsybscl.dll

• libjintl.dll

• libjeas_iis.dll

2 Verify that the PATH system variable includes the EAServer lib directory.

3 Verify that the WSPLUGIN_CONFIG_FILE system variable points to the
location of the redirector.cfg file. For example, if redirector.cfg is located
in c:\windows\system32\inetpub, the value of
WSPLUGIN_CONFIG_FILE should be
c:\windows\system32\inetpub\redirector.cfg.

4 Check the following logging settings in redirector.cfg:

• connector.IIS.LogLevel should be set to “verbose” only when
debugging, not when using the runtime DLLs.

• connector.IIS.LogFile must be set to a valid drive and folder; otherwise,
the plug-in may not load.

5 Look for error information in the log file that is defined by
connector.IIS.LogFile (in redirector.cfg).

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 33

6 Expand the context path so the redirector handles all requests sent to the
Web server. In redirector.cfg, set Connector.IIS.URLS to “/*”.

7 Verify that entries in redirector.cfg have a corresponding protocol listener
defined in EAServer. For example, the following entry in redirector.cfg
requires that an EAServer HTTP protocol listener is defined with the host
name “prodhost” and the port number 8000:

Connector.WebApp /* = http://prodhost:8000

8 Examine the log file to ensure that the host name is correct and the port
number is valid. For example, given these entries in redirector.cfg:

Connector.WebApp /enowcorporate = http://prodhost:8000

Connector.IIS.LogLevel inform

the log file should display:

Wed May 21 16:53:58 2003 INFO: ws: 1de1090, URL: [http://prodhost:8000],
protocol: [http], host: [prodhost], port: [8000] down_time:0

9 Using the IIS administration tool, verify that the icon for the virtual
directory you are using looks like the Sybase folder in Figure 2-1. If the
icon looks as expected, skip to step 11.

Figure 2-1: IIS administration tool

Configuration issues

34 EAServer

10 If the icon for your virtual directory looks like the IISADMIN icon,
instead of like that of the Sybase folder:

a Open the Properties dialog box for your virtual directory.

b Select the Virtual Directory tab, and to the right of Application
Settings Name, click Remove.

c Restart IIS.

11 If none of the previous steps help identify the problem, try running the
debug version of the plug-in, and check the log for error information.

Configuration issues
If you are having trouble starting EAServer, connecting from a client to the
server, or invoking components from the server, first verify your configuration
and try to identify any runtime errors following the instructions below. If all
else fails:

• Shut down and restart the server.

• Perform a full rebuild of applications.

Verifying your configuration
For all platforms, verify:

• You can ping the data source.

• The deployment properties of the application components are correct. See
Chapter 9, “Importing Application Components,” in the EAServer System
Administration Guide.

• Java classes are loaded from the correct locations. See Chapter 10,
“Configuring Java Class Loaders,” in the EAServer System
Administration Guide.

You can find all occurrences of a class in BOOTCLASSPATH and
CLASSPATH using the ClassSearch utility, which is described in white
paper #1017251: ClassSearch Utility at
http://www.sybase.com/detail?id=1017251.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 35

• Maximum values and limits are set appropriately for the production
environment:

• EAServer properties (data sources, sessions, threads, and so on)

• JVM

• The listener ports are not already in use and that no two EAServer listeners
are defined to use the same port number.

• The versions of the PBVM on the server and the PowerBuilder client
match. Check all files, especially libjcc.dll, which may be shipped with
both PowerBuilder and EAServer releases, ESDs, and EBFs.

Multiple versions of libjcc.dll EAServer includes libjcc.dll in the
EAServer lib directory. PowerBuilder may include the file as well, in
%SYBASE_SHARED%/PowerBuilder, since this file is needed on
PowerBuilder client installations. Sybase recommends that you not copy
the libjcc.dll that is provided with PowerBuilder to the server as part of a
PBVM setup. Even if you have the latest PowerBuilder patch, use the
EAServer libjcc.dll.

Problems can result if either the EAServer application server or the
Management Console uses a different version than its own (such as the one
provided with PowerBuilder). This used to be a problem when EAServer
looked at the system path variable. However, now that EAServer sets up
the path in the start-server script, the problem occurs only when users
modify either the script or environment.

Solaris platforms Verify that LD_LIBRARY_PATH includes:

$DJC_HOME/lib:$ASANY9/lib:$DJC_HOME/bin:
$DJC_HOME/intersolv/lib:$DJC_HOME/lib/debug:
$LD_LIBRARY_PATH

Other UNIX platforms Add the location of the X-Window xterm utility to your PATH variable. For
example:

set path = ($path /usr/local/bin/)

If you cannot start the server, verify that these environment variables are
properly set:

• PATH – must include $DJC_HOME/bin.

• DJC_HOME – specifies the location of the EAServer installation
directory.

System-level issues

36 EAServer

• ASANY9 – specifies the location of the Adaptive Server Anywhere
directory.

Windows platforms If the PATH or CLASSPATH settings do not include the required directories,
or if the settings are too long, you may experience problems.

Look at %DJC_HOME%\bin\djc-setenv.bat and
%DJC_HOME%\bin\run-server.bat to investigate problems with either the
PATH or the CLASSPATH variable.

Running EAServer as a service
If you experience problems running EAServer as a service, try running it from
the console. The service installed by default runs under the LocalSystem
account, and access to printers and other resources is limited. These resource
allocation problems may not occur when running the server from the console.

You can also configure the service to run under the account of the user who
installed the service, which may fix allocation problems.

❖ Configuring the service account

On Windows 2000 and Windows XP:

1 Select Start | Settings | Control Panel | Administrative Tools | Services.

2 Highlight the name of the service, right-click, and select Properties.

3 In the Properties dialog, select the Log On tab, then select Log On As This
Account, and enter:

• The account name of the user who installed the service. You can also
click Browse, and select the account name.

• The password for the user account.

4 Click Apply.

System-level issues
This section describes system-level issues that may affect EAServer.

CHAPTER 2 Common Problem Areas

Troubleshooting Guide 37

Operating system issues
Operating system issues, sometimes obscure and apparently unrelated, may
adversely impact EAServer. Recent examples include:

• Solaris timers, which may affect looping service components

• AIX signals, which may lock up threads

CPU sizing
Check that your machine is sized properly to handle peak loads.

To determine a reasonable upper value of simultaneous client connections
before the server starts “thrashing,” see white paper #1019577: CPU Sizing for
Concurrent Client Connections to EAServer at
http://www.sybase.com/detail?id=1019577.

Multiprocessors
Numerous EAServer Change Requests (CRs) have already addressed
multiprocessor issues. Check that you have the latest relevant patches.

Not all operating systems fully utilize multiple CPUs. Depending on your
operating system, you may need to bind EAServer to each CPU to take
advantage of multiple processors. See white paper #1010600: Binding a
PowerBuilder Process to a CPU on Windows NT or Sun Solaris at
http://www.sybase.com/detail?id=1010600 for details. This document is written
for PowerBuilder but has wider application.

UNIX file descriptors
On UNIX platforms, concurrent client connections to EAServer are limited by
the operating system limit for the number of file descriptors that one process
can open. Before you start the server, use the ulimit command to set the file
descriptor limit in the shell where you will start the server.

See your UNIX system documentation for details about ulimit.

System-level issues

38 EAServer

Windows virtual bytes
On Windows, every process has a default limit of 2G virtual bytes. The default
limit may not be sufficient in some conditions, such as high-load scenarios with
many instances of PowerBuilder components. The EAServer process may
reach on out-of-memory condition when the virtual byte limit is reached.

Some Windows server editions, such as the Advanced edition, allow you to
configure a higher limit such as 3GB.

To determine whether the EAServer process is reaching the virtual bytes limit,
see “Evaluating Windows memory” on page 67.

To increase the virtual bytes limit for the EAServer process, use the Windows
imagecfg.exe utility. For more information about the utility, see the Microsoft
Knowledge Base article #171793: Information on Application Use of 4GT RAM
Tuning at http://support.microsoft.com/kb/171793/.

Running on a 64-bit platform
To run EAServer 6.x on a 64-bit platform:

1 Download the 64-bit version of the JDK.

2 Start EAServer using the -arch64 flag.

If you will always run EAServer in 64-bit mode, set up these flags in
local-sevenv.bat (Windows) or local-sevenv.sh (UNIX):

• DJC_RT_DEFAULT=15

• DJC_JDK_DEFAULT=15

• DJC_ARCH_64=true

To use JDK 1.6, replace “15” with “16”.

Troubleshooting Guide 39

C H A P T E R 3 Performance Issues

Resources
A number of documents are available to help you improve performance
for EAServer applications. Access the EAServer 6.0 document collection at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.eas_6.
0/title.htm. The collection includes:

• EAServer Performance and Tuning Guide

This document covers all key aspects of performance, including:

• General server tuning

• Clusters

• All components, including service, Java, EJB, JSP, Servlet,
C/C++, and PowerBuilder components

• Message service

• Client applications

• Database access

• Web Services Toolkit

• Runtime monitoring

• What’s New in EAServer

Highlights new features in version 6.0.

• EAServer System Administration Guide

Topic Page
Resources 39

Resources

40 EAServer

Chapter 8, “Load Balancing, Failover, and Component Availability,”
explains how to optimize performance for an EAServer cluster by
adjusting the load across the servers.

Chapter 11, “Runtime Monitoring,” describes how to use the Management
Console and the server log files to monitor EAServer performance.

• EAServer EJB User’s Guide

Chapter 2, “Deploying and Configuring EJB Components,” explains how
to increase performance for EJB entity beans with object and query
caching.

Troubleshooting Guide 41

C H A P T E R 4 Exception Handling

Overview
As a general rule, developers should always include exception handling in
their code to catch and output error message details to help with
troubleshooting. For example:

try {
// some logic here

} catch (Exception e) {
System.out.println("Exception caught in mycomponent/mymethod: “

+ e.getExplanation() + e.toString());

// depending on exception type, you may want a stack trace
e.printStackTrace();
// return or retry as appropriate

}

The sections below provide information about handling exceptions for
different EAServer component modes.

Note A listing of commonly encountered server errors appears in Chapter
5, “Common Error Messages.”

Topic Page
Overview 41

Error handling in CORBA Java components 42

Handling exceptions in CORBA Java clients 42

Error handling in CORBA C++ components 45

ActiveX clients 46

Using error pages 47

PowerBuilder error handling 49

Error handling in CORBA Java components

42 EAServer

Error handling in CORBA Java components
Handle errors occurring during component execution gracefully, as follows:

1 Write detailed descriptions of the error to the log. This will help you debug
the problem later. You can call any of the System.out.print methods to write
to the log (the output is redirected).

2 If the error prevents the current transaction from completing, roll it back;
for details, see “Set transactional state” in Chapter 12, “Developing
CORBA/Java Components,” in the EAServer CORBA Components
Guide.

3 Throw an exception with a brief, descriptive message appropriate for
display to an end user of the client application.

Java components can record errors or status messages in the server log file.
Writing to the log creates a permanent record of the error, and log messages can
be automatically stamped with the date and time that the message was written.
Call any of the System.out.print methods to write to the log.

You can also throw an uncaught exception. Ideally, any exception thrown by
your component should be a standard CORBA IDL exception or a user-defined
IDL exception; the latter must be listed in the raises clause of the IDL method
definition and the throws clause of the equivalent Java method declaration. All
exceptions are forwarded to the client, but only exceptions defined in IDL can
be rethrown by the client stub as a duplicate of the server-side exception.

CORBA ORB and EAServer EJB clients receive forwarded exceptions
differently:

• CORBA ORB clients rethrow any exception defined in IDL as a duplicate
of the original exception. Other exceptions are rethrown as the standard
CORBA exception UNKNOWN.

• EAServer EJB clients rethrow any server exception as a JException
instance with the message text returned by calling toString on the original
exception.

Handling exceptions in CORBA Java clients
The client-side ORB throws two kinds of exceptions:

• CORBA system exceptions – defined in the CORBA specification.

CHAPTER 4 Exception Handling

Troubleshooting Guide 43

• User-defined exceptions – defined in the component’s IDL definition.

CORBA system exceptions
The CORBA specification defines the list of standard system exceptions. In
Java, all CORBA system exceptions extend org.omg.CORBA.SystemException.
System exceptions are unchecked exceptions (they extend
java.lang.RuntimeException). The Java compiler does not require that you catch
CORBA system exceptions. However, some exceptions can occur in a well-
behaved program. For example, the Session.loookup call throws a
NO_PERMISSION exception when you request a component instance and the
user lacks permission to instantiate that component. You may want to trap the
exceptions shown in the code fragment below:

try
{

// invoke method(s)
...

}
catch (org.omg.CORBA.COMM_FAILURE cf)
{

// If this occurs when instantiating a Manager
// instance, the server is likely down or has run
// out of connections. You can retry the connection
// if desired.
//
// If this occurs after a method call, you
// can retry the call (or the transaction call
// sequence for a stateful component).
...

}
catch (org.omg.CORBA.TRANSACTION_ROLLEDBACK tr)
{

// A component on the server aborted the EAServer
// transaction, or the transaction timed out.
// Retry the method call(s) if desired.
...

}
catch (org.omg.CORBA.OBJECT_NOT_EXIST one)
{

// Possibly try to create another instance. Check
// that the package and component are installed
// on the server.
// Received when trying to instantiate a component

Handling exceptions in CORBA Java clients

44 EAServer

// that does not exist. Also received when invoking
// a method if the object reference has expired
// (this can happen if the component is stateful
// and is configured with a finite Instance Timeout
// property). Create another instance if desired.
...

}
catch (org.omg.CORBA.NO_PERMISSSION np)
{

// Tell the user they are not authorized
...

}}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system exception
// that was not explicitly caught above.
// Report the error but don’t bother retrying.
...

Note Not all of the possible system exceptions are shown in the example. See
CORBA/IIOP 2.3 specification for a list of all the possible exceptions.

User-defined exceptions
User-defined exceptions are defined in the component’s IDL definition. For
example, you might define OverdrawnException to be thrown by methods that
withdraw money from a bank account. In Java, all user-defined exceptions
extend org.omg.CORBA.UserException.

In Java, IDL user-defined exceptions are checked exceptions; if the IDL
definition of a method contains a raises clause, the equivalent Java stub method
will have a throws clause that lists the equivalent Java exceptions. For example,
consider the IDL definition below:

module MyModule {
exception MyException
{

string reason;
};

interface MyIntf {
boolean throwException

CHAPTER 4 Exception Handling

Troubleshooting Guide 45

(in boolean yes_no)
raises (MyException);

};
};

The equivalent Java throwException method is:

boolean throwException (boolean yes_no)
throws MyModule.MyException;

Error handling in CORBA C++ components
The client-side ORB throws two kinds of exceptions:

• CORBA system exceptions – defined in the CORBA specification.

• User-defined exceptions – defined in the component’s IDL definition.

CORBA system exceptions in C++
The CORBA specification defines the standard system exceptions. In C++, all
CORBA system exceptions are mapped to a C++ class that is derived from the
standard SystemException class defined in the CORBA module. You may want
to trap the exceptions shown in this code fragment:

try
{
... // invoke methods
}
catch (CORBA::COMM_FAILURE& cf)
{
... // A component aborted the EAServer transaction,

// or the transaction timed out. Retry the
// transaction if desired.

}
catch (CORBA::TRANSACTION_ROLLEDBACK& tr)
{
... // possibly retry the transaction
}
catch (CORBA::OBJECT_NOT_EXIST& one)
{
... // Received when trying to instantiate

// a component that does not exist. Also

ActiveX clients

46 EAServer

// received when invoking a method if the
// object reference has expired
// (this can happen if the component
// is stateful and is configured with

// a finite Instance Timeout property).
// Create a new proxy instance if desired.}

}
catch (CORBA::NO_PERMISSSION& np)
{
... // tell the user they are not authorized
}
catch (CORBA::SystemException& se)
{
... // report the error but don’t bother retrying
}

Not all of the possible system exceptions are shown in this example. See the
CORBA/IIOP 2.3 specification for a list of all the possible exceptions.

User-defined exceptions in C++
In C++, all CORBA user-defined exceptions are mapped to a C++ class that is
derived from the standard UserException class defined in the CORBA module.
For more information, see “User-defined IDL datatypes” and “User-defined
exceptions” in Chapter 3, “Using CORBA IDL,” in the EAServer CORBA
Components Guide.

User-defined types must exist in the EAServer IDL repository before you can
use them in interface declarations.

ActiveX clients
EAServer 6.0 does not support ActiveX components. ActiveX CORBA clients
running with EAServer 5.x can access EAServer 6.0. Use EAServer 5.x to
generate .tlb and .reg files to use with your ActiveX-enabled IDE.

CHAPTER 4 Exception Handling

Troubleshooting Guide 47

Using error pages
Error pages allow you to customize the response that the server sends to Web
clients when an error occurs.

Error pages for Web applications
When the servlet engine detects an error or catches an exception thrown by a
servlet, it searches for a corresponding error page to handle the response. You
can specify HTML files to send in response to HTTP error codes and to Java
exceptions thrown in JSPs or servlets.

This example illustrates how to declare an error page for a Web application in
the deployment descriptor:

<error-page>
<error-code>404</error-code>
<location>/etc/404.html</location>

</error-page>

The location is the path relative to the Web application’s context root. For
example, /etc/404.html corresponds to this file in your EAServer installation
directory, where web-app is the name of the Web application:

deploy/webapps/web-app/etc/404.html

Error pages for JavaServer Pages
When a client request is processed, runtime errors can occur in the body of the
implementation class for a JSP or in Java code that is called by the page. You
can handle these exceptions in the JSP code using the Java language’s
exception mechanism.

Uncaught exceptions Use an error page that you specify using a page directive to handle exceptions
that are thrown from the body of the implementation class and are not caught.
Both the client request and the uncaught exception are forwarded to the error
page.

To specify an error page for a JSP, set its errorPage attribute to the URL of the
error page in a page directive:

<%@ page errorPage="ErrorPage.jsp" %>

Using error pages

48 EAServer

The java.lang.Throwable exception is stored in the javax.ServletRequest
instance for the client request using the putAttribute method, using the name
javax.servlet.jsp.jspException.

Using an error page JSP
If you specify a JSP as the error page, you can use its implicit exception
variable to obtain information about the exception. The exception variable is of
type java.lang.Throwable and is initialized to the throwable reference when the
uncaught exception is thrown.

To specify an error page for a JSP, set its errorPage attribute to the URL of the
error page in a page directive:

<%@ page errorPage="ErrorPage.jsp" %>

To define a JSP as an error page, set its isErrorPage attribute to true in a page
directive:

<%@ page isErrorPage="true" %>

This sample error page JSP uses the exception variable’s toString method to
return the name of the actual class of this object and the result of the
getMessage method for the object. If no message string was provided, toString
returns only the name of the class.

The example also uses the getParameterNames and getAttributeNames methods
of the request object to obtain information about the request.

<%@ page language="java" import="java.util.*"
isErrorPage="true" %>

<H1 align="Center">Exceptions</H1>

<%= exception.toString() %>
<%! Enumeration parmNames; %>
<%! Enumeration attrNames; %>

Parameters:
<% parmNames = request.getParameterNames();

while (parmNames.hasMoreElements()) {
%>

<%= parmNames.nextElement().toString() %>
<%

}
%>

Attributes:
<% attrNames = request.getAttributeNames();

while (attrNames.hasMoreElements()) {

CHAPTER 4 Exception Handling

Troubleshooting Guide 49

%>

<%= attrNames.nextElement().toString() %>

<%
}

%>

PowerBuilder error handling
The PowerBuilder documentation set includes extensive details on handling
exceptions. Here are some useful references:

• “Exception Handling in PowerBuilder” in Chapter 3, “Selected
PowerScript Topics,” in the Application Techniques manual

• “Testing and debugging the component” in Chapter 24, “Building an
EAServer Component,” in the Application Techniques manual

• “Handling errors” in Chapter 25, “Building an EAServer Client,” in the
Application Techniques manual

• “Troubleshooting connections” in Chapter 25, “Building an EAServer
Client,” in the Application Techniques manual

• “Handling DataWindow Errors” in Chapter 2, “Using DataWindow
Objects,” in the DataWindow Programmer’s Guide

To access the PowerBuilder documentation online, go to the SyBooks Web site
at http://infocenter.sybase.com/help/index.jsp. From the PowerBuilder
collection, select the book title.

Unhandled PowerBuilder exceptions
An unhandled fatal exception raised by a PowerBuilder component running in
EAServer, can cause the PBVM to become unstable, resulting in unpredictable
behavior and unforeseen problems with the PBVM and EAServer. This
scenario is unlikely, but possible. You may want to restart or shut down the
server, rather than allow EAServer to continue running in an unstable state.

PowerBuilder error handling

50 EAServer

The PBOnFatalError system environment variable allows you to specify the
action you want EAServer to take when an unhandled exception is raised in the
PBVM. The PBOnFatalError variable is supported in PowerBuilder 8.0.4
(Build 10501) and PowerBuilder 9.0.1 (Build 6533) maintenance releases, and
later. These are the values you can assign to the PBOnFatalError variable:

Value
Resulting behavior when a fatal error occurs in a
PowerBuilder component

continue EAServer continues running, and a
CORBA_TRANSACTION_ROLLEDBACK exception is
thrown. This is the default value.

restart EAServer restarts automatically.

shutdown EAServer shuts down.

Troubleshooting Guide 51

C H A P T E R 5 Common Error Messages

Introduction
This chapter lists the errors most commonly encountered during EAServer
operation. It provides the context for each error and troubleshooting tips
as applicable.

When an error is raised, try to determine where the error came from: is it
an EAServer error, or was it passed to EAServer from another source such
as a database or the Java virtual machine?

Some errors include a source indicator. For example:

Topic Page
Introduction 51

Error messages 52

System exceptions 60

Source Meaning

SRVLIB Generated by EAServer

DEBUG Generated by a component when the debug property is
enabled

TRACE Generated by a component when the trace property is
enabled

CORBA Generated by CORBA client ORB

Error messages

52 EAServer

Error messages
This section lists common messages and their explanation, with possible
causes and tips on how to resolve them.

Note For simplicity, only the key portions of the error messages are provided.
The actual message text may contain a prefix such as “Exception” or “System
exception,” which is not included in these listings.

Table 5-1: Server messages

Message text (or text fragment) Explanation

Cannot find interfaces file See “Connection problems” on page 24 and “Configuration issues”
on page 34.

Cannot find localization files See “Connection problems” on page 24 and “Configuration issues”
on page 34.

Cannot start network listener The main IIOP listener may be configured incorrectly. Check the
console and log files for listener failures. Use EAServer Manager to
verify the correct listener properties. Try to connect to the server with
another application, using the same protocol.

See “Configuration issues” on page 34 for information about
resolving start-up problems.

ClassCastException error If you see NamingContext exceptions with root-cause exception
ClassCastException when calling
javax.naming.InitialContext.lookup, check for the following
problems:

• You may be casting to an incorrect type (check the class name of
the object returned by lookup).

• Your component has refresh enabled, and the custom class list does
not contain some required classes.

• Your component has refresh enabled, and calls a component that
has refresh disabled, or vice-versa.

com.sybase.jdbc.SybSQLException When EAServer starts a transaction, it puts the current connection
into chained mode. By default, Adaptive Server Enterprise runs
procedures in unchained mode. Use sp_procxmode to change the
mode of the stored procedure; for example:

sp_procxmode "sp_myproc", "anymode" go

You can run sp_myproc only in unchained transaction mode. The SET
CHAINED OFF command causes the current session to use unchained
mode.

CHAPTER 5 Common Error Messages

Troubleshooting Guide 53

CORBA marshall exception You may have tried to return a NULL object, which CORBA forbids.

This error may also occur when you attempt to access an ActiveX
component from Visual Basic if you have not explicitly initialized a
structure field that uses complex types. Initialize fields of complex
types such as struct, union, object, date, time, or timestamp. If you do
not initialize these fields before passing the union as an EAServer
method parameter or return value, the ActiveX dispatcher throws a
marshalling exception. Fields of other types are implicitly set to a
default value.

CORBA:: NO_PERMISSION The user is not authorized to perform the requested operation. For
example, the Session.loookup call throws a NO_PERMISSION
exception when you request a component instance and the user lacks
permission to instantiate that component.

Check permissions for the component, package, and user.

A CORBA::NO_PERMISSION exception can also mean that an
attempt was made to access an object from a less secure session than
it was originally created with. If the original proxy instance was
created by connecting to a secure port with a client-side SSL
certificate, the proxy must be deserialized in a session that connects
using the same client certificate and equal or greater security
constraints.

For example, if you create an object with a session that uses 128-bit
SSL encryption, serialize the object, then later try to deserialize the
object during a session that uses 40-bit SSL encryption, the ORB
throws the CORBA::NO_PERMISSION exception. Access is
allowed when objects created using a less secure session are later
accessed using a more secure session.

CORBA::NO_RESOURCE_EXCEPTION This exception is raised if a component request arrives when the
maximum number of instances exist, all are busy, and the blocking
time expires. (com.sybase.jaguar.component.objects specifies the
maximum number of instances, and the Resources/Maximum Wait
property specifies the blocking time.)

Network latency between client and server is not included in the
measured method execution time. For C++ components running in an
external process, the measured time includes interprocess
communication latency.

Message text (or text fragment) Explanation

Error messages

54 EAServer

CORBA::OBJECT_NOT_EXIST This message can mean that the package or component is not installed
on the server.

It may also be received when a method is invoked but the object
reference has expired, which can happen if the component is stateful
and is configured with a finite Instance Timeout property. When the
timeout period is exceeded for a component instance, EAServer
deactivates the component and invalidates the client’s object
reference. If the client attempts another method invocation, the client-
side ORB throws the CORBA::OBJECT_NOT_EXIST exception. At
this point, the client must create a new proxy instance for the
component if it wants to continue.

CORBA::TRANSIENT For EJB clients, this exception is the root cause of the
java.rmi.RemoteException thrown by the EJB stub.

This message is associated with concurrency control; it may indicate
a rollback due to an optimistic update failure. The default optimistic
update check is to compare the old values with the new values.
Someone else may have updated the data between your ejbLoad and
ejbStore.

Use one of the following corrective actions:

• Set the property com.sybase.jaguar.component.debug=true to get
more information; or

• Use a timestamp column in your database table; or

• Disable optimistic updates as appropriate for your application.

See Chapter 4, “EJB CMP Tuning,” in the EAServer Performance
and Tuning Guide for more information on concurrency control.

Could not start thread The EAServer maximum threads property must include thread
requirements of the entire server, including the message service
thread pools. You can set this property on the HTTP Config tab in the
Server Properties dialog box.

CtsComponents::CreateException See javax.ejb.CreateException error.

CtsComponents::FinderException See javax.ejb.FinderException error.

Message text (or text fragment) Explanation

CHAPTER 5 Common Error Messages

Troubleshooting Guide 55

DBMS is not supported in your current
installation

This is a PowerBuilder error message. The probable cause is that the
value of SQLCA.DBMS is not set.

In PowerBuilder component code, you typically use a series of lines
to set up database connection parameters using a PowerBuilder
transaction object. For the default transaction object, SQLCA, you
must set the value of SQLCA.DBMS to a string that begins with one
of: ODB, JDB, SYJ, O90, O84, or O73. The definition must come
before this statement:

CONNECT USING SQLCA;

PowerBuilder uses the DBMS string to build the DLL or library name
that it needs.

If you are using a transaction object other than SQLCA, verify that its
DBMS property is set correctly, before calling the connect statement.

Deployment error accessing server
<server_name> at port 9000

This is a PowerBuilder error message.

Connect to EAServer Manager to confirm that EAServer is running.

Confirm that EAServer is listening on the server name and port
mentioned in the error. An IIOP listener must be configured on that
port and server name.

Check the EAServer user ID and password specified on the Server tab
in the Component Generator properties.

Check the path specified in the PowerBuilder Dynamic Library Name
text field on the Libraries tab in the Component Generator Properties.

Deployment error functions using ANY
type arguments or an ANY return type not
supported. Correct the following for
component <component>:<method>.

This message applies specifically to the ANY datatype, which is not
supported for public instance variables, function arguments, or
function return values. The remedies are the same as described for
“Deployment error or warning (from PowerBuilder) SYSTEM
variables not supported.”

Deployment error or warning (from
PowerBuilder): SYSTEM variables not
supported

Public instance variables and arguments to public functions can be
any of:

• Standard datatypes

• Structures

• Custom class user objects that have been deployed as EAServer
components

• ResultSets

If you are using system datatypes (transaction, data store, and so on)
as instance variables, declare them as protected or private. If you are
using system datatypes as function arguments, declare the function as
protected or private.

Message text (or text fragment) Explanation

Error messages

56 EAServer

Incorrect password or tampered keystore This problem occurs on Windows more often than on UNIX.

On Windows, the problem is either that the password for the user ID
has been changed, or the user has logged on with a different ID.

If the problem occurs on UNIX:

1 Change to
Repository/Instance/com/Sybase/djc/server/ApplicationServer in
your EAServer installation.

2 Using a text editor, open the server properties file; for example,
<machine_name>.properties.

3 Find the truststorepassword property. Typically, an asterisk
follows the equal sign, which signifies that this is a protected
property. Change the value of truststorepassword to the password
for the truststore.

4 Find the keystorepassword property, and change the value to the
password for the keystore.

5 Save and close the file, then restart the server.

6 In the Management Console, on the server properties page, select
the Security tab, then update the keystore and truststore passwords
to make the passwords protected properties again.

Instruction at <location> referenced
memory at <location>, the memory could
not be written

See “Server crashes, hangs, or disappears” on page 16.

INVALID_TRANSACTION If you are using the message service, this exception occurs if you try
to use two concurrent threads within a single transacted session to
send or receive messages. You must create a separate transacted
session for each thread that you use to send or receive messages. This
restriction applies to messages received synchronously or
asynchronously; that is, regardless of whether you call “receive” or
use a message listener.

javax.ejb.CreateException OR
CtsComponents::CreateException

When instantiating an entity bean proxy, call a finder method first if
you are unsure whether an entity bean’s data is already in the
database. Create methods throw a javax.ejb.CreateException
exception if you attempt to insert a duplicate database row.

javax.ejb.FinderException OR
CtsComponents::FinderException

EJB finder methods return instances that match an existing row in the
underlying database based on the lookup parameters passed to the
method.

Finder methods throw javax.ejb.FinderException if no rows match
the specified search criteria.

Message text (or text fragment) Explanation

CHAPTER 5 Common Error Messages

Troubleshooting Guide 57

java.lang.NoClassDefFoundError A class definition could not be found. Make sure the class file is in the
CLASSPATH.

If necessary, set the com.sybase.jaguar.server.classloader.debug
property to true to enable class loader tracing while you troubleshoot
class loading issues. Remember to reset the property to false when
you are finished.

java.lang.UnsupportedClassVersionError The JDK version that is used at runtime is different from the JDK
version that was used to compile the classes. Typically, the JDK
version used to compile the classes is earlier than the version used to
run the classes.

Verify that the JDK version used by deploy or other commands is the
same or later than the JDK version that was used to compile the
classes.

javax.naming.NamingException The lookup method throws javax.naming.NamingException if the
bean JNDI name cannot be resolved or the home interface proxy
cannot be created. Reasons include:

• The server address specified with the Context.PROVIDER_URL
property is incorrect or the server is not running.

• Authentication with the specified credentials failed.

• The bean is incorrectly configured on the server. For example, a
skeleton has not been generated, or the bean’s properties specify
the wrong implementation class.

• Check the EJB references in the Management Console to verify
that the values are correct.

Check the server’s log file if the cause of the error is not clear from
the exception’s detail message.

JCM Caught Throwable:
java.sql.SQLException: Error: Current
enlistment requires 2PC Resource and No
2PC Resource Configured for
Cache:SybaseJMS

A component is attempting to write a JMS message to an EAServer
message service topic or queue, without using the same connection
cache. The component must use the same connection cache as the
EAServer message service.

jmsException An exception has occurred with the message service. The
ExceptionListener provides access to the error information—see the
EAServer JMS User’s Guide.

You can also output debug information for the message service using
the com.sybase.jms.debug property.

No such file libpb90x.so: not found This is the same problem as described in “DBMS is not supported in
your current installation.”

Message text (or text fragment) Explanation

Error messages

58 EAServer

OBJECT_NOT_EXIST Most commonly, this is because the server component cannot be
instantiated or an instance is no longer available. Verify that:

• The specified component is installed in the specified EAServer
package.

• The specified package is installed in the server.

• The Java class, Windows DLL, or UNIX shared library that
implements the component is available.

• If you are instantiating a Java component, the component’s
skeleton class is available.

This error may also occur when a component’s cache size is not large
enough, causing clients to experience cache overflow errors. When
this happens, the least recently accessed instance is removed from the
cache. If a client attempts to invoke an instance, the client receives a
CORBA::OBJECT_NOT_EXIST exception.

The error may also be raised when more than one client
simultaneously tries to receive a message from a message service
queue that is not shared.

NullPointerException For in/out parameters to CORBA Java component methods, you must
pass a non-null value for the parameter input value. Otherwise,
method calls fail and throw NullPointerExceptions. Use output
parameters in the method definition if the parameter’s input value
does not matter.

ObjectKey::init: <servername>.cycle
create failed: No such file or directory

This error may be seen on server start-up. Causes include:

• Your installation does not have a repository, or

• The repository is corrupt, or

• Repository/Server directory is not writeable.

Note servername.cycle is not required for the server to start. If the file
does not exist, it is automatically created when you first start the
server.

SetDwObject (PBL_name,
DataWindow_name) failed = -1

Verify the HTML DataWindow property in the DataWindow painter.

Verify that the PBL (PowerBuilder library) or PBD (PowerBuilder
dynamic library) is in the system PATH of the server machine.

srv__read_packet: Protocol error occurred:
length in header (21536) more than packet
size(512)

Verify that the listener port matches the client protocol.

Message text (or text fragment) Explanation

CHAPTER 5 Common Error Messages

Troubleshooting Guide 59

SRVLIB message: Net-Library routine
net_listener (host:port) failed in
srv_start_listeners

Network error: status = 23 - Net-Lib
protocol driver call to register a listener
failed

The listener is currently in use. Network listeners must be unique for
the server machine. If the server runs as a Windows service, verify
that you did not attempt to start another instance of the same server.

To fix the problem, modify the listener properties in the repository
and restart the server. Be sure there is only one instance of a specific
server running.

[SySAMLicenseManager] msgId: 131249,
message: Failed to obtain 1 license(s) for
EAS feature with properties
'PE=AE;LT=CP'

EAServer is configured to get a particular type of license, but the
available license is not the correct type. To avoid this error, correct the
license configuration in default.properties, located in
/Repository/Instance/com/Sybase/djc/lm/FeatureManager. Verify
that the product edition and license type match the values in the
license file.

SystemException:
CORBA::COMM_FAILURE

Possible reasons for this error include:

• The server is down.

• The server has run out of connections.

• You did not specify the correct host name or listener address.

Topic is not available: Send Failure: ….
org.omg.CORBA.COMM_FAILURE:
java.io.Exception.

Message service topic is not available. Most likely, the client socket
was closed before the reply was sent.

TRANSACTION_ROLLEDBACK A component participating in the transaction called the rollbackWork
transaction primitive to indicate that the transaction should not be
committed, or the transaction timed out. You may retry the method
calls if desired.

There is a different cause for this error if you are running EJB CMP
entity beans with automatic persistence and timestamp verification
(specified on the component properties Persistence tab). If you see
“TRANSACTION_ROLLEDBACK: Optimistic Concurrency
Control” messages in the server log, try changing the persistence
setting to Generated Class, then regenerate stubs and skeletons for the
component.

Note In some cases, you may see this message simply because of the
activity of other transactions, in which case you must restart the
transaction, either in client code or by enabling automatic retry.

Trust verification failed. Client certificate
not available.

The server listener requires mutual authentication. Make sure the
certificate label is set in the client ORB/SSLServiceProvider and that
the SSLCallback::getCertificateLabel callback is implemented.

Trust verification failed. SSL protocol
X.509 certificate chain is incomplete.

Make sure the client’s certificate chain is complete. Use the
Management Console to verify the client’s certificate. If the client’s
CA certificate is not in the client PKCS token, install it.

Message text (or text fragment) Explanation

System exceptions

60 EAServer

System exceptions

EJB components
ejb.logExceptions specifies a global value to enable or disable logging of
exceptions thrown by components in an EJB module. If set to true, EAServer
logs application and system exceptions that are thrown by the business
methods for any component in the EJB module.

Trust verification failed. SSL protocol
X.509 certificate chain is invalid.

Use the Management Console to verify that the client’s certificate
chain is valid.

Trust verification failed. SSL protocol
X.509 certificate has expired.

Use the Management Console to verify the client’s certificate. If a
certificate has expired, get a new certificate from the CA and install it
at the client site.

Trust verification failed. SSL protocol
X.509 certificate chain contains an
unknown CA.

The server administrator must use the Management Console to install
the certificate of the CA that signed the client certificate in EAServer,
and mark it trusted.

Trust verification failed. SSL protocol CA
certificate is untrusted.

The server administrator must mark the client’s CA as trusted.

Unable to initialize the VM See “Starting the server” in Chapter 3, “Creating and Configuring
Servers,” in the EAServer System Administration Guide for details on
selecting and running the Java VM.

Check that the PATH and CLASSPATH environment variables are set
correctly.

Warning: Failed to initialize SSL Service
Provider: protocol IIOPS not supported

Verify that the SSL deployment kit is installed and configured
correctly and that the JAGUAR_CLIENT_ROOT environment
variable points to where the deployment kit is installed.

On Windows, verify that the PATH contains %DJC_HOME%/lib.

On UNIX, make sure the library path variable contains
$DJC_HOME/lib.

Warning: protocol IIOPS not supported Check the SSL deployment installation, configuration, and the
DJC_HOME environment variable, as described in the previous
warning.

Windows Vista error when starting the
server

You can safely ignore this error.

Message text (or text fragment) Explanation

CHAPTER 5 Common Error Messages

Troubleshooting Guide 61

To override this setting for individual components, create a <setProperties>
command in your user configuration that runs the <logExceptions>
subcommand. For example:

<target name="configure-user">
<setProperties component="ejb.components.myjar.MyCompRemote">

<logExceptions enable="true"/>
</setProperties>

</target>

You can disable logging of exceptions for all components in the server by
setting the server Log System Exceptions and Log Application Exception
properties. If exception logging is disabled in the server properties, the
component settings have no affect.

See Chapter 2, “Deploying and Configuring EJB Components,” in the
EAServer EJB User Guide for more information about configuring EJB
components.

JMetaData exception If an IIOP client running against EAServer version 6.0 or later gets a JMetaData
exception on the server side during lookup, there may be EAServer version 5.x
classes in the client’s class path. To solve the problem, remove the EAServer
5.x classes from the class path. If version 5.x classes are required, verify that
they are listed in the class path after the version 6.x classes. Ideally, there
should be no EAServer 5.x classes in the class path.

CORBA system exceptions
The CORBA specification defines the list of standard system exceptions.

CORBA/Java
components

In Java, all CORBA system exceptions extend
org.omg.CORBA.SystemException. System exceptions are unchecked
exceptions (they extend java.lang.RuntimeException). The Java compiler does
not require that you catch CORBA system exceptions. However, some
exceptions can occur in a well-behaved program. For example, the
Session.loookup call throws a NO_PERMISSION exception when you request a
component instance and the user lacks permission to instantiate that
component. You may want to trap the exceptions shown in the code fragment
below:

try
{

// invoke method(s)
...

}

System exceptions

62 EAServer

catch (org.omg.CORBA.COMM_FAILURE cf)
{

// If this occurs when instantiating a Manager
// instance, the server is likely down or has run
// out of connections. You can retry the connection
// if desired.
//
// If this occurs after a method call, you
// can retry the call (or the transaction call
// sequence for a stateful component).
...

}
catch (org.omg.CORBA.TRANSACTION_ROLLEDBACK tr)
{

// A component on the server aborted the EAServer
// transaction, or the transaction timed out.
// Retry the method call(s) if desired.
...

}
catch (org.omg.CORBA.OBJECT_NOT_EXIST one)
{

// Possibly try to create another instance. Check
// that the package and component are installed
// on the server.
// Received when trying to instantiate a component
// that does not exist. Also received when invoking
// a method if the object reference has expired
// (this can happen if the component is stateful
// and is configured with a finite Instance Timeout
// property). Create another instance if desired.
...

}
catch (org.omg.CORBA.NO_PERMISSSION np)
{

// Tell the user they are not authorized
...

}}
catch (org.omg.CORBA.SystemException se)
{

// Catch-all clause for any CORBA system exception
// that was not explicitly caught above.
// Report the error but don’t bother retrying.
...

CHAPTER 5 Common Error Messages

Troubleshooting Guide 63

Note Not all of the possible system exceptions are shown in the example. See
the CORBA/IIOP 2.3 specification for a list of all the possible exceptions. You
can download the specification from the OMG Web site at
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm.

CORBA/C++
components

In C++, all CORBA system exceptions are mapped to a C++ class that is
derived from the standard SystemException class defined in the CORBA
module. You may want to trap the exceptions shown in this code fragment:

try
{
... // invoke methods
}
catch (CORBA::COMM_FAILURE& cf)
{
... // A component aborted the EAServer transaction,

// or the transaction timed out. Retry the
// transaction if desired.

}
catch (CORBA::TRANSACTION_ROLLEDBACK& tr)
{
... // possibly retry the transaction
}
catch (CORBA::OBJECT_NOT_EXIST& one)
{
... // Received when trying to instantiate

// a component that does not exist. Also
// received when invoking a method if the
// object reference has expired
// (this can happen if the component
// is stateful and is configured with
// a finite Instance Timeout property).
// Create a new proxy instance if desired.}

}
catch (CORBA::NO_PERMISSSION& np)
{
... // tell the user they are not authorized
}
catch (CORBA::SystemException& se)
{
... // report the error but don’t bother retrying

System exceptions

64 EAServer

}

Note Not all of the possible system exceptions are shown in the example. See
the CORBA/IIOP 2.2 specification (formal/98-02-01) for a list of all the
possible exceptions.

Troubleshooting Guide 65

C H A P T E R 6 Advanced Topics

Operational management tools
There are a number of tools and techniques you can use to monitor the
operation of the server, its environment, and applications.

Windows platforms provide a number of diagnostic tools:

• See “Windows debugging tools” on page 72.

• Other Windows tools are described under “Runtime monitoring
tools” on page 67.

UNIX systems also provide a number of tools:

• See “UNIX debugging tools” on page 73.

• On HP-UX:

• tusc – to list all system calls; useful for tracing application
crashes.

• vmstat – for virtual memory statistics.

• top – for a list of processes using the most CPU.

Topic Page
Operational management tools 65

Debugging tools 71

Stack traces, dump files, and core files 74

Class loader configuration issues 76

Troubleshooting Web services 77

EAServer plug-in for JBuilder 81

WINS and server response time 83

Installing and compiling Apache on HP RISC 84

Miscellaneous topics 88

Operational management tools

66 EAServer

• On AIX, use the System Admin tools.

• On Solaris:

• top – to see which processes are consuming the most CPU.

• vmstat – displays CPU and memory usage.

• pstack – for stack dump analysis.

• pmap – lists which libraries are loaded and their load locations.

• pldd – similar to pmap but includes less information.

• pfiles – lists file descriptors, sockets, files, and so on.

• truss – displays what is happening with file descriptors, signals, O/S
interactions with a process, and so on. truss is useful if you know that
a specific action leads to a specific problem.

Note truss can generate large volumes of output. To reduce truss
output, use truss -p.

Memory management tools
The following code sample shows how to output information about free
memory, total memory, and JVM properties:

import java.util.*;
import java.io.*;

public class printMemAndProps {

public static void main (String[] args) {

System.out.println(new Date()); // print system date

// get runtime info and print Free/Total memory
Runtime rte = Runtime.getRuntime();

long freeMem = rte.freeMemory();
long totalMem = rte.totalMemory();

System.out.println("Free Memory: " + freeMem);
System.out.println("Total Memory: " + totalMem + "\n");

java.util.Properties p = null;

CHAPTER 6 Advanced Topics

Troubleshooting Guide 67

try {
p = System.getProperties();
}
catch(Exception e) {
e.printStackTrace();
return;
}
p.list(System.out); // print all JVM propererties

}

}

Evaluating Windows memory

You can find a detailed article on Windows memory management titled
“Evaluating Memory and Cache Usage” on the Microsoft Web site at
http://www.microsoft.com.

This article explains the Performance Console and other Windows tools, with
emphasis on how to:

• Monitor memory

• Interpret output

• Identify memory leaks—see “Investigating User-Mode Memory Leaks”
and subsequent sections

PowerBuilder memory tuning

For information about tuning and troubleshooting the C/C++ heap memory
manager that is used by EAServer and PowerBuilder, see
EAServer/PowerBuilder Memory Tuning and Troubleshooting at
http://www.sybase.com/detail?id=1027319.

Runtime monitoring tools
The tools described in this section enable you to perform EAServer runtime
monitoring.

Operational management tools

68 EAServer

Management Console

In the Management Console, HTTP and IIOP network monitoring shows
thread usage, and IIOP network monitoring shows the host and thread
information for current clients. For details, see Chapter 11, “Runtime
Monitoring,” in the EAServer System Administration Guide.

See “EAServer tracing” on page 9 for a description of the properties that you
can configure EAServer to trace.

EAServer monitoring APIs

The EAServer monitoring APIs allow you to monitor aspects of your runtime
environment such as sessions, threads, components, connection caches,
listeners, IIOP and HTTP traffic, and so on. Available information includes:

• Peaks

• Maximums

• Current values

• Forced connects

Using the Jaguar::Monitoring API, you can:

• Write service components that periodically check desired characteristics
such as peak values and forced connections

• Retrieve configured values for maximum HTTP threads and the maximum
number of simultaneous client threads, as well as the existing keys for
current thread usage

• Return information on IIOP clients using the getConnectedUsers method

Jaguar::PerfMonitor is a performance monitoring interface that provides
performance statistics in a per-second, per-minute, and per-hour bucket model.

Jaguar::StatProvider and Jaguar::StatProviderController are interfaces
implemented by statistic provider components that collect performance
statistics. EAServer includes statistics providers for the connection caching
and HTTP protocol handler subsystems. You can also implement your own
statistics providers using these interfaces.

For information on the monitoring APIs, see the generated HTML
documentation for the Jaguar IDL module, in this file within your installation:

html/ir/Jaguar.html

CHAPTER 6 Advanced Topics

Troubleshooting Guide 69

jagtool

The jagtool commands getserverinfo and getserverstate allow you to get
additional information about the server status. getserverinfo returns the server
status and version number. getserverstate queries the state of service
components and is useful in scripts that start or restart servers; use it to
determine whether the server is ready to accept client connections by checking
whether the name service status is “STOPPED.” Custom services can
implement an additional method, getServiceState, to allow jagtool to query their
status. For more information, see the EAServer Automated Configuration
Guide:

• Chapter 4, “Creating Service Components”

• Chapter 6, “Using jagtool and jagant”

Service components

You can use service components to perform background processing or to
provide common services for EAServer clients and other EAServer
components.

To add service components to EAServer when the server is not running, which
may be required by OEM clients, replace the EAServer property file with a
property file that has the appropriate services listed for start-up by doing one
of:

• Replace default.properties, located in
Repository/Instance/com/sybase/djc/server/ApplicationServer, with an
appropriate properties file before starting the server for the first time, or,

• Create a configuration script, or modify default-application-servers.xml,
and run the configure command before starting the server for the first time,
or,

• Update <ServerName>.properties, either by using a configuration script
or by replacing it with a preconfigured properties file.

ListDLLs

ListDLLs is available on the Sysinternals Web site at http://www.sysinternals.com.
It is a Windows tool that displays all the DLLs that are currently loaded,
including load locations and their version numbers, for each process. Version
2.0 prints the full path names of loaded modules. This tool can be very useful
for verifying whether the correct DLL versions are loaded in a process.

Operational management tools

70 EAServer

Run ListDLLs in a DOS window at the command line to show all processes. For
best results, redirect the output to a file so that you can review the file at your
convenience. To redirect the output to a file named myfile.txt, which you can
open in Notepad or any text editor, enter:

listdlls start-server >myfile.txt

Process Explorer

Process Explorer is a GUI version of ListDLLs that displays DLLs and handles
that are in use by a specific process. Process Explorer is available on the
Sysinternals Web site at http://www.sysinternals.com. Full information is
available in the Readme file included in the downloaded file.

After you download and unzip the program file (procexp.exe):

1 Select Start | Run. Enter the full path to procexp.exe.

2 Select View DLLs.

3 In the Process view in the top pane, select the java.exe process to see
which DLLs the process has loaded.

You can also use the Process Explorer to:

• Save the output to a file (File | Save and File | Save As)

• View the DLL or handle properties

• Show the process tree, including parent-child relationships

• Refresh the view

• Set various options

• Search

• Display online help

Profiling tools

Profiling tools allow you to identify and track performance issues.

For Java profiling, refer to the following documents:

• White paper #1011357: Integrating Optimizeit in Sybase EAServer at
http://www.sybase.com/detail?id=1011357

This document shows how you can integrate the Optimizeit Java profiler
with EAServer.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 71

• White paper #1011550: Memory Management within Java Processes at
http://www.sybase.com/detail?id=1011550

This document assists in monitoring and managing memory in Java
processes.

For C++ profiling, use Purify (UNIX) or PurifyPlus (Windows) from Rational.
Purify is designed to track down memory leaks and invalid memory-use errors.

For more information, check Rational documentation at
http://www.rational.com/support/documentation/manuals/index.jsp.

ps, pstat, pmon, and PsList

The ps command in UNIX systems displays information about active
processes.

On Windows, you can use pstat and pmon for similar information. PsList,
which is freeware available from the Sysinternals Web site at
http://www.sysinternals.com, combines much of this information so you can
view processes, CPU and memory information, or thread statistics. PsList can
provide either summary or detailed data.

Debugging tools
Debuggers and crash handlers can:

• Generate and analyze stack dumps and core files (see “Stack traces, dump
files, and core files” on page 74)

• Attach to a running process

• Step through and debug specific components

Java debugging tools
For Java, you can use jdb, a simple command line debugger for Java classes, or
other tools that support the same remote debugging interfaces as EAServer.

EAServer supports the Java Platform Debugger Architecture (JPDA). To run the
server in JPDA mode, use the -jpda option when you start the server; for
example, on UNIX:

Debugging tools

72 EAServer

start-server.sh -jpda [-jpdaSuspend]

Used with jpda, jpdaSuspend suspends the server at start-up time. This allows you to
set breakpoints in code that executes at start-up, such as servlets that are configured to
load on start-up. You can resume execution of the server with your Java debugger.The
default port to use for JPDA debugging is 5005. For more information about command
line options you can use when starting the server, see “Starting the server,” in
Chapter 3, “Creating and Configuring Servers,” in the EAServer System
Administration Guide.

For details about Java debugging, see:

• Chapter 12, “Developing CORBA/Java Components,” in the EAServer
CORBA Components Guide, and

• The Sun Developer Network Web site at http://java.sun.com.

Windows debugging tools
Windows provides several debugging options, which may require help from
Sybase Technical Support to use effectively:

• AutoDump+, also known as ADPlus, a console-based tool to help
troubleshoot a process or application that stops responding or fails.

• CDB, a console program for debugging kernel-mode drivers on Windows
NT.

• Dr. Watson, which records program errors in a log file for analysis.
Configuration options let you define:

• The type of files to output and where those files are located

• Options to dump all thread contexts and symbols

• The number of errors or instructions to save

For details:

• Run drwtsn32.exe, then click Help.

• Go to the Microsoft Web site at http://www.microsoft.com for
information on how to read a Dr. Watson log.

• Kernel debugger (kd.exe), a command line debugger.

Use the kd utility to load a dump file or attach to a running process before
a crash occurs. You can view memory or the callstack, go to a specific
offset, and so on.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 73

• UserDump, which generates a user dump of a process that shuts down with
an exception or hangs. UserDump (userdump.exe) is included in the
Microsoft OEM Support Tools Package; set it up from the Control Panel.

Note UserDump and Dr. Watson differ in the types of exceptions they
track. If your server inexplicably disappears, you may find UserDump
useful for analysis.

• WinDbg, an analysis tool that Technical Support can use to examine the
.dmp file generated by the UserDump utility. Accurate analysis of the .dmp
file requires access to the EAServer and PowerBuilder symbol files, which
customers do not have.

Table 6-1 summarizes the features of Windows dump analysis tools:

Table 6-1: Windows Dump Analysis Tools

See the Microsoft Web site at http://www.microsoft.com for more information
about these debugging tools.

UNIX debugging tools
Common UNIX debuggers include:

• dbx, which works with programs compiled with debugging information
(usually by compiling with the -g option). You can also probe core dumps
with dbx to determine the cause of the crash.

dbx is available on Solaris and Digital UNIX.

• gdb, the gnu debugger, which is a command line debugger that can debug
programs compiled on a variety of different compilers (including C and
Fortran), on several platforms.

Able to create dump
file upon AutoDump+ CDB Dr. Watson UserDump

Crash Yes Yes Yes Yes

Exception Yes Yes Yes Yes

Hang Yes Yes No Yes

Start-up failure No Yes No Yes

Normal run No Yes No No

Stack traces, dump files, and core files

74 EAServer

Attaching a debugger to EAServer
You can attach a debugger to the jagsrv process. To do this, run WinDbg and
attach to process jagsrv before a crash occurs. Use symbol files to see the call
stack, memory, and so on.

If EAServer is running as a service, you may be able to attach the debugger to
the Windows service. More information is available on the Microsoft support
site at http://support.microsoft.com.

Stack traces, dump files, and core files
Stack traces, dump files, and core files contain useful information about what
a server process is doing at a given time, such as:

• Methods called

• Memory information

• Active thread information

These files are time-consuming to read and not always easy to understand. Try
simple troubleshooting techniques first. Use the server log, which is much
more readable, to review server and component output and check any errors
raised. See “Logging and statistics” on page 4 for more information on log
files. Next, check the dump file to get an idea of which debug/trace flags should
be turned on. This may help identify things like operating system signal issues.

This section explains how to obtain dump and core files for troubleshooting.
See “Using stack traces” on page 8 for a complete list of available traces and
how to obtain a trace.

Note Stack traces, dump files, and core files are not mutually exclusive.
Depending on your platform, and the tools and options you use, the output file
may contain different types of data.

Windows dump files
When an unhandled exception or fault occurs, Windows generates either a
.dmp or a .log file based on system settings.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 75

The .log file:

• Is generated by Dr. Watson (see “Windows debugging tools” on page 72)

• Is readable with any text editor

• Includes details about the environment, active programs, services, and
modules (DLLs) when the crash occurred

A .dmp file is generated by tools like the kernel debugger, UserDump, and Dr.
Watson if you select the Create Crash Dump option. It includes dumps of
memory, call stack, offsets, and so on. A log file is also generated.

You can use various tools to read the dump file. For a comparison of the kinds
of dump file analysis provided by the tools, see “Windows debugging tools”
on page 72.

A Windows Registry entry determines which program handles uncaught
exceptions.

For information on how to configure your preferences, go to the Microsoft
support site at http://support.microsoft.com.

Note For help interpreting Windows .dmp or .log files, contact Sybase
Technical Support.

UNIX core files
The core file contains memory values and a stack trace for a running process.
Core files are generally usable only on the same machine where the server is
running and the core file was generated. The syntax to create a core file is:

gcore [option] process_id

You can use the resulting core image with debugging utilities such as sdb, adb,
or dbx—see “UNIX debugging tools” on page 73.

You can create core files only on Solaris, HP-UX, and Linux; you cannot on
AIX.

Class loader configuration issues

76 EAServer

Class loader configuration issues
This section presents information that can be useful when diagnosing class
loader configuration problems.

Common problems with custom class lists
Common problems encountered in the custom class list configuration include:

• Class cast exceptions In Java, classes loaded by different class loaders
are considered different types. You cannot assign a class loaded by one
class loader to a reference loaded by another class loader. This restriction
must be accounted for when specifying the custom class list, or when
deciding the level at which a class should be loaded. Otherwise, the
invocation can fail, and you may see one these Java exceptions in the
server log file:

• java.lang.ClassCastException

• java.lang.LinkageError

• java.lang.NoClassDefFoundError

• java.lang.IncompatibleClassChangeError

There are two variations of this issue:

• When using EJB local interfaces, the calling entity and the caller must
share the same instance of classes that are passed as method
parameters or return values. In this case, fix the problem by copying
the relevant custom class list entries to parent entities, up to a common
ancestor. For more information, see Chapter 10, “Configuring Java
Class Loaders,” in the EAServer System Administration Guide.

• For other Java or EJB component calls, the entity that calls the
component uses stubs that are system loaded. This call fails because
stubs in the component are custom loaded, and Java considers classes
that are loaded by different class loaders to be different types, even
when the classes have the same name and deployment location. To fix
this problem, add the called component’s stub classes to the custom
class list for the component or Web application that makes the call.

• Refreshing classes You must refresh classes at the level at which they
were loaded. For example, if you configure an application class loader to
share some class instances between components and Web applications,
you must refresh the application to reload new versions of these classes.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 77

Custom class loader tracing
To trace a class loader, use these options when you start EAServer, where
NamedClassLoader is the name of the class loader and NamedClassLoaderLog
is the name of the log file:

-Ddjc.trace=com.sybase.djc.util.NamedClassLoader
-Ddjc.trace=com.sybase.djc.util.NamedClassLoaderLog

To investigate class loader problems, see “Troubleshooting class loader
configuration issues” in Chapter 10, “Configuring Java Class Loaders,” in the
EAServer System Administration Guide.

JAR file locking and copying
JAR files that are in the server’s CLASSPATH setting are locked while in use
by the system class loader. Consequently, on some platforms such as Windows,
you cannot update or overwrite the JAR file while the server is running.

To allow refresh of custom-loaded JAR files, each class loader instance works
with a copy of the JAR files that it has loaded. Each JAR file copy is named
jar-name+sequence.jar, where jar-name is the name of the original JAR file
and sequence is a sequential number that is used to identify the copy. The JAR
file copies are created in the EAServer temp/server-name/sequence
subdirectory, where server-name is the name of your server. EAServer deletes
these directories and files when you restart the server.

Troubleshooting Web services
This section describes how to determine why an EAServer Web service is
inaccessible or working improperly.

For information about using EAServer Web services, see Chapter 1,
“Overview of Web Services in EAServer,” in the Web Services Toolkit User’s
Guide.

Troubleshooting Web services

78 EAServer

Check logs and error messages
To determine the cause of a Web service problem, check <server-name>.log,
which is located in the EAServer logs subdirectory.

Table 6-2 describes common Web services error messages.

Table 6-2: Web services error messages

Verify WSDL files and SOAP addresses
For a specific collection, EAServer allows you to generate a list of its Web
services, links to their corresponding Web Services Description Language
(WSDL) files, and a list of the operations in each service. To display this
information, open a Web browser, and access the following URL, where host
represents the machine name where EAServer is running, http_port is the port
number of the EAServer HTTP listener, and collection is the name of the Web
service collection:

http://host:http_port/collection/services

For example, the following URL:

http://localhost:8000/ws/services

could generate the output below for the ws service, which includes two Web
services, n_pbhello and GoogleSearchPort:

n_pbhello (WSDL link)
o fhello

Error message Description

Error 500 Servlet jspservlet: unable to service request:
Provider
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
not found.

Occurs when the xerces.jar file is found in neither the
Web application’s class path nor in the EAServer
/java/lib subdirectory.

AxisFault faultCode: Server.userException
faultSubcode: faultString: No such operation.

Verify that you are using the correct datatypes for the
parameter values.

WSTAdminException:
com.sybase.wst.admin.WSTAdminException:java.lang.
ClassCastException:
org.apache.crimson.jaxp.DocumentBuilderFactoryImpl

This indicates a class loader issue, which can occur
when you deploy a Web service if you have specified a
dependency class in the deployment descriptor, and the
same class was loaded by the EAServer system class
loader.

To work around this problem, do not include
dependency JAR files for third-party libraries to the
Web application if those libraries are already provided
by EAServer and loaded during start-up.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 79

GoogleSearchPort (WSDL link)
o doGetCachedPage
o doSpellingSuggestion
o doGoogleSearch

To verify a WSDL file, click the WSDL link. The contents of the WSDL file
should display in the browser. You can also open a WSDL file in EAServer,
using the following URL, where host represents the machine name where
EAServer is running, port is the port number of the EAServer HTTP listener,
collection is the name of the Web service collection, and service_name is the
name of the Web service:

http://host:port/collection/services/service_name?wsdl

For example, the following URL opens the WSDL file for the n_pbhello Web
service in the ws collection:

http://localhost:8000/ws/services/n_pbhello?wsdl

To verify that a Simple Object Access Protocol (SOAP) address is accessible:

1 Determine the URL for the Web service using the EAServer wstool utility
as follows, where collection is the name of the Web service collection and
service_name is the name of the Web service:

wstool list URL service:collection/service_name

2 In a Web browser, access the Web service’s URL; for example:

http://localhost:8000/ws/services/n_pbhello

Accessing the SOAP address does not invoke the Web service, but should
display a message similar to the following:

n_pbhello
Hi there, this is an AXIS service!

Invoke operations and create a test client
Using the Web Services Eclipse plug-in, you can invoke a service’s operations:

1 In Eclipse, expand the collection (ws is the default), then expand the
Operations folder under the service name.

2 Right-click the operation, and choose Invoke from the menu.

3 Specify the input values, if required for the operation, then click Invoke.
The results display.

Troubleshooting Web services

80 EAServer

To create a test client, use either of these tools; both are described in the Web
Services Toolkit User’s Guide:

• Management Console—see Chapter 5, “Management Console—Web
Services,” or

• wstool utility—see Chapter 9, “Using wstool and wstant.”

View incoming and outgoing SOAP messages
EAServer includes the Apache soap.jar file. This JAR file includes the
TcpTunnel and TcpTunnelGui utility classes, which can be used to proxy HTTP
requests. These classes allow you to view all HTTP request headers, reply
headers, and content for incoming and outgoing SOAP messages. To use the
TcpTunnelGui utility:

1 Start EAServer.

2 Run the following command, where tunnel_port is an unused port to
which proxy requests can be directed, server is the name of the machine
where EAServer is running, and http_port is the EAServer HTTP listener
port:

java org.apache.soap.util.net.TcpTunnelGui tunnel_port server http_port

3 Invoke the Web service operation using the tunnel_port number, instead of
the EAServer HTTP port number.

SOAP Inspector view To view SOAP messages in the SOAP Inspector view:

1 Open the SOAP Inspector view.

2 Enable messages.

3 Run the Web Service client as a Web Services application.

PowerBuilder Web service considerations
• If a Web service implementation is a PowerBuilder component, verify that

you can invoke the corresponding method on the underlying PowerBuilder
component from a PowerBuilder client program.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 81

• If you invoke an EAServer Web service from a PowerBuilder client, verify
that the client program is not loading an old copy of the libeay32.dll (for
example, from WINNT\system32), because this can cause the
PowerBuilder Web service invocation to fail.

EAServer plug-in for JBuilder
This section describes how to troubleshoot problems associated with the
EAServer plug-in for JBuilder. For information about installing the plug-in, see
white paper #1028173: Configuring and Troubleshooting the Sybase EAServer
Plug-in for JBuilder 2005 at http://www.sybase.com/detail?id=1028173.

❖ Verifying your configuration

If you are having trouble with the EAServer plug-in for JBuilder, verify:

1 You have the latest easerver-jbsp.jar file.

2 The working directory matches the EAServer installation location.

3 The plug-in is set up using the JBuilder Project | Default Project
Properties.

4 The project’s application server is set to EAServer. Check the JBuilder
Project | Project Properties | Servers menu item.

5 If you are debugging a JSP, you are using a local EAServer installation.

6 If the WAR file contains extra files, or if it contains other application
servers, such as the BNX Authentication Suite (BAS) 5.0:

a Right-click the Web application, and choose the Dependencies tab.

b Select EAServer, and select Never Include any Classes or Resources.

❖ Reviewing deployment output and generating verbose logging

1 Examine the output that was generated during deployment. Pay special
attention to the class path.

2 Display extra internal logging information and runtime exceptions by
running JBuilder with the -verbose option; for example:

jbuilder\bin\jbuilder -verbose > output.txt

where output.txt is the log file.

EAServer plug-in for JBuilder

82 EAServer

3 Examine the EAServer log files, which are typically found in the
EAServer bin or devbin subdirectory.

❖ Deploying externally

1 Deploy the WAR file to EAServer using the Management Console or the
deploy command line tool.

2 Run the J2SDKEE Sun verifier on the generated EAR, JAR, or WAR file;
for example, on Windows:

verifier.bat myWAR.war

JBuilder JSPs and ResultSets
This section describes how to troubleshoot problems associated with JSPs in
JBuilder that retrieve ResultSets using EAServer connection caches. For
information about creating JSPs in JBuilder that perform this task, see white
paper #1028828: Create JSP in JBuilder to Retrieve ResultSet from EAServer
Connection Cache at http://www.sybase.com/detail?id=1028828.

❖ Troubleshooting JSPs in JBuilder

1 Verify your configuration—see “Verifying your configuration” on page
81.

2 If the JSP does not compile, review the content of the JBuilder Messages
pane for information about why the compilation failed.

3 If attempts to deploy the Web module fail:

a Review the content of the JBuilder Messages pane for information
about why the deployment failed.

b Verify that EAServer is running.

c Verify that the server name and port number in the project deployment
settings match the actual running server and HTTP listener.

4 If the Web browser displays a “page not found” error:

a Verify that EAServer is running.

b Verify that the HTTP listener can process requests by attempting to
access the default documentation page; for example,
http://serverName:8000.

c Restart EAServer.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 83

5 If the Web browser displays an exception, or a message that indicates there
is a problem with the page; for example, “internal server error 500”:

a Check the EAServer log files serverName.log and
serverName-http-YYYY-MM-DD.log for details, where:

• serverName is the name of the server, and

• YYYY-MM-DD is the current date.

b Add an error page to the JSP, then rebuild and redeploy the project.
For example:

1 Add the following line to your JSP:

<% page errorPage=”jsp2_error.jsp” %>

2 Create a new JSP named jsp2_error.jsp with the following
content:

<%@ page isErrorPage="true" %>
<html>
<body>
<h1>Error page</h1>

Error occurred in the JSP: <%= exception.getMessage() %>

Stack Trace:
<%
java.io.CharArrayWriter cw = new java.io.CharArrayWriter();
java.io.PrintWriter pw = new java.io.PrintWriter(cw,true);
exception.printStackTrace(pw);
out.println(cw.toString());
%>
</body>
</html>

6 If you make any changes to the Web application, rebuild the WAR file
before redeploying it to EAServer; otherwise, the WAR file does not
include your changes.

WINS and server response time
If you are using a Microsoft Windows Internet Naming Service (WINS) server,
response times can be improved by configuring your system to allow NetBIOS
traffic to and from EAServer.

Installing and compiling Apache on HP RISC

84 EAServer

Windows XP and Service Pack 2
If you are running Windows XP and have Service Pack 2 installed, establishing
a session between a client and a server may take up to five seconds. This
problem exists because the Windows XP firewall blocks NetBIOS traffic
between workstations and EAServer. To work around this issue, configure the
XP firewall to allow traffic on port 137 to and from EAServer.

Cisco VPN clients
If a Cisco VPN client is installed, the Cisco stateful firewall is deployed, which
does not allow NetBIOS traffic, and thus slows server response time. To permit
NetBIOS traffic, set the VPN client status to Connected.

Personal firewalls and router ACLs
Personal firewalls, such as Zone Alarm, block NetBIOS traffic. If a personal
firewall or Web-database (WDB) controlled hardware firewall is deployed
between the WDB network and the internal network, it must be configured to
allow NetBIOS traffic (on port 137) to and from EAServer.

Routers with access control lists (ACLs) may also block NetBIOS traffic. If a
WDB-controlled router is running ACLs, it must be configured to allow
NetBIOS traffic (on port 137) to and from EAServer.

Installing and compiling Apache on HP RISC
Installing and compiling Apache on the HP RISC platform can be problematic,
due to defects in Apache build scripts and problems linking to Apache libraries.

Note The following instructions are guidelines for building with SSL. You
may need to tweak these steps, based on your environment and machine
configuration.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 85

❖ Building Apache on HP RISC to use EAServer plug-in libraries

1 Compile Apache using aCC. By default, Apache searches for both cc and
aCC, but use aCC to compile all code, including the C code in Apache.
Also use aCC to link the httpd binary, because aCC links libCsup, libstream,
and libstd, which are necessary to load C++ libraries. The EAServer
redirector plug-ins are all written in C++.

2 Use the GNU make tool gmake to build Apache. Apache uses GNU
autconf and automake to generate makefiles.

3 Install Perl version 5.0 or later on your machine. You can download the
Perl binary depot file from the HP Web site at http://www.hp.com. You need
Perl version 5.0 or later to build OpenSSL.

4 Download OpenSSL to your machine, and follow the instructions in the
README and INSTALL files. You can download OpenSSL from the
OpenSSL Web site at http://www.openssl.org.

5 Download the Apache 2.0 .tar file, and extract the contents into the
/work/httpd-2.0.53 directory. You can download Apache from one of the
mirror sites listed on the Apache Software Foundation Web site at
http://www.apache.org/dyn/closer.cgi.

6 Change to the /work/httpd-2.0.53 directory, and run:

CC="aCC" CFLAGS="-Ae +Z +DA1.1 +DS2.0 +u4 -D_HPUX -DHPUX \
-D_POSIX_C_SOURCE=199506L -D_HPUX_SOURCE -DNATIVE" \
LDFLAGS="-v -Wl,-v,+s,+n" LD="aCC" \
./configure --prefix=/work/apache2 \
--enable-mods-shared=all --enable-rewrite=shared \
--enable-speling=shared --disable-auth-digest \
--enable-ssl --with-ssl=/work/ssl

Note the name of the module that reports problems during configuration.
You can choose to disable this module.

Verify that there are no errors reported during configuration. If you ignore
configuration errors, Apache will be installed correctly. Configuration
requires several minutes to complete. If it completes too quickly, it
probably failed.

OpenSSL is installed in the /work/ssl directory, and includes bin, include,
and lib subdirectories.

7 Run gmake, and capture the console output to help debug errors:

Installing and compiling Apache on HP RISC

86 EAServer

gmake 2>&1 | tee out

Note This command works in Korn shell and Bash. It does not work in C
shell.

Errors may occur when building apr and apr-util/xml/expat. The errors
usually correspond to linking libraries, because of incorrect link
commands. Apache may not be tested to run an entire build with aCC, so
it is necessary to work around bugs in their makefiles.

To debug build errors associated with apr and apr-util/xml/expat, use the
following example as a guide. You can decide how to fix the problem
based on the error messages you receive.

a To debug apr, change to /work/httpd-2.0.53/srclib/apr/build.

b Using a text editor, open libtool.m4, and search for “+h” and “+b.”
Verify that each command line with a “+h” or “+b” looks similar to:

_LT_AC_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname -
Wl,+b,$install_libdir -o $lib $predep_objects $libobjs $deplibs
$postdep_objects $compil er_flags

Preceding each “+h” or “+b” and its value must be either “${wl}” or
“-Wl.” In the example above:

• ${wl}+h ${wl}$soname

• Wl,+b,$install_libdir

c For apr, change to /work/httpd-2.0.53/srclib/apr

For apr-util/xml/expat, change to
/work/httpd-2.0.53/srclib/apr-util/xml/expat.

d Using a text editor, open libtool, and verify the syntax for the “+h” and
“+b” strings, as described in step b.

archive_cmds="\$LD -b \${wl}+h \${wl}\$soname \${wl}+b
\${wl}\$install_libdir -o \$lib \$libobjs \$deplibs \$linker_flags”

e Check the build settings in the *.mk files.

f Change to /work/httpd-2.0.53, and run gmake again.

g To determine which command line is being executed, disable the
LTFLAGS variable. This variable sets libtools to silent. Use grep to
search for “silent” in the libtool or libtool.m4 directory, then comment
out this variable.

CHAPTER 6 Advanced Topics

Troubleshooting Guide 87

h Once all build errors are resolved, verify that the httpd binary is linked
correctly:

1 Delete /work/httpd-2.0.53/httpd.

2 Change to /work/httpd-2.0.53/build.

3 Using a text editor, open config_vars.mk. Search for these
variables, and comment them out:

• CFLAGS

• EXTRA_CPPFLAGS

• LTFLAGS (comment out to display entire command line)

4 Change to /work/httpd-2.0.53, and re-run gmake.

5 When the build is error free, change to /work/httpd-2.0.53/.libs,
and run:

chatr httpd

This should show you all the libraries that are linked to httpd.
Verify that libCsup, libstream, and libcl are linked. If they are not,
there is a problem.

6 Once you verify that there are no errors, change to
/work/httpd-2.0.53, and run:

gmake install

The Apache files should be installed to /work/apache2, based on
your prefix.

8 Edit /work/apache2/bin/envvars, and set SHLIB_PATH to the location of
the JDK libraries, and set JAGUAR_CLIENT_ROOT to the EAServer
installation directory (required for SSL):

SHLIB_PATH="/work/apache2/lib:/sun/jdk/jdk1.3.1_10/jre/lib/PA_RISC2.0:/
sun/jdk/jdk1.3.1_10/jre/lib/PA_RISC2.0/native_threads:/sun/jdk/jdk1.3.1
_10/jre/lib/PA_RISC2.0/classic:$SHLIB_PATH"
export SHLIB_PATH

JAGUAR_CLIENT_ROOT=/Sybase/EAServer
export JAGUAR_CLIENT_ROOT

Now, you should be able to start an Apache 2.0 server with an EAServer
compatible configuration.

Miscellaneous topics

88 EAServer

Miscellaneous topics

Testing and debugging classes
If Sybase provides classes for testing and debugging at your customer site, put
the classes in the DJC_HOME/lib/patches directory. Put only class in this
directory, not JAR files. Verify that class files are unzipped and in the correct
packages.

Additional tools and utilities
For more information about tuning and debugging tools and utilities, see the
Monitor/Tune folder on the EAServer CodeXchange Web page at
http://easerver.codexchange.sybase.com/servlets/ProjectDocumentList.

Internet Explorer security patch
If you install Internet Explorer Security Patch MS01-055, Web applications
that use session cookies may not work. This security patch denies cookies from
servers whose domain names do not comply with the specifications of RFC
833; for example, names that include underscores are not supported. The result
is that session variables may not be maintained when dealing with some Web
applications. For more information, see the Microsoft Knowledge Base article at
http://support.microsoft.com/kb/312461/en-us.

Drivers that use the DataSource interface
Drivers implementing the DataSource interface are treated differently than
“simple” drivers. This is the difference between JDBC level 1 and JDBC level
2 (also known as “JDBC specification version 2.0”). Applications must use
getXXX and setXXX methods to pass the user name, password, and other
information to the driver. The get/set methods you use are URL-dependent. For
example, if you connect to an Oracle database using an Oracle JDBC driver,
and your Oracle cache URL is as listed below, EAServer calls these methods
on the driver instance: setDriverType(thin), setServer(conlabtt), setPort(1521).

DriverType=thin:Server=conlabtt:Port=1521:DatabaseName=conlabtt

CHAPTER 6 Advanced Topics

Troubleshooting Guide 89

To find the exact name of the driver class, and the properties, run:

$JAVA_HOME/bin/javap oracle.jdbc.pool.OracleDataSource

Java Message Service
The EAServer message service allows you to send or publish messages to a
queue or topic, where they are stored until they can be delivered to either a
client or a component. See the Java Message Service User’s Guide at
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.dc00486_0600/ht
ml/easjms/title.htm.

JMS and jagtool

If you are using jagtool, you may not see all the EAServer message queues and
topics. The EAServer 5.x message service works differently than the EAServer
6.x message service. In EAServer 5.x, the message service is based on
EAServer CTS components, while the EAServer 6.x message service uses the
JMS APIs. Using jagtool, the only message queues and topics that are visible
are the ones that were created in EAServer 5.x using the CTS APIs.

To see all the message queues and topics, use the Management Console. For
new development, use the Management Console to create message queues and
topics.

Alert Management System and the message service

The Alert Management System (AMS) version 4.1.1 processes and manages
XML alert messages. The main component of AMS is an MDB (message-
driven bean) that writes alert message to a JMS topic. If you run this
application with EAServer, both the MDB and the EAServer message service
must use the same connection cache; otherwise, errors similar to the following
are written to serverName.log:

JCM Caught Throwable: java.sql.SQLException: Error: Current enlistment requires
2PC Resource and No 2PC Resource Configured for Cache:SybaseJMS

Miscellaneous topics

90 EAServer

Troubleshooting Guide 91

Numerics
64-bit platform, running on 38

A
accessibility features xii
ActiveX clients

exception handling 46
Adaptive Server Anywhere

installation location 36
adb, UNIX debugging tool 75
ADPlus, Windows debugging tool 72
advanced topics 65
AIX

monitoring server operations 66
signals 37
stack traces, obtaining 9

Alert Management System 89
analyzing

applications and environments 1
information required 1
stack dumps 66

Apache Log4j logging, integrating with 5
Apache TomCat servlet engine 22
applications

class-conflict errors 29
generic issues 24
issues 24

arch64 flag 38
AutoDump+, Windows debugging tool 72
avoiding memory leaks 28
Axis classes and application errors 29

B
blocking NetBIOS traffic 83
BOOTCLASSPATH, environment variable 34

C
C++ components

CORBA system exceptions 45
error handling 45
logging messages from 5
memory corruption 26
running externally 19
user-defined exceptions 46

C++ profiling 71
captureConsoleOutput logging property 9
CDB, Windows debugging tool 72
certificates

listener, assigning to 31
server-side (private keys) 30
trusted 30

certificates and security keys 30
Cisco VPN clients and WINS 84
class loaders

configuration issues 76
tracing 77

class path
client’s contains 5.x classes 61
deployment errors due to problems in 25

class-conflict errors 29
classes

cast exceptions 76
debugging 88
loading from unexpected locations 34
refreshing 76

CLASSPATH environment variable
analyzing server crash 17
verifying configuration 34
VM debugging 60
Windows 36

ClassSearch utility 34
client applications

performance issues 30
client connections, limits 37
client log files for debugging 8

Index

Index

92 EAServer

client proxies 25
code sets

PowerBuilder clients and components 28
CodeXchange samples 88
COMM_FAILURE CORBA system exception 44, 62, 64
common error messages 51
common problem areas 15
components

C++ 26
invoking, problems 34
pooled 25
service 69
service, looping 37
shared 25
testing 21
tracing 6

concurrent client connection limits 37
configuration

issues 34
verifying 34

connecting
client, problems 34

connection caches
message service, using 89
testing 21

connections
problems 24
references to 25

console messages for debugging 8
conventions x
CORBA

system exceptions 43, 61
system exceptions, C++ 45
user-defined exceptions 44

core dumps 8
core files 74, 75
could not start thread, error message 54
CPU

processes consuming 66
sizing 37
usage, determining 66

crash address, finding 18
crashing, servers 16
custom class lists, common problems 76
custom class loader tracing 77

D
DataSource interface, drivers using 88
DBMS error, PowerBuilder 55
dbx, UNIX debugging tool 73
debugging

attaching a debugger to EAServer 74
classes 88
client log files 8
CodeXchange samples 88
EAServer plug-in for JBuilder X 81
Java 71
server console messages 8
tools 71
UNIX 73
Web services 77
Windows 72

debugging tools
adb 75
ADPlus 72
AutoDump+ 72
CDB 72
dbx 73
Dr. Watson 72
gdb 73
jdb 71
kd 72
sdb 75
UserDump 73
WinDbg 73

default.properties server file 69
default-application-servers.xml configuration file 69
deploy -disableResolveFirstBySystem 30
deploying EAR, JAR, or WAR files 25
deployment

failures due to class path 25
disappearing servers, investigating 22
disconnecting client proxies 25
DJC_ARCH server flag 38
DJC_HOME environment variable 35
DJC_JDK_DEFAULT server flag 38
DJC_RT_DEFAULT server flag 38
djc-setenv.bat 3
DLL monitoring 69
Dr. Watson, Windows debugging tool 72
drivers using the DataSource interface 88
dump files 74

Index

Troubleshooting Guide 93

Windows 74

E
EAR files, deploying 25
EAServer

attaching a debugger to 74
cannot start 35
connection problems 24
log file 4
monitoring APIs 68
plug-in for JBuilder 81
service, running as a 36
starting, trouble 34
tracing 9

EAServer Manager. See Management Console
EAServer plug-in for JBuilder X

debugging 81
deploying externally 82
generating verbose logging 81
reviewing deployment output 81
verifying your configuration 81

EBFs and software maintenance xii
ECHO property 18
ejb.logExceptions property 10, 60
ejbTrace server property 11
enableDriverManagerLog server property 10
enableHttpRequestLog server property 10
environment variables

BOOTCLASSPATH 34
CLASSPATH on Windows 36
CLASSPATH, classes in 34
CLASSPATH, debugging VM errors 60
CLASSPATH, verifying when servers fails 17
DJC_HOME 35
JAGUAR_CLIENT_ROOT 60
LD_LIBRARY_PATH 35
PATH 17, 35, 60
PBOnFatalError 50
PBRollbackOnRTError 27
required for debugging 3
SQLANY 36
WSPLUGIN_CONFIG_FILE 32

environment, analyzing 1
error handling

C++ components 45
Java components 42
lack of 25
PowerBuilder 49

error logs
HTTP requests 2
server 2
Web services 78

error messages
common 51
could not start thread 54
message text and explanations 52
source indicators 51
Web services 78

error pages
for JavaServer Pages 47
JSP 48
for Web applications 47

ErrorLogging PowerBuilder object 5
errors

class-conflict 29
logging 60

evaluating Windows memory 67
exception handling 41

ActiveX clients 46
Java clients 42

exceptions
casting classes 76
CORBA system 43, 61
JMetaData 61
logging 60
PowerBuilder, unhandled 49
user-defined 44

exRef server property 10

F
file descriptors 37

listing 66

G
gdb, UNIX debugging tool 73

Index

94 EAServer

getserverinfo, securetool server status monitoring
command 69

getservicestate, securetool service component monitoring
command 69

H
handling exceptions 41
hanging, servers 16, 20
HP-UX commands

top 65
tusc 65
vmstat 65

HTTP
and IIOP network monitoring using EAServer Manager

68
network tracing tools 13
request logging, properties to enable 21
request logs, naming 2
statistics 6

I
IIOP

and HTTP network monitoring using the Management
Console 68

logging and slow performance 8
network tracing tools 13
statistics 7

IIOP clients
JMetaData server-side exception 61

IIS redirector plug-in 32
imagecfg, Windows utility 38
improving performance 39
incorrect password 56
information required for Technical Support 1
installation issues 15
Internet Explorer

security patch, problems 88

J
JagLog 5

jagsleep, command 24
jagsrv process 22
jagtool

JMS and 89
monitoring commands 69

jaguar.server.Jaguar.writeLog method 4
Jaguar::PerfMonitor API 68
Jaguar::StatProvider API 68
JAGUAR_CLIENT_ROOT environment variable 60
JAR files

deploying 25
locking and copying 77

Java
debugging tools 71
profiling 70
static variables 26

Java clients
exception handling 42

Java components
error handling 42
logging messages from 4
printStackTrace method 11
skeletons, synchronizing 26

Java exception traces 11
Java Logging system APIs 6
java.lang.NoClassDefFoundError 57
java.lang.UnsupportedClassVersionError 57
JavaServer Pages

See also JSP
error pages for 47
uncaught exceptions 47

JBuilder X
EAServer plug-in for 81
JSPs, debugging 82

jdb, Java debugging tool 71
JDBC

getNextException 11
JDK 1.4 Java Logging package, integrating with 5
jks 30
JMetaData exception 61
JMS

jagtool and 89
topic not available error 59

jmsTrace server property 11
JPDA 71
JSP

Index

Troubleshooting Guide 95

See also JavaServer Pages
error page, sample 83
error pages 48
in JBuilder X 82

K
kd, Windows debugging tool 72
keys and certificates 30
keystores 30

tampered 56
keytool 30

L
LD_LIBRARY_PATH environment variable 35
libjcc.dll file problems 35
libraries, determining which are loaded 66
license error 59
ListDLLs, freeware for Windows 69
listeners

assigning certificates to 31
errors, in use 59
verify port availability 35

loading classes 34
loads, peak 37
local-setenv.bat 3
locking JAR files 77
log files

EAServer 4
IIOP 7

log profile 5
Log4j logging APIs 6
logApplicationExceptions server property 10
logging 4

APIs 6
integrating with other systems 5
of exceptions 60
server messages 4

logging properties 9
ejb.logExceptions 10
web.logExceptions 10

logSystemExceptions server property 10
looping service components 37

M
Management Console

client host and thread, monitoring 68
HTTP and IIOP network monitoring 68
HTTP monitoring 13
IIOP monitoring 13
tracing thread usage 68

managing system logging 6
maximum threads property 54
memory

avoiding leaks 28
corruption by C++ components 26
drain, ResultSets 25
lack of 23
management tools 66
PBVM, tuning for 27
usage sample 66
usage, determining 66

memory leaks, diagnosing
OptimizeIt 23
Performance Monitor 23

message queues
jagtool, viewing with 89

message service
connection cache 89
topic not available error 59

migrating EAServer entities 16
miscellaneous topics 88
monitoring

client host and thread information 68
DLLs 69
techniques 1

monitoring tools 65
EAServer monitoring APIs 68
Java profiling 70
ListDLLs 69
Process Explorer 70
ps, UNIX command 71
Purify 71
PurifyPlus 71

multiprocessor issues 37
mx4jLoggingLevel server property 10

Index

96 EAServer

N
NamingException 12
NetBIOS traffic, blocking 83
netstat, network tracing tool 13
network tracing tools

HTTP 13
IIOP 13
TCP/IP 12

NO_PERMISSION CORBA system exception 44, 62, 64
non-threadsafe sleep calls 24

O
OBJECT_NOT_EXIST CORBA system exception 44,

62, 64
obtaining stack traces 9
OEM clients and service components 69
operating system

patches 37
signal issues 8

operational management tools 65
OptimizeIt, tool for diagnosing memory leaks 23
ORBCodeSet property 28
overview

exception handling 41
monitoring 1

P
passwords

incorrect 56
patches, operating system 37
PATH environment variable 17, 35, 60
PBOnFatalError variable 27, 50
PBRollbackOnRTError variable 27
PBVM

memory tuning 27
and PowerBuilder versions 35

peak loads 37
performance

client application issues 30
IIOP logging degrades 8
issues 39
tuning 39

Performance Monitor, using to diagnose memory leaks
23

personal firewalls and WINS 84
pfiles, UNIX command 66
ping, network tracing tool 13
pkcs12 30
pldd, UNIX command 66
pmap, UNIX command 17, 66
pmon, Windows command 71
pooled components 25
PowerBuilder

client invoking Web service 80
code sets 28
component implementation of Web service 80
components, logging messages from 5
DBMS error 55
error handling 49
ErrorLogging object 5
PBOnFatalError variable 27
PBRollbackOnRTError variable 27
and PBVM versions 35
unhandled exceptions 49
Web DataWindows 27

printStackTrace Java method 11
private keys 30
Process Explorer, monitoring tool 70
processes

finding active 71
tools used to monitor 71

procexp.exe, Process Explorer program file 70
production environment, verify settings 35
profiling

C++ 71
Java 70
tools 70

protocol IIOPS not supported, warning 60
ps, UNIX command 71
PsList, Windows freeware 71
pstack, UNIX command 66
pstat, Windows command 71
Purify, profiling tool for UNIX 71
PurifyPlus, profiling tool for Windows 71

Index

Troubleshooting Guide 97

R
redirecting server output 22
redirector plug-in issues 31
redirector.cfg configuration file 32
refreshing classes 76
resource allocation problems associated with service

36
resources

performance tuning 39
response time, slow 83
ResultSets

memory drain 25
RMI-IIOP tracing, warning 10
rmiiiopTrace flag 10
rmiiiopTraceLocal flag 10
rmiTrace server property 10
rmiTraceLocal server property 10
router ACLs and WINS 84
runtime monitoring

processes 71
tools 67

S
samples

exceptions, trapping in C++ 45
JSP error page 83
memory usage and JVM properties 66

sdb, UNIX debugging tool 75
security keys and certificates 30
server

error logs 2
server console messages for debugging 8
server failures 16

cluster members 17
crash address, finding 18
disappears 22
intermittently 20
on start-up 17
reproducible 19

server output, redirecting 22
server performance

component logging degrades 6
IIOP logging degrades 8

server properties

logging and tracing 9
ServerName.properties server file 69
servers

cannot start 35
crashing 16
diminishing performance 23
hanging 20
problems connecting to 24
processes, records of 8
running out of memory 23

service components 69
getservicestate, using to query the state of 69
looping 37

service, running EAServer as 36
session cookies, problems using IE 88
SetAbort and SetComplete 4
setenv.bat, setting tracing properties in 11
shared components 25
signal issues, operating system 8
Simple Object Access Protocol. See SOAP
sleep calls, non-threadsafe 24
slow start-up 23
SOAP

verifying addresses 79
viewing messages 80

soap.jar file 80
sockets, listing 66
software maintenance and EBFs xii
Solaris timers 37
SQLANY environment variable 36
sqlTrace server property 11
SSL

CORBA::NO_PERMISSION exception 53
Service Provider error 60
X.509 certificate chain error 59

stack dumps, analyzing 66
stack traces 74

AIX 9
obtaining 9
server processes, looking at 8

start-up slow 23
stateful components

client proxy not disconnected 25
static variables in Java 26
statistics

HTTP 6

Index

98 EAServer

IIOPrmiiiopTrace flag 7
synchronizing Java component skeletons 26
SySAMLicenseManager error 59
system exceptions 60

CORBA components 61
CORBA Java client 43

system exceptions, CORBA 61
system logging, managing 6
System.out.print method 4
system-level issues 36

T
tampered keystore error 56
TCP/IP network tracing tools 12
TcpTunnelGui utility 80
TDImon, network tracing tool 13
Technical Support, information required for 1
techniques

monitoring 1
testing

components 21
connection caches 21

threads
could not start, error message 54
locking 37
maximum 54
user-spawned 25

TomCat servlet engine 22
tools

debugging 71
memory management 66
monitoring 65
OptimizeIt 23
Performance Monitor 23
profiling 70
runtime monitoring 67

top
HP-UX command 65
UNIX command 66

traceroute, network tracing tool 13
tracing

class loaders 77
components 6
custom class loader 77

Java exceptions 11
network problems 12
thread usage with the Management Console 68

tracing properties
ejbTrace 11
jmsTrace 11
rmiTrace 10
rmiTraceLocal 10
sqlTrace 11
webTrace 11

TRANSACTION_ROLLEDBACK CORBA system
exception 44, 62, 64

truss, UNIX command 66
trust verification failure 60
truststores 30
tuning

application performance 39
CodeXchange samples 88

tusc, HP-UX command 65
txRef server property 10
typographical conventions x

U
ulimit, command 37
unable to initialize the VM, error message 60
unhandled PowerBuilder exceptions 49
UNIX

core files 75
debugging tools 73
file descriptors 37

user ID, error 56
user-defined exceptions

C++ 46
UserDump, Windows debugging tool 73
user-spawned threads 25
using error pages 47

V
variables

holding references 25
Java static 26

verifier tool, using for deployment problems 25

Index

Troubleshooting Guide 99

verifying
configuration 34
SOAP addresses 79
WSDL files 79

virtual bytes, Windows limit 38
virtual machine, unable to initialize, error message

60
Vista error 60
vmstat

HP-UX command 65
UNIX command 66

W
WAR files, deploying 25
warnings

failed to initialize SSL Service Provider 60
protocol IIOPS not supported 60

Web applications
deploying, problems 25
error pages for 47
session cookies, problems using IE 88
testing 21
web.logExceptions logging property 10

Web DataWindows, PowerBuilder 27
Web server redirector plug-ins

issues 31
Microsoft IIS 32

Web services
creating a test client 80
invoking operations 79
logs and error messages 78
PowerBuilder client, invoking from 80
PowerBuilder components 80
SOAP addresses 78
troubleshooting 77
viewing incoming and outgoing SOAP messages

80
WSDL files 78

web.logExceptions Web application property 10
webTrace server property 11
WinDbg, Windows debugging tool 73
Windows

debugging tools 72
dump files 74

memory, evaluating 67
virtual bytes 38

Windows XP and WINS 84
WINS and server response time 83
WSDL files, verifying 78, 79
WSPLUGIN_CONFIG_FILE environment variable

32

X
X.509 certificates

chain invalid error 60
Xerces classes and application errors 29
xterm utility 35

Index

100 EAServer

	Troubleshooting Guide
	About This Book
	CHAPTER 1 Monitoring Techniques
	Overview
	Gathering information
	Logging and statistics
	EAServer log
	Integrating with other logging systems
	Component logging

	HTTP statistics
	IIOP statistics
	Other useful data

	Using stack traces
	Obtaining stack traces
	EAServer tracing
	Java exception traces

	Tracing network problems
	TCP/IP
	IIOP
	HTTP

	CHAPTER 2 Common Problem Areas
	Installation issues
	Migrating from earlier EAServer versions

	Server crashes, hangs, or disappears
	Server crashes
	More tips for debugging server failures

	Server hangs
	Server disappears

	Server slows or runs out of memory
	Connection problems
	Application issues
	Generic issues
	Java component issues
	C++ component issues
	PowerBuilder component issues
	Avoiding memory leaks
	Applications that use Xerces
	Other design issues

	Security keys and certificates
	Web server redirector plug-in issues
	Apache and Sun Java System Web server redirectors
	Microsoft IIS Web server redirector plug-in

	Configuration issues
	Verifying your configuration
	Running EAServer as a service

	System-level issues
	Operating system issues
	CPU sizing
	Multiprocessors
	UNIX file descriptors
	Windows virtual bytes
	Running on a 64-bit platform

	CHAPTER 3 Performance Issues
	Resources

	CHAPTER 4 Exception Handling
	Overview
	Error handling in CORBA Java components
	Handling exceptions in CORBA Java clients
	CORBA system exceptions
	User-defined exceptions

	Error handling in CORBA C++ components
	CORBA system exceptions in C++
	User-defined exceptions in C++

	ActiveX clients
	Using error pages
	Error pages for Web applications
	Error pages for JavaServer Pages
	Using an error page JSP

	PowerBuilder error handling
	Unhandled PowerBuilder exceptions

	CHAPTER 5 Common Error Messages
	Introduction
	Error messages
	System exceptions
	EJB components
	CORBA system exceptions

	CHAPTER 6 Advanced Topics
	Operational management tools
	Memory management tools
	Evaluating Windows memory
	PowerBuilder memory tuning

	Runtime monitoring tools
	Management Console
	EAServer monitoring APIs
	jagtool
	Service components
	ListDLLs
	Process Explorer
	Profiling tools
	ps, pstat, pmon, and PsList

	Debugging tools
	Java debugging tools
	Windows debugging tools
	UNIX debugging tools
	Attaching a debugger to EAServer

	Stack traces, dump files, and core files
	Windows dump files
	UNIX core files

	Class loader configuration issues
	Common problems with custom class lists
	Custom class loader tracing
	JAR file locking and copying

	Troubleshooting Web services
	Check logs and error messages
	Verify WSDL files and SOAP addresses
	Invoke operations and create a test client
	View incoming and outgoing SOAP messages
	PowerBuilder Web service considerations

	EAServer plug-in for JBuilder
	JBuilder JSPs and ResultSets

	WINS and server response time
	Windows XP and Service Pack 2
	Cisco VPN clients
	Personal firewalls and router ACLs

	Installing and compiling Apache on HP RISC
	Miscellaneous topics
	Testing and debugging classes
	Additional tools and utilities
	Internet Explorer security patch
	Drivers that use the DataSource interface
	Java Message Service
	JMS and jagtool
	Alert Management System and the message service

	Index

