
Agentry App Development

SAP Mobile Platform 3.0 SP02

DOCUMENT ID: DC-01-0302-01
LAST REVISED: February 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Agentry App Development ..1
Setting Up the Development Environment for Agentry

Toolkit ...1
Installing the Eclipse IDE and Agentry Editor

Plug-In ..4
Agentry Editor and Eclipse Platform

Configuration Overview6
Agentry OpenUI SDK for iOS Setup Overview28
Agentry OpenUI SDK for Android Setup

Overview ...31
Agentry OpenUI for Windows Setup Information

...37
Installing the Agentry Test Environment37
Agentry SAP Framework Foundation Installation

Overview ...38
Installing the Agentry ActiveX SDK47

Developing Agentry Apps ...48
Agentry Editor Eclipse Preferences48
Agentry Editor and Eclipse Platform Overview51
Agentry Application Projects: Creating,

Managing, and Publishing70
Overview of Mobile Northwind Sample

Application ...128
Target Paths and the Property Browser129
Rules: An Introduction161
Rule Context ..165
Rule Data Types ..166
Rule Editor Introduction169
Syclo Data Markup Language179
SDML Syntax and Data Tag Expansion180
Agentry Data Definitions Overview184

Agentry App Development iii

Data Synchronization Overview: The Exchange
Data Model ..185

Data Synchronization: Data Filtering Overview . 187
Object Development Concepts and

Considerations ..188
Agentry User Interface Definitions Overview203
Client User Interface Considerations and

Guidance ...208
Security Related Development Overview209
Attached Documents and File Transfer: Key

Concepts ...216
Agentry ActiveX SDK ...239

Agentry Language Reference265
Application Level Definitions Overview265
Module-Level Data Definitions Overview302
Module-Level User Interface Definitions

Overview ...369
Rule Function Terms Overview448
Syclo Data Markup Language527
Agentry Test Script Overview576
Agentry Java API ...637

Agentry SAP Framework ..801
Agentry SAP Framework801

Agentry Device Client Branding SDK979
Agentry Client Installer and Executable

Branding ..979
Agentry ActiveX SDK ..983

Technical Overview - ActiveX Controls and the
Agentry Client ..985

Agentry Client API for External Processes
Technical Overview1003

Agentry OpenUI API ...1009
OpenUI SDK Concepts, Usage and Guidance 1010
Agentry OpenUI API for Android1012
Agentry OpenUI API for iOS1174

Contents

iv SAP Mobile Platform

Agentry OpenUI API for WPF1319
Index ..1377

Contents

Agentry App Development v

Contents

vi SAP Mobile Platform

Agentry App Development

Setting Up the Development Environment for Agentry
Toolkit

The Agentry Toolkit provides the components to create Agentry applications. These
components are intended for developers, implementors, and administrators.

With the exception of the Agentry SAP® Framework Foundation, all Agentry components are
installed as part of the SAP Mobile Platform SDK. You can find the Agentry developer
resources and installers in the Agentry installation folders.

Agentry Editor
The Agentry Editor provides a point-and-click development environment, within which the
mobile application can be built or an existing mobile application can be modified for specific
implementation needs.

File locations:

• 32 bit build: SDK_HOME\AgentryToolkit\32-bitAgentryEditor
\Agentry_7.0.x.x_EditorPlugin_x86.zip

• 64 bit build: SDK_HOME\AgentryToolkit\64-bitAgentryEditor
\Agentry_7.0.x.x_EditorPlugin_x86_64.zip

Agentry OpenUI SDK & Android and iOS Agentry Client Rebranding
File locations:

• Agentry OpenUI SDK for Android: AgentryToolkit\AgentryOpenUISDK
\SMPAgentryClientFramework-Android-7.0.x.x.zip

• Agentry OpenUI SDK for iOS: AgentryToolkit\AgentryOpenUISDK
\SMPAgentryClientFramework-iOS-7.0.x.x.tgz

• Agentry OpenUI SDK for Windows - Sample Project Only: AgentryToolkit
\AgentryOpenUISDK\Agentry_7.0.x.x_OpenUISampleDotNET.zip

The Agentry OpenUI SDK is introduced in the SAP Mobile Platform SDK 3.0 release. This
SDK is available for Android, iOS, and Windows client platforms. It is provided to allow
developers to create custom controls for the Agentry Client. These custom controls will then
override the standard field edit types within the Agentry Client at runtime.

For both Android and iOS the client framework archives listed above provide the needed
resources to develop custom controls using the OpenUI SDK. For the Agentry Client for

Agentry App Development

Agentry App Development 1

Windows devices, this is not necessary. Rather, a project is created in Visual Studio
targeting .NET 4.5 Framework, and which uses reflection to obtain information about the
loaded assemblies for the OpenUI interface.

Additionally, the resources provided in these same SDK files also provide the necessary
interface to support rebranding of the Agentry Client for Android and iOS. Windows clients
are rebranded using the Agentry Device Client Branding SDK, as in previous versions of SAP
Mobile Platform and/or Agentry Mobile Platform.

Agentry Test Environment
File location:

• Installer: AgentryToolkit\AgentryTestEnvironment
\Agentry_7.0.x.x_Test_Environment.exe

The Agentry Test Environment provides an Agentry Client which runs within a test and
monitoring interface. This interface provides tools to inspect data stored on the client device,
including objects, transactions, complex tables, and data tables. Actions and transactions can
be debugged as they are executed or instantiated. Client devices hardware features including
barcode scanners and GPS units can be mimicked within the Agentry Test Environment to
support full functional testing of client-side behavior of the mobile application. The Agentry
Test Environment can also mimic various client device types and form factors.

Agentry Java API
File location:

• Agentry Java API: AgentryToolkit\AJAPI\Agentry-v5.jar
• Agentry Java API Javadoc: AgentryToolkit\AJAPI\Agentry-v5-doc.zip
The Agentry Java API is provided for development of mobile applications with a Java system
connection. This API provides the interface between the Agentry Server and the Java
synchronization logic. This interface supports passing data between this logic and the Agentry
Server, and also provides state, user, and other runtime information. Base classes for step
definition logic, complex table and data table synchronization logic are included within the
API and are extended by the logic written specific to the mobile application. The Agentry Java
API is contained in a single Jar file, named Agentry-v5.jar. Also included is a ZIP
archive containing the associated Javadoc content, which can be referenced as a resource
within the Eclipse Java project. Details on creating a Java project in Eclipse, including how to
add the associated documentation, are provided in a later procedure.

Agentry Branding SDK
File location:

• Windows CE Client Branding SDK: AgentryToolKit\BrandingSDK
\Agentry_ClientWinCE_Branding.exe

• iOS and Android: This functionality is encompassed by the OpenUI and the associated
Agentry client framework resources provided as a part of the OpenUI SDK. Creating the

Agentry App Development

2 SAP Mobile Platform

projects as instructed for each of these will also provide the necessary framework to
rebrand these clients.

• Windows WPF and Windows Desktop: The Branding SDK is provided from the standard
client installers for each these, with special command line switches provided during
execution. See the instructions provided for details.

Rebranding the Agentry Client for Windows devices begins with the installation of the needed
rebranding resources. For the Windows desktop Agentry Client builds, this is provided by
running the Agentry Client installer with specified command line arguments. This may either
be the Agentry Client installer for Windows 7 desktop or earlier, or the .NET Windows Client
installer for Windows 8 desktops and tablets.

Rebranding of the Agentry Client for Windows mobile devices begins with the installation of
the Agentry Branding SDK, which provides the necessary resources to rebrand and then
package the Agentry Client executable for you application.

Rebranding the Agentry Client for both Android and iOS devices is accomplished within the
framework provided by the OpenUI SDK. Icon images and UI text can be overridden within
the framework and the Agentry Client rebuilt to include these branded resources using the
framework provided as a part of the OpenUI SDK for these two platforms.

Agentry SAP Framework Foundation and Related Resources

Note: This component is not provided in the SAP Mobile Platform SDK. It is an ABAP Add-
On and is installed only to SAP systems and is available on the SAP Service Marketplace.

The Agentry SAP Framework Foundation is an ABAP Add-On that is installed to the SAP
system with which the mobile application is to connect and synchronize. The Agentry SAP
Framework Foundation is provided for cases in which a new mobile application for an existing
SAP system is being developed from the ground up. This component is only used for SAP
systems; other back end systems do not use this component. The Agentry SAP Framework
Foundation provides the framework within which the needed synchronization support for the
mobile application is implemented. This includes exchange data model components such as
triggers, mobile data objects, rules, filters, and other similar pieces.

If you plan to deploy a packaged mobile application built on Agentry, do not install this
component. Rather, install the Agentry SAP Framework ABAP Add-On provided with that
application, which includes application-specific components.

Agentry ActiveX SDK
Install the Agentry ActiveX SDK for these two development scenarios: when developing
ActiveX controls for use on Windows Mobile devices, or when developing interprocess
communications between the Agentry Client and another process running on the mobile
device.

Agentry App Development

Agentry App Development 3

Installing the Eclipse IDE and Agentry Editor Plug-In
The Agentry Editor is the primary development tool for building metadata-driven mobile
applications. The Agentry Editor is provided as a plug-in to the Eclipse IDE. Install and
configure the proper version of Eclipse first, then install the plug-in to the Eclipse
implementation.

Prerequisites

• Install SAP Mobile Platform SDK and SAP Mobile Platform Server. You need access to
the machines on which the SDK and server are installed.

• Install Visual Studio 2010 or Microsoft Visual C++ 2010 Redistributable Package. If you
are running Eclipse on the same machine in which you installed SAP Mobile Platform
Server, Microsoft Visual C++ is already installed.

• Determine if you require the 32-bit or 64-bit installers for the Agentry Editor and Eclipse
IDE.

• Log in to the intended host system as a user with Administrative privileges.
• Be sure to maintain Internet access during the Agentry Editor plug-in installation to allow

for the download of any dependent modules to the Eclipse implementation.

Task

Install the 32-bit or 64-bit version of the Agentry Editor. This version must match the Eclipse
IDE version.

1. Download the proper Eclipse IDE version, then extract it to a directory in the desired
location.

• 32-Bit Build: http://www.eclipse.org/downloads/download.php?file=/eclipse/
downloads/drops4/R-4.2.2-201302041200/eclipse-SDK-4.2.2-win32.zip

• 64-Bit Build: http://www.eclipse.org/downloads/download.php?file=/eclipse/
downloads/drops4/R-4.2.2-201302041200/eclipse-SDK-4.2.2-win32-x86_64.zip

2. Install the Java Runtime Environment.

• If you install it under the Eclipse home directory, for example, C:\eclipse\jre,
you do not have to modify any environmental variables.

• If you install it to the default location, be sure to add the paths for the jre\bin and
jre\lib directories to the Path environment variable in Windows before attempting
to start Eclipse.

3. Copy the Agentry Editor Eclipse plug-in zip file from the SDK_HOME
\AgentryToolkit\AgentryEditors directory to the system where you installed
the Eclipse IDE.

• 32-bit: Agentry_7.0.0.x_EditorPlugin_x86.zip

Agentry App Development

4 SAP Mobile Platform

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops4/R-4.2.2-201302041200/eclipse-SDK-4.2.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops4/R-4.2.2-201302041200/eclipse-SDK-4.2.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops4/R-4.2.2-201302041200/eclipse-SDK-4.2.2-win32-x86_64.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops4/R-4.2.2-201302041200/eclipse-SDK-4.2.2-win32-x86_64.zip

• 64-bit: Agentry_7.0.0.x_EditorPlugin_x86_64.zip
4. Start Eclipse by double-clicking eclipse.exe in the extracted folder.

5. Create a new Eclipse workspace.

6. Within Eclipse, select Help > Install New Software.

7. At the top of the Available Software dialog, click Add.

8. In the Add Repository dialog, click Archive, navigate to the proper version of the Agentry
Editor plug-in zip file, then click Open.

9. In the Add Repository dialog, click OK.

10. Select the box for the Agentry Editor and click Next.

11. In the Install Details dialog, click Next.

12. Accept the terms of the license agreement, then click Finish.

13. Ignore the security warning regarding unsigned content, and click OK.

14. Click Yes to restart the Eclipse SDK.

15. In the Workbench, select Window > Open Perspective > Other.

You can select either of the Agentry perspectives to begin work.

Agentry App Development

Agentry App Development 5

Next
Complete the Agentry Editor configuration within the Eclipse IDE.

Agentry Editor and Eclipse Platform Configuration Overview

After the Agentry Editor plug-in has been installed has been installed to Eclipse there are
configuration tasks to be accomplished. All tasks are performed from within the Eclipse
Platform itself. These tasks relate to several areas of the Agentry Editor and its management of
application projects.

The information provided concerning these configuration tasks should be considered a
recommended best practice. For a particular development environment, different options or
configurations can be implemented based on need. Contributing factors and items of
consideration include the overall uses for the Eclipse implementation.

Connector Studio and the Data Tools Platform
The Data Tools Platform (DTP) is a project for the Eclipse platform that provides several
powerful tools for work with different data sources. The Agentry Editor leverages the power of
this project by extending the tools provided in the Connectivity DTP subproject with the
Agentry Connector Studio.

The Agentry Connector Studio is a tool within the Agentry Editor plug-in that allows for the
development of object, transaction, and step definitions using the available schema
information of a data source. When an Oracle or SQL Server database system is that data
source there is some configuration needed within certain Connectivity components.
Specifically, connections must be configured to these database systems in order to access this
schema information.

The configuration of a connection includes the creation of a Driver Definition and a
Connection Profile within the Connectivity tools. The procedure provided on configuring
these items will be an example on configuring these tools for the Agentry Editor. For complete
information on all configuration options as well as descriptions on the functionality and uses
for these tools see the Eclipse.org website.

Java Projects
If the application being developed or configured includes a Java Virtual Machine system
connection, a Java project should be created within the Eclipse platform. This project should
include the Agentry Java API version 5, as well as any other needed resources to properly build
the Java logic for the mobile application’s data synchronization. This will also expose the data
members of the Java resources to be used to the Agentry Connector Studio. This will then
allow for objects, transactions, synchronization steps, and properties to be defined based on
the information provided by the Java packages in the Java project.

This process is performed using the Eclipse New Java Project wizard. The new Java project
can be created before or after the Agentry application project is created, but does require the

Agentry App Development

6 SAP Mobile Platform

Agentry Development Server to be installed and accessible to the host system of the Eclipse
platform, as this location includes the Agentry Java API JAR file to be used in the Java project.

File Associations and File Encoding
An Agentry application project can contain several different file types as a part of the project
definitions. These can include scripts for SQL, batch files, and shell scripts, Java source files,
bitmap files and large markup files related to XML processing. Configuration of the Eclipse
Platform and the tools outside of, but still used by the Agentry Editor plug-in for Eclipse, can
be needed in order for these different files to be handled correctly.

Also, most of the above mentioned files are stored as text files, with the obvious exception
being bitmap files for image definitions. The encoding of these text files when created by the
Agentry Editor is a unicode format of UTF-16. Files for other purposes outside of the Agentry
application project may not be encoded in this format. Therefore the configuration related to
file encoding must be performed in a manner that supports the different file encoding formats
that may be needed.

Creating Java Projects for Agentry Java API Development

Prerequisites

Before creating a Java project in Eclipse for use with Agentry Java API development work, the
following items must be addressed:

• The SAP Mobile SDK installer must have been successfully run on the same system as the
Eclipse and Agentry Editor plug-in have been installed; or, to a system that is accessible
from this system.

• All Java resources needed for the development work should be accessible and available to
the Eclipse platform host system. This can include jar files as well as other code and
documentation (i.e. Javadoc archives) resources that may be needed for the development
work.

• SAP Java Connector (SAP JCo) version 2.1.8, or any later 2.x version, is required for
development and runtime environments in which the Agentry SAP Framework
Foundation is used. JCo version 3.0 or later is not supported at this time.

• Many mobile applications that make use of the Java Virtual Machine system connection
type include multiple layers of Java code libraries that reside logically between the
Agentry Java API and the logic for the specific mobile application. In such situations these
other libraries must exist in a location that is always available to the Eclipse platform.

• Determine the proper version of the JRE to be used for the Java development portion of the
application. The Ganymede release of Eclipse requires the JRE version 1.6. The
development project may need a different version of the JRE based on the requirements of
the back end system with which synchronization will occur through the Java system
connection. A part of creating the Java project in Eclipse is the optional designation of the
specific JRE version to use.

• The Java Perspective should be open in Eclipse. Note that by default this perspective is
always open, though it can be closed at any time. To reopen this perspective, select the

Agentry App Development

Agentry App Development 7

Windows | Open Perspective | Other... menu item in Eclipse. Select the Java (default)
perspective in the list shown.

Task

This procedure provides the basic steps of creating a Java project to contain the development
work performed with the Agentry Java API. When this procedure is complete a Java project
will exist in the current Eclipse workspace that will include the resources needed for
performing development work related to the Java Virtual Machine system connection type.
This project will include:

• The Agentry Java API jar file as installed by the SAP Mobile SDK.
• A source folder location for Java logic created for the mobile application.
• Any other resources that may be needed for the project (e.g. sapjco.jar).

This procedure is not intended to be a comprehensive discussion on Java projects created in the
Java Perspective in Eclipse, nor is it a discussion intended for the novice Java developer. A
level of understanding and knowledge is assumed on the part of the reader related to these
topics. Full information on the JDT project, which includes the Java Perspective, can be found
at the Eclipse help site:

http://help.eclipse.org/documentation

At the above link see the documentation matching the Eclipse version you installed for the
Agentry Editor plug-in.

1. Start the Java Project Wizard in Eclipse using one of the following methods:

• Select the menu item File | New | Java Project.
• Right click in the Package Explorer View in the Java Perspective and select the pop-up

menu item New | Java Project.
• Right click in the Project Explorer View provided with the Eclipse Platform and select

the popup menu item New | Project. In the screen displayed, select the tree control item
Java | Java Project.

Any one of these actions will display the New Java Project wizard.

2. In this first wizard screen, begin by giving the project a name. This will be the identifier for
the Java project in the Eclipse Project and Package Explorer views. Then:

a) Select the Use Default Location checkbox to store the project resources within the
default location within the current Eclipse workspace; alternately, deselect this box to
specify a different location if needed.

b) In the JRE section specify the JRE version for the Java development project. This
selection must match the needs of the back end system for which the mobile
application development work will be performed. This need not be the same JRE
version as Eclipse uses for its own execution. The version of the JRE to be used must be

Agentry App Development

8 SAP Mobile Platform

installed prior to making this selection. The third option is to select a Java execution
environment.

c) The Project Layout specifies the location of the source and built class files for the Java
project. The default is the separate locations for source and output files. The default
folders are src and bin, respectively, which will reside as sub-folders to the project
folder in the Eclipse workspace. These locations can be modified by clicking the
Configure default hyperlink in this section.

d) The new project can be added to a Working Set. If unfamiliar with working sets in
Eclipse, see the help topic “Working Sets” in the Eclipse publication Workbench User
Guide.

3. Once these options are set, click the [Next >] button to proceed.

The next screen of the New Java Project wizard is displayed. This screen contains multiple
tabs for further configuration of the new Java project’s build settings, including source file
location, included projects, libraries, and the build order and export.

4. Set the Source options as needed for the given project. Options here include selecting
additional source folders outside the workspace, adding new folders to the project within
the workspace that will be used as source folders, and other source file-related tasks.

5. Select the Projects path to set other projects to be included on the build path for the current
project. This project must reside in the same workspace as the new project being created.
Once added, options exist to select the files or sources within the project to be used. The
build order for the project selected here is set in the Order and Export tab.

6. Select the Libraries tab. Here is where the libraries related to the Agentry Java API, as well
as other libraries needed by the back end are selected and included in the project. this can
also include the SAP JCo jar file, if applicable to your implementation and development
work. To add libraries to the project’s build path, begin by clicking the button to the right to
add the type of library needed. For the Agentry Java API, click the Add External JARs...
button. Navigate to the location of this Jar file, as provided by the SAP Mobile SDK
installer. Once added, you can expand the new node for this jar file and add the Javadoc
source for the Agentry Java API. This is a ZIP archive named Agentry-v5-
doc.zip.

7. Once the libraries have been added, select the Order and Export tab. Here the build order is
specified for the libraries and external projects for the new Java project. The specific build
order is completely dependent on the project being created. However, the JRE System
Library will likely always be first. Within this order, the Agentry Java API library should
be ordered before any libraries or projects that extend the Agentry classes or interfaces.
Also, it is likely any resources from the back end system should be ordered before the
mobile application-specific items, which may include “application suite” libraries, as it is
likely these too will extend or access these items. Once the build order is set, click the
[Finish] button to create the new Java project.

A new Java project will be created in the current Eclipse workspace. This project will now be
accessible to the Agentry application project. When defining Java steps, or complex table or

Agentry App Development

Agentry App Development 9

data table Java synchronization components, it will be possible to select items contained in the
Agentry Java API, as well as those in the other libraries and projects for the Java project.

Next

Changes to the project’s configuration can be made by selecting the project in the Project
Explorer or Package Explorer and selecting the Properties menu item.

Configuring Eclipse File Associations for Agentry Projects

Prerequisites

The following items must be addressed before performing this procedure:

• For Eclipse implementations to which the Agentry Editor plug-in was added, review the
current file associations before making any modifications. Any current configuration of
file associations for file types of .sql, .bmp, .bat, and .sh should be noted.

• Determine the desired editor within Eclipse to use for each of the file types that may be a
part of the Agentry application project. This may be done now or during this configuration
procedure.

Task

In this procedure the file associations within Eclipse will be configured for the file types that
may be a part of an Agentry application project. These file associations will determine which
editor or view within Eclipse will be used to display the file contents and allow those files to be
edited. The file associations configured in this procedure are those available in Eclipse as
provided by the Agentry Editor installer. If there are other tools available for a particular
implementation, those may be used as preferred or desired. The process for creating these file
associations is the same. The selection of the particular tool within Eclipse for a particular file
type is dependent on those available and preferred. Eclipse must be running to make these
modifications.

Specifically the editors for bitmaps (.bmp), Windows batch files (.bat), SQL scripts
(.sql), and Linux and Unix shell scripts (.sh for Agentry application purposes) will be
configured in this procedure. For shell scripts and batch files the text editor provided with
Eclipse will be configured in this procedure. Other tools exist for these types of files as plug-
ins to the Eclipse Platform. If those are to be used, review the documentation and instructions
provided with those tools for configuration.

1. Select the Eclipse menu option Window | Preferences.

This will display the Preferences screen in Eclipse:

Agentry App Development

10 SAP Mobile Platform

2. In the tree control on the left, select General | Editors | File Associations.

This will display the File Associations preference page:

Agentry App Development

Agentry App Development 11

3. In the top list on this page are the file types for which associations can be made. The bottom
list contains those editors or tools configured for the file type selected in the top list. File
types can also be added to the top list. Begin by selecting the item *.bmp in the top list.
The list of associated editors will be empty. Click the [Add...] button to the right of this
empty list to create a file association.

This will display the Editor Selection list, where an internal or external editor can be
selected. Here an internal editor will be used.

Agentry App Development

12 SAP Mobile Platform

4. For a bitmap file you can select the Image Detail editor in this list. Then click the [OK]
button to make this selection.

This returns you to the File Associations preference page, where the Image Detail editor is
now configured as the default editor for bitmap files.

Agentry App Development

Agentry App Development 13

5. Next the remaining file associations can be created. Begin by checking the configuration
of .sql files. By default the SQL File Editor is configured as the default for this file type.
This is a part of the Data Tools package provided with Eclipse. You may select another
editor if one is available, though this is the recommended editor for Agentry application
projects.

6. The remaining file types that may need to be configured are those related to File System
connections. These can be batch files for Windows deployments or shell scripts for Linux
and Unix deployments of the Agentry Server. By default these file types are not listed in
the Preference page for file associations. They can be added. To do this, click the [Add...]
button to the right of the File types list.

This will display the Add File Type screen as shown next.

Agentry App Development

14 SAP Mobile Platform

7. Enter the file extension in the format *.ext in the field provided and click the [OK]
button.

This will return you to the File Associations preferences page where the new file type will
now be listed.

8. This new file type can now be selected and an Editor can be associated with it, just as
before. In the previous example Windows batch files are configured to have the Text Editor
as the default editor.

Agentry App Development

Agentry App Development 15

9. This procedure can now be repeated for any other file types. In the case of Linux or Unix
development, the recommended file type of .sh should be added and configured. While
the file extensions are not required by these operating system types for proper execution,
within the Agentry application project an extension is needed. This is so a file association
can be configured for proper display and management of the files.

The file associations for those file types used in Agentry application projects have now been
configured. In the examples provided in this procedure the following configurations have been
made:

• Bitmap files will be displayed in the Image Detail editor.
• Windows batch files will be displayed in the standard Text Editor for Eclipse.
• Shell script files will be displayed in the standard Text Editor for Eclipse.

Configuring Eclipse File Encoding for Agentry Projects

Prerequisites

Before performing this procedure the following items must be addressed:

• The Agentry Editor plug-in and Eclipse Platform must be installed.
• The file associations should be configured for .sql, .bat or .sh, as needed, within the

Eclipse Platform.
• Identify the file encoding format for any Java source files that may be opened within the

same workspace as the Agentry application project.

Task

This procedure describes the steps to configure the file encoding settings and preferences
within the Eclipse platform as required by the Agentry Editor plug-in. The assumption is that
the file editors for the various file types have been configured based on the recommendations
provided by Syclo. If one or more different file editors are to be used for certain file types, the
following procedure may or may not be valid. Those tools described here do not support or
provide editor-specific file encoding, instead inheriting this behavior from the Eclipse
workspace settings.

This procedure configures the current Eclipse workspace to use the file encoding format
UTF-16, which is a unicode format. This will then result in all text editing tools treating all text
files opened in any editor as if they are encoded in this format. Certain files external the
Agentry application project but possibly a part of its overall implementation may not be
encoded in this format. The primary example of such files would be Java files for a JVM
system connection. The Java perspective within Eclipse does have a preference setting for file
encoding. This is set for an individual Java project. The proper encoding setting for Java
projects is dependent upon how those Java source files were encoded upon creation. The
common option for such files is the UTF-8 encoding. However, other encoding formats are
possible and this should be determined before making changes.

Agentry App Development

16 SAP Mobile Platform

1. Start the Eclipse platform and open the workspace to be used for the Agentry Editor. Once
Eclipse is started, select the menu item Window | Preferences. In the tree control on the
left of the Preferences screen select General -> Workspace.

This will display the Preferences page for the current workspace.

2. On this page look for the section Text file encoding. Select the Other radio button and
then select the item UTF-16 in the associated drop down list.

3. Click the [OK] button to close the Preferences screen and apply the changes. If a Java
project is not to be opened within this same workspace, or if the Java project’s files have
been encoded with UTF-16, no further actions are needed. Otherwise, continue on with
this procedure.

4. Switch to the Java perspective in Eclipse and open the Java project for this same
workspace. Select the menu item Project | Properties.

This will display the Properties page for the java project:

Agentry App Development

Agentry App Development 17

5. In the tree control to the left select the item Resource. Then look for the section Text file
encoding. Select the radio button Other and then select the proper encoding option based
on the encoding of the source files in the Java project. Note that if these files are encoded in
either ASCII or UTF-8, then UTF-8 can be selected. For other file encoding formats select
the proper item.

6. Click the [OK] button to close the Properties page and save these changes.

This procedure results in changing the Eclipse workspace’s default file encoding for all text
files to the unicode format UTF-16. This is the encoding in which all text files created by the
Editor are formatted. The exception to this are java source files.

Creating a Connection Profile for the Agentry Connector Studio

Prerequisites

The following items must be addressed prior to performing this procedure:

• The connection between the Data Source Tools and the target database uses JDBC. The
desired JDBC drivers should be selected and the associated resource files (jar files or
otherwise) should be located and noted. This information will be needed when creating a
Driver Definition.

Agentry App Development

18 SAP Mobile Platform

• If a suitable Driver Definition has already been created for the Data Source Tools, the name
of the definition should be noted for use in the following procedure. In this case, a new
Driver Definition will not need to be created.

• Information about the selected JDBC drivers should be gathered, specifically the attributes
and values needed to configure a connection using the specific driver package. This will
likely include the syntax for specifying the database host and server, login and password
information, and the Java class or package within the JDBC driver to be used.

Task

The connection created in this process will be accessible through the Data Source Explorer
view available in Eclipse. This view is not a part of the Agentry Editor Eclipse Plug-in but
rather is provided with the Eclipse Platform. Therefore, detailed instruction and information
on its functionality and behavior is not provided by Syclo. This information can be obtained
from the Eclipse.org website. Once this connection is created, it will be listed in the Data
Source Explorer view. From here you will be able to perform all functionality supported by the
Data Source Tools plus use the Connector Studio functionality provided with the Agentry
Editor.

1. Open the Data Source Explorer view by selecting the menu item Window | Show View |
Other... In the tree control displayed, expand the Connectivity node and select the Data
Source Explorer item. This will display the view as shown next:

2. You can now create a new connection to a database using this view by either right-clicking
the Databases node and selecting the menu item New...; or by clicking the tool bar button

. Either will display the New Connection Profile Wizard.

Agentry App Development

Agentry App Development 19

3. This screen lists the database types to which a connection can be made. This selection is
largely based on not just the database type, but also on the selected JDBC driver package to
be used. For this example, the Connection Profile Type to be used is Generic JDBC. Give
the connection profile a name and a description and click the [Next >] button.

Agentry App Development

20 SAP Mobile Platform

4. In this next screen the driver to be used for the connection is selected. If a driver profile
exists that is suitable for the connection, select it from the Drivers list. In this case you can
skip the next instructions on creating a new Driver profile.

5. To create a new Driver Profile, click the new Driver Profile Button to the right of the
Drivers list. This will display the New Driver Profile wizard.

Agentry App Development

Agentry App Development 21

6. In this first tab you can select the driver template. This list will vary depending on the type
of Connection Profile you are creating. In this example there is only one option, Generic
JDBC Driver. Enter a name for the Driver Definition.

7. Next select the Jar List tab. This list contains the jar files for the JDBC driver package to be
used for this Driver Definition. For this example the list is empty initially.

Agentry App Development

22 SAP Mobile Platform

8. Add the proper jar file(s) to this list by selecting those provided with the selected JDBC
driver package. This is done by clicking the Add Jar/Zip button and then browsing to the jar
file on the file system.

Agentry App Development

Agentry App Development 23

Here the selected item is the jar file for the jTDS 1.2.2 JDBC driver package provided by
SourceForge.net. For other driver packages the selected jar file(s) will be different.

9. Next select the Properties tab. The items listed in this tab will be dependent on the selected
jar file and are those items the JDBC driver requires to establish connections.

Agentry App Development

24 SAP Mobile Platform

The values set here should be left to generic or template types of values. This driver
definition, once created, can be reused for multiple actual connections to a database of the
same type. The values entered here will be presented going forward when this driver
definition is selected for a new Connection Profile and can be set at that time to the
database specific values needed for a connection. Once these items are set, click the [OK]
button.

Agentry App Development

Agentry App Development 25

The New Connection Profile Wizard will now be displayed again. The values set in the
fields on this screen will match those entered for the selected JDBC driver properties.

10. Now alter these settings by entering the proper values for the specific database connection
to be created. In this example, the database name, URL, User name and Password are
altered for a connection to a Northwind database in MS SQL Server.

Agentry App Development

26 SAP Mobile Platform

11. If the target database is available you can now test this connection by clicking the [Test
Connection] button. If the connection is successful you will see the following pop-up
screen.

12. Click OK on this prompt. Finally, choose whether to connect when this wizard closes and
also whether or not to connect automatically when the Data Source Explorer view is
displayed in Eclipse. Then click the [Next >] button to view a summary of this
configuration, or the [Finish] button to close this wizard.

Agentry App Development

Agentry App Development 27

The Data Source Explorer View will now list the new Connection Profile under the
Databases node with the name you entered.

The database connection created will allow for use of the schema information provided by that
database in the object definition process. The developer can use the Agentry Connector
Studio, accessed through the Data Source Explorer view, to select a table and to create or
modify an object definition, as well as its related transactions and SQL Step definitions, based
on the structure of the database table.

Agentry OpenUI SDK for iOS Setup Overview
The Agentry OpenUI for iOS clients is the Agentry Client framework for iOS devices, and
uses the native Objective C programming language. It is provided as a single TGZ file, and can
be used to create a development project within the Xcode IDE on Mac systems. This
framework also includes a sample project with basic overrides of each detail screen field edit
type provided as examples.

When creating the project within Xcode, you have two options.

• Use the prebuilt project, which supports easier and quicker project setup. This is the
recommended method when creating a new Agentry Xcode project. The prebuilt project
contains all the necessary Agentry Client framework resources.

• If you have an existing project you want to use or are upgrading an existing Agentry Xcode
project, you can manually create the project in Xcode and add the new Agentry Client
framework resources.

Framework Contents
The resources for the OpenUI SDK are provided in the Agentry Client framework, which is
found in the file SMPAgentryClientFramework-iOS-7.0.x.x.tgz. This library
and the resources it contains includes all functionality of the Agentry Client for iOS and
includes the OpenUI SDK to allow for the detail screen fields to be overridden with custom
controls; as well as exposing the necessary resources to rebrand the Agentry Client. Due to
limitations with Apple’s current support of dynamic frameworks, this framework is intended
to be statically linked to the application.

To support testing on both iOS devices and within the simulator, the framework standard
library is provided with slices for instruction set architectures armv7, armv7s, and i386.

Agentry App Development

28 SAP Mobile Platform

The framework contains the following directory structure after it has been expanded:

//SMPAgentryClientFramework/iOS/

 ./SMPAgentryClient.Framework/Versions/Current/Headers

 (Headers needed for adapters and models of SMPOpenUI)

 ./SMPAgentryClient.Framework/Versions/Current/Resources

 SMPAgentryClientResources.bundle (Image, sound, and other
resources)

 ./SMPAgentryClient.Framework/Versions/Current/SMPAgentryClient

 SMPAgentryClient (The static library containing the iOS
Agentry Client code)

 ./Samples/SMPAgentryClientFrameworkDemo/

 ./Samples/SMPAgentryClientFrameworkSetup/

 ./SampleApp/

 ./OpenUI-app.agx (Agentry application project corresponding
to the XCode demo project in the Samples directory)

 ./OpenUIPlayersDB.txt (Sample data in SQL script for back end
DB)

OpenUI for iOS Manual Xcode Project Setup
If you have an existing project you want to use or are upgrading an existing Agentry Xcode
project, you can manually create the project in Xcode and add the new Agentry Client
framework resources. This project is necessary to make use of the OpenUI SDK as well as to
rebrand the Agentry Client for iOS.

Prerequisites

• Install Xcode IDE version 4.6 on the Mac.
• Install SAP Mobile Platform SDK for Windows on a Windows machine accessible by the

Mac. The Agentry Toolkit folder contains the iOS framework files, which you must
manually copy to the Mac system. The framework files are installed by default to

Agentry App Development

Agentry App Development 29

AgentryToolkit/OpenUISDK/iOS/SMPAgentryClientFramework-
iOS-7.0.x.x.tgz

Task
The project file is located in the directory ./Samples/
SMPAgentryClientFrameworkSetup once you expand the TGZ file.

1. Expand the framework archive SMPAgentryClientFramework-
iOS-7.0.x.x.tgz into a directory on the system. In these instructions this base
directory is represented by the value <Framework_BaseDir>.

2. Within Xcode, create a new project by selecting iOS Application > Empty
Application.

3. In the Build Settings for the main target of the project, set the Framework Search Path to
<Framework_BaseDir>/SMPAgentryClientFramework/iOS/**

4. In the Build Settings for the main target of the project, set the Header Search Path to
<Framework_BaseDir>/SMPAgentryClientFramework/iOS/
SMPAgentryClient.framework/Headers/**

5. In the Build Settings for the main target of the project, set the Other Linker Flags to -ObjC
-framework -SMPAgentryClient.

6. In the Build Phases section for the main target of the project, add the following resources to
the Link With Dynamic Libraries section:

• libc++.dylib
• libiconv.dylib
• libicucore.dylib
• libsqlite3.dylib
• libxml2.dylib
• AudioToolbox.framework
• AVFoundation.framework
• CFNetwork.framework
• CoreLocation.framework
• CoreMedia.framework
• CoreText.framework
• CoreVideo.framework
• QuartzCore.framework
• Security.framework
• CoreGraphics.framework
• Foundation.framework
• UIKit.framework

7. In the Build Settings for the Xcode project set the Strip Linked Product option to No.

Agentry App Development

30 SAP Mobile Platform

8. Add the resource bundle to the project by selecting the menu item File > Add Files to
Project and add the location: <Framework_BaseDir>/
SMPAgentryClientFramework/iOS/SMPAgentryClient.framework/
Resources/SMPAgentryClientResource.bundle

9. Modify the main.m file within the project by replacing the application and app delegate
class name for the return statement.

• New application class name: @SMPAgentryApplication"
• New app delegate class name: @SMPAgentryClientAppDelegate"
• New return statement: return UIApplicationMain(argc,

argv,@SMPAgentryApplication",
@"SMPAgentryClientAppDelegate");

10. After building and launching the project, run the standard Agentry Client in either the
simulator or on the client device.

You now have an Xcode project using the resources provided in the Agentry Client framework
for iOS.

Next

You can begin developing custom controls using the OpenUI SDK and/or rebranding the
Agentry Client for iOS devices by modifying the resource bundle.

Agentry OpenUI SDK for Android Setup Overview

The Agentry OpenUI for Android clients is provided within the SAP Mobile Platform SDK. It
is provided in a single ZIP archive, referred to generally as the Agentry Client framework, and
can be used to create a development project within a Java IDE. Eclipse was used to create these
resources by SAP. It is provided in the Java programming language. Also included in this
framework is a sample project with basic overrides of each detail screen field edit type
provided as examples.

In order to create the project, it is necessary to have the following tools installed

• Eclipse
• Android SDK - API versions 10, 15, and 17
• Java SDK
• ANT If building with ANT - This is provided as a part of the Eclipse installation, but may

also be installed separately to support rebranding-only builds

In order to set up an Android development environment, there are different options available
and the proper option is up to the developer and the environment currently in place. Both
include the usage of the Android Development Toolkit (ADT), an Eclipse plug-in. A summary
of each option is provided below, and step by step instructions are available for each in
subsequent sections, which include URL’s to the Android developer site where both the
downloads and installation instructions are provided.

Agentry App Development

Agentry App Development 31

Once the Android development environment is created, the projects provided in the Agentry
Client framework archive for OpenUI can be directly imported into the Eclipse workspace.
Once this process is complete, you can begin developing the custom controls needed for your
mobile application. Instructions are also provided on creating the projects within the Eclipse
workspace and information on items such as build order and similar details are included.

Setup for Android Development - Installing the ADT Bundle
To create the Android development environment you can download and install the Android
Development Toolkit (ADT) Bundle. This bundle includes both the Eclipse IDE as well as the
ADT plug-in for Eclipse already bundled together and configured. As a part of the ADT
bundle the Android SDK is included and installed. After installing this bundle it is necessary
to use the SDK Manager within the Android SDK to verify and/or install the required API
versions of the SDK.

Setup for Android Development - Installing the ADT Plug-in Manually
If you have an existing installation of Eclipse, it is possible to install the ADT plug-in to it,
rather than installing the full Eclipse IDE and plug-in. The primary difference in this process
from the full ADT bundle option is that you will need to manually configure the preferences
within Eclipse for the ADT after it is installed to point it your Android SDK installation.

Setup for Android Rebranding Only
If you will only be rebranding the Agentry Client for Android and will not be developing
customer controls using the OpenUI SDK, you do not need to setup an Android development
environment. Rather, you can simply install the Ant build scripting tool and make changes to
certain files extracted from the framework archive. You can then run an Ant build command to
create a rebranded and/or resigned Agentry Client for Android.

Framework Contents
The resources for the OpenUI SDK are provided in the Agentry Client framework, which is
found in the file SMPAgentryClientFramework-Android-7.0.x.x.zip. This
archive and the resources it contains includes all functionality of the Agentry Client for
Android and also includes the OpenUI SDK to allow for the detail screen fields to be
overridden with custom controls; as well as exposing the necessary resources to rebrand the
Agentry Client.

The framework contains the following directory structure, relative to the base directory into
which it is extracted:

./Sample/

 OpenUI-app.agz

 Agentry application project corresponding to the Java sample
project

Agentry App Development

32 SAP Mobile Platform

 ./com/

 Beginning of the folder structurein which the sample project
and extensions are contained.

./SAP/Mobile/Platform/android/AgentryAndroidClientSolution

 Location of the project containing the buildable resources that
produce the standard Agentry
Clientfor Android

./vendor/

Installing the ADT Bundle With Eclipse

Prerequisites

The following items must be addressed prior to performing this procedure:

• This procedure includes both an Eclipse installation as well as updates to the Android
SDK, both of which are a part of the ADT bundle. Instructions for this installation are
provided on the Android developer site, as referenced in the main procedure. Access to the
bundle itself as well as to the instructions requires internet access.

• The Java Development Kit installer should be downloaded and available. Information and
the installer can be found by Clicking Here. Alternately, you can enter the following URL
into your web browser: http://www.oracle.com/technetwork/java/
javase/downloads/index.html

Task

This procedure provides information on installing the Android Development Toolkit (ADT)
Bundle. This bundle includes both Eclipse and the ADT plug-in, as well as a basic installation
of the Android SDK, all of which are necessary components for development of custom
controls using the SAP Agentry OpenUI.

Additionally, it is necessary to install the Java SDK version 1.7, and to configure the system
upon which it is installed by making changes to the Environment variables.

1. Install the Java Development Kit (JDK). Note the installation location, as this will be
needed later in this procedure.

2. Create a new Environment Variable for Windows by right clicking on My Computer,
selecting Advanced system settings, and then clicking Environment Variables. Create a
System Variable named JAVA_HOME and set its value equal to the location in which the
JDK was installed in the previous step.

Agentry App Development

Agentry App Development 33

http://www.oracle.com/technetwork/java/javase/downloads/index.html

3. Next the Android Development Toolkit Bundle must be downloaded and installed.
Instructions for this procedure are provided on the Android developer site. In a web
browser, navigate to the download page for the ADT Bundle by Clicking Here. Alternately
enter the following URL in your web browser: http://
developer.android.com/sdk/installing/bundle.html

4. After installing the ADT Bundle, it is necessary to update the Android SDK that was a part
of the installation. Open the folder under the Eclipse directory create in the previous step
containing the Android SDK and start the SDK Manager. Here, add the required API
versions from the SDK, which include versions 10, 15, and 17. For information on the
SDK Manager, Click Here. Alternately, enter the following URL in your web browser:
http://developer.android.com/sdk/installing/adding-
packages.html

With the completion of this procedure, the Android development environment needed for
working with the OpenUI SDK for Android is in place.

Next

See the procedure “SAP Mobile Platform Agentry OpenUI for Android Project Setup” for
instructions on creating and importing the projects within the OpenUI SDK.

Installing the ADT Plug-in to an Existing Eclipse Instance

Prerequisites

The following items must be addressed prior to performing this procedure:

• An existing Eclipse installation must already exist. If you wish to install both the ADT
plug-in and Eclipse, see the procedure “Installing the ADT Bundle With Eclipse.”

• The Java Development Kit 7 (a.k.a. JDK version 1.7) installer should be downloaded and
available. Information and the installer can be found by Clicking Here. Alternately, you
can enter the following URL into your web browser: http://www.oracle.com/
technetwork/java/javase/downloads/index.html

Task

This procedure provides information on installing the Android Development Toolkit (ADT)
Plug-in to an existing Eclipse instance. This is a necessary component for development of
custom controls using the SAP Agentry OpenUI.

Additionally, it is necessary to install the Java SDK version 1.7, and to configure the system
upon which it is installed by making changes to the Environment variables.

1. Install the Java Development Kit (JDK) version 1.7. Note the installation location, as this
will be needed later in this procedure.

Agentry App Development

34 SAP Mobile Platform

http://developer.android.com/sdk/installing/bundle.html
http://developer.android.com/sdk/installing/adding-packages.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Create a new Environment Variable for Windows by right clicking on My Computer,
selecting Advanced system settings, and then clicking Environment Variables. Create a
System Variable named JAVA_HOME and set its value equal to the location in which the
JDK was installed in the previous step.

3. Next the ADT Plug-in can be installed to the Eclipse instance. This process can be handled
either through Eclipse itself, or by downloading the PLug-in and then installing to Eclipse
locally. Instructions for this procedure are provided on the Android developer site. In a web
browser, navigate to the page for the ADT Plug-in by Clicking Here. Alternately, enter the
following URL into your web browser: http://developer.android.com/sdk/
installing/installing-adt.html This page contains information on both
installing and configuring the plug-in within Eclipse.

4. After installing the ADT plug-in, it is necessary to update the Android SDK that was a part
of the installation. Open the folder under the Eclipse directory create in the previous step
containing the Android SDK and start the SDK Manager. Here, add the required API
versions from the SDK, which include versions 10, 15, and 17. For information on the
SDK Manager, Click Here. Alternately, enter the following URL in your web browser:
http://developer.android.com/sdk/installing/adding-
packages.html

With the completion of this procedure, the Android development environment needed for
working with the OpenUI SDK for Android is in place.

Next

See the procedure “SAP Mobile Platform Agentry OpenUI for Android Project Setup” for
instructions on creating and importing the projects within the OpenUI SDK.

SAP Mobile Platform Agentry OpenUI for Android Project Setup

Prerequisites

The following items must be addressed prior to performing this procedure:

• The SAP Mobile Platform SDK must be installed, with the Agentry Toolkit being one of
the selected components during installation.

• An Android development environment must have been created, per the instructions
provided. This includes Eclipse with the ADT plug-in installed, as well as the installation
of the Android SDK with the proper API versions installed.

Task

This procedure describes the necessary steps to setup a development environment within
Eclipse that can be used for development of customer controls using the SAP Agentry OpenUI
SDK for Android clients, as well as for rebranding of the Agentry Client for Android.

When this procedure is complete, a series of development projects will exist in the Eclipse
workspace that will allow you to both development customer controls as well as rebrand the

Agentry App Development

Agentry App Development 35

http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/installing/adding-packages.html

Agentry Client for Android and ultimately produce a new application package (.apk file) for
distribution to Android devices.

1. Within the directory where the SAP Mobile Platform SDK was installed, locate the file at
AgentryToolkit\AgentryOpenUISDK\SMPAgentryClientFramework-
Android-7.0.x.x.zip

2. Open the archive and extract the contents to an accessible location.

3. Launch Eclipse if not already running. Within Eclipse, you should have the ADT
perspective open and have the desired workspace for the projects to be created selected.

4. Within Eclipse, select the menu item File | Import | General | Existing Projects into
Workspace.

5. Navigate to the location of the files extracted from the Agentry Client for Android
framework. There are three directories here: Sample SAP vendor

6. Select each for import into the Eclipse workspace.

This imports the projects within the OpenUI SDK to allow for custom controls and
rebranding of the Agentry Client.

7. Perform a clean of all projects once imported.

8. Once this is complete, you can configure the preferences of the projects. For the project
AgentryAndroidClientSolution you should specify the following build order in
the project preferences:

• AndroidOpenSource
• Codeus
• com_actionbarsherlock
• com.google.zxing.client.android.CaptureActivity
• MAF_Controls
• OI Distribution Library
• OI File Manager
• polidea_treeview
• AgentryAndroidClientResources
• AgentryAndroidClientSolution

Once this is complete, the development environment for the Agentry Client for Android has
been created. To develop custom controls using the OpenUI SDK, all extension classes should
be created in the AgentryAndroidClientSolution project, within the package
com.sap.mobile.platform.client.openui.extensions
For rebranding and/or resigning of the Agentry Client for Android devices, changes should be
made to the resources in the AgentryAndroidClientResources project.

Agentry App Development

36 SAP Mobile Platform

Agentry OpenUI for Windows Setup Information
To use OpenUI SDK for the Windows client, the setup is straight forward. All methods, object,
and types within the SDK for Windows are exposed via Reflection in the .NET Framework.

To create a project, you must first install the standard .NET Agentry Client for Windows. If
installing the client to Program Files, you must have administrator privileges. Alternately you
can install the client to a directory to which you have privileges, such as your user directory.

Within the installation folder for the client, there is the AgentryClientSDK.dll
assembly. In this same folder, create a sub-folder named CustomControls.

Within Visual Studio (2012 or later) create a project targeting the .NET 4.5 Framework. You
must add a reference to the AgentryClientCustomControls.dll assembly.

To create your custom control, it must implement the
AgentryClientSDK.ICustomAgentryControl interface. The Agentry Client sets
the Data Context property of your custom control to an object that implements the Agentry
SDK interface and that corresponds to the type of control.

Once you build your custom control, copy the assembly into the CustomControls folder of the
Agentry Client installation for testing. To deploy, you can bundle the Agentry Client installer
to include the custom controls using the Agentry Client Branding SDK.

Installing the Agentry Test Environment

Prerequisites

Address the following items prior to performing this procedure:

• The SAP Mobile Platform SDK 3.0 installer must already have been run and access to the
items it installed must be available form the system to which the Agentry Test
Environment is being installed.

• Determine the installation location of the Agentry Test Environment on the intended host
system. By default this location is C:\Agentry\Test Environment. You can
specify a different location during the installation if desired.

• Log into the host system as an administrator, with privileges to install software to the
desired location.

Task

This procedure describes the steps necessary to install the Agentry Test Environment software
component. This component is used as a client test tool during development of applications
using the Agentry archetype. It is not intended for end users. It can only be installed to
Windows desktop systems and cannot be installed to mobile devices.

Perform this procedure to:

Agentry App Development

Agentry App Development 37

• Test modifications of the mobile application, when those modifications affect client-side
behavior or client-server communications or synchronization.

• Test or debug run time issues in a Production environment. The Agentry Test Environment
can be connected to the Agentry Production Server just as a normal client can.

When this procedure is complete, the Agentry Test Environment is available for use to test the
client-side behaviors of any modifications made to the mobile application.

1. Start the Agentry Test Environment installer on the host system where you are installing
this component by running the program
Agentry_7_0_x_x_TestEnvironment.exe (NOTE: The value x represents the
latest service pack or patch release of the system, depending on the version downloaded).
This displays the Welcome to the Agentry Test Environment Setup Wizard screen.

2. Click the [Next] button to advance the wizard. This displays the License Agreement
screen.

3. Click the [Yes] button to accept this agreement and advance the wizard. The Choose
Install Location screen is displayed.

4. Enter the desired directory path in the Destination Folder field. This can be a new path, an
existing location selected by clicking the [Browse] button, or the default location. Click
the [Next] button to install the Agentry Test Environment to the specified directory. This
displays the Shortcuts for Agentry Test Environment screen.

5. Select the desired shortcut locations by selecting or deselecting the listed shortcut options.
Once the shortcuts are configured, click the [Install] button to begin the installation of the
Agentry Test Environment software component.

The selected shortcuts are created by the installer. The Installation Status screen is
displayed next indicating the installation progress. When the installation is complete, the
Completing the Agentry Test Environment Setup wizard screen is displayed.

6. To start the Agentry Test Environment now, leave the box checked on this screen.
Otherwise, deselect this box. Click the [Finish] button to close the wizard.

With the completion of this procedure, the Agentry Test Environment is installed to the
selected location and is available for use in testing mobile applications in development,
configuration, implementation, or production issue resolution scenarios.

Next

Just as with a standard client installation, the Agentry Test Environment needs to connect to an
Agentry Server to perform an initial transmit. Prior to performing this transmit, the proper
client platform to be mimicked, enabling or disabling scan and GPS simulations, and other
similar selections should be made.

Agentry SAP Framework Foundation Installation Overview

The Agentry SAP Framework Foundation is implemented as an ABAP Add-On and is
installed to the SAP system as a part of the implementation of the SAP Mobile Platform only

Agentry App Development

38 SAP Mobile Platform

when building or supporting mobile applications built in the Agentry archetype, and only
when those mobile applications synchronize data with SAP systems. If both of these are not a
part of your environment, this component is not installed. The framework includes both the
Administration and Monitoring Portal, and the Integration Framework.

The Integration Framework provides the integration point to the SAP system for the Agentry
Server. This then allows the Agentry Server to synchronize data with the SAP system for the
mobile application. Included in the Integration Framework is the Configuration Portal used
during implementation to create synchronization components of the mobile application.

The Administration and Monitoring Portal provides the tools and user interface to allow for
the administration, configuration, and care and feeding tasks for the Agentry SAP Framework
Foundation. These include security settings, log settings, user monitoring, and other similar
tools.

There are also two additional resources needed in both the development and runtime
environments when using the Agentry SAP Framework Foundation component. The first is an
API contained in the Java file SAPCommon-130881.jar. The second is a configuration
file, which must be created manually, named JavaBe.ini. Both of the files must reside
within the folder where the Agentry Server has been installed. Additionally, the
SAPCommon-130881.jar must be an available resource for any Java development
projects related to the mobile application being developed.

The installation of the Agentry SAP Framework Foundation includes the following main
tasks:

1. Verify the system requirements.
2. Install the Agentry SAP Framework Foundation software and support packages and place

the SAPCommon-130881.jar file in the proper Agentry Server directory.

3. Create the JavaBe.ini configuration file and place it in the Agentry Server’s
installation folder.

Agentry SAP Framework Foundation Component

The following table lists the minimum version of the items required for the Agentry SAP
Framework Foundation Component installation to the SAP system system. The software
component for Agentry SAP Framework Foundation is SMFND release 600_700.

Software Requirements

Software Component Release Service Pack

SAP_ABA 700 SP14

SAP_BASIS 700 SP14

Agentry App Development

Agentry App Development 39

Installing Agentry SAP Framework Foundation

Prerequisites

The following items must be addressed prior to performing this procedure:

• Ensure you have the current versions of kernel, TP and R3trans.
• Current SPAM / SAINT Update - Compare the short text of the last SPAM / SAINT update

you imported with that of the SPAM / SAINT Update in the SAP Service Marketplace. If
the version of the SPAM / SAINT Update in the SAP Service Marketplace is more recent,
import it.

• Verify the required software components have been installed, as listed in the system
requirements for the Agentry SAP Framework Foundation.

• Verify the required support packages have been installed, as listed in the system
requirements for the Agentry SAP Framework Foundation.

• No SAP password is required.

Task

Additional Information

• Space required in the transport directory: approximately 10 MB
• Total runtime: approximately 0.5 hour
• SAP ABAP Add-Ons:

• Integration Foundation Add-On:
• SMFND_600700_NW700.SAR

Language Support

The Agentry SAP Framework Foundation supports the following languages:

• English
• German
• Brazilian Portuguese
• French
• Spanish
• Korean
• Japanese
• Simplified Chinese

1. Log on to your SAP system as client 000 and as a user that has system administrative
privileges. Do not use the SAP* or DDIC users.

Agentry App Development

40 SAP Mobile Platform

2. Import the required user language(s) for all components that have already been installed.
You must perform this language import prior to the installation of the Agentry SAP
Framework Foundation.

3. Load the software package into your system via the Add-On Manager, using the
transaction code SAINT.

For more information about this, see the online documentation for the Add-On Installation
Tool. Select the help function in the application toolbar and navigate to Online
Documentation | Loading Installation Packages.

4. Start the installation of the Agentry SAP Framework Foundation using the Add-On
Installation Tool, accessed from the transaction SAINT.

For more information about this, see the online documentation for the Add-On Installation
Tool, selecting the help function on the toolbar.

5. Activate the Services for the Web Dynpro ABAP Applications

a) Start transaction SICF.
b) Activate all services under the node default_host/sap/bc/webdynpro/

Syclo
6. Define Intervals for Number Range Objects /SYCLO/C_1 and /SYCLO/C_2

a) Start transaction SNRO.
b) Enter the number range object /SYCLO/C_1.

c) Select Number Ranges | Intervals.
d) Maintain or create the intervals 01 and 02.
e) Repeat these steps for the number range object /SYCLO/C_2 and maintain the

intervals 01, 02, 03, 04, and 05. For example:

Agentry App Development

Agentry App Development 41

7. Next, copy the file SAPCommon-130881.jar from the SAP Mobile SDK package to
the installation location of the Agentry Server.

With the completion of this procedure the Agentry SAP Framework Foundation has been
installed to the SAP system and is available for developers to begin creating the necessary
components for a mobile application built using the Agentry archetype.

Next

The final item to address is the creation of a configuration file for the Agentry Server. See the
instructions “Creating the JavaBE.ini File for SAP Systems” for details.

Creating the JavaBE.ini File for SAP Systems

Prerequisites

The following items must be addressed prior to performing this procedure:

• The JavaBE.ini file is needed only when using the Agentry SAP Framework
Foundation.

• This file is needed by the Agentry Server. This component should be installed, per
instructions found in the SAP Mobile SDK installation guide.

Agentry App Development

42 SAP Mobile Platform

• This file should NOT be manually placed within the SAP Mobile Platform Runtime
environment. Rather it should be packaged and deployed per documented procedures for
deploying Agentry applications.

Task

This procedure documents the steps necessary to create the JavaBE.ini configuration file for
use by the Agentry Server. The SAPCommon-130881.jar processes this file at runtime
and expects certain sections and settings to be present. These revolve primarily around
connectivity and authentication to and with the SAP System.

In addition to these required sections, in some implementations developers choose to add
additional configuration sections. These additional sections are valid, but are outside the
scope of this document. Typically these settings are consumed by the synchronization logic
built for a specific application.

1. Create a new plain text file named JavaBE.ini and save it in the installation folder of
the Agentry Server.

2. Using a plain text editor, open the JavaBE.ini file for editing.

3. Create the [HOST] section with the following settings:

[HOST]

server=<your sap host system’s network name>

APPNAME=<name of your mobile application>
4. Create the [CONFIG] section exactly as shown below. Note there are other options for the

source setting listed in this section, but the default is sufficient for initial configuration.
Further information on this is provided in development guides.

[CONFIG]

source=SAP
5. Create the [CLIENT_NUM] section with the following setting:

[CLIENT_NUM]

CLIENT=<client number for Agentry Server to communicate with SAP
Application server>

6. Create the [SYSTEM_NUM] section with the following setting:

[SYSTEM_NUM]

Agentry App Development

Agentry App Development 43

SYSNUM=<system number for Agentry Server to communicate with the
SAP Application Server>

7. Create the [LANGUAGE] section with the LANG option set to the two character SAP
language key matching the language of the SAP system:

[LANGUAGE]

LANG=<two chracter SAP language key>
8. Create the [LOGGING] section, with the logging level set based on the information

provided after the example:

[LOGGING]

Level=<logging level>

• 1 - Fatal Errors only
• 2 - Errors and above
• 3 - Warnings and above
• 4 - Informational messages and above
• 5 - Debugging messages and above
• 6 - Trace level debugging

9. Create the [LOGON_METHOD] section with the following settings, using the descriptions
of settings provided below the example. The option set here will specify whether the
[GLOBAL_LOGON] or [GROUP_LOGON] section is needed as well:

[LOGON_METHOD]

LOGON_METHOD=<logon method to SAP system>

• USER _AUTH - Standard User ID and password authentication is used.

• USER_AUTH_GLOBAL - Pooled connections using a single user ID and password;
requires the section [GLOBAL_LOGON] to also be created.

• USER_AUTH_GROUP - User ID and password authentication with the SAP Message
Server (load balancing) is used; requires the section [GROUP_LOGON] to also be
created.

10. If the LOGON_METHOD is set to USER_AUTH_GLOBAL, create a new section named
[GLOBAL_LOGON] as shown next:

[GLOBAL_LOGON]

UID=<User ID shared by all users>

Agentry App Development

44 SAP Mobile Platform

UPASSWORD=<Password shared by all users>

SHAREDCONNECTIONS=<number of connections created for the shared
pool>

11. If the LOGON_METHOD is set to USER_AUTH_GROUP, create a new section named
[GROUP_LOGON] as shown next:

[GROUP_LOGON]

MESSAGE_SERVER=<host name or IP of the SAP Message Server>

GROUP_NAME=<name of the SAP Application Server group>

SYSTEM_ID=<name or ID of the SAP system>

CLIENT=<client number to be used by the Agentry Server to connect
to the SAP system>

12. Create the section [REQUIRED_BAPI_WRAPPER] with the settings and values listed
exactly as shown next:

[REQUIRED_BAPI_WRAPPER]com.syclo.sap.bapi.LoginCheckBAPI=/SYCLO/
CORE_SUSR_LOGIN_CHECK

com.syclo.sap.bapi.RemoteUserCreateBAPI=/SYCLO/
CORE_MDW_SESSION1_CRT

com.syclo.sap.bapi.RemoteParameterGetBAPI=/SYCLO/
CORE_MDW_PARAMETER_GET

com.syclo.sap.bapi.SystemInfoBAPI=/SYCLO/CORE_SYSTINFO_GET

com.syclo.sap.bapi.ChangePasswordBAPI=/SYCLO/
CORE_SUSR_CHANGE_PASSWD

com.syclo.sap.bapi.CTConfirmationBAPI=/SYCLO/
CORE_OUTB_MSG_STAT_UPD

com.syclo.sap.bapi.DTBAPI=/SYCLO/CORE_DT_GET

com.syclo.sap.bapi.GetEmployeeDataBAPI=/SYCLO/
HR_EMPLOYEE_DATA_GET

Agentry App Development

Agentry App Development 45

com.syclo.sap.bapi.GetUserDetailBAPI=/SYCLO/CORE_USER_GET_DETAIL

com.syclo.sap.bapi.GetUserProfileDataBAPI=/SYCLO/
CORE_USER_PROFILE_GET

com.syclo.sap.bapi.PushStatusUpdateBAPI=/SYCLO/CORE_PUSH_STAT_UPD

com.syclo.sap.bapi.RemoteObjectCreateBAPI=/SYCLO/
CORE_MDW_USR_OBJ_CRT

com.syclo.sap.bapi.RemoteObjectDeleteBAPI=/SYCLO/
CORE_MDW_USR_OBJ_DEL

com.syclo.sap.bapi.RemoteObjectGetBAPI=/SYCLO/
CORE_MDW_SESSION_GET

com.syclo.sap.bapi.RemoteObjectUpdateBAPI=/SYCLO/
CORE_MDW_SESSION_UPD

com.syclo.sap.bapi.RemoteReferenceCreateBAPI=/SYCLO/
CORE_MDW_USR_KEYMAP_CRT

com.syclo.sap.bapi.RemoteReferenceDeleteBAPI=/SYCLO/
CORE_MDW_USR_KEYMAP_DEL

com.syclo.sap.bapi.RemoteReferenceGetBAPI=/SYCLO/
CORE_MDW_SESSION_GET

com.syclo.sap.bapi.RemoteReferenceUpdateBAPI=/SYCLO/
CORE_MDW_SESSION_UPD

com.syclo.sap.bapi.RemoteSessionDeleteBAPI=/SYCLO/
CORE_MDW_SESSION1_DEL

com.syclo.sap.bapi.RemoteUserDeleteBAPI=/SYCLO/
CORE_MDW_SESSION1_DEL

com.syclo.sap.bapi.RemoteUserUpdateBAPI=/SYCLO/
CORE_MDW_SESSION_UPD

com.syclo.sap.bapi.TransactionCommitBAPI=WFD_TRANSACTION_COMMIT

Agentry App Development

46 SAP Mobile Platform

com.syclo.sap.bapi.SignatureCaptureBAPI=/SYCLO/
CS_DOBDSDOCUMENT_CRT

13. Save and close the file to the installation location of the Agentry Server.

With the completion of this procedure the JavaBe.ini configuration file for the Agentry
Server is created, with settings to connect to the SAP system for which the mobile application
will be developed.

Installing the Agentry ActiveX SDK
Install the Agentry ActiveX SDK for these two development scenarios: when developing
ActiveX controls for use on Windows Mobile devices, or when developing interprocess
communications between the Agentry Client and another process running on the mobile
device.

Prerequisites

• Understanding of the development of ActiveX controls, and/or inter process
communications in Windows Mobile environments.

• Install this SDK to the location where needed for development work, for example, the
same host system as the IDE or other development toolset, or to a file share or network
drive accessible to these tools.

Note: The Agentry ActiveX API is deprecated resource that is is provided for backwards
compatibility. Existing implementations making use of ActiveX can be migrated to SAP
Mobile Platform without modification to the ActiveX controls in use. For new development of
custom controls, use the OpenUI API.

Task

1. Launch the installer program by executing Agentry_7.0.x.x_SDK.exe.

The file is located in the Agentry Toolkit folder in the SAP Mobile Platform SDK
installation directory.

2. Click the Next on the first screen, Welcome to the Agentry Software Development Kit
Setup Wizard.

3. Click the Yes button to accept the license agreement.

4. Specify the location to install the SDK resources.

5. Click Install, then finish the wizard when prompted by the last screen.

Once the SDK has been installed, the resulting files are found in two distinct folders within the
installation location you selected.

• Agentry ActiveX
• Agentry External Process

Agentry App Development

Agentry App Development 47

You can move or copy these resources to other locations as needed to include in development
projects.

Developing Agentry Apps
Use the Agentry Toolkit to develop metadata-driven applications.

Agentry Editor Eclipse Preferences
Modify the Agentry Eclipse preferences, which affect Agentry Editor behavior, as well as the
appearance and behavior of various views within the Agentry Perspective.

To access Agentry Editor preferences, select Window > Preferences, then select Agentry.

Compare Editor
The Compare Preferences page displays the preferences for the Comparison Editor’s
appearance and allow you to select the colors used to denote different states for the definitions.
There is also a preference for the number of previous revisions to display when the local
project is connected to a share repository.

For each of the color preferences, the foreground and background color can be set by selecting
the desired color from a color palette. The foreground color setting specifies the text color and
the background color specifies the field behind the item.

• Selected Definitions specifies the color scheme for the currently selected definition.
• Matching Definitions specifies the color scheme for definitions when the two definitions

match exactly in both projects being compared in the Comparison View.
• Non-Matching Definitions specifies the color scheme for definitions that do not match

between the two projects being compared.
• Non-Matching (Unimportant) Definitions specifies the color scheme for definitions

that do not match between the two projects being compared when the difference between
the two is an unimportant difference, such as a difference in the descriptions of each.

• Source-Only and Editor-Only Definitions specifies the color scheme for definitions that
exist in only one of the projects being compared.

• External Compare Tool allows for the selection of the external comparison tool used to
compare two text files, by default, WinDiff. However, you can use a different tool provided
it can accept two arguments, each representing the files to be compared. Set this preference
to the full path of the comparison's tool executable file name.

Compression Settings
The Compression Settings page displays the preference settings for compressing Agentry
definition files during export, export differences, and publish operations. The default is to
compress the definition files generated during these operations.

• Compress exported files results in the creation of compressed export files when the
Agentry application project is exported. The file extension for the export file is set

Agentry App Development

48 SAP Mobile Platform

to .agxz. If the file is not compressed the resulting export file has a file extension
of .agx.

• Compress exported differences files results in the creation of compressed export files
when the Agentry application project is exported via an Export Differences operation. The
file extension for the export file is set to .agxz. If the file is not compressed the resulting
export file has a file extension of .agx.

• Compressed published files results in compression of the files included with the
published definitions on the development or SAP Mobile Platform Server. The server
recognizes this compression and automatically decompresses it when loading the
definitions.

New Definitions
The New Definitions preference page contains preferences when creating new definitions
within the application project. This includes setting reminders on definitions, default names
for certain definition types, and the default selected data type for complex table fields. You can
change all values when actually creating the definitions in Agentry Editor.

• New Definition Reminders places reminders on all new definitions using the text
specified in the Reminder Text box. Each definition type within the project supports
reminders, or text values displayed as informational messages in the Tasks View. By
default, the developer sets reminders manually.

• Transaction Naming specifies the default naming conventions for all new transactions:
Noun-Verb (default) or Verb-Noun. Regardless of the default, you can change the names
when adding a new transaction definition.

• Rule Naming specifies the default naming conventions for all new rule definitions: Name-
Usage (default) or Usage-Name.Regardless of the default, you can change the names when
adding a new rule definition.

• Complex Table Field Type allows you to specify the default data type selected when
creating a new complex table field definition. However, you can change to a different data
type during the creation process.

Perspectives
You can select the behavior of Eclipse when opening an Agentry application project when no
Agentry perspective is currently open. You can also select the default Agentry perspective to
open.

Project Explorer
The Project Explorer preferences page contains the preferences that affect the appearance and
behavior of the Project Explorer View, as well as the Properties View interaction with it.

• Auto Link
• Link Properties View breadcrumb navigations with the Project Explorer View,

set by default, automatically selects the definitions when navigating in the Properties
View using the navigation buttons for back and forward.

Agentry App Development

Agentry App Development 49

• Link Properties View parent navigations with the Project Explorer View, set by
default, automatically selects a defintion when using the parent arrow in the Properties
View to navigate to the parent or ancestor definition of the one currently displayed

• Link Properties View hyperlink navigations with the Project Explorer View, set
by default, automatically selects the defintion when clicking a hyperlink label in the
Properties View to display the referenced definition.

• Link Trash Bin definition restores with the Project Explorer View automatically
selects the definition when restoring it from the Trash Bin view.

• Link Visual Screen Editor selections with the Project Explorer View selects the
same definition as the selected screen control in Layout view.

• Sort Order indicates whether to sort the nodes in the order of previous releases of Agentry
Editor, or in ascending order alphabetically.

• Tooltips are set by default.
• Where applicable, show definition reminder in tooltips
• Where applicable, show definition description in tooltips
• On image definitions, show image preview in tooltips (requires Development

Server)

Publish
Right-click in the Production Publish Files box to add these auxiliary folders and/or files
every time you publish an Agentry application. These folders and files are included with
application project zip file that you publish to SAP Mobile Platform Server.

• Add Folder Structure enables you to browse to an existing folder, which includes all
sub-folders and their contents.

• Add Folder enables you to create a new folder. Drag and drop to add files to this folder.
• Add File enables you to add individual files to the Agentry application zip. Once added,

you can drag and drop files to a new or existing folder.

Tagging Configuration
The Tagging Configuration preferences page contains the preferences for the definition
tagging behavior of the project. It is also possible to add new tags to the project within this
preference page. Note the preferences on this page are specific to the currently open Agentry
application project.

• Show tags bar in the Properties View shows or hides the tags bar in the Properties View.
If the current open Agentry application project is connected to a share, this preference is
always true and cannot be changed.

• Auto-Tagging (Public) Select the tags to use for auto-tagging purposes. Click the
Configure Tags icon to add more tags to the project.

Agentry App Development

50 SAP Mobile Platform

Team Configuration
Team Configuration preferences are specific to each Agentry application project. These
preferences are not available when the current project is not connected to a share. The
following list describes these preferences:

• Auto-Tagging (Private) describes the behavior where the Editor automatically applies a
private tag to any definition when it is modified, added, or deleted in the current project.
This tag is used in comparisons with the share revisions, and is also displayed in certain
operations to allow for the selection of definitions with this tag. You can use a customized
value as the name of this tag. By default, if this preference is blank, the developer’s
Windows user ID is the tag name.

• External File Handling indicates that the development server is specified before any
share operations are executed that involve definitions with an external script normally
stored on the development server. For example, when this preference is true, you must
specify the development server when importing a new project from a share, or updating
any back-end step script or any application image file.

• Share Revisions Menu Count specifies the maximum number of revisions to display at
one time in the revision menu of the Comparison View.

Agentry Editor and Eclipse Platform Overview

The primary development tool for an Agentry mobile application is the Agentry Editor. The
Editor is provided as a plug-in component to the Eclipse development platform. Eclipse is an
open source project freely available for download from the project’s website, and can also be
installed with the the Agentry Editor plug-in. The Agentry Editor is a 4th generation language
(4GL) development tool providing point-and-click development of applications. Much of the
behavior of the Editor is dictated by the overall behavior of the Eclipse platform.

The following is general information covering the Eclipse platform and the Agentry
Perspective within Eclipse. Developers unfamiliar with Eclipse will find this information
useful as a starting point. It is also recommended that developers review the help information
provided with Eclipse by selecting Help | Help Contents and reviewing the Workbench User
Guide as well as other information provided in the help content.

Specifics on procedures, navigation, and other topics related specifically to the Agentry Editor
are covered in detail in subsequent sections.

The Agentry Editor Perspective and Views
The Agentry Editor plug-in includes an Eclipse perspective consisting of several Views. A
view is a pane or tab within Eclipse that presents information about and access to various
development components. Perspectives are a collection of multiple views. Opening a
perspective within Eclipse opens all of that perspective’s views.

The views within the Agentry perspective provided by the Agentry Editor plug-in are the
primary views for application development within Agentry, but they are not the only views
that will be used in most projects. Other views and other perspectives within Eclipse provide

Agentry App Development

Agentry App Development 51

features and functionality that match the tasks and development work performed for a given
application project. The ability to use the core views within the Agentry perspective in
conjunction with views from other tools and plug-ins within Eclipse is one of the main
advantages to the Agentry Editor plug-in architecture.

A common perspective used during the development of a mobile application is the Java
perspective. This perspective is provided with Eclipse and includes various views and other
tools to support Java development work. When working with a mobile application that will
synchronize data with a back end system using Java, this perspective is used regularly for
development, implementation and configuration tasks.

Agentry Application Project
Development work related to a mobile application’s Agentry definitions is organized within
the Agentry Editor in an Agentry Application Project. This project contains the definitions
that are the mobile application, structured according to the Agentry Application Hierarchy.
Within the Agentry Editor perspective this project is presented in the Project Explorer View
according to the application hierarchy. Within this view the developer navigates through the
application definitions. The project itself is stored as an Agentry application project file with
the extension .apj.

Eclipse Workspace
The Eclipse platform organizes development projects, interface settings, and most other
aspects of the environment into workspaces. This includes the Agentry application project
created and managed within the Agentry Editor plug-in. Other related projects are also stored
within the same workspace. In most cases it is recommended that a workspace exists for each
mobile application. Within the workspace for a given application there should then reside the
Agentry application project, as well as other related items such as Java or Ant projects, where
necessary.

An alternative is to create a single workspace for multiple mobile applications that are
developed for the same back end system and that have significant overlap in back end
processing requirements and methodology. In environments where multiple applications are
developed for the same back end system, developers may structure the back end
synchronization components into layers that include those common to all mobile applications
for the same back end, and those specific to a given mobile application. In such environments
it may make sense to have a single workspace containing all components and projects, so that
the individual application projects can share the common synchronization resources, as well
as contain the individual synchronization projects for each application. This would also
include one Agentry application project for each mobile application.

In general, the structure of the workspace is up to the developer or development team, and the
best approach for all involved can be used. There is no hard and fast rule concerning the proper
structure for a workspace within Eclipse as it relates to the mobile applications developed or
modified in the Agentry Editor.

Agentry App Development

52 SAP Mobile Platform

Other information concerning the Eclipse interface is also stored within the workspace. These
include the items set via Eclipse’s preference settings. These settings can affect the behavior
of numerous different views within Eclipse. Changes made to the preferences will be stored in
the workspace. This means each workspace within Eclipse can have its own preferences
tailored to the needs of that workspace, and switching from one to another will load the new
workspace’s settings.

Third Party Views and Tools
In addition to the functionality contained within the Agentry Editor plug-in, there are
additional tools and views provided by third parties as contributions to the Eclipse Platform.
Many of these may be useful in different development environments that involve Agentry
application projects. Certain contributions are expected and used by the Agentry Editor,
specifically the Data Tools Platform project and the Java Perspective. The Java Perspective is
provided with all implementations of Eclipse and is used by the Agentry Editor when the
application project includes synchronization with a Java Virtual Machine system connection.

The Data Tools Platform is included in Eclipse as well and is used when the application project
includes synchronization with a SQL Database system connection. It is through this package
that the Agentry Connector Studio provides its functionality.

The Agentry Perspective in Eclipse

The various views within the Agentry Perspective in Eclipse work in conjunction with one
another. The navigation of an application project involves selecting a definition in one
perspective and then viewing it in one or more of the other perspectives.

The following are the views found in the Agentry Perspectives provided with the Agentry
Editor plug-in for Eclipse:

• Project Explorer
• Properties
• Diagram Views
• Dependency
• Trash Bin
• Problems

Project Explorer View

The Project Explorer View is a part of the core Eclipse platform that is used by the Agentry
Editor plug-in. In general, this view displays projects saved within the current Eclipse
workspace. These projects are displayed in a tree control, with each root node representing
one of the projects. For the Agentry Editor, the Agentry application projects within the current
workspace are listed here as well.

An Agentry project is opened or closed within this view. An Agentry project can be navigated
in the project explorer view only when it is open, and only one Agentry application project can

Agentry App Development

Agentry App Development 53

be open at a given time. Opening one project will close any Agentry project that is currently
opened.

The definitions within an Agentry project are displayed in a tree control that matches the
Agentry Application Hierarchy. For the open project, any definition listed in the tree control
can be selected. This displays the definition in the Properties View, lists its dependency items
in the Dependency View, and may display an diagram for the definition in the Diagram View.
This last depends on the type of definition selected, as not all definitions have a corresponding
diagram.

The following is an example of the Project Explorer View with a sample Agentry application
project open within it:

Each of the nodes in this view represents a definition within the application project. Bold
nodes represent a set of definitions of the same type, contained within a parent definition.
Selecting a bold node will display a list of all definitions of that type within the same parent
definition. Selecting a definition node will display information about that definition in the
other views within the Agentry Perspective.

Right-clicking a node within the view displays a context menu with options to affect the
application project or the selected definition. Which specific options are available depends on

Agentry App Development

54 SAP Mobile Platform

which node is selected, or which definition that node represents. Items that may be displayed
include displaying the definition in its diagram view, adding a new definition of the selected
type, copying or deleting the selected definition, or setting a reminder for the selected
definition.

Properties View

The Properties View displays the attributes and child definitions for the currently selected
definition within the project. The definition’s attributes are edited within this view, and its
child definitions can be modified as well, including adding new definitions, deleting a child
definition, or selecting a child definition. Selecting a child definition displays it in the
Properties View.

Within the Properties view there can be one or more tabs, listed to the left of the view. Each tab
displays a set of attributes for the definition, or a list of child definitions. When a tab that
displays attributes is selected, there is a single row of toolbar buttons displayed for the view.
These buttons pertain to the definition, or to navigation within the application project based on
the currently displayed definition.

When the selected tab within the Properties View displays a list of child definitions, a second
row of toolbar buttons is displayed that allow for the modification of that list and the child
definitions each item in the list represents. This includes adding, editing, deleting, copying,
navigation, and other similar options.

The following is an example of the Properties View for a list screen definition, with the List
Screen Definition tab selected:

Agentry App Development

Agentry App Development 55

As noted, at the top of this view are the toolbar buttons for working with the definition and its
currently displayed attributes. The following is a list of these buttons and their purpose:

Button Button
Icon

Description

Pin Proper-
ties View

Pins the Properties View so that it always displays the current definition,
regardless of any selections made in any other view. Note that this prevents
navigating away from this definition until the button is deselected.

Link With
Project Ex-
plorer

Selects and highlights the node for the currently displayed definition in the
Project Explorer View.

Navigation
Buttons

These buttons provide browser-like navigation of the application project,
with back, next, and parent navigation possible.

Add Defini-
tion

This button adds a definition of the same type, and to the same parent
definition, as the one currently displayed in the Properties View; e.g., if
currently viewing a screen, this will add a new screen to the same parent
screen set.

Copy Defi-
nition

This button creates a new definition that is a copy of the currently displayed
definition, including all descendent definitions. The new definition is add-
ed to the same parent as the original definition.

Agentry App Development

56 SAP Mobile Platform

Button Button
Icon

Description

Diagram
View

This button opens the Diagram View for the currently selected definition.
This button is disabled for definitions that do not have associated diagram
views.

Edit Defini-
tion

This button opens the editor specific to the currently displayed definition in
the Properties View. Most definitions do not have a type-specific editor,
and their attributes are edited within the Properties View. This button is
disabled in these cases. The Rule definition is the only definition for which
this button is enabled, displaying the Rule Editor when selected.

Set Re-
minder

This button sets a reminder for the definition displayed in the Properties
View. Reminders are listed in the Tasks View within Eclipse, and also result
in informational messages in the Problems View during publish and check
on publish operations. All definitions support reminders. Setting a re-
minder does not affect application behavior and serves only to provide
notes to developers within the application project on tasks remaining to be
accomplished.

Save This button saves any changes made to the attribute settings currently
displayed in the Properties View. Note that the main Eclipse toolbar also
contains a save button. Only the save button in the Properties View saves
changes made to the definition’s attributes. The Eclipse toolbar button is
disabled when the Properties View has the current focus.

Selecting a tab listing child definitions for the current definition in the Properties View
displays a second toolbar of buttons that affect the list of child definitions. Following is an
example of the Properties View for a list screen with the Columns tab selected, which displays
a list of all columns that are child definitions to the list screen:

Agentry App Development

Agentry App Development 57

Note the row of buttons directly above the list of child definitions. Following is a description of
each of these buttons:

Button Button
Icon

Description

Add Defi-
nition

This button adds a new definition of the type currently listed as a child
definition to the one currently displayed in the Properties View.

Delete Def-
inition

This button deletes the currently selected child definition in the list.

Trash Bin This button displays the all definitions that have been previously deleted
from the parent definition of the type currently listed; e.g. all columns
deleted from the list screen. From this list a deleted child definition can be
recovered from the trash bin and placed back in the parent definition.

Display
Definition

This button displays the currently selected child definition in the Properties
View.

Agentry App Development

58 SAP Mobile Platform

Button Button
Icon

Description

Change Po-
sitions

These buttons move the currently selected definition in the list up or down
one position in relation to the other child definitions listed. These buttons
are only available in child definition lists where the position of the child
definitions affect application behavior; e.g., the position of list screen col-
umns in the list dictates the initial display order of those columns on the
client at run time, whereas the order in which object properties are listed has
no effect on application behavior.

Set Re-
minder

This button sets a reminder for the currently selected child definition.
Reminders are listed in the Tasks View within Eclipse, and also result in
informational messages in the Problems View during publish and check on
publish operations. All definitions support reminders. Setting a reminder
does not affect application behavior and serves only to provide notes to
developers within the application project on tasks remaining to be accom-
plished.

Diagram View

The Diagram View provides a graphical representation of a definition. The layout,
organization and appearance of this view is specific to the type of definition being displayed.
Many of these are self-explanatory in nature. Not all definitions are displayed in the diagram
view, as there is no benefit in doing so. The general rule of thumb is that definitions without
child definitions are not displayed in the diagram view. The exception to this is the Rule
definition type. Rules do not have child definitions. However they are displayed in the
Diagram View, with the structure of the rule logic displayed in a read-only format.

For other definition types, the items in the Diagram View are organized according to the
definition type selected. For many definition types this is a graphical representation of the
parent-child relationship between the selected definitions and any child definitions. For
others, certain organizational information is provided. It is this last group that is explained in
more detail here.

Diagram View: Module Transactions
The Diagram View for a module’s transactions displays all transactions within a given
module. This Diagram View is displayed when the bold Transactions node in the Project
Explorer View is double-clicked, or when it is right-clicked and the View Transactions
Diagram menu item is selected. The Diagram View displays a module’s transactions in a
manner organized according to their back end processing definitions, i.e. the step usage
definitions within the transaction.

Agentry App Development

Agentry App Development 59

In this simple example there are three transactions displayed. Note that the AddCustomer
transaction is listed three times, as it contains server data state steps, server update steps, and
error handling steps. EditCustomerContact contains only update steps and is therefore listed
only under that node in the diagram. Finally, DeleteCustomer does not have either data state or
update steps. Therefore, it is listed under the Client-only node meaning it has no server-side
processing.

Diagram View: Actions
The Diagram View for an action definition displays that action in a flow chart view
representing the execution flow of the action. This can be a useful view for complex actions,
especially those with subaction steps and looping behaviors.

Following is an example of an action with two subaction steps. The first subaction step is
defined to execute once and the second is defined to execute iteratively, also known as a
looping subaction step:

Agentry App Development

60 SAP Mobile Platform

The first subaction step is AddOrder, which executes a second action for an Add transaction.
This step is defined to execute once. It is followed by a message step named AskAddProducts,
which prompts the user to add products to the order created by the AddOrder step before it. If
the user clicks the No button in the message, the Action ends execution, which is represented
by the node “Cancel: ‘No’” in the above example.

If the user clicks the Yes button in the message prompt the subaction step AddProduct is
executed. As shown in the Diagram View, this step is defined to loop until stopped, meaning
the users indicate they are finished. Once this loop ends, the action completes, as represented
by the node End in the Diagram View.

The two nodes for the subaction steps can each be expanded to display the steps of the actions
they execute. Following is an example of this same action with the subaction steps expanded:

Agentry App Development

Agentry App Development 61

With these subaction steps expanded, the steps of each subaction are displayed. The AddOrder
action contains the AddOrder transaction step that displays the transaction in the AddOrder
screen set. This is then followed by the Apply step.

Next the Add Products prompt is displayed, which introduces a conditional execution to the
action’s execution flow. A positive response from the user executes the AddProduct subaction
step. Since this step is defined to loop, the steps are presented in the diagram view to represent
this behavior. The loop condition is displayed in the flow of this action, with the text “until
stopped.”

A negative, or “Cancel” response from the user to the Add Products prompt ends the action’s
execution.

Diagram View: Complex Tables
When displaying a complex table in the Diagram View, the indexes and fields are each
displayed as child definitions to the complex table. In addition, the index nodes have one or
more child nodes of their own. These child nodes are, first, the field for which the index was
created and, second, if it is a child index the field or fields for which the parent indexes were
created.

Agentry App Development

62 SAP Mobile Platform

In this example, the index ProductNameByID is a child index to the ProductIDIdx index. This
is represented by the Diagram View.

Dependency View

The Dependency View displays the definitions within the application project that reference
the currently selected definition in the Project Explorer. This is useful information when
editing or removing the selected definition, as you can readily see the definitions that can or
will be affected by the change.

The list of definitions in the Dependency View also includes the hierarchy information. A
definition can be expanded in the Dependency View to display its parent definition. This
information provides the path up to the module level. Any definition in the Dependency View
can be selected and displayed it in the Properties View.

The following is an example of the Dependency View for an object definition:

Agentry App Development

Agentry App Development 63

Trash Bin View

The Trash bin View displays a list of all definitions that have been deleted from the Agentry
application project. This view provides a holding pen of deleted definitions to allow for their
recovery in the event the deletion was in error.

Following is an example of the Trash Bin View:

Each of the items in this list represent a definition that has been deleted from the Agentry
application project. Within this view a definition can be selected and either restored to its
previous location within the project, or permanently deleted from the project. Once a
definition is removed from the Trash Bin it cannot be recovered.

Problems View

The Problems View provides informational, warning and error messages related to the current
Agentry application project. Following are the three classes of messages displayed:

• Informational: These messages are informational in nature and are innocuous in that they
do not indicate any issue that may have a detrimental affect on the application project.
Examples include information concerning the date and time of the application project’s
last publish, and a list of the definitions for which reminders have been set.

• Warning: These messages indicate a potential issue with the application project. Items
resulting in a warning will not prevent an application from being published but may result
in issues arising at run-time.

• Error: These messages indicate a validity issue with the application project and will
prevent the project from being published. Such issues must be rectified prior to publishing
the project.

Agentry App Development

64 SAP Mobile Platform

The Problems View is always updated during a publish or a check on publish operation.
Additionally, certain items are displayed in the Problems View as soon as a change occurs that
indicates an issue.

As an example, if an action definition is currently defined and is used by a control or other
definitions, and that action is then deleted from the project, the Problems View will
immediately display a list of warning messages indicating those definitions. Following is an
example of this messaging for an action that was executed by both a sub-action step in another
action and a button on a screen. The action was subsequently deleted from the project:

This view is interactive. Double-clicking an item in this list displays in the Properties View the
definition with the reported issue so that changes can be made to the definition. Once such
changes are made the corresponding message will be removed from the Problems View.

Agentry Views Outside of the Agentry Perspective

The Agentry Editor includes views displayed in the Agentry Perspective as well as views
displayed when certain operations are performed or displayed on demand by the developer.
The views within Eclipse which may be displayed by the Agentry Editor plug-in, but which
are not a part of the default Agentry Perspective, are explained briefly. The information
provided here is introductory in nature, providing an overview of the behavior of these views.
Details on each are provided in the content discussing the operations to which the views
pertain.

Comparison Editor
The Comparison Editor is displayed during import, export, and share repository operations.
This view displays the current Agentry application project and a second source project side by
side. Definitions within each are compared and those with differences between the two
projects, or those that exist in one project but not the other, are highlighted.

For import operations the Comparison Editor is used to select the definitions in the import
source to be imported into the current Agentry project. For export operations this view is
displayed when the export differences tasks is performed, displaying the differences between
the application project and the comparison source, indicating what definitions are to be
imported based on differences between the two. For share repository operations, the
comparison view is displayed during updates from the repository to the current application
project, indicating the differences between the two and the definitions affected by the update.

Agentry App Development

Agentry App Development 65

History View
The History View is displayed when the developer selects the Team | Show History menu
item in the menu for the Agentry application project. This view is solely used for the team
configuration functionality when the current application project is connected to a share
repository. This view displays a list of all revisions within the repository. The revision from
which the current application project was last updated is highlighted in this list.

The Data Tools Platform: SQL Development Tools

The Data Tools Platform is an open source project for the Eclipse platform that encompasses
three separate but related Eclipse projects. The Agentry Editor plug-in for Eclipse make use of
two of these projects: the Connectivity Project, and the SQL Development Tools project. Each
of these projects provides perspectives and views to the Eclipse platform that can be useful to
Agentry development, implementation, or configuration projects involving a SQL Database
back end system.

Though these tools are provided by contributors to the Eclipse project and not Syclo, they are
used by Syclo’s Agentry Editor Eclipse plug-in to facilitate and support common
development tasks. Information and instructions for working with and configuring these
various tools as it relates to mobile application development and configuration is provided in
the document set for the SAP® Mobile Platform. For extensive information on the Data Tools
Platform project and its child projects, see the Eclipse help site at:

http://help.eclipse.org/galileo/index.jsp

Of note for the uninitiated developer is the Data Tools Platform User Guide, which is available
in electronic form on the Eclipse help site listed above.

Connectivity Project and the Agentry Connector Studio
From the Data Tools Platform User Guide:

The connection-management functionality provided
in the Connectivity project includes...components
for defining, connecting to, and working with data
sources.

One of the features provided by the Agentry Editor Eclipse plug-in is the Agentry Connector
Studio. Using this tool an Object Wizard is displayed that allows for the definition of various
data-related definitions within a module, with the attributes of those definitions set in part
based on available information about the back end system with which the mobile application
will synchronize data. The Connector Studio itself can be used with SQL Database, Java
Virtual Machine, or HTTP-XML system connections. When working with a SQL Database
system connection, the connector studio requires the use of the Connectivity Project tools
within the Data Tools Platform.

Agentry App Development

66 SAP Mobile Platform

Within this set of tools, there are specific items used by or required for the Agentry Connector
Studio functionality when working with a database system. These include Connection
Profiles, Driver Definitions and the related Driver Management Framework, and the Data
Source Explorer View. To use the Agentry Connector Studio to create the module data
definitions, a Connection Profile must exist for a connection to the database from which the
data definitions will be defined. A Connection Profile makes this connection using a Driver
Definition that encapsulate the method in which the connection to the profile is made. The
Connection Profile then represents the connection to the specific database instance or
database server. Connection Profiles created in Eclipse are exposed to the developer in the
Data Source Explorer View.

The Agentry Connector Studio can then be accessed from within the Data Source Explorer
View, when using the Connector Studio to access a database system. Within the Data Source
Explorer, the developer navigates to the specific database table for which an object definition
is to be created. Right-clicking on this table displays a context menu, which includes the menu
item Agentry Connector Studio. Selecting this item will display the Connector Studio
Object Wizard, which will walk the developer through the definition of the object and its
properties, based on the schema information provided for the database table. It also provides
the option for defining transactions for the new object type and SQL step definitions, including
basic SQL statements based on the database table. These SQL statements are intended for use
by the transaction server update steps, and the object read steps or fetch server exchange steps.

Instructions for creating a Connection Profile and Driver Definition within the Connectivity
Project tools can be found in the Agentry Implementation and Administration Guide.

SQL Steps and SQL Synchronization Definitions: The SQL Editor View
The Agentry Editor plug-in makes use of the SQL Development Tools, another component of
the Data Tools Platform. Specifically the SQL Editor View is the view used to display and edit
SQL statements with in the Agentry application project. The SQL Editor is a view that
supports the authoring, editing, and testing of a SQL statement. When a definition that
includes a SQL statement for synchronization is defined, the default behavior of Eclipse is to
display that statement in the SQL Editor. This editor provides several configurable aides in
authoring well-formed SQL logic, including helpers such as adding quotes around values that
require them automatically, indentation/tab and other “pretty print” functionality, and other
similar behaviors, all of which have default behaviors that can be configured and customized
to the needs of the developer and the project. In addition, since the SQL Editor is a part of the
SQL Development Tools project, and since this project is a part of the larger Data Tools
Platform project, the SQL Editor can make use of the features provided by its sibling
Connectivity project.

Specifically, if a connection profile has been created within the Connectivity Project tools, the
SQL Editor can use that connection profile to open a connection to the database and execute
the query within the SQL Editor against that database. This is a useful testing feature that can
help developers verify the validity of their SQL statements within the application.

Agentry App Development

Agentry App Development 67

The Java Perspective

The Java Perspective provided with Eclipse is the main interface to the JDT project for
Eclipse. This perspective, as well as other tools within the JDT, are used in development of an
Agentry application that connects with a Java Virtual Machine system connection to
synchronize data.

The Java Perspective is opened by default when Eclipse is started. The views for this
perspective include the Package explorer. Within this view are the Java packages for the
current project. Also listed in this tab are any Agentry application projects created and saved
within the current Eclipse workspace. Selecting and opening this project in this view will open
the Agentry perspective within Eclipse, displaying that project.

The Java components to the mobile application should be organized within a Java project.
Organized within this same project the packages of the Java Interface through which data will
be synchronized, and the Agentry Java API packages provided in the Agentry-v5.jar file
should also be included.

The Java components of the Agentry application project are created and maintained using the
tools and wizards provided with the JDT project. These include the Java Perspective, as well as
other tools within the JDT to build and maintain the Java logic. When a definition is created in
the Agentry Perspective that contains a Java synchronization component, the option as to the
source of the logic for that component is presented. Depending on the selected source, the Java
class wizard is displayed, which allows for the selection of the package and parent class for the
new class, as well as the package and project placement of the class.

Information covering the Java Perspective, as well as the JDT of which it is a member,
provided in the Agentry document set is limited to those areas of functionality in which the
two directly relate. This includes guidelines for creating Java projects and packages for a
mobile application development project, as well as use of the Java class wizard and some other
tools within the JDT. The JDT itself is a robust Java IDE with far more features and
functionality than will be covered in this document set. Extensive information can be found on
the JDT at the web address:

http://help.eclipse.org/galileo/index.jsp

The item of note at the above URL for the uninitiated JDT user or Eclipse developer is the Java
Development User Guide.

Searching Agentry Application Projects

The Agentry Editor to Eclipse includes search functionality. This functionality is supported
through the standard search wizard within Eclipse, with the addition of an Agentry Search tab
displayed in the Eclipse search wizard.

Within the Agentry Search tab there are numerous options available specific to an Agentry
application project. Project definitions can be searched by tags, text contained within the

Agentry App Development

68 SAP Mobile Platform

definition, and searches can be performed within the entire project or within the currently
selected definition and its descendent definitions only.

To perform a search of the Agentry project, select the Eclipse menu item Search | Search...
This displays the Search wizard, with the Agentry Search tab selected:

The following items can be selected to perform a search of the project:

• Containing Tags: One or more tags from the current project can be selected here, along
with the option of definitions with no tag applied. The drop down list at the end of the list of
selected tags allows for the selection of an AND or an OR search. AND requires the
definition to contain all selected tags, OR returns definitions with any of the selected tags.

• Containing Text: Search text contained in the name, display name, caption or label of the
definition. This can be further refined with the Text Search Type settings. Selection of the
Containing: Tags AND/OR Text option will also impact the search results. AND will
require the definition to contain both the selected tags and entered text. OR will return
definitions with either the tags or the text or both.

• Text Search Type: Allows for the restriction of the search text to be found in one of the
three groups of text values of the definitions.

• Search Within: The options here allow for the scope of the search to be set. This can
include the entire project, the selected definition in the Project Explorer View and its
descendents, or the definition displayed in the Properties View and it’s descendents.

Agentry App Development

Agentry App Development 69

• Text Match Type: These options allow for search behaviors such as matching the whole
word only, case sensitivity, and similar options.

• Show Results: The option to display all matching definitions in the Search Results View,
or to display each definition in turn within the Properties View is set in this section.

Once the search options and criteria have been selected, click the [Search] button to search the
Agentry application project. Matching definitions will be displayed according to the Search
Results settings selected in the wizard. Only the definitions of the currently opened Agentry
project are searched.

Agentry Application Projects: Creating, Managing, and Publishing

The Agentry Editor provides several features for creating, managing, and publishing the
Agentry application project. An application project can be added to the current Eclipse
workspace via an import or a new project created from scratch. Importing can be performed
using one of a number of different sources as discussed in detail in the sections on importing.
Creating a new project from scratch is performed using the New Application Wizard within
the Agentry Perspective in Eclipse.

Project management features include the ability to export definitions from the project to a
single file, as well as support for multiple developers through a common repository, or “Team
Development,” a concept new to the Agentry 5.2 release. Exports can be performed for the
entire project, manually selected definitions within the project, or automatically selected
definitions based on differences between two different versions of the same project.
Additional features include the ability to compare two projects or a project and export file and
to selectively import components from a source to the current project.

Publishing is the task performed when modifications within the application project are in a
stable state and can then be either tested or deployed to end users. The process of publishing
can include development publishes, production publishes to a single Agentry Server instance,
or production publishes to a cluster of Agentry Servers. The process of publishing to
production for deployment can be performed directly to the Agentry Server(s), or, alternately,
may involve an intermediary Agentry Production Server. This depends on the network
environment and policies in the implementation environment and is discussed in detail in the
sections on publishing to production.

Creating a New Agentry Application Project

Prerequisites

The following items must be addressed prior to performing this procedure:

• The Eclipse environment including the Agentry Editor must be installed.
• The Agentry Perspective must be open within Eclipse.
• The Eclipse workspace to which the new Agentry application project will be added must

be open.

Agentry App Development

70 SAP Mobile Platform

• It is recommended, though not required, that the Agentry Development Server is installed
to which development publishes will be made.

Task

The following procedure provides instructions on creating a new Agentry application project.
Perform this procedure when a new project is needed and that contains no existing business
logic. If creating a new project within the current Eclipse workspace based on an existing
Agentry application project, export file, or published version residing on an Agentry Server,
see the information on importing Agentry application projects.

1. Start the New Application Wizard for Agentry application projects by selecting the menu
item File | New | Project...

This displays the Eclipse new project dialog where the type of project to create is selected:

2. Select the item Agentry Project | New Agentry Project in the tree control displayed.
Click the [Next >] button.

The first screen of the New Agentry Project wizard is displayed:

Agentry App Development

Agentry App Development 71

3. In this screen enter the name for the mobile application, the name of the project by which it
will be identified in the Eclipse workspace, and optionally the location of the Agentry
Development Server that will be used in the development of the project.

The next prompt displayed concerns adding a module to the application. All mobile
applications have at least one module:

4. To add a module to the new application project, click the [Yes] button.

A new module is created with the name NewModule1, and which should be edited to a
more meaningful value.

The new application project has been created and stored in the Eclipse workspace. Depending
on the selections made during this process, the following definitions will now exist within this
project:

• Application
• A set of default transmit configurations:

Agentry App Development

72 SAP Mobile Platform

• Dialin
• Network
• WirelessLan
• WirelessWAN

• A module definition
• The module MainObject, which in turn contains a collection property defined for the

BusinessObject object definition
• A second object deifnition named BusinessObject, which should be renamed to a more

meaningful value
• The module main screen set, defined to display the MainObject
• The module main fetch, defined to target the collection property within the MainObject.
• An action named Transmit that includes a single action step of type Transmit.

Next

With the completion of this process the mobile application project is created and development
work can begin. In addition, and likely before the development work, additional configuration
may be needed of the overall development environment. This can include the following,
depending on the nature of the project:

• If synchronization with a Java Virtual Machine system connection is a part of the mobile
application’s behavior, create and configure a Java project and include the Agentry Java
API packages, and other packages related to the back end system.

• When the development project is ready for its initial publish, configuration of the Agentry
Development Server will begin with the publish, and will then be completed through the
Management Cockpit and possibly through modifications to the Server’s configuration
files.

• Configuration of the Agentry Development Server to be used in the development process.
This can include system connection configuration, logging behaviors, and other similar
items.

Agentry Application Export, Import, and Comparison Introduction

A feature of the Agentry Editor is the ability to import and export application project
definitions. Exporting from a project can include the entire project or any selected definitions
within it down to the module level and will create a single Agentry Export File (.agx)
containing all exported definitions. The source for comparing and importing to an existing
application project can be an Agentry Export File, another application project, or a mobile
application as published to the Agentry Server. An additional option for the source of an
import is an Agentry 3.x Editor, which will also contain the application project it manages.

The uses for importing and exporting Agentry application projects include:

• Exporting to a single file in support of archiving an application project version control and
backup.

Agentry App Development

Agentry App Development 73

• Exporting components of an application that contain differences from a base-line project.
This is common when an product application has been configured or customized, and it is
desirable to archive those changes for future reuse.

• Importing from an application project source to create a new project in the current Eclipse
workspace. This may be done to create an application project from an archived export, or
to upgrade an application project to a newer version of the Agentry Mobile Platform.
Importing a project, Server published application, or export file created by a previous
version will automatically upgrade the application project to the version of the Editor
performing the import. Additionally, all products provided by Syclo are delivered with the
Server and therefore must be imported to an instance of the Agentry Editor prior to
extending or modifying the core functionality of the application.

• Comparing and importing components of another application project or export file to a
current project to make use of common customizations or configurations, or to take
advantage of previous development work in the current application project.

Import Functionality Overview

The import tools provided by the Agentry Editor provide functionality to support importing
application definitions from other projects, published versions from Agentry Servers, and
export files. Reasons for importing can include:

• Creating a new application project in the current workspace from an archived project or
Agentry Server.

• Upgrading application projects to the current Agentry Mobile Platform version.
• Adding previously developed application definitions and components to the current

project.
• Merging separate development work from multiple developers or a share repository

created using the Team Development functionality.

Import Source
Import Source is the general term used to describe any item used as source for an import
operation. Valid import sources within Agentry include:

• Agentry Application Project Files (.apj): This may be any Agentry project file,
including its related definition files, created by the Agentry Editor. This project can be
stored in a different Eclipse workspace, or elsewhere on the file system if created by a
version of the Agentry Editor from 4.0 through all 5.0.x releases. Note that the .apj file is
the main project file, but it is not the entire application project. The definition files that are a
part of that project must exist in the proper Agentry Editor created file structure in order for
this source to be imported. Typically this is a non-issue as there is no valid reason for the
definition files within a project to be moved or modified manually.

• Agentry Export Files (.agx, .agxz): This can be any Agentry export file created using
the Application Export functionality provided within the Agentry Editor. Note that as of

Agentry App Development

74 SAP Mobile Platform

version 6.0 either standard or compressed export files can be imported. However,
compressed export files cannot be imported by versions prior to 6.0.

• Published Agentry Server Application: An application published to the Agentry Server,
either Development or Production, can be selected as an import source. The selection
made for this source is the server’s executable file. The application published to that server
instance is then used as the import source. For Agentry Production Servers, any published
version residing on that server can be an import source. Agentry Development Servers
have only a single application version that may be an import source.

• Agentry 3.x Editor Project: In the 3.x versions of Agentry, application definitions were
not stored in projects, but rather as a part of the data within the Agentry Editor instance. A
given Editor contained the definitions for a single mobile application, meaning each
mobile application included its own dedicated Agentry Editor. These definitions can be an
import source, with the selection of the AgentryEditor.exe containing the desired
mobile application to be imported.

As a part of the import process it is first necessary to select the type of import source. This
information is required at the beginning of the screen flow for the import operation within the
Agentry Editor. The above sources are valid import sources for import operations creating new
projects within the Eclipse workspace, and for imports that add or replace definitions, known
as a “compare and import” operation, within an existing project.

For each of these, the import source must have been created with a version of the Agentry
Mobile Platform matching or prior to the version to which the definitions will be imported.
There is no “downgrade” functionality provided by the import tools. As an example, it is not
valid to select an Agentry export file created by version 5.2 as an import source for an instance
of the Agentry Editor delivered in version 5.1. However, the reverse is allowed, importing
from version 5.1 to version 5.2. This is, in fact, the proper method for upgrading an application
project to a newer release of the Agentry Mobile Platform.

Adding a New Project to the Workspace
When importing to create a new project within the Eclipse workspace, the developer will first
select the application source type and the specific source project. The import tool will then
read in the source definitions, creating a new application project within the workspace. All
definitions from the source are imported.

If the source for the import is not a full application project, or is missing definitions within the
application hierarchy, changes will be necessary to the project. As a basic example, if an
export file contains only the object definitions from a project, creating a new project by
importing the export file will create a new Agentry application project containing an
application and module definition. However, these parent definitions to the objects will
contain minimal attribute settings with default values. Typically this is not a situation
encountered often in real-world development environments.

Adding Definitions to an Existing Project
When performing an import to an existing application project, the current project and the
source application for the import will be displayed in the Comparison View within the

Agentry App Development

Agentry App Development 75

Agentry Perspective. This view displays the current project and import source in side-by-side
panes. Both are presented according the application hierarchy and are aligned based on the
definition type and name. Each definition alignment is denoted as one of the following within
this view:

• No Difference: The definition in both the project and import source are identical,
including child definitions and attribute settings.

• Unimportant Differences Only: The definitions in both the project and import source are
the same in all areas that would affect run time behavior. Differences were found, but were
limited to comments or descriptions only.

• Exists Only in Source: The definition exists only in the import source. It is not found in
the current project. Such a definition can be selected in the import source pane and
imported into the current project. Alternately this definition can be aligned with an
existing definition of the same type and with the same parent definition. The source
definition will overwrite the existing definition if it is then imported.

• Exists Only in the Project: The definition exists in the project but not the source. An
import operation will have no effect on such a definition. Alternately this definition can be
aligned with a definition in the import source. The source definition will overwrite the
existing definition if it is then imported.

• Differences Exists Between the Definitions: The definition exists in both the project and
the import source, but there are differences between the two definitions. This can include
differences in attribute settings or differences in the child definitions. Child definition
differences can include attribute differences, or a different set of child definitions.

Within the Comparison View the developer selects the items in the import source to be
imported into the current project. This consists of checking and unchecking boxes within the
import source indicating the specific definitions and their child definitions should or should
not be imported.

The Comparison View
The Comparison View has been added in Agentry version 5.2. Its functionality and behavior is
similar to the Comparison Screen that served the same general purpose in prior versions of
Agentry. The new Comparison View includes additional functionality in support of the Team
Development feature set. It also includes more information concerning the comparison and
import, with lists now displayed summarizing the differences found between the project and
import source, and a Preview tab listing the potential results of performing the import based on
the current selections within the view.

The following is an example of the Comparison View within the Agentry Perspective:

Agentry App Development

76 SAP Mobile Platform

In the pane on the left side of the View is the Agentry application project currently open in the
Agentry Editor. On the right are the application definitions in the import source. Between the
two are the icons for each definition indicating the comparison status between the project and
import source. Following is a list of these icons and their descriptions:

Difference Icon Description

No Differences Found

Differences in Definitions

Unimportant Differences Found

Exists Only in Project

Exists Only in Import Source

Importing a New Agentry Project Into the Eclipse Workspace

Prerequisites

Address the following items prior to performing this procedure:

Agentry App Development

Agentry App Development 77

• Determine the source of the application project you are importing in this procedure and
that you have access to that source.

• Verify that the application project source was created with the same or earlier version of
the Agentry Mobile Platform. You cannot import projects, export files, or published
applications created with a later version into an earlier version.

• Verify the workspace in which you are importing the project is the currently opened
workspace in Eclipse.

• Determine a name for the project as it will be listed in the Eclipse workspace, as this is
required information entered in the import process.

• Determine a value for the Name attribute of the application definition. This is information
required during the import process.

• Though not required, it is strongly recommended that the Agentry Development Server to
which development publishes are performed is installed. While the location of this Server
instance is optional during the import, it is necessary information when defining any of the
synchronization logic within the project after it is created.

Task

This procedure describes the steps involved in importing an application project into the
current Eclipse workspace. When this procedure is complete, a new Agentry application
project is created in the current Eclipse workspace. This project contains the definitions and
application components found in the import source.

Note that this process excludes any related projects for the source application that may reside
in that source project’s workspace, such as Java development projects and related packages.
Import these related projects and components according to the process that matches that
project type, using tools found in Eclipse. Whether the Agentry application project is imported
before or after other related projects is unimportant. However, all items must be imported
and/or configured before modifications are made.

This procedure accomplishes the following:

• Checks out an Agentry application project from an Agentry share repository and creates a
new local project based on the top revision within that repository.

• Migrates an application project from one workspace to another.
• Upgrades an application project or application export file created in a previous release of

the Agentry Mobile Platform.
• Restores or recovers an application project from an archived project or export file.
• Creates, restores, or recovers an application project from a mobile application published to

the Agentry Server.

1. If not already open, open or create the Eclipse workspace in which to import the new
project. Opening or creating a workspace in Eclipse begins by selecting the menu item File
| Switch Workspace and following the on-screen instructions.

2. Right-click an empty area in the Project Explorer View and select the menu item Import....
Alternately, select the menu item File | Import... in the Eclipse main menu.

Agentry App Development

78 SAP Mobile Platform

The Select Import Source screen displays.

3. On this screen are the different import sources for Eclipse. Two of these pertain to Agentry
application projects: Agentry Project and Agentry Share. Select the desired source by
expanding one of these nodes and selecting the appropriate item under it. Click [Next] to
continue.

The Select Source screen displays. This screen will be slightly different depending on the
selected import source type. The following example is for a source type of Agentry Server
application:

Agentry App Development

Agentry App Development 79

4. In this screen the information entered is dependent on the source type selected in the
previous step. Enter the information according to the following:

a) The specific item selected for the source is different based on the type. Select the source
by clicking the [Browse] button.

b) The Source Application box is only displayed when the source type is an Agentry
Server. This lists the name of the application published to that Server instance. If the
selected server instance is a production Server, each published version currently
residing on that Server is listed and you can import any one of those versions.

Agentry App Development

80 SAP Mobile Platform

c) The Application Name is the name given to the mobile application that is created by
the import. This is set as the value of the Name attribute within the application
definition and can contain no white space. This field is read-only if the selected import
source is an Agentry share repository.

d) The Project Name is the name for the project within the Eclipse workspace. This must
be a unique project name for the workspace and white space is allowed.

e) The Development Server (optional) is the Agentry Development Server for the
application project being created. Any script files contained in the source project are
copied to this Server. By default, this field is set to the Server from which the project is
imported, if that Server instance is a development Server. Leave the option set as-is if
this is the development Server for the new project, or change to a different development
Sever if necessary.

5. Verify the information entered is accurate and complete. Click [Finish] to perform the
project import.

A new project is created by importing the definitions from the selected import source. The
project is listed in the Project Explorer View and is automatically opened.

After this process is complete, the new project is added to the Eclipse workspace. The project
is opened and displayed in the Agentry Perspective within Eclipse. The application name and
project name match those values entered in the Import wizard. If the application project source
was created using a previous version of the Agentry Mobile Platform, the new project was
upgraded during the import to the version of the current Agentry Editor.

If the selected import source was an Agentry share repository, the new project contains the
definitions found in the top revision of that repository. The revision is checked out to the
current user. Subsequent changes made to the application project are tagged with that user ID.
The project is connected to the selected share repository and you can update from it. Commit
changes made locally to this repository.

Compare and Import Into an Agentry Application Project

Prerequisites

Before importing an application project source into an existing application project, the
following items must be addressed:

• Determine the import source and verify access to that source.
• Verify the import source was created with the same or earlier version of the Agentry

Mobile Platform. Export files or Server published applications created with a later version
cannot be imported into an earlier version.

• Verify the correct Agentry application project to which definitions will be imported is the
one currently open in the Agentry Perspective within Eclipse.

• Back up the current project by exporting the entire project, or by committing any changes
to the Agentry share repository prior to beginning the import.

Agentry App Development

Agentry App Development 81

Task

This procedure describes the steps involved in importing definitions from an import source
into the current Agentry application project. This process includes comparing the two projects
and selecting those components to import to the current project. When completed, any
definitions selected in the import source will be added to the current application project. The
source application will be unaffected by the procedure. This process may be cancelled at any
time.

This procedure should be performed to:

• Compare and import from the currently connected share repository. This is a feature
included in the Team Development support added to the system with the release of
Agentry version 5.2. This includes manual compare operations where the share repository
is selected, as well as updates from the share that result in conflicts.

• Make use of archived customizations or components in the current application project.
• Merge development work performed by multiple developers into a single master project.

Note that this is not a part of the Team Development support and feature set. It is
recommended that the Team Development features be used when coordinating work
among multiple developers for the same application. Importing from an export file of
another developer’s work can still be performed, but should be limited to the scenarios of
handing off responsibility for development, or when making use of modifications made to
one project that are needed in another application project.

1. If not already open, select and open the Agentry application project to which definitions
are to be imported in the Project Explorer View.

2. Right click the root folder for the application project in the Project Explorer View and
select the menu item Compare With | Compare with other Agentry project.

This will open the Comparison View in the Agentry Perspective, with no project items yet
displayed. It will remain blank until the import source is selected for comparison:

Agentry App Development

82 SAP Mobile Platform

3. Within this view, above the pane on the right side, is the button [Select Session]. This
button allows for the selection of the import source. Its behavior and the proper selection to
make depend on whether or not the open project is currently connected to a share
repository:

• If connected to a share repository, clicking the button will automatically open the share
revision matching the last revision to which the project was updated. The share is then
set as the import source, and other revisions can be selected within the share to compare
and import from within the share.

• If not connected to a share, clicking this button opens the Manage Share Sessions
screen. Within this screen either a previous import session can be reopened, or a new
import source can be selected by clicking the [Browse] button below the list of save
sessions:

Agentry App Development

Agentry App Development 83

• Alternately, whether connected to a share or not, clicking the drop down arrow for this
button lists the import sources appropriate to the current project’s connection status.
Always listed are any previous import sessions, as well as a menu item to display the
Manage Compare Sessions screen. If connected to a share, an additional menu item is
displayed that opens a sub-menu listing all revisions of the share to which the project is
connected.

Once the import source is selected, that source and the current project are opened in the
Comparison View and displayed side-by-side:

Agentry App Development

84 SAP Mobile Platform

4. Within the comparison screen now displayed, the pane on the left is currently opened
application project. The pane on the right is the import source. Differences between the
two are highlighted. Items can be selected in the import source to import to the current
project by checking the boxes for those item’s nodes. Definitions are aligned by default in
the two panes based on definition name and type. To force two definitions of the same type
but with different names to be aligned, right click either one and select the menu item
Align With | definition name, where definition name is one of the possible definitions
with which the selection can be aligned. Once the all of the definitions to be imported from
the import source have been selected, click the button Import in the view’s toolbar. To save
the changes, click the apply button in the toolbar.

The definitions will be moved to the left side pane indicating where they will be placed in
the application project once imported.

5. Close the Comparison View by clicking the X button on the view’s tab.

Once this procedure is complete, the selected definitions in the import source are now a part of
the open application in the Agentry Perspective. They may be modified further within the open
project or otherwise used as needed. If the session was cancelled at any point, any applied
imports will remain. Any imports that were not applied will be rolled back.

Next

Whenever importing into an existing application project, it is always recommended that a
check is performed of the resulting project to verify the new definitions are defined as needed.
Any modifications can be made according to normal processes. All imports, as with any other

Agentry App Development

Agentry App Development 85

application change, should be thoroughly tested before being published to a live production
environment.

Export Functionality Overview

Export operations within the Agentry Editor are performed to store multiple application
definitions, including a complete application project, in a single file known as an Agentry
Export File (.agx, .agxz). When performing an export operation it is possible to manually
select the definitions to be exported from a given application project, or to export the
differences between a project and some comparison source project. Available with Agentry
version 5.2 it is also possible to select the definitions to export based on one or more tags
having been previously applied to those definitions.

When a definition is exported, the definition’s attributes and child definitions are included by
default. It is possible to select a definition for export and then deselect one or more of its child
definitions. The resulting definition in the export file will only contain the selected child
definitions.

Exporting Definitions - Manual Selection
When exporting definitions from an Agentry application project, it is possible to manually
select the individual definitions to be saved in the export file. This can include selecting the
entire application project, or any individual definitions within it. Also, it is possible to select to
export definitions based on the tags that have been applied to them within the application.
During the export process, one or more tags can be selected and those definitions that have
been tagged accordingly are selected for export.

It is a common practice to export an entire application project to a single export file as a backup
prior to making significant changes to a stable release of the application. Note that this same
result can be accomplished using the Team Development feature set available in Agentry
version 5.2 by committing a project to the share repository as a new revision prior to making
modifications to the project. Either method of backup is acceptable and the one best suited to a
given developer’s environment or preference should be used.

Exporting Definitions - Exporting Application Differences
Exporting application differences is functionality that can be useful when making
modifications to a core application for implementation-specific needs. Once such changes are
complete, exporting the definitions involved in just those modifications can be accomplished
by comparing the modified version of the application project with the original version. It is
then possible to store such changes for later uses, including importing the modifications into
the same core application at a different implementation with similar requirements.

Exporting differences involves comparing the Agentry application project with either an
Agentry export file or an application as published to an instance of the Agentry Server. This
comparison will determine which definitions exist in one version but not the other, and which
definitions exist in both but are different from each. During the export process the source for
the export is then selected, either the project or the comparison source. The resulting Agentry

Agentry App Development

86 SAP Mobile Platform

export file will contain only those definitions found to be different as they exist in the selected
export source. Adhering to this practice whenever implementation-specific modifications are
made to a standard product application can result in a robust library of common
customizations that can be imported into future implementations for less labor and time
intensive implementation projects.

When performing an export of differences, a comparison is always made between the open
Agentry application project within the Agentry Editor and a comparison source, which cannot
be an Agentry application project. Valid comparison sources include:

• Published Agentry Server Application: An application published to the Agentry
Development Server can be selected as a comparison source. Production server
applications cannot be selected. The selection made for this source is the server’s
Agentry.ini configuration file. The application published to that Server instance is
then used as the comparison source.

• Agentry Export Files (.agx, .agxz): This can be any Agentry export file created using
the Application Export functionality provided within the Agentry Editor. Note that
compression of export files is available in the 6.0 version and later. Compressed export
files (.agxz) cannot be used as a comparison source in versions prior to 6.0.

Once a valid comparison source is selected, that source is compared to the open Agentry
application project, with differences between the two highlighted in a comparison screen.
Within this screen the export source, i.e., either the project or comparison source, is selected.
When the export file is created, it contain the definitions found to be different within the
selected export source.

Exporting Agentry Application Project Definitions

Prerequisites

The following items must be addressed prior to performing this procedure:

• The application project to be exported must be open in the Agentry Perspective.
• Identify the location of the export file to be created by this process and verify read-write

and network access to that location.
• Determine the desired file name and a brief description for the export file that will be useful

for later reference and identification. This information is entered during the export
process.

• If exporting a subset of the definitions within the application project, identify and take note
of those definitions before proceeding.

Task

This procedure describes the steps necessary to export definitions from an Agentry
application project. During this process it is possible to select definitions with the application
project to be exported, or to export the entire application. When selecting individual

Agentry App Development

Agentry App Development 87

definitions, all child definitions to the one selected will also be selected by default. It is
possible to export definitions down to the module-level.

This procedure should be performed to:

• Archive an application project for version control and back up purposes.
• Export and archive components of a project for version control and back up purposes, or to

make available for merge into a master application in a multi-developer effort (see
information provided on Team Configuration for an alternative to this manual procedure).

With the release of the Agentry Mobile Platform 6.0 the default behavior is to create a
compressed export file (.agxz). The preference pages in Eclipse for the Agentry Editor
plug-in provide the ability to change this default behavior to create standard export files. The
process for creating an export file is the same regardless of whether or not the file is
compressed.

1. To begin the export process, right click the root project node in the Project Explorer view of
the open Agentry application project. In the context menu select the item Export...

This displays the Export type selection screen:

2. Select the Agentry Project | Export Application item in this screen. Click the [Next >]
button.

This will display the first screen of the Export Wizard where the application definitions to
export can be selected:

Agentry App Development

88 SAP Mobile Platform

3. Within this screen the definitions of the application project are displayed and can be
selected for export by checking the associated box for each. Checking a given definition
will automatically select all child definitions. Alternately, one or more of the tag buttons to
the left of the project can be selected, which will then automatically select all definitions
with the associated tag to be exported. To export an entire application project, simply
check the root Application node in this screen. Click the [Next >] button to proceed.

This will display the next screen of the Export Wizard where the name and location for the
export file is entered, as well as an optional comment:

4. In this screen select the location and file name for the export file to be created. Ensure the
selected location is one to which the Windows user has read-write privileges and network
access where applicable. A comment can also be entered at this time. The contents of the

Agentry App Development

Agentry App Development 89

comment field are displayed as tool tip for the export file once it is created. Information
concerning the date and time of creation and the version of Agentry are always a part of the
tool tip for the file and need not be a part of the comments. Click the [Next >] button to
proceed.

The export will now begin. When completed, the following summary screen is displayed:

5. Click the [Finish] button to close the Export Wizard.

Completion of this procedure results in the creation of an Agentry Export File containing the
selected definitions from the Agentry application project. This file can now be archived in a
version control system, made available to other developers for import, or moved or copied to
any desired location. It can be used as an import source to create new Agentry application
projects or to import definitions into another project where needed.

Exporting Agentry Application Project Differences

Prerequisites

The following items must be addressed prior to performing this procedure:

• The Agentry application project to be compared against a comparison source must be open
in the Agentry Perspective within Eclipse.

• The comparison source must be accessible to the Windows user and Eclipse.
• The name and location for the export file to be created should be determined and read-

write and network access to this location should be confirmed.
• A comment for the export file should be determined that will be useful for later reference.

Task

This procedure describes the steps necessary to export the differences between an Agentry
application project and a comparison source. This process will create an Agentry Export File

Agentry App Development

90 SAP Mobile Platform

containing the definitions from either the open application project or comparison source
deemed different from the other. This includes definitions found in one but not the other, or
definitions found in both but that contain attribute differences. Before the export proceeds,
those definitions to be exported are highlighted in the Comparison View.

This procedure should be performed to:

• Capture the differences between one application version and another for archive purposes.
• Capture differences made for implementation-specific configuration or customization.

Such changes can be archived for later import into other implementations with similar
functionality requirements.

• Other use cases where it is desired to export the differences between two Agentry
application projects.

With the release of the Agentry Mobile Platform 6.0 the default behavior is to create a
compressed export file (.agxz). The preference pages in Eclipse for the Agentry Editor
plug-in provide the ability to change this default behavior to create standard export files. The
process for creating an export file is the same regardless of whether or not the file is
compressed.

1. To begin the export process, right click the root node of the open Agentry application
project in the Project Explorer View and select the item Export... in the context menu.
Alternately, select the menu item File | Export... in the Eclipse menus.

This will display the Export Type Selection screen, where the type of export is selected:

Agentry App Development

Agentry App Development 91

2. To export the differences between two projects, select the item Agentry Projects | Export
Application Differences. Click the [Next >] button to proceed.

This will display the first screen of the Export Differences wizard:

3. The list control on this screen displays the previous export differences sessions. Items can
be selected in this list as a comparison source. Alternately, to select a difference source
click the [Browse] button below the history list to display a Windows file dialog where the
comparison source can be selected. Valid options are either an Agentry export file or an
instance of the Agentry Server. Once the comparison source is selected, click the [Next >]
button.

If a new source is selected, a prompt is displayed to enter a name for the history list. Enter
this now if necessary. The next screen displayed is the comparison screen:

Agentry App Development

92 SAP Mobile Platform

4. This screen displays the Agentry application project on the left, and the comparison source
on the right. Differences between these are highlighted. Above each is a radio button that
can be selected to indicate that the definitions from that source, either the Application
project in the workspace, or the comparison source, will be exported. The definitions
exported from the selected source will be those found to be different from, or that do not
exist in the other project. Once the selection has been made, review the definitions to be
exported and then click the [Next >] button.

This displays the destination and comment screen:

Agentry App Development

Agentry App Development 93

5. Within this screen select the location and file name for the export file to be created by this
process. If the file exists, check the Overwrite existing file check box to replace the existing
export file. Optionally, enter a comment for the export file. This comment is displayed for
the file as a tool tip in any Windows Explorer or File Dialog. Information concerning the
date and time the file is created and the version of Agentry that created it are automatically
a part of this tool tip and need not be a part of the comments. Click the [Next >] button to
proceed with the export.

The export is performed and the export file is created. The following summary screen is
displayed:

Agentry App Development

94 SAP Mobile Platform

6. Click the [Finish] button to close the Export Differences Wizard and return to the Agentry
Perspective in Eclipse.

Completion of this procedure results in the creation of an Agentry Export File containing the
definitions from the selected source, either the open project or comparison source, found to be
different. This file can now be archived in a version control system or other repository, made
available to other developers for import, or moved or copied to any desired location. It can be
used as an import source to add these definitions to another Agentry application project where
similar functionality is needed.

Publishing Applications from the Agentry Editor
Agentry Editor supports two types of publishing: Development and Production. Which you
select correlates to which stage you are in the application development lifecycle. Files
generated during a publish are compressed by default. You can change this and other publish
settings in Eclipse Agentry Editor Preferences.

Publishing During the Development Cycle
During the development phase, you publish to a development server for testing purposes. The
first time you publish, all files are written to a location on the development server. Subsequent
development publishes overwrite only the files that have changed.

Publishing to Production for End Users
When development and testing are complete, you can perform a production publish, which
creates a zip file of all specified application files, which you can then import in to SAP Mobile

Agentry App Development

Agentry App Development 95

Platform Server. A production publish enables you to indicate a version number, which must
increment during subsequent production publishes. You can also include additional project
files, such as Java resource files, application-specific DLL files, JAR files for the back end, and
other back-end configuration files.

Publishing to Development
Perform a development publish in Agentry Editor when performing development work,
customizations, or configuration to an application project.

Prerequisites

• Access to a development version of SAP Mobile Platform Server.
• Create an application definition in Management Cockpit. Be sure to set the

developmentServer configuration property in Agentry.ini to true.
Agentry.ini is located in SMP_HOME\Server\configuration
\sap.mobile.platform.server.agentry.application.

• An agentry application project that is ready for testing.

Task

In a development publish, SQL scripts, file system scripts or batch files are written to the SAP
Mobile Platform Server file system as separate, editable files. Subsequent development
publishes overwrite only the files that have changed.

The publish process checks the overall integrity of the application project. Agentry Editor list
errors or warnings in the Problems View. You may need to correct these issues to perform a
successful publish. You can publish an application with warnings, but not with errors.

1.
In Agentry Editor, click Publish .

2. Select Development Version, then click Next.

3. Browse to the development server.

4. (Optional) Select Create override base files to generate the files used in support of
localization.

These files contain the display strings within the application project, with each display
string including an identifier. The contents of these files can be translated and
reincorporated in the server to localize the application.

5. Click Next.
The Publish Application to Server dialog displays the number of definition files written to
the SAP Mobile Platform Server.

6. Click Finish.

7. Restart the development server.

The application is now available to any clients connected to the development server.

Agentry App Development

96 SAP Mobile Platform

Publishing to Production
When you are ready to perform final quality assurance testing or need to deploy the
application to users, you perform a production publish in the Agentry Editor, which zips the
application files in preparation for importing in to SAP Mobile Platform Server.

Prerequisites

• An application project that is ready for production use, or user acceptance and quality
assurance testing.

• Obtain the location to publish the project from the system administrator, and verify that
you have read-write access to it..

Task

The production publish process produces a zip file. You can select all associated auxiliary
project files to include in the zip file, such Java resource files, application-specific DLL files,
JAR files for the back end, and other back-end configuration files.

The publish process checks the overall integrity of the application project. Agentry Editor list
errors or warnings in the Problems View. Prepare for the possibility of needing to correct these
issues to perform a successful publish. You can publish an application with warnings, but not
with errors. Warnings should be corrected prior to deploying to end users.

1. Create an application definition in Management Cockpit.

2.
In Agentry Editor, click Publish .

3. Select Production Version, then click Next.

4. In Production Publish Details, browse to the location provided by your system
administrator.

5. Select the Production Version.

An Agentry project’s publish version contains three components: major, minor, and
modification numbers. For example, in the publish version 3.2 mod 1, the 3 is the major
version, 2 is the minor version, and mod 1 is the modification number.

• New Major Version: the only choice when performing the first production publish for
an application. When you select a new major version, the server processes each
transaction sent by a client using the old version of the application to avoid
incompatibilties with new versions of the same transactions. Once the server process
all pending transactions, it provides the updated application to the Agentry Clients.

• Minor Version: indicates minor updates or bug fixes that do not affect transaction
processing.

• Modification: a modification to a major or minor version that does not affect
transaction processing.

Agentry App Development

Agentry App Development 97

6. (Optional) Right-click in the field under Publish Folder Structure to include auxiliary
project files with the application project.

For the first production publish, this field is blank unless you indicated a default publishing
folder structure in the Agentry Editor preferences. Subsequequent publishes display any
preselected folders and files. Right-click an object, then select Delete to remove it from the
list.

• Add Folder Structure enables you to browse to an existing folder, which includes all
sub-folders and their contents.

• Add Folder enables you to create a new folder. Drag and drop to add files to this
folder.

• Add File enables you to add individual files to the Agentry application zip. Once
added, you can drag and drop files to a new or existing folder.

7. Make the application available to clients immediately, or indicate to deploy the application
at a future date and time, then click Next.
The application definition is published to the specified production location.

8. Click Finish.

Agentry App Development

98 SAP Mobile Platform

Next
Contact your system administrator to publish the application definition on SAP Mobile
Platform Server.

Introduction to Definition Tags

As of version 5.2 of the Agentry Mobile Platform the concept of Definition Tags is available.
Definition tags, or simply tags, are a way to mark definitions of any type with a consistent tag
for organizational purposes. Tags can be public or private. Public tags are associated with
definitions and remain a part of those definitions during export, import, and share repository
operations. Private tags are primarily for use with team configuration functionality, applied to
definitions whenever they are changed, and are not included in any export, import, or share
operations. Private tags are stripped from the definitions in the local project before they are
committed to a share revision or exported to an Agentry export file.

Public Tags
Public tags are created and maintained by the developer within the Agentry application
project. The developer can create as many tags as needed for the project, and a given definition
can have multiple tags applied to it. When an application project is exported, committed to a
share repository, or when a share repository is created from the local project, the public tags
are included in the information written to those destinations. Imports from the export files, or
updates from the share repository retrieve the tags for the definitions along with the definitions
themselves and are displayed in the local project.

By default, public tags are manually applied to a definition by the developer. When a tag is
applied to a definition, it can be applied to just that definition, or recursively applied to the
selected definition and its descendents. Public tags can be removed from any definition that
currently has a tag, and can be recursively removed from the definition and all its descendents
that have the same tag.

As an optional behavior it is possible to set preferences in Eclipse to automatically apply one
or more tags to any definition modified by the developer. Within the preference page “Tagging
Configuration” for Agentry, one or more public tags can be selected for auto-tagging. This
results in the selected tags being applied to any definition modified by the developer in any
way. This continues until the auto-tagging is disabled for the previously selected tags.

Auto-tagging can be a useful feature when implementing a feature set or custom functionality
in an existing product or previously deployed application. A tag can be created to mark those
definitions that have been modified or added specifically in support of the new functionality.
During subsequent export operations it is then possible to select these definitions by their tags,
creating an export file containing just the definitions with the selected tag.

Private Tags
Within a local Agentry application project, there can be one designated private tag. The private
tag is stripped from the definitions before they are committed to the share or before they are

Agentry App Development

Agentry App Development 99

exported to an Agentry export file. Private tags are primarily intended for use with the Team
Configuration functionality.

The project’s private tag is automatically applied to definitions when they are modified and
only when the project is connected to a share repository. The private tag is used by the Agentry
Editor during commit operations, with the definitions containing the private tag being those
compared to the share revision to determine if there are differences.

Note that a definition with a private tag does not guarantee it will be committed to the share
repository. If a definition is modified in such a way that at the time of commit it exactly
matches the same definition in the share’s tip revision, the local definition will not be
committed to the share.

As an example, if a developer modifies the minimum length of a the string property City in the
Customer object to a value of 5 and then commits, a new tip revision is created in the share. If a
second developer that has not yet updated the local project to this new tip revision makes the
same change to the City property in his or her local project, it will have the private tag applied
to it. When the second developer then commits, however, the City property will not be sent to
the share as the Agentry Editor recognizes that the two definitions are the same. If this is the
only change made to the project, the commit will not proceed. Other changes will be
committed if present.

The name of the private tag can be edited within the “Team Configuration” Agentry preference
page. By default, if no name is specified, the default private tag name is
usernameChanges, where username is the Windows user ID of the developer.

The private tag cannot be manually added to or deleted from definitions. If the Agentry
application project is not currently connected to a share repository, there is no private tag
available.

Tagging: Creating New Public Tags

Prerequisites

The following items must be addressed prior to performing this procedure:

• The Agentry application project must be open in the Agentry Perspective.

Task

This procedure describes how to create new public tags within an Agentry application project.
When complete a new public tag will exist within the project and be applied to that project’s
definitions.

1. Begin by clicking the tag button in the Properties View for any definition.

This displays the Tag Browser screen listing all current public tags for the project. This can
also be used to edit an existing tag or delete a tag from the project:

Agentry App Development

100 SAP Mobile Platform

2. Click the add button above the list of public tags.

This displays the Add Tag wizard screen:

Agentry App Development

Agentry App Development 101

3. Enter a name and description for the new tag. Click the [Finish] button when complete to
create the new tag for the project.

The tag is added to the project and listed in the Tag Browser:

Agentry App Development

102 SAP Mobile Platform

4. To immediately add this tag to the currently selected definition in the project, double-click
it in this list. To close the Tag Browser screen click the [OK] button.

A new public tag has been added to the Agentry application project. This tag can be applied to
definitions manually or via the auto-tagging feature.

Next

The tags name and description can be edited by returning to the Tag Browser at any time and
editing the selected tag in the list. Edits update all definitions to which the tag has been
previously applied. The tag can be deleted from the project in the tag browser, removing it
from all definitions to which it was previously applied.

Tagging: Applying Public Tags to Definitions

Prerequisites

The following items must be addressed prior to performing this procedure:

• The Agentry application project containing the definitions to be tagged must be open in the
Agentry Perspective.

• The tag to apply must exist within the Agentry application project.
• The tag cannot currently be applied to the definition.

Task

This procedure describes the steps necessary to apply a public tag to a definition within the
Agentry application project. It also describes the process of recursively applying the same tag

Agentry App Development

Agentry App Development 103

to multiple definitions. When this procedure is complete the definition(s) will include the
selected tag and can be organized or selected in various operations by this tag.

1. Display the definition to be tagged in the Properties View. Click the down arrow for the tag
button.

This displays a menu of options related to tagging the current definition and includes a list
of all public tags for the current project:

2. A tag can now be applied to the current definition, or to the current definition and all its
descendents.

a) To apply a tag to the current definition only, select it in the menu.

The tag is now applied to the current definition and displayed in the Tag Bar at the
bottom of the Properties View.

Agentry App Development

104 SAP Mobile Platform

b) To apply a tag recursively to the current definition and all its descendents, select the
menu item Recursively Add.

This displays the Tag Definitions screen listing the available tags on the left and the
definitions under the current definition. Below the list of definitions is the check box to
Select all dependencies of the current definition. Selecting this option will tag not only
all descendents of the current definition, but also all definitions dependent on it, i.e.,
those definitions that reference it in some way. Note that this same screen is displayed
when choosing to recursively remove tags:

Agentry App Development

Agentry App Development 105

c) Select the tag to apply on the left of the screen. In the tree control, the default selection
is the current definition and all its descendents. Definitions can be unchecked to not
apply a tag to that definition. Once the tag and definitions are selected, click the [OK]
button to apply the tag recursively.

The selected tag(s) is applied to all the selected definitions. The Properties View for all
selected definitions now displays the tag in the Tag Bar at the bottom of the view:

Agentry App Development

106 SAP Mobile Platform

The selected definition or definitions now contain the selected public tag or tags. These public
tags are displayed at the bottom of the Properties View for all affected definitions.

Next

The tags can be selected in export operations to select the definitions to export by public tag.
Commit operations to a share repository will include this tag information.

Introduction to Team Configuration

With the release of the Agentry Mobile Platform version 5.2 a new feature set collectively
called Team Development has been implemented. These features are provided to support
multiple developers performing work on the same application project. These features include
the following:

• A common share repository for storing work from multiple developers and capable of
tracking multiple revisions of a given project

• New import behavior related to the share repository
• Extended export functionality supporting the export of definitions below the module level

Agentry App Development

Agentry App Development 107

• Definition tagging for various organizational purposes
• Replacement of the Compare Dialog with the Compare View, which includes additional

functionality related to the share repository

The general approach of team development is to provide a central share repository to all
developers working on a common application project. Each developer then creates a project
within the local Eclipse workspace based on the contents of the share repository. Developers
then modify their local versions of the project and periodically commit their changes to the
share, and also update their local projects from the share repository.

In support of this workflow, several new operations have been added to the Agentry Editor
specifically for working with the share repository. Additionally the import operation has been
augmented to support working with a share repository. Also, the concept of definition tagging
has been added to the Agentry application project and Agentry Editor. The Agentry
application project itself can be connected to a share, which then allows for the tracking of
changes and revision history, and the share repository operations to update and commit from
and to the repository.

The following sections provide overview information on the different functional areas and
concepts related to the team configuration behaviors. Each of these is covered in more detail in
subsequent sections, including instructions and requirements where applicable.

Share Repository
At the center of the team development architecture is the share repository, or simply “share.”
This share is placed in a location common to and accessible by all developers on a team.
Changes can be committed to this share from each developer’s local application project and
from this share other developers can then update their local projects to retrieve committed
changes.

The location of the share repository must be one that is accessible to all developers on a team,
and should also be one that is backed up in some manner, usually via a version control or
source control system. This location is typically a file server common to all members of the
development team and to which each member has read-write privileges.

Stored within this repository is the common project share by the development team. Each
developer has a local Agentry application project within the Eclipse workspace created from
this share. Developers can work with the local project, defining behaviors just as with any
project. When a stable point is reached in the development work, the developer commits the
changes made back to the share. From here, other developers update their local projects from
the share. The share itself maintains multiple revisions of the project, one for each commit.
From this share a developer can update to the latest, or “tip” revision, as well as to earlier
revisions when necessary.

Share Repository Compression
The compression of the share repository is a behavior added in version 6.0 of the Agentry
Mobile Platform. This is the standard behavior of both creating a new share repository, and
when committing new revisions to an existing repository. For share repositories created with a

Agentry App Development

108 SAP Mobile Platform

version of Agentry prior to 6.0, the existing revisions in the repository will remain
uncompressed and subsequent revisions to it will be compressed. Once such a revision is
committed, the entire repository can only be used by versions of the Agentry Editor (6.0 and
later) that support compressed share repository revisions.

Share Repository Operations
Operations related to the share repository are begun by right-clicking the root project node in
the Project explorer view. This must always be the open Agentry application project. In the
context menu displayed there is a sub-menu Team. Within this menu there are several
operations related to the share repository. If the open project is not currently connected to a
repository, the only option available is to create a new share. This operation should only be
performed when creating a new share for other developers to connect with, typically at the
beginning of the project.

If no project is currently connected to a share, then a new project can be created from a share
using the Import operation, which is separate from those in the Team menu. This is the same
Import operation as others previously available. The selected import source is a share
repository available to the Agentry Editor.

Once a project is connected, the Team sub-menu for the open project includes several options.
Note that the first menu item is Apply Patch... This item is not a part of the team development
functionality for an Agentry project and does not apply to these discussions.

The remaining menu options do apply and include the following:

• Commit: A commit operation updates the local Agentry project to the share. Changes
between the local and share projects are determined, and the new or changed definitions
from the local project are updated to the share. Likewise, definitions removed from the
local project are removed. A new revision is created in the share as the tip revision for
others to retrieve via an Update operation.

• Revert: The revert operation allows for the local project to be reverted to an earlier version
of the project within the repository. Note that a commit of any local changes must be
performed before the local project is reverted. When a revert operation completes, the local
project matches the selected revision in the repository.

• Update: The Update operation updates the local project to the tip revision in the
repository. As a part of this update process checks are made for conflicts between the local
project and the tip revision in the share. When conflicts exist the developer is informed and
given options on resolving them.

• History: The history menu item opens an additional History View within the Agentry
Perspective. This view lists all revisions within the repository. Each item in the list
includes the revision number, the description entered when that revision was committed,
and the author and date and time of the commit.

• Disconnect: The disconnect operation removes the link between the local project and the
share. Changes made subsequent to a disconnect operation are not tracked in relation to the
share. Updates and commits can no longer be performed.

Agentry App Development

Agentry App Development 109

Update Conflicts and Resolution
When working with a share repository the possibility exists that changes committed to that
share and changes made by individual developers conflict with one another. These conflicts
become prevalent when a developer attempts to update the local project from the tip revision in
the share.

The processing logic within the update operation includes checks for such conflicts. These
items are then either resolved automatically by the update operation or are noted by the
operation and the developer is informed. In the latter case, the developer is presented with
options to resolve the issue. The specific options depend on the nature of the conflict.

Whether the conflict is handled automatically or via manual intervention by the developer, the
goal of the operation is to update the local project to match the tip revision, or to modify it in
such a ways that the next commit performed by the developer updates the share so that no
further conflicts exist.

Import
The import operations have been augmented in the 5.2 release of Agentry with the addition of
a new import source that is the share repository. This source is selected in an import operation
to create a new local Agentry project based on the tip revision of a selected share. When
completed a local project is added to the Eclipse workspace that matches the tip revision in the
share repository.

Within the import wizard the share repository is selected. Note that this operation always
creates a new project. Imports cannot be performed from a share to an existing project. Rather,
this operation requires the developer to perform an update operation for a project already
connected to a share.

Tagging Definitions
Any definition within the application project can have one or more tags added to it. Tags are
created by developers within the project and include a name and description. Tags do not affect
the mobile application at run time.

Certain operations, such as exporting, allow for definitions to be selected by the associated
tags. As an example, if implementing a new behavior in an existing project, the definitions
added or modified to support that behavior can all be given the same tag. During an export, the
developer can easily select all these definitions to be exported by simply selecting that tag,
which is displayed in the export wizard. In support of such behavior it is possible to enable
auto-tagging. This feature allows the developer to select one or more tags to be automatically
applied to definitions are modified or added.

The impetus for implementing tags in the 5.2 release of Agentry is in support of the team
development functionality. However, they are not tied solely to this functional set and can be
used in any manner found useful by the developer.

Agentry App Development

110 SAP Mobile Platform

Team Configuration: Share Repository Requirements and Operations

The share repository, or simply “share”, is the central component to the Team Configuration
functionality available as of the 5.2 release of Agentry. The share is the common project
storage location of work performed by all developers for a single Agentry application project.
When working with a share the Agentry project must be connected to that share. This then
links the project with the share, tracking the changes made locally with the project as it exists
in the share repository.

Share Repository Requirements and Details
The basic requirements for a share repository are that it be stored in a location to which all
developers on the team have read-write access to that location. Typically this is a common file
server or equivalent that is accessible to all developers and is linked to each developer’s
workstation as a mapped network drive in Windows. The directory in which the share is placed
must exist prior to sharing the project. Multiple share repositories cannot be created in the
same base directory. However, multiple shares can have a common ancestor directory.

As an example, a share can be created in the directory M:\SharedProjects
\MobileNorthwindCRM. A second share can be created in the folder M:
\SharedProjects\MobileNorthwindInventory. However, it is not allowed to
create two shares in the directory M:\MobileNorthwindApps.

Each developer will perform operations related to the share that include reading from and
writing to the share’s directory, and therefore each must have permissions to perform these
operations on all files within the share location.

When a share is created (see “Creating a Share Repository” for details) a local project is first
selected. A directory is then selected to store the share. Within this directory a file named
share.ini is created containing information about the share. This file should never be
manually modified unless directed by a Syclo support specialist. When checking out from a
share to create a new local project based on that share’s tip revision, the share.ini file is
selected as a part of that operation.

The initial revision in the share will then be the definitions in the selected local project. These
items are written to the directory named 1. Subsequent commits to this share for developers
create additional directories, each numbered to match the share revision created by that
commit operation, e.g. 2, 3, 4.... As with the share.ini file, the contents of these sub-
directories should never be modified manually unless under the specific direction of a Syclo
support specialist.

Share Operation: Share Project
The Share Project operation is the first step in creating a team environment for a common
Agentry application project. This operation creates a share repository at a designated location.
The new share contains a single, initial revision, i.e., revision 1. The contents of this revision
match the contents of the local Agentry application project open within the Agentry

Agentry App Development

Agentry App Development 111

Perspective when the share project operation is executed. This operation can only be executed
on Agentry application projects not currently connected to a share repository.

The new share should be created in a location common to all developers on the team and
according to the requirements of the share repository. The local project should be in a state in
which it makes sense to share the project contents. This state will vary from one project to the
next and depends on the division of work among the developers. The only requirements from a
technical standpoint are that an Agentry application project exists within the Eclipse
workspace and that project is open. No validation or check on publish is performed as a part of
the share project operation. This means the project need not be in a publishable state prior to
creating the share.

In practice, it is likely desirable that some useful functionality exist prior to creating the share.
In many use cases the first revision of the share is the standard implementation of a product
application, such as those provided by Syclo. For new application projects the functionality
need not be nearly as robust, or even completely implemented before creating the share.
Rather, the core pieces to the project, such as objects and their properties, fetches and pushes
that may or may not yet contain step usage definitions, and screen sets with or without
platforms or screens may all be a part of the initial revision of the share when created.

Typically when planning and creating a share, the developer responsible for creating these
core definitions should perform their initial work (though it need not be the final planned
result) and then create the share from their local project. This developer, as well as the rest of
the team, can continue to work with the definitions once the share is created.

Share Operation: Checkout (Import from Agentry Share)
Once a share is created, other developers can access its contents for their own portion of the
work for the project. To begin this work the developers will each need to check out the tip
revision of the share repository. This is performed via the Import operation. During this
operation the import wizard is displayed, the first screen of which provides the developer with
the list of choices for the import source. One of these options is Agentry Share | Checkout
Project from an Agentry Share (share.ini). Selecting this option indicates a new project is to
be created in the local Eclipse workspace by checking out the tip revision from the share
repository.

Once the share is selected as the source of the import, and other information is provided, the
import operation creates a new Agentry application project within the workspace by
importing the definitions within the share’s tip revision. When the operation is complete, the
developer can modify and extend this project for their portion of the overall implementation.
Typically a checkout is performed only once to create the local project. After this point, the
developer performs commit operations to commit changes made to the local project to the
share; and update operations to retrieve changes committed to the share by other developers.

Share Operation: Commit
When working with a project connected to a share, the developers on a team must perform the
commit operation to commit changes made in their local projects to the share repository. A

Agentry App Development

112 SAP Mobile Platform

commit operation results in the addition of a new revision to the share. This new share then
becomes the tip share that other developers receive when performing updates until a
subsequent commit is performed by any developer connected to the share.

During the commit operation, the wizard screens displayed include a comments field. Within
this field comments are automatically added to note all changes made to the local project. The
comments reflect the type of change made, which can be add, edit, or delete, and the definition
modified. These default comments can be edited prior to performing the actual commit. The
final contents of this comment field are then the comments for the revision created by the
commit, and will be viewable by all developers in the History View.

When performing a commit, the Agentry Editor first checks the local project for changes as
compared to the share’s tip revision. If no changes exist, the commit will not be performed.
The commit wizard’s OK button is disabled. The summary view within this wizard indicates
no differences exist between the local project and current tip revision.

Another of the share operations is revert. Using this operation it is possible to revert the local
project to a share revision earlier than the tip revision. When the local project is reverted to a
previous revision and subsequent changes are made to the local project, a commit operation
will display a warning message indicating the difference in revisions. Note that the current
state of the local project will be committed to the share as the new tip revision. Any changes
made and committed to the share between the reverted revision and the current tip revision will
be lost when the new tip revision is committed. For this reason, reverting to a previous revision
and then committing should only be performed in rare circumstances.

Share Operation: Update
The update operation is performed by the developer to update the local Agentry application
project to the tip revision of the share repository. This allows the developer to retrieve changes
made by other developers working on the same project. During an update a check is first made
for differences between the share revision and the local project. If changes exist for the same
definition in both the local and share projects, a conflict exists. This requires manual
resolution by the developer. The specific behavior of the update and the resolution depend on
the nature of the conflict. When a conflict does occur, and there are other definitions in the
share that should be imported that are not in conflict with the local project, those definitions
are updated to the local project, leaving only the conflicted definitions in need of resolution.
See the information on “Update Conflict Resolution” for details.

Share Operation: Revert
The Revert Operation for a share repository replaces the local project with the specified share
revision. This revision can include the tip revision when the local project is at an earlier
revision. The difference between a revision and an update is the, first, a specific revision can be
selected, and, second, there is no conflict detection performed. This last revert behavior is
important to note as it means that any uncommitted changes made to the local project are lost
when the revert operation completes. One use for the revert operation can be to remove
unwanted changes from the local project.

Agentry App Development

Agentry App Development 113

Note that while the tip revision can be selected in a revert operation it should never be used in
place of the update operation. Reverting to the tip revision should only be performed when it is
desired to remove all local changes. In such situations the developer should be careful to verify
all local changes should be removed before proceeding.

As an option to a revert operation it is possible to create a new local project based on the
selected share revision. This can be useful when wanting to branch development from an
earlier revision of the repository for a separate development effort. In such a situation, the
proper overall procedure is as follows:

1. Execute the revert operation, selecting the earlier revision from the share, and selecting the
option to create a new local project.

2. The new project is connected to the share repository from which it was imported.
Disconnect from this share.

3. To support team development with the new local project, create a new, separate share by
performing the share project operation.

Share Operation: Show History
The Show History operation does not affect either the local Agentry application project or the
share repository. This operation opens the History View within which each repository revision
is listed. The revision of the repository from which the last update to the local project was
performed is highlighted.

Within this view the revision number, the date it was created, the user that created it, and the
revision description as entered during the commit operation are listed. This is a read-only view
intended to provide information about the local project as it relates to the share, as well as
information about the share itself. This view can be refreshed at any time and will display any
new revisions added to the share since the last refresh.

The history view should be reviewed prior to performing commit or update operations to
understand the current state of the share before changes are made to it or the local project.

Share Operation: Disconnect
The Disconnect Operation disconnects the local Agentry project from the share repository.
Once a project is disconnected it is no longer tied in any way to the share. Subsequent changes
to the local project are made out of synch with the share. Such changes are not privately tagged
by default.

The disconnect operation should only be performed on a project that should no longer be a part
of the team efforts. This may be useful when it is desired to retrieve a project from an existing
share by performing a checkout but for which changes to that project should not be included in
the share. This procedure would involve the following steps:

1. Perform an import from an existing share repository, create a local Agentry application
project, which is currently connected to the share. The project contains the tip revision
from the share.

2. If a previous revision from the share is desired, revert the local project to that revision.

Agentry App Development

114 SAP Mobile Platform

3. Once the desired share revision has been imported into the local project, disconnect the
local project from the share.

4. Optionally, create a new share from the local project to support team efforts.

This is only one scenario for disconnecting a project from a share. Others may exist, and the
operation can be performed to meet any needs found by the developer.

Update Conflicts and Conflict Resolution

When performing an update operation the local project is updated to match the tip revision of
the share repository. When the update is performed, however, it is possible the state of the local
application project is in conflict with the state of the share’s tip revision. This occurs,
potentially, when the same definition is deleted or modified in some manner in both the local
project and share.

During the update operation, the Agentry Editor checks for any conflicts. If found, it may be
necessary for the developer to manually resolve these conflicts. This manual resolution is
performed in the Comparison View in the Agentry Perspective. This view is displayed
whenever an update operation is performed. If a conflict is found, a message is displayed after
the update is finished indicating there is an issue. Any definitions in the tip revision not in
conflict with the local project are imported. Those in conflict are not imported, but rather are
highlighted as differences in the comparison view.

This manual conflict resolution is similar in behavior to a compare and import from some
other import source, such as an export file. The local project and the share’s tip revision are
displayed in the comparison view, with the share on the right side as the comparison source.
The developer can then select the individual definitions within this view to be imported from
the share, or leave them as is within the local project. This selection can be different for each
definition found to be in conflict.

When the conflict resolution is completed by the developer, the definitions selected in the
share are imported into the local project. Any conflicted definitions not imported from the
share are left unchanged in the local project. At this point a commit can be performed and
those definitions not imported from the share are committed to the share as a part of the new
revision.

The nature of the conflict and how it should be resolved depends on the type of changes made
to the definitions in both places. The following list describes the potential conflicts requiring
manual resolution by the developer. This list is then followed by sections describing the
resolution choices for each:

• Share definition edited - local definition edited: In this situation, both the share and local
definitions’ attributes have been modified in some manner. Since the nature of the change
to both may not be compatible in one manner or another when merged, this change is left to
the developer to resolve.

• Share definition deleted - local definition modified: If the local definition has been
edited by the developer, and the same definition is deleted from the share revision, the

Agentry App Development

Agentry App Development 115

developer must specify whether to keep the local definition, or to import the deleted
definition from the share.

• Share definition deleted - local definition modified and deleted: If the share definition
has been deleted (contained in the trash bin) and the local definition was modified and then
deleted, a conflict exists. While the share definition is simply added to the trash bin if
brought down during the update, there is a question as to which version of this definition
should be stored in the trash bin for possible later recovery, the local version or the share
version. Therefore, the developer is required to make this selection.

Share Definition Edited - Local Definition Edited
If both the local definition and the definition in the share have been edited, a conflict exists and
must be resolved manually. Edited share and local definitions includes changes to the
definitions’ attributes, whether or not it is the same attribute. Changes to child definitions are
not considered conflicts.

When such a conflict occurs, the developer must manually specify in the Comparison View
which definition to keep. If the share definition is selected in this view, it will be imported into
the local project, replacing the local definition. If the share definition is not selected, the local
definition will remain. During the next commit from the local project, the local definition that
was in conflict will be treated as a changed definition and committed to the share.

Share Definition Deleted - Local Definition Modified
If the definition in the share has been deleted, and the local definition has been modified, a
conflict exists. Any change to any attributes in the local definition constitute a change. The
share definition is considered deleted if it has been removed but remains in the trash bin.
Permanently deleted definitions in the share repository, that is, those that have been removed
from the trash bin, and those that have been edited in the local project are not conflicted.

Share Definition Deleted - Local Definition Modified and Deleted
If the share definition has been deleted and resides in the trash bin, and the local definition has
been modified and then subsequently deleted prior to committing, a conflict exists. In this
situation, the developer must compare the two definitions and determine which should reside
in the local trash bin.

If the share definition is selected in the Comparison View, the local definition in the trash bin is
replaced with the share definition. Otherwise the local definition remains in the trash bin and
will then be added to the next commit performed from the local project.

Automatically Resolved Conflicts
Additional conflicts may occur during an update from the share’s tip revision that will not
require intervention on the part of the developer. These may not even be considered conflicts,
but rather the behavior of the update operation under certain conditions other than when the
local definition has not been modified and the share definition has.

The following list describes these situations and the resulting behavior of the update:

Agentry App Development

116 SAP Mobile Platform

• Share definition deleted in trash bin - local definition not modified: If the share
definition has been deleted and currently resides in the trash bin, and if the local definition
has not been modified in any way and matches the share definition, the local definition is
removed from its parent and placed in the trash bin.

• Share definition deleted - local definition deleted, not modified: If the share and local
definition have both been deleted, and if there is some difference with the local definition
that is not tagged, meaning it was not made since the last commit, the share definition will
replace the local definition in the trash bin.

• Share definition deleted - local definition does not exist: If the share definition is deleted
and resides in the trash bin, and there is not corresponding local definition, the share
definition is added to the local project and resides in the trash bin.

• Share definition does not exist - local definition exists, not modified: If the local
definition exists and has not been modified, and the share does not have a corresponding
definition, the local definition is not modified or removed. This is listed as a difference in
the Comparison View and can be removed here or by simply deleting the definition. If the
definition is not removed from the local project it will be added to the share during the next
commit operation.

Share Operation: Creating a Share Repository

Prerequisites

The following items must be addressed prior to performing this procedure:

• The directory in which the new share will be placed must exist prior to creating the share.
• The directory for the share must be empty.
• The directory should be in a location accessible by all developers on the team. This

includes both read and write access to the directory and its contents.
• The Agentry application project from which the share is to be created must be the open

project in the Agentry Perspective.
• The Agentry application project should be in a state where it makes sense to share with

other developers on the team.
• The Agentry application project cannot be connected to a share.

Task

This procedure describes the steps involved in creating a new share repository. When this
procedure is complete, a share will be created with the initial revision. The contents of this
revision will match the current state of the Agentry application project from which the share is
created. This local project will be connected to the new share. The share will be available to
others for import to create local projects based on the initial revision. Going forward the share
will support all share operations by developers with access to the share.

1. Open the source Agentry application project in the Agentry Perspective within Eclipse.

Agentry App Development

Agentry App Development 117

2. Right click the root project folder in the Project Explorer View. In the context menu select
the item Team | Share Project...

This displays the Share Project Wizard:

3. Select the item Agentry Share from the list displayed in this screen. Click the [Next >]
button.

This displays the Share Location screen:

Agentry App Development

118 SAP Mobile Platform

4. Enter the location of an existing directory accessible to the developers on the team and
meeting the requirements of an Agentry Share Repository. Click the [Next >] button.

This creates the new share repository at the designated location. The status screen displays
the definitions as they are added to the initial revision of the share:

Agentry App Development

Agentry App Development 119

5. Click the [Finish] button to close the wizard and return to the Agentry Perspective.

When this procedure is completed, the new share repository is created. The initial revision of
this share matches the current open project in the Agentry Perspective. This local project is
connected to the newly created share repository. The share is now available to other developers
with read-write privileges to the selected location from their Agentry Editors.

Next

Developers with access to the share can import the initial revision, or the current tip revision,
creating local Agentry application projects. Work performed by all developers can then be
committed to this share, making it available to all others on the team.

Share Operation: Checking Out (Importing) From a Share

Prerequisites

The following items must be addressed prior to performing this procedure:

• The Agentry Perspective must be open in Eclipse.
• The developer performing the check out must have read-write privileges to the share

location.

Agentry App Development

120 SAP Mobile Platform

Task

This procedure describes the steps to check out the tip revision of a share repository, creating a
local Agentry application project in the current Eclipse workspace. When this procedure is
completed, a new Agentry application project will exist in the workspace and will be
connected to the share from which it was checked out. This procedure is similar to an import
performed with a non-share source, such as an export file or published application on an
Agentry Server. However, the import source for this procedure is an existing share repository.

1. Right click anywhere in the Project Explorer View within the Agentry Perspective. Select
the menu item Import...

This displays the first screen of the Import Wizard:

2. Within this wizard screen the import source is selected. To check out from a share, select
the item Agentry Share | Checkout Project from an Agentry Share (share.ini). Click
the [Next >] button.

This displays the second screen of the wizard:

Agentry App Development

Agentry App Development 121

3. Within this screen set the fields according to the following instructions and then click the
[Finish] button:

• Agentry Share: Enter the path to the share repository, including share.ini file.
This can be entered manually or selected in a Windows File Dialog by clicking the
[Browse] button and navigating to the share location and selecting the share.ini
file.

• Application Name: When checking out of a share, this field is read-only. It is set to
match the Application Name attribute in the share’s tip revision.

• Project Name: This is the name given to the project in the Eclipse workspace. This
name can be any unique value and is not committed back to the share.

• Developer Server (optional): Enter the path to the Agentry Development Server for
the local project. This path can be entered manually or selected in a Windows File
Dialog by clicking the [Browse] button and navigating to the Server’s installation
directory.

The new project is created by importing the definitions from the selected share’s tip
revision. The wizard is closed and the project is displayed in the Project Explorer View.

Agentry App Development

122 SAP Mobile Platform

When this procedure is complete a new project is created in the current Eclipse workspace.
This project contains the definitions matching the selected share’s tip revision. The project is
automatically connected to the share from which it was imported.

Next

The new project can now be modified by the developer. Changes made can be committed to the
connected share and updates retrieved from it.

Share Operation: Committing Changes to the Share Repository

Prerequisites

The following items must be addressed prior to performing this procedure:

• The current Agentry application project must be connected to a share repository.
• The Agentry application project should be in a state believed to be stable and/or ready for

integration into other developers projects.
• Any desired public tags should be applied prior to performing the commit.
• Any additional information needed for the revision about to be created should be noted in

preparation for adding such information to the revision’s comments during this process.

Task

This procedure describes the steps involved in committing changes made to a local Agentry
application project to the share repository to which the project is connected. When complete,
all definitions modified in the local project since the last commit will be added to the share
repository as a new revision. This revision will be the tip revision of the repository received by
other developers during subsequent updates up until another revision is committed.

1. Right click the open project in the Project Explorer View. In the context menu now
displayed select Team | Commit.

This displays the Commit Wizard:

Agentry App Development

Agentry App Development 123

2. This screen displays, first, the comment field for the new revision and, second, the
summary of changes made to the local project. Edit the comments as necessary. Click the
[OK] button to proceed.

3. The definitions that have been modified in the local project are updated to the share as a
new revision.

When this procedure is complete a new revision is added to the repository as the tip revision.
This revision includes the local Agentry application project definitions as they existed at the
time of the commit. Any private tags on definitions resulting from modifying those definitions
have been removed from the local project.

Next

When the new revision has been created, other developers can retrieve the changes and
integrate them with their local projects by performing update operations.

Share Operation: Updating From the Tip Share Repository Revision

Prerequisites

The following items must be addressed prior to performing this procedure:

Agentry App Development

124 SAP Mobile Platform

• The tip revision within the share repository must be newer than the local Agentry
application project’s revision.

• The current Agentry application project must be connected to a share repository.

Task

This procedure describes the steps necessary to update the local Agentry application project to
the latest, or “tip” revision in the share repository to which the local project is connected.
When this procedure is complete, the local project will be updated to match the application
definitions in the share’s tip revision. As a caveat to this result, if there are conflicts between
the tip revision and the local copy of the definitions, it is possible the resulting local copy will
differ from the tip revision. These differences can result from how any conflicts are resolved
during the update, which can include keeping the local version (which would differ from the
share’s tip revision) or merging the differences between the local copy and tip revision.

1. Right click on the local project in the Project Explorer View. Select the menu item Team |
Update from the context menu.

The update from the share begins immediately. If there are no conflicts with the share and
the local project this procedure is complete. The local project is now updated to match the
tip revision in the share.

2. If one or more definitions between the share and local projects are in conflict, a message is
displayed indicating there is an issue. Also, the Comparison View is opened and the
definitions in conflict are highlighted as differences within this view.

The following message indicates there are conflicts:

3. Resolve the conflicts using the Comparison View (opened automatically during the
update) to manually import from the share or keep the local version of the definition. In the
latter case, these local definitions will be a part of the next revision in the share. For further
information on conflicts and resolving them during an update, see the information on
“Update Conflicts and Conflict Resolution.”

When this procedure is complete the local project is updated to match the tip revision in the
share. If any conflicts occurred, and those conflicts have been resolved, the local project may
contain differences from the share’s current tip revision. Those differences will be a part of the
definitions committed to the share the next time a commit operation is executed from the local
project.

Agentry App Development

Agentry App Development 125

Share Operation: Reverting to a Previous Share Revision

Prerequisites

Prior to performing this procedure the following items must be addressed:

• The current Agentry application project must be connected to a share repository.
• It must be determined if the revision to be reverted to should replace the current project, or

if a new project should be created with the previous share revision to be selected.

Note: Selecting to replace the current project with a previous revision can lead to
undesirable results, including the loss of all local, non-committed changes in the local
project. Replacing the existing project should only be performed after a back-up of the
local project has been made. This can be accomplished by either committing the project to
the share, or exporting the project to an Agentry export file by executing he Export
Operation.

Task

This procedure provides the steps necessary to revert the local project to a previous revision
within the share repository; or, alternately, to create a new local project in the current Eclipse
workspace based on a revision of the share prior to the tip revision. When this procedure is
complete, and depending on the options selected, either the current local project will be
replaced with the revision selected in the share repository, or a new local project will exist
containing the definitions as they existed in the selected revision.

Note that this procedure can also be performed to revert the local project to the tip revision in
the share repository. This differs from an update in that the current local project will be
reverted to the tip revision and any local changes will be lost. None of the conflict detection or
resolution functionality that is a part of an update operation is performed in a revert operation.

1. Right-click the open Agentry application project in the Project Explorer View. Select the
menu item Team | Revert | revision, where revision is the share revision to which the
project should be reverted.

This displays the Revert Project wizard, with the selected revision’s information displayed

Agentry App Development

126 SAP Mobile Platform

2. To create a new local project based on the selected share revision, check the Create new
project check box. Then enter a name for this new project in the Project Name field. To
not create a new project, but instead replace the currently open local Agentry application
project, leave this box unchecked. Click the [Finish] button to proceed.

The revert operation now executes. Based on the selections made, either the local Agentry
project is replaced with the selected revision, or a new project is created in the current
Eclipse workspace matching the selected revision from the share.

When this procedure is complete, either the local Agentry project is reverted to the selected
revision, or a new local project is created in the Eclipse workspace matching the selected
revision. If a new project has been created it is connected to the share repository.

Next

The resulting project from this operation now matches the selected revision within the share.
This project cannot be committed to the same share. Either the local project must be updated or

Agentry App Development

Agentry App Development 127

reverted to the tip revision, or it must be disconnected from the current share and new one
created for the local project using the Share Project operation.

Overview of Mobile Northwind Sample Application

In the development guide for Agentry applications there is reference to the Mobile Northwind
sample application. An overview of this application is provided here, including data structure,
client behavior, and synchronization components.

The Mobile Northwind application is a basic order entry application with some light customer
relations management and inventory-like functionality included. It is an extension of the
Northwind sample database provided with MS SQL Server systems, a database for the
fictitious company Northwind Trading.

Module Data Structure and Object Collections
The data definitions within the application include objects and related transactions, a complex
table and a data table.

The object definitions include Customer, Order, and Order Item or Product. In the case of the
Product and Order Item objects, these terms are interchangeable. The structure, purpose, and
usage of the object is the same, regardless of which name is used. These objects are structured
within the parent module Customer Accounts in a parent-child relationship:

MainObject > Customers > Orders > Products

The module main object contains a collection of Customer objects. The Customer object
definition in turn contains a collection of Order objects. The Order object then contains a
collection of Product objects.

The Customer object encapsulates customers of the Northwind Trading company. It contains
property definitions for customer ID, company name, contact name, phone number, and
address information.

The Order object encapsulates an order placed by the customer. It includes property
definitions for the unique order ID, order date, delivery date, required date, and shipping
information.

The Product/Order Detail object encapsulates an individual item ordered by a customer. It
includes the unique product ID, product name, description, and quantity ordered within its
property definitions.

Complex Tables and Data Tables
There is one complex table and one data table defined within the Mobile Northwind
application. The data table contains a short list of shippers. The key field contains the Shipper
ID value, and the value field contains the shipping firm name.

Agentry App Development

128 SAP Mobile Platform

The Products complex table contains a list of the items which the Northwind company offers
to its customers. There are fields defined for the Product ID, Product Name, Unit Price, and
Quantity per Unit values. There is one index on the Product ID and one on the Product Name.

Transactions
Transactions exist for all three object types defined within the project. There is an add and edit
transaction for the Customer object. The edit transaction allows the user to edit contact
information for the selected customer, including contact name and phone number.

There is an add transaction defined for the Order object. Add is in support of order entry,
allowing the user to record a new order for the selected customer.This transaction uses initial
value rules on its transactions to set the initial value of all shipping address properties to the
matching address properties of the selected customer object. the user can modify these values
in the wizard for the transaction if necessary. The transaction also captures date and shipper
information.

There is an add, edit, and delete transaction defined for the Product object. Products are added
to the selected order object for the customer. Products are selected by the user from the
Products complex table.

User Interface
The user interface for the Mobile Northwind application includes screen sets to display
customers, orders, and products for orders. They are presented in a basic drill down
navigation, with actions defined to go from one to the next.

Transactions are presented in standard wizards. The action to add new orders for a customer
includes a looping SubAction step in addition to the transaction step for the add transaction for
the order. The looping step executes the action for the Add Product transaction in a loop that
continues until the user indicates they are finished. The screen flow from this then presents the
screen set for the Add Order transaction once, followed by the screen set for the Add Product
transaction being presented in a loop until the user has completed the entry of all desired
products for the order.

The fields which capture data for the Add Product transaction are defined with update rules to
calculate the total cost of the product order by multiplying the quantity being ordered by the
unit price.

Target Paths and the Property Browser

Target paths are an important concept to understand when creating or working with an
application project using the Agentry Editor. Target paths are selected using either a short list
of likely options from a context menu for a given attribute field, or by using the Property
Browser for more sophisticated paths.

To understand target paths it is first important to understand the concepts of target definition
instances and referenced definition instances. A target is a definition instance that is affected

Agentry App Development

Agentry App Development 129

by some other definition at run time on the client. The specific impact on a target is typically
setting a value in that definition. Targeted definitions are almost always a property.

A referenced definition instance is one whose value, or in certain circumstances the definition
instance itself, is returned to the definition referencing it. What is done with the value or
definition instance returned depends entirely on the referring definition.

A target path is then used to specify the definition instance to be targeted or referenced. Target
paths always deal with a specific definition instance. A target path is a path evaluated in the
context of the definition in which it is contained at run time on the Agentry Client.

A basic example of a target path is the value of a property to be displayed by a detail screen
field. As a part of a detail screen field’s definition the property to be displayed by the field is
specified. This property is specified using a target path. This path may take the basic form:

:>"CompanyName" Property

In this basic example, the field is defined to display the property named CompanyName found
in the definition being displayed by the detail screen containing the field. At run time this path
is evaluated by the Agentry Client and the value of that property at that time is displayed in the
field.

Target paths can retrieve data values from numerous definitions, including properties, the
current value of a screen field, complex table fields, data table fields, and other definitions.
The path itself can be as basic as the previous example, or far more complex and include rule
evaluation and currently selected items in a list to determine the desired value. The complexity
of the target path depends on numerous factors, including the context of the definition
containing the target path and how that context relates to the logical location of the value to be
retrieved, the parameters by which the value should be selected (e.g. a currently selected item
in a list, a record from a complex table, etc.), and the nature of the definition in which the target
value is located. Consider the following more sophisticated target path:

:>Main Screen Set>"ShowCustomers_List_PPC" List Screen>Current
Object>"CustomerID" Property

This path returns the CustomerID property of the object that is currently selected in the
ShowCustomers_List_PPC list screen, which is contained in the main screen of the current
module. Such a path would be needed in a situation where the context of the definition needing
this value is one where the module main screen set is not a descendent, for example a
transaction definition. The above path may be one used to specify the initial value of a
transaction property that must be initialized from the currently selected item in the list screen
specified. Transactions are child definitions of the module, just as screen sets are. This means
the transaction and screen set are siblings and the transaction is, therefore, not a descendent of
the screen set.

Agentry App Development

130 SAP Mobile Platform

Creating Target Paths: Attribute Field Context Menus
The first option when setting the target path for an attribute is to use the context menu
displayed by the ellipses button for that attribute field. A basic example of this is a transaction
property’s target Object Property. This attribute is common among all transaction properties
and specifies the object property whose value is to be set to the value of the transaction
property when the transaction is applied.

When setting this attribute, the ellipses button is clicked in the Editor for this attribute to
display the context menu. Included in this menu is a list of all properties found in the object
definition targeted by the transaction. These items are displayed by the Editor as they are the
most likely candidates for selection when defining a transaction property’s target:

Selecting an item from this menu creates a target path like the first example shown previously
for the CompanyName property. Though not created using the Property Browser, this is still a
target path. The Editor provides this list of likely options for the attribute as a shortcut to
defining the application.

Creating Target Paths: The Property Browser
The selection of more involved paths is made supported by the Property Browser. The
Property Browser can be displayed to set any attribute within the application project where a
target path is allowed or required. In most cases, the menu displayed for such an attribute will
include a list of likely definitions to be targeted by the attribute (based on the current context)
and an additional menu item of Browse... or Browse Objects... This menu item displays the
Property Browser, which provides a tree control of the various definitions in the structure of
the application project that are valid selections for the attribute:

Agentry App Development

Agentry App Development 131

The available items in the property browser will vary from one definition to the next,
depending on what the valid definition types are for the attribute and the definition containing
that attribute. As with other aspects of the target paths behavior, this is driven by context.

An important concept to understand when using the Property Browser is that definitions are
organized within it based on the data structure defined within the application project as it will
exist on the Agentry Client at run time. This is a different structure than the one presented in
the main Project Explorer View of the Agentry Editor.

Consider the example of two of the object definitions Customer and Order found in the Mobile
Northwind application. When viewing this project in the main Project Explorer view, both of
these definitions are listed under the module as its child definitions. Customer and Order are
sibling definitions within the application project and are therefore presented at the same level
in the hierarchy. By contrast, when viewing the Property Browser these definitions are
presented differently. The Customer object may be presented as a root node in the tree (as in
the previous example). Expanding it reveals all of that objects properties, including the Orders
collection property which will contain the Order object instances for a given Customer at run

Agentry App Development

132 SAP Mobile Platform

time. While the Project Explorer View also lists this collection property, the Property Browser
goes further in that the Orders collection can be expanded to reveal several child nodes related
to selecting a specific Order object instance based on some condition. Furthermore, under the
selection criteria for an object instance in a collection, additional child nodes are displayed to
allow for the selection of a specific property within that object.

The presentation of the definitions of the Property Browser is a reflection of the fact that the
purpose of a target path is to select an instance of a definition at run time, based on some
criteria. The criteria can be as simple as some property in the object instance targeted by a
transaction; or it can be more sophisticated, such as a property in the parent object to the one
targeted by the transaction, or even based on a rule evaluated at run time. Whereas the Project
Explorer View deals with the definitions, the Property Browser details within specific
instances of those definitions.

Beyond objects and their properties, the Property Browser can display several other definition
types from which data can be retrieved on the Agentry Client at run time. These include items
such as screen field values, the selected object in a list, a record in a data table or complex table,
as well as specific fields within those records, and properties in transactions or fetches. The
specific definition types available depends on the context in which the path will be evaluated at
run time. For example, an object read step includes a Read Into attribute that specifies the
target collection property into which data is read by that step during synchronization. When
the Property Browser is displayed for this attribute there are far fewer options available than
for some other attributes. in this situation, the options are limited to only object collection
properties nested under the object for which the read step is being defined.

The Property Browser presents numerous options for selecting a specific definition instance,
such as an object within a collection or a record within a complex table. Such options include
the first or last item in a set, an object where the key property matches some specified value, or
a record or object instance returned based on the evaluation of a rule. Understanding how to
use the Property Browser to create such target paths is an important concept when developing
many real-world applications or modifying existing applications to meet the specific needs of
an implementation.

Basic Target Path Syntax
The syntax rules for a target path are important to understand so that when viewing a target
path the developer can understand where the value being referenced is located within the
application. There is no need, however, for the developer to understand the syntax at such a
level as to be able to create such a path by hand. The Agentry Editor does not allow a target path
to be entered manually for any attribute.

First, all target paths begin with the symbols :>. This simply denotes the beginning of the path
for the target path parser built into the Agentry Client. This symbol is then followed by a
definition name and type, or in some cases a generic definition type. A basic target path can
end with just a single definition if that definition is found within the definition instance that is
currently on context. Other paths contain multiple components, with each separated by the >

Agentry App Development

Agentry App Development 133

symbol. Each definition referenced in the path includes the name enclosed in quotes followed
by the definition type.

Looking at the previous example, then:

:>Main Screen Set>"ShowCustomers_List_PPC" List Screen>Current
Object>"CustomerID" Property

The first component to this path is Main Screen Set. This is a generic component that
refers to the main screen for the module. This value does not contain the name of this
definition, which allows it to be used and evaluated properly even when the name of this screen
set changes. The second component to the path is “ShowCustomers_List_PPC” List
Screen. This component specifies the list screen of this name found within the main screen
set of the module. Current Object is the next component and this refers to the currently
selected object within the list screen. The final component is the “CustomerID”
Property. This then specifies the CustomerID property within the currently selected object
in the list. To create this path, the following was selected within the Property Browser of the
Mobile Northwind application project in the Agentry Editor.

Agentry App Development

134 SAP Mobile Platform

Note the selection, including the nodes above it in the tree control. The root node of the
selected item displays “CustomerAccounts” Module’s Main Screen Set (“ShowCustomers”).
However, this full description is not the item returned for the target path. Note the line of text
displayed above the tree control in the screen header of the Property Browser. This is the actual
target path that will be returned to the attribute for which the selection is being made.

In many cases a definition will be replaced in the target path with a more generic value, such as
“Current Screen Set”, “Current Property”, etc. At run time, when the target path is evaluated
by the Agentry Client, these more generic values allow for the reuse of a target path in multiple
contexts. In some cases such paths are required. As shown in an example to be provided
shortly, the target paths evaluated in the context of a detail screen that is in turn displayed
through one of the tile category of detail screen fields (List Tile View, Tile Edit, and Tile
Display) require such generic values in the target path when referencing another value on the
same detail screen.

In other situations the target path selected in, for example, a rule definition may be replaced
with a more generic value after that rule is saved. A common example of this behavior is when
specifying a collection property for the @COUNT function. In many cases when the
collection is selected the target path displayed in the rule editor will be something similar to
“Customers” Collection Property. However, when the rule is saved and subsequently viewed
or edited that same path will be the value “Current Property”. If the context of the rule
evaluation includes the previously selected Customers collection, current property will
resolve to that collection. Furthermore, the replacement of the name-specific value with the
more generic one allows that rule term to be evaluated in the context of a different collection
property, such as Orders.

Property Browser Details: Object-Related Options

The property Browser presents numerous options related to the selection of an object instance
and a specific property value within that instance. This includes both the selection of a value
from the object in the current context and also the selection of an object within a collection.
Many of the more sophisticated options are related to the selection of an object instance within
a collection. These options include:

• Selection of a property within the object instance in the current context
• Selection of an object instance within a collection based on it’s position (first or last)
• Selection of an object instance within a collection based on a rule definition
• Selection of an object instance within a collection based on the key property value of that

object

The specific layout of the module’s data structure within the Property Browser depends on the
context in which the target path being selected will be evaluated at run time. In some cases the
object is displayed as the first root node. In other contexts a collection is presented. In addition
to these options, others may be available for screen sets, complex tables, data tables, and other
options. These are addressed elsewhere, with the focus here on the target paths selected solely
based on the object instances.

Agentry App Development

Agentry App Development 135

Target Path for an Object Property - No Collection
When setting the target path of an attribute, and when the context of the path to be evaluated
includes a single object instance, the Property Browser is presented similar to the following:

In this example the target object property of an edit transaction property is being set. The
object in context is the object to be modified by the transaction. In the Property browser, the
Customer object is displayed as the first root node and is expanded, as shown in the above
example. If the proper option for selection is one of the properties under the Customer object,
then it is likely that the Property Browser is not needed, as in almost all contexts the properties
of the customer object would be displayed in the context menu of the attribute.

However, if the target paths should reference a collection property within the object, the
Property Browser is needed. Collection properties are not displayed in the context menu of a
transaction property’s target object attribute. The collection is a valid selection if the edit
transaction should replace the object collection in the object with values captured by the
transaction.

Agentry App Development

136 SAP Mobile Platform

It is also possible to reference the parent object of the one in the current context. Again in the
previous example, the Customer object is expanded. Note the last child node under the
Customer, which is MainObject. The description indicates this is the parent object of
Customer, meaning the object instance is stored in a collection property of the MainObject. To
select another property within the MainObject, that node can be expanded and the property
selected from it. This same general procedure is available to all objects stored in collections to
access the parent object containing that collection.

Target Path for an Object Instance - Selected From a Collection
In many contexts the object to be selected exists in a collection of objects of the same type. The
specific object instance to be targeted must be specified. In almost all cases once the specific
object instance is determined, a property of that instance is then the actual target being
selected. When working with an object collection property, the Property Browser provides
several options to select the specific object instance:

When the node for a collection property is expanded in the Property Browser, the following
items are available:

Agentry App Development

Agentry App Development 137

• The first object in the collection
• Select the object from collection by rule
• Select the object from the collection by the key field
• The last object in the collection
• Object child collections

The First Object in the Collection: The first object in a collection is the first object instance
added to that collection. This may be the first one retrieved from the back end system during
synchronization; or if the collection is empty after synchronization, it is the first object
instance added to the collection on the client.

In the case of data synchronization, the order in which the objects are stored in the collection is
not guaranteed by the Agentry Client. The synchronization logic itself can include ordering of
the data retrieved, which then provides an order to the objects stored in the collection.
However, there are few use cases in real world applications where a target path is needed to
select the first object instance in a collection.

The one real-world example of such a target path is when the collection is known to contain
only a single object in all situations. One situation where this occurs is when an object exists in
a collection of the MainObject to store user-related information. Typically the
synchronization retrieves only a single object instance for this user information. When it is
needed, a target path to that object must be created. Target paths for object collections always
assume the possibility that multiple object instances can or will exist within a given collection.
Therefore, selecting the first object in the collection in a situation where it is known that only
one instance will ever exist is an acceptable manner in which to select this object.

Select the Object from the Collection By Rule: Selection this option requires the definition
of a rule to evaluate the objects found in the collection. The default behavior at run time is for
the rule to be evaluated once for each object instance in the collection until the rule returns
true, at which point that object instance is returned, or until all objects have been evaluated.
The rule is evaluated in the context of each object instance in turn, allowing access to the
property values of each object.

As optional behaviors the object selected can be the first one for which the rule returns false;
the last one for which the rule returns true; or the last one for which the rule returns false.

To select or define a new rule for this purpose, as well as to select options to change the default
behavior, right click on the node in the Property Browser to display a context menu. Here a
context menu is displayed with the following selections available:

• All rule definitions currently defined in the module.
• The option to define a new rule
• The option to specify if the object instance selected is the first or last to meet the rule’s

criteria (the first object found is the default)
• The option to specify whether to select the object instance based on a true or false return

from the rule (true is the default)

If the option to select the last object meeting the criteria is defined, the rule will always be
evaluated once for each object in the collection, as it must check all objects before determining

Agentry App Development

138 SAP Mobile Platform

the last one to meet the criteria. This behavior should be considered if the selected collection
has the potential to contain a large number of object instances, as it has the potential to increase
processing time as the number of objects to evaluate increases.

Once the rule has been either selected or defined, and the optional other settings have been
selected, the node can then be expanded to allow for the selection of the specific property
within that object instance. The value of this property is then returned, or the property itself is
targeted during run time.

Select the Object from the Collection by the Key Field: The object instance can be selected
from a collection via the value of it’s key property, or alternately by another property within
that object. In most cases the key property should be used as it is the only value guaranteed to
be unique for all object instances within the collection.

To set this option, right click on this node in the Property Browser to display a context menu
containing the properties in the object definition, as well as the value to which it will be
compared. The key property is selected by default, but can be changed to any other non-
collection property within the object.

The last item in the context menu is equal to (Browse for Property)... is then selected to
display a second Property Browser. In this screen the value to be compared to the key property
of each object in the collection is selected. This select is an example of a target path within a
target path. This “nested path” is evaluated once for each object in the collection being
searched, with the value it returns being compared to the key property of each object instance
in the collection, until a match is found or until all objects have been searched.

One alternate selection in this context menu is the Browse... menu item directly below the list
of all properties within the object. This can be selected for more complex search criteria, and
will display a second Property Browser. Specifically, selecting an object from a collection that
contains a nested collection with an object instance that meets some criteria. For example,
selecting a Order object from the Orders collection where that Order object contains an
OrderItem object with a Product ID value of 70.

To make such a selection, the property to be compared would be the ProductID property of the
OrderItem object within the collection property of the Order object. The is equal to (Browse
for Property)... menu item is then displayed to select the value to compare against the
ProductID property of the child OrderItem objects. Note that such a selection will iterate over
each object in the nested collection property of each object instance in the parent collection. So
in this example, each OrderItem object is checked in each Order object until a match is found.
Therefore, the potential number of iterations performed by the Agentry Client for such a target
path is a multiple of the number of objects in the parent collection and the number of objects in
the nested collection. This type of searching is rare, but there are a handful of use cases for
which it can be applicable.

The Last Object in the Collection: The last object in a collection is the last object instance
added to that collection. This may be the last one retrieved from the back end system during
synchronization; or it will be the last object instance added to the collection on the client.

Agentry App Development

Agentry App Development 139

In the case of data synchronization, the order in which the objects are stored in the collection is
not guaranteed by the Agentry Client. The synchronization logic itself can include ordering of
the data retrieved, which then provides an order to the objects stored in the collection.
However, there are few use cases in real world applications where a target path is needed to
select the last object instance in a collection after data synchronization, and issues with such
logic arise in that this selection becomes invalid if users add another object to that collection on
the Client via a transaction.

A typical use case for building a target path that selects the last object in a collection is in the
area of multiple transactions being instantiated and applied on the Agentry Client, where a
transaction creates a new object, and a subsequent transaction must modify that new object in
some manner. An example from the Mobile Northwind application is the order entry
functionality. The Order object represents an order placed by a customer and includes header
information such as the order date and the shipping address. It contains a collection of
OrderItem objects that represent the products for that order.

From a usability standpoint, it makes sense for the creation of an Order object and the addition
of one or more OrderItems to that object to appear as a single operation to the user. To
accomplish this an action can be defined that executes two sub-actions. The first instantiates
and applies the AddOrder transaction. The second instantiates and applies the AddOrderItem
transaction in a loop. Any add transaction must know to which collection property the object it
creates will be added. In the order entry scenario, the AddOrder transaction creates an object
and adds it to the Orders collection property of the current Customer object. The subsequent
AddOrderItem transaction must then target the collection of OrderItems contained in the
newly created Order object. To specify this Order object it is safe to select the last Order object
in the collection as the parent to the new OrderItem object created by the AddOrderItem
transaction.

Object Child Collections: The selection of the Object Child Collections node under a given
collection property displays a list of all collection properties nested under the current
collection. Selecting one of these nested collections results in the return of all object instances
in that collection in all instances of the parent collection.

An example to explain this is the Orders collection property contained in the Customer object
of the Mobile Northwind application. If it is desired to define a list (list screen, list tile view
field, list selection field, etc.) that displays all of the orders for all customers downloaded to the
Agentry Client, the object child collections type of target path can be used. At run time this
target path is evaluated by the Client and retrieves all Order objects from every Customer
object. It can then display all of these Order objects in a single list regardless of the parent
Customer object in which any of them are contained.

Property Browser Details: Screen-Related Options

The Property Browser provides several options for creating a target path based on the
selections made and the values entered or displayed on a screen. In general there are two
categories into which these options can be organized: List-related options and Detail Screen
Field options. The options available for different list controls are typically the same and, in

Agentry App Development

140 SAP Mobile Platform

most cases, the item currently selected in that list is the target path created. For detail screen
field options, this is typically related to the value displayed in the field, or in some cases the
item represented by the selection made in a field.

Target Path for List Controls
The target path based off of a selection in a list control, which can include the list displayed on
a list screen, or the list displayed by one of the detail screen field types that present a list of
objects from a collection, will return a property from an object within that list. The collection
being displayed can also be accessed directly, though typically this target path is selected via
one of the object-related options also presented by the Property Browser.

The following is a typical list related set of options as presented by the Property Browser:

In this example the options for a list screen are shown. However, these same options are
available for detail screen fields with an edit type of List Tile View and List Selection. All three
of these list types display a defined object collection property at run time on the Client, and all
three allow the user to make a selection from that list.

Agentry App Development

Agentry App Development 141

The options displayed here include:

• The selected object
• The first object in the collection
• Select the object from collection by rule
• The last object in the collection

Of these options, only the selected object relates specifically to the different list controls. The
other three provide the same target paths and behaviors as the options described in the Object-
Related Options for target paths and Property Browser.

The Selected Object: Choosing the option of the selected object returns the object currently
selected in the list. If the list is defined to allow for multiple selections, then this option
provides the same options as when working with a collection property directly. The list of
objects selected by the user are treated as a collection, with the instances in that collection
being only those selected by the user. Like the options presented for a collection, there are
numerous options that can be used to determine which specific object from those selected
should be returned, including the first, last, by key field value, and by rule.

Property Browser Details: Complex Table-Related Options

The Property Browser provides several options for selecting a record from a complex table.
Ultimately a specific field from the selected record is returned in almost all contexts. The
specific field is a part of the target path created using the Property Browser. The selection
criteria for the record can be based on one of the indexes defined within the complex table.
When using an index, the first record, last record, or one selected by performing a search based
on that index are all options. Searching on indexes in a complex table using a target path also
includes support for parent-child indexes, if they are defined.

Target Paths for Complex Table Records
When a complex table record is targeted, the target path will ultimately include the specific
field within that record whose value is to be returned. To select a record from a complex table,
the selection criteria options are either the current record in the complex table, which is
determined by context, or by using one of the indexes defined within the complex table. The
following is an example of options provided in the Property Browser for a complex table
definition:

Agentry App Development

142 SAP Mobile Platform

The options displayed here include the following:

• The current complex table record
• Range of records by index
• Select the first record in an index
• Select the last record in an index
• Select a record based on a rule
• Select the record using a child index within a parent index

The Current Complex Table Record: This option creates a target path that returns the
current record in the complex table. The concept of the current record can be somewhat
flexible and is based on the context of the target path evaluation. In general, the current record
in a table is one that is currently selected in a list that displays complex table records, or some
similar behavior.

Range of Records by Index: Within a complex table there will always be one or more index
definitions. The index provides order to the records of the complex table based on the values of

Agentry App Development

Agentry App Development 143

a field within the records. indexes are defined to support both sorting and searching behaviors.
When selecting records by using an index, right clicking on the node Range selected by index
“IndexName” displays a context menu where the search value is specified. The source for this
value can be either the value returned by a rule definition, or by creating a nested target path.

In the case of a rule, the rule itself is evaluated in the context of the parent definition for which
the target path is being generated. The data type of the rule context matches the data type of the
field for which the index in the complex table is defined. So if the index is defined for a field
with one of the four string data types, the rule is evaluated in a string context and this is the data
type of its return value.

In the case of a nested target path, a second Property Browser is opened and the source for the
value to search on can be selected. Note that in this case, the source selected must be of the
same general data type as the field to which it is compared. If the complex table field is a string,
the search value must also be a string. The Agentry Client does not perform any data
conversion for this comparison as it does in other situations.

Whether using a rule or some other data source for the search value, at run time the Agentry
Client searches the complex table using the search value and the selected index. The resulting
record may be either a single record or a range of records with the matching value. When
selecting a range, the return should be for some list that supports displaying complex table
records. This behavior allows for creating a temporary list of records that is a subset of all
records in the complex table. This subset is dynamic in the sense that the source for the search
value may return a different value under different conditions, especially when a rule definition
is used. When a range of records is to be returned, the specific field from those records is not
selected.

Select the First Record in an Index: When selecting the node First Record in Complex
Table Index “IndexName”, the Agentry Client uses the order provided by the selected index
to select the record, with the first record in the index being selected. A single field is selected
for this option as the value returned for that record. As an optional behavior, right clicking on
this node presents a context menu that allows for the specification of a record position within
the index, counting up from the first record, which is at position 1.

Select the Last Record in an Index: When selecting the node Last Record in Complex
Table Index “IndexName”, the Agentry Client uses the order provided by the selected index
to select the record, with the last record in the index being selected. A single field is selected
for this option as the value returned for that record. As an optional behavior, right clicking on
this node presents a context menu that allows for the specification of a record position within
the index, counting back from the last record, which is at position 1.

Select a Record Based on a Rule: When selecting the node Select Record in Complex Table
Index by Rule, a rule definition is selected or defined by right clicking this node and selecting
the appropriate option from the context menu. The rule used here is evaluated iteratively, once
for each record in the complex table, until a match is found. The data type of the rule’s context
is Boolean.

Agentry App Development

144 SAP Mobile Platform

The record selected is the first for which the rule returns true, by default. The order in which
the records are processed is dictated by the order established by the index definition. As
optional behaviors, the target path can be defined to select the first record for which the rule
returns false. Also, the last record within the index for which the rule returns true (or false if
selected) can be returned instead. Both of the optional behaviors are set by selecting the
corresponding options in the context menu displayed for this node.

Select the Record Using a Child Index Within a Parent Index: When a child index is
defined within the complex table, expanding the parent index reveals options for that child.
These options are the same as the others for an index. However, the overall behavior includes
child index searching. When one of these options is selected, selection criteria must also be
specified for the parent index. Specifically, the selection of a range for the parent index must be
specified, along with one of the selection options for the child index. This is required due to the
nature of parent-child indexes in complex tables.

Property Browser Details: Data Table-Related Options

The Property Browser presents several options to select a record from a data table. The
resulting target path created typically returns one of the two field values from the record, either
the code or value. In some cases it may return the record, depending on the context in which the
path is evaluated.

Target Paths for Data Table Records
When using the Property Browser for a target path to select a data table record, the options
presented include selection via rule or position, as well as the current record. Typically the
selection also includes specifying the field from the record to return. By default the value field
is returned. Right clicking on any of the selection nodes provides a context menu where this
default can be changed to the code field.

The following is an example of the options presented for a data table’s target path in the
Property Browser:

Agentry App Development

Agentry App Development 145

As shown in this example, the following options are available:

• The current data table record
• The first data table record
• The last data table record
• Select a record based on a rule

The Current Data Table Record: When the node Current Record in Data Table is
selected, the record returned by the target path is the “current” record. The concept of a current
record typically relates to the record in the data table currently selected in a list, or possibly in
some other context where a current record exists, for example in a nested target path where the
parent path includes a record’s selection based on some other criteria.

The First Data Table Record: When the node First Record in Data Table is selected, the
record returned is the first one stored in the table on the Agentry Client. It is important to note
that the order of the records in a data table is not guaranteed, nor are the records sorted in any
manner by the Agentry Client. However, the synchronization logic of the data table can order
the records during retrieval to provide an order for their storage on the Client.

Agentry App Development

146 SAP Mobile Platform

As an option to this selection, right clicking on the node presents a context menu with the
option to specify a record at a position relative to the first. This position is set numerically, with
the first record in the table at position 1.

The Last Data Table Record: When the node Last Record in Data Table is selected, the
record returned is the last one stored in the table on the Agentry Client. It is important to note
that the order of the records in a data table is not guaranteed, nor are the records sorted in any
manner by the Agentry Client. However, the synchronization logic of the data table can order
the records during retrieval to provide an order for their storage on the Client.

As an option to this selection, right clicking on the node presents a context menu with the
option to specify a record at a position relative to the last. This position is set numerically, with
the last record in the table at position 1. The second to last record is then at position 2, and so
forth.

Select a Record Based on a Rule: When the node Select Record in Data Table by Rule is
selected, a rule definition must be selected or defined. This rule is evaluated once for each
record in the table, with the record in context. The rule’s return data type is Boolean. The
default behavior is to select the first record in the table for which the rule returns true, at which
point the rule is no longer evaluated.

As optional behaviors, the return value of false can be used to specify the record to select.
Also, the last record for which the rule returns true (or false, depending on the option selected)
can be the one returned. If the last record is selected, the rule will always be evaluated for each
record in the data table.

Target Path: Selecting an Object By Property Value

Prerequisites

Prior to performing this procedure the following items should be addressed:

• The object collection to be searched must be defined.
• The definition containing the value to be compared to the property value of the object must

exist. This could be a property, a screen field, a global, or any other definition from which a
value can be retrieved.

• It is strongly recommended that the value to be searched on is the key property of the object
type contained in the collection.

The following items and definitions are a part of the example application project used in this
procedure:

• The module’s object data structure is Customer -> Orders Collection -> OrderItems
Collection.

• OrderItems is a collection of OrderItem objects that represent items within a given order.
OrderItems can be added to the Order object using the AddOrderItem transaction and
related wizard screen set.

Agentry App Development

Agentry App Development 147

• When adding an OrderItem, the complex table Products is used to select the item to be
added. The key property of the OrderItem object and the key field of the Products complex
table are both the ProductID value.

• The AddOrderItem screen set displays a complex table search field for the Products
complex table. When a record is selected in this field it displays the ProductID value of the
selected record.

• A field of edit type Label is present on the detail screen in the AddOrderItem wizard. The
field is defined to display the label text DUPLICATE. The RedText style has been applied
to this field to display the label text in red and in a larger font size than other field on the
screen.

• Other fields not directly related to this procedure displayed on this screen are the unit price,
quantity being ordered, and discount percentage.

Task

This procedure provides instructions and an example on how to create a target path that returns
an object instance from a collection property where a property of that object instance matches
some value. The value to be compared against the collection must be accessible in the current
context and therefore must be defined prior to performing this procedure. For this example, a
detail screen field displaying a string will be used.

At run time the behavior of the Agentry Client will be to evaluate the target path and to
compare the selected property in each instance the object in the collection property to the
selected search value until a match is found. The first matching object instance is then
returned. Note that this iterative processing can include up to as many iterations as their are
object instances stored in the collection property. Typically this is not an issue for performance
unless the collection contains an exceptionally large number of object instances (hundreds or
thousands). However, if this target path is itself evaluated as a part of some outer loop of
iterative processing, a performance issue could be encountered. For example, if the collection
contains 100 object instances, and the outer loop iterates as little as 10 times, the total number
of evaluations could be as many as 1,000.

Such a situation could also be encountered if the target path is evaluated in an update rule for a
detail screen field. Update rules are evaluated numerous times during the initial presentation
of the parent screen, and additionally whenever the user interacts with the detail screen. On a
wizard screen, this would result in the target path being evaluated each time the user enters a
character in a string field, or makes a selection in some list or drop down field on the same
screen.

In this example the Property Browser is used to create a path that searches the OrderItems
collection of an Order object for an OrderItem with a ProductID (key property) that matches
the one currently selected in the AddOrderItem wizard. The goal is to display a clear indicator
on the AddOrderItem wizard screen when a product is being selected that has already been
added to the OrderItems collection. While the Agentry Client would prevent a second object
with the same key property from being added to the collection, and an error message is
displayed, this does not occur until the Agentry Client attempts to apply the transaction. A

Agentry App Development

148 SAP Mobile Platform

cleaner user interface is possible that displays a message as soon as the duplicate product is
selected.

The label field contain the text DUPLICATE is to be modified with it’s Hidden Rule attribute
set to a rule that checks the OrderItems collection for an object with a ProductID value equal to
the one currently selected in the Product ID field of the AddOrderItem wizard. The rule will
contain a target path that makes this check and returns the property ProductID from the object
found. If no object is found, then a null value is returned by the target path. The return from this
path is to be passed as a parameter to the rule function NOT, which treats any parameters as
Boolean values and inverts them. The Hidden Rule evaluates the rule it contains in a Boolean
context. When such a rule returns true, the field containing the attribute is hidden from the
user. When it is false, the field is displayed.

The overall logic, then, will be that the user selects a product from the complex table. The
Hidden Rule for the label field DuplicateFlag will be evaluated. This rule contains the target
path that compares the selected ProductID value to the ProductID property of each object in
the OrderItems collection. If a match is found, the ProductID value of that object is returned to
the NOT function within the rule. This is treated by the NOT function as true, since the path is
evaluated in a Boolean context and any non-null value is true. NOT inverts this value, thus
returning false to the Hidden Rule attribute. This results in the DuplicateFlag field being
displayed. On the wizard screen the text DUPLCIATE is displayed in large red text. If the user
selects a product that is not currently found in the OrderItems collection, the target path in the
Hidden Rule will not find a matching object. The value returned by the path will be NULL.
The NOT function treats NULL as false. It will then invert this value, returning true to the
Hidden Rule attribute. This will hide the DuplicateFlag field on the screen.

1. In our Mobile Northwind application we select the DuplicateFlag field definition in the
AddOrderItem_Detail_PPC detail screen. In the Properties View we view the Rules /
Hyperlink / Special Value tab:

Agentry App Development

Agentry App Development 149

2. Clicking the ellipses field to the right of the Hidden Rule attribute displays a context menu.
Selecting the menu item Add Rule displays the Rule Editor. Here the name can be left set
to the default of DuplicateFlag_HiddenRule. Advancing the wizard displays the main
Rule Editor screen. The first term to be added to this term is the NOT function:

Agentry App Development

150 SAP Mobile Platform

3. The first and only expression parameter for this function is to be the target path to search
the collection. With the Expression 1 field selected in the Rule Editor, we click the
Properties list and select Browse Properties... This displays the Property Browser. In this
browser we will build the target path to search the OrderItems collection targeted by the
transaction. We select the path AddOrderItem Transaction | Targeted collection of
OrderItems Objects | Select the OrderItem Object from the collection by its Key
Field. Right clicking the last item in this path displays a context menu:

Agentry App Development

Agentry App Development 151

This selection creates the first part of the target path, which indicates the OrderItems
collection targeted by the transaction. We are then specifying that we want a single object
instance from this collection. There are multiple options for choosing the object instance.
For this use case the proper selection is to look for the object by its key property.

4. In the context menu, first note that the key property ProductID is selected by default. The
other properties are also listed, but typically the key property is used as it is the only value
guaranteed to be unique within the collection. We now select the last item in the menu is
equal to (Browse for Property)... This selection is where the value to be compared to the
key properties of the object instances is selected. This selection displays a second Property
Browser. The value we wish to search on is the current value in the Product ID field of the
detail screen. So, the path we select is Current (“AddOrderItem_Detail_PPC”) Detail
Screen | ProductID Field:

Agentry App Development

152 SAP Mobile Platform

This selection creates a target path that returns the value currently displayed in the Product
ID field of the detail screen. This path can be thought of as one that is contained within the
path selected in the first Property Browser. This “inner path” is evaluated once for each
object in the OrderItems collection until the value it returns matches the ProductID
property of an object in that collection, or until all objects have been searched.

5. Click the OK button in this second Property Browser screen. We must now make one final
selection in the first Property Browser, which is the property value to be returned from the
OrderItem object found in the collection. This could not be selected previously as this
selection cannot be made until the search criteria is specified. Now that it is selected, the
node indicating search by key property can be expanded, revealing the properties within
the OrderItem object. Here, the property to be returned is selected. The safe selection for
our use case is the ProductID, as it will always contain a value. Other properties can be
selected in other use cases, depending on what data is needed from the object found:

Agentry App Development

Agentry App Development 153

6. Close this Property Browser by clicking OK. We are returned to the Rule Editor, where the
rule now appears as follows:

Agentry App Development

154 SAP Mobile Platform

Clicking [Finish] returns us to the Properties View for the DuplicateFlag label field. The
changes are saved in this view and the modification is complete in the Application Project.

At this point, the changes made are complete. We will now publish and test this modification.
the following examples are from the Agentry Test Environment.

When the user adds an OrderItem for an Order, the AddOrderItem wizard is initially
displayed:

Agentry App Development

Agentry App Development 155

When the user makes a selection in the ID field, the Hidden Rule for the currently hidden
DuplicateFlag field, the target path built in the previous procedure is evaluated within the rule
definition. The value displayed in the ID field is compared to the ProductID property in each
OrderItem object in the collection targeted by the AddOrderItem transaction. If a match is
found, the path returns the ProductID of that object instance, which is treated as true. The NOT
function inverts the value within the rule, returning false. A false Hidden Rule value indicates
the field should not be hidden, and the field’s label text is displayed:

Agentry App Development

156 SAP Mobile Platform

The user has now been informed that the product currently selected is already a part of the
Order. If the user then makes another selection, the Hidden Rule, including the target path it
contains, is evaluated again. If no matching OrderItem is found, the DuplicateFlag field is
hidden and the user knows the product can be ordered:

Agentry App Development

Agentry App Development 157

Target Path: Selecting All Nested Collections

Prerequisites

Prior to performing this procedure the following general items must be addressed:

• The object data structure must be defined, including the parent object and the collection
property within that object.

• The functionality described here is only available on Agentry v. 6.0 and later.

The following items and definitions are a part of the example application project used in this
procedure:

• The module object structure is defined as Customers -> Orders -> OrderItems. Each of
these is a collection property of objects and are nested as listed. Customers is a top-level
collection and thus is stored in the module main object.

• The main screen set named ShowCustomers is already defined. It includes a list screen
displaying the top level collection Customers.

Task

In many applications the desired user interface layout includes displaying object top-level
collections and also all instances of objects stored in nested collections regardless of the parent

Agentry App Development

158 SAP Mobile Platform

object instance. As an example, it is desirable to display a list of all work orders in a work
management application on the main screen set of the module. Additionally, a common
change is to also display all of the equipment objects, which are stored in a nested collection of
the work order object, in a single list regardless of the parent work order object.

Prior to version 6.0 of the Agentry Mobile Platform, in order to support this user interface
layout, the equipment objects would need to be retrieved separately from the work orders and
stored in a top-level collection of equipment objects. A list screen or a detail screen containing
one of the list type fields was then defined to display this collection. The challenge with this
approach was that in order to also display a list of equipment objects to the user for a single
work order, one of two approaches was needed.

One option was to have a top-level collection of equipment objects, and a second, nested
collection within the work order object. The issue with this approach was, of course, that the
same data was retrieved twice, that being the objects for both collections. Both would then be
stored on the Agentry Client. This was a waste of resources on the device, in essence doubling
the amount of storage required to store the equipment information. The logic needed to
retrieve all equipment for the work orders assigned to a given user was also sometimes
challenging to write in an efficient manner.

The other option was to store all equipment objects in only the top level collection. To then
display the equipment objects for a given work order, it was necessary to define an include rule
for the list in which these equipment records were displayed that would only return the
equipment objects from the collection for the currently selected work order. This could cause
performance issues if there was a large number of objects stored in the top-level collection of
equipment. Also, if this behavior was desired for what would otherwise be nested collections,
numerous rule definitions were needed, making the maintenance of the application project
more cumbersome.

Fortunately this issue has been addressed in the 6.0 release of Agentry. A new target path
option is now available in the Property Browser that allows for the selection of all objects in all
instances of a given collection property definition. So, building on the previous example of
work orders and equipment, the work order object is defined to contain a collection property
for equipment. There is no top-level equipment collection, only the nested collection in the
work order object. A list can now be defined to display all of the equipment objects found in all
of the collection properties of all work order objects by selecting the proper target path to
return this data.

In the following procedure this behavior is defined for the Mobile Northwind application. A
list screen is added to the module main screen set ShowCustomers, which initially contains a
list screen for the Customers collection. The second list screen to be added will display all
order objects for all customers. The data, however, will only be stored in the nested
collections, meaning a given instance of the Customer object will contain an Orders collection
property of just that customer’s previous orders. The Agentry Client will merge all instances
of the Orders collection from all Customer object instances and display them as a single list in
the list screen.

Agentry App Development

Agentry App Development 159

Note that while a list screen is used in this example, the option to display all nested collection
instances for a given parent object type is available in numerous cases and contexts. This
includes other list controls, such as a list view or list tile view detail screen field, and also in
non-user interface contexts for operations that affect a collection.

1. We begin by creating the list screen (or one of the list type fields for detail screens, where
applicable) and setting the attributes as normal.

2. When setting the Collection attribute, click the ellipses button to the right and select
Browse Properties... from the context menu. This displays the Property Browser. Here,
select the path MainObject Object | Customers (collection of “Customer” Objects) |
“Customer” Object child collections | All “Orders” (combined collection of all
“Order” Objects in all “Customer” Objects):

3. Close the Property Browser and return to the wizard (or Properties View if editing an
existing definition). Complete the definition as normal.

When this procedure is complete a list screen (or other list control) is created that will display
all object instances from all of the selection collection property instances in the parent object
type. In the above example this results in a list screen listing all orders placed by all customers:

Agentry App Development

160 SAP Mobile Platform

Rules: An Introduction

The Rule definition type is a module-level definition within the application project. A rule
defines evaluation logic processed on the Agentry Client. A rule is evaluated by some other
definition that calls or references it. The rule will return a single value to the caller. This value
is then used by the referencing definition for its own purposes. The caller of the rule sets the
rule’s context. Rules are made up of data terms and function terms.

The rule definition is the most complex of the definitions within the application project. Its
overall purpose is to perform involved logical evaluation and to then return a single value
based on or resulting from that evaluation. Within the application project there are dozens of
attributes that can reference a rule definition. The uses for rules are varied and range from
dynamically setting display values, to enforcing business logic, to enabling or disabling
functionality based on some condition.

There are several concepts related to rule definitions that are necessary to understand before
defining rules. These include:

• Components of a Rule’s Structure
• Context of Rule Evaluation
• Rule Function Terms
• Rule Evaluation at Run-Time

Agentry App Development

Agentry App Development 161

Components of a Rule’s Structure
A rule is a definition within the application project and, as such, does contain a handful of
attributes. Specifically, each rule has a name and a group. The name uniquely identifies the
rule within the module. The group is an application project-specific value used to organize
rules.

The real definition of a rule, however, is contained in its Structure. The structure of a rule is the
encapsulation of the logic to be evaluated at run-time. This logic then determines what the rule
ultimately returns to the definition that called the rule. The components of a rule’s structure are
referred to as Rule Terms. There are in general two types of terms that make up a rule. These
are Function Terms and Data Terms. How these terms are then organized within the rule
definition provides the overall structure of the rule; i.e., its evaluation logic.

Function terms provide specific processing or logic performed during the rule evaluation.
Most functions take one or more arguments, or “parameters” that provide values to be
processed by the function. The function itself will then return a value to its caller based on the
value of its parameters. A function’s parameters can include both the return value from other
functions and rule data terms.

Data terms are any term that is not a function and that provide data values processed by
functions within the rule. There are several different sources for a data term, including
properties, globals, actions, screen sets, and constant values set within the rule structure.

Context of Rule Evaluation
The processing of a rule definition on the Agentry Client is referred to as “rule evaluation.”
This evaluation is always performed in some context based on the definition attribute for
which the rule is being evaluated, and the data type expected to be returned by the rule. The
context of a rule’s evaluation will affect what values are in scope for that evaluation and the
overall behavior of the rule and its functions.

This behavior is driven by the data type specified by the context of the rule evaluation. A given
rule is expected to return a specific data type based on the context in which it is evaluated. The
rule will always return a value in that data type. If a caller of a rule expects a string, the rule will
return a value with a data type of string. Within the rule, function terms have a similar
behavior. Functions will always return a value in the data type asked for by whoever called the
function. This caller will either be another function, or the caller of the rule.

The impact of a rule’s context on the data type of its return value, as well as the impact of a
function’s context on its return value’s data type, is one that is important in understanding the
overall evaluation processing of a rule. Most importantly, it is necessary to understand that not
all functions support all return types. If a function is asked for a value in a data type it does not
support, it will return a null value in the data type for which it has been asked. It is therefore
important to have a clear understanding of both the context in which a function is called, and
whether or not that function supports the return type dictated by that context.

Agentry App Development

162 SAP Mobile Platform

Context will also impact what definitions can call a given rule. Rules are normally defined in
the context in which they will be evaluated. However, as with most definitions, rules can be
referenced by more than one caller. For rules, the data terms referenced by the rule,
specifically properties must be available in all contexts in which the rule will be evaluated. A
property will be referenced within the rule’s structure via a target path. This path must be one
that is valid in every context in which the rule is evaluated. If it is not, the rule will return a null
value for that property. This is likely to produce unexpected return values from the rule.

Rule Function Terms
Rule function terms, or simply rule functions, are the terms that provide the overall processing
of a rule. Each rule has an entry point, which is the term that will return the value to the rule that
is then returned to the caller of the rule. The simplest rule definition is one for which this entry
point is set to a data term. However, such rules are uncommon as there are few situations in
which it is necessary to return a value such as this using a rule.

In the majority of rule definitions, the rule’s entry point is a function call. Most functions take
parameters. The parameters to a function provide the values the function will process or
manipulate in order to produce a value to be returned by that function. This is similar to
functions or methods in other languages a developer is familiar with.

Where rule functions are different is in their dealings with data types. The context in which a
function is called sets the data type for that function call. A given function may support one or
more data types, referred to as the function’s “supported return types.” If a function does not
support the data type dictated by the context, the function will return the null equivalent for
that data type.

The context of a function call can also impact the behavior of the function’s processing. This
impact can include the data type of the function’s parameters, as well as how those parameters
are processed by the function. Many functions will take parameters matching the data type of
the context in which they are called. These same functions will support multiple return types.
This means that the function can take parameters of one data type in one context and another
data type in another context.

Rule Evaluation at Run-Time
A rule is evaluated at run time on the Agentry Client when the definition referencing the rule
calls it. Rules are a purely client-side definition, meaning they only directly impact the
behavior of the client application. Rules have no effect on the behavior of the Agentry Server
or on communications between Agentry Client and Agentry Server.

When the rule is called is dependent on the type of definition referencing the rule. Rules
evaluated to set the label of a button will be called when the parent screen for that button is
displayed. Initial value rules to initialize transaction properties will be evaluated when the
transaction is instantiated, or possibly when the transaction is applied, depending on the
definition of the property’s initialization attributes. Other rule uses will result in different
events resulting in a rule being evaluated.

Agentry App Development

Agentry App Development 163

The structure of the rule dictates the behavior of the evaluation. This structure is represented in
a tree control in the Rule Editor within the Agentry Editor. Following is an example of this
structure for a rule that creates an ID value for a new object instance on the Agentry Client:

This example is taken from the rule editor and is one of the components of that tool provided to
developers for the purpose of defining a rule. In this example, the rule itself is represented by
the root node of the tree control, which is named InitialCustomerID. As the only child
node to this root is a function call to the function CONCATENATE. This function
concatenates two or more string values, returning the result. The strings to concatenate are
provided as parameters to the function.

In the example provided here the CONCATENATE function takes two parameters. The first is
a constant value containing the text LOCAL_. This second parameter is a call to the function
FROM_INTEGRAL_NUMBER, which is a conversion function that converts integral values
to other data types.

Working down through this tree structure there are other rule terms for functions and data
terms. At run time, this rule will be evaluated beginning with the innermost term. This term
will then return a value to its caller, which will be a function. Each parameter to a function is
evaluated in the order provided. In the above example, then, the first term evaluated is the first
parameter to COUNT, which is a property denoted as :>Current Property. For this rule
this refers to a collection of objects to be counted by the COUNT function. The second
parameter to the COUNT function is then evaluated, which is a call to the function EQSTR.
This function takes another function call as its first parameter, which is the function LEFT.
Due to the nature of the COUNT function, the second parameter that is the EQSTR function

Agentry App Development

164 SAP Mobile Platform

call will be evaluated once for each object within the collection referenced by the target
path :>Current Property. Once COUNT’s evaluation is complete, it will return a value
to SUM, which will add this value to its second parameter, the constant value 1.

This evaluation continues back up to the top level term, which is the CONCATENATE
function. The value returned by the CONCATENATE function will then be the value returned
by the rule to the definition that called the rule.

Rule Context

The context in which a rule is called, as well as the context in which the rule terms are
evaluated within a rule, will have a significant impact on the resulting processing of the rule
and rule terms. The context of a rule definition describes where the rule is being used within
the application at run time. The context is set by the definition referencing the rule within the
application project and that calls the rule at run time. Included in the context of a rule’s usage
are the definition referencing the rule, the data type expected to be returned by the caller of the
rule, data definitions such as objects, transactions, properties, and others that are in scope
when the rule is called and how other data definitions are related to those within the
application’s overall data structure.

In addition to the caller of the rule, each function within the rule definition will also have an
impact on the context, specifically on those rule terms passed to the function as parameters. A
given function can dictate the context of the terms used as its parameters including what data
definitions are in scope and what data type is expected of the term being evaluated as a
function parameter.

The context of a rule and its functions affects the following:
• Return Type - Rule function terms do not have a set return data type. Rather, functions

support one or more data types for their return values. The caller of the function will dictate
which data type is to be returned, and the function will provide a value in that data type. If
the function does not support the data type being asked for, the null equivalent of that data
type is returned by the function.

• Target Paths - Any target paths within a rule are affected by that rule’s context. If the
property of an object is included in a rule, how that property is found and its value returned
is affected by the context of the rule. A rule that contains a reference to an object property
will not likely be one that can be reused for a different object. The target path to the
property will be invalid.

• Rule Function Behavior - Many rule functions will behave differently based on the
context in which the function is called. These differences can include both the data type of
the function’s parameters as well as how the function processes those parameters. Many
functions with numeric parameters will evaluate those parameters as the same data type for
which the function is being asked. A given function, then, can evaluate its parameters as
integral numbers in one context and decimal numbers in another. Other functions may
perform different processing in different contexts based on the data type of each context.

To define the term more precisely, context is the way in which a rule and its terms are called
and that affects the behavior, data types, and target path resolution when that rule is evaluated

Agentry App Development

Agentry App Development 165

at run time. Context plays a role in the evaluation of each term within a rule, including function
terms, data terms , and sub-rule terms.

Rule Data Types

Each term within a rule is evaluated and then returns a value. The value returned by a given
term will be in the data type asked for by the caller of the term. All terms will return a value in
one of the following data types, which are the only data types available within the rule
structure:

• Boolean
• Integral Number
• Decimal Number
• String
• Location (or “GPS Location”)
• Property

This list does not restrict the types of values within the application that may be referenced in
rules. Other data types, such as those found in property definitions, are converted to one of the
above types when the term referencing the property is evaluated. The function terms available
for use within the rule structure will return one or more of the above-listed data types.

Data Type Conversion in Rules
When a data term is evaluated within a rule, it will be asked for one of the data types available
within rules. The native data type of the term’s source may not be one of these six data types.
This is most likely to be true when working with property or global definitions. There are far
more data types for each of these definition types than those for the rule definition.

When a data term is evaluated within a rule and the data type it is asked for is not one of the six
for a rule definition, the value of that term will be converted to one of the rule data types
assuming that data term supports such a conversion.

The following table contains a cross reference of all property data types and rule data types.
Each rule type and property type intersection in the table indicates whether or not the property
type can be converted to the rule data type:

From Property
Data Type To...

Boolean Integral
Number

Decimal
Number

String Loca-
tion

Proper-
ty

Boolean Yes No No Yes* No No

Collection No No No No No Yes

Complex Table Se-
lection

No No No Yes No No

Agentry App Development

166 SAP Mobile Platform

From Property
Data Type To...

Boolean Integral
Number

Decimal
Number

String Loca-
tion

Proper-
ty

Data Table Selec-
tion

No No No Yes No No

Date No Yes* Yes* Yes No No

Date and Time No Yes* Yes* Yes No No

Decimal Number Yes* Yes* Yes Yes No No

Duration No Yes Yes Yes No No

External Data No No No Yes* No No

Identifier No Yes Yes Yes No No

Image No No No No No No

Integral Number Yes* Yes Yes Yes No No

Location No No No No Yes No

Object No No No No No Yes

Signature No No No No No No

String Yes* Yes Yes Yes No No

Time No Yes* Yes* Yes No No

* - This conversion may not be type safe or requires further explanation on the resulting value
from such a conversion. See the description of the rule data type for more information on this
conversion.

Boolean Rule Data Type
The Boolean data type within rules is similar to Booleans in all areas of software development,
containing a value of true or false.

When converting from an integral or decimal number property type to a Boolean rule type a
value of zero is treated as false and a value other than zero is treated as true.

When converting from a string property type to a Boolean rule type, the value of the Boolean
will be set to true if the string value is “true.” Any other string value is treated as false.

Integral Number Rule Data Type
The integral number data type within rules stores whole positive and negative values, or zero.
This is a 32-bit integer value.

When converting from a date property type, or any other data source of type date, to an integral
number rule type the value returned will be the number of days from the epoch date of January

Agentry App Development

Agentry App Development 167

1, 1901. Positive numbers represent the number of days after this date and negative numbers
are dates before it.

When converting from a time property type, or any other time data source, to an integral
number rule type the value returned will be the number of seconds after midnight. This will
always be a positive integer.

When converting from a date and time property type, or any other date and time data source, to
an integral number rule type the value returned will be the number of seconds from the
Agentry epoch date and time of January 1, 1901 12:00:00 am. A positive number represents a
date and time after the epoch date and time, and negative numbers represent a date and time
before.

A decimal number property can be converted to an integral number rule type. However this
conversion is not considered type safe. Any fractional portion within the source decimal
number will be truncated from the resulting integral number.

Decimal Number Rule Data Type
The decimal number rule data type stores numeric values with a fractional portion. This is the
equivalent to a 32-bit floating point decimal number.

When converting from a date property type, or any other data source of type date, to a decimal
number rule type the value returned will be the number of days from the epoch date of January
1, 1901. Positive numbers represent the number of days after this date and negative numbers
are dates before it.

When converting from a time property type, or any other time data source, to a decimal
number rule type the value returned will be the number of seconds after midnight. This will
always be a positive integer.

When converting from a date and time property type, or any other date and time data source, to
a decimal number rule type the value returned will be the number of seconds from the Agentry
epoch date and time of January 1, 1901 12:00:00 am. A positive number represents a date and
time after the epoch date and time, and negative numbers represent a date and time before.

String Rule Data Type
A string rule data type stores one or more unicode characters as a string value.

When converting a Boolean property to a string rule type, the resulting value of the string will
depend on the definition of the Boolean property. The attributes within the Boolean property
True Value and False Value contain the text value returned by that property in a string
context. A data term for a Boolean property evaluated in a string context will then return the
appropriate string depending whether or not the property is set to true or false.

When converting an external data property to a string rule type, the return value will be the full
path and file name for the file referenced by the property. If the property does not reference a
file, an empty string is returned.

Agentry App Development

168 SAP Mobile Platform

Location Rule Data Type
The location rule type stores a value returned from a GPS unit that includes the latitude,
longitude, number of satellites, and precision of the location value. This data type cannot be
converted to other data types within the rule and other data types cannot be converted to a
location.

There are specific rule functions within the System category of rules provided to work with the
Location data type. These include functions for converting two decimal values assumed to be
latitude and longitude coordinates to a location value, as well as those for calculating distances
between two location values, and a function to retrieve a GPS location from the GPS unit for
the client device.

Property Rule Data Type
The property rule data type is unique among the different data types within rules. A property
type is the term applied to any point within the rule where a definition is expected. Certain
functions are provided to allow for searching object collections, or to work with external data
properties. These functions will take one or more parameters of type property and may also
return a value of this type.

Many of the different functions for these types are intended for use with certain types of
definitions within the application. The information for these functions indicate the expected
definition type. The important concept for a property rule type is that what is returned from
such a term is the definition itself. When a target path references a definition for a caller
expecting a property rule type, that definition is returned, not just its value.

Rule Editor Introduction

Rule definitions within an Agentry application project are added to the module and defined
using the Rule Editor. The Rule Editor is a tool used within the Agentry Editor to define the
rule logic. It includes several tools and features to aid in the definition of this logic, including:

• Functions are presented with fields for each parameter to the function, with appropriate
indicators for optional and required parameters, as well as the data type of the parameter.

• On-line help for each rule function term, including short and long descriptions of the
function and descriptions of each function parameter displayed in the Rule Editor for each
item as it is used.

• Test functionality providing the ability to test rules within the rule editor by providing test
data for function parameters and viewing the return from the rule based on such values.

• Real-time rule structure validation and context information for the rule as a whole and each
of its terms.

• Navigation items to make the different rule terms more readily accessible.

Overview of the Rule Editor
Following is an example of the Rule Editor. It displays a simple initial value rule that generates
local ID’s for new object instances created on the Agentry Client.

Agentry App Development

Agentry App Development 169

On the left of this screen there is a list of all items that may be added as rule terms. The various
tabs allow for the selection of actions, functions, globals, properties, screen sets, and sub-
rules. Selecting one of these tabs will then list the items of that type. When functions are
selected a drop down list is displayed to allow the developer to select the function category,
which will list only those functions within that category. There is also the option to list all
functions.

The main center portion of the screen displays the function currently being added or modified.
Included here is the short description of the function, as well as fields for each of the function’s
parameters. Selecting a parameter field will display the description of that parameter above
the parameters list.

To the right of the parameters list are shortcut buttons. These buttons allow for adding the same
terms as the list on the left. When the shortcut button is selected, a menu is displayed with the
items of that type. In addition is a button to include a JavaScript term. This should only be used
with the JAVASCRIPT function and is provided to allow for the entry of JavaScript in a multi-
line editable text box.

Agentry App Development

170 SAP Mobile Platform

Below the list of field parameters is the Rule Test Results section, which may be expanded or
collapsed (expanded in the example). This section can be used to test the results of the rule by
specifying test values for various terms within the rule.

To the right of the screen is the Structure view for the rule. This displays the entire rule
structure. For developers familiar with the rule editor in previous releases of Agentry, this
view presents the rule and allows for the same functionality. Within this structure view, the rule
terms may be added, edited, deleted, or dragged and dropped to different positions within the
structure.

Creating Rule Definitions

To define a new rule definition within the Editor, the Rule Wizard and Rule Editor are used.
The Rule Wizard is displayed to capture the attributes for the new rule definition, including the
name and group. The Rule Editor is displayed next to allow for the definition of the rule’s
structure. This procedure uses an initial value rule for a transaction property as an example.
The same process is followed to define a rule regardless of where it is to be used within the
application.

1. Start the Add Rule Wizard by selecting the Add Rule menu item in the menu displayed for
the attribute to reference the rule definition. This is normally an ellipses button to the right
of the attribute field.

The first screen of the wizard is displayed with a default name and group, based on the
definition referencing the new rule definition:

Agentry App Development

Agentry App Development 171

2. Set the Name and Group attributes as desired for the new rule definition. The Description
field may also be edited. The default text display is based on how the rule is to be used. The
Returns field is read-only and specifies the data type of the value to be returned by the rule
when it is evaluated. Click the [Next >] button to advance to the Rule Editor.

The second screen of the Rule Editor is displayed with the Rule Entry Point selected:

Agentry App Development

172 SAP Mobile Platform

3. To begin defining the rule structure, begin by selecting the field Rule Entry Point. This is
the first term for the new rule definition. Selecting this field will allow for the addition of a
rule term, either a function or a data term. This term’s return value will be the value
returned by the rule at run time.

4. To add a term to the entry point in the rule, select an item from the list of terms on the left.
By default the list displays the available rule functions. In most cases this is a rule function.
Other options include an action, global, property, screen set, or sub rule. To change the list
of terms to select from, select one of the available tabs above the list.

5. If any term is selected other than a function, the rule’s definition is complete, as no other
terms can be added below a data term within the rule’s Structure. If a function is selected
from the list, the editor will display that function in the center of the screen, with fields
listing the function’s parameters. The function name followed by its short description is
shown at the top-center of the screen. Clicking the name of the function, or the arrows to its
right will display the function’s long description.

Agentry App Development

Agentry App Development 173

6. When a parameter field is selected in the Rule Editor the description of that parameter is
displayed. Selecting a field will display the list of terms on the left. Any term that supports
the return type for the parameter may be selected:

Agentry App Development

174 SAP Mobile Platform

7. To add a constant value as a parameter to the function simply type that value in the
parameter field.

Agentry App Development

Agentry App Development 175

8. To add any other term type, select it in one of the lists on the left side by double-clicking it.
If a function is added as a parameter to the current function, that function will then be
displayed in the middle portion of the screen, along with its short description and list of
parameter fields.

Agentry App Development

176 SAP Mobile Platform

9. At this point the process is repeated until the structure of the rule has been defined.

Note the structure view to the right of the rule editor. As functions are added, their position
within the overall rule structure is represented. This structure view can be used in the
definition of the rule as well. Right-clicking on any function in the rule structure displays a
popup menu allowing for the addition of parameters to this functions. The menu also provides
options to replace terms and delete them. Additionally, terms may be dragged and dropped to
different locations within the structure if it is desired to modify the rule in this manner.

Next

Once the rule has been defined it can be tested within the Rule Editor. This can be done before
finishing the Rule Editor, or the developer can return to the definition later and perform any
testing.

Testing Rules in the Rule Editor

The rule editor, in addition to providing the interface to define and edit rule definitions, also
provides tools for testing rule definitions. Within the Rule Editor, below the list of function
parameters, is an expandable frame labeled “Rule Test Results.” Expanding this frame will
display the return value for the rule as currently defined, with certain assumptions made about

Agentry App Development

Agentry App Development 177

return values within the rule. Using this test frame, the developer can select a parameter and
then provide a test value for that parameter. The return value of the rule will then be determined
and displayed, using the new test value.

1. Within the Rule Editor, expand the Rule Test Results frame. Within the Structure view
select the rule function term for which a parameter test value is to be specified. The
function will be displayed in the middle of the screen. Select the parameter for which a test
value is to be entered.

Within the test results pane, fields are displayed for the values returned by the rule, the
currently selected function term, and the currently selected parameter to that function.

2. To change the test value for the selected parameter, click the button to the left of field Rule
within the Rule Test Results frame.

A screen is displayed allowing for the entry of a test value. When entered, the return values
for the function term and the rule will be updated automatically:

Agentry App Development

178 SAP Mobile Platform

3. The Rule field displays the value the rule will return based on the test data entered. The line
below it displays the value returned by the function, again based on the entered test data.
Below these fields is the section where the test data can be entered. The fields displayed
here include all values under the selected term which may be replaced with test data.
Excluded from this list are constant values and object collection properties. Changing any
of the values will automatically update the return value from the selected function term and
the rule as a whole.

The results of entering test data will not affect the rule definition in any way. However, proper
use of the test functionality can significantly improve the stability of the rule before it is
published for development and unit testing. Additionally, areas of logic for which the proper
structure is unclear can be made easier when using the test data to determine if the expected
values are actually returned by the logic within the structure. Note that while this functionality
is a powerful development tool, it is not intended to replace the proper run-time testing that
should be a part of any software development or product implementation project.

Syclo Data Markup Language

When synchronizing data between the mobile application and the back end system, it is
necessary to have access to the mobile application’s data values. This access is provided in
Agentry using the Syclo Data Markup Language, or SDML. The SDML is a markup language
consisting of tags that provide access to the data values of the mobile application.
Additionally, the SDML includes a full set of functions, or function tags, that can be used to
perform logical operations in relation to this values or to drive the overall logic the Agentry
Server will execute against the back end system.

The SDML tags used during synchronization are a part of the text within the scripts for step
definitions defined for SQL Database, HTTP-XML, and File system connection types. Also,
the synchronization components of data tables and complex tables for each of these system
connection types can contain SDML. In addition to SQL Step definitions, other .sql script
files run by the Server may also contain SDML tags. Steps defined for Java Virtual Machine
system connections also include the ability to access SDML tags, but these tags may not be
contained directly in the source code of the Java Steplet files used by these steps.

The Agentry Server will pre-process the script files of steps containing SDML markup. This
processing is referred to as tag expansion. Each tag within the script is expanded, with the
value it represents replacing the tag at the exact position of that tag within the file. Function
tags are expanded with the results of their expansion being placed in the exact position of the

Agentry App Development

Agentry App Development 179

function call within the file. Once the tag expansion has completed, the resulting text is
submitted to the back end system for processing.

The two categories of tags within the SDML are data tags and function tags. Data tags
represent data values available to the script file based on when it is executed. This information
must be known when writing the script in which the SDML will be contained. For step
definitions the values in scope are dictated by the step usage definition running them.
For .sql scripts run by the server, but not a part of the step definition, the values in scope will
vary depending on how that script is used. Certain values are globally available, such as the
user ID as entered by the user to log into the Agentry Client.

Function tags are globally available, with certain exceptions. Function tags provide the
logical, mathematical, string manipulation, and other similar functionality to the SDML.
Function tags can take values passed in as arguments, parameters, or expressions. These
values are processed by the function during tag expansion, with the resulting value of the
function call being placed within the script.

Following is a basic example of a simple SQL statement containing SDML data tags:

SELECT
 A.FIELD1,
 B.FIELD2,
 C.FIELD3,
FROM
 TABLEA A,
 TABLEB B,
 TABLEC C
WHERE
 A.NAME = ‘<<user.agentryID>>’ AND
 A.ACCTNUM = ‘<<object.acctnum>>’ AND
 B.ACCTNUM = A.ACCTNUM AND
 C.ACCTNUM = B.ACCTNUM

In this example, the value <<user.agentryID>> is replaced with the user ID as entered
when the user logged into the Agentry Client. The data tag<<object.acctnum>> will be
replaced with the value of the acctnum property of the object currently being processed.

SDML Syntax and Data Tag Expansion

The SDML is a markup language containing data tags and function tags. The basic syntax for a
tag is to enclose a given tag within the tag markers << >> to denote it as an SDML tag. Within
these tag markers is the name of the tag, as well as any values that may be a part of the tags
expansion processing. Following is the general form of data tag and function tag syntax:

Data Tag

<<parent.tagName.parameter namedParameter="value">>

Function Tag

Agentry App Development

180 SAP Mobile Platform

<<functionName argument "expression" namedParameter="value">>

Named parameters to both functions and data tags have the specific requirement that the
parameter name, equal sign, and the value can not be separated by any white space:

Correct Parameter Syntax

<<functionName namedPrameter="value">>

Incorrect Parameter Syntax

<<functionName namedParameter = "value">>

Depending on the nature of the SDML logic and processing needed, it is common for one tag
to be nested within another. When this is the case the end markers for such tags may be
adjacent. In this situation at least one white space character must be used to separate the two
end markers. This may be a space, tab, or a newline:

Incorrect

>>>>

Single Space

>> >>

Tab

>> >>

Newline

>>
>>

Data Tag Syntax
Values within a given tag will depend upon a number of different factors. Data tags generally
take one of the following forms:

<<parent.tagName namedParameter=value>>
<<parent.tagName.parameter>>

The parameter and named parameter for a given data tag will depend on the data type of that
tag. Some may have no parameters or named parameters, others may support one or both. A
parameter generally provides access to different contents of the data tag’s value, such as raw or
string. A named parameter generally provides formatting instructions for how the value
should appear when the data tag is expanded.

Agentry App Development

Agentry App Development 181

The value for a named parameter may be a hard coded value or another tag within the SDML.
When the value is plain text, it must be enclosed in double quotes. When the value to the
parameter is another SDML tag it cannot be enclosed in double quotes.

Parameter from Plain Text

<<parent.tagName namedPrameter="value">>

Parameter From Data Tag

<<parent.tagName namedParameter=<<tagName>> >>

Function Tag Syntax
Function tags within the SDML take the general form:

<<functionTag argument “expression” namedParameter=value>>

A given function may take multiple arguments, expressions, and/or named parameters, or it
may not take any of these depending on that function’s prototype and purpose. Separating
each of these values to the function is one or more white space characters.

Arguments should be enclosed in tag markers if a data tag is used, unless specified otherwise
for a given function. Certain functions, notably <<if...>>, <<foreach...>>, and
<<case...>> specify that if the first argument is a data tag it cannot be enclosed in tag
markers, but rather should only be the name of the data tag. If the argument is a hard coded
value it should be enclosed in double quotes.

Expressions are always enclosed in double quotes, regardless of whether or not they contain
SDML tags. The contents of a given expression can span multiple lines, which is often the case
as expressions tend to be longer text values.

The value for the named parameter can be a data tag, in which case the tag should be enclosed
in tag markers. If the value is a hard coded value it must be enclosed in double quotes. The
value for a named parameter can contain white space within the double quotes and can be a
combination of SDML tags and plain text.

These values for a function tag can span multiple lines, with the opening marker preceding the
function name and the closing marker somewhere after all specified values for the function, as
in:

<<functionTag
 argument
 “expression”
 namedParameter=value
>>

When arguments or named parameters contain function or data tags, those tags will be
expanded before being passed to the function for processing. Expressions containing tags will
not be processed until the function returns that expression.

Agentry App Development

182 SAP Mobile Platform

SDML Expansion
At run time, when the Agentry Server processes a script file the tags it contains are parsed and
expanded. This process is called SDML expansion and occurs for all scripts not using a Java
Virtual Machine system connection that are run by the Server.

Tags are expanded in a top-down, inside-out order. This means that each line of a script is
processed starting with the first in the file and working in order to the last line. When a line is
processed, the data tags are expanded from the innermost tag to the outermost one. Consider
the following example:

3.....2....1
1a................... 4

<<if <<ne <<object.acctnum>> <<parent.acctnum>> >> "not equal" >>

Ignore the numerical notations for the moment, as they are for reference purposes only and not
a part of the SDML text. This line says that if the values of the acctnum properties in the
object and the parent of the object are not equal to return the string “not equal”. This begins
with the <<if...>> function. The single argument to this function is <<ne...>>, which
is another function whose name is short for “not equal”. The <<ne...>> function takes two
arguments that are compared for equality. The two arguments in the example are both data tags
for property values within objects.

In this case, the expansion goes as follows. First, the two arguments, noted as 1 and 1a, are
expanded. These are data tags, so the tags are replaced with the values of the two acctnum
properties in the object being processed and the parent of that object. If the object property
acctnum has a value of 1234 and the parent has a value of 1122, the line would expand as
follows:

<<if <<ne 1234 1122 >> "not equal" >>

Next, the <<ne...>> function is expanded. The two values of 1234 and 1122 are passed as
arguments to this function. The function then compares the two values and determines they are
not equal. The line would now then appear as:<<if true "not equal" >>
The <<if...>> function, which provides if-then-else logic, takes the return value from the
<<ne...>> function value as an argument. The "not equal" text is the expression that is
returned when the argument is true. In the example provided the resulting text placed at the
point of the <<if...>> function call will be the text: not equal.

SDML Syntax Quick Reference
Following is a quick reference of the basic syntax rules for the Syclo Data Markup Language:

Agentry App Development

Agentry App Development 183

• Function and data tags are enclosed in the tag markers <<tagname>>. Named
parameters to both function and data tags, as well as function arguments and expressions
are enclosed within the same set of tag markers.

• Hard coded values passed to parameters or arguments are enclosed in double quotes. Data
or function tags are enclosed in tag markers and should never be enclosed in quotes.

• Expressions are always enclosed in double quotes, whether or not they contain tags. Tags
within an expression are also enclosed in tag markers.

• Named parameters for both function and data tags take the form of a key and value pair
separated by an equal sign (=). No white space can exist between the named parameter,
equal sign, and the beginning of the value for the parameter. The parameter itself can
contain white space and, when it does it should be enclosed in double quotes.

• Adjacent end tag markers must be separated by at least one white space character.
Excluding this character will result in an error during tag expansion.

• Function tags can span multiple lines in a script file. This is commonly the case with
expressions.

Agentry Data Definitions Overview

In any application the data structures and the processes to synchronize the production data are
the foundation of the functionality. Within an Agentry application project there are three
definition types intended to define data stored on the Client: objects, complex tables and data
tables. All three define the data for the application and also include components for
synchronizing data with the back end system.

Objects exist at the module level and complex and data tables are defined at the application
level. Complex tables and data tables are defined to store lists of records on the Client and
normally contain values displayed to the users in lists or other controls from which they can
make selections. Objects store the production data for modules and normally encapsulate
some business entity.

While objects, complex tables and data tables are the main data definitions, there are others
related to the storage and synchronization of data on the Client. The first of these are object
properties. An object property defines a single piece of data for the parent object. Note that
there are also transaction properties, which are similar to object properties but are defined
within a transaction. The discussion of properties here will focus on object properties.

Other definitions related to production data are those defined to synchronize the data. The
primary definition for data synchronization is the step definition. A step defines a piece of
processing to be performed by the Agentry Server with a specific back end system. Steps are
used by other definitions that are processed during data synchronization. This allows for
reusability as well as the multi-system support provided by Agentry. Steps are defined to
synchronize data stored in objects and transactions.

The synchronization process for complex and data tables is defined within the definitions
themselves. Both complex tables and data tables contain components responsible for the
downstream, or back end-to-client data synchronization.

Agentry App Development

184 SAP Mobile Platform

Data Synchronization Overview: The Exchange Data Model

When developing mobile software solutions, one of the primary considerations is the most
efficient way in which to synchronize production data. While all client-server systems must
account for this, mobile software development presents its own set of challenges, which stem
from the almost universal truth that, at some point, mobile users will need to work in a
disconnected environment.

Users will not always be connected, and in many cases will spend most of their day without
network connectivity. Therefore, when users do synchronize their clients, information must
be resolved concerning what data a user needs. It can be extremely inefficient to attempt to
retrieve all production data during synchronization. Most production applications contain
large amounts of data stored on the client devices and attempting to retrieve everything during
synchronization can result in long delays during the synchronization process. This is
unnecessary in most environments, as much of the production data stored on the client is likely
to still be current and accurate as compared to the data in the back end system.

An Agentry application project accounts for this within its structure. The architecture of all
synchronization components allows the developer to be far more selective about what data
needs to be retrieved during the synchronization process. The method recommended by Syclo
is called the Exchange Data Model.

Exchange data is the term used to refer to information about what production data the client
has and when it was last retrieved, as well as the data contained in the back end system and
when it was last modified. With this information available the developer can implement
synchronization processes that only retrieve information that has been modified since the last
time a client synchronized with the Server. Any unchanged data is not retrieved. This model
will result in quicker and more efficient synchronization for users, as well as reducing the
amount of resources needed by the system as a whole during the synchronization process. All
data definition types and their related synchronization components allow for and are intended
to be used in an exchange data model.

The use of the exchange data model requires certain information be available during
synchronization. This information can include:

• The date and time when an object, complex table record, or data table was last downloaded
to the Client.

• The date and time when the data in the back end system was added or last modified.

For the date and time of data retrieval on the clients, the synchronization processing within
Agentry provides the ability to retrieve, store and access the client-side information about
when data was last retrieved. Objects, complex tables and data tables all have the ability to
store what is called the “last update” value that represents the date and time data was retrieved.

For date and time values related to changes made on the back end system, mechanisms must
exist or be added for the mobile application to track changes to data that occur in between
users’ synchronizations.

Agentry App Development

Agentry App Development 185

During synchronization the exchange data about which data has been retrieved, changed, and
added, and when those events occurred is put to use according to the following general
process. Note that this applies only to downstream synchronization:

1. The Agentry Client sends the information to the Agentry Server about what data it
currently contains and when it was retrieved. This includes unique identifiers and the last
update values for each data instance.

2. The Agentry Server processes the client-side exchange information according to the
synchronization definitions. This can involve adding the data to back end objects created
specifically for the mobile data synchronization, or by using existing back end objects that
suit these purposes.

3. The Agentry Server next processes the synchronization definitions that determine what
has changed in the back end system since the date and time for the client-side data.
Comparisons are made between the client’s date and time values and the date and time
values in the back end system that reflect when the back end data was last affected. Items
with date and time values more recent than matching items on the client, or items added to
the back end not currently residing on the client, are flagged for retrieval. Alternately, and
depending on the synchronization methods specific to the type of back end system, the
comparison and retrieval may be accomplished at the same time. This data is retrieved
using synchronization definitions and returned to the Agentry Server.

4. Data that should be removed from the client is determined separately from data that should
replace or be added to the client. Definition types within the Agentry architecture exist to
specifically look for and return items that should be removed from the client.

5. The Agentry Server builds object instances, or complex table and data table records based
on data returned to it. These instances are then sent to the client to be stored in their
respective structures.

6. Data to be removed from the client is denoted via it’s unique identifiers. The ID’s are sent
by the Agentry Server to the client. The messaging sent includes instruction to the client to
remove the denoted item from its respective data structure. This includes deleting object
instances or removing complex table records. Note that individual records cannot be
deleted from data tables, for reasons explained in the discussions specific to this definition
type.

The specific methods and mechanisms for accomplishing the above tasks will differ as a result
of a combination of different factors that include the type of production data being
synchronized (objects, complex tables, or data tables), the type of back end system in use, the
capabilities of a specific back end system, the specific needs of a given application, and the
specific needs of an implementation of a given application.

Regardless of the technical details of how the above steps are accomplished, the following
summary of the exchange data model holds true. Begin by determining what the client has and
when it received it. Next use this information to determine what is different in the back end
system and when it was changed. Finally, retrieve only the data which is different on the back
end. Any other data in the back end system can be ignored as it has not been modified and
therefore is accurate and still current on the client.

Agentry App Development

186 SAP Mobile Platform

Data Synchronization: Data Filtering Overview

When developing a mobile application the concept of data filtering should always be at the
forefront of the developer’s mind during all phases of the development life-cycle. Data
filtering is the term used to refer to filtering the data provided to the mobile user so that
unnecessary and unneeded data is not retrieved. When the proper data is retrieved for the user
and unneeded data is excluded, the application ultimately provided will be far easier for the
end users, and will operate more efficiently during synchronization and client-side operations.

The need for data filtering in mobile software development is driven by two main factors. First,
while mobile devices continue to become more powerful and more sophisticated, they do not
have the same capabilities as a traditional personal computer or work station. Attempts to store
large amounts of data on such devices can result in, at the least, poor performance of the
application, and at worst the client device can become overwhelmed and not function at all.

The second factor in the need for data filtering is the end user. Many users of mobile software
need only certain information concerning a particular business entity. Additional information
can result in a cluttered user interface as well as confusion on the part of the end users.

For these reasons as well as others the concept of data filtering can and should be applied to all
areas of the application design and development process as it relates to the data structures.

Overall there are many areas in which data filtering should be applied and there are often many
options available on how to do this. Which is used will depend on the type of data and what
information is available about the data in the back end system. It is important to remember that
the client device is not a permanent data store for the enterprise system in use. Rather, it is both
a snapshot and a subset of data from that enterprise system.

Object Data Filtering: Property Definitions
Objects contain the child definition property. A property stores a single value for the object. A
given object will contain multiple properties. When designing an object and the properties it
will contain, it is important to consider what data the user actually needs.

Using a database back end system as an example, where an object is defined to contain data
from a given table, the developer should always consider what data the end user will need from
that table. Many database tables in a back end system can contain dozens or more columns.
This data is necessary for the records within the table and is likely related to multiple
processes. Examples of these processes and needs can include performance reporting,
accounting requirements, change tracking, and auditing. However, much of this data is not
needed by the end user. It will not be displayed to them nor captured from them on the Client.
Furthermore it is not needed during downstream or upstream synchronization.

Because of this, there is no need to retrieve this data from the back end system. Though a given
value may be small in size for a particular object, remember that it is likely that there will be
dozens or hundreds of instances of a given object stored on the Client at a given time. As a
result, a single unneeded value for an object can result in significant wasted resources on the

Agentry App Development

Agentry App Development 187

Client for storage, as well as unnecessary bandwidth and processing being consumed during
synchronization. These same statements can be made about any object for any type of back
end system.

Complex Table Data Filtering: Field Definitions
Furthermore, complex tables should also be designed and developed with data filtering in
mind. Complex tables contain field definitions, with each record in the table containing the
fields defined for the table. Like properties, a single unneeded complex table field can result in
significant wasted resources on the client device. With complex tables, however, the resources
wasted can be even more detrimental than with objects. While there may be hundreds of
instances of a given object stored on the Client, there can be thousands of complex table
records.

User-Specific Data and Data Filtering
Taking this a step further, entire object instances or complex table records may be excluded
from the Client if the proper design and development considerations are applied as they relate
to data filtering. Whenever possible the developer should consider what data can be user
specific. For objects this tends to be the case most of the time. Objects are usually defined to
encapsulate business entities in the back end system that are user specific. A work order is
assigned to a specific technician. A customer is assigned to a single account executive. These
are two examples of what would normally be object definitions in a mobile application.

Complex tables tend to store data that is applicable to multiple users. Complex tables may
contain records of inventory items available to be ordered by any customer, or assets for the
company that one of many technicians may work with. However, there are still ways to filter
this data. First, in some cases the data of a complex table may be user specific. In this case the
data can easily be filtered for a given user during synchronization.

In other more common situations, the data is not user specific. In these cases the developer
should look for other ways to partition data. Some suggestions can include the location a user
may work in can mean certain records will never be needed. If a technician works in location
A, then the complex table containing assets need only contain the assets that reside in location
A. Similarly inventory items customers may order can also be filtered. If an account manager
services customers in a specific industry or of a certain type, there may be items within the
inventory that those customers will not order. Assuming the inventory information can be
cross referenced with an industry or customer type, records can be excluded from the complex
table containing that data on the Client.

Object Development Concepts and Considerations

An object definition encapsulates a business entity and its related data. An object’s child
property definitions give that object its characteristics. An object can also define how its data is
retrieved from the back end system. The object definition is the primary data definition for
modules. At run time objects are instantiated during synchronization by the Agentry Server,

Agentry App Development

188 SAP Mobile Platform

which then transmits those instances to the Client. Object instances can also be created at run
time on the Agentry Client via add transactions.

The object definition contains only a few attributes related to its identifying value, or “key
property,” and the value displayed for the object during synchronization. The heart of an
object definition lies in its properties. An object property defines a single piece of data for the
parent object. The definition of an object property should always match the aspects and
behaviors of the back end value it is created to store. This includes data type, data sizes, and the
name.

The name of the object property should match the name of the back end value whenever
possible. The Server matches the values returned by any back end steps to the properties
within the object by matching the names. Any value returned from the back end whose identity
does not match the name of a property in the object is discarded. Any object property that does
not have a corresponding value in the return set from the back end is initialized to null upon
object instantiation.

If it is not possible to match the property name with the back end value’s identifier, the value
should be aliased in some manner within the return set. As an example, in SQL select
statements a field can be aliased using the AS keyword, as in Field1 AS Name1. In Java
the data structure containing return values can be named to match the properties.

The definition of an object should also include properties that may be needed on the Client side
only. These values may be used for client-side processing or behaviors. In this case the values
of these properties will be initialized to null when objects are instantiated during
synchronization. They can be set via transactions on the client at run time.

Object instances are stored on the Client in one of two ways. First, a single instance of an
object can exist as a property of another object. Second, and far more common, is to store
objects in a collection property.

Objects are synchronized with the back end system via the module level definitions fetch and
push. A fetch defines how the Agentry Server synchronizes data for a target object collection
by referencing the step definitions to perform this task. A fetch is processed during
synchronization between the Client and Server, with the results being the retrieval of new
object instances for the target collection, replacement of existing objects within the collection,
and the removal of objects from the collection. All of these determinations are based on the
definition of the fetch and its child step usage definitions.

A push defines when it is necessary to push an object in real time from the back end system to
the Agentry Client and how that object’s data is retrieved. Pushes are used only when a
constant network connection can be maintained between the Client and Server. Like a fetch, a
push targets an object collection property and will synchronize object instances within that
collection. Objects can be added, replaced, or removed from the collection based on push
processing. Differing from a fetch, pushes are run asynchronisly by the Server and pushing
objects to the Client when changes to the back end system are made.

Agentry App Development

Agentry App Development 189

Another definition type involved in synchronizing objects are object read steps. An object read
step references a step definition run to retrieve data from a back end system to populate an
object's properties. When the synchronization process is defined using the exchange data
model, it is often the case that the fetch is defined to determine what objects do and do not need
to be retrieved, and the read steps are then run to perform the actual data retrieval. This is a
common practice but not a requirement of the development. The fetch can be defined to
accomplish both tasks without involvement of the object read steps. Likewise, push
processing can involve running the read steps of an object to retrieve the object data from the
back end system.

Regardless of whether a push or fetch is used, and also whether or not read steps are involved
in the process, object data synchronization includes both the object collection targeted by the
fetch or push, as well as any collection properties that are descendents of the objects within the
targeted collection. Any collection property that is not defined within the main object, but
rather as a descendent of the main object, is termed a “nested collection.” Nested collections
are objects whose data is considered a part of the parent and ancestor objects within the
module data structure. Therefore the synchronization process for a collection includes any
nested collections within it.

Object Properties Concepts and Considerations

An object property definition defines a single piece of data and its type. A property can also
define minimum and maximum values, a default, or “special value” and other data-related
behaviors. The specific data-related behaviors will vary depending on the data type of the
property. The properties of an object give that object its characteristics. A property is the
equivalent to a variable in other development platforms or languages.

When designing and developing an object’s properties, the properties should represent all of
the values to be retrieved from the back end system plus those that may be necessary for
client-side processing. Examples of this latter group include state-related values or other data
that will not be retrieved from or updated to the back end, but that may be needed on the
Client.

Property Data Typing
When data typing your properties, the primary driving factor in the decision should be the data
type of the back end value the property is to store. However, it is not a requirement that the data
type of the object property match the data type of the back end value. The Agentry Server will
always attempt to convert data retrieved from the back end system to the data type of the
property definition. Therefore, if a value stored as one data type in the back end system, such
as an integer, needs to be stored and used as a different data type on the Client, such as a string,
it is completely valid to create a string property. Be aware, however, that when data types differ
in this manner that the rules of safe data conversion still apply. For example the conversion of a
string to an integer is not considered type safe and can result in undesirable behavior.

Agentry App Development

190 SAP Mobile Platform

Object Key Property
When designing an object’s properties you must always include a “key property” that
uniquely identifies each instance of the object. Any property definition of almost any data type
within the object can be designated as the key property. In practice the key property should be
the value that uniquely identifies the business entity in the back end system. Examples include
the work order number or customer ID, which would be values that would be defined to be the
key property. The object definition contains an attribute that specifies which of its properties is
the key property. Therefore the property must first be defined, and the object then edited to
specify which property is the key property.

The key property is then how instances of the object will be uniquely identified by the Agentry
Client and the Agentry Server. Only one object instance with a specific key property value can
exist within a given collection property. Furthermore, the key property is also how the Server
identifies the object instances within the collection for synchronization purposes. If a
collection property is created for an object definition, that object must have a selected key
property. The Agentry Editor will not allow the collection definition to be created for an object
that does not have a key property.

Property Names and Data Syn chronization
The name attribute of the property should be set to the same name as it is identified by in the
back end system. This plays an important part in synchronization, as the Server will look to
how data values are identified in the back end system and match those values with properties
of the same name. In addition to this requirement, following the back end names also makes
future maintenance of the application easier.

If it is not possible to name a property to match the back end value, the identity of that value
should be aliased in some manner during retrieval. For example the AS (SELECT Field1
AS Name1) keyword in SQL allows for this. In a Java back end the data returned can be
renamed using the return data structure that stores the data for objects, as the members of that
structure can be named to match the property definitions, with their values assigned to
variables with different names from the back end system.

Object Data Structure Concepts

The object definition is the primary data definition for a module. All production data for the
module is stored in instances of the object definitions created in the application project. The
definition of the objects includes not only the data to be stored within each object type, but also
the relationship between the objects within the module. These relationships are hierarchical in
nature, with one object type the parent to another.

The Module Main Object
The beginning point of a module’s data structure is the module’s MainObject definition. This
object is a part of all modules, added automatically by the Agentry Editor whenever a new

Agentry App Development

Agentry App Development 191

module definition is created. The intended purpose of the MainObject is to contain the top-
level object collection property or properties, as well as other module-level data.

The Module’s “Primary” Object
The primary object of the module is the one around which most or all of the functionality
within the module revolves. This includes both client-side behavior and data synchronization.
It is important to note that there is no setting or attribute within the application structure that
indicates an object is the primary object. Rather, this is a logical term reflective of the design of
the module, its objects, and its functionality and behaviors. Examples can include a work order
object for a work management module, or a customer object for a customer relations module.
When a new module is defined, the Editor will prompt you to create an object definition as
well as a collection property within the MainObject. The object created at this point should be
the module’s primary object.

Object Collections - Parent-Child Objects
Other object definitions can and likely will exist within the module. These definitions are then
associated with the primary object as child objects. This is accomplished by defining
collection properties. An object is comprised of properties that define the data the object
stores. These properties are of various data types, one of which is collection. A collection can
store multiple instances of an object definition. When one object contains a collection of other
objects, those objects are said to be child objects of the first.

The reason for defining a collection within a parent object is to indicate that those child objects
are data that is a part of the parent, but that are also themselves business entities in need of
encapsulation. Examples of this can include the two object definitions work order and job plan
step. For a work management module, the work order object is likely to be the primary object.
Instances of the work order object would then be stored in a collection property of the module
main object. Instances of the job plan step object would then be stored in a collection property
of the work order object. The job plan step objects within a given work order object would be
those representing the steps for that work order’s job plan. Each work order instance then has
its own collection of job plan step objects specific to that work order.

This structure can continue to several levels deep within the application structure. As an
example a job plan step may require certain parts are used. The job plan step object, then, could
contain a collection property of a third object type created to encapsulate a part. In practice it is
usually not necessary to create an object hierarchy within a module that is more than three or
four levels deep. The term nested collection is commonly used to refer to any collection
property that is not an immediate child of the module’s main object. In the preceding
examples, the work orders collection would be a top-level collection, and the job plan steps
collection would be a nested collection.

When working with collections it is important to keep in mind that the collection is a property
of the object. This means the object instances stored within a collection are data that make up
that parent object, just as any other property data type. Also, a collection property itself is not
an object. When working with other definition types that affect objects and/or collections, be
sure to note this distinction. An attribute, argument, or definition that is expecting an object

Agentry App Development

192 SAP Mobile Platform

will not accept an object collection property. Likewise an object collection property cannot be
used where a single object instance is expected.

Object Data Synchronization: Fetches

The synchronization of object data is handled by fetch and push definitions, with the fetch
being the primary definition for this purpose. A fetch defines how the Agentry Server
synchronizes data for a target object collection. This object collection must be a top-level
collection within the module. A fetch is made up of steps that retrieve the data for the
collection from the back end system. These steps are grouped into three categories within the
Fetch definition: Client Exchange Steps, Server Exchange Steps, and Removal Steps. A fetch
may also include properties to store data captured from the user and validation rules for those
property values. A fetch may also contain property and validation rule definitions, though this
is a less common implementation option for fetches.

General Fetch Processing
During a transmit the Server processes all main fetches within the application. This is the
primary distinction between main and non-main fetches. If a fetch is not a main fetch it will
only be processed by the Server if the transmit step within the action on the client lists it as one
to be processed. Regardless of whether or not a fetch is a main fetch, the behavior of a given
fetch is the same when it is processed by the Agentry Server.

A part of fetch processing also includes a separate definition type, object read steps. The fetch
targets an object collection within the module. The object definition can include object read
steps. If the object type within the collection targeted by the fetch contains read steps, those
steps are processed as the last part of the fetch processing. Note that read steps in any nested
collection of the target collection of the fetch are not processed.

The order of processing the step usage definitions involved in fetch processing is:

1. Client Exchange Steps
2. Server Exchange Steps
3. Removal Steps
4. Object Read Steps

Each of these definition types references a back end step definition within the same module as
the fetch. A fetch can contain multiple definitions of each of these types, with the order of
execution defined within a given type defined by the developer.

The fetches of an application are the last synchronization definitions processed during
transmit. For applications with multiple fetch definitions, the order in which each fetch is
processed is undefined. Therefore each fetch definition should be defined to operate
independently of any others within a given application.

Object Retrieval and Replacement Processing
When a fetch is processed during transmit, any step executed by a client exchange, server
exchange, or object read step can return data to create new objects or replace existing objects.
This process involves a step returning data from the back end system to the Agentry Server.

Agentry App Development

Agentry App Development 193

The values of this data are named or identified according to the logic within the step. For
example, a SQL step containing a select statement will return a data set of records. Each
column in the return set is identified according to either the name of the database table from
which it was retrieved, or according to any column alias for the values contained in the SQL
statement. The Agentry Server then processes this data according to the following procedure:

1. During the transmit the Client provides the Server with the key property and last update
value of any object instances currently contained in the object collection targeted by the
fetch. These values are stored in an object collection in the Server’s memory that mirrors
the collection on the Client. This occurs before the steps of the fetch are processed.

2. When a step within the fetch returns data, a value with the same name as the key property of
the object is searched for in the return set. If such a value is not found then the data is
discarded, as the Server cannot determine to which object the data belongs.

3. When the key property value is found, the Server compares this value with the key
properties of any object instances it currently contains in the object collection.
a. If a match is found, any other data within the record is processed. Each value identified

with the same name as property in the object is assigned to that matching property. If
the object property contained a value prior to this processing, it is overwritten. This is
object replacement processing.

b. If a match between the return set’s key property and an existing object instance, a new
object is instantiated by the Server and stored in the collection. The remaining values in
within the record is processed, with each value identified with the same name as a
property in the object assigned to that matching property. Any properties within the
object that do not have a value in the return set are initialized to null. Any values in the
return set that do not have a match in the object properties are discarded.

4. This process repeats for each step executed as a part of fetch processing that returns data.
When the fetch step usage definitions and object read steps have all been executed, the
Server sends down any new or replaced objects to be stored in the object collection on the
Client.

Object Removal Processing
In addition to retrieving object data, the fetch processing can also result in the removal objects
from the Client. When a removal step returns a value identified as the key property for the
object type being synchronized, the Server will send this value to the Client with the indication
that it should be removed from the collection property. The removal step should normally only
ever return the key property value, as any other data returned is not used by the Server and
therefore unnecessary.

When an object is deleted from the Client it is important to keep in mind that the objects stored
in any nested collections are also removed. Remember that these child objects are data for the
parent object and, just as any other property would, they are removed with the parent object.

The order of processing during a transmit is such that, if an object is to be removed as the result
of fetch processing, any data captured on the client in transaction definitions targeting the
fetch will have already been processed. No data captured on the client is lost as a result of a

Agentry App Development

194 SAP Mobile Platform

fetch removing the object, as the transaction will have already been processed and,
presumably, updated any captured values to the back end system.

Object Read Step Concepts

The object read step definition is a child to the object definition type. An object read step
references a step definition within the same module. Its purpose is to retrieve data for instances
of the object from the back end system. The steps are processed by the Agentry Server during a
transmit. The step being referenced can be executed once per transmit or iteratively.

Multiple object read steps can be run to retrieve the data for an object. During synchronization
the Agentry Server will create instances of the object after the first set of return data that
contains values for the object key property. Subsequent steps that return data for the object
must also include the key property to indicate which object the data belongs with. These values
will then be used to set the property values of the object. Any object read step can return any
property value for the parent object type. A single step can return all of the data or multiple
steps can be run to retrieve all of the data. This processing is defined by the developer and the
nature of back end system and how data can be retrieved will dictate the proper way to retrieve
the data.

Object Read Steps and Back End Steps
The two key items to keep in mind when defining an object read step are that, first, the step
definition being executed is separate from the object read step. The step being executed is a
module level definition containing the processing logic desired. The step definition must be
defined first, and then the object read step can be defined to run it. Depending on the step type
this can be a SQL statement, Java logic, or HTTP-XML calls. The object read step references
the step definition and specifies when and why it should be run. It does not define the actual
processing or the back end system to use. This separation of the logic and the context is an
intentional part of the overall architecture that allows for multiple steps defined for different
back end systems to be used an executed to synchronize data for a single object type.

The step executed by an object read step has access to certain data about the object. The
specific values that are in scope depends on how the object read step has been defined to be
executed. To access the in-scope values the Syclo Data Markup Language (SDML) is used.

Any step executed as an object read step must be defined to return not only the data for the
object properties in need of values, but must also return the value of the object key property.
The key property is used by the Agentry Server to determine which object instance should be
assigned to values in the return set. If a read step returns a key property that does not match an
existing object a new object is instantiated and the other values in the return set are assigned to
the new instance’s properties.

The purpose of an object read step is to return data for properties of the object. This includes
object collection properties. While a collection contains object instances, from the context of
the parent object the collection is simply another property containing data that is a part of the
overall object instance. Therefore an object read step can return data to create instances of the
object type stored in the child collection property. An object read step must be defined to read

Agentry App Development

Agentry App Development 195

the data into that child collection. The data returned by the step must include the key property
of the parent object and the key property of the object instances to be added or updated within
the collection property.

As an example of reading data into a child collection property, consider a work order object
that contains a collection of job plan steps. An object read step can be defined in the work order
object that retrieves data for object instances within the job plan steps collection. The step
executed to retrieve this data must return the work order objects key property and the job plan
object’s key property. This data is needed by the Server to determine, first, which work order
object contains the job plan step object and, second, which job plan object instance the data
should be assigned to. Just as with any object read step, if a job plan object key property value
is returned that does not match an existing object instance, a new job plan step object is
instantiated and added to the collection property of the work order object.

Object Read Steps and Fetch Processing
Object read steps are run as a part of the synchronization process for objects and object
collection properties. During Client-Server transmission, fetches are processed as the first part
of object data synchronization. If the object type that makes up the collection targeted by the
fetch contains read steps, those steps are processed after the fetch. In a common application
architecture, the fetch will synchronize the exchange data and the object read steps will use
that data to determine which object instances to retrieve from the back end system.

When object read steps are run as a part of fetch processing the steps executed are, in most
cases, defined to retrieve data for all instances of the object in a single execution. The object
read step is defined to run one time in this case, rather than to iterate over the object collection
being synchronized. Note that this is the most common way object synchronization is defined,
but is not a requirement. There are situations in which a portion of the object synchronization
must be performed one object instance at a time, or iteratively. A ready example of such a
situation is when file transfer, or “attached documents” functionality is being implemented.

Steps run as object read steps during fetch processing that are also defined to iterate over the
object collection have access to the key property of each object instance in the collection and
the last update value for each object. These values are sent by the Client to the Server at the
beginning of the fetch processing during transmission.

Object Read Steps and Transaction Processing
Read steps may also be run after a transaction has been processed that targets an instance of the
object. This processing only occurs when a server data state step or server update step within
the transaction has been defined to replace the client object after transaction processing. In this
situation the object read step is run for the object instance targeted by the transaction.
Therefore the step executed should be defined to retrieve data for a single object. Read steps
intended to retrieve data for object collection properties can still be defined to retrieve all data
for objects within the collection.

Agentry App Development

196 SAP Mobile Platform

When an object read step is run as a part of transaction processing, with the intent of replacing
the object on the Client, the in-scope values for the step include the object’s key property, the
object’s last update value.

Object Read Step Execution
The execution of a read step is controlled by the attribute Run. The Run attribute specifies how
often to run the step in relation to the object instances currently being processed and in scope.
This execution can be either once or iteratively. Running the step once means the step being
processed is expected to return all of the needed data for all of the objects in a single execution.
The Server is capable of processing such return sets to create or update multiple object
instances.

For iterative processing there are two options. First, the step can run one time for each instance
of the parent object currently in scope. For example, when processing a collection of work
order objects, a read step within the work order object can be defined to run once for each work
order object instance the Server currently contains.

The second option for iterative processing is to execute the step once for each object instance
in a collection property of the parent object. This iteration then includes the parent object as
well as the objects in the collection property. So if the work order object contains a collection
property of job plan step objects, an object read step can be run once for each object within the
job plan steps collection of each work order object.

In the case of iterative processing of the object read steps it is assumed a previous read step or
one of the fetch steps has returned the data needed to create the objects. Read steps defined to
be executed iteratively then run once for each of these object instances to continue the data
synchronization process. If an object instance does not exist when the iterative read step is to
be processed it will not be executed by the Server as there are no objects to iterate over.

Object Read Step Development Considerations

When designing and developing object read steps, the following items will factor into how the
steps being executed should be defined as well as the object read steps themselves.

• The overall context of the read step execution, i.e. is it being executed for fetch, push, or
transaction processing? Will the object read steps as a whole be executed for more than one
of these?

• The data to be retrieved by the step and where it is intended to be used. Within the parent
object of the read step, in a collection property of the object, in a descendent collection
property?

• The overall requirements of the object data retrieval process, as dictated by the back end
system. The order in which object read steps are executed is always an important
consideration.

• The type of data or objects being retrieved by the step. File transfer functionality, for
example, will have different effects on the design and development of the step than the
retrieval of some other data types.

Agentry App Development

Agentry App Development 197

• The overall requirements of the back end system and system with which data is being
synchronized.

One of the main aspects of the object read step definition to keep in mind during the design and
development of an application is that the object read step is always run as a part of the
processing of other synchronization definition types. There is no point in the synchronization
process in which the object read steps are run by themselves. They are, rather, executed after
the processing of a fetch, push, or transaction. Because of this overriding aspect of the read
step definition, detailed discussions of the development of a read step are deferred to the
discussions of the overall processes for these other definition types.

Here information is limited to the data available to the steps being executed as object read steps
under various circumstances.

Read Step In-Scope Values: Fetch and Push Processing
The data values available to a read step run as a part of fetch or push processing is dependent in
large part on how the step is being executed, that is, the setting of its Run attribute. Therefore
the following table lists the data available to the read step organized according to the different
settings of this attribute:

Run Attribute Setting Available Data Values

Run One Time Any SDML local data tags created by the fetch or previously executed
read steps.

Run Once Per Object Any SDML local data tags created by the fetch or previously executed
read steps.

The key property of the current object instance.

The last update value of the current object instance.

Run Once Per Collection Ob-
ject

Any SDML local data tags created by the fetch or previously executed
read steps.

The key property of the current object instance.

The key property of the current collection object instance.

The last update value of the current collection object instance.

Read Step In-Scope Values: Transaction Processing
The data values available to a read step run as a part of transaction object replacement is
dependent in large part on how the step is being executed, that is, the setting of its Run
attribute. Therefore the following table lists the data available to the read step organized
according to the different settings of this attribute:

Agentry App Development

198 SAP Mobile Platform

Run Attribute Setting Available Data Values

Run One Time Any SDML local data tags created by previously executed read steps.

The key property of the object instance being replaced.

The last update value of the object being replaced.

Run Once Per Object Any SDML local data tags created by the fetch or previously executed
read steps.

The key property of the object instance being replaced.

The last update value of the object instance being replaced.

Run Once Per Collection Ob-
ject

Any SDML local data tags created by the fetch or previously executed
read steps.

The key property of the object instance being replaced.

The key property of the current collection object instance.

The last update value of the current collection object instance.

Fetch Development Using the Exchange Data Model

The design and development of fetch to synchronize an object collection should always be
based on the exchange data model. The child definitions of a fetch, as well as object read steps
and the object itself, are organized and architected with the intent of using this model. The
main tasks to accomplish when developing a fetch to use the exchange data model are:

1. Create or configure the exchange components in the back end system to be used both
during the synchronization process, as well as to track changes to the back end system
between client transmits. These components should track the unique identifier values for
each business entity, the date and time of the change, and the nature of the change. This last
includes tracing the addition of new instances, modification of existing data, or the
removal or other modification to be treated as a removal by the Agentry application.

2. Define the fetch to determine and record in the exchange components what objects the
Client contains at the beginning of the synchronization process. This includes the date and
time when each object was last retrieved from the back end system.

3. Define the fetch to use the exchange and tracking components in the back end system to
determine what object-related data has been added or modified since the last time the
Client synchronized.

4. Define the fetch to use the exchange data generated in the previous steps to determine the
differences between the Client objects and the back end data. Retrieve only those objects
that need to be added or replaced, and define the fetch removal steps to retrieve the key
property values of those objects to be deleted from the Client.

Agentry App Development

Agentry App Development 199

Back End Exchange Data and Tracking Components
The design and creation or configuration of the back end components used in the exchange
data model have certain general requirements. These requirements hold true regardless of the
contents of the object data being synchronized.

Beginning with the tracking components, the purpose of these items is to track changes of
interest to the object data in the back end system that occur between transmits from the Client.
These components should track changes to the object data in the back end system. Depending
on the nature of the back end system, changes to track can include adding new objects,
modifying the data of an existing object to be reflected on the Client, or the deletion or
modification of an object that should result in that object being removed from the Client.

Note: Regarding the removal of objects, this may occur within the Agentry application as the
result of various types of changes to the data beyond the removal of the object from the back
end system. Other changes to the object can dictate the end user should no longer have the
object on the Client. Examples include the reassignment of a work order, a change in the
objects status, such as inactive or deprecated, or similar modifications. This should be kept in
mind when implementing both the back end components as well as when defining the removal
steps of a fetch.

When one of these changes occurs, the information recorded must include:

• The value or values that uniquely identify the modified object in both the back end system
and the Agentry application.

• The date and time, as provided by the back end system, when the change occurred.
• The nature of the change, that is, is it a new object, a modification, or a removal.

The Object Last Update Value
The object definition type is capable of storing a date and time value called lastUpdate. This
data value is separate and in addition to the defined properties of the object. The date and time
value it stores must be returned with the object data during synchronization and aliased as
“lastUpdate.” The proper source for this value is the current date and time of the back end
system when the object data is retrieved.

The purpose of the lastUpdate value is to store the date and time of the back end system when
the object was retrieved. Each object instance has its own lastUpdate value. This value is
stored with the object instance on the Client. It is accessible during subsequent
synchronizations via the SDML tag <<lastUpdate>> and is intended to be used to determine
whether changes have occurred on the back end system for the object since it was retrieved for
the Client. It should be compared with the date and time value recorded by the back end
tracking components for the same object.

This value is only accessible during synchronization and, while stored with the object instance
on the Client, it is not exposed on the Client. It is not a property value and cannot be displayed
to the user nor modified as a result of any client-side processing.

Agentry App Development

200 SAP Mobile Platform

Client Exchange Steps in the Exchange Data Model
A fetch client exchange step defines how information about the target collection is processed
by the Agentry Server. This definition references a step definition within the same module.
This step has access to information about the target collection, as well as to any data captured
in fetch properties. A client exchange step can be defined to execute once or iteratively, and
can return data for an object collection. A fetch can contain multiple client exchange step
definitions, which are processed by the Server in a defined order.

When a client exchange step is executed iteratively, its iterations are based on the object
instances sent to the Server by the Client. The client exchange step then has access to the
object’s key property value and the object’s lastUpdate value. If fetch properties have been
defined, the client exchange steps of that fetch will also have access to all of these property
values, regardless of how the client exchange step has been defined to execute.

The intended purpose of client exchange steps is to update the back end exchange data
components with information about what object instances currently exist on the Client in the
target collection of the fetch. This information should include the key property of each object
and the lastUpdate value. Along with these values the client exchange step should also provide
information about the user to whom the object belongs (SDML tag: <<user.agentryID>>).
Finally it is a recommended practice that the Agentry Server instance also be uniquely
identified (SDML tag: <<server.serialNumber>>).

Another task commonly handled by the client exchange steps is to clear out the exchange data
for the current user from the previous synchronization. The step defined to accomplish this
task should delete this data based on the user ID and, in most cases, also the Server’s serial
number. This client exchange step is run as the first step for the fetch. It is then followed by the
client exchange step defined to provide the exchange data about the current objects on the
Client.

When the client exchange steps of a fetch have completed processing during synchronization,
the back end exchange data components should contain the information about what object
instances currently exist on the Client and the date and time each was last retrieved from the
back end system.

Server Exchange Steps in the Exchange Data Model
A fetch server exchange step defines how information about the back end system’s data is
processed. This definition references a step definition within the same module. This step has
access to information about the target collection, as well as to any data captured in fetch
properties. A server exchange step can be defined to execute once or iteratively, and can return
data for an object collection.

Server exchange steps are always processed after client exchange steps. The intended purpose
of a server exchange step is to determine what changes have occurred in the back end system to
the object data for the user and to then either mark the objects in the exchange data components
as those in need of retrieval, or to perform the actual retrieval of the object data. Which

Agentry App Development

Agentry App Development 201

behavior is defined is dependent on the type of back end system and its capabilities and
behaviors, as well as the overall needs of the mobile application being developed.

Changes or differences between the Client objects and the back end data are found by
comparing the information about the current Client-side object instances provided by the back
end exchange data component with the information captured in the back end tracking
components. The tracking components will contain the date and time when any object data has
changed on the back end system, along with the unique identifier for that object. The exchange
component will contain the date and time when the object instances were retrieved. The server
exchange steps then should contain the logic to compare the information in the tracking
components with the information in the exchange components. When an object is found to
have been changed in the back end system more recently then it was downloaded to the Client,
that object is one in need of replacement on the Client. Any new objects created in the back end
system will not have a corresponding item in the exchange component. Such objects should
also be treated as those in need of retrieval for the Client.

When differences are found, the functionality can take one of two directions. First, any
changes for existing objects result in the object record in the exchange component being
flagged or marked in some manner indicating the object should be replaced. Any new objects
in the back end system not found in the exchange data components are added to the exchange
component. This information includes the unique identifier, or key property of the object, the
user ID, the server ID, the current date and time, and finally the same flag or indicator that the
object should be retrieved. In this scenario, the actual object data is not yet retrieved. This logic
is most common with SQL systems. In this scenario the data retrieval is then left to either
additional server exchange steps, or, more commonly is handled by object read steps.

The second option is define the steps used as server exchange steps to make the determination
about which objects need to be retrieved and to retrieve that data at the same time. In this
situation, the server exchange steps do not update the exchange component with the
information about the new changes in the back end. Instead, the data in the back end exchange
component as provided by the client exchange steps is used only for comparison purposes
with the tracking components. This logic is most common with Java and Web Service (HTTP-
XML) systems.

Fetch Removal Steps in the Exchange Data Model
A fetch removal step is defined to determine which objects should be removed from the
collection targeted by the parent fetch. A removal step references a step definition within the
same module. This step has access to information about the target collection, as well as to any
data captured in fetch properties. The step referenced by a removal step definition is expected
to return the key property of any object(s) that should be deleted from the target collection on
the Agentry Client.

The removal steps defined within the exchange data model should use the exchange data
components to determine what objects the client has. It should interrogate the corresponding
data in the back end system to determine if any of those objects should be removed from the
Client. The removal of a Client object can occur in many situations, only one of which is the

Agentry App Development

202 SAP Mobile Platform

actual deletion of the dat in the back end system. In point of fact, this is usually the least likely
situation, as most enterprise systems do not remove data once it has been added.

The removal steps can use the data in the back end exchange data component to look for object
data for a user in need of removal. As an example, if a user currently has work order 123 on his
Client and that same work order has been reassigned in the back end system to a different user,
the removal step can return the key property of that work order object so that it is removed.

Object Read Steps in the Exchange Data Model
An object read step references a step definition within the same module. Its purpose is to
retrieve data for instances of the object from the back end system. The steps are processed by
the Agentry Server during a transmit. The step being referenced can be executed once per
transmit or iteratively.

Object read steps may be run at different times during a transmit. One of these times is as a part
of fetch processing. Object read steps are not required to retrieve data during fetch processing,
as both client exchange and server exchange steps can accomplish this task. However, it is
common to use object read steps for this purpose. In the exchange data model, the fetch is
processed to determine what changes have been made to the back end data and the object read
steps are then run to perform the actual retrieval. One of the primary reasons for this division is
simple organization of the project.

When used in the exchange data model the steps executed as object read steps should contain
logic to use the exchange data generated by the fetch processing. The object read steps should
retrieve only that object data related to objects in need of retrieval or replacement on the Client.
The processing of the object read steps and the logic executed should be the final culmination
of all exchange data model processing performed to this point. The read steps take advantage
of the information generated and gathered by the child definitions for the fetch, retrieving only
the objects needed by the Client and excluding the retrieval of any unchanged objects.

Agentry User Interface Definitions Overview

The primary purpose of the architecture of the client-side user interface definitions within
Agentry is to support multiple client device platforms from a single application. This
architecture, then, includes the separation of the application’s business logic from the user
interface. This separation then requires the specific structure of the user interface definitions
within the Agentry application project.

The primary interface definition is the Screen Set. The screen set is a module-level definition.
A screen set definition defines the Agentry Client's user interface. The screen set defines the
definition type to be displayed, which can be an object, transaction, or fetch within the same
module. The properties of this definition type can then be displayed by the screen definitions
within the screen set. Screen sets contain the child definitions screen and platform. The screen
set is the definition referenced by other definitions for display and are universal to all
supported platforms within the application project.

Agentry App Development

Agentry App Development 203

The platform definition is one of two child definitions to the screen set. A platform definition
defines how a screen set’s screens will appear on a specific device type. A platform is defined
to use one or more screens within the same parent screen set. There are different platform
types, each corresponding to a different type of client device. The platform affects the
placement of buttons and the form factor of the screens it uses.

The screen definition is the second child definition to the screen set. A screen definition
defines how the property values in the definition being displayed are presented to the user on
the Agentry Client. This includes which values are displayed. A screen also defines, via its
child control definitions, how a user can interact with the Client. There are two types of screen
definitions: list screens, to display object collections; and detail screens, to display a single
instance of an object, transaction, or fetch definition.

Screen Sets, Platforms, and Screens at Run Time
The overall structure of the screen set definition is intended to support multiple client device
platforms from a single application project. Within the screen set there exists one or more
platform definitions. Each platform definition matches a client device type within the
implementation environment. A given platform is defined to use one or more screens within
the same screen set. Depending on the types of client devices, there may or may not be overlap
in the list of used screens among the platforms; i.e., it is possible for the same screen to be used
by more than one platform. Alternately, a given screen or screens may be used by only one
platform within the screen set.

When new or edited screen sets are published to the server, they are then downloaded to the
clients at run time. When this occurs, the client provides the server with information about the
client device upon which it is running. The server then interrogates the screen set definition,
looking for the platform definition within it for that client device. When found, the screens
used by that platform are then those downloaded by the client for that screen set. No other
screens within the screen set are received by that client. A second client running on a different
device type will receive the same screen set, but with different screens. These screens would
be the ones used by the platform definition for this second device type.

The screen set, then, is the definition referenced by other definitions for display. Typically this
is an action step, such as a navigation or transaction step. Actions and their steps are platform
independent, meaning all clients receive the same action definitions regardless of the client
device type. The action steps then dictate the screen set to be displayed. When a screen set is
displayed on the client, the screens it contains are always the ones matching the device type, as
the screen set on a given client will contain only those screens for that client device.

How the screens of a screen set are displayed depends on the definition type the screen set is
defined to display. When a screen set displays an object, its screens are displayed in a tab
control. Each screen definition is represented by a tab. Selecting a tab displays the
corresponding screen.

When the screen set is displaying a transaction or fetch, the screens are displayed in a wizard
format. This results in each screen being displayed one at a time, with wizard buttons (back,

Agentry App Development

204 SAP Mobile Platform

next, cancel, finish, etc.) displayed at the bottom. The user navigates through the wizard using
these buttons, entering data in each screens fields.

Screen Types: List Screen
There are two types of screen definitions that can be added to a screen set: list screens and
detail screens. A list screen definition displays an object collection property on the Agentry
Client. Object instances from the collection are displayed as rows in the list. A list screen
contains the child definitions column and button. A column is defined to display the property
value for each object instance in the collection. Buttons are defined to execute actions related
to the object instances. List screens include definable behaviors related to filtering, scanning,
and sorting, as well as other screen enhancements for displaying data stored in the object
instances of the target collection property.

The list screen definition is typically used for a basic presentation of an object collection
property. Each object instance is displayed in a list control, which is the main feature of the list
screen. This screen type can only be used to display object collection properties. The columns
of a list screen are defined for the properties of the object type in the collection being displayed
in the list control.

The list screen can be defined to allow or prevent users from resorting the list of objects by
clicking a column header within the list control. The default is to allow resorting. Disabling
this functionality will prevent the user from resorting the list of objects. This is often used
when the objects represent some prescribed order, such as safety plan procedures. In this case
it is generally considered good form to select a fixed sort property from the object collection
being displayed. This is also defined in the list screen.

The columns themselves are defined to either be included or excluded from those values upon
which the list can be filtered. The default for a column is to be included. If it is desired to
prevent the user from filtering the list screen on certain object values, the columns for those
values can be defined to be excluded from the filter values. As a separate attribute in the
column is wether or not the column values should be included in scan filtering. Scan filtering is
the behavior where a user can scan a barcode value and the currently displayed list is then
automatically filtered to only those items that match the scanned value. The column definition
includes the Scanner Filter attribute that specifies whether or not the column value should be
used to filter the list based on a scanned value. This behavior only applies when the parent list
screen is used by a platform for scanning, and only when the client device is equipped with a
barcode scanner.

List columns can also display the values for each object as a hyperlink. When this feature is
enabled, each cell in the column is displayed as a hyperlink. When the hyperlink is selected an
action is executed. Part of the hyperlink functionality is to define the action to execute and the
object instance to be targeted.

In addition, each list column definition can be enabled or disabled based on a rule, with
disabled columns hidden from the user. Columns can also be formatted using the Format
attribute. Finally, the default width of the column can be specified. Related to this is a behavior

Agentry App Development

Agentry App Development 205

defined in the parent list screen. It is possible to prevent users from resizing the columns by
defining the list screen to disable this featured.

Screen Types: Detail Screens
A detail screen definition displays a single instance of an object, transaction, or fetch on the
Agentry Client. The properties of the definition instance are displayed in fields, a child
definition to the detail screen. Definable behaviors of a detail screen are predominantly
controlled by the screen’s child field and button definitions, which can include read-only or
read-write values within the fields, as well as numerous field type behaviors. Detail screens for
transactions and fetches do not have the child definition button.

The overall behavior of a detail screen is dependent in large part on the fields it contains. A
detail screen field defines a field control for display on the parent screen. The field displays
data to the user and, when displaying a transaction or a fetch, can capture data from the user. A
field can be defined to have one of several edit types that will affect both the appearance and
behavior of the field on the screen, especially when capturing data.

The field edit types vary from basic string fields to more robust fields including several
different list types, a calendar control, date and time pickers, and several others. The proper
field edit type depends on, first, the data type of the value the field is displaying, and, second,
the desired method in which users should enter data. When fields are displayed on detail
screens displaying object instances, data entry is typically not a part of the design as the fields
are read-only when displaying object properties. In this case, the field’s edit can be changed,
but typically it is left set to default. When the field’s edit type is set to default, the field’s edit
type at run time matches the data type of the property being displayed.

For detail screens displaying transactions or fetches, also known as wizard screens, the field
edit type should always be considered carefully as these fields will be used to capture data
from the users. The method of data entry provided to the user can have a significant impact on
the applications usability, as well as the accuracy and validity of the data captured.

Fields for a detail screen can be hidden or displayed based on conditions checked by rules.
Likewise fields can be enabled or disabled conditionally. the label for fields can be a simply
text value, a hyperlink that executes a defined action, or can be committed entirely, leaving just
the field itself with no label. Fields can be defined as read-only. This attribute affects fields on
wizard screens (for transactions or fetches) or on fields for object screens when those fields do
not target any object property.

The field includes several attributes related to its positioning on the screen, the viewable size
of the field, and the amount of space within this size dedicated to the field’s label. Fields can
also have a shortcut key associated with them, which will set the focus to the field when
selected.

Detail screens are defined with a certain number of columns and rows. These are for the
purpose of layout. A given fields position on the screen is defined by specifying the column
and row in which the field’s upper-left corner should reside. Likewise, the fields width and
height are also defined in terms of the number of columns wide and number of rows high. A

Agentry App Development

206 SAP Mobile Platform

detail screen is created with a default number of rows and columns which can be edited by the
developer. Note that changing the number of columns or rows for a detail screen does not
change the size of the screen. Rather, it results in a larger or smaller number of “pieces” to that
detail screen for the purposes of field layout.

When changing the number of columns and rows for a detail screen, it is recommended this be
done before fields are added to the screen. If these values are changed after fields have been
added, the layout of those fields will be affected. If fields are positioned on rows 1-10, and the
detail screen is then edited to contain only 8 rows, the fields on rows 9 and 10 will no longer be
displayed and must be repositioned some where in the first eight rows.

Button Definition for All Screens
The button definition is common to both list and detail screens. A screen button defines a
button control to be displayed on a Client screen. The button may be displayed as a standard
button control, a tool bar button, a menu or menu item, or as a separator. A button is defined to
execute an action when clicked or tapped, unless defined as a menu or separator. When
executing an action the button also defines the target object instance provided to the action for
processing.

When developing mobile applications screen space is at a premium for many of the client
device types in common use. For this reason, the button definition has multiple types. The type
action button creates a traditional button control that when clicked executes a defined action.
The exception to this is when the selected “action” is Popup Menu, which is one of the
available options in the Action attribute of a button. When this is selected, the button will not
execute an action. Rather, it is displayed with the defined label, plus an arrow pointing up.
When selected on the client, a popup menu is displayed. Additional action buttons on the same
screen can be defined to be displayed on this popup menu.

Application Menu is a button type that adds a menu item to the client’s menu bar, in the menu
Actions. This menu is hidden unless at least one Application Menu button has been defined for
the current screen. This type of button creates a menu item within this menu that, when
selected, executes the defined action. This button type does not support image icons or the
style attributes.

Toolbar Button is a button type normally used on Pocket PC devices, or devices with this form
factor. It creates a button with no label and only an icon. The button resides below the screen in
the toolbar of the client. When clicked it executes the defined action.

Separator is a button type that does not create any button or menu control. Rather, it is used to
help organize buttons on the screen. When a separator is defined and the button is not defined
to be displayed in a popup menu, additional space is placed at the position of the Separator
button definition. When the separator button is placed in a popup menu, a menu separator is
drawn at the position of the Separator button.

Buttons for List Screens
The button definition for list screens is defined to target, by default, the currently selected
object or objects in the screen’s list control. Depending on the action being executed this may

Agentry App Development

Agentry App Development 207

or may not be the proper selection. The type of object targeted by the object must match the
object type for which the action has been defined. The exception to this is when the action is
not defined for any object type (attribute For Object: -- None --).

Typically either the selected object or the parent to the collection being displayed by the list
screen are the two items selected for the button target. Buttons that execute actions to navigate
to another screen set, and that execute actions to instantiate an Edit or delete transaction are
normally defined to target the currently selected object. Buttons that execute actions to
instantiate Add transactions, or actions such as Transmit or CloseThisScreenSet should be
defined to target the parent object of the collection being display in the list screen.

Buttons for Detail Screens
The button definition for detail screens is defined to target, by default, the object currently
being displayed in the detail screen. In traditional development work within Agentry this was
not often changed. However, in more contemporary applications developed using later
versions of Agentry, the selection of a different button target has increased in frequency. this is
due to many of the newer field edit types added to Agentry. Many of these fields display lists of
objects, or a selection from a list. These fields then support the selection of a target for a button
from that field’s current selection. This can be selected using the target browser within the
Agentry Editor.

Client User Interface Considerations and Guidance

When developing the user interface for a mobile application in Agentry, the first consideration
should be given to the screen flow, i.e. how the user should navigate through the information
presented in the screens. In general it is a good starting point to look to the data within the
module. In any real-world application there is likely to be multiple collection properties with a
structure or hierarchy of their own. For example, Customers may contain Orders, which in turn
contain Products. Likewise, Work Orders may contain Job Plan Steps.

When designing the screen flow, then, it can be useful to start with a basic drill-down
approach. First, present the user with a list of the top level collection in the module. Then,
allow them to select a object in this list to view details about that object. These details can
include the property values of the selected object displayed in fields, as well as the collection
properties it may contain, displayed in their own lists. If further nesting of object collections
exist, this can be repeated for level of data within the module’s data structure.

Note that this is a beginning point within the design. This structure need not be a part of the
final implementation, and in fact may never be implemented exactly in this manner at all
during development. However, it can be used as the foundation for the final UI design and
implementation.

Once the basic drill down structure has been designed it should be further refined to match the
needs of the application, and to reduce the amount of interaction required by the user, that is, to
reduce the number of clicks required to get to the information or functionality needed.

Agentry App Development

208 SAP Mobile Platform

Next, the portion of the user interface for transactions should be considered. If users can add
instances of an object, consider the best point or points within the UI flow to expose this
ability. Similarly, edits to the objects, and also deletes, should be exposed at points where it
makes sense to the users. Again, when making these determinations, begin with the basics. If
allowing users to add a given object type, expose this action on the screen where this collection
is listed. Also, deleting objects is functionality typically exposed in the list for the collection.

Edits can be expose in lists as well, but may also be exposed in detail screens for the object. In
many applications there are numerous edit transactions for the same object, with the different
edits affecting different property values within the object definition. If these values are
displayed in detail screens for the object grouped together in a manner similar to how they are
organized in the different transactions, it makes sense to expose those transactions in those
detail screens where the values the transaction affects are displayed.

Security Related Development Overview

When developing a mobile application security is always an important aspect to the process.
Using the Agentry archetype many of the security features are implemented for the
application as a part of the development of the Agentry application project. Information is
provided here on the security features and development options available and how they are
implemented in the application project using the Agentry Editor.

Client-Side Data Encryption
Any Agentry Client can support the encryption of all data stored locally on the client device.
When implemented, production data retrieved from the back end system, as well as the
application data (or business logic) of the application is stored encrypted. Subsequent
information is provided on how to implement this functionality for your mobile application.
This may be defined within the application project while it is being initially developed, or it
may be a change made to an existing application.

Securing File Attachments From iTunes on Agentry Client for iOS
Depending on where file attachments are stored on an iOS client device, they may be
accessible through iTunes when the client device is connected to that application. Information
is provided on how to modify or define the External Data properties of the Agentry application
project so that files stored on the client device are not accessible to iTunes.

User Lockout After Failed Login
A standard part of any IT department’s security policies is a specification on the maximum
number of failed login attempts can be made by a user before restricting their access to the
system in some way. This behavior is supported in Agentry via the use of security settings
within the Application definition of the Agentry application project. Included in this
functionality is the ability to define the maximum number of login attempts allowed by the
user, and the corresponding lockout action to take when this maximum is met. As a part of the
definable behaviors it is possible to require the user to perform a full transmit before being

Agentry App Development

Agentry App Development 209

allowed to access the Agentry Client, as well as optionally removing some or all of the data
stored on the client device by the Agentry Client.

Transaction Authentication
As a part of the workflow of the client application it is possible to require the user to re-enter
their user credentials before a transaction is applied. When implemented the user will be
required to enter their user ID and password, which is validated against the locally stored
credentials for the user, before the transaction is applied and saved on the client. Additional
information may be captured from the user as a part of this process. This data is both stored
locally and is also available for update to the back end system as a part of the transaction
processing during transmit.

Defining Client-Side Data Encryption

This procedure describes the process of defining the Application definition within the Agentry
application project such that Agentry Clients will encrypt all data stored on the client device.

1. Open the Agentry application project for you mobile application in the Agentry Editor.

2. View the Application definition and select the Application Security tab in the Properties
view.

3. Set the attribute Client Database will be encrypted to true. Save the change.

4. Publish or deploy the project to the Agentry Server.

Data stored on the Agentry Clients will be encrypted.

Securing Attachments on iOS Client Devices

Prerequisites

It is assumed that attached documents functionality has been defined for the mobile
application. This procedure does not describe how to define or implement this functionality,
but only how to define the mobile application for iOS client devices to prevent attached
documents from being accessible via iTunes.

Task

This procedure describes how to define the mobile application to secure attached documents
from iTunes access on iOS client devices. This process involves setting the iOS Base Path
attribute of external data properties within the application to a value other than Documents,
typically the Application Support option.

This procedure needs to be repeated for each external data property within the mobile
application project.

Agentry App Development

210 SAP Mobile Platform

1. Using the Agentry Editor navigate to the external data property definition within the
mobile application project. Select the File Locations tab within the Properties view of the
definition.

2. Within the iOS section of attributes on this tab, set the Base Path attribute to the option
“Application Support.”

3. Save the changes made and repeat this process for any other external data properties within
the application project.

4. After all external data properties have been modified, publish the application to the
Agentry Server and test the behavior. Be sure to connect the iOS device to an iTunes
application and verify the attachments for the mobile application are no longer accessible
through iTunes.

5. When ready to make this behavior available to the mobile users, publish or deploy the
application to the Agentry Server in the production environment. This new behavior will
take affect when mobile users perform their next synchronization.

After this procedure is complete the files stored on the iOS device by the Agentry Client will
no longer be accessible to the iTunes application.

Configuring User Lockout for Failed Login Attempts

Prerequisites

The following items must be addressed prior to performing this procedure:

• Determine the desired number of maximum login attempts before locking out a user.
• Determine the proper response by the client when locking out a user. Review the

information provided in the Agentry Language Reference, specifically the section
“Application Definition,” in the subsection “Application Security Attributes.”

Task

This procedure describes how to configure the user lockout behavior on the mobile
application, which occurs after the defined number of failed login attempts by the mobile user.
A part of this configuration is the resulting behavior, as set by the “lockout level”, when a user
is to be locked out.

These settings should be configured to match the security requirements of the implementation
environment. Possible lockout behaviors range from simply requiring the user to perform a
successful login and full transmit with the Agentry Server before being allowed to proceed;
removing all module-level production data (including object instances and pending
transactions) and requiring a full login and transmit; or completely resetting the Agentry
Client executable, removing all data stored by the application, and requiring a full transmit and
synchronization before being allowed access to the application.

Defining this behavior requires the modification of the Application Security attributes found
in the Application definition, followed by publishing the changes to the Agentry Server, with a

Agentry App Development

Agentry App Development 211

subsequent transmit by each Agentry Client to update the mobile application with the new
settings.

1. Open the Agentry application project in the Agentry Editor. View the Application
definition and select the Application Security tab in the Properties view.

2. Begin by setting the maximum number of login attempts to allow by setting the attribute
Login Attempts to the desired value.

3. Select the desired lockout behavior by selecting the appropriate option for the Lockout
Level attribute.

For details on the Lockout Level options, see the “Application Definition” section in the
“Agentry Language Reference.” Review the information for the Lockout Level attribute
found in the “Application Security Attributes” subsection.

4. Save the changes made to the Application definition. Publish the application to the
Agentry Server used for testing and verify the desired behavior. Publish or deploy the
application the Agentry Server in the production environment when you are ready for the
mobile users to receive these changes.

The desired lockout behavior for mobile users reaching the maximum number of failed login
attempts has been defined. The behavior will be exhibited on the Agentry Client for mobile
users in the production environment once published or deployed to that environment.

Transaction Authentication/Electronic Signature Support

The purpose of transaction authentication is to validate that an authorized user is the one that
entered the information captured by the transaction being authenticated. This functionality is
also implemented to support electronic signatures in environments where audit trails are a
requirement.

Transaction authentication is defined within the transaction itself and can be set as always
required or conditionally required based on the Boolean return value of a rule definition.
During transaction authentication on the Client the user is required to enter the user ID and
password with which they logged into the device. Additional information may also be
captured as a part of the authentication process where needed.

Any transaction defined within the application project can also be defined to include
transaction authentication. Data captured during the authentication process is accessible
during the synchronization of the transaction during transmit. There are different definitions
involved in the transaction authentication processing, including:

• Object definition to store authentication data on the Client
• Screen set definition to display and capture data during the authentication processing on

the Client
• Step definition to process the authentication information during transmit and data

synchronization
• Rule definition (optional) to determine when the user should be required to authenticate

Agentry App Development

212 SAP Mobile Platform

Authentication Object
The object definition displayed in the screen set during transaction authentication, termed the
“authentication object,” should contain properties for each of the pieces of information to be
captured from users during the authentication processing on the Client. This typically includes
both the user ID and password values. It can also include additional information from the users
as may be required for the specific environment. This data is accessible tot he step definitions
of the transaction during transmit.

Authentication Screen Set
The screen set definition displaying the authentication object during transaction
authentication, termed the “authentication screen set,” should be defined to display the object
definition. Unlike other object screen sets, however, when displaying the authentication object
the screen set is displayed as a wizard screen set. It should contain only detail screens and the
fields of those screens are defined to captured the desired authentication information from the
user.

Step
A step definition can be defined to specifically process the authentication data, or this
processing can be included in a step definition that processes the data of the transaction. Either
format is acceptable and depends on the overall nature of the synchronization processing
performed for the transaction. The step can access the values of the authentication object using
data tags within the SDML. The following syntax is the manner in which these values are
accessed:

<<transaction.authenticationObject.propertyName>>

The value authenticationObject must be replaced with the name of the object
definition being used. propertyName is replaced with the name of the property definition
to be accessed. In a JVM system connection Java steplet, the values are accessed using the
“getter” methods provided in the TransactionSession class. The property names are
passed in as:

authenticationObject.propertyName

As with the SDML tags, the object definition name and property definition name are
substituted in the above syntax.

Rules (Conditional Authentication)
As a part of the definition of the transaction authentication processing it is possible to define a
rule definition to be evaluated prior to presenting the authentication screen set. This rule is
evaluated in a Boolean context. A true return will result in the user being required to
authenticate; a false return will not require authentication.

Agentry App Development

Agentry App Development 213

Transaction Authentication Behavior
The overall behavior of the transaction authentication begins on the Client. When a
transaction is instantiated for which authentication has been defined, the transaction is
processed as normal on the client up to the point just before it is to be applied. At this point, if
the transaction is to require authentication, the authentication screen set is displayed. The user
then enters the user ID, password, and any other information required. The password is
validated against the password for that user to lo into the Client. If this validation fails, the user
is presented with an error message and the authentication screen set is then displayed again.
Once the authentication is successful, the transaction is applied on the Client.

During the next transmit, the pending transaction is sent to the Server and includes the
information captured in the authentication object. The transaction’s server data state and
server update steps have access to all properties within the authentication object. The specifics
of how these values are processed depends entirely on the requirements of the back end
system. The step definitions that process the authentication information can be defined to
perform whatever processing is required and supported by the back end.

Defining Transaction Authentication

Prerequisites

The following items should be addressed prior to performing this procedure:

• Determine if the transaction should require authentication at all times or conditionally. If
conditionally, determine the specific conditions and the values on the client involved in the
determination to support the creation of the rule definition that will be needed.

• Determine the requirements for the audit trail and/or electronic signature information
dictated by the back end system, including what information is needed and how it should
be recorded. Note this information to support the logic needed in the back end processing
for the transaction as well as in the definition of the authentication object and its properties.

Task

This procedure provides guidance and information on implementing transaction
authentication. The steps here include the main process to be followed as well as guidance on
variations to these standards, which may be implemented depending on need. The main
process presented here is the recommended best practice for implementing this functionality.

1. Begin by defining an object, preferably named “Authentication”. Add to this object the
properties needed to capture the values required for the transaction(s) for which it is to be
used. If capturing the password for the user, define a string property for this purpose and set
that property’s Password attribute to true. This will prevent the value of this field from
being displayed on the client, and protect it from being displayed in log files and other
potentially non-secure locations.

Agentry App Development

214 SAP Mobile Platform

As an alternative, it is possible to capture the authentication information in the properties
of the transaction. However, the use of a separate object is the recommended method as it is
easier to define and better supports conditional authentication.

2. Next define a screen to set to display the Authentication object definition. Add to it the
platform(s) needed for the environment. Finally, define the detail screens and fields to
display the properties from the Authentication object. Do not add button definitions to this
screen set, as it will be displayed as a wizard screen set and the client will display the
buttons needed automatically.

3. The transaction for which the authentication behavior can now be modified. Navigate to
the transaction and view the main Transaction Definition tab in the Properties View. In the
Authentication section of this tab set the authentication attributes for Screen Set,
Authenticate When, and Information In, as shown in the following example:

If storing authentication values in the transaction properties rather than a separate object,
be sure to leave the default Information In attribute setting of “Properties of this
transaction.” Also, the Authenticate When attribute is where a rule can be defined and
referenced. Remember the rule is evaluated in a Boolean context with a true result
requiring authentication.

At this point it is possible to publish this application and test the client-side behavior of the
transaction authentication. Note that authentication-related data captured at this point will
not be processed to the back end system.

Agentry App Development

Agentry App Development 215

4. OPTIONAL: If condition transaction authentication is defined, a property should be
added tot he transaction itself to be used as a flag indicating whether or not the
authentication was performed for the transaction instance. The recommended practice is
to define a Boolean property and to set the property to be initialized by a rule. In most cases
the rule used to determine if the authentication should occur can also be used to initialize
the Boolean property.

5. The final part of the transaction authentication is to define the logic to process the
authentication data to the back end system. This is specific to the back end system’s
requirements for such information. When defining the step, authentication-related data is
accessed using the SDML data tags
<<transaction.authenticationObjectName.propertyName>>. For
Java system connections, the values can be accessed in the TransactionSession
class using the get methods and passing in the property names in the form
transaction.authenticationObjectName.propertyName. In either
syntax, the name of the object and the name of the property are used. The other standard
transaction values, including properties and the transaction’s time stamp are also
accessible. Once the step is defined it can be run as a server update step within the
transaction. If performing conditional authentication on the client, be sure the logic to
process the authentication data checks the flag property value in the transaction to
determine if the transaction was authenticated or not.

With the completion of this procedure, the transaction has been defined to require the user to
authenticate themselves on the client before the transaction is applied and saved. Depending
the specifics of the configuration, the authentication may be conditional.

Next

Once this procedure is complete, the behavior should be thoroughly tested in an appropriate
environment. Testing should include verification of the client-side behavior, especially any
and all scenarios related to conditional authentication. Back end processing should also be
verified as accurate and again scenarios should factor in any conditional authentication.

Attached Documents and File Transfer: Key Concepts

Within Agentry it is possible to retrieve files during the download portion of synchronization,
store those files on the client device with reference to them from the mobile application, and to
send files up from the client device during the upload portion of synchronization. Files can
also be attached to objects locally on the mobile application if those files are stored on the
client device.

The implementation of this functionality involves several different definition types within the
application project:

• A property with a data type of External Data to reference and track the file.
• Object definition to represent the document within the mobile application.

Agentry App Development

216 SAP Mobile Platform

• A list to display the documents attached to a given parent object.
• One or more step definitions of a type compatible with the back end system to retrieve

information about the files associated with an object and the location of those files.
• One or more File - Document Management step definitions to download and upload

attached documents.
• An action step of type Windows Command to display a selected file on the client device.
• A transaction to allow the user to attach documents locally on the client and upload them to

the back end system.
• A transaction to process documents that have been changed on the local client device and

need to be updated to the back end system.
• One or more rule definitions to check the state of a file, including its location, size, and

whether or not it has been modified since being downloaded.

For a given implementation some or all of these definitions may need to be defined. As an
example, if files are to only be downloaded to the client, but never attached locally or uploaded
to the back end system, then transactions and steps to process such operations are not needed.

External Data Properties and File References
When implementing the attached documents or file transfer functionality it is important to
understand how the file is stored and referenced by the mobile application. An external data
property is defined to reference a file stored on the client device. Files downloaded to the client
device, and files attached locally on the device for later upload are not stored with the
production data of the mobile application. Rather, they are stored external to the production
data, with their location on the client device referenced by the external data property.

Encapsulate the File - Object Definition
As a recommended practice, the files to be downloaded, attached, and/or uploaded should be
encapsulated within the application project as an object definition specifically for this
purpose. While an external data property can be added to any object definition, it is a cleaner
and more manageable architecture and design to create an object definition specifically for the
files and to then store instances of that object definition in a collection property at run time.

All file-related operations and behaviors are far easier to implement and maintain when
following this model, including downloading and uploading files, listing the files associated
with a given parent object, and other operations.

Typically an object definition to represent a file is defined to include the external data property,
a property to contain the name of the file (normally a string property) and a property
containing the location of the file on the back end system when that location is somewhere on
the file system. Normally the property containing the file name is defined to the be the key
property of the object, as having more than one file with the same file name would cause issues
during synchronization and storage, and designating this property as the key property will
prevent such a circumstance.

Agentry App Development

Agentry App Development 217

Client-Side File Operations
As external files to the mobile application, files referenced by external data properties are not
directly displayed in the mobile application. Rather, a list of the external data properties
displayed on the client will include the name and location of that file. Similarly, detail screen
fields displaying these properties include similar information about the file.

The mobile application can be defined to display an attached file in an application on the client
device associated with the type of file being referenced. This application must exist on the
client device and is not a part of the mobile application built in Agentry. To display a file in its
native application, a Windows Command action step must be defined. It then contains as it’s
command the full path and file name, which is provided by the external data property. This
path is passed to the operating system, which in turn “launches” the file in its associated
application the device. From this point the user can perform what ever operations the
application for the file allows. The only exception to this is when the file is set to be read-only,
an option within the external data property. Such files are then not editable on the client device.

When attaching files locally on the client device, a file dialog is displayed to allow the user to
navigate the file system and select the file to be attached. This operation is a part of a wizard
screen set displaying a transaction to support this behavior. The transaction is no different than
any other, containing properties to capture data from the user. An external data property is
displayed in a field type specific to that property type that supports the selection of a file from
the client device’s file system.

Rule Functions for External Data Properties
There is a set of rule functions available for rule definitions to work specifically with external
data properties:

• FILE_CHANGED: This function returns a Boolean value indicating whether or not the
referenced file has been modified since it was downloaded to the client device. this can be
useful when determining whether or not files downloaded to the client device are in need of
update to the back end system based on changes the user may have made to those files.

• FILE_EXTENSION: This function returns a string containing just the file extension of the
file referenced by the external data property. This can be useful in filtering a list of files,
e.g. show just image files (.jpg), and similar behaviors.

• FILE_NAME: This function returns the name of the file referenced by the external data
property. This is the file name only, excluding any path information.

• FILE_PATH: This function returns string containing the full path to the location of the file
referenced by the external data property, excluding the file name.

• FILE_PATH_AND_NAME: This function returns a string containing the fill path and file
name of the file referenced by the external data property.

• FILE_SIZE: This function returns an integer that is the size of the file in bytes referenced
by the external data property.

Agentry App Development

218 SAP Mobile Platform

These functions can be used in various situations related to working with the file referenced by
an external data property stored on the client device. Some use cases for these functions are
provided in the information on implementing this functionality.

Data Synchronization for File Transfer
When defining the synchronization logic to retrieve files from the back end system for storage
on the client device, it is necessary for this logic to perform a set of operations related to each
file:

1. Retrieve the parent object that will contain the collection of attached documents. This
logic is contained in a step type matching the back end system.

2. Retrieve the information about those files to be stored in the parent object, including the
file’s name, its storage location on the back end system, and excluding the file itself. This
logic is contained in a step type matching the back end system.

3. Retrieve the file from the back end system. This logic is contained in a file document
management step.

One of the keys to this functionality is that the back end system must have information
available about which files are associated with which objects, and the specific location of
those files on the back end system so that the Agentry Server can retrieve them. This location
must be one to which the Server has read access.

While the above operations includes three distinct steps, it may be possible in some back ends
to perform the first two operations in a single step definition. As with other synchronization
operations, what data can be retrieved at which point is dependent on the back end system’s
structure and the interface type in use (i.e. Java, SQL, HTTP-XML). The retrieval of the actual
file always requires a the definition of a file document management step.

When defining the synchronization logic to upload files to the back end system for storage in
the back end system, it is necessary for this logic to perform a set of operations related to each
file:

1. Upload the file to the Agentry Server and then tot he back end system. This logic is
contained in a file document management step.

2. Update the back end system with the necessary information about the file, including the
business entity with which it is associated, revision/upload date, and any other information
the back end requires for the file. This logic is contained in a step type matching the back
end system.

Supporting Infrastructure Tasks
In addition to changes within the Agentry application project, there are certain tasks that
should be performed in support of implementing this functionality:

• Verify the proper applications are installed to client devices in the environment for the file
types expected to be a part of this functionality.

• The file system on the host system fro the Agentry Server must contain a location to which
the Agentry Server has read-write access. The Agentry Server typically requires a location

Agentry App Development

Agentry App Development 219

to temporarily store the files being transferred. This location should be noted for reference
during the development and implementation of this functionality.

• The location to which files will be written on the client devices should be determined. This
location is created by the Agentry Client during synchronization if it does not exist, and
can include components based on the parent object of the file, as well as the user’s ID.

• The method in which files are stored by the back end system should be known. The
processes, tools, and/or other items that system employs should be evaluated to determine
if they can be used by the file document management steps of the mobile application
during synchronization. Typically such items include command line processes that can be
called to check out and check in files from a version control system, or a process that
extracts the files from a database when the files are stored in this manner.

Developing File Transfer and Attached Documents: Process Overview

The following are the high-level tasks in implementing the file transfer and attached
documents functionality in an Agentry mobile application. Each of these items is discussed in
detail in the series of procedures provided after this overview. Refer back to this overview of
tasks as a check list of tasks when implementing this functionality.

1. Define the object that encapsulates the files to be transferred and attached (hereafter
generically referred to as the “file object”) within the mobile application project.

2. Define the downstream synchronization logic to retrieve the files from the back end system
for storage on the client.

3. Define the user interface behaviors for view files stored within a given parent object, and
any related behaviors for those files, including viewing.

4. Define any transactions to add files to a parent object on the Agentry Client.
5. Define the upstream synchronization for files attached to documents on the client.
6. Define the logic, transactions, and upstream synchronization for files to be updated to the

back end when they have been modified on the client after having been downloaded from
the back end.

Note that if any of the functionality related to one or more of the above procedures is not to be a
part of the mobile application it is not necessary to perform that procedure. For example, if
users will not be modifying the files downloaded from the back end on the client, it is
unnecessary to define the logic and transactions to check for such changes.

Defining the File Object

Prerequisites

Prior to performing this procedure, the following items must be addressed:

• The storage location of the files on the client device must be determined and noted for
reference in this procedure.

• The parent object in which the file object will be stored must already be defined.

Agentry App Development

220 SAP Mobile Platform

• The full path to the storage location of the files must be known

Task

In this procedure an example of defining an object to encapsulate the files being transferred
and attached to other objects within the mobile application is provided. The primary focus of
this procedure is on the external data property that references the file. Additionally, the overall
architecture and components of the file object are explained during this procedure, including
the reasons for their implementation and how they may be used in related functionality.

The sample application to be used in this procedure is Mobile Northwind, which contains the
module data structure of Customers -> Orders -> OrderItems. Added to this structure will be a
collection property for the Document object that is defined. This will be added as child to the
Customer object, making it a sibling of the Orders in the aforementioned module data
structure.

1. Begin by defining a new object within the module of the Agentry application project. For
this example we name the object definition Document.

2. Next add a string property to this object that will contain the name of the file the object
encapsulates. Note that this property need not be a string, but can be any other data type
desired. It’s value is converted to a string when used to name the file being saved. It is
recommended it be defined as a string initially to allow for more variability in the file
name. In this example we name the property FileName and has the other following
attributes. (Attributes not listed here should be left set to their defaults for this example.
They can be set as needed for implementation specific requirements):

• Minimum Length: 1
• Maximum Length: none (note this can be set to a maximum if deemed necessary to

the application; however, it should be sufficiently sized to ensure the file name value is
not truncated)

• Trim: true (this can be important to prevent the file name from containing leading or
trailing spaces that could cause issues in numerous file related operations)

3. Now define a property to contain the location of the file on the file system of the Agentry
Server’s host system. This string property is used when the source location of the file is on
a the file system. Define the property to be a string with. In this example we name the
property BackEndFile with the following attributes:

• Minimum Length: 1
• Maximum Length: none
• Trim: true

This property is always required regardless of where the files are stored, including in a
database system or file control system. It is needed during synchronization, as will be
apparent in the procedures on this topic.

4. Define any other properties that may be needed for the file object. These could include
values for reference purposes, such as the date and time the file was last modified, a

Agentry App Development

Agentry App Development 221

revision number for the file, or other similar information. Keep in mind any values must be
accessible from the back end system in order to be downloaded for the object.

5. Next the external data property is defined. This property provides the reference to the file
as stored on the client device. Begin by adding a property to the object with a data type of
External Data. In this example the property is named File. Set the attributes of this new
property according to the following:

a) Set the Client File attributes to specify the source for the file name, behaviors related to
if/when to delete the file, whether or not it is read-only, and the behavior of the file
dialog when attaching files locally:

These attributes are set to reference the property of containing the name of the file as
retrieved from the back end system with the File Name attribute set to the string
property FileName. We have also defined the file to never be deleted on the client. It is
possible to define the file to be deleted only when it was created by the Agentry Client
during data synchronization, or to always delete file when the parent object is deleted.
Finally, the file has been defined to be read-only, which means users are not able to
modify the file on the client device. The File Extension attribute has been left blank,
meaning files will keep the extension as returned during synchronization. It is possible
specify an extension here, which changes the file extension of all files to the value

Agentry App Development

222 SAP Mobile Platform

provided, regardless of the extension of the file when it is downloaded or attached
locally.

b) Next the attributes specifying where the file is to be stored on the Agentry Client are
set:

The settings defined here result in a client device storage location specific to the mobile
application and the parent object to which the files are attached. The base path under
the Windows 9.x/NT/2000/XP section is set to “Absolute Path.” The Relative Path
attribute then contains the full path to the location where the files are to be stored. Other
options include the various standard windows lactations, such as My documents, My
Pictures, etc. For the Windows CE section, the attribute Use Path is selected, which will
replicate the path for Windows desktops on the Windows Mobile devices. The drive
letter is removed from the path.

6. Complete the creation of this external data property clicking the [Finish] button. Then,
review the properties for the document object. For this example, the following now exist
(others may be included in file objects like this based on need, with these being considered
the bare minimum:

• FileName: A string property that contains the name of the file as it will be stored on the
client device. Note that this may different from the file name in the back end system and
is set during synchronization, which can include both the back end name and/or other

Agentry App Development

Agentry App Development 223

values available at run time. The synchronization procedures provided for this topic
address this behavior.

• BackEndFile: This property contains the full path and file of the file to be downloaded
from the back end system. This is referenced by the server processing for
synchronization.

• File: External data property that references the full path and file name for the file stored
on the client device.

7. The next step for the file object is to set the key property of the file. View the Object tab in
the Properties view of the Agentry Editor. Change the Key Property attribute here to the
property that stores the name of the file (in our example the FileName property).

8. Finally, create navigate in the Agentry Editor to the object that will contain the instances of
the file object. In our example, this is the Customer object. Add a property to this parent
object of type collection and define it to stored instances of the file object just created.

With the complete of this procedure the object to encapsulate the files associated with (or
“attached to”) some other object has been defined. The parent object has been defined to
contain a collection of these objects, which is to be populated during synchronization and also
when files are attached on the client device.

Next

The next area of functionality to implement is the downstream synchronization processing.
See the procedure on this topic for guidance on this procedure.

Defining the Download Logic for File Transfer

Prerequisites

The following items must be addressed prior to performing this procedure:

• The object definition encapsulating the files to be downloaded (hereafter referred to as the
file object) must be defined. The collection property to store the file object instances must
already be defined in the parent object.

• This procedure assumes a fetch exists within the application project to retrieve the parent
objects of the file object.

• The location of the files in the back end system must be known and the manner in which
they are to be retrieved from that location should be determined. This is especially true if a
version control system is to be accessed or if the files are stored in a database.

• Agentry Client Agentry Server

Task

This procedure describes how to define the steps and step usage definitions to retrieve files
from the back end system to be transferred to the Agentry Client. In the example used here the
files are stored in the version control system Subversion. As a part of downloading the files,

Agentry App Development

224 SAP Mobile Platform

the command line process export is used. This process extracts a revision of a specific file
from the repository and copies it to a designated location on the file system. This copy is not
maintained by the version control system, which is a desirable behavior for this logic as the
copy we create will be temporary and will be removed when the Agentry Server has finished
transferring it.

This procedure describes what information is needed prior to the retrieval of the actual steps.
How this information is retrieved will vary from one system and one back end type to the next.
However, the general information required for this processing is the same.

As will be illustrated in the portion of this procedure related to the object read steps, one of the
key items is to define the proper run behavior for the Document Management step that actually
retrieves the files. Files are retrieved one at a time. Therefore, the document management step
must be defined to run once for each file to be retrieved. This is controlled by the Run attribute
of the object read step definition that uses the document management step. Note that only the
object read step definition type contains the proper setting for the Run attribute. This step
cannot be run to retrieve files in a fetch step usage definition.

In order for the document management step to run properly, therefore, the files to be retrieved
must be known in advance. This is a part of the general information retrieved from the back
end, where presumably the information relating the files to the business objects is located. this
information is used to instantiate the file objects and, therefore, must include the value of the
key property for each of those objects. In the architecture recommended here, this is the name
of the file to be retrieved as it will be stored on the Agentry Client.

In this example, the Customer object contains a collection of file objects named Documents. A
fetch already exists to synchronize the Customers collection, including it’s nested collections
Orders and Products. To this processing we will add the steps to get the document objects and
the actual files to be referenced by those objects.

1. First, define the step to retrieve the property values for the file object, other than the actual
external data property. In our example the file object includes the values of the FileName
and BackEndFile properties. As with the synchronization of any nested collection, this
processing must also include the key property of the parent object, which in this case is the
CustomerID. For the sample Mobile Northwind application a SQL statement is written
that selects the BackEndFile location and the FileName values from the table
CustomerDocuments in the database. The step definition is a SQL step named
GetDocumentInfo.

2. Next the document management step must be defined to retrieve the actual files to be
transferred. This consists of several pieces, which are broken down over the next steps of
this procedure. Begin by adding a step to the module of type File Document Management
that uses the file system connection within the project. In the second wizard screen, select
the attributes to specify which object is to contain the files it retrieves. In our example
application the selection for this attribute is “Object - Document.” Steps of this type need
to know for which definition they will be retrieving data to provide access to the proper

Agentry App Development

Agentry App Development 225

values to the logic they contain, as will be demonstrated in the following steps. Set the
name and group attributes and then finish the wizard.

3. Now that the step is created, the next task is to define the document mapping(s) for the step.
Document mappings define the relationship between the properties of the definition
selected when the step was created, and the command the step will execute at run time. In
the Properties view of the Editor, select the tab Document Mappings. To add a new
mapping, select the add button above the empty list. The Add Document Mapping wizard
displays.

Set the attributes of Property, which should be the external data property for the file object.
Then, set the Output Type, which is how the file to be transferred is output by the command
we will write to retrieve the file from the back end. In our case, the file is retrieved from the
version control system and saved to the local file system of the Agentry Server, so the
proper selection is “File created by command.” Other options are to capture the processes
output to standard error or standard out, or the processes exit code. These are discussed in
the later, optional steps to this procedure. Leave this wizard open to set the next attribute,
File Name, as discussed in the next step of this procedure.

4. First, check the box below the File Name attribute marked Delete File. This setting
removes this temporary file from the file system for the Agentry Server once the Server has
completed processing it. The File Name attribute specifies the name of the file as it will
exist on the file system of the Agentry Server once it has been created by the document
management step. This file name can be set to any value, as it is only temporary and does
not need to match the file name as it will be stored in the Agentry Client. This attribute can,
and likely will include SDML data tags. In our example, the file name is a combination of
the fileName property of the file object, the CustomerID of the parent Customer object,
and the user’s login value. This combination guarantees a unique file name for the file on
the Server. This attribute can, and in most cases should include the path information to
where the file is to be stored. This location should be one to which the Agentry Server has
read-write access and is typically one created specifically for use by the Agentry Server.
The full value of this attribute in our example, then, is:

C:\MobileNorthiwndFileTransfer
\<<document.fileName>><<customer.CustomerID>><<user.agentryID>>.t
mp

Note that any property value from the object is valid with the exception of the external data
property. This value, then creates a file in the specified location, with a name guaranteed to
be unique for each user and customer object combination. As demonstrated shortly, the
values used here to create the file name should be noted, as they will be needed in the
creation of the command for the document management step. Once the File Name attribute
has been set, finish the wizard.

5. OPTIONAL: Additional Document Mappings can be defined for this document
management to capture other information from the command it executes. The Output Type
setting controls this behavior, with the options Command Exit Code, STDERR, and
STDOUT. Each of these values produced by the command can be mapped to a property

Agentry App Development

226 SAP Mobile Platform

within the definition for which the document management step was defined, e.g., the
Document object in our example. The Command Exit Code and STDERR options are
typically selected to capture any errors to support processing them accordingly. STDOUT
is selected when the process executed by the document management step streams the file
data to standard output rather than creating a file on the file system. STDOUT can be
mapped to the external data property when the process behaves in this manner.

Create any additional document mappings, as needed. The attributes File Name and Delete
File are not available when these options are selected, as there is no physical file included
in the processing.

6. Next the command to retrieve the file from the back end is written. In the Properties View
select the Document Management Script tab. The command can be written either directly
in the Command attribute (set to <<script>> by default) or in a separate script file. To
run a separate script, the default <<script>> data tag should be left as the value for the
Command attribute. The separate script file is the default behavior, and the Command field
is typically only used when a single short command is needed. In most real-world
applications the command is stored in the separate script file. Click the edit button tot he
right of the File attribute on this screen to display this script, which is shown in the text
editor view.

7. The command executed can be any series of one or more command line utilities that may
be needed to retrieve the file from the back end storage system. In our example we assume
the version control Subversion contains a repository of files for customers in the
Northwind system. We extract the files, therefore, from this system. We use the export
command in Subversion for this processing, writing the file to the file system for the
Agentry Server. Regardless of the tools used, the command written here must extract the
file from the back end system, making use of the information retrieved previously
regarding which file and where it is located. the command can then either write the file to
the file system, or stream it to standard output for the Agentry Server to capture. The proper
behavior must be matched to the defined document mappings for the Document
Management step. The following is the example command used for the Mobile Northwind
application:

export <<document.backEndFile>> C:\MobileNorthwindFiles
\<<document.fileName>><<Customer.CustomerID>><<user.agentryID>>.t
mp

The above command executes the export utility for the Subversion system. It extracts the
file from the location where it is stored in the repository, which is the value returned by
<<document.backEndFile>>. The file is then written to the location where the
Agentry Server expects it. The file name is then set to match the values of the name of the
file in the back end (<<document.fileName>>), the parent CustomerID property
values (<<customer.CustomerID>>), and the user’s client login
(<<user.agentryID>>).

Agentry App Development

Agentry App Development 227

8. Now that steps are defined, they must be used. For file transfer functionality this requires
the use of object read steps. In our sample Mobile Northwind application there already
exists a fetch named GetCustomers, which targets the top-level Customers collection.
Therefore, the read steps will be added to the Customer object and read into the Documents
collection property of that object. First, the GetDocumentInfo step must be run.
Remember that this is the first step we defined in this procedure and is the one to retrieve
the information about the file to be transferred. Create a read step within the object to run
this step. The Run attribute for the mobile application is Run one time, as all information
about the files can be retrieved in a single query. For other systems, determine if the logic
can perform this type of batch processing and set the Run attribute accordingly.

9. Next we define the read step for the document management step. In the Mobile Northwind
application this is the GetCustomerFiles step. When defining this read step, the attributes
should be set to reference the document management step and to read into the collection of
file objects. The Run attribute must then be set to Run Once per Collection Object. This
will execute the document management step once for each of the file objects contained in
the collection, returning the file based on the other property values of that object.

10. Once these read steps are defined, verify the proper order. The first step run should be the
one that retrieves the information about the files to be transferred. The result of this step’s
execution is the creation of the file object instances to be stored in the collection. This
should then be followed by the document management step that retrieves the actual files.
Since this step is executed once per collection object, the step to create the file objects must
come first, followed by the document management step.

With the completion of this procedure the file transfer functionality is added to the mobile
application. If following the steps and general architecture of this procedure, the following is
the overall processing and data flow of this change:

1. A transmit is initiated by the Agentry Client. The fetch for the top level collection is
processed as it was prior to this modification.

2. The object read steps of the object type being targeted by the fetch are processed by the
Agentry Server. When the step to retrieve the information about the files to be transferred is
run, the Agentry Server processes the results of that step and instantiates the file objects,
storing them in the collections of the parent object instances. These file objects include the
information about where the file is located in the back end, and the name of that file.

3. The document management step is run next. It is executed once for each object instance in
the collection of file objects. For each execution, the file is retrieved from the back end
system and stored in a temporary location for the Agentry Server to access it. This location
is determined by the command in the document management step.

4. When the command completes execution, the Agentry Server uses the information in the
document management step’s document mappings to read the file from the location the
mapping specifies. It sets the property the mapping specifies within the file object to
reference the file it reads in.

5. The file is transferred by the Agentry Server to the Agentry Client, where the file is stored
on the client device according to the storage location defined in the external data property.

Agentry App Development

228 SAP Mobile Platform

6. The above steps concerning the execution of the document management step are repeated
once for each file object until all have been processed.

Next

If not already accomplished, the user interface to display a list of the files downloaded, as well
as to possibly allow the user to display those files and edit them needs to be implemented. See
the procedures in this tutorial on the user interface and actions related to the files downloaded
to the Agentry Client.

Defining the User Interface for Attached Documents

Prerequisites

The following items must be addressed prior to performing this procedure:

• The object that encapsulates the files stored on the Agentry Client (hereafter referred to as
the file object) must already exist and all properties it is to contain must be defined.

• Though not a technical requirement, it is generally good form to define the
synchronization logic for the objects prior to defining the user interface.

• A part of the functionality implemented in this procedure includes the ability for users to
select a file from a list of those on the Agentry Client and to display that file in the
application associated with the file type. This functionality can be implemented in the
Agentry application project at any time. However, it will not function properly unless the
application is installed to the client device and is associated with the file type. This
requirement must be met before deployment of this functionality.

Task

This procedure described how to build user interface definitions and functionality around files
that have been transferred to the Agentry Client and/or attached to objects locally. The
Agentry Client does not display files directly within the client interface, nor does it provide a
means to edit these files to the user. However, the files can be displayed in an application for
the file type, provided that application has been installed and is associated with the file type on
the client device.

To list the files attached to a parent object, a list screen or one of the list types of detail screen
fields can be used. The definition of these lists is the same as for the display of any other
collection property. The collection is selected to be listed, and the properties from the object
type within the collection are selected for display in columns for fields.

In this procedure a list is defined to display a collection of file objects. An action is then
defined and a button is added to execute that action that displays the file currently selected in
the list. This is accomplished with the definition of an action step of type Windows Command.
This type of action step is used to execute commands on the client device. If the path to a
non-executable file is defined as the command for the step, the Windows OS will execute the
application associated with that file type and open the specified file.

Agentry App Development

Agentry App Development 229

In the example used in this procedure, the module data structure is Customers -> Documents,
where Documents is a collection of Document objects to encapsulate the files attached to
Customer objects. A screen set to display details of a selected Customer object is already
defined and includes detail screens for the other properties of the Customer object. It is to this
screen set, named ShowCustomerDetails, that the list screen will be added. The functionality
to be implemented includes a list screen with columns displaying the name of the file stored on
the client, and another to display the fill file path. On this list screen an action can be executed
via either a double-click of an item in the list, or via a button click that displays the selected file
in the application associated with its type.

Note that similar behavior can be defined to list the Documents object using other list controls
available in Agentry, including List Tile View fields and List View fields, or any display
definition that lists collections.

1. We will begin by defining the action to display the selected file in its associated application
on the client device. Begin by adding a new action to the module. Set the Name and
Display Name as deemed appropriate. The For Object attribute should be set to the file
object containing the external data property. In the sample Mobile Northwind application
this is the Document object definition.

2. Once the action is defined, add a new step to it of type Windows Command. Again set the
Name as Desired. Then set the attributes of this action step according to the guidance
provided below this example:

Agentry App Development

230 SAP Mobile Platform

• Command: To display a file, the value here must be the fill path and file name of the
file to open. A format string can be used here for the External Data property of the file
object (In the Mobile Northwind this is the File property), e.g. %File

• Wait: This attribute controls whether or not to wait for the executed process to
complete before continuing execution of the action. When selected, a timeout value is
required. For this operation such behavior does not make sense, as there is no way to
know how long the user would view the file and setting a wait behavior would prevent
the user from accessing the Agentry Client while the external application is still open.
Therefore, leave this attribute set to false.

• Error Message: This is displayed when an error occurs executing the command. For
this step, the message can indicate there was a problem opening the file. Note that the
operating system may also return an error message should this operation fail and both
will be displayed to the user.

• Timeout Message: This message has no affect on this step definition and can be left
blank, as the Wait attribute is set to false.

• OK and Cancel Labels: These are the buttons displayed in the error message dialog.
In most cases either the OK or Cancel would be enabled, but no both. In the Mobile

Agentry App Development

Agentry App Development 231

Northwind application this action contains only the single Windows Command step,
with no additional steps being executed. Therefore, the OK is sufficient to
acknowledge the error message on the Client. If additional steps are included in the
action after the Windows Command step, then it should be determined if the user
should be allowed to continue the action or not, and to enable the buttons appropriately.

This step will now pass the full path and file name to the operating system, which will then
result in the OS attempting to open the file in the application associated with the file type.

3. Now the list to display the file objects stored in a collection can be defined. This can
include a list screen, a List View detail screen field, or a List Tile View detail screen field.
The collection should be the collection property of file objects. In the Mobile Northwind
application project this is the Documents property of the Customer object. Typically the
file name and file path are displayed. For the Document object this would be the FileName
string property and the File external data property, respectively. The external data property
type always displays the fill path and file name of the file being referenced when a UI
definition targets it for display.

4. Finally the control(s) are defined to execute the new action. This can include a button
definition on the list screen, as defined in this example, that targets the selected Document
object in the list. Additionally, or in place of the button, a double-click on-item action can
be defined for the list screen that executes the OpenFile action as well, targeting the
Document object. If a List View or List Tile View field is defined to list the Documents
collection, a button can be defined on the parent detail screen that targets the selected
object in the list field.

Once this procedure is complete, a list of the file objects for a given parent object is defined. An
action also exists that allows the user to display the selected file in the application on the client
device associated with that file type.

Defining Locally Attached Documents Functionality

Prerequisites

The following items must be addressed prior to performing this procedure:

• An object must exist in the application project to encapsulate the files to be attached to a
parent object (hereafter referred to as the file object).

• Options exist to specify the location in which files can be selected on the client device. If
this behavior is desired, this location should be determined and note for this procedure.

• Options exist to restrict the type of file a user can attach on the client device. This is
controlled by the file extension. If this is desired behavior, the file type and extension
should be noted for this procedure.

• The manner in which files should be stored in the back end system should be researched,
including details on how to add the files to that storage location or repository. This
processing must be a part of the logic defined to upload the file to the back end.

Agentry App Development

232 SAP Mobile Platform

Task

In this procedure the tasks necessary to allow users to attach files to an object on the client,
selecting that file from the client’s file system, are provided. This functionality includes the
use of an Add transaction to create a new file object and to capture the properties of that object,
including the file to be attached, from the user. A transaction screen set is defined that includes
a filed to display the external data property. The field for this property type displays a file
dialog to the user when it is selected in the wizard, allowing the user to navigate to the file to be
attached.

The synchronization of this data includes steps that update the back end system with the
information about the file, including it’s name, the parent object it is attached to, and other
information as may be required by the back end system. Typically this information is updated
to the back end using a step definition of the type matching that back nd, i.e., a Java, SQL, or
HTTP-XML step. A document management step is defined to perform the actual file upload
and back end processing necessary to store that file in the location or repository where files are
to be stored.

1. The first task is to define an Add transaction for the file object. As with most add
transactions, this one should include transaction properties matching all defined object
properties. In the Mobile Northwind example application, the Document object
encapsulates the file attached to a parent object. An Add transaction named AttachDoc is
defined that targets this object type. It contains the following properties, matching those in
the object:

• File: External data property, initialized to empty, i.e. Initial Value: “Auto-Initialize.”
There are some optional changes to the default attribute settings for this property,
discussed in the next step of this procedure.

• FileName: String property. This property is modified from the default initialization to
a rule after data entry. A subsequent step in this procedure describes this modification.

• BackEndFile: String property, initialized to an empty string. This value is not needed
for transaction processing, as it only relates to downstream synchronization (e.g., fetch
processing). However, it is good form to initialize the value in the add transaction.

When the transaction is created, assuming the properties from the object were all selected
in the add transaction wizard, there will be matching properties in the new transaction
definition. In subsequent steps, a property to capture the parent object’s key property value
is added to this transaction. First, the initial value of the FileName property must be
defined to capture the name of the file on the client device.

2. OPTIONAL: It is possible to provide a white list of files for file types the user can select,
and to also provide a black list of specific files or locations from which the user may not
make a selection. Once the external data property has been defined, viewing it in the
Properties View of the Agentry Editor displays the three attributes of File Filters, Filter
Description, and Restricted Files. File Filters can be set to one or more file types the user
can select. Only files of that type will be displayed in the file dialog, and wild cards can be
used (e.x., *.doc; *.jpg - Only MS Word Documents and JPEG images). The

Agentry App Development

Agentry App Development 233

Restricted Files attribute must be set to an absolute path to the directories, or specific files,
that the user will be allowed to select. Multiple paths can be provided and must be pipe
delimited. (e.g. \\Windows | \\Program Files - No files can be selected from any
path under these two locations.)

If these attributes are set, the file dialog on the Agentry Client will present only those files
and file types defined in the File Filters list, and will prevent users from selecting the files
found in the Restricted Files. This is optional behavior and is not a requirement of this
functionality. However, it is recommended that options for these attributes be at least
considered to prevent users from attaching files that should not be transferred, e.g.,
executables, resource files, etc.

3. The FileName property must contain the name of the file on the client device’s file system.
This value is not needed during synchronization, but is used for display and reference
purposes on the Agentry Client. The property is therefore modified by changing the Initial
Value attribute to “Rule - after data entry.” The rule is then defined for this initialization to
use the FILE_NAME function, taking the external data property in the transaction as its
sole parameter. It returns just the name of the file, to store in the FileName property as
required:

Agentry App Development

234 SAP Mobile Platform

With the change to the property’s initial value attributes, and the definition of the rule, the
FileName property within the transaction is now defined to capture the name and
extension of the selected file as stored on the client device. The rule contains a simple
structure consisting of the FILE_NAME function that takes the external data property
(File in the Mobile Northwind example) as it’s single parameter, returning the name of the
file it references.

4. Now that the transaction has been defined, the synchronization logic to update the
captured information can be defined. We begin with the document management step
responsible for updating the actual file to the back end system. Create a step of type File
Document Management. Use the defined File system connection. Advance the wizard and
on the enxt screen, set the Used By attribute to “Transaction - AddDocTransactionName”,
where the second portion is the name of the transaction defined to add a file to a parent
object. Set the Name and Group as desired and finish the wizard.

In the Mobile Northwind example application the step is defined to be used by the
transaction AttachDoc. The name of this step is CommitCustomerDoc. Next document
mappings for this new step must be defined.

5. The document mappings for a document management step used by a transaction define the
source property in the transaction referencing the file being transferred, and how that file is
to be provided to the command run by the document management step. For the Mobile
Northwind example application, the File property contains the reference to the file being
transferred. The command being run includes command line processes within the
Subversion version control system. These commands expect the file to be stored on the file
system. Therefore, the document mapping is defined as follows:

Agentry App Development

Agentry App Development 235

• Property: The external data property of the transaction.
• Input Type: How the file is to be provided to the command run by the step; for this

example this is set to “File Input to Command Line,” meaning the file is stored on the
file system by the Server prior to executing the command for this step. The other option
is to stream the file data from the Agentry Server to a command being executed.

• File Name: Where the Agentry Server should write the file to on the file system. This is
disabled if streaming the file to the command. Note that the FileName property is
provided for this attribute as a matter of convenience. This attribute specifies the name
the file should be given when written to the file system by the Agentry Server. The
value specified here can be any desired using any values available to the document
management step. Like other steps, this is any value in the transaction, any globals
defined in the application project, and any of the other available values for back end
processing.

• Delete File: Whether or not the file should be deleted. In this example the file is being
written to the working copy location of the Subversion repository and therefore should
not be deleted. In other cases, if this location is a temporary storage to allow the file to

Agentry App Development

236 SAP Mobile Platform

be processed and moved by the command, then this option should be selected to
remove the file when its processing has been completed.

Once the document mapping is defined, the Agentry Server will process the file as that
mapping dictates, including which property contains the file, how to provide the file to the
document management step’s command, and whether or not to clear the file from the file
system when processing is completed.

6. The command for the document management step must now be written. This command
processes the file provided by the Agentry Server, either via a file written to the file system,
or via a stream to standard input of the command being executed. The command written for
the Mobile Northwind application is stored in a batch script and contains the Subversion
commands add and commit. The add command adds a new file to the Subversion
repository and the commit command commits that addition. The command is then written
as follows:
add <<FileTransfer.BackEndRepository>>/
<<transaction.FileName>>
commit <<FileTransfer.BackEndRepository>>/
<<transaction.FileName>>
When this command is defined, the file is first added to the repository and then
subsequently committed to the repository. This is a required set of operations for
Subversion. Other version control systems will handle new files differently. This
processing assumes the file did not exist in the repository prior to this operation. If files are
to be updated in any system, Subversion or others, the order of operations would be
different. In general this command should be written only with a full understanding of how
the back end stores files and how different situations are handled, e.g., new files vs.
updates, etc.

7. In most systems it is necessary to create the logical link between the file and the business
entity to which it is attached. For example, in the Mobile Northwind application the table
Customer Files exists in the Northwind database and contains the path to the file’s location
in the version control repository and the Customer ID of the customer with which the file is
associated. For this application a SQL step is defined containing an insert statement that
adds the needed record to the table for a new file. Other information can be included, such
as date and time information, file size, or any other meta data that may be needed.

8. Once the steps have been defined, they must be used by the transaction. A server update
step is added for each step involved in the processing of an attached file. In the Mobile
Northwind application this includes the document management step and the SQL step
discussed in this procedure. In most cases the recommendation is to first execute the
Document Management step, followed by any steps that provide the link or other
information about that file. This order of operations prevents there being any “empty
links” should an error occur with processing the file.

9. The final step in this procedure is to define the user interface for this functionality. This
procedure is the same as defining the wizard for most other transactions. The screen set is
defined, including the proper platforms, and finally the detail screen(s) and fields to

Agentry App Development

Agentry App Development 237

capture the data from the user. The one item of note is the definition of the field for the
external data property. The edit type of this field can be set to “External Data”, or left set to
“-- Default --”. At run time, the Agentry Client recognizes that the target property of the
field is an external data property and automatically displays a field that includes a control
to launch a file dialog to allow the user to select a file from the file system. However,
selecting the External Data field type explicitly can make it clearer when returning to this
definition in the future. Once the wizard has been defined, the action for it and the
transaction can be defined, followed by the control(s) to execute that action.

When this procedure is complete, users will have the ability to navigate to and select files on
the client device. These files are then attached to the parent of the file object. During
synchronization, the transaction processing will include uploading the file to the Agentry
Server and then storing that file in the back end system

Next

A variation on the above functionality is the ability to allow users to select multiple files from
the file dialog and attach them in one operation to a parent object. This requires the following
differences in the definition of the transaction:

• Define a collection property of file objects in the transaction in place of the external data
property

• When the detail screen field is defined for the wizard where files are selected, its edit type
must be set to “External Data” before the collection property in the transaction can be
selected.

• The Document Mapping for the document management step must be defined for the
collection of file objects in the transaction. An additional attribute, Collection Property, is
enabled where the external data property from the object in that collection is selected.

• The Document Management Script’s Command (or more likely the script containing the
commands to be executed) must include iterative processing for each object in the
collection. This processing can be provided using the SDML function tag
<<foreach...>>. The commands execute within this loop then would operate on a
single file. <<foreach...>> provides the context of each object instance in the
collection so that each file can be processed individually. see the example below for the
pseudocode representing how this command script would be written.

<<foreach Documents

 copy <<my.FileName>> to <,FileTransfer.RepositoryDirectory>>

 add <,FileTransfer.Repository>>\<<my.FileName>> to repository

 commit <<FileTransfer.Repository>>\<<my.FileName>> to
repository

Agentry App Development

238 SAP Mobile Platform

>>

Agentry ActiveX SDK

The Agentry ActiveX SDK is a collection of resources provided to developers to support inter
process communications between the Agentry Client and another process or application
running the same client device.

Note: The ActiveX API and Agentry Client API should both be considered deprecated in the
SAP Mobile Platform 3.0 release. They are provided solely for backwards compatibility in
support of exisiting implementations in which either of these resources were used. With the
release of the SAP Mobile Platform 3.0, the OpenUI SDK should be used for all new
development work.

There are two options available for interacting with external processes. These options consist
of ActiveX, or using the Client API. The ActiveX interface to the Agentry Client has been
available for quite some time and has been expanded and augmented with continuing
increases in the exposure of the Agentry Client functionality and data. The Agentry Client API
exposes the ability to execute actions, instantiate and apply transactions, and request a rule
evaluation, all from an external process running on the same device as the Agentry Client.

The Agentry ActiveX SDK includes the resources needed to make use of the API’s it provides
and some samples. It may be beneficial for the uninitiated to review these samples, and
possibly even compile and build one or more of them to become more familiar with the overall
structure and logic involved in building processes or controls that interact with the Agentry
Client.

Agentry ActiveX Client API
The Agentry ActiveX Client API (ActiveX API) provides numerous resources for creating an
ActiveX control that is displayed on the Agentry Client’s user interface and that can interact
with the Agentry Client in several different ways, including passing various types of data
between the Agentry Client and ActiveX control, requests made by the control of the client to
execute actions, and for the Agentry Client to be aware of various control-related events such
as data entry and changes in focus.

The ActiveX API provided by Syclo includes numerous resources needed by the ActiveX
control that must be included in the build and compile stages. There are methods within the
Agentry Client that are exposed to the ActiveX control, as well as methods that are expected to
exist within the control that will be called at various times by the Agentry Client to notify the
control of certain events related to the control and/or the user’s interaction with it.

Agentry Client API
The Agentry Client API has been provided to expose certain functionality within the Agentry
Client to external processes. Similar to the ActiveX API, the external process can request the
Agentry Client to execute actions. In addition, the process can also request the Agentry Client
to instantiate a transaction using values provided by the external process, and to then apply that

Agentry App Development

Agentry App Development 239

transaction. The external process can also call through the Client API to request a rule
evaluation and to receive the value returned by that rule.

A significant difference between the Client API and the ActiveX API is how the
communications are supported. When using the ActiveX API it is a requirement that an
ActiveX control be used and displayed on the Agentry Client’s user interface. In some
situations this is either not practical, or such a control makes no sense for the intended purpose.
The Agentry Client API allows for interaction between an external process and the Agentry
Client with such a control. The external process must be built using the provided resources in
the Agentry SDK, and call the methods provided by the Client API to perform the desired
processing.

System Support, Usage, and API Differences
Both the Agentry ActiveX Client API and the Agentry Client API are available for use with
Agentry Client’s running on Windows devices, desktops, and laptops. ActiveX is a Microsoft
protocol provided exclusively for their family of Windows operating systems, and therefore
cannot be used in conjunction with Agentry Clients for platforms other than Windows. The
Agentry Client API is at this time available only for Windows platforms as well.

The primary driver for selecting the Agentry Client API for external processes or the Agentry
ActiveX Client API is whether or not a control should be or is needed to be displayed on the
Agentry Client’s user interface. If there is no need for such a control, or if such a control does
not make sense in the context in which the processing or work flow is performed, then the
developer should investigate using the Agentry Client API for external processes. If, however,
a control is needed, then the Agentry ActiveX Client API must be used.

Other differences include the functionality exposed and available by each API. The Agentry
Client API for external processes allows for the execution of actions, the evaluation of rules,
and the instantiation and application of transactions. All three of these processes are
performed in the context of the module MainObject.

Changes to the Agentry ActiveX SDK
For developers familiar with the Agentry ActiveX Client API, it is important to note some
items related to the recent addition of the Agentry Client API for external processes. The most
important difference is that the Client API does not utilize any of the resources provided by the
SDK for ActiveX, nor does it use the methods, field types, action types, or other components
provided to support ActiveX controls. The Agentry Client API for external processes is a
separate entity and all support and resources related to its usage are mutually exclusive from
the Agentry ActiveX Client API related resources.

No changes were made to the ActiveX API related to the addition of the Agentry Client API.
Any existing ActiveX controls built using the ActiveX API provided previously are still
supported and no change to them is needed.

Agentry App Development

240 SAP Mobile Platform

Technical Overview - ActiveX Controls and the Agentry Client

The Agentry Client is capable of interfacing with an external ActiveX control installed to the
same host device. This functionality is supported through the implementation of several
separate but tightly coupled components within the Agentry architecture:

• The External Field - ActiveX Control detail screen field edit type
• The Agentry Client API containing methods that can be called by the ActiveX control
• The ActiveX control’s proper implementation of the interface points (methods) expected

by the Agentry Client
• The client action step type External Field Command

Using the above components together, it is possible for the Agentry Client to display an
ActiveX control within the Client’s user interface, to pass data from the Client to the Control,
to pass data from the ActiveX control to the Agentry Client, to execute actions on the Agentry
Client at the request of the ActiveX control, and to issue commands from the Agentry Client to
the ActiveX control.

Provide Data to the ActiveX Control
The External Field - ActiveX Control screen field edit type includes in its definition a list of
objects and properties, known as the Agentry Values for that field. Each of these properties is
selected and added as an Agentry Value for the screen field. When a value is added, the specific
property or object is selected and given an arbitrary name.

The ActiveX control can call into methods provided in the Agentry Client API to retrieve these
values. The value to retrieve is specified via the name given to it in the Agentry Values list. All
property values, regardless of the data type within the Agentry application project, are
provided to the ActiveX control as strings.

Pass Data to the Agentry Client
The ActiveX control can call methods in the Agentry Client API to notify it of a change in its
current value, or to indicate that the value has been fully entered. A call to these methods
results in an immediate call by the Agentry Client back to the ActiveX control to retrieve the
current value. The value returned by this subsequent call is then set as the current value of the
External Field - ActiveX Control screen field. If no further changes are made, this value will
set the value of the property target by the External Field if that field is displayed in a wizard
screen for a transaction or fetch.

Execute Actions in the Agentry Client
The ActiveX control can call into the Agentry Client API to execute actions defined within the
mobile application. This behavior requires the action or actions the control may execute to be
listed within the External Field - ActiveX Control screen field. Only those actions listed within
the detail screen field can be executed by the ActiveX control. The ActiveX control calls the
appropriate method within the Agentry Client API, passing the name of the Action to be
executed.

Agentry App Development

Agentry App Development 241

Issue Commands to the ActiveX Control
The Agentry Client can issue a command to the ActiveX Control. An action step of type
External Field Command can be defined to pass a string value to the ActiveX control. The
ActiveX control receives this command string via a method called by the Agentry Client when
the action step is executed. The action step defines the External Field - ActiveX Control screen
field that references the ActiveX control. This screen field must reside on a detail screen
within a screen set defined to display an Object. Screen sets displaying transactions and
fetches will not be valid options in the action step when it is defined.

External Field - ActiveX Control

The external field-ActiveX control edit type is defined to call out from a field to an ActiveX
control. Values may be passed to this control from the Agentry Client.

Use of this field requires an ActiveX control exist on the client devices and that control be built
using the Agentry ActiveX Control API, including the implementation of all Expected
Methods.

Using the Agentry Data and Actions tabs allows an ActiveX control to query Agentry for
data and for an ActiveX control to call for Agentry to execute actions. Agentry can also query
the ActiveX control for any values listed in the External Values tab.

External Field - Active X Control Attributes
The following attributes are specific to the External Field - ActiveX control field edit type.
These are in addition to the common field attributes:

• ActiveX Class Name (Prog ID): This attribute contains the class name that the Agentry
Client will interface with for the ActiveX control.

• Allow Scanning as Input: This attribute specifies whether or not the field displayed will
accept barcode scan values as input. This attribute will only impact fields displayed on
detail screens used by a platform that supports scanner behavior and on client devices
equipped with a barcode scanner. When value is scanned for the field, the ActiveX control
expected method AgentryUpdateScanData to pass the barcode value to the ActiveX
control.

• External Values Tab: The External Values tab is a list of values provided by the ActiveX
Control. This will allow the Agentry Client to query the control for data. From the tab, you
can add and delete value names from the list. The ActiveX control referenced by the detail
screen field must include the proper processing within the
AgentryGetSpecificValue method to return the value(s) associated with each of
the External Values listed in this tab.

• Agentry Values Tab: The Agentry Values tab is a List of names and target paths for values
within Agentry, made available to the ActiveX Control. From the tab, you can link Agentry
data with the external values for the ActiveX Control. Both primitive data types as well as
object instances and collection properties can be made available to the ActiveX control.
The name associated with the selected data item is the identifier exposed to the ActiveX

Agentry App Development

242 SAP Mobile Platform

control, which can call the GetPropertyFromMappings Agentry Client-Side API
method, passing the name to retrieve the desired value.

• Actions: Allows the ActiveX control to call for Agentry to execute actions. The Properties
tab gives you a list of Actions and target paths. Within this list actions can be added and
deleted. When an action is added it must also specify a target object for the action. The
ActiveX control can call the ExecuteAgentryAction Agentry Client-Side API
method, passing the name of the action to be executed.

Action Step Type: External Field Command

The External Field Command action step issues a command to an ActiveX control when
executed. It references the External Field - ActiveX Control field to specify the control to
which the command is to be issued. The action step passes the value of the defined command
string to the ActiveX control, which is then responsible for receiving and processing the string
command accordingly.

The defined command string within this action step type is passed by the Agentry Client to the
ActiveX control through the expected method AgentryExecuteCommand. This method
should be implemented to process the provided command string in the manner deemed
appropriate for that control.

External Field Command Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This must be unique among all steps within the same parent action.

• Screen Set: This attribute specifies the screen set containing the detail screen within
which the External Field - ActiveX Control field is defined. Valid selections for this
attribute include any screen set defined to display an object definition. Screen sets for
transactions and fetches are not valid.

• Screen: This attribute specifies the detail screen containing the External Field - ActiveX
Control field.

• External Control: The External Field - ActiveX Control detail screen field that references
the ActiveX control to which the command string is to be issued.

• Command: The string to be passed to the ActiveX control’s
AgentryExecuteCommand method. This attribute value can be entered into the
attribute field directly, or can be set to the return from a rule definition. A rule referenced by
this attribute is evaluated in a string context and in the context of the action to which the
action step is being added and the object for which that action is defined.

ActiveX Control - Features Log

The following provides a quick overview of the progression of the ActiveX control
functionality supported by the Agentry Mobile Platform, and which release these features
were implemented. Features and behaviors related to the ActiveX control are available
beginning with the release in which it is listed, and in all subsequent releases unless otherwise
noted.

Agentry App Development

Agentry App Development 243

Agentry Mobile Platform 5.2.8
The following features were added and changes were made to the 5.2.8 service pack release of
the Agentry Mobile Platform in relation to the ActiveX control functionality:

• The ability to pass objects and object collections to the ActiveX Control. This is supported
with the addition of the following client-side API methods:
• AgentryActiveXPropertyType
• GetPropertyFromMappings
• GetPropertyFromObject
• GetPropertyType
• PropertyAsString*

• NextCollectionProperty
• CollectionHasNextProperty
• RewindCollection

• The ability to issue a command to the ActiveX Control. This is supported with the addition
of the following:
• New Action Step Type: External Field Command
• New Expected ActiveX Control Method: AgentryExecuteCommand

* - The PropertyAsString method is a replacement for the client-side API method
GetAgentryString, which has been deprecated. This method is still supported for
backwards compatibility, but should not be used in new development. Where possible, it is
recommended that existing implementations are modified to use the PropertyAsString
method in place of GetAgentryString.

Agentry Mobile Platform 5.1
The following features were added and changes were made to the 5.1 minor release of the
Agentry Mobile Platform in relation to the ActiveX control functionality:

• Implementation of the Agentry Client-Side API to expose various aspects of the Agentry
Client to the ActiveX control. Many of the following new features are supported with the
implementation of this new API for the Agentry Client. The API itself is made available to
the ActiveX control via the following:
• IAgentryActiveXControlHost COM interface

• AgentrySetActiveXControlHost - ActiveX control expected method
(provides IAgentryActiveXControlHost COM interface to the ActiveX
control)

• The ability to pass data from the Agentry Client to the ActiveX control, based on a request
by the control. Support for this functionality is provided with the following additions:
• Agentry Data List added to the External Field - ActiveX Control detail screen field

edit type.
• GetAgentryString - Agentry Client-Side API method

Agentry App Development

244 SAP Mobile Platform

• Support for the ActiveX control to request an action be executed on the Agentry Client.
This functionality is provided with the following additions:
• Agentry Actions List added to the External Field - ActiveX Control detail screen

field edit type.
• ExecuteAgentryAction - Agentry Client-Side API method

• Support for the ActiveX control to notify the Agentry Client when its value changes or is
fully entered. This functionality is supported with the following additions:
• ActiveXControlValueChanged - Agentry Client-Side API method

• ActiveXControlValueEntered - Agentry Client-Side API method

• Support for the Agentry Client to request values from the ActiveX Control via target paths.
This functionality is supported with the following additions:
• External Data List added to the External Field - ActiveX Control detail screen field

edit type.
• AgentryGetSpecificValue - ActiveX control expected method

Agentry Mobile Platform 5.0
The following features were added and changes were made to the 5.0 major release of the
Agentry Mobile Platform in relation to the ActiveX control functionality:

• Support for the Agentry Test Script functionality, including recording and playback
features provided in the Agentry Test Environment. This includes the following client-side
API methods:
• AgentrySetScriptValue
• AgentryGetScriptValue

Agentry Mobile Platform 4.3
In the 4.3 minor release of the Agentry Mobile Platform, the ability to pass values read into the
Agentry Client by the device’s barcode scanner to the ActiveX was added. This feature is
exposed in the External Field - ActiveX Control detail screen field type. This definition type
was modified to include the Scanning attribute. When set to true, barcode values read in by the
Agentry Client are passed to the ActiveX control referenced by the detail screen field.

Agentry Client ActiveX API Methods

The following methods are available within the Agentry Client and can be called from an
ActiveX control installed to the same client device. This assumes the ActiveX control has been
referenced and loaded by an External Field - ActiveX Control detail screen field within the
mobile application running on the Agentry Client.

The information provided for each method includes its intended purpose and the description
of the method parameters.

Included in these methods are those called to retrieve values from the mobile application,
execute actions defined within the mobile application, and to notify the application that the
value of the ActiveX control has changed or has been fully entered.

Agentry App Development

Agentry App Development 245

In order to retrieve data values from the application and to execute actions within it, these
items must be listed in the External Field - ActiveX Control detail screen field definition
within the application project. Only those values and actions listed as available are accessible
to the ActiveX control at run time.

ActiveXControlValueChanged

This method should be called to notify the Agentry Client that the value of the ActiveX control
has changed. The Agentry Client will evaluate any update rules currently in context for the
detail screen. Note that this differs from the ActiveXControlValueEntered method,
which should be called when the value has been completely entered in the ActiveX control.
Rather, ActiveXControlValueChanged is called for each value change that Agentry
Client should be aware of in order to process the changed value within update rules defined for
other fields on the same detail screen.

Parameters
None

ActiveXControlValueEntered

This method should be called to notify the Agentry Client the value of the ActiveX control has
been fully entered. The Agentry Client will evaluate any update rules currently in context for
the detail screen, and will perform any additional operations based on the auto-next or auto-
focus behaviors defined for the detail screen fields.

Parameters
None

ExecuteAgentryAction

This method can be called to execute an action on the Agentry Client. This action must be
listed in the Actions list for the External Field – ActiveX Control detail screen field. This
method blocks until:

• A wizard screen is displayed
• The Action completes execution
• The Action is canceled by an action step of type message
• The Agentry Client reports that it cannot execute the action

Note that the method will not wait for the completion of a wizard screen set. When such a
screen set is displayed, the ActionResult parameter will contain a value of
Action_Pending.

Parameters

• ActionName - Contains the definition name of the Action to be executed

Agentry App Development

246 SAP Mobile Platform

• ActionResult - This value is set after the action is executed and indicates the status of
the action execution. This will be one of the following enumerated values:
• Action_BackUp: Reserved for future use.
• Action_Error: Returned when the action could not be executed for any reason.

Common causes for this return include if the action named is not one defined for the
screen field, if another action is currently being executed on the Client, or if the defined
target object for the action cannot be resolved.

• Action_Cancel: Returned of the action is cancelled. This will only be returned if
the action is canceled in an action step of type Message. This method does not block
when wizard screens are displayed and therefore will not capture the cancellation of a
wizard screen set by the user.

• Action_Pending: Returned if the action executed successfully and displayed a
wizard screen set.

• Action_Complete: Returned if the Action executes and completes successfully
without having displayed a wizard screen set.

GetPropertyFromMappings

This method retrieves the property named in the name parameter. The property is returned in
the property parameter. This method can return any value listed in the Agentry Values of
the External Field - ActiveX Control field within the mobile application. The name parameter
is set to the name of the value as defined in the Agentry Values list. As of version 5.2.8 of the
Agentry Mobile Platform, these properties can be of type collection and object in addition to
the other property types support in previous versions.

Prototype

void GetPropertyFromMappings(BSTR name, VARIANT* property)

Parameters

• name - The name of the object or property to be retrieved, as defined in the External Field -
ActiveX Control’s Agentry Values list.

• property - The property retrieved by the method.

Return Value
None (see the property parameter description)

GetPropertyFromObject

This method returns the named property from the previously retrieved object. This method is
called after GetPropertyFromMappings, with the property parameter to that
method passed to GetPropertyFromObject as the object parameter. Note that this
method will return an invalid result if the object parameter is provided any value other than an
object.

Agentry App Development

Agentry App Development 247

The name of the property to be returned is provided as the definition name of that property
definition within the application project. The property is returned in the property
parameter.

Prototype

void GetPropertyFromObject

 (VARIANT const object, BSTR propertyName, VARIANT* property)

Parameters

• object - The object from which the property is to be retrieved. This parameter should be
the value returned in the property parameter of the GetPropertyFromMappings
method when that parameter references an object; or from a previous call to
GetPropertyFromObject when the property it returns is an object property.

• propertyName - The name of the property definition to be retrieved within the object.
This is the definition name of the property within the Agentry application project.

• property - This parameter will be set to the property referenced by the
propertyName parameter. The type will be set to AXPT_Invalid if the
propertyName parameter contains a name not found in the object’s properties.

Return Value
None (see property parameter description)

GetPropertyType

This method returns the property type of the item provided in the property parameter. Note
that this can include objects if a single object instance is defined as a property to another
object. To avoid confusion, a collection property containing objects will return the collection
property type, not object.

The types returned by this method will be one of the values in the enumerated list
AgentryActiveXPropertyType. See the description of this enumerated list for details
of the values it defines.

Prototype

void GetPropertyType
 (VARIANT const property, enum AgentryActiveXPropertyType* type)

Parameters

• property - The property for which the type is to be determined.

Agentry App Development

248 SAP Mobile Platform

• type - The enumerated value of the property type, as defined in the
ActiveXPropertyType enumerated list.

Return Value
None (see type parameter description for method return)

PropertyAsString

This method takes the property parameter and returns the value of the property it
references as a string. This string is assigned to the value parameter. Providing an invalid
property type, including an object or collection property, returns an empty string in the value
parameter.

The GetPropertyFromMappings or GetPropertyFromObject methods must be
called prior to calling PropertyAsString. The property parameter set by the
GetPropertyFromMappings or GetPropertyFromObject methods should be
passed as the property parameter to PropertyAsString.

Prototype

void PropertyAsString (VARIANT const property, BSTR* value)

Parameters

• property - The property for which the value is to be retrieved.

• value - The string representation of the property value.

Return Value
None (see the value parameter description for this function’s return value)

NextCollectionProperty

This method returns the next member of the collection property referenced in the
collection parameter. The method also updates the position pointer within the
collection parameter to point to the next member of the collection property. The returned
member is referenced in the property parameter to this method. If there is no next member,
the type for this property is set to AXPT_Invalid. This can be checked using the
GetPropertyType method, passing the property parameter to it.

The GetMappedProperty method should be called prior to this method. When the
property returned in the property parameter is a collection, NextCollectionProperty
is called to retrieve the members of that collection. When these members are object instances,
the GetPropertyFromObject method is called subsequent to
NextCollectionProperty to retrieve the property values found within the object
instance.

Agentry App Development

Agentry App Development 249

Prototype

BOOL NextCollectionProperty (VARIANT* collection, VARIANT*
property)

Parameters

• collection - This parameter is the reference to the property returned by the
GetMappedProperty method when the property it returns is a collection.

• property - The next member of the collection property referenced by collection. This
property type should always be checked with the GetPropertyType method before
attempting to reference it to ensure it is not set to AXPT_Invalid. This type is returned
when there is no next member in the collection.

Return Value
Boolean value indicating whether the position pointer references a valid collection member,
or the end of the collection:

• true - Returned if the position pointer of the collection parameter points to a valid
member of the collection.

• false - Returned if the position pointer of the collection parameter indicates the end of
the collection has been reached.

CollectionHasNextProperty

This method returns true if the current position pointer within the collection parameter
is pointing to a valid member of the collection; that is, if a call to
NextCollectionProperty will return an actual instance from the collection. If the
position pointer is at the end of the collection, this method returns false.

Prototype

BOOL CollectionHasNextProperty (VARIANT const collection)

Parameters

• collection - The collection property to be evaluated for a valid next member based on
the collection’s position pointer.

Return Value
Boolean value indicating whether the position pointer references a valid collection member,
or the end of the collection:

• true - Returned if the position pointer of the collection parameter points to a valid
member of the collection.

Agentry App Development

250 SAP Mobile Platform

• false - Returned if the position pointer of the collection parameter indicates the end of
the collection has been reached.

RewindCollection

This method resets the collection parameter’s internal position pointer to the first
member of the collection. The NextCollectionProperty method will return the first
member of the collection property in the next subsequent call.

Prototype

void RewindCollection (VARIANT* collection)

Parameters

• collection - The collection whose internal position pointer should be reset to the first
member of that collection.

Return Value
None

GetAgentryString

Note: This method has been deprecated with the 5.2.8 service pack release of the Agentry
Mobile Platform. The method ProperyAsString should be used in its place. This method
is supported for backwards compatibility only. New development should use the
PropertyAsString method in all cases, as GetAgentryString may be removed at a
future time.

This method can be called to access a value on the Agentry Client. This value must be defined
as an Agentry Data item in the External Field - ActiveX Control detail screen field. The name
of the value, as defined in the Agentry Data list, is passed to the methods DataItem
parameter. The value of that item is returned in the agentryString parameter as a string
value regardless of the property’s data type within the mobile application.

Prototype

HRESULT GetAgentryString (BSTR DataItem, BSTR agentryString)

Return Value
The HRESULT return indicates the status of the method call.

Enumerated List: AgentryActiveXPropertyType

The following list contains the members of the enumerated list
AgentryActiveXPropertyType, along with the corresponding property type in the

Agentry App Development

Agentry App Development 251

Agentry application project. One of these values is returned by the GetPropertyType
method within the Agentry Client ActiveX API indicating the data type of the referenced
property.

AgentryActiveXPropertyType Members

• AXPT_Invalid - Returned when the property parameter does not reference a valid
property

• AXPT_Collection - Property is a collection property

• AXPT_ComplexTableSelection - Property is a complex table selection

• AXPT_Boolean - Property is a Boolean

• AXPT_DataTableSelection - Property is a data table selection

• AXPT_Date - Property is a date

• AXPT_DateAndTime - Property is a date and time

• AXPT_DecimalNumber - Property is a decimal

• AXPT_Duration - Property is a duration

• AXPT_ExternalData - Property is an external data

• AXPT_Identifier - Property is an identifier

• AXPT_Image - Property is an image

• AXPT_IntegerNumber - Property is an integral number

• AXPT_Location - Property is a GPS location

• AXPT_Object - Property is an object instance

• AXPT_Signature - Property is a signature

• AXPT_String - Property is a string

• AXPT_Time - Property is a time

Expected Methods Implemented in ActiveX Control

In order for the Agentry Client to interface with an ActiveX control, it is a requirement of that
control that it implements certain methods with the proper prototypes. Following is a
description of each of these methods, their prototypes, and when the method is called by the
Agentry Client at run time.

It is important that each of these methods is implemented, even those that are provided for
functionality not currently implemented. Those methods not expected to be used should
include at least a stub implementation within the ActiveX control.

Currently the Agentry Client can directly integrate with ActiveX controls built using C++ and
Visual Basic. Included in the following sections are two lists of method prototypes for each of
the expected methods. The first is for C++ implementations, and second is for Visual Basic.

Note: See the section at the end of this technical bulletin on integrating ActiveX controls built
on .NET.

Agentry App Development

252 SAP Mobile Platform

ActiveX Expected Method Declarations - eMbedded Visual C++

When using the Visual C++ wizard to add methods, create the methods with the parameter and
return types exactly the same as shown below. The method declarations in the control class
header should appear identical to the following, with the exception of any word wrapping
resulting from this publication.

afx_msg BOOL AgentryInitialize(LPCTSTR initialValue, LPCTSTR
formatString,
 BOOL readOnly, BOOL autoChangeFocus, long parentHwnd, VARIANT
messageIDs);
afx_msg void AgentryDestroy();
afx_msg void AgentryEnable(BOOL state);
afx_msg BSTR AgentryGetValue();
afx_msg void AgentrySetFocus(long type);
afx_msg void AgentryShow(BOOL state);
afx_msg void AgentryUpdateRuleEvaluated(LPCTSTR ruleResult);
afx_msg void AgentryUpdateScanData(BSTR scanResult);
afx_msg BSTR AgentryGetSpecificValue(LONG opcode, VARIANT
specificValue);
afx_msg BSTR AgentryGetScriptValue();
afx_msg void AgentrySetScriptValue(BSTR str);
afx_msg void AgentrySetActiveXControlHost(IUnknown* host);
afx_msg LONG AgentryExecuteCommand(LPCTSTR str);

The methods section of the IDL file for the Agentry ActiveX interface should appear identical
to the following:

methods:
[id(1)] boolean AgentryInitialize(BSTR initialValue, BSTR
formatString,
 boolean readOnly, boolean autoChangeFocus, long parentHwnd,
 VARIANT messageIDs);
[id(2)] void AgentryDestroy();
[id(3)] void AgentryEnable(boolean state);
[id(4)] BSTR AgentryGetValue();
[id(5)] void AgentrySetFocus(long type);
[id(6)] void AgentryShow(boolean state);
[id(7)] void AgentryUpdateRuleEvaluated(BSTR ruleResult);
[id(8)] void AgentryUpdateScanData(BSTR scanResult);
[id(9)] BSTR AgentryGetSpecificValue(LONG opcode, VARIANT
specificValue);
[id(10)] BSTR AgentryGetScriptValue();
[id(11)] void AgentrySetScriptValue(BSTR str);
[id(12)] void AgentrySetActiveXControlHost(IUnknown* host);
[id(13)] LONG AgentryExecuteCommand(BSTR str)

ActiveX Expected Method Declarations - MS Visual Basic

The methods expected by the Agentry Client should be declared exactly as listed below, with
the exception of any word wrapping resulting from this publication.

Agentry App Development

Agentry App Development 253

Public Function AgentryInitialize(initialValue As String,
 formatString As String, readOnly As Boolean, autoChangeFocus As
Boolean,
 parentHwnd As Long, VARIANT messageIDs) As BooleanPublic Function
AgentryDestroy()
Public Function AgentryEnable(state As Boolean)
Public Function AgentryGetValue() As String
Public Function AgentrySetFocus(focusType As Long)
Public Function AgentryShow(state As Boolean)
Public Function AgentryUpdateRuleEvaluated(ruleResult As String)
Public Function AgentryUpdateScanData(scanResult As String);
Public Function AgentryGetSpecificValue(opcode As Long,
 VARIANT specificValue);Public Function AgentryGetScriptValue();
Public Function AgentrySetScriptValue(str As String);
Public Function AgentrySetActiveXControlHost(IUnknown* host);

AgentryInitialize

This method initializes the ActiveX control. It is called by the Agentry Client immediately
after the External Field - ActiveX Control detail screen field is created. If this method returns
false, indicating the control failed to initialize, the Agentry Client will not display the
ActiveX control.

Parameters

• initialValue - The value of the property targeted by the External Field - ActiveX
Control field in the Agentry Client.

• formatString - The value of the Format attribute defined in the External Field -
ActiveX Control field in the Agentry Client.

• readOnly - The value of the Read Only attribute defined in the External Field - ActiveX
Control field in the Agentry Client. true indicates the field is defined to be read-only.

• autoChangeFocus - The value of the Automatically change focus to next control
attribute of the External Field - ActiveX Control field in the Agentry Client. true
indicates this attribute has been set.

• parentHwnd - The HWND that corresponds to the parent window of the ActiveX
control The ActiveX control should use this to send messages to the Agentry Client.

• messageIDs - NOTE: This value, while still provided, should be considered deprecated
See the Agentry Client ActiveX API methods ActiveXControlValueChanged and
ActiveXControlValueEntered for the current manner of performing these
operations. A safe array stored within a VARIANT. The safe array contains an array of
long values that correspond to each message ID for each message that may be sent to the
Agentry Client. Within C++ the array index begins at zero and within the Vidual Basic the
array index begins with one.
• First index position: Send this message to the parentHwnd to notify the Agentry

Client a value has changed within the control and it is time for the Agentry Client to

Agentry App Development

254 SAP Mobile Platform

evaluate the field update rules and enable rules defined for all fields on the current
detail screen.

• Second index position: Sends this message to the parentHwnd to notify the Agentry
Client a value has been completely entered in the control and it is time to automatically
change focus to the next control.

Return Value

• true - This method should be implemented to return true when the ActiveX control has
been successfully initialized.

• false - This method should be implemented to return false when the ActiveX control
has failed to initialize. The Agentry Client will not display the control on the screen and
will not call any other methods within the ActiveX control.

AgentrySetActiveXControlHost

This method provides the pointer to the IAgentryActiveXControlHost object to the
ActiveX control. This pointer is passed over as an IUknown pointer for the control host
interface and should be queried to obtain the IAgentryActiveXControlHost object.
This object provides the interface to the Agentry Client. It contains the methods that make up
the Agentry Client-Side ActiveX API.

Parameters

• host - IUknown pointer to the IAgentryActiveXControlHost object. Query
this pointer to obtain the control host object.

Return Value
This method should be implemented with a void return.

AgentryDestroy

This method is called by the Agentry Client just before the External Field - ActiveX Control
detail screen field is destroyed. This method should be implemented to perform any cleanup
that may be necessary before the control is deleted.

Parameters
None

AgentryGetValue

This method is called by the Agentry Client to retrieve the current value of the ActiveX
Control. This method is called by the Agentry Client either when the user advances past the
screen displaying the External Field - ActiveX Control field in order to obtain the value to set
to the target property of the field definition; or when a rule is evaluated by the Agentry Client
that references the External Field - ActiveX Control.

Agentry App Development

Agentry App Development 255

Parameters
None

Return Value

• BSTR - String to be returned to the Agentry Client as the ActiveX control’s value.

AgentrySetFocus

This method is called by the Agentry Client when the focus is set to the External Field -
ActiveX Control detail screen field due to one of the following events:

• Auto Focus: The parent screen has just been displayed, that screen’s Focus Field attribute
is defined as Auto, and the External Field - ActiveX Control detail screen field is in the
position to receive the focus.

• Initial Focus: The parent screen has just been displayed and that screen’s Focus Field
attribute is defined to set the focus explicitly to the External Field - ActiveX Control detail
screen field.

• Auto Change Focus: The previous detail screen field is defined to automatically change
focus to the next field, the External Field - ActiveX Control field is the next field, and the
user has just entered a value in the previous field.

• OS Focus: The OS has sent a message that the External Field - ActiveX Control should
receive the focus. This can occur when the user tabs to the field, selects the field’s hot key,
and other similar situations.

The value of the type parameter to this method indicates which of the above is the reason for
the External Field - ActiveX Control to have received the focus should it be necessary to
perform different processing based on the focus event.

Parameters

• type - The value indicating why the field has received the focus. These are numeric
values corresponding to one of the above described events:
• Auto Focus: 1
• Initial Focus: 2
• Auto Change Focus: 3
• OS Focus: 4

Return Value
None

AgentryGetSpecificValue

This method is called by the Agentry Client to retrieve a value by name from the ActiveX
control. The name passed will be one of those values contained in the External Field - Active X
Control definition’s External Data list. This method should be implemented to receive any of

Agentry App Development

256 SAP Mobile Platform

the names as defined in the field definition, and to return the appropriate string value
represented by that value name.

The External Data values listed in the External Field - ActiveX Control field’s definition are
available for reference in target paths within the Agentry application project. This method is
called by the Agentry Client whenever one of these values is so referenced.

Parameters

• opcode - deprecated value that should be a part of the method’s prototype but not used
within the method’s implementation.

• specificValue - The string name of the value to be returned by the method, as listed in
the External Field - ActiveX Control’s External Data list.

Return Value

• BSTR - The string representation of the named value requested by the Agentry Client.

AgentryUpdateScanData

This method is called by the Agentry Client immediately after a value has been scanned in by
the client device for the External Field - ActiveX Control screen field. This method passes the
scanned value to the ActiveX control in the scanResult parameter.

Parameters

• scanResult - This is the string value of the barcode value scanned in on the client
device for the External Field - ActiveX Control screen field.

AgentryEnable

This method is called by the Agentry Client immediately after the enable rule for the External
Field - ActiveX Control field has been evaluated. The state parameter to this method accepts
the result of the enable rule’s evaluation, which is a Boolean value. This method should be
implemented to perform whatever processing may be necessary when the field is enabled and
when it is disabled.

Parameters

• state - This parameter contains the Boolean value of the enable rule’s return. true
indicates the field is enabled, false indicates it has been disabled.

AgentryShow

This method is called by the Agentry Client immediately after the Hidden Rule is evaluated for
the External Field - ActiveX Control field. This rule returns a Boolean value indicating
whether or not the field should be displayed or hidden on the screen. The state parameter to
this method indicates whether or not the field is shown.

Agentry App Development

Agentry App Development 257

Note that the Hidden Rule evaluated by the Agentry Client returns true when the field should
be hidden, and false when it should be displayed. The value passed to the AgentryShow
method is the inverse of the rule’s return, meaning a state parameter value of true
indicates the field is displayed, and false indicates it is hidden on the Client.

Parameters

• state - This parameter indicates whether the field is shown on the client screen. true
indicates the field is currently displayed, false indicates it has been hidden.

AgentryUpdateRuleEvaluated

This method is called by the Agentry Client immediately after the update rule for the External
Field - ActiveX Control detail screen field has been evaluated. The return from the field’s
update rule is passed to this method in the ruleResult parameter. The
AgentryUpdateRuleEvaluated method should be implemented to process this value
as the one currently displayed in the field on the client.

Parameters

• ruleResult - The string result of the External Field - ActiveX Control’s update rule
evaluation.

AgentryGetScriptValue

This method is provided exclusively for support of the Agentry Test Script functionality
available in the Agentry Test Environment. This method is called by the Agentry Test Script
Recorder when a <field-expect> method is recorded for the test script. It is also called
during script playback when the <field-expect> element is processed for an External
Field - ActiveX Control detail screen field. The method takes no parameters and is expected to
return the value of the ActiveX control to be evaluated by the <field-expect> element.

Parameters
None

Return Value
The value of the ActiveX control as a string (BSTR) to be provided to the test script currently
being recorded or executed by the Agentry Test Environment.

AgentrySetScriptValue

This method is provided exclusively to support the Agentry Test Script functionality available
within the Agentry Test Environment. This method is called by the Agentry Test Environment
during script playback when a <field-set> element is executed. The value for the
ActiveX control is passed to this method’s str parameter. The

Agentry App Development

258 SAP Mobile Platform

AgentrySetScriptValue method should be implemented to process this parameter
value such that it is set as the current value of the control as entered by a user.

Parameters

• str - The value to be set as the current value of the ActiveX control, provided as a string.

Return Value
None

Agentry Client API for External Processes Technical Overview

The Agentry Client API for external processes provides four methods that may be called by an
external process to request information and data from, and to invoke transactions and execute
actions on the Agentry Client. In order to use this API the external process must be built using
the resources provided by the Agentry Client SDK for this API. The resources provided were
built and are maintained using Visual Studio 2008 in the Visual C++ language. These same
tools must be used to build the external process that is to make calls into the API.

The Agentry Client API for external processes does not include any corresponding controls or
other similar components within the Agentry Client. It is limited to the methods made
available to external processes to call.

Each of these methods includes a parameter containing the Agentry Client context object.
This object is provided by the AgentryInitialilze method, which must be called prior
to calling any of the other methods, and this object is then passed to each of the other methods
when called.

Retrieving Data from the Agentry Client
Data is returned to the external process via the EvaluateAgentryRule method within the
Agentry Client API. The rule to be evaluated and the module in which it has been defined are
passed to the method parameters, along with a string variable in which the return value of the
rule is provided. Using this method rules can be called within the Agentry Client from the
external process to retrieve values from the Client. The returned values can be calculated or
conditional values based on the structure of the rule definition, or they can simply be property
values or other similar data items, again based on the rule structure.

Executing Actions on the Agentry Client
Actions can be executed by the external process via the ExecuteAgentryAction method
within the Agentry Client API. The action to be executed and the module in which it has been
defined are passed to the method. The method returns a Boolean indicator of success or failure
to execute the action.

Transaction Processing on the Agentry Client from External Processes
Edit transactions can be instantiated, properties within them populated with values, and
subsequently applied on the Agentry Client as a result of a request from an external process via

Agentry App Development

Agentry App Development 259

the ExecuteAgentryTransaction method. The edit transaction to be processed, the
module in which it is defined, and values for one or more of its properties are passed to the
method as parameters. Not all properties within the transaction need to be populated by the
method call, and any not provided are initialized according to the property definitions just as if
the transaction were instantiated via standard Agentry Client processing.

AgentryInitialize

The AgentryInitialize method is called to initialize a pointer to an
AgentryClientContext object. This pointer is a required parameter to all other
methods within the Agentry Client API for external processes. The single parameter to this
method is a pointer to an object pointer of type AgentryClientContext. The pointer
should be declared prior to calling the method and initialized to NULL. The address of the
AgentryClientContext object is provided with the call to the
AgentryInitialize method.

This method must be called when the external process is executed. The handle it returns
(AgentryClientContext object pointer) should be preserved and passed to any
subsequent Agentry Client API for external processes method calls. This handle should be
passed to the AgentryUnInitialize method as a part of the external processes’s
shutdown procedures. See information provided on this method for details.

Prototype

bool AgentryInitialize(AgentryClientContext** ppCtx)

Parameters

• ppCtx - The AgentryClientContext object initialized by this method and passed
to all other method calls within this API. A NULL pointer should initially be created to
such an object, and the pointer should then be passed to this method, as in:

AgentryClientContext *ctx = NULL;
AgentryInitialize(&ctx);

Return Value
The Boolean return value indicates whether or not the AgentryClientContext object
was successfully initialized. The method returns false in the event of failure, which can occur
if the Agentry Client is not currently running, as well as under other conditions. The return
from this method should always be checked prior to using the AgentryClientContext
object pointer it initializes. The external process should include processing to account for a
false return indicating a failed initialization of this handle.

Agentry App Development

260 SAP Mobile Platform

AgentryUnInitialize

the AgentryUnInitialize method is provided to allow the
AgentryClientContext handle object to be properly cleaned up when the external
process is exiting. this method should be called as a part of the processes’s shutdown routines.
It’s only parameter is the handle, which should be the same as the one passed to a previous call
to the AgentryInitialize method.

Prototype

bool AgentryUnInitialize(AgentryClientContext* pCtx)

Parameters

• AgentryClientContext - This parameter is passed to the method so that the handle
for the AgentryClientContext object can be properly cleaned up when the external
process is shutting down and the handle is no longer needed.

Return Value
The Boolean return value from the method indicates the success or failure of the uninitialize
processing.

EvaluateAgentryRule

The EvaluateAgentryRule method can be called by the external process to request a
named rule be evaluated by the Agentry Client. Included in the parameters to this method are
the internal names of the module in which the rule is contained and the name of the rule to be
evaluated. Also included are the AgentryContext and a string parameter in which the
return value of the rule will be captured.

Rules evaluated by the EvaluateAgentryRule method are evaluated in the context of the
module MainObject of the same module in which the rule is defined. Any rule in the module
may be evaluated via this method, with the rule’s return value provided as a string. This value
can then be converted to other data types as needed within the external process.

Prototype

bool EvaluateAgentryRule(AgentryContext* pCtx,
 const std::tstring& ModuleName,
 const std::tstring& RuleName,
 std::tstring& Value)

Agentry App Development

Agentry App Development 261

Parameters

• pCtx - Pointer to the AgentryContext object returned by a call made to the
AgentryInitialize() method.

• ModuleName - The name of the module definition within the Agentry application project
in which the rule to be evaluated is defined.

• RuleName - The name of the rule to be evaluated and whose return value is to be captured
in the Value parameter.

• Value - Reference to a string value within the external process in which the return value
of the rule definition will be contained. Regardless of the rule context or structure, the
return value is always provided as a string value and can be cast to other data types within
the external process.

Return Value
The Boolean return of this method indicates whether or not the rule was found and evaluated.
If this fails for any reason the function returns false and the value of the Value parameter is a
null string. The return value should always be checked before attempting to use the Value
parameter and the external process should include logic to account for a failed rule evaluation.

ExecuteAgentryAction

The ExecuteAgentryAction method is called to request the Agentry Client execute an
action. In addition to the AgentryConext, the method takes parameters specifying the
name of the module in which the action to be executed is defined, as well as the name of the
action itself. The action is always executed in the context of the module MainObject. The
action being executed, therefore, must be defined for the MainObject or for no object.
SubAction steps executing actions for other objects can be defined within the action executed
by the method should it be necessary to execute an action for a different object type.

Actions may not be executed immediately under certain conditions; specifically, if another
action is currently being executed. In such cases the action is queued by the Agentry Client to
be executed as soon as it is able. The method will return true in such a case and the action will
be executed when the first opportunity arises. The Agentry Client contains only a single action
queue in which all queued actions are stored until executed. The other primary situation in
which actions can be queued relates to Push Actions. Actions are executed from this queue in a
first in-first out order.

Actions will not be executed and the method will return false if the Agentry Client is currently
running, but the user has not yet completed the login process successfully, e.g., the login
screen is currently displayed, the server selection screen is displayed, etc.; or if the named
action or module cannot be found within the business logic currently running on the Agentry
Client.

Agentry App Development

262 SAP Mobile Platform

Prototype

bool
ExecuteAgentryAction(Age
ntryContext* pCtx,
 const std::tstring& ModuleName,
 const std::tstring&
ActionName)

Parameters

• pCtx - Pointer to the AgentryContext object returned by a call made to the
AgentryInitialize() method.

• ModuleName - The name of the module definition within the Agentry application project
in which the action to be executed is defined.

• ActionName - The name of the action to be executed by the Agentry Client.

Return Value
The Boolean return of this method indicates whether or not the action was found and either
executed or placed in the pending actions queue to be executed when possible. If this fails for
any reason the function returns false and the named action will not be executed by the Agentry
Client. The return value should always be checked and the external process should include
logic to account for a failed action execution.

ExecuteAgentryTransaction

The ExecuteAgentryTransaction method is called by the external process to request
an edit transaction be instantiated and applied, i.e., to be processed, by the Agentry Client. In
addition to the AgentryContext object, the method takes the name of the module in which
the transaction is defined, the name of the transaction itself, and a reference to an
AgentryPropertyVector containing the transaction property values to be set within the
transaction.

The transaction to be processed must be an edit transaction and must be defined for the module
MainObject, as it is instantiated in the context of that object. Add and delete transactions are
not supported.

When a transaction is processed via as a result of a call to this method, the properties of that
transaction are first initialized according to the initial value attributes of those properties, with
the exception of “Rule - After Data Entry.” Next, any values passed to the method call are
copied to the transaction properties, which will replace any initialization values that may be
present. The transaction is then processed by the Agentry Client. Property values are then set
for any properties which are initialized to “Rule - After data entry.” The current value of such
properties are overwritten with the value returned by the rule. Finally the transaction is
applied, which includes setting the values of the object properties targeted by the transaction
properties, and the transaction itself is saved to the client device as a pending transaction.

Agentry App Development

Agentry App Development 263

Prototype

bool
ExecuteAgentryTransaction(
 AgentryContext* pCtx,
 const std::tstring&
ModuleName,
 const std::tstring&
TransactioName,
 const
AgentryPropertyVector& properties)

Parameters

• pCtx - Pointer to the AgentryContext object returned by a call made to the
AgentryInitialize() method.

• ModuleName - The name of the module definition within the Agentry application project
in which the transaction to be processed is defined.

• TransactionName - The name of the transaction to be processed by the Agentry
Client.

• properties - Reference to an AgentryPropertyVector containing the property
values to be set when the transaction is instantiated. See the section on the API data types
for more details on AgentryPropertyVectors.

Return Value
The Boolean return of this method indicates whether or not the transaction was found and
processed. If this fails for any reason the function returns false and the named transaction will
not be processed by the Agentry Client. The return value should always be checked and the
external process should include logic to account for failed transaction processing.

Data Types Defined in the Agentry Client API for External Processes

Within the Agentry Client API for external processes there are certain data types defined:
AgentryContext, which is an object obtained using the AgentryInitialize()
method, and AgentryPropertiesVector, which is established via a type definition as a
vector of AgentryAttrPair items. AgentryAttrPair is a standard pair of strings.

AgentryAttrPair and AgentryPropertiesVector
The AgentryPropertiesVector is provided to allow for property values of a
transaction to be set by the external process and passed to the Agentry Client via the
ExecuteAgentryTransaction method. This data type is declared in the include file
AgentryExternal.h, which should be included in the project containing the external
process logic.

This data type is declared by the following typedef statements:

Agentry App Development

264 SAP Mobile Platform

typedef std::pair<std::tstring, std::tstring> AgentryAttrPair
typedef std::vector<AgentryAttrPair> AgentryPropertiesVector

The first typedef statement creates a standard pair of string values identified as
AgentryAttrPair. This type is then the member type for the vector declared by the
second statement, which is identified as the type AgentryPropertiesVector.

Within the elements of an AgentryAttrPair are stored the name and value of a property
within the transaction definition, with the first element of the pair containing the property
definition name, and the second containing the value. All values are stored as strings within a
given pair and the second element is converted, when necessary, by the Agentry Client to the
property data type before assigning the value to the specified property within the transaction.
This behavior negates the need to perform any data type conversion within the external
process as it would relate to property data types.

AgentryClientContext
This object type is internal to the Agentry Client. A declaration is provided for this object in
the AgentryExternal.h header file. A handle to this object is provided by the
AgentryInitialize method, which should be called by the external process during
startup. The handle is then a required parameter to all API method calls. The handle should be
passed to the AgentryUnInitialize method by the external process during shutdown.

Agentry Language Reference
Use the Agentry Language Reference to learn about the following.

Application Level Definitions Overview

Within the application project structure in Agentrythe definitions at the application level are at
the top of the hierarchy. These definitions affect the application as a whole. The definitions
that are direct children of the application are those that affect communications behavior,
globally available constant values used for configuration and other purposes, and also include
data storage on the client in the form of tables and records accessible to the entire application.
In addition are the definitions that can affect the appearance of the user interface.

The application itself is represented as a definition type within the application project. Within
a project there is only one application definition. The child definitions to the application are
then referred to as the application-level definitions. Regardless of functionality, most of the
application-level definitions will be used in a given application.

Following is the structure of the application level definitions within the application project.
For all definitions in this graphic the child definitions are also shown, with the exception of the
module. Modules are a robust definition type and the structure of the module is provided with
the module-level discussions.

Agentry App Development

Agentry App Development 265

As illustrated in this graphic, the child definitions to data tables and complex tables related to
synchronization are dependent on the type of system connection for which those definitions
were created. The synchronization logic will be encapsulated in the language or methodology
matching that back end system type.

As denoted in the illustration the system connections of type HTTP-XML include child
definitions related to user validation. The user validation request is sent according to these
definitions, including arguments to that request. Responses from the request are then mapped
to the data components of the mobile application.

The module definition type contains numerous child definitions not represented in this
graphic. These are illustrated in the sections covering the module-level definition types.

In general when working within the Agentry Editor to either develop an application or to
modify an existing one, the application-level definitions dictate and control aspects of the
application behavior overall, rather than within a given module or lower-level of granularity.

Application Definition

The application definition type represents the mobile application within the project and all
definitions for the application are its descendents. The attributes of the application definition
are those that affect application-level behaviors. These include the application name and
version, the appearance of built-in Client screens, login and password settings, application-
wide screen and user interface behaviors, and other similar items. The application definition is
the single root definition in the application hierarchy and as such has no parent definition.

When a new application project is created in the Agentry Editor, an application definition is
automatically created. Its attributes are set to defaults that should be reviewed thoroughly
early in the development process. These attributes can affect security, appearance, and
numerous other behaviors of the application.

General Setting Attributes
The general setting attributes for the application a provide project name, the application’s
display name, and a version value.

• Name: This is the internal name of the application. This value is used for certain checks
during publish.

• Display Name: This is the name of the application as displayed on the Agentry Client.
This value appears in the title bar of the application and in the About dialog displayed from

Agentry App Development

266 SAP Mobile Platform

the Agentry Client’s Help menu. For any newly created application project this is set to a
default of Agentry and should be changed.

• Version: This value is also displayed to the user in the About screen. This value is not
related in any way to the application’s publish version number. This attribute value is
provided for branding purposes only and will not impact any aspect of the application’s
behavior. Typically this reflects the application’s release version.

Application Setting Attributes
Table Settings - These attributes affect the behavior of data synchronization related to the two
table definition types, data tables and complex tables.

• Check Data Tables: Specifies how often the application will check for new or changed
data for the application’s data tables. The choices are “Every Transmission”, “Once per
day”, and “Once per week”. In between the specified intervals, no synchronization
components of the application’s data tables will be processed during a transmit. A
published change to the data table definition will override this attribute, forcing a reload of
the data table during the next Agentry Client transmit.

• Check Complex Tables: Specifies how often the application will check for new or
changed data for the application’s complex tables. The choices are “Every Transmission”,
“Once per day”, and “Once per week”. In between the specified intervals, no
synchronization components of the application’s complex tables will be processed during
a transmit. A published change to the complex table definition will override this attribute,
forcing a reload of the complex table during the next Agentry Client transmit.

• User Request: This setting specifies whether or not users can explicitly check for changes
to the application’s complex tables and data tables. This is a means of providing users with
a manual override for the Check Data Tables and Check Complex Tables attribute
settings. When User Request is enabled, users will be able to force the synchronization
process to include the processing of the data table and complex table definitions’
synchronization components. Users will be able to force this behavior by selecting the
menu item “Check for Table Updates” in the Agentry Client’s Off-Line menu. This
attribute will have no effect when the Check Data Tables and Check Complex Tables
attributes are set to “Every Transmission”.

Client Settings - Client Settings affect various behaviors of the client application at runtime.

• When Exiting Client: This enables a warning message displayed to the user if there are
pending transactions stored on the Agentry Client when they exit the application.

• Prompt on User Change: This enables a prompt when a user change occurs, informing
the user that a synchronization with the Agentry Server must take place to change users
and gives the user the option to cancel the user change. If this is disabled, the
synchronization will still occur to complete a user change, but no prompt will be displayed.

• Module Menu Item: This attribute specifies whether or not the menu item for the current
module is enabled or disabled in the Agentry Client’s View menu at runtime. Selecting the
current module from the View menu will return the user to the module’s main screen set,
regardless of where they may be in the navigation. When disabled, the menu item for the

Agentry App Development

Agentry App Development 267

current module is disabled. Users can always select other module items in this menu for
applications with multiple modules regardless of this setting.

• Synchronize Clocks: This attribute specifies whether or not the system time on the client
device will be reset to that of Agentry Server’s host system time during each transmit. Note
that this time is not the time of the back end system with which the Agentry Server
communicates. It is the system time as reported by the operating system of the Agentry
Server’s host system. This is typically disabled in deployments involving multiple time
zones.

• Screen Size: This setting specifies the size of all screens displayed to the user on the
Agentry Client. This attribute will only effect Agentry Client applications running on a
Windows PC platform capable of full VGA screen resolution. The screen sizes available
for this setting range from 240 x 320 (1/4 VGA) to 1366 x 768. The Screen Size value will
override the screen size attribute for all platform definitions. There is also the available
setting “Allow Resize”. If any selection other than Allow Resize is made, users will not be
able to resize Agentry Client screens. The screen size for all mobile devices, including
smart phones tablets, and other devices, is always full resolution of those devices and users
can never resize the screens.

• Battery Status: For mobile devices, the status of the battery can be displayed on the
Agentry Client. This will appear in either the upper or lower portion of the screen,
depending on the device. Note that this setting has no effect on the Windows PC builds of
the Agentry Client.

• WinCE Navigation: This setting enables support for the arrow keys of a device’s
hardware keyboard. When a user clicks one of the arrow keys, the focus of the screen will
be changed to the next or previous control on that screen. This attribute has no effect on the
Windows PC builds of the Agentry Client, where full keyboard navigation is always
enabled.

• Scan Trigger Shortcut Key: For devices equipped with a scanner, this attribute allows for
the specification of a shortcut key to activate the scanner. This key will be universal to the
application, and will activate both socket and built-in scanners. This attribute will have no
affect on Agentry Clients running on devices not equipped with a scanner.

• Voice Support: Enables voice support for devices that support this feature.
• Title Bar Buttons: This attribute specifies whether or not the close buttons (either an X or

an OK button) are displayed on the title bar of screens within the mobile application. Due
to the behavior of Pocket PC devices, it is recommended that these buttons not be displayed
and that actions are defined within the Agentry application project to close screen sets
within the application, and that users close the application itself using either the File | Exit
menu item, or through an action containing an Exit Application action step. Note that on
Pocket PC devices, screens closed with the title bar’s OK button are not destroyed, but
rather only moved to the end of the “Z” order, hiding them from view. Applications closed
with the X button of the title bar are not actually exited. Any defined behaviors for exiting
an application will not be exhibited. Furthermore, the application itself will still be
running. The behaviors described here are not present on a Windows PC platform.

• Theme Selection: This attribute specifies whether or not the Theme menu item within the
Preference menu of the Agentry Client is displayed. When true (checked) the user can

Agentry App Development

268 SAP Mobile Platform

change the Agentry Client theme using this menu. When false, the user cannot change the
Agentry Client theme and the theme displayed is always the one selected in the Default
Theme attribute. Allowing user’s to select a different theme can have unexpected impact
on the UI of the Agentry Client if styles are defined and in use.

• Default Theme: The theme selected is the default theme displayed on the Agentry Client
at run-time. If Theme Selection is disabled, the selected Default Theme is always
displayed and the user cannot change the theme selection. If Theme Selection is enabled,
the selected Default Theme will be the initially applied theme on the Agentry Client, but
the user can select a different theme at any time.

• Win32 Buttons - Use large buttons: This attribute specifies whether or not to use large
sized buttons. This attribute affects only the Windows PC platform types. When true,
screen buttons are displayed in a large size, generally intended for touch screen support.
This setting affects button definitions for list and detail screens. Built-in buttons, such as
ellipses buttons, icon buttons, and similar controls are not affected. Note that large buttons
are not displayed in the Agentry Editor’s layout view or visual screen editor for screen
definitions. They are displayed in the Agentry Test Environment when the selected
platform is Windows.

Application Styles Attributes
The attributes listed in the Application Styles tab define how styles are to be applied to all
components of the application’s user interface. These style settings may be overridden at
lower levels in the application’s structure. The style settings here also impact what styles are
applied to the Agentry Client’s built in screens and dialogs, such as those for complex table
searches, the transmit dialog, and others. For all style attributes, the option “--Default--” will
default to the operating system’s default font and color options.

Screen Styles

• Tabs: The style to apply to the tab controls representing each screen within an object
screen set. This attribute has no effect on screens within a transaction or fetch screen set.

• Buttons: The style to apply to all button definitions on all application screens. This
includes buttons displayed on built-in Agentry Client screens as well as buttons within
screen definitions.

• Focused Buttons: The style to apply to the button that currently has the focus. This
includes buttons displayed on built-in Agentry Client screens as well as buttons within
screen definitions.

Detail Screen Styles

• Screen: The style to apply to all detail screens defined within the application. This will
affect all portions of the screen not displaying a field or button.

• Fields: The style to apply to all fields displayed on a detail screen.
• Focused Fields: The style to apply to the detail screen field that currently has the focus.
• Read-Only Fields: The style to apply to a detail screen field defined to be read-only. If not

specified, the Fields style is applied.

Agentry App Development

Agentry App Development 269

• Hyperlinks: The style to apply to detail screen field labels defined to be hyperlinks.
• In Progress Edit Screens: The style to apply to screens in which changes are currently

being made and have not yet been applied. This affects screens displayed in List Tile View
and Tile Edit fields.

List Screen Styles

• Screen: The style to apply to all list screens as a whole. This will affect all portions of the
screen not displaying a list, header label, detail pane, or button.

• Header Label: The style to apply to all list screen header labels. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control. This
style is applied to the column labels of any screen containing a list control, including both
built-in Agentry Client screens as well as list screen definitions, and list view field
definitions.

• Rows: The style to apply to all rows on a list screen. The Hyperlinks optional style will
override the Rows style for cells with hyperlinks. This style is applied to the list items of
any screen containing a list control, including built-in Agentry Client screens, list screen
definitions, and list view field definitions.

• Alternate Rows: The style to apply to every other row in a list, beginning with the second
row. The Hyperlinks optional style will override the Alternate Rows style for every other
row where there are cells containing hyperlinks.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style attribute should not be set at the application level. The platform and list
screen definition types both contain a Highlight Rows attribute that should be used.

• Selected Rows: The style to apply to the row or rows currently selected by the user in the
list control. The optional Hyperlink style will be applied to any cells within the selected
row containing a hyperlink.

• Selected No Focus Row: The style to apply to the row or rows currently selected by the
user in the list control, when the input focus is set to some control other than the list control.
The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

• Detail Pane: The style to apply to both the foreground (text) and background of a list
screen’s detail pane. If no detail pane is defined this attribute has no effect on the screen.

Application Images

• About Box Dialog Image: This attribute specifies an image definition to display in the
Agentry Clients’ about box.

• Login Dialog Image: This attribute specifies an image definition to display in the Agentry
Clients’ login screen.

• Module Menu Dialog Image: This attribute specifies an image to display in the Agentry
Clients’ module selection dialog. This dialog is displayed after users log into Agentry
Client applications with multiple modules. Note that within this same module selection
dialog, each module may also display an image. The image defined at the application level

Agentry App Development

270 SAP Mobile Platform

is separate from the module images. For applications with a single module, this attribute
has no effect as the module selection dialog is never displayed.

Application Security Attributes
The attributes in this section control overall security related to items such as failed login
attempts, locking the user out of the client application after failing validation, user ID and
password rules, and idle timeout settings.

User Settings

• Login: This attribute specifies whether or not users are required to perform a transmit
every time the Agentry Client application is started and the user logs in. Note that setting
this option to true requires an available network connection for the client device and users
will be required to perform a successful transmit before the user can use the client
application.

• Login Attempts: This attribute specifies the maximum number of failed login attempts
that may occur before locking the user out of the application. “Unlimited” will never lock
the user out. A failed login will occur if the user enters an incorrect password for the
entered User ID when not required to connect to the Server during login; or if the user fails
user authentication when the Login attribute is set to true and the number of failed attempts
exceeds the value entered here. The resulting behavior of locking out a user is defined in
the Lockout Level attribute described below.

• Lockout Level: This attribute specifies the action to take when a user is to be locked out of
the Agentry Client. This may occur as a result of exceeding the defined Login Attempts,
or based on failed attempts to authenticate the user against the back end system. The four
possible settings for this attribute are:
• Critical: This lockout level specifies that the entire Agentry Client be reset. This

includes the removal of all production data and all application data, as well as
removing the stored user ID and password. Users will be required to log into the
Agentry Client application and perform a successful transmit with the Agentry Server
before being allowed to access the Agentry Client application.

• Severe: The severe lockout level specifies that all module-level production data, i.e.
object instances and pending transactions, be removed from the Agentry Client
application. Complex table and data table records will not be removed. The user will be
required to perform a successful transmit with the Agentry Server before being
allowed to access the client application.

• Medium: This lockout level specifies the Agentry Client will exit and the user will be
required to log into the Agentry Client and perform a successful transmit with the
Agentry Server before being allowed to access the client application. No data is
removed from the application.

• None: This setting indicates that no lockout behavior should take place. This setting
will result in any lockout events being ignored by the Agentry Client.

Agentry App Development

Agentry App Development 271

• Client Database will be encrypted: When true, this attribute specifies the database in
which all client data is stored on the client device, including both production data and
application data, will be encrypted.

User ID

• Case: This attribute specifies the case in which the user ID should be entered and will be
stored. The options are mixed case, uppercase, and lowercase. Note that mixed case does
not require a mixed case user ID, but rather allows for variable case. User IDs may then be
in all upper, all lower, or mixed case.

• Scan User ID: This attribute specifies whether or not users can enter user IDs via the
device’s barcode scanner. This attribute does not require the ID to be scanned, but only
allows for the option. This attribute has no effect on Agentry Clients running on devices
not equipped with a barcode scanner.

Password

• Password Change: This attribute specifies whether or not users can initiate password
changes on the Agentry Client. When true, the users will be able to change the password
based on responses from the back end system indicating their passwords are about to
expire or have expired. Users are required to enter the old password and the new one to
change passwords. Note that enabling this behavior requires the implementation of logic
to process a password change for the user in the back end system.

• Scan Password: This attribute specifies whether or not users can enter passwords via the
device’s barcode scanner. This attribute does not require the password to be scanned, but
only allows for the option. This attribute has no effect on Agentry Clients running on
devices not equipped with a barcode scanner.

Idle Timeout

• Timeout: This attribute specifies whether or not to require users to re-enter their user ID
and password if the device is left idle for a defined duration of time. The duration is set as a
part of this attribute. Also an option is whether or not the user ID should be populated
automatically.

Password Rules

• Minimum Length: This attribute specifies the minimum number of characters of the
password entered on the Agentry Client. The minimum length must be at least 1 to enable
the First Character attribute. This value must be at least 2 to enable the Character Mix
attribute. This value must be equal to or less than the Maximum Length attribute. The
default minimum is none, which does not require a password to be entered on the Agentry
Client.

• Maximum Length: This attribute specifies the maximum number of characters of the
password entered on the Agentry Client. This value must be equal to or greater than the
Minimum Length attribute, or be set to default, which is no maximum length.

Agentry App Development

272 SAP Mobile Platform

• Password Case: This attribute specifies the case in which the user’s password is stored on
the Agentry Client and will be sent to the Server. This may be set to Mixed Case,
Lowercase Only, or Uppercase Only. Note that Mixed Case does not enforce a requirement
of a mixed case password. Rather it merely specifies that the case of the password
characters will not be changed from how they are entered by the user.

• Character Mix: This attribute requires the Minimum Length attribute to be set to at least
2. Character Mix requires passwords entered on the Agentry Client must contain at least
one alphabetical character and one non-alphabetical character. Non-alphabetical
characters exclude non-printable characters.

• First Character: This attribute requires the Minimum Length attribute to be set to at
least 1. First Character specifies that the first character of the password must be an
alphabetical character.

• New vs. Old: This attribute specifies that a new password entered by the users on the
Agentry Clients must be different from the previous password. A difference is based on the
change of at least one character from the previous password to the new one. This attribute
may be impacted by the Password Case attribute. Mixed Case will treat the same letters in
the old and new password as different if at least one letter is entered in a different case. For
Uppercase Only and Lowercase Only Password Case settings, case is ignored and the
same letters entered in a different case will not be treated as a different password.

Module

The module definition is a grouping of definitions providing functionality that logically
belongs together. The module’s attributes and child definitions define the majority of the
behavior and functionality exhibited on the Agentry Client at runtime.

The modules of an application contain the functionality related to the user interface on the
Agentry Client, data storage and structures, data synchronization, and data capture. The child
definitions of a module also have access to all application-level definitions.

An application project must contain at least one module. When multiple modules are defined
for an application, users will be required to select which module to work with when logging
into the Agentry Client application. They will be able to switch from one module to another
using the Agentry Client’s View menu, which will list the defined display name for each
module within the application.

The module’s child definitions are primarily intended to work with other definitions within
the same module. Cross-module functionality can be defined using actions within one module
that may execute actions of another module within the same application.

Module Child Definitions

• Action - An action defines navigation and user interaction for the Agentry Client, bringing
the other components of the Client’s UI together.

• Fetch - A fetch defines how the Agentry Server synchronizes data for a target object
collection by referencing the step definitions to perform this task.

Agentry App Development

Agentry App Development 273

• Object - An object definition encapsulates a business entity and its related data.
• Push - A push defines when it is necessary to push an object in real time from the back end

system to the Agentry Client and how that object’s data is retrieved.
• Report - A report defines a printed tabular report format for the contents of an object

collection on the Agentry Client.
• Rule - A rule defines evaluation logic processed on the Agentry Client that returns a single

value to the caller of the rule.
• Screen Set - The screen set is the main Client user interface definition and defines what

definition type its child screens display.
• Service Event - A service event defines how the Agentry Server synchronizes data

between two back end systems, usually based on a change or “event” occurring in one of
the systems.

• Step - A step defines a piece of processing to be performed by the Agentry Server with a
specific back end system.

• Transaction - A transaction definition defines what data is captured on the Client, how
that data affects a target object instance on the Client, and how the captured data is
processed by the Agentry Server.

Module Attributes

• Name - This is the unique name of the module. This value must be unique among all
modules defined within the application.

• Display Name - This is the text displayed to the users on the Agentry Client application at
runtime. This value appears in the Agentry Client’s Module Selection Screen to represent
the module and also appears in the View menu of the Agentry Client as a menu item.

• Preserve Objects - This attribute specifies whether or not the objects within the module
will be preserved when a new user logs into the Agentry Client on the same device as a
previous user. If checked, the objects will be preserved from one user to the next. If left
unchecked, a user change will result in the objects being removed prior to synchronizing
object data for the new user.

• Image: Specifies the image definition to associate with the module definition. This image
is then displayed for the module in the Agentry Client’s Module Selection Screen
displayed after login for multi-module applications.

• Successful Login Action: Specifies an action defined within the module to be executed
after a user successfully logs into the application. The action executed here targets the
module main object. For multi-module applications where more than one module defines a
Successful Login Action, the order in which those actions are executed is undefined.

• Application Exit Action: Specifies an action defined within the module to be executed
just prior to exiting the application. The action executed here targets the module main
object. For multi-module applications where more than one module defines an
Application Exit Action, the order in which those actions are executed is undefined.

Agentry App Development

274 SAP Mobile Platform

Data Table

A data table definition defines a set of records stored on the Client. Each record consists of two
fields containing a key and value. A data table is intended to contain a small number of records
(less than 100) that may be displayed to users in drop-down lists and other uses. A data table is
defined at the application level and is available to all modules of the application. Its structure
also defines how its data is synchronized.

The intended purpose of a data table is to provide short lists of records that can be created
quickly and with little overhead related to maintaining the data. A data table has no built-in
search support and if searching is necessary it is performed row-by-row (e.g., no binary or
other search algorithms are employed).

As a part of its definition, the data table contains the components to synchronize data. This
includes determining if new data is needed for the table as well as the processes to retrieve the
records for the data table. The definition of a data table requires the selection of an existing
system connection. The type of synchronization components a data table contains is based on
the type of the selected system connection.

Though the synchronization components will differ in form and structure related to the type of
back end system for which they are intended, they are required to always return two general
categories of data to the Agentry Server. The first is a date and time value retrieved from the
back end that indicates the last time when the data source for the data table was last modified in
the back end system. The second is the actual data for the data table’s records.

The date and time value is compared to a date and time value stored internally on the Agentry
Client for each data table instance. This internal value is called the data table’s last update
value. This last update value indicates when the data table was downloaded to the Agentry
Client. When the date and time retrieved from the back end is newer than the Agentry Client’s
last update value for the data table it is the indication that the records for the data table must be
retrieved. The existing records on the Agentry Client will be deleted and replaced with the new
data retrieved for the data table. This is an all-or-none operation and individual records cannot
be selectively replaced.

The specifics of how the date and time values for the data tables are retrieved, and how the
records are retrieved for the data table are provided in the discussions specific to each of the
possible system connection types that may be selected for the data table definition when
initially defined.

Data Table Attributes
The following attributes are applicable to all data tables, regardless of the system connection a
given data table may be using.

• Name: This is the unique name of the data table. This value must be unique among all data
tables defined for the application.

Agentry App Development

Agentry App Development 275

• Display Name: This is the default text displayed to the user on the Agentry Server for the
data table.

• Connection: This is the system connection defined for the back end system containing the
data source for the data table. This attribute is set when the table is initially created. It
cannot be edited for an existing data table definition. The system connection to be used
must exist prior to defining the data table.

• Reload: This attribute specifies whether or not the records of the data table should be
reloaded when a user change occurs on the Agentry Client. When true, all records in the
data table are deleted and completely reloaded during the first transmit of the new user.
Otherwise the records will remain on the Agentry Client during the user change. This
attribute should be set to true when the data table contains records that are user-specific.

SQL Data Table Synchronization Components

When a data table is defined to use a SQL Database system connection, the synchronization
components include a Sync Query and a Data Query.

The Sync Query is expected to return a value identified as LastUpdate. This value should
indicate the date and time the source table in the database was last modified. This value is then
compared to the last update value for the data table provided from the Agentry Client. If the
date and time value returned by the Sync Query is not newer than the one for the data table, no
further processing for the data table occurs.

If the Sync Query LastUpdate value is newer than the Agentry Client’s last update value
for the data table, the Data Query is run. This query is expected to return all records for the data
table, whether or not an individual record is different in the database. This query is expected to
return two columns identified as CODE and VAL to the Agentry Server. The value of the CODE
column must be unique within the return set provided by the Data Query.

Sync Query and Data Query Attributes
• Sync Query - File: Specifies the name and location of the text file (.sql extension)

containing the SQL statement for the Sync Query.
• Data Query - File: Specifies the name and location of the text file (.sql extension)

containing the SQL statement for the Data Query.

HTTP-XML Data Table Synchronization Components

When a data table is defined to use an HTTP-XML system connection, the synchronization
component it contains is an HTTP request.

This request is a child definition to the data table. It can be defined to make a request to a
specified URL and may use the request methods GET, POST, HEAD, or PUT. The HTTP
request itself contains two types of child definitions: Request Arguments and Response
Mappings.

The request arguments contain the data values passed as arguments to the back end system as a
part of the request being made. The response mappings are defined using XPaths to retrieve

Agentry App Development

276 SAP Mobile Platform

data from structured XML return values provided by the back end system as a result of the
HTTP request. These mappings can include the back end system’s last update value for the
data table’s data source, the data values for the records to be stored in the data table, and other
types of data.

There is a single request made to synchronize the data table, with the value mapped to the
LastUpdate value determining whether or not the data values returned should be used to
replace the data table on the Agentry Client.

Data Table HTTP Request Child Definitions
Following is a list of the child definitions for the HTTP Request within an HTTP-XML data
table.

• Request Arguments: This definition encapsulates an argument to be passed with the
request to the back end system. These arguments can include data contained within the
mobile application.

• Response Mappings: This definition encapsulates the XML data returned by the HTTP
Request. The specific values are extracted from the XML return data using XPaths defined
within each response mapping. The mapping “maps” the extracted values to values within
the mobile application.

Data Table HTTP Request Attributes
The following attributes pertain the HTTP Data Request of a data table defined to use an
HTTP-XML system connection.

• Name: The name of the request, set automatically based on the parent data table name.
May be modified if desired.

• URL: The URL to the specific CGI or other process being called by the HTTP request to
synchronize the data table.

• Method: The HTTP request method for the request. May be one of GET, POST, HEAD, or
PUT.

HTTP Request Argument

The request argument definition encapsulates a data value to be passed from the mobile
application to the process being called by the parent HTTP request definition. The request
argument specifies the argument type, which may be CGI Argument, Cookie, HTTP Header,
or XML Body. The request argument also specifies the data or data source within the mobile
application to pass as the argument to the process or service being called by the parent HTTP
request definition.

For a data table, the data value may be the user ID, the name of the data table, a fixed string
whose value is defined as a constant within the request argument, or markup text. A given
parent HTTP request may contain multiple request arguments. The order in which they are
passed to the process or service when called is defined in the parent HTTP request’s list of
request arguments.

Agentry App Development

Agentry App Development 277

HTTP Request Argument Attributes
The attributes of a request argument depend in part on the data type of the argument (Data
Type attribute). The following list makes note of those attributes specific to a certain argument
data type.

• Argument Type: This attribute specifies the type of argument the definition contains.
This may be one of CGI, Cookie, HTTP Header, or XML Body.

• Name: Alternately displayed as Argument Name, Cookie Name, Header Name, or Name
depending on the Argument Type selection. This value must be unique among all request
arguments defined within the same parent HTTP request definition.

• Data Type: Specifies the data value or source for the data value for the request argument.
For a data table this may be the Table Name, User ID, Small or Large Markup, or a Fixed
String value.

• String: This attribute is available only when the Data Type attribute is set to Fixed String.
String contains the constant string value that is the request argument’s data.

• Markup Text: This attribute is available only when the Data Type attribute is set to Small
Markup or Large Markup. Markup Text contains the single line (Small Markup) of
markup text or the contents of the Markup File (Large Markup) that is the data for the
request argument.

• Markup File: This attribute is available only when the Data Type attribute is set to Large
Markup. Markup File contains a reference to the text file containing the multi-line
markup text. This file is displayed in the Markup Text field directly below the file name in
the Editor and can be authored or modified directly in this multi-line field.

HTTP Request Response Mapping

The response mapping definition is a child to an HTTP request definition. This definition
maps a data value returned from the process called by the HTTP request to a value within the
mobile application. This value may be extracted from structured XML using XPath or XSL. It
may also be a Cookie value or the HTTP Header.

For a data table the values may be mapped to the code or value fields in a data table record, an
error message, the last update value to be compared against the data table’s last update, a local
data tag or local XML value, or to the user ID value that may be used in place of the ID entered
to log into the Agentry Client.

HTTP Request Response Mapping Attributes
The response mapping attributes are in part dependent on the selection made in the Mapping
Type attribute. Those specific to a certain type are denoted in the following list.

• Mapping Type: This attribute specifies the mapping type. This may be Cookie, HTTP
Header, XPath Expression, or XML Transformation.

• Base XPath: This attribute is only available when the Mapping Type is set to XPath
Expression or XSL Transformation. This attribute is optional and should be used when
returning multiple instances of the same data element in the XML content. When a Base

Agentry App Development

278 SAP Mobile Platform

XPath is defined for a response mapping, the same value will be set by default in the add
wizard for subsequent response mappings within the same parent HTTP request
definition.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath markup to extract the desired value from
structured XML data returned from the HTTP Request.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data to be mapped
to a value for the request.

• Cookie Name: This attribute is only available when the Mapping Type is set to Cookie. It
contains the name of the cookie for the response mapping.

• Header Name: This attribute is only available when the Mapping Type is set to HTTP
Header. It contains the name of the HTTP header for the response mapping.

• Maps To: This attribute specifies where the value extracted by the response mapping is
stored in the mobile application. This may be one of the following values for a data table:
• Data Table Key: This selection specifies the value extracted by the mapping contains

the key or code field value for each data table record.
• Data Table Value: This selection specifies the value extracted by the mapping contains

the value field value for each data table record.
• Error Message: This selection will map the data to error text displayed by the mobile

application.
• Last Update: This selection specifies the extracted value is a date and time indicating

when the data table’s source in the back end system was last modified. This value is
compared against the internal last update value for the data table as provided by the
Agentry Client.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will be the value extracted by the response mapping. When selected, the attribute
String Name will be available to name the new local data tag. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping. When selected, the
attribute XML Name will be available to name the new local data tag. This is the
equivalent to calling the SDML function tag <<localXML ...>>.

• User ID: This selection will map the value extracted by the response mapping to the
user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Agentry Server set
the user ID, setting it here will override that value. This will then be the value available
for all HTTP-XML system connection processing where the data tag <<user.id>>
is referenced.

Agentry App Development

Agentry App Development 279

• String Value: This attribute is available when the map type is set to Local String. It
contains the name of the data tag being created by the mapping. This is the name by which
the data tag is referenced in subsequent references.

• XML Name: This attribute is available the map type is set to Local XML. It contains the
name of the data tag being created by the mapping. This is the name by which the data tag is
referenced in subsequent references.

Java Virtual Machine Data Table Synchronization Components

When a data table is defined to use a Java Virtual Machine system connection, its
synchronization component is a single Java source file. This file contains the skeleton
structure for a Java class that extends the Agentry Java API class DataTable. The name
given to this class matches the name of the data table definition itself and should not be
changed.

When the table is defined, the wizard for creating Java classes provided with the Eclipse Java
perspective is used. This allows the developer to select the package to which the new class will
be added. The source .java file created will then be stored according to the configuration of
the project and package selected for the new class. Alternately an existing class in a package
within the Java perspective may be selected. This class must extend the Agentry Java API class
DataTable.

This skeleton class declaration includes three methods:

• The Constructor method.
• An override method for the data table iterator() method. This method is intended to

contain the logic to retrieve the data from the back end system via the Java interface it
provides. It is then intended to return an iterator for the data table object.

• An override method of isOutOfDate(). This method is expected to return true or false
based on whether or not the data for the table is out of date. When true is returned by this
method, the iterator() method will be called. When false, processing for the data table by
the Agentry Server will be complete.

In versions of the Agentry Mobile Platform prior to 5.1, the source class was stored on the
Agentry Server’s file system. This behavior is deprecated in versions 5.1 and later. Agentry
application projects created prior to this release are still supported and the Java logic will still
be processed correctly. New data tables for Java Virtual Machine system connections should
use the new procedure for defining the Java synchronization component.

Complex Table

The complex table definition defines a table of records containing multiple fields stored on the
Agentry Client in a structured and searchable format. A complex table can contain large
amounts of data with records numbering in the thousands. Included in the complex table are
the fields for its records and indexes on fields to provide search functionality and structure to
the overall data in the table. The complex table definition also defines how its data is
synchronized.

Agentry App Development

280 SAP Mobile Platform

The fields and indexes of a complex table define the structure of the records. A complex table
must have a minimum of one index definition, which is the primary index. This index is
defined for the field containing the unique identifier for each record. This field and index are
then used during synchronization to identify records for addition, replacement, or removal.

The synchronization components of a complex table depend on the system connection the
table definition uses for its data source. The synchronization components will match the
system connection type. Independent of the system connection type, the synchronization logic
for a complex table should account for retrieving all records when the table is in a rebuild state,
retrieving just new or modified records during normal synchronization, as well as determining
which records should be removed from the complex table.

The rebuild state of a complex table is set under various conditions. These include a published
modification to the complex table definition, a user change occurring on the Agentry Client,
and optionally based on the rebuild state being forced via administrator actions. During
synchronization between the Agentry Client and Agentry Server, the Agentry Server will
indicate if the complex table is in a rebuild state to the Agentry Client. The Agentry Client will
remove all records for the complex table from the client device. The synchronization
processing will retrieve all current records for the complex table and send them to the Agentry
Client, rebuilding the table. This synchronization processing requires the developer to account
for this situation.

When not in a rebuild state, the complex table can be updated selectively. Using an exchange
data model for processing, only those records to be added, those records that need to be
replaced, or those that need to be removed from the Agentry Client are retrieved by the
Agentry Server from the back end system for the complex table. Any unchanged records will
be left unmodified.

Complex Table Child Definitions

• Field: A complex table field definition defines a single piece of data for a complex table
record, including its data type and size.

• Index: A complex table index definition orders the table’s records by a field, making the
table searchable by that field.

Complex Table Attributes

• Name: This is the unique name of the complex table. This value must be unique among all
complex tables defined within the application.

• Display Name: This is the default text displayed to the user on the Agentry Client
identifying the complex table.

• Connection: This is the system connection used by the complex table’s synchronization
components to synchronize the records of the complex table on the Agentry Client.

• Reload: This attribute specifies whether or not the records of the complex table should be
fully reloaded when a user change occurs on the Agentry Client. When true, all records in
the complex table are deleted and completely reloaded during the first transmit of a new

Agentry App Development

Agentry App Development 281

user. When false, the records downloaded by the previous user are kept. This attribute
should be set when the records of the complex table are user-specific.

Complex Table Fields

A complex table field definition defines a field in each record of the table, including the data
type of the field and the size of the data the field can store. A record within the table can consist
of multiple fields of varying types and sizes.

A Complex Table is made up of records on the Agentry Client. Each record in the table is made
up of Fields. Within a Complex Table definition in the Agentry Editor, you define the fields
that make up the table’s records.

Complex Table Field Settings

• Name: This is the name used to uniquely identify the field within the Complex Table.
• Display Name: This is the text value displayed on the Agentry Client to for the field. This

includes the column headers in a Complex Table Search screen, as well as other places.
• Type: This attribute specifies the data type of the field. This is discussed further shortly.
• No. of Characters: This attribute is available only for one of the String type of fields and

specifies the maximum number of characters the field can hold. Note that this is not
necessarily the same as the number of bytes, as is explained in the section of the field data
types. When setting this attribute, the value should be large enough to accommodate the
strings the records will contain. However, it should not be simply set to an overly large
value, as this will waste significant resources on the Client, both in storage and memory.

Field Data Types
There are six data types possible for a Complex Table Field definition. Each controls, first, the
type of data that can be stored in the field and, second, how that data is sorted within the table.
This last aspect can have a significant impact on how a user can search the complex table on a
particular field. Following, each of the data types for a field are listed, along with a description
of the impact each type has.

• ASCII String (case-insensitive): This field type specifies that the field will contain string
characters, each one byte in length. This will support the standard ASCII characters. The
case-insensitive portion indicates that, when the table is searched or sorted on this field, the
case of the characters is not considered. That is, the lett ‘A’ is treated as equal to the letter
‘a’.

• ASCII String (case-sensitive): This field type specifies that the field will contain string
characters, each one byte in length. This will support the standard ASCII characters. The
case-sensitive portion indicates that, when the table is searched or sorted on this field, the
case of the characters is considered. That is, the letter ‘A’ will be sorted after the lett ‘a’.

• International String (case-insensitive): This field type specifies that the field will
contain string characters in the UNICODE format. This supports the non-english language
characters, such as those in Hebrew or Chinese. Note that this also includes characters with
an accent mark. This field type will still include the ASCII characters, as well. The case-

Agentry App Development

282 SAP Mobile Platform

insensitive portion indicates that, when the table is searched or sorted on this field, the case
of the characters is not considered. That is, the letter ‘A’ is treated as equal to the letter
‘a’.

• International String (case-sensitive): This field type specifies that the field will contain
string characters in the UNICODE format. This supports the non-english language
characters, such as those in Hebrew or Chinese. Note that this also characters with an
accent mark. This field type will still include the ASCII characters, as well.

• Number: This field type specifies that the field will contain numeric values only. These
values may be whole numbers or decimal values and may be positive or negative. If you
wish to index a field containing numerical values for the purpose of providing search
functionality to the user on the Agentry Client, that field type should be string. Currently,
Agentry does not contain the control types on the Agentry Client to support searching
numerical values in a complex table.

• Identifier: This field type specifies that the field will contain numeric values only. These
values may only be whole, positive values. Decimal and negative values are not supported.
The purpose of this field type is to explicitly support an identifier field for each record.
Note that this is not a requirement, as the other field types can also be used as the identifier
value for a record. This is covered in detail in the section in Indexes later in this chapter.

Complex Table Indexes

A complex table index definition orders the records of that table by the field for which the
index is created. A field must be indexed to allow for the table to be searched on that field. A
complex table can have multiple indexes. Indexes can be defined to have a parent-child
relationship to give structure to the table’s records.

The Index definition is the most important of the Complex Table. It is this definition type that
makes the Complex Table so useful. When an index is defined, you specify the field to be
indexed. When the Complex Table is downloaded to the Agentry Client, its records will be
sorted by the fields you have indexed. Only those fields that have been indexed can be searched
by the user on the Agentry Client.

Additionally, all Complex Tables must contain at least one index. This is the primary index of
the table. The field for this index must contain the unique value for each record in the table.
Whenever you define the indexes for a Complex Table, the first index defined is the one treated
as the primary index. This cannot be changed once set, so be sure to determine which field
should contain the Primary index beforehand. Also, any complex table definition that does not
contain a primary index cannot be selected for use by any other definition in the application.

Though only those fields which contain an index can be searched on the Agentry Client, do not
simply define one index for each field in the table. There is a certain amount of overhead that
goes into each index definition. Also, whenever the records in the complex table are changed,
each index must be resorted for each new, updated, or deleted record in the table. This also
takes a certain amount of time and resources during a transmit. In a table with a large number
of records, superfluous indexes can result in an unnecessary delay for users during transmit.

Agentry App Development

Agentry App Development 283

Complex Table Index Attributes

• Name: The internal name of the index. This value must be unique among all index
definitions within the same parent complex table.

• Display Name: The value displayed for the index definition on the Agentry Client’s user
interface. In most contexts the index is, to the user, the same as the field and it is a common
practice to set the display name of the index to match the display name of the field for
which it is defined.

• Field: The field for which the index is being created and by which the complex table
records will be sorted.

• Parent Index: The parent index, set to create parent-child indexes within the complex
table.

• Order: This attribute specifies the order in which records should be sorted; either
ascending (default) or descending.

Parent-Child Indexes
In addition to index a field within the complex table, indexes can also be defined to have parent
indexes. This can allow you to create a parent-child relationship among the records of a
complex table. The Primary index cannot be defined to have a parent index.

This structure can be very useful when the records of the table support this kind of
relationship. One example of such data would a complex table containing locations, with each
record representing one location within an industrial park. These locations can be structure to
have parent-child relationships and the indexes for the complex table can be created to support
this. In this case, a parent location could be a building. Within this building there may be five
child locations, one for each floor. Within the first floor of the building, there may be 20 child
locations, one for each office suite. Within the first suite, there may be 15 child locations as
well, one for each room within the suite. Within the Complex Table, each record would
contain, among the other fields, one for the location’s ID and one for its parent location, named
LocationID and ParentID, respectively.

When defining the indexes for the complex table, an index could be defined on the ParentID
field, named ParentIDIdx. Then, a second index definition can be defined for the LocationID
field, and this index would have a parent index of the ParentIDIdx index. Within the user
interface definitions in Agentry, there are the field types used to create a Cascade. If a cascade
were defined for the Locations complex table, the user would first be required to select the
Parent ID. Then, they would be presented with a list of just those records in the table with a
parent ID equal to the one selected. In the Agentry Editor, these controls are defined to use
these parent and child indexes.

SQL Complex Table Synchronization Components

When a complex table is defined to use a SQL Database system connection type, the
synchronization components consist of three SQL statements: Reload State Query, Deleted
Query, and Data Query.

Agentry App Development

284 SAP Mobile Platform

The reload state query can be enabled or disabled based on preference. When enabled, this
query is expected to return the text values “true” or “false.” When the query returns true, the
complex table will set to its rebuild state. The condition under which this query returns true is
completely dependent on the need of the application or implementation. Its intent is to select
from the back end system based on some value or condition that an administrator can easily set
when it is desirable to force the complex table to be fully reloaded on the Agentry Client.
When this query is disabled, it will not be run by the Agentry Server during synchronization
for the complex table.

The data query is always run during synchronization and should include two separate select
statements. Both statements are expected to return records from the database to the Agentry
Server containing the field values for the complex table records. The columns of this return set
must be named to match the names of the complex table fields. The difference between the two
statements contained in the data query is the logic related to which records they will select.
One statement should be written to select all records to be stored in the complex table on the
Agentry Client and under the assumption that the Agentry Client currently contains no
records. This statement will then be run for only the rebuild state. The second statement should
include logic in support of the exchange data model of synchronization, and should retrieve
only new or modified records from the database that will be updated to the records stored on
the Agentry Client. To determine if the complex table is in a rebuild state, the SDML data tag
<<rebuild>> is used. This tag will return true when the rebuild state is set, and false when it
is not. The data query will likely check this data tag using the <<if...>> function tag,
which should then return the appropriate statement.

The deleted query is only run when the complex table is not in a rebuild state. This query is
expected to return a single column identified as the key field in the complex table. Any values
returned by this query will be sent to the Agentry Client so that the Agentry Client will delete
the records with the matching key field value from the complex table.

Reload State, Data, and Deleted Query Attributes

• Enabled: This attribute is only found for the reload state query. It specifies whether the
reload state query is enabled or disabled. The reload state query is only run during
synchronization when it is enabled.

• File: All three query components contain the File attribute. It specifies the location of the
text file (.sql file extension) relative to the Agentry Development Server’s installation
location.

Java Complex Table Synchronization Components

When a complex table is defined to use a Java Virtual Machine system connection type, its
synchronization component consists of a Java source file. This file contains a skeleton class
declaration. This class is created specific to the complex table definition and extends the
Agentry Java API class ComplexTable.

When the table is defined, the wizard for creating Java classes provided with the Eclipse Java
perspective is used. This allows the developer to select the package to which the new class will

Agentry App Development

Agentry App Development 285

be added. The source .java file created will then be stored according to the configuration of
the project and package selected for the new class. Alternately an existing class in a package
within the Java perspective may be selected. This class must extend the Agentry Java API class
ComplexTable.

This skeleton class includes the following methods:

• The Constructor method for the class
• An override implementation of dataIterator(). This method is intended to contain

the logic to retrieve the data from the back end system for the complex table records. It
returns an iterator to the data object created to store this returned data. The Agentry Server
calls this method during synchronization and uses the returned iterator to extract the data
for the records from the array of data objects. Records returned by this method are sent to
the Client to be added to the complex table, or to replace those records with matching key
field values.

• An override implementation of deleteIterator(). This method is intended to
contain the logic to retrieve the key field values from the back end system for the complex
table records to be deleted from the client application. It returns an iterator to an array of
the data object created to store this returned data. The Agentry Server calls this method
during synchronization and uses the returned iterator to extract the key field data for the
records from the array of data objects. Records returned by this method are deleted from
the Client.

• The method willRebuildTable() can be created within the complex table class if
needed.This method is called by the Agentry Server after the constructor method has been
called. Its logic should check for any administrator defined conditions within the back end
system to force a complex table rebuild. This method is expected to return a Boolean value.
True will set the rebuild state for the complex table.

• The method build() can be created within the complex table class if needed. This
method is provided to allow for a single call to the back end system to retrieve new,
updated, and deleted records. If a build method is present it will be called by the Agentry
Server before the iterator methods. In this scenario, the iterator methods are still expected
to provide access to the returned data. However, the build method will have already
retrieved it. If two separate calls are needed to retrieve updates to the table and deletions
from the table, the build() method should not be used. The logic for those separate calls
should be contained in the iterator methods, which are always called by the Agentry
Server.

In versions of the Agentry Mobile Platform prior to 5.1, the source class was stored on the
Agentry Server’s file system. This behavior is deprecated in versions 5.1 and later. Agentry
application projects created prior to this release are still supported and the Java logic will still
be processed correctly. New complex tables for Java Virtual Machine system connections
should use the new procedure for defining the Java synchronization component.

Agentry App Development

286 SAP Mobile Platform

HTTP-XML Complex Table Synchronization Components

When a complex table is defined to use an HTTP-XML system connection, its
synchronization components consist of three HTTP request child definitions: Update
Request, Rebuild Request, and Deleted Request.

Each request has the same overall structure and attributes, which includes the URL for the
request and the request method. Likewise, the request argument and response mapping child
definitions also contain the same attributes. The difference between these requests is when
they are sent to the back end system, and what the data they are expected to return is used for in
relation to the complex table.

The update request definition is sent to the back end during normal synchronization. This
request is expected to return data for the complex table representing records to be added or
replaced on the Agentry Client. Therefore it should contain one child data mapping definition
for each field in the complex table.

The rebuild request is sent to the back end system when the complex table is in a rebuild state.
This request is expected to return the data for all records that should be stored in the complex
table on the Agentry Client. The rebuild state means the complex table on the Agentry Client is
going to be cleared of all records before the request is sent. This request should contain child
data mapping definitions for each field in the complex table.

Complex Table HTTP Request Child Definitions
Following is a list of the child definitions for each of the HTTP Requests within an HTTP-
XML complex table.

• Request Arguments: This definition encapsulates an argument to be passed with the
request to the back end system. Includes the ability to use data within the mobile
application with the argument.

• Response Mappings: This definition encapsulates the XML data returned by the HTTP
request. The specific values are extracted from the XML return data using XPaths defined
within each response mapping. Attributes are also set to map the extracted values to data
structures within the mobile application.

Complex Table HTTP Request Attributes
The following attributes are set in all three HTTP request definitions within an HTTP-XML
Complex Table.

• Name: The name of the request, set automatically based on the parent complex table name
and the request type. May be modified as needed.

• URL: The URL to the specific CGI or other process being called by the HTTP request to
synchronize the complex table.

• Method: The HTTP request method for the request. May be one of GET, POST, HEAD, or
PUT.

Agentry App Development

Agentry App Development 287

HTTP Request Argument

The request argument definition encapsulates a data value to be passed from the mobile
application to the process being called by the parent HTTP request definition. The request
argument specifies the argument type, which may be CGI Argument, Cookie, HTTP Header,
or XML Body. The request argument also specifies the data or data source within the mobile
application to pass as the argument to the process or service being called by the parent HTTP
request definition.

For a complex table, the data value may be the user ID, the name of the complex table, a fixed
string whose value is defined as a constant within the request argument, or markup text. A
given parent HTTP request may contain multiple request arguments. The order in which they
are passed to the process or service when called is defined in the parent HTTP request’s list of
request arguments.

HTTP Request Argument Attributes
The attributes of a request argument depend in part on the data type of the argument (Data
Type attribute). The following list makes note of those attributes specific to a certain argument
data type.

• Argument Type: This attribute specifies the type of argument the definition contains.
This may be one of CGI, Cookie, HTTP Header, or XML Body.

• Name: Alternately displayed as Argument Name, Cookie Name, Header Name, or Name
depending on the Argument Type selection. This value must be unique among all request
arguments defined within the same parent HTTP request definition.

• Data Type: Specifies the data value or source for the data value for the request argument.
For a complex table this may be the Table Name, User ID, Small or Large Markup, or Fixed
String.

• String: This attribute is available only when the Data Type attribute is set to Fixed String.
String contains the constant string value that is the request argument’s data.

• Markup Text: This attribute is available only when the Data Type attribute is set to Small
Markup or Large Markup. Markup Text contains the single line (Small Markup) of
markup text or the contents of the Markup File (Large Markup) that is the data for the
request argument.

• Markup File: This attribute is available only when the Data Type attribute is set to Large
Markup. Markup File contains a reference to the text file containing the multi-line markup
text. This file is displayed in the Markup Text field directly below the file name in the
Editor.

HTTP Request Response Mapping

The response mapping definition is a child to an HTTP request definition. This definition
maps a data value returned from the process called by the HTTP request to a value within the
mobile application. This value may be extracted from structured XML using XPaths or XSL.
It may also be a Cookie value or the HTTP Header.

Agentry App Development

288 SAP Mobile Platform

For a complex table the values may be mapped to the fields in a complex table record, an error
message, the last update value to be compared against the complex table’s last update, a local
data tag or local XML value, or to the user ID value that may be used in place of the ID entered
to log into the Agentry Client.

HTTP Request Response Mapping Attributes
The response mapping attributes are in part dependent on the selection made in the Mapping
Type attribute. Those specific to a certain type are denoted in the following list.

• Mapping Type: This attribute specifies the mapping type. This may be one of Cookie,
HTTP Header, XPath Expression, or XML Transformation.

• Base XPath: This attribute is only available when the Mapping Type is set to XPath
Expression or XSL Transformation. This attribute is optional and should be used when
returning multiple instances of the same data element in the XML content. When a Base
XPath is defined for a response mapping, the same value will be set by default in the add
wizard for subsequent response mappings within the same parent HTTP request
definition.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath value to extract the desired value from
structured XML data returned from the HTTP Request.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data to be mapped
to a value for the request.

• Cookie Name: This attribute is only available when the Mapping Type is set to Cookie. It
contains the name of the cookie for the response mapping.

• Header Name: This attribute is only available when the Mapping Type is set to HTTP
Header. It contains the name of the HTTP header for the response mapping.

• Maps To: This attribute specifies where the value extracted by the response mapping is
stored in the mobile application. This may be one of the following values for a complex
table:
• Complex Table Field: This is the default selection and will result in the value being

mapped to the selected complex table field in the table records. This enables the field
Field Name, where the complex table field to which the return value is mapped.

• Error Message: This selection will map the data to error text display by the mobile
application.

• Last Update: This selection specifies the extracted value is a date and time indicating
when the complex table’s source in the back end system was last modified. This value
is mapped to each record. However, the latest date and time value for all records is the
one stored with the complex table on the Client.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will the value extracted by the response mapping. When selected, the attribute String

Agentry App Development

Agentry App Development 289

Name will be available to name the local data tag created. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping.

• User ID: This selection will map the value extracted by the response mapping to the
user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Server set the user
ID, setting it here will override that value. This will then be the value available for all
HTTP-XML system connection processing where the data tag <<user.id>> is
referenced.

• Field Name: This attribute is available when the map type is set to Complex Table Field.
This attribute specifies the complex table field to which the values extracted by the
mapping is assigned in the complex table records.

• String Value: This attribute is available when the map type is set to Local String or Local
XML. It contains the name of the data tag being created by the mapping. This is the name
by which the data tag is referenced in subsequent references.

Transmit Configuration

The transmit configuration defines how the application on the Agentry Clients can
communicate with the Agentry Server. It can define what application-level data definitions to
synchronize and the address and port number of an Agentry Server. It also defines whether to
log a user out of the Server when a transmit has completed, or to keep them connected to
provide real-time communications functionality.

The areas of the communications behavior include:

• The Agentry communications protocol to be used.
• What actions to take, if any, in the event of a communications error.
• Whether or not data tables and complex tables should be synchronized.
• Address and port numbers for the Agentry Server and Midstation.
• Whether or not the client should remain logged in for real-time communications.
• Various aspects of using a modem, such as the Windows Network connection to use, what

to do if not currently connected, and other related behaviors.

A transmit configuration is defined for an available communications method on the client
device. As an example, if a wireless LAN connection will be available to client devices in the
deployment, a transmit configuration for this connection should be defined. If a wireless WAN
connection is also available, a transmit configuration should also be defined for this
connection type.

Each transmit configuration defined in the application will be listed in the built-in screen
called the Transmit Dialog on the Agentry Client. For this reason it is important to consider the
proper setting for each transmit dialog’s Display Name, as it is this value that will be listed to
the user.

Agentry App Development

290 SAP Mobile Platform

Within the transmit configuration’s attributes is the Connect Type. This attribute can be set to
one of three options:

• Agentry Next Generation Encryption Layer, or ANGEL.
• Midstation
• Unencrypted Network Connection

Each of these connection types perform communications using the TCP/IP protocol. The
connection type refers to the type of connection in the context of the application to be used
when the transmit configuration is selected by the user on the client application.

Syclo recommends the ANGEL connection for all applications developed going forward.
Applications developed using versions of the Agentry Mobile Platform prior to 4.4 being
upgraded to the latest platform should be modified so that all transmit configurations use the
ANGEL connect type. The Midstation and unencrypted Network Connection types are still
available for the purposes of backwards compatibility and will be deprecated in a future
release of the platform.

Transmit Configuration Attributes
General Settings:

• Name: This is the unique name of the transmit configuration. This value must be unique
among all transmit configurations defined for the application.

• Display Name: This is the text displayed to the user on the Agentry Client for the transmit
configuration in the Client’s Transmit Dialog.

• Connect Type: This is the communications protocol the Agentry Client is to use when
synchronizing with the Agentry Server The options here are ANGEL or Unencrypted
Network Connection. This attribute will not be definable in a future release of Agentry and
all transmit configurations will use the ANGEL protocol.

• Group: This is the group into which the transmit configuration is organized within the
application. This designation is provided for organizational purposes, and there are two
options available by default: Fast and Slow. A new group can be created by entering a name
in this field. It will then be available in this same drop down for all transmit configurations
within the same application project.

• Failover to: This attribute can be set to any other transmit configuration within the
application. When set the Agentry Client will switch to the selected transmit configuration
if it is unable to connect the Agentry Server using the first transmit configuration.

• Check Data Tables: This attribute specifies whether or not the data tables within the
application should be synchronized when the transmit configuration is used. This is
normally unchecked for transmit configurations intended for slower connection types.

• Check Complex Tables: This attribute specifies whether or not the complex tables within
the application should be synchronized when the transmit configuration is used. This is
normally unchecked for transmit configurations intended for slower connection types.

Server Address Settings:

Agentry App Development

Agentry App Development 291

• Address: This attribute can be set to the IP address or network name of the host system for
the Agentry Server. When set to default, the host will be the one entered by the user on the
Client during the initial transmit.

• Port: This attribute can be set to the port number of the Agentry Server with which the
Client is to connect using the transmit configuration. This is normally set to allow for
multiple Agentry Servers running on the same host system, or to allow access through a
firewall between the Client and Server.

Transmit Configuration - Session Attributes
General Settings:

• Stay Logged In: This attribute controls whether the client user will remain logged in and
the Agentry Client will remain connected to the Agentry Server. The purpose of setting
this attribute is to support real-time communications within the mobile application, which
includes Background Sending and Push behaviors. This requires a constant network
connection be available to the Client’s. This attribute must be set for any of the other
Session attributes to be enabled for the transmit configuration.

• Prompt on Log In: This attribute applies when a the connection between the Agentry
Client and Agentry Server is lost, and when the transmit configuration is defined to attempt
to reconnect. A prompt can be displayed to the user in this situation when the connection is
re-established, or hidden from the user based on this attribute setting.

• Prompt on Log Out: This attribute controls whether or not the user is prompted when the
Agentry Client is logged out of the Agentry Server. When set to false, no prompt is
displayed. This only applies when the connection for the transmit configuration is lost and
the transmit configuration is set to stay logged in.

• Inactive Timeout: This attribute specifies the time limit, in hours, minutes, and seconds,
the Agentry Client should remain connected to the Agentry Server with no activity.
Activity is defined as the transmission of data between the Client and Server.

• When Off-line: This attribute controls whether or not the Agentry Client should attempt
to reconnect to the Agentry Server when the connection has been lost. If the Client should
reconnect, the duration of time to wait before attempting to reconnect is set in minutes and
seconds.

• Attempts: This numeric attribute is set only when the When Off-line attribute is set to
reconnect. The attempts attribute defines how many attempts to make before failing. If the
number of attempts is tried without success, the behavior of the Agentry Client is dictated
by the transmit configuration’s Failover to attribute, as well as the Prompt on Log In/Log
Out attributes.

Background Sending:

• Allow: This attribute enables background sending of pending transactions on the Agentry
Client. When this attribute is enabled the Client will attempt to send transactions to the
Agentry Server in the background as soon as they are applied.

Agentry App Development

292 SAP Mobile Platform

• Retry Period: This attribute specifies the amount of time in hours, minutes, and seconds
to wait between failed attempts to send a transaction in the background.

• Attempts: This specifies the number of attempts to make at sending a transaction in the
background before failing.

Push Session:

• Allow: This attribute enables Server Push functionality. This functionality also requires
the definition of a push within a module of the application. When enabled, users
connecting the server using the transmit configuration will be logged in to the Agentry
Server as a Push User. This also opens the Agentry Client to receiving push data.

• Retry Period: This attribute specifies how long the Agentry Server should wait before
attempting to re-send data for a push when a failure occurs.

• Attempts: This attribute specifies how many attempts the Agentry Server should make to
re-push data before failing.

• Client Port: This attribute specifies the port upon which the Agentry Client listens for
push communications from the Server. The default port is 7001.

Transmit Configuration - Modem Connection Attributes

• Check for Modem Connection: This attribute specifies whether or not the Agentry Client
should check for a modem connection when the transmit configuration is used. If true, this
check is made prior to beginning the transmit. This attribute must be true for any of the
remaining modem attributes to be enabled.

• Connection Name: This attribute can be set to the name of any Windows network
connection configured on the client device. It can also be set to Any Dial-Up Connection.
In the case of the former, it will use the settings of the named connection to establish the
modem connection to the network. If set to “Any Dial-Up Connection,” the user will be
required to establish the network connection manually outside the mobile application
before beginning the transmit. In this case, the remaining modem connection attributes are
not enabled.

• If Not Connected: This attribute specifies whether the Agentry Client should attempt to
create a connection using the Windows network connection named in Connection Name
when there is no current connection. If this is set to false, the remaining modem connection
attributes are disabled.

• Connect Prompt: This attribute is set to the message to display to the user prior to the
Agentry Client attempting to create a modem connection. If this attribute is left blank, no
message will be displayed to the user prior to creating the connection. Normally the
contents of this message prompt the user to connect a phone line or perform similar actions
in order for the connection to be made.

• Username: This attribute prompts the user to enter a user name for the network
connection. This will be used as the login name for the network connection once the
modem’s hand shaking processes are successful. If this is set to false, the users Agentry
Client login will be used.

Agentry App Development

Agentry App Development 293

• Password - This attribute prompts the user to enter a password for the network connection.
If this attribute is set to false, the users Agentry Client password will be used.

• Modem Init Wait: This attribute specifies the amount of time in milliseconds the Agentry
Client should wait for the client device’s modem to initialize before beginning the dial-up
process.

• Post-connect Wait: This attribute specifies the amount of time in milliseconds the
Agentry Client should wait after the network connection has been made before beginning
the transmit process between the Client and Agentry Server.

• Close Connection: This attribute specifies whether the connection made by the transmit
configuration should be closed if no data has been transmitted between the Agentry Client
and Agentry Server for the specified amount of time. The attribute can be set to Never,
meaning the connection will not be closed, or to the minutes and seconds to wait before
closing the connection.

System Connection

A system connection sets the connection type the Agentry Server will use to synchronize data
with a back end system. A system connection specifies what type of system the Agentry
Server is communicating with: SQL Database, Java Virtual Machine, HTTP-XML Server, or
File System.

An Agentry application project must have at least one system connection. More system
connections can be added if the application requires the Agentry Server to communicate with
multiple back end systems. Each system connection may be of different types, or multiple
connections for the same type can be defined, depending on the environment in which the
mobile application will run.

There are four supported System Connection types:

• SQL Database - This system type is used when the Agentry Server needs to communicate
with a database system using the Structured Query Language, or SQL. This includes
database types such as Oracle or SQL Server.

• Java Virtual Machine - This system type is used when the Agentry Server needs to
communicate with an interface using the Java Virtual Machine. This logic is implemented
using the Java development language and includes usage of the Agentry Java API.

• HTTP/XML Server - This system type is used when the Agentry Server needs to
communicate with an HTTP server by making HTTP requests that will return structured
XML data.

• File System - This system type is used when the Agentry Server needs to communicate
with the host system upon which the Server has been installed, specifically for file access
or command-line processing.

The SQL Database and File System connection types have only the two attributes of Name and
the ID number. The name is set by the developer when the system connection is defined. The
ID number is generated automatically by the Agentry Editor. This ID number ties the
definition to the set of configuration options, configured in the Agentry Server.

Agentry App Development

294 SAP Mobile Platform

The Java Virtual Machine connection type contains the additional attribute API Version. This
attribute specifies the version of the Agentry Java API to be used by the mobile application.
For all new development, version 5 of this API should be used. Version 4 is available for
existing applications developed on versions of the Agentry Mobile Platform prior to the
version 5.0 release.

A system connection defined for the HTTP-XML connection type contains the child
definition type Validate User Request. This is an HTTP Request definition intended to validate
the client user, as well as to capture user information to be stored in the <<user.info>>
SDML data tag.

Validate User Request

When a system connection is defined for an HTTP-XML connection type, it can contain one
or more HTTP Request child definitions called Validate User Requests. These requests can be
made to validate the client user during transmit. This request can also be used to create one or
more <<user.info>> SDML data tags.

The validate user request is sent to the back end system at the beginning of the transmit process
as a part of the user validation behavior. Each validate user request definition includes child
definitions to encapsulate the request arguments, as well as those to map any data returned by
the request to structures within the mobile application.

Validate User Request Child Definitions

• Request Arguments: This definition encapsulates an argument to be passed with the
request to the back end system. Includes the ability to use data within the mobile
application with the argument.

• Response Mappings: This definition encapsulates the XML data returned by the HTTP
Request. The specific values are extracted from the XML return data using XPaths defined
within each response mapping. The mapping “maps” the extracted values to values within
the mobile application.

Validate User Request Attributes

• Name: The name of the request, set by default to ValidateUser. May be modified if desired.
• URL: The URL to the specific CGI or other process being called by the HTTP request.
• Method: The HTTP request method for the request. May be one of GET, POST, HEAD, or

PUT.

Validate User Request Argument

The request argument definition encapsulates a data value to be passed from the mobile
application to the process being called by the parent validate user request definition. The
request argument specifies the argument type, which may be CGI Argument, Cookie, HTTP
Header, or XML Body. The request argument also specifies the data or data source within the

Agentry App Development

Agentry App Development 295

mobile application to pass as the argument to the process or service being called by the parent
validate user request definition.

For an HTTP-XML system connection, the data value may be the user ID, the user’s password,
a fixed string whose value is defined as a constant within the request argument, or markup text.
A given parent validate user request may contain multiple request arguments. The order in
which they are passed to the process or service when called is defined in the parent validate
user request’s list of request arguments.

HTTP Request Argument Attributes
The attributes of a request argument depend in part on the data type of the argument (Data
Type attribute). The following list makes note of those attributes specific to a certain argument
type.

• Argument Type: This attribute specifies the type of argument the definition contains.
This may be one of CGI, Cookie, HTTP Header, or XML Body.

• Name: Alternately displayed as Argument Name, Cookie Name, Header Name, or Name
depending on the Argument Type selection. This value must be unique among all request
arguments defined within the same parent validate user request definition.

• Data Type: Specifies the data value or source for the data value for the request argument.
For a complex table this may be the User ID, user’s password, Small or Large Markup, or
Fixed String.

• String: This attribute is available only when the Data Type attribute is set to Fixed String.
String contains the constant string value that is the request argument’s data.

• Markup Text: This attribute is available only when the Data Type attribute is set to Small
Markup or Large Markup. Markup Text contains the single line (Small Markup) of
markup text or the contents of the Markup File (Large Markup) that is the data for the
request argument.

• Markup File: This attribute is available only when the Data Type attribute is set to Large
Markup. Markup File contains a reference to the text file containing the multi-line markup
text. This file is displayed in the Markup Text field directly below the file name in the
Editor.

Validate User Request Response Mapping

The response mapping definition is a child to a validate user request definition. This definition
maps a data value returned from the process called by the HTTP request to a value within the
mobile application. This value may be extracted from structured XML using XPaths or XSL.
It may also be a Cookie value or the HTTP Header.

For an HTTP system connection the values may be mapped to the user ID, validation, partial
validation, the <<user.info>> set of SDML data tags, an error message, a local data tag,
or a local XML data tag.

Agentry App Development

296 SAP Mobile Platform

HTTP Request Response Mapping Attributes
The response mapping attributes are in part dependent on the selection made in the Mapping
Type attribute. Those specific to a certain type are denoted in the following list.

• Mapping Type: This attribute specifies the mapping type. This may be one of Cookie,
HTTP Header, XPath Expression, or XML Transformation.

• Base XPath: This attribute is only available when the Mapping Type is set to XPath
Expression or XSL Transformation. This attribute is optional and should be used when
returning multiple instances of the same data element in the XML content. When a Base
XPath is defined for a response mapping, the same value will be set by default in the add
wizard for subsequent response mappings within the same parent HTTP request
definition.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath value to extract the desired value from
structured XML data returned from the HTTP Request.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data to be mapped
to a value for the request.

• Cookie Name: This attribute is only available when the Mapping Type is set to Cookie. It
contains the name of the cookie for the response mapping.

• Header Name: This attribute is only available when the Mapping Type is set to HTTP
Header. It contains the name of the HTTP header for the response mapping.

• Maps To: This attribute specifies where the value extracted by the response mapping is
stored in the mobile application. This may be one of the following values for a complex
table:
• User ID: This selection will map the value extracted by the response mapping to the

user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Agentry Server set
the user ID, setting it here will override that value. This will then be the value available
for all HTTP-XML system connection processing where the data tag <<user.id>>
is referenced.

• Validation: This selection will map the value extracted by the response mapping to the
validation structures for the Agentry Server. This value is used to indicate whether or
not the user passed validation.

• Partial Validation: This selection will map the value extracted by the response
mapping to the validation structures for the Agentry Server. This differs from the
Validation selection in that mapping the validation result to partial validation can fail
user validation with a false response, just as the validation response will, but true for
Partial Validation will not fully validate the user. This is intended to provide support for
validation using multiple system connections.

• Error Message: This selection will map the data to error text display by the mobile
application.

Agentry App Development

Agentry App Development 297

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will the value extracted by the response mapping. When selected, the attribute String
Name will be available to name the local data tag created. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping.

• Save to User info: This selection will map the value extracted by the response mapping
to the set of data tags in the <<user.info>> group. When this selection is made,
you will also be required to enter a name for the data tag. Referencing these values is
then accomplished via the syntax <<user.info.name>>.

• String Value: This attribute is available when the map type is set to Local String or Local
XML. It contains the name of the data tag being created by the mapping. This is the name
by which the data tag is referenced in subsequent references.

• With Name: This attribute is available when the map type is set to Save to User Info. it
contains the name of the data tag being created by the mapping. This is the name by which
the data tag is referenced in subsequent references.

Global

A global definition defines a constant value, including data type, for the application. This
value can be referenced throughout the application, both by the attributes of other definition
types and for use in synchronization components. A global value cannot be changed on the
Client at run-time but can be overridden during synchronization.

A global’s value is constant and cannot be modified on the Agentry Client. It can be
overridden at run time during synchronization.

The value of a global definition is dependent on the global’s data type. Following is a list of the
global data types:

• Boolean: A value that may be either true or false.
• Date: A value representing a calendar date.
• Date and Time: A value containing a calendar date and time of day.
• Decimal Number: A numeric value that contains a fractional portion and that may be

positive or negative.
• Duration: A value containing a duration of time in hours, minutes, and seconds.
• Identifier: A numeric value that is primarily used to represent an identifying value. Can

contain whole, positive numeric values.
• Integral Number: A numeric value containing whole numbers that may be positive or

negative.
• Selection: A special data type for a global definition that represents an attribute setting that

is selected from a list. This data type cannot be selected when defining a global, but rather
is the automatic data type of the global when it is created specifically for an attribute whose

Agentry App Development

298 SAP Mobile Platform

setting is selected from a drop-down list in the Editor. Valid values for this type of global
are those found in the specific list for the attribute.

• String: A value containing alphanumeric or other printable characters.
• Time: A value containing a time of day.

The data type of a global is important as it will determine where in the application the Global
can be used. The data type of the attribute and the global definition used to set it must be the
same. For example, string properties contain attributes for their size, i.e., the number of
characters they can contain. This size attribute is an integral number. This then requires the
user of a global with a data type of integral number.

A global definition may be added to the application project from either the list of globals for
the application, or at the point where it will be referenced by another attribute that may be set
via a global. In the latter case, the data type of the global is set automatically based on the data
type for that attribute.

Global Attributes

• Global Type: The data type of the global, selected when the global is added to the
application, or set automatically by the Editor based on the attribute to use the global for its
setting.

• Group: The group into which the global definition will be organized. Unlike the group
setting for other definitions, a global’s group is a required attribute. References to the
global definition throughout the application must include its group as well as its name.

• Name: The unique identifier for the global definition. This value must be unique among all
global definitions within the same group.

• Value: The value of the global definition returned when the global is referenced. Valid
values for a global depend on its defined Global Type.

Style

A style definition defines a set of style elements that can be applied to the Agentry Client’s
user interface to affect its appearance. These elements include text and background colors,
font face and size, borders, and other similar UI items. A style may be defined for all supported
application platforms or for a single platform.

The Agentry Editor allows the developer to create display styles for screens, buttons, text,
fields and list controls. A style is defined as a collection of display elements combined to
provide an overall look and feel to the application.

Styles exist at the application level in a project. They are then available to be used, or “applied”
at the application, module, platform, screen and control levels. Each attribute, or “style
element” of a style definition may be set to a specific value or default. Default results in the
system default being used for that aspect of the user interface.

If styles are applied at multiple levels within the application they are merged at run time before
being applied to the user interface. The style definition applied at a lower level in the
application hierarchy will override the settings of a style applied at a higher level. If the lower

Agentry App Development

Agentry App Development 299

level style has an element set to default, the setting for that same element in the higher level
style definition will be used. This merge then results in the overall appearance of the user
interface component to which the style is applied.

A style may defined for a specific platform. Multiple styles may be defined with the same
name but with different platform selections. When a style is applied to the user interface, only
the name is referenced. At run time, a given client device type will receive only the styles with
a matching platform. This is optional behavior and a style may defined for all platforms.

iPhone and iPad/iPod Touch Platform Note
Due to the nature of the iOS devices, the current style support for these device platforms is
limited to the specification of the Font Face and the Foreground Color. Styles can only be
applied to specific controls and the affects of the two supported style attributes are the font in
which text is displayed and the color of that text.

Style Attributes
Following is a list of the attributes for a style definition. In the context of a style definition these
attributes are commonly referred to as “style elements” and the terms are interchangeable:

• Foreground Color: This attribute specifies the color of any text displayed on the user
interface component to which the style is applied. If a particular user interface component
has no text, the Foreground Color setting will have no affect on its appearance.

• Background Color: This attribute specifies the color of the background of the user
interface component. The background of a screen or control is the area that contains no
controls, text, or list items.

• Font Face: This attribute specifies the font used to display any text on the user interface to
which the style is applied. Within the Agentry Editor, the Font Face attribute field contains
a drop-down list. Its contents will be any fonts installed on the host system of the Editor.
The name of a font may also be manually entered if it is one that is known to be available on
the client devices, even if it is not available on the Editor’s host system. Any font face
entered manually in the list will be available in this same list for all style definitions within
the application. If a font name is entered that is not available on a client device, the
behavior will be the same as if Default had been selected for the Font Face attribute.

• Point Size: This attribute specifies the size of the text displayed to the user. If the point size
is larger than the viewable area given to that text value, that viewable area will not be
increased in size.

• Font Style: This attribute specifies whether the text is displayed normally (referred to as
the regular font style), or in bold, italics, or bold italics. The Font Style attribute may not
have an effect on the appearance of the text based on the selected Font Face. Certain fonts
are inherently bold or italicized, or may not support either behavior.

• Underline: This attribute specifies whether the text is underlined. This attribute may have
no effect on certain Font Face selections, as the selected font may not support underline or
may be inherently underlined.

Agentry App Development

300 SAP Mobile Platform

• Border Style: This attribute controls how the border around certain UI components will
appear. This includes detail screen fields and buttons. The border style can be None, Flat,
or 3-D.

• Text Alignment - Horizontal Alignment: This attribute specifies the alignment of the
text displayed by the UI component to which the style is applied. The options are:
• “Align Left” - This selection specifies that the text is to be aligned to the left of the

viewable area allotted for the text being displayed.
• “Align Right” - This selection specifies that the text is to be aligned to the right of the

viewable area allotted for the text being displayed.
• “Center” - This selection horizontally centers the text within the viewable area allotted

for the text being displayed.
• “Default” - This selection will horizontally align the text according to the default

behavior of the item containing the text.

Image

An image definition incorporates an image file into the application data. This image can be
displayed on various components of the Agentry Client’s user interface. An image can be used
to add icons and interactive graphics to the UI for branding purposes and to enhance the user
experience.

Once an image has been defined it can be referenced in several components of the user
interface definitions. This can include button icons, list icons, and detail screen fields, as well
as the login dialog, the module selection dialog, and the help dialog. The first group of
definition types that may reference an image definition support the use of image lists, which
can allow for the display of a different version of the image based on some condition.

When an image definition is created, it must use a file of one of the types:

• Bitmap
• JPEG/JPG
• GIF
• PNG

The selected file must exist prior to creating the image definition. The file is copied within the
application project definitions. Modifications to the selected source file after this point will
not effect the appearance of the image within the application. This image can be edited from
within the Editor if necessary.

An image may be defined for a specific platform. Multiple image definitions may exist with
the same name and different selected platforms. References to images from other definitions
within the application are made by name only. At run time a given device type will receive the
images defined only for the matching platform. This is optional behavior and an image
definition can be created for all platforms.

Agentry App Development

Agentry App Development 301

Image Attributes

• Name: This is the internal name of the image definition. This value must be unique among
all Images with the same setting in the Platform attribute.

• Platform: The platform attribute specifies the platform of the client devices to which the
image will be downloaded. This can be either All, or one of the available platforms listed.
Selecting a specific platform will prevent the image from being downloaded to any device
of any other platform. This can be used to download images with different file sizes to
different client devices while using the same name.

• Image File: This value is the file name that will be used to store the image file within the
application project, as well as by the Agentry Server and Agentry Client. The default
Image File value is a combination of the Name and Platform attribute values. It is rarely
necessary to change the Image File setting.

• Mask Color: This optional attribute can be used to create a mask color for the image,
which will be incorporated into the image’s display on the Agentry Client. This setting
does not affect the image file itself, but rather is applied at run time. It is set using the RGB
values, or by selecting the desired color from the Windows color palette. A mask color is
used to remove a color from the displayed image, such as the white background of an
icon.

• Image: This is the actual image file that contains the image. This is selected by clicking the
ellipsis button to the far right of the field, which will display the standard Windows File
Dialog. From here you can select the file to be used for the image definition. You will only
be allowed to select files of the types .bmp, .gif, .jpeg, .jpg, or .png.
Once the file has been selected it will be displayed in the image definition within the
Agentry Editor.

Module-Level Data Definitions Overview

Within the module level of the application project in Agentry there are definitions for both data
and user interface encapsulation. The data-focused definition types include those for business
entity encapsulation, data capture, and data synchronization between the Agentry Client and
Agentry Server.

Most of the data definitions at the module level have child definitions of their own. Each child
definition encapsulates some aspect of the parent’s behavior related to the data for which it
was defined. This can include the values for the parent definition, or the methodology for data
synchronization.

Following is an illustration representing the structure of the module-level data definitions
within the application project. This includes the definitions within the module provided to
encapsulate data storage or synchronization, as well as the child definitions to each. Excluded
from this graphic are the user interface definitions within the module. Note that this separation
is for discussion purposes only. Within the application project structure, all child definitions to
the module exist at the module level with no distinction made between them in the Agentry
Editor in relation to whether they are data or user interface definitions.

Agentry App Development

302 SAP Mobile Platform

A common child definition to objects, transactions, and fetches are the properties. A property
is a variable data value stored within the parent definition. The purpose for these values differs
depending on the parent definition, but the property definition type itself is the same among all
three.

Many of the child definitions to the module-level data definitions are referred to as “step usage
definitions.” This term describes a definition that references a step definition within the same
module. This reference provides the context to the step, specifying why and when it should be
executed by the Agentry Server during synchronization. Any child definition to a module-
level definition that includes the term “Step” in its name is a step usage definition. The creation
of a step usage definition requires that the step to be used exists first.

As illustrated in this graphic, the step definition itself is defined for different types of
processing. Steps are defined for a specific system connection within the application. The step
definition has a type that matches the system connection type. The step will then contain a
component matching that type, such as a SQL statement or Java logic. HTTP-XML steps
include two child definitions that define the arguments passed to the HTTP server with the step
request, and mappings between the data returned from that request to the data components of
the mobile application.

The data definitions illustrated and described here are displayed, modified, and exposed to the
mobile application uses via the module-level user interface definitions. The data definitions
must exist before the user interface definitions can be created, as the UI definitions will need to
reference the data definitions they display.

Agentry App Development

Agentry App Development 303

Object

An object definition encapsulates a business entity and its related data. An object’s child
property definitions give that object its characteristics. An object can also define how its data is
retrieved from the back end system.

The object definition is in essence a container for the properties defined within it. Objects are
defined to encapsulate the different business entities in a module in support of the
functionality to be provided in the mobile application. The properties then define the data
stored within that object.

A special type of object will exist in every module defined within an application project. This
is the module main object, named by default MainObject. The intent of this main object is to be
the starting point, or top level of the module’s overall object data structure. Via the use of the
collection property data type, object instances may be stored within other object instances at
run time. This then results in a parent-child relationship within the module’s data structure. At
the top of this structure is the module main object.

When a new module is defined, the module main object will be added automatically.
Additionally, a prompt is displayed in the New Module Wizard for the definition of another
object. The object defined in the New Module Wizard is normally the primary object for the
module. The primary object is a term of convenience used to denote the object around which
most of the module’s functionality will revolve. This includes the functionality provided to the
end user in the form of information and data capture, as well as synchronization processes for
the module. Examples of a primary object include a work order object for a work management
module, or a message object for a mail module. The module main object will include a single
collection property defined to store instances of the primary object.

Object Child Definitions

• Property: An object property defines a single piece of data for the parent object.
• Object Read Step: An object read step references a step definition run to retrieve data

from a back end system to populate an object's properties.

Object Attributes

• Name: This is the unique name of the object. This value must be unique among all objects
defined within the same module.

• Display Name: This is the default name displayed for the object on the Agentry Client.
• Key Property: The key property for an object is used whenever that object is to be a part of

a collection. The value of this property must be a value that uniquely identifies the object
and in most cases will be the same value as the key value from the back end system. Note
that almost all object definitions are stored in collections and therefore must have this
attribute set. The property to be used must be defined before setting this attribute.

• Transmit Display Property: This attribute specifies the object property value to display
to the user on the Agentry Client transmit screen. When an object is being retrieved from

Agentry App Development

304 SAP Mobile Platform

the back end system, the property specified here is displayed to the user during its retrieval.
By default the value displayed is the object’s key property.

• Main Object: This attribute specifies whether or not the object is the main object for the
module. Each module contains a main object. This attribute is set to true for that object, and
to false for all other objects. This attribute is displayed for reference purposes within the
Editor and cannot be modified.

Object Read Step

An object read step references a step definition within the same module. Its purpose is to
retrieve data for instances of the object from the back end system. The steps are processed by
the Agentry Server during a transmit. The step being referenced can be executed once per
transmit or iteratively.

The data returned by the object read step is expected to be identified to match the property
values of the object. How this data is identified is dependent on the type of step being executed.
A given read step need not return all data values, but must always include the key property of
the object type for which it is retrieving data and the key property of any parent objects up to
the top-level object in the module’s data structure.

Object read steps are executed by the Agentry Server in any of the following situations related
to the parent object definition:

• When a fetch is processed that is defined to target a collection of the read step’s parent
object type.

• When a push defined to target a collection of the read step’s parent object type polls the
back end for data changes and finds this to be true, and when that push is defined to use the
object’s read steps to retrieve the data rather than the push read steps.

• When the processing of a transaction targeting the read step’s parent object type sends a
client response of replace client object.

In any of these situations, the read steps for an object will be run and the data returned will be
used to either create new object instances or replace existing object instances that will
ultimately be sent to the Client.

It is important to note that the step being executed by the read step must account for which
situation it is being run. The read step definition itself is not aware of the synchronization
context in which it is being executed.

Object Read Step Attributes

• Step: This attribute references the step definition within the same module to run as an
object read step for the parent object.

• Run: This attribute specifies how to run the read step during a single transmit. This may be
set to one of the following values:
• Run one Time: This setting will run the read step a single time for a given

synchronization context. This setting assumes the step need be executed only once to
return the data for all object instances to be added or replaced during synchronization,

Agentry App Development

Agentry App Development 305

or the step being executed is not returning data but rather is being run in support of
synchronization.

• Run once per Object: This setting will execute the read step once for each object
instance in the collection that is being synchronized. This includes both those object
instances sent by the Client to the Server, as well as any that may have been added by
previous synchronization steps. For push processing the step will be executed once for
each object instance created prior to the read step’s execution. For transaction
processing this setting will have the same behavior as “Run one Time.”

• Run once per Collection Object: This setting will execute the object once for each
object instance in the child collection referenced by the Read Into attribute. This child
collection is assumed to have been populated with object instances prior to the read
step’s execution. Note that this setting is primarily intended for file transfer
functionality, though it is not limited to this purpose.

• Read Into: This attribute specifies the child or descendent object collection property of
the read step’s parent object into which the data returned by the step should be read. This
attribute has a default setting of “None.” This default means the data will not be read into a
child collection but will instead be used to create object instances of the read step’s parent
object. Other valid options for this attribute are any child collection properties of the read
step’s parent object, or any descendent collections (e.g. collections within collections) of
the parent object.

Object Property

An object property definition defines a single piece of data and its type. A property can also
define minimum and maximum values, a default, or “special value” and other data-related
behaviors.

The properties of an object define the aspects of the business entity the object is intended to
encapsulate. Each object must include a key property that will uniquely identify each instance
of the object at run time. The object key property is important to all aspects of object data
synchronization. Both the Agentry Client and the Agentry Server use this value to determine if
an object is added to a collection, or if it should be replaced. On the Agentry Client, a new
object cannot be added to a collection using an add transaction if the instance it creates has the
same key property value as an existing object instance.

The key property is specified in the object definition itself in the Key Property attribute. The
property to be used as the key property must be defined first.

The attribute Name is an important one to consider when defining the properties of an object.
In addition to uniquely identifying the property definition within the parent object, it also
plays a part in the downstream synchronization of objects at run time.

When a step definition returns data for an object, the values returned will be identified in some
manner depending on the type of step. For a SQL step this is the column name designated in
the SELECT portion of the step’s query. In a Java step, it is the name of the members of the
returnData structure. HTTP-XML and File steps use different mechanisms involving

Agentry App Development

306 SAP Mobile Platform

mapping behaviors. Regardless of the step type, the name used by the step to identify a value
must match the name of the property definition. The Agentry Server will populate a property
with the value in the data returned by the step with the same name or identifier as that property
definition’s Name.

Properties are defined to be of a certain data type, of which there are many in Agentry. They are
a child definition to the object, transaction, and fetch definitions. Each property data type has
its own set of attributes specific to that type. Review the information on property data types for
more detailed information on properties.

Transaction

The transaction definition defines data to be captured on the Agentry Client. As a part of its
definition, the transaction includes a target object type, data values to be captured, client-side
data validation, and processing its data to the back end system by the Agentry Server during
synchronization. Transactions can add new object instances, edit an existing object, delete an
object, or modify an complex table or data table record. Each of these behaviors is exhibited by
a different transaction type, selected during the creation of the transaction.

A transaction definition is created within the application to target a specific object type within
the same module. Transactions are instantiated on the Agentry Client one at a time as the result
of the execution of a transaction step within a client action. A transaction instance can target
only one instance of an object.

The transaction can be displayed to the user in a screen set, which will behave as a wizard
allowing the user to enter data in a series of one or more screens.

There are five different types of transactions that can be defined for an application. Each
captures data for a specific type of change on the Agentry Client. The transaction types are:

• Add: An add transaction type is defined to allow the user to create a new object instance on
the Agentry Client.

• Edit: An edit transaction is defined to allow the user to edit the property values of an
existing object instance on the Agentry Client.

• Delete: A delete transaction is defined to remove an object instance from the Agentry
Client.

• Data Table Change: A data table change transaction is defined to allow the user to add or
edit a data table record on the Agentry Client.

• Complex Table Change: A complex table change transaction is defined to allow the user
to add or edit a complex table record stored on the Agentry Client.

Transaction Child Definitions
All transactions, regardless of type, have the same child definitions. The purpose of these child
definitions is the same for all transaction types.

• Properties: A transaction property defines a single piece of data a transaction will capture,
including its data type and initial value.

Agentry App Development

Agentry App Development 307

• Validation Rules: A transaction validation rule defines what rule definition will be used to
validate the transaction’s data and how failed validation is handled on the Agentry Client.

• Server Data State Steps: A transaction server data state step references a step definition
within the same module to be run by the Agentry Server to check the back end system for
data collisions during transaction processing.

• Server Update Steps: A transaction server update step references a step definition that is
run during transmit to update the back end system with the data captured by the
transaction.

• Error Handling Steps: A transaction error handling step references a step definition that
is run during transmit if an error occurs while processing the transaction’s data state or
update steps.

Transaction Attributes
Transaction attributes specify the type of transaction, the object type it targets, the key
property of the transaction, and the transaction’s name and display name. There are also type-
specific attributes for the different transaction types. Review the information on the specific
transaction types for details on these attributes.

Transaction Authentication

Transaction authentication is definable behavior for all transaction types and is available to
support user authentication during data capture, often referred to as “electronic signatures”.
To define this behavior, attributes specific to authentication must be set within the transaction
definition after it has been defined. These attributes are not displayed in the add transaction
wizard.

These attributes are used to define transaction authentication on the Agentry Client. This
functionality provides the means to authenticate users when they make data changes. Using
transaction authentication you can require users to enter their user ID, password, and other
information as may be necessary.

Transaction authentication is defined for each transaction definition. This allows for
authentication behavior to be exhibited only for data capture operations that require it.

This information can be captured in properties of the transaction itself, or in an instance of an
object defined specifically for this purpose, called the authentication object. A separate screen
set defined to display the authentication object to the user must exist prior to defining the
authentication within the transaction.

Transaction Authentication Attributes
The following attributes are common to all transaction types. They are set to define the
transaction authentication behavior. They can only be modified for existing transactions and
are not displayed during the add transaction wizards.

• Screen Set: This attribute is set to the screen set to display to the user for the purpose of
entering the authentication information you wish to capture. This can include the user ID,

Agentry App Development

308 SAP Mobile Platform

password, and other information as may be necessary. If this is set to “No Authentication”
the authentication functionality is disabled for the transaction.

• Authenticate When: This attribute determines when the transaction requires
authentication. This can be set to: “Do Not Authenticate”, disabling the behavior; “Always
authenticate”, or can be based on a rule definition. When a rule is referenced by this
attribute, it is evaluated in the context of the transaction and is expected to return a boolean
value. A true return will require the user to authenticate. A false return will not and the
authentication screen set will not be displayed.

• Information In: This attribute is set to either “Properties of this transaction” or to an
object type defined within the same module. If set to the former, the properties displayed in
the Authentication Screen Set are defined within the same transaction. If set to an object,
the properties of that object are displayed and store the authentication data.

Transaction Type: Add

An add transaction type is defined to allow the user to create a new object instance on the
Agentry Client. An add transaction definition includes a target object collection property to
which the new object instance will be added. This transaction type should contain all non-
collection properties found in the object type it creates.

Add Transaction Attributes
Following are the attributes for an add transaction:

• Type: This attribute specifies the type of transaction. For add transactions this is set to
“Add”. This attribute cannot be changed once the transaction has been defined.

• Object: The Object attribute specifies the type of object the add transaction instantiates on
the Agentry Client. This may be any existing object defined within the same module.

• Collection: The collection attribute specifies the collection property in which the new
object instance will be stored on the Agentry Client when the transaction is applied.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Agentry Client’s Transmit Screen when an
instance of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. This is almost always the transaction property that targets the object’s key
property and is set as such by default.

Transaction Type: Edit

An edit transaction is defined to allow the user to edit the property values of an existing object
instance on the Agentry Client. This type of transaction should, at a minimum, include the key
property of the object type and all property values that should be changed in the object.

It is highly recommended that users never be allowed to edit the key property of an object, as
this can make it difficult, if not impossible, to update the enterprise system with any other

Agentry App Development

Agentry App Development 309

changes for the object. Remember that the key property of an object is the value that uniquely
identifies that object within both the mobile application and the enterprise system.

When an edit transaction is applied, the value of the properties are copied to the object
properties they target. These new values will replace the previous values of the object
properties. Object properties not modified by the transaction will not be changed. Once an
object property is updated from an edit transaction, the previous value of that object property is
lost and cannot be recovered.

When designing and developing an Edit transaction, the developer should consider whether or
not the transaction definition should include merge functionality. Transaction merging is the
behavior when an instance of an edit transaction is merged with an existing pending
transaction targeting the same object instance on the Agentry Client. This functionality is
controlled by the Edit transaction’s merge attributes and is optional behavior.

Edit Transaction Attributes
Following are the attributes for an edit transaction:

• Type: This attribute specifies the type of transaction. For edit transactions this is set to
Edit. This attribute cannot be changed once the transaction has been defined.

• Object: The Object attribute specifies the type of object the edit transaction targets on the
Agentry Client. This may be set to any object type defined within the same module.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. This is almost always the transaction property that targets the object’s key
property and is set as such by default.

• Merge When: This attribute specifies when the transaction should be merged. This can be
set to either “Merge with adjacent transactions only” or “Merge with any transaction” to
enable transaction merging on the Client. Adjacent transactions means the last transaction
applied on the Client. Any transaction means the transaction will be merged with the first
transaction found to meet the proper criteria for merging. This begins with the most
recently applied transaction for the same object instance. The search continues back to the
first applied transaction, or until a transaction is found that the edit transaction can be
merged with.

• Merge With: This attribute specifies the type of transaction the edit transaction should be
merged with. This can be set to “Same transaction type only” or “Similar transactions.”
The same transaction type is only another instance of the same edit transaction that targets
the same object instance on the Client. A “Similar transaction type” also must target the
same object instance on the client, but may be an instance of any add or edit transaction that
meets the merge criteria.

Agentry App Development

310 SAP Mobile Platform

• Timestamp: The timestamp can be set to either “New Timestamp” or “Original
Timestamp.” This attribute specifies whether the timestamp from the original transaction
is kept after the merge, or whether the timestamp from the new transaction instance is
used.

Transaction Type: Delete

A delete transaction is defined to remove an object instance from the Agentry Client. When
applied, this transaction will remove the object instance from the Client and may also remove
any pending transactions for that object instance. A delete transaction should, at a minimum,
contain the key property of the object type it targets.

When a delete transaction is applied, the object instance targeted by the transaction is removed
from the Client. All data properties of the object instance, including any object collection
properties, are removed.

When defining a delete transaction, the developer should ensure that the object should be
allowed to be deleted. This is normally controlled by defining an enable rule for the action that
will instantiate the delete transaction. The object and its data removed by the delete transaction
cannot be recovered once the transaction has been applied.

Delete Transaction Attributes
Following are the attributes for a delete transaction:

• Type: This attribute specifies the type of transaction. For delete transactions this is set to
“Delete”. This attribute cannot be changed once the transaction has been defined.

• Object: The Object attribute specifies the type of object the delete transaction targets and
will remove from the Agentry Client.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Client to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. This is almost always the transaction property that targets the object’s key
property and is set as such by default.

• Discard Pending Transactions: This attribute specifies whether or not pending
transactions for an object instance removed by the delete transaction should also be
removed. If this attribute is set, pending transactions targeting the deleted object instance
will be removed. If false, these pending transactions will remain on the Agentry Client
until the next transmit.

Transaction Type: Complex Table Change

A complex table change transaction is defined to allow the user to add or edit a complex table
record stored on the Agentry Client. This transaction type is still defined to target an object
type. It should, at a minimum, contain a property for the key field of the table and the

Agentry App Development

Agentry App Development 311

properties to target each field to be modified by the transaction. To allow for the addition of a
new record, it should contain one property for each field in a table record.

When a complex table change transaction is applied, the transaction first looks for a record in
the complex table whose key field value is equal to the value of the corresponding property in
the transaction. If a match is found, the record is updated with the property values of the
transaction. If no match is found, a new record is added to the complex table. The indexes of
the complex table are then updated to match the new or modified record.

Complex Table Change Transaction Attributes
Following are the attributes for a complex table change transaction.

• Type: This attribute specifies the type of transaction. For complex table transactions this is
set to “Complex Table Change.” This attribute cannot be changed once the transaction has
been defined.

• Object: The Object attribute specifies the type of object the transaction targets. Though
primarily intended to change a complex table record, this transaction type must still target
an object.

• Table: The table attribute specifies the complex table the transaction targets and that will
be changed when the transaction is applied.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. If no change is made to the targeted object, this attribute need not be set.

Transaction Type: Data Table Change

A data table change transaction is defined to allow the user to add or edit a data table record on
the Agentry Client. This transaction is still defined to target an object type. It should, at a
minimum, contain a property for the key and value fields of a data table record.

When a data table change transaction is applied, the transaction first looks for a record in the
data table with the same key value as the corresponding key property in the transaction. If one
is found, that record will be updated from the property for the value field. If there is no match
on the key field, then a new record will be added to the data table using the values of the two
properties for the key and value fields. Data table change transactions cannot delete a record
from a data table.

Data Table Change Transaction Attributes
Following are the attributes for a data table change transaction.

Agentry App Development

312 SAP Mobile Platform

• Type: This attribute specifies the type of transaction. For data table transactions this is set
to “Data Table Change.” This attribute cannot be changed once the transaction has been
defined.

• Object: The Object attribute specifies the type of object the transaction targets. Though
primarily intended to change a data table record, this transaction type must still target an
object.

• Table: The table attribute specifies the data table the transaction targets and that will be
changed when the transaction is applied.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. If no change is made to the targeted object, this attribute might not be
set.

Transaction Validation Rule

A transaction validation rule defines what rule definition will be used to validate the
transaction’s data and how failed validation is handled on the Agentry Client. The rule
referenced is called in a Boolean context and is expected to return true or false. False indicates
failed validation, which may be treated as a warning or error. Messaging may be displayed to
the user in relation to failed validation. An error requires the user to change the offending
value(s) before proceeding. A warning displays an informational message giving the user the
option to change the value(s), but does not require a change.

Not every transaction will have validation rules. Certain types of values do not need to be
validated using a validation rule. Simple requirements such as the size of a string value or the
minimum and maximum values of a numeric property can be enforced by the property itself.
In other cases the information may not need to be validated. An example of this is some sort of
note or description entry where the user is entering free form text.

Validation rules are used when more complex validation is required, such as when the valid
value for a property is dependent on the value of a second property. Also, validation rules offer
the flexibility to differentiate between a warning and an error. With a warning, the user is given
the option of changing the value that violates the rule or leaving it as is. If treated as an error,
the user must change the value before being allowed to proceed.

Validation rules are evaluated when the user clicks any navigation buttons in the wizard screen
set displaying the transaction. If a validation rule references a property not yet displayed in the
wizard, it will not fail validation. A false return by the rule is treated as a validation failure and
the validation rule definition will then dictate the behavior of the Agentry Client.

Agentry App Development

Agentry App Development 313

Validation Rule Attributes

• Rule: This attribute specifies the rule definition within the same module to be used as a
validation rule for the transaction. The rule is expected to return a Boolean value is
evaluated in the context of the current transaction instance.

• Type: This attribute can be set to either “Warning” or “Error” and determines how a false
return from the rule is treated by the validation rule. Warning means a failed validation
does not require the user to change the value. The user will be displayed a message and
given the option to change the value or keep it as set. An error type requires the user to
change the value before proceeding.

• Caption: This is the text displayed in the title bar of the message for the validation rule.
• Text: This is the message displayed to the user when validation fails.
• OK Label: This is the text to label the OK button for the message screen on the Agentry

Client.
• Cancel Label: This is the text to label the Cancel button for the message screen on the

Agentry Client. This attribute is available only when the Type attribute is set to “Warning.”

Transaction Validation Rule Properties

Rule properties associate one or more object properties with a transaction validation rule. Rule
properties are used to set the cursor focus on the Client when a validation warning or error rule
is triggered. The focus is set to the first property on the current screen set screen that is
included in the Rule Properties list. If no match is found or if all of the listed properties are
contained in a screen other than the current screen shown on the Client, no focus is set.

Validation rules and their associated rule properties are evaluated when the user clicks any
navigation buttons in the wizard screen set displaying the transaction. If the rule returns false,
the rule runs through all properties on the rule list until it finds one that matches a transaction
property that is displayed on the Client screen. At that point, the ‘next’ or ‘finish’ process is
stopped, the user remains on the same screen, and the cursor focus is set to the matching
property. Any property controls that are hidden, disabled, or set to read-only will be ignored.

Validation rule properties are available on the following transaction types: Add, Edit,
Complex Table Change, and Data Table Change.

Setting rule properties is optional. If no rule properties are set and a rule returns false, only the
error or warning message associated with the rule is displayed on the Client.

Transaction Server Data State Steps

A transaction server data state step references a step definition within the same module to be
run by the Agentry Server to check the back end system for data collisions during transaction
processing. Server data state steps are the first steps run by the Server when a transaction is
being processed. When a data state step’s return is true, its defined data state is set for the
transaction. This data state will then affect which server update steps for the transaction are

Agentry App Development

314 SAP Mobile Platform

run by the Server. A data state step may also define a response to be sent to the Client to
perform some additional action in relation to the object instance targeted by the transaction.

The step executed by a data state step should be defined to either return data or not, based on
some condition. The data returned by a data state step is unimportant in most cases. The
exception to this is when the Client Response attribute is set to “Update Client Key Property.”
In this scenario the Agentry Server will expect the step to return a value identified as the key
property for the target object.

Other than in this situation, the Server only looks to see if data is returned by the step. By
default, when data is returned by a data state step, the Server treats this as a true response and
will set the defined data state for the transaction. No data will be treated as false. This logic
may be inverted, with data return treated as false and no data treated as true, if the logic of the
step being executed is more efficient or more practical to be written in this manner.

If multiple server data state steps return true for a single transaction instance, the defined data
state for the last step with a true return will be the one set for the transaction. The server data
state steps may be defined to halt further data state step processing for the transaction if one of
them returns true. The order in which server data state steps are processed is defined in the list
of these definitions displayed in the transaction definition’s properties view of the Editor.

The Client Response attribute allows for the definition of a response to be sent to the Client in
relation to the object targeted by the transaction. This response will be sent after the
transaction has been successfully processed by the Server. The defined Client Response for a
data state may be overridden by a subsequent data state step, or by the transaction’s server
update steps.

Server Data State Step Attributes
The following is a list of the attributes for a server data state step definition:

• Step: This attribute references the step definition within the same module to run as a server
data state step for the transaction.

• Data State: This text value is the name of the data state the data state step will set if its
return is true. This value can then be referenced by the server update steps for the same
transaction.

• Step is True if: This attribute is set to define what is treated as true for the data state step.
When a data state step is true, its defined data state is set for the transaction. Its available
options depend on the type of step selected in the Step attribute:
• SQL Step: For a SQL step, this attribute can be set to “1 or more rows are returned” or

“0 rows are returned”. The former will treat data being returned as true and no data
returned as false. The latter will treat data returned as false and no data returned as
true.

• Java Step: For a Java step, the options are “doSteplet returns True” and “doSteplet
returns False”. The first will treat a true return from the doSteplet() method of the
Java step as true. The second will treat a false response from the doSteplet()
method as true.

Agentry App Development

Agentry App Development 315

• HTTP-XML Step: For an HTTP-XML step, the available options for this attribute are
“All response mappings succeed” and “A response mapping fails”. The former will set
true for the data state when the HTTP-XML step is able to map all of the responses, per
its definition. The latter will treat one or more failed mappings as true.

• If True: This attribute specifies whether the remaining server data state steps for the
transaction should be processed if the data state step returns true.

• If False: This attribute specifies whether the remaining server data state steps for the
transaction should be processed if the data state step returns false.

• Response to Client: This attribute specifies what response is sent to the Agentry Client
after the Update Step has been processed. The response defined here will only be sent if the
data state step is run and returns true. The responses that may be sent are “Delete Client
Object”, “Replace Client Object”, “Update Client Key Property”, and “No Action
Required”. If “Update Client Key Property” is set, the step being run by the server data
state step is expected to return a value identified as the transaction’s target object’s key
property. This value will replace the current value of this property on the Client for that
object instance.

Transaction Server Update Step

A transaction server update step references a step definition within the same module that is run
during transmit to update the back end system with the data captured by the transaction. This
step has access to all of the properties of the transaction using the SDML or mechanisms
available using the Agentry Java API. The value of these properties can be used by the steps to
update the back end system. An update step can be defined to run or not run based on a data
state being set for the transaction. An update step can also define a response to be sent to the
Client to perform some additional action in relation to the object instance targeted by the
transaction.

Using the data state functionality, update steps may be defined for a single transaction that
process the data captured in the transaction normally, and other steps that run only when data
states are set to provide data collision handling. Each server update step can contain its own list
of selected data states, that is, the data states it is aware of. It can then be defined to run or not
when one of its selected data states is set.

Server update steps can send a client response after they have been processed by the Agentry
Server. This response will only be sent if the step that defines it is run. Only one response is
sent for a transaction. There are different responses possible, and which one is ultimately sent
to the Client is based on the type of response.

Server Update Step Attributes
Following is a list of the attributes for a server update step definition:

• Step: This attribute references the step definition within the same module to be run by the
Agentry Server as a server update step for the transaction.

• Run for which States: This attribute defines when the step is run in relation to the
transaction’s data states. This can be “All Data States”, “Data States except selected”,

Agentry App Development

316 SAP Mobile Platform

“Only selected data states”, and “Do Not run Step”. This last option is normally only set for
testing purposes, as the step will never be run if this option is selected. When set to one of
the two data state options, a second tab is available in the Properties view of the Agentry
Editor. This second tab lists all selected data states for the update step and allows for
additional data states to be added.

• Response to Client: This attribute specifies what response is sent to the Agentry Client
after the Update Step has been processed. The response defined here will only be sent if the
update step is run. The responses that may be sent are “Delete Client Object”, “Replace
Client Object”, “Update Client Key Property”, and “No Action Required”. If “Update
Client Key Property” is set, the step being run by the server update step is expected to
return a value identified as the transaction’s target object’s key property. This value will
replace the current value of this property on the Client for that object instance.

Transaction Error Handling Steps

A transaction error handling step references a step definition that is run during transmit if an
error occurs while the Server is processing the transaction. This includes errors returned by the
data state or update steps. Error handling steps are run only when transaction failure handling
is enabled, via a configuration option of the Agentry Server. An error handling step can
respond to the Client to indicate the proper action to take in relation to the error that has
occurred.

Error handling steps can perform multiple tasks to resolve such an issue. These include:

• Any post-error processing that may be necessary
• Setting the error fatality level
• Returning messaging to the Agentry Client for display to the user

One of the key components to transaction error handling steps is the error fatality. This term
refers to the severity of the error and the proper way in which the transaction should be handled
as a result of the error. This can include retrying the transaction, possibly after a change is
made to it by the user, or removing the transaction from the Agentry Client and storing its data
to the failed transactions queue on the Agentry Server.

Error handling steps may not need to be defined as a apart of the transaction failure handling.
The Agentry Server contains configuration options to set default behaviors, including the
fatality level of an error. Error handling steps are normally defined to override these defaults
where necessary.

Error Handling Step Attributes

• Step: This is the step definition within the module to be run as an error handling step for the
transaction. The step referenced here should be defined to return data in the event of an
error, or a specific type of error.

• Error Type: This attribute determines the behavior of the application when the error
handling step returns true, indicating the error that occurred should be handled by the step.
The options for this attribute are:

Agentry App Development

Agentry App Development 317

• Fatal with Message - The transmit will be aborted automatically and a message will be
displayed to the user. The transaction will be removed from the Client and the data for it
stored in the failed transactions que on the Server.

• Fatal without Message - The transmit will be aborted automatically and no message
will be displayed to the user specific to the transaction. The transaction will be
removed from the Client and the data for it stored in the failed transactions que on the
Server.

• No Change - This selection will not change the error fatality for the transaction. Either
another error handling step for the transaction will handle this, or the default fatality
based on the error information returned by the back end system will remain. This is
normally set for steps that either create messaging displayed to the user, or that perform
other actions against the back end system to handle the error.

• Retry with Change - The user will be able to choose to abort the transmit and to change
the data for the transaction. This requires transaction merging be enabled, as a new
transaction will be instantiated by the user and it will then merge with the pending
transaction as a result of an error. This will be an option for the user and, should the user
choose not to retry, the transmit will continue. The transaction will be removed from
the Client and saved to the failed transactions queue on the Server.

• Retry without Change - The user will be able to retry the transaction without editing the
data it contains.

• Step is true if: This attribute controls whether data returned by the step is treated as a true
or false return. When this attribute is true and the step returns data, this is treated as a true
response.

• If True: This attribute defines whether or not the remaining error handling steps for the
transaction should be run if the current error step returns true.

• If False: This attribute defines whether or not the remaining error handling steps for the
transaction should be run if the current error step returns false.

• Notification: This Boolean attribute controls the external notification on the client device.
If this attribute is true, a true result for the error handling step will result in the LED on the
client device being activated and the transmit dialog flashing.

• Sound: This attribute defines whether or not the system default sound on the client device
should be played when the error step returns true. It also controls the number of times to
repeat the sound.

• Interval: If the Sound attribute is set to play the system sound two or more times, the
interval attribute can be set to the number of seconds in between each time the sound is
played.

Fetch

A fetch defines how the Agentry Server synchronizes data for a target object collection. This
object collection must be a top-level collection within the module. A fetch is made up of steps
that retrieve the data for the collection from the back end system. These steps are grouped into
three categories within the Fetch definition: Client Exchange Steps, Server Exchange Steps,

Agentry App Development

318 SAP Mobile Platform

and Removal Steps. A fetch may also include properties to store data captured from the user
and validation rules for those property values.

A fetch may be a main or non-main fetch. A main fetch is processed during every transmit
between the Agentry Client and Server. A given module may contain multiple main fetches.
The order in which multiple main fetches, either within the same module or within multiple
main fetches, are processed is undefined and should therefore not be a factor in the
synchronization logic.

A non-main fetch will only be executed when an action step of type transmit explicitly defines
such a fetch to be processed. Non-main fetches are normally defined to provide the search
functionality to end users.

The basic structure of a fetch definition is intended to support the exchange data model of
synchronization. This model is intended to allow for the synchronization of data in a more
efficient manner, where only data changes on the back end system as compared to the current
data on a given client are retrieved. Any data that has not been changed as compared to the
client’s data is not retrieved.

A fetch definition can be defined to retrieve new object instances to be added to a client
application, replace existing objects on that client, a remove any objects the client should no
longer store locally. The read steps of the object type targeted by the fetch are run after the
fetch has been processed and may also retrieve objects for the client to either add them or
replace existing instances.

Fetch Child Definitions

• Property: A fetch property defines data to be captured on the Agentry Client for use
during fetch processing by the Agentry Server.

• Validation Rule: A fetch validation rule defines what rule definition will be used to
validate the fetch’s data and how failed validation is handled on the Agentry Client.

• Client Exchange Step: A fetch client exchange step defines how information about the
target collection is processed by the Agentry Server.

• Server Exchange Step: A fetch server exchange step defines how information about the
back end system’s data is processed.

• Removal Step: A fetch removal step is defined to determine which objects should be
removed from the collection targeted by the parent fetch.

Fetch Attributes

• Collection: This attribute references the object collection property within the same
module and that is a direct child of the module main object for which the fetch will
synchronize data. Steps executed by the fetch’s child step usage definition will be
processed by the Agentry Server in the context of this collection.

• Name: This attribute contains the name that identifies the fetch. This value must be unique
among all fetch definitions within the same module.

Agentry App Development

Agentry App Development 319

• Display Name: This attribute contains the value that identifies the fetch on the client. This
is displayed during synchronization in the Client’s Transmit Screen when the fetch is
processed by the Server.

• Clear Collection: This attribute specifies whether or not the object instances stored in the
targeted collection should be removed from the Client prior to processing the fetch during
synchronization. This attribute is normally only left set on when the fetch is either not
using the exchange data model for synchronization, or when it is a non-main fetch
performing search functionality and the previous search results should be removed from
the client before performing a new search.

• Main Fetch: This attribute specifies whether the fetch is a main fetch. When checked, the
fetch will be processed during every transmit between the Client and Server. When
unchecked, the fetch will only be run when an action step of type Transmit explicitly lists
the fetch to be processed and that action step is the one that initiates the transmit.

Fetch Validation Rule

A fetch validation rule defines what rule definition will be used to validate the fetch’s data and
how failed validation is handled on the Agentry Client. The rule referenced is called in a
Boolean context and is expected to return true or false. False indicates failed validation, which
may be treated as a warning or error. Messaging may be displayed to the user in relation to
failed validation. An error requires the user to change the offending value(s) before
proceeding. A warning displays an informational message giving the user the option to change
the value(s), but does not require a change.

Not every fetch will have validation rules. Certain types of values do not need to be validated
using a validation rule. Simple requirements such as the size of a string value or the minimum
and maximum values of a numeric property can be enforced by the property itself. In other
cases the data may simply not need to be validated.

Validation rules are used when more complex validation is required, such as when the valid
value for a property is dependent on the value of a second property. Also, validation rules offer
the flexibility to differentiate between a warning and an error. With a warning, the user is given
the option of changing the value that violates the rule or leaving it as is. If treated as an error,
the user must change the value before being allowed to proceed.

Validation rules are evaluated when the user clicks any navigation buttons in the wizard screen
set displaying the fetch. If a validation rule references a property not yet displayed in the
wizard, it will not fail validation. A false return by the rule is treated as a validation failure and
the validation rule definition will then dictate the behavior of the Client.

Validation Rule Attributes

• Rule: This attribute specifies the rule definition within the same module to be used as a
validation rule for the fetch. The rule is expected to return a Boolean value in the context of
the current fetch instance.

• Type: This attribute can be set to either “Warning” or “Error” and determines how a false
return from the rule is treated by the validation rule. Warning means a failed validation

Agentry App Development

320 SAP Mobile Platform

does not require the user to change the value. The user will be displayed a message and
given the option to change the value or keep it as set. An error type requires the user to
change the value before proceeding.

• Caption: This is the text displayed in the title bar of the message for the validation rule.
• Text: This is the message displayed to the user when validation fails.
• OK Label: This is the text to label the OK button for the message screen on the client.
• Cancel Label: This is the text to label the Cancel button for the message screen on the

client. This attribute is available only when the Type attribute is set to “Warning”.

Fetch Validation Rule Properties

Rule properties associate one or more object properties with a fetch validation rule. Rule
properties are used to set the cursor focus on the Client when a fetch warning or error rule is
triggered. The focus is set to the first property on the current screen set screen that is included
in the Rule Properties list. If no match is found or if all of the listed properties are contained in a
screen other than the current screen shown on the Client, no focus is set.

Validation rules and their associated rule properties are evaluated when the user clicks any
navigation buttons in the wizard screen set displaying the transaction. If the rule returns false,
the rule runs through all properties on the rule list until it finds one that matches a fetch
property that is displayed on the Client screen. At that point, the ‘next’ or ‘finish’ process is
stopped, the user remains on the same screen, and the cursor focus is set to the matching
property. Any property controls that are hidden, disabled, or set to read-only will be ignored.

Validation rule properties are available on the following fetch types: Add, Edit, Complex
Table Change, and Data Table Change.

Setting rule properties is optional. If no rule properties are set and a rule returns false, only the
error or warning message associated with the rule is displayed on the Client.

Fetch Client Exchange Step

A fetch client exchange step defines how information about the target collection is processed
by the Agentry Server. This definition references a step definition within the same module.
This step has access to information about the target collection, as well as to any data captured
in fetch properties. A client exchange step can be defined to execute once or iteratively, and
can return data for an object collection. A fetch can contain multiple client exchange step
definitions, which are processed by the Server in a defined order.

Though a client exchange step can return data to create and populate object instances, its
intended purpose is to provide information about the current objects stored in the collection
property targeted by the parent fetch (target collection) definition. A Client exchange step has
access to the key property and last update value for each object instance in the target
collection. This information is provided in support of the exchange data model. The intent is
that the client exchange steps update this information to an exchange data object in the back
end for later comparison to determine which data may need to be retrieved to update the
Client.

Agentry App Development

Agentry App Development 321

Client Exchange Step Attributes

• Step: This attribute references the step definition within the same module to run as a client
exchange step for the parent fetch.

• Run: This attribute specifies how to run the client exchange step during a single transmit.
This may be set to one of the following values:
• Run one Time: This setting will run the client exchange step a single time for the fetch

processing. This setting assumes the step needs to be executed only once to return the
data for all object instances to be added or replaced during synchronization, or the step
being executed is not returning data but rather is being run in support of
synchronization.

• Run Once per Object: This setting will execute the client exchange step once for each
object instance in the collection that is being synchronized. This includes both those
object instances sent by the Client to the Server, as well as any that may have been
added by previous fetch steps.

• Read Into: This attribute specifies the child or descendent object collection property of
the target collection into which the data returned by the step should be read. This attribute
has a default setting of “None”. This default means the data will not be read into a child
collection but will instead be used to create object instances of the target collection. Other
valid options for this attribute are any child collection properties of the target collection, or
any descendent collections (e.g. collections within collections).

Fetch Server Exchange Step

A fetch server exchange step defines how information about the back end system’s data is
processed. This definition references a step definition within the same module. This step has
access to information about the target collection, as well as to any data captured in fetch
properties. A server exchange step can be defined to execute once or iteratively, and can return
data for an object collection.

The server exchange step definition is intended to perform one of two tasks within the
exchange data model. First, it should compare information provided by the client exchange
steps concerning which object instances the Client currently has and when they were retrieved
to information in the back end system about when that same data was last modified or added.
Second, it can then retrieve the data needed by the Client based on the differences found during
this comparison. These tasks are normally accomplished by separate server exchange steps.
Alternately or in addition to these definitions, the object read steps defined in the object type
targeted by the fetch may retrieve data for the object instances.

Server Exchange Step Attributes

• Step: This attribute references the step definition within the same module to run as a server
exchange step for the parent fetch.

• Run: This attribute specifies how to run the server exchange step during a single transmit.
This may be set to one of the following values:

Agentry App Development

322 SAP Mobile Platform

• Run one Time: This setting will run the server exchange step a single time for the fetch
processing. This setting assumes the step needs to be executed only once to return the
data for all object instances to be added or replaced during synchronization, or the step
being executed is not returning data but rather is being run in support of
synchronization.

• Run Once per Object: This setting will execute the server exchange step once for each
object instance in the collection that is being synchronized. This includes both those
object instances sent by the Client to the Server, as well as any that may have been
added by previous fetch steps.

• Read Into: This attribute specifies the child or descendent object collection property of
the target collection into which the data returned by the step should be read. This attribute
has a default setting of “None”. This default means the data will not be read into a child
collection but will instead be used to create object instances of the target collection. Other
valid options for this attribute are any child collection properties of the target collection, or
any descendent collections (e.g. collections within collections).

Fetch Removal Step

A fetch removal step is defined to determine which objects should be removed from the
collection targeted by the parent fetch. A removal step references a step definition within the
same module. This step has access to information about the target collection, as well as to any
data captured in fetch properties. The step referenced by a removal step definition is expected
to return the key property of any object(s) that should be deleted from the target collection on
the Agentry Client.

Removal Step Attributes
• Step: This attribute references the step definition within the same module to run as a

removal step for the parent fetch.
• Run: This attribute specifies how to run the removal step during a single transmit. This

may be set to one of the following values:
• Run one Time: This setting will run the removal step a single time for the fetch

processing. This setting assumes the step need be executed only once to return the data
for all object instances to be removed during synchronization, or the step being
executed is not returning data but rather is being run in support of synchronization.

• Run Once per Object: This setting will execute the removal step once for each object
instance in the collection that is being synchronized. This includes both those object
instances sent by the Client to the Server, as well as any that may have been added by
previous fetch steps.

• Read Into: This attribute has no effect on a fetch removal step and will be deprecated in a
future release.

Transaction and Fetch Properties

A transaction property defines a value to be captured by a transaction. Definable behaviors
include the initial value for the property, the object property or table record field it targets, as

Agentry App Development

Agentry App Development 323

well as data-related behaviors. These include minimum and maximum values, a special value,
and similar settings. These last behaviors will vary depending on the data type of the property.

A fetch property defines data to be captured on the Agentry Client for use during fetch
processing by the Agentry Server. A fetch that contains properties is normally displayed in a
screen set to allow the user to enter the desired values. The steps of the fetch then have access to
these property values for use during synchronization. The fetch properties themselves define
the data types of the values, and the initialization values when the fetch is instantiated.

Both transaction and fetch properties contain attributes related to initialization. These
attributes are a part of all transaction and fetch property definitions regardless of the property
data type. These attributes are in addition to the data type specific attributes.

For both a fetch and a transaction property, the purpose is to capture data on the Client. How
this data is used depends on the property’s parent. A transaction property’s value will be
copied to the object property it targets when the transaction is applied. This value will then also
be available to the steps used by the transaction during synchronization and, depending on the
defined processing, will likely be updated to the back end system.

A fetch property will be stored with the fetch and sent to the Agentry Server during
synchronization. This will make the value available to all steps run by the fetch. However, the
fetch property value will not affect the object property, as fetch properties do not modify object
instances on the Client.

Transaction and Fetch Property Attributes
The following list of attributes are specific to properties defined for a transaction or fetch.
These attributes are common to all properties regardless of data type:

• Object Property: This attribute specifies the object property targeted by the transaction or
fetch property. This value may be used for initialization. For a transaction, this is also the
object property the transaction property will set when the transaction is applied.

• Initial Value: This attribute specifies the data source to initialize the property. This may be
the object property targeted by the transaction or fetch property, the property of a different
object not targeted by the fetch or transaction, a constant value, or via a rule. When a rule is
used, the rule may be evaluated before or after data entry.

• Constant: This attribute is enabled only when Initial Value is set to “Constant”. The
Constant attribute then contains the constant value to which the property will be
initialized whenever the parent transaction or fetch is instantiated on the Client. This may
be left blank for many property data types to initialize the property to null.

• Rule: This attribute is enabled only when the Initial Value attribute is set to either “Rule -
before data entry” or “Rule - after data entry”. It contains a reference to the rule definition
to be evaluated to initialize the property.

• Other Property: This attribute is enabled only when the Initial Value attribute is set to
“From a different object property”. Other Property then contains the target path to the
object property whose value will be used to initialize the property.

Agentry App Development

324 SAP Mobile Platform

Property Data Types

The property data type definition can be a child to an object, transaction, or fetch definition. A
property is defined to be a certain data type when it is created. This data type then specifies the
type of data and its behavior within the property. The data types range from primitive types
common to most or all development platforms, to more robust types that in other languages
would be created by developers as classes, structures, or objects depending on the tool or
language in use.

Following a brief description of each property data type available in Agentry:

• Boolean: The Boolean property data type stores a true or false value.
• Collection: The collection property data type is defined to store multiple object instances

of the same type as a property of a parent object, transaction, or fetch.
• Complex Table Selection: The complex table selection property type is used to store a

selection made by the user from a complex table.
• Data Table Selection: The data table selection property type is used to store a selection

made from a data table.
• Date: The date property type is used to store a calendar date value.
• Date and Time: The date and time property type stores a value consisting of a calendar

date and time of day.
• Decimal Number: The decimal number property data type stores numeric value with a

fractional component.
• Duration: The duration property data type is used to store a duration of time.
• External Data: An external data property stores a reference to a file stored on the client

device’s file system and that is external to the production data of the application.
• Identifier: The identifier property data type stores a non-negative integer value that is a

unique identifier for an object.
• Image: The image property stores a still picture or other image captured on the client

device from either the device’s camera or selected from the file system.
• Integral Number: An integral number property stores whole numbers.
• Location: A location property stores a location value returned by a GPS unit that includes

the latitude, longitude, dilution, and number of satellites.
• Object: The object property data type stores an object instance as a property of a parent

definition.
• Signature: The signature property type stores a signature entered by a user on the Agentry

Client.
• String: The string property data type stores any character values as a single string.
• Time: The time property data type stores a time of day value.

Boolean Property Type

The Boolean property data type stores a true or false value. When a Boolean property value is
set, a null value is treated as false and any other value is treated as true.

Agentry App Development

Agentry App Development 325

The attributes for a Boolean property include the true and false value. These values define
what will be displayed when the property contains a true or false value.

Boolean Property Attributes

Note: This property type does not have Special Value attributes.

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• True Value: This attribute contains the value to display when the Boolean property is set
to true.

• False Value: This attribute contains the value to display when the Boolean property is set
to false.

Collection Property Type

The collection property data type is defined to store multiple object instances of the same type
as a property of a parent object, transaction, or fetch. The object type used in a collection
property must have a defined key property to uniquely identify each object instance within the
collection property. The default initialization for a collection property is an empty collection.

Each object instance within a collection is considered a child instance to the parent definition
of the collection property. In objects, collection properties are commonly used to store object
instances within a module to provide a data structure within the module representing the
relationship between the different business entities for the module. Collection properties
defined in the module main object are commonly referred to as “top-level collections”.
Collection properties defined within an object other than the main object are referred to as
nested collections.

The collection property type may also store other data types. However, in practice there is
limited use for this type of definition. A collection defined to store another collection is not
valid.

Collection Property Attributes

Note: This property type does not have Special Value attributes.

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

Agentry App Development

326 SAP Mobile Platform

• Property Type: This attribute specifies the type of property the collection will contain.
The default and most common setting for this attribute is Object. There are limited use
cases for collections storing instances of any other type of data.

• Object: This attribute is available when Property Type is set to “Object”. It lists all object
definitions within the module and the selection made specifies the type object instances the
collection property will contain. The object type to be stored in the collection property
must have been defined previously and must have its Key Property attribute set prior to
selecting it in the Object attribute field of the collection property definition.

Complex Table Selection Property Type

The complex table selection property type is used to store a selection made by the user from a
complex table. The value stored in a complex table selection property is the key field of the
selected record within the complex table. The data type of this value will be a string, integral
number, or decimal number, based on the data type of the key field.

The complex table selection contains a single attribute specific to the data type named
complex table. The setting of this attribute specifies the complex table definition that is the
source for the property.

The value contained within a complex table selection property requires a brief explanation of
complex tables. Complex tables are made up of records. The records are made up of multiple
fields. Within the complex table definition, indexes are defined on the fields to allow users to
search the table. Each complex table is required to contain a unique index, which is defined for
the field that contains the unique value for each record. The complex table selection property
will contain the value of this field for the record selected by the user.

Complex Table Selection Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Complex Table: This attribute specifies the complex table definition within the
application that the property will use. Only selections from the complex table specified
here can be stored in the property. The complex table definition must exist and contain at
least one field and the primary index before it may be selected for the Complex Table
attribute of the property definition.

Data Table Selection Property Type

The data table selection property type is used to store a selection made from a data table. The
value stored in a data table selection property is the code field of the selected data table record.
This value will always be a string data type.

Agentry App Development

Agentry App Development 327

The data table selection property type includes display options for its value within the
definition. Whenever this property type is displayed, the entire data table record may be
displayed for its code. Also, only the code field or the value field may be displayed. Which is
shown on the client is defined within the data table selection property definition.

It is important to note that it is not a requirement that a value selected from a data table be
stored in a data table selection property. It is only one of the options available, and other
property data types may be used for this purpose.

Data Table Selection Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Data Table: This attribute specifies the data table from which the selection will be made
for the value stored in the property. Only selections for the data table definition chosen here
can be stored in the property. The data table definition selected here must exist within the
application prior to defining this property type.

• Display Type: This attribute specifies how the selected data table record stored in the
property will be displayed. The options are to display the code field, value field, or code
and value field of the selected data table record; or to specify format text.

• Format Text: This attribute is available only when Display Type is set to “Format Text.” It
specifies the format string to display the selected data table record stored in the property.
This attribute may contain any printable characters plus the format strings %code and
%value.

Date Property Type

The date property type is used to store a calendar date value. This value is stored internally as
the number of days before or after the Agentry epoch date of January 1st, 2001. Negative
values reflect dates prior to epoch. A date property is displayed on the Agentry Client in the
format MM/DD/YYYY by default.

The date property may also be unset or invalid. In this case the year portion of the date property
is set to zero (0000). This condition may be checked to determine if the date property has been
set.

Date Property Type Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

Agentry App Development

328 SAP Mobile Platform

• Blank: This attribute specifies whether or not a blank value is displayed for a date property
when it has not been set (year is zero).

Date And Time Property Type

The date and time property type stores a value consisting of a calendar date and time of day.
This value is stored internally as the number of seconds before or after the Agentry epoch date
of January 1st, 2001 12:00:00 am. Negative values reflect dates prior to epoch. A date and time
property is displayed on the Agentry Client in the format MM/DD/YYYY HH:MM:SS am/
pm by default.

A date and time property may contain an unset or invalid value. This is indicated by the year
portion of the value, which is set to the year zero (0000). This condition may be checked to
determine if the date and time property is invalid.

Date And Time Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Blank: This attribute specifies whether or not to display a blank field when the date and
time property does not contain a valid date and time (year is 0000).

• Display Order: This attribute specifies the order in which to display the date and time
components of the property value. This may be set to either “Date - Time” or “Time -
Date”.

• Time Zone Adjust: This attribute specifies whether or not to adjust the date and time
value of the property during synchronization based on differences in time zones. For object
properties the value retrieved from the back end system may be adjusted from the back end
systems local or standard time, or from universal time, to the client device’s time zone. For
transaction properties the date and time value can be adjusted from the client device’s time
zone to the local or standard time of the system connection or to universal time. The default
for this attribute is “Do not adjust”, which will not modify the date and time value during
synchronization.

Decimal Number Property Type

The decimal number property data type is used to store a numeric value with a fractional
component. The definable behaviors of a decimal number property include standard or NIST
rounding, precision, and significant digit math options.

Values stored in a decimal property can contain values with a precision of up to 20 places past
the decimal point. The values may be positive or negative.

Agentry App Development

Agentry App Development 329

Decimal Number Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Minimum Value: This is the smallest value that may be contained within the property.
This attribute and the Precision attribute are interdependent. You cannot specify a
minimum value with more decimal places than is specified in the Precision attribute. To
force the value to be positive, set the this attribute to 0. The minimum value specified here
can be no greater than the defined Maximum Value.

• Maximum Value: This is the maximum value that the decimal property can contain. This
is dependant on the Precision attribute. You cannot specify a maximum value with more
decimal places than is specified in the Precision attribute. The value defined here can be no
less than the defined Minimum Value.

• Precision: This attribute specifies the maximum number of places past the decimal point.
A negative precision indicates places before the decimal, with any values past this point
padded with zeroes. A precision of 0 specified whole numbers only, though consider using
an integral number property for this purpose.

• Blank - This is a Boolean attribute that specifies whether to display a blank for the property
when it has a value of 0.

• Math: This is a Boolean attribute that specifies whether or not to use significant figure
math in any calculations that use the property value.

• Rounding: This attribute specifies the rounding method to use when this value is rounded.
This may occur within rule definitions (ROUND function term) or when calculations
involving this property are performed. The resulting value for the property will be rounded
to the defined precision, as well as based on the significant digits operations. The methods
for rounding are Nearest or NIST. Nearest is the typical rounding method in which the
digit immediately after the digit to be rounded determines value of that rounded digit.
Values below 5 leave the digit unchanged. Values 5 or above increment the rounded digit
by 1. The NIST rounding method rounds values according to the rules set forth by the
National Institute of Standards and Technology, specifically as they relate to calibrations
measurements.

Duration Property Type

The duration property data type stores a duration of time. The value of a duration property is
stored in seconds and may be positive or negative. It is possible to convert the value to other
time units, including hours, minutes, or milliseconds when referenced in a step definition.
This behavior is controlled by the definition of the duration property.

This data type does not store fractional seconds. During downstream synchronization, if the
back end units for this property include precision smaller than whole seconds, the fractional

Agentry App Development

330 SAP Mobile Platform

second portion of the value will be truncated when assigned to the property. The logic of the
synchronization step should round the value prior to returning it to the Server if this is not the
desired behavior. If it is necessary to keep the fractional portion of the duration value during
synchronization, a decimal number property should be used.

Duration Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Minimum Value: This attribute specifies the minimum duration value the property will
accept. This is set in hours, minutes and seconds and is converted to total number of
seconds within the property. This value can be no greater than the defined Maximum
Value.

• Maximum Value: This attribute specifies the maximum duration value the property will
accept. This is set in hours, minutes and seconds and is converted to total number of
seconds within the property. This value can be no less than the defined Minimum
Value.

• Display Format: This attribute specifies the format in which to display the duration value.
The options are Fractional Hours, Hours:Minutes:Seconds (“H:M:S”), Minutes:Seconds
(“M:S”), or Hours:Minutes (“H:M”).

• Back End Units: This attribute specifies the units in which the duration value is stored in
the back end system. For object properties the value returned from the back end system
will be converted from the unit selected here to seconds. For transaction and fetch
properties the value will be converted from seconds to the units specified here.

External Data Property Type

An external data property is used to reference a file stored on the client device’s file system.
This file is external to the application’s production data. The file data itself is not stored with
the production data. This property type is normally used in conjunction with the file transfer
functionality. The default display value of an external data property is the full path and file
name of the referenced file.

For object properties the attributes of this property type related to the location for the file
specify where the file will be stored on the client device when retrieved from the back end
system. For transaction properties these same attributes specify the default location from
which the user should make a selection. The file dialog opened in this case does allow the user
to navigate the file system to select the desired file. Two separate paths can be defined for the
external data property, one for client devices running the Windows PC group of operating
systems, and a second for client devices running supported versions of the Mobile Windows
OS’s.

Agentry App Development

Agentry App Development 331

The attributes of this data type also allow for designating whether the file should be read-only
on the client device, the file extension for the file, and whether or not to delete the file when the
parent object to the property is deleted.

The recommended use for this property type is define an object that represents the document
and includes this property, as well as other information about the file. The external data
property itself will reference the location of the file and can return the file’s full path and name,
just the file name, just the file path, just the file extension, as well as metadata about the file
such as its last modified date and time and whether or not it has been modified since it was
downloaded to the client device. Many of these values are exposed via rules and/or format
strings. A separate property of a data type other than external data must exist and be referenced
by the external data property that contains the name the file will be given when saved on the
client device. This value must be set during synchronization prior to transferring the file itself.

External Data Property Attributes

Note: This property type does not have Special Value attributes.

General Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

Client File Attributes

• File Name: This attribute references a property within the same parent definition as the
external data property. The referenced property’s value will be used as the file name for the
file referenced by the external data property when it is downloaded from the back end
during object synchronization. In a transaction, the File Name property will store the name
of the file as saved on the client device.

• File Extension: This attribute is optional and can contain the file extension for the file
referenced by the external data property. For objects this extension will be appended to the
file when it is downloaded from the back end and saved on the client device. For
transactions this extension will be used to filter the options displayed to the user in the file
dialog when selecting the file. Only files with the same extension will be displayed. If this
attribute is not set, files saved to the Agentry Client during object synchronization will
keep the same file extension as provided by the back end. For transactions, all files will be
listed in the File Dialog to the user, regardless of file extension.

• When Object is Deleted: This attribute specifies what to do with the file referenced by the
external data property when the parent object of the property is deleted from the Agentry
Client. The options are to always delete the file, never delete the file, or only delete the file
when retrieved from the back end by the mobile client application. This last option will
exclude files attached locally on the Agentry Client via a transaction. This option is

Agentry App Development

332 SAP Mobile Platform

unaffected by the Read Only attribute, meaning if this setting results in the file being
deleted, it will be removed regardless of whether or not it is read-only.

• Read Only: This attribute specifies whether or not the file’s read-only switch will be true.
When set, this will prevent the user from modifying the file but will not prevent the
Agentry Client from deleting or otherwise accessing the file.

• Use Most Recent Location: This attribute specifies whether, when selecting a file on the
Agentry Client to be referenced bu the external data property, the file dialog displayed
should be opened to the most recently selected folder, or to the default folder regardless of
the previous selection made.

Filter

• File Filter: This attribute specifies the file type that may be selected or referenced by the
external data property.

• File Filter Description: This attribute allows for the specification of a file description to
be associated with the file extension listed in the File Filter attribute.

• Restricted Files: This attribute allows for the specification of file names or file extensions
that may not be selected. Multiple files or file types can be listed here separated by semi-
colons.

Windows 9.x/NT/2000/XP

• Base Path: This attribute specifies the base path to which the file will be saved (objects) or
the default location the user will be displayed in the file dialog to select a file
(transactions). This attribute is for Windows PC operating system builds for PC’s, laptops,
and tablets. This may or may not be the entire path for the application, dependent on the
Relative Path attribute. Options for this attribute include:
• Absolute Path: This selection will result in the value of the Relative Path attribute

being used and is assumed to contain the full path, including drive letter, for the files
location.

• Application Data: This selection will set the file’s location to be the path configured in
Windows to be the location for application data.

• My Documents: This selection will set the file’s location to be the path configured in
Windows to be the user’s My Documents folder.

• My Pictures: This selection will set the file’s location to be the path configured in
Windows to be the user’s My Pictures folder.

• Program Files: This selection will set the file’s location to be the path configured in
Windows to be the Program Files folder.

• Windows Temporary Directory: This selection will set the file’s location to be the
path configured in Windows to be the Windows TEMP folder.

• Relative Path: The value of this attribute will be appended to the path resulting from the
Base Path attribute setting. If Base Path is set to Absolute Path, the value of Relative Path
will be used as the full path for the file’s location.

Windows CE (Mobile Windows versions)

Agentry App Development

Agentry App Development 333

• Use Path: This attribute, when checked, will use the same path as defined in the Windows
9.x/NT/2000/XP set of attributes. This will disable the Base Path and Relative Path
attributes for mobile devices.

• Base Path: This attribute specifies the base path to which the file will be saved (objects) or
the default location the user will be displayed in the file dialog to select a file
(transactions). This attribute is for Mobile Windows operating system builds. This may or
may not be the entire path for the application, dependent on the Relative Path attribute.
Options for this attribute include:
• Absolute Path: This selection will result in the value of the Relative Path attribute

being used and is assumed to contain the full path, including drive letter, for the files
location.

• My Documents: This selection will set the file’s location to be the path configured in
Windows to be the user’s My Documents folder.

• Program Files: This selection will set the file’s location to be the path configured in
Windows to be the Program Files folder.

• Windows Temporary Directory: This selection will set the file’s location to be the
path configured in Windows to be the Windows TEMP folder.

• Relative Path: The value of this attribute will be appended to the path resulting from the
Base Path attribute setting. If Base Path is set to Absolute Path, the value of Relative Path
will be used as the full path for the file’s location.

Identifier Property Type

The identifier property data type is used to store a non-negative integer value that is a unique
identifier for an object. The intent of this data type is to be used as a key property for an object.
This is not a requirement and a property of a different data type may be used as an object key
property.

Identifier Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Blank: This attribute specifies whether to display a blank value or 0 when the identifier
property has not been set.

Image

The image property stores a still picture or other image captured on the client device from
either the device’s camera or selected from the file system. This property type is provided as a
part of the overall image capture functionality that may be implemented in the mobile
application. This property should only be displayed in detail screen fields with an edit type of
image capture.

Agentry App Development

334 SAP Mobile Platform

This property type will simply store an image captured from the client device’s camera or
selected from the device’s file system. Its contents can be displayed to the user in detail screen
fields of type image capture. It has no attributes beyond the standard property attributes. For an
object these are the name and display name. If the parent is a transaction, which it should be in
most cases, the standard transaction property attributes are set, including name, display name,
the initial value attributes, and optionally special value attributes.

To synchronize data for an Image property, the file document management step type can be
used to store the image as a .jpg file on the file system of the Agentry Server. Also, SDML
data tags can be used to access the image data within other step types.

Integral Number Property Type

The integral number data type stores a whole number. An integral number property can define
the minimum and maximum values it can contain. The hard minimum and maximum limits for
this data type are equivalent to a 32-bit value, allowing for a positive/negative indicator bit.

Integral Number Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Minimum Value: This attribute specifies the minimum value accepted by the property.
This attribute can be no greater than the defined Maximum Value.

• Maximum Value: This attribute specifies the maximum value accepted by the property.
This attribute can be no less than the defined Minimum Value.

• Blank: This attribute specifies whether to display a blank value or 0 when the value of the
property is zero.

Location Property Type

A location property stores a location value returned by a GPS unit that includes the latitude,
longitude, dilution, and number of satellites. The location property value can be invalid if the
parameters of the property definition are not met. The transaction property location type
includes attributes to define these parameters for the location value. The location property
may also be set via rule functions that take the latitude and longitude values, converting them
to a location value.

When defining this property type there are certain attributes specific to it for transactions and
fetches verses objects. The object location property will contain attributes to initialize the
value with a latitude, longitude, position dilution, and satellite count.

For a transaction or fetch location property, these same attributes can be set. In addition to
these, there are also attributes to specify what is considered the minimum requirements for a
valid location value for that property. These attributes set the minimum number of satellites,

Agentry App Development

Agentry App Development 335

and the maximo age and position dilution for a location value returned from the GPS unit. If
these minimums are not met, the behavior is definable within the property. The value can still
be accepted, or it can be rejected.

For transaction and fetch location properties, there also exist the common initialization
attributes. These attributes will override the defined latitude, longitude, position dilution, and
number of satellites values for the property.

Location Property Attributes

• Name: Contains the internal unique name for the property definition. This value must be
unique among all properties within the same parent definition.

• Maximum Reading Age: This attribute specifies the maximum reading age in seconds for
the value returned by the GPS unit. This reading age represents the last time the unit took a
reading. The Maximum Reading Age will dictate the oldest allowable reading for the
location property. A location with a reading age older than the one specified in this
attribute will be considered an invalid location.

• Minimum Number of Satellites: This attribute specifies the minimum number of
satellites used to calculate the location. There is a minimum of 3 satellites required for any
GPS location. A higher minimum may be specified. Note that this differs from the number
of satellites the unit can see. This value specifies the number actually used to calculate the
location. If this number is less than the minimum number specified the location will be
considered invalid.

• Maximum Position Dilution: This attribute specifies the maximum acceptable position
dilution for a location returned to the location property. This is an integral number with a
range of values from 1 through 50, inclusive. If the position dilution returned with the
location value exceeds this maximum the location will be considered invalid.

• Accept Invalid Data: This attribute specifies whether or not a location value that does not
meet the criteria set for a valid location value to be accepted. If this attribute is set, invalid
locations will be accepted. The property will return an invalid location value, which may
be checked using the rule function term @IS_VALID_LOCATION.

Transaction and Fetch Attributes - The standard fetch and transaction attributes for initializing
the property and targeting object properties are available for the Location property type. The
attribute Initial Value includes the normal available settings plus the options listed below,
which are specific to the Location type.

• Current Location After Data Entry: This option specifies the property should be
updated to the device’s location after the transaction has been finished and just before it is
applied. This value is obtained from the device’s GPS unit.

• Current Location Before Data Entry: This option specifies the property should be
updated to the device’s location before the transaction is displayed to the user. This value is
obtained from the device’s GPS unit.

Agentry App Development

336 SAP Mobile Platform

Object Property Type

The object property data type is used to define an object as a property. The object property type
stores a single object instance of a defined type as a property of a parent object, transaction, or
fetch.

Object Property Attributes

Note: This property type does not have Special Value attributes.

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Object: This attribute specifies the type of object the property is to contain. The object
selected here must already exist within the same module before the property is defined.

Signature Property Type

The signature property type stores a signature entered by a user on the Agentry Client. This is
an actual, written signature that can be entered on the device using a stylus or some other
electronic pen. This signature is stored internally as a bitmap image. Normally only
transaction definitions contain signature properties.

Signature properties may not be initialized to the value of another property. Also, it is outside
the normal usage to target an object property with a transaction property of type signature. The
primary intent of the signature property is to capture a signature in bitmap format on the client
device and to then transfer that bitmap image to the back end system as a part of the
transaction’s synchronization processing.

This property type includes definable behaviors covering the control that will display the
property, and the minimum height and width of the bitmap image captured to treat as a valid
signature.

This property type has several associated SDML data tags for accessing its bitmap data. The
information on these should be reviewed when working with this property type.

Signature Property Attributes

Note: This property type does not have Special Value attributes.

General Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

Agentry App Development

Agentry App Development 337

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Required: This attribute specifies whether or not the signature is required. For a
transaction when this attribute is true, the user will not be able to advance the wizard until
the signature has been captured. This includes meeting the Minimum Signature Size
Requirements attribute settings.

• Time and Date: This attribute specifies whether to embed the client device’s current date
and time in the image.

• Update Rule: This attribute references a rule definition, the return value from which is
expected to be a string. This value will be embedded in the bitmap image with the
signature.

• Signed: This attribute contains the text value displayed in the detail screen field targeting
the property when the signature has been captured.

• Get Signature: This attribute contains the text value displayed in the detail screen field
targeting the property before the signature has been captured.

Maximum Window Size

• Height: This attribute specifies the maximum height of the window, in pixels, where the
signature is entered.

• Width: This attribute specifies the maximum width of the window, in pixels, where the
signature is entered.

Minimum Required Signature Size

• Height: This attribute specifies the minimum height, in pixels, for the signature value. If
the signature does not meet this minimum, the signature will not be accepted. If the
signature is required, the user will not be able to advance the wizard until the signature has
been entered with this minimum height.

• Width: This attribute specifies the minimum width, in pixels, for the signature value. If the
signature does not meet this minimum, the signature will not be accepted. If the signature
is required, the user will not be able to advance the wizard until the signature has been
entered with this minimum width.

String Property Type

The string property data type stores any character values as a single string. Definable
behaviors of a string property include the ability to word wrap its contents upon display, to trim
leading or trailing spaces within the string, and to treat the value as a password.

String Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

Agentry App Development

338 SAP Mobile Platform

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Case: This attribute specifies the case of the characters within the string property. This also
can affect how multiple parent definitions, such as objects, are sorted based on the value of
the property. The options for this attribute are: Lowercase Only, Uppercase Only, Mixed
(case-insensitive), and Mixed (case-sensitive). The lower and uppercase settings will force
any characters within the property to either lower or uppercase, respectively. The two
Mixed case options will preserve the case of the characters as entered. The case-sensitive
and case-insensitive settings specify how the value of the property is compared, either with
respect to case or ignore it.

• Format: This attribute specifies how the value contained within the string property should
be treated by the device or, more specifically, the operating system of the device. The
options available for this attribute include email address, telephone number, and URL.
Specifying this one of these options will result in the value being passed to the operating
system with instructions to “open” the value in the corresponding application for the
selected format; e.g. specifying the option URL will open the device’s web browser and
navigate to the value in the string property.

• Minimum Length: This attribute specifies the minimum number of characters the
property will accept. For transaction string properties, the user will not be able to advance
the wizard unless this minimum number of characters is entered or set for the property.

• Maximum Length: This attribute specifies the maximum number of characters the
property can contain. Editable fields displaying this property will not allow the entry of
more than this number of characters. Object properties will truncate any value to this
maximum number of characters for the string property.

• Carriage Return: This attribute will affect properties that are displayed in fields with
multiple lines. If set to true, when the user hits the Enter key, or if a carriage return value
exists in the string, a new line will be started within the multi-line field.

• Word Wrap: This attribute is another that affects properties displayed in multi-line fields.
When set to true, if the text contained within the property is longer than the width of the
field in which it is displayed, it will automatically wrap to the next line of the field, rather
than scrolling past the far right edge.

• Password: This attribute controls whether the value entered for the property should be
displayed or hidden. When set to true, the value for the property will not be displayed, but
rather each character will be replaced by an asterisk (*). This is also true when users enter a
value for this property.

• Trim: This attribute specifies whether white space characters at the beginning or end of the
string should be preserved. When set to true, any leading or trailing white space will be
trimmed from the value. Any white space within the string will not be trimmed.

Agentry App Development

Agentry App Development 339

Time Property Type

The time property data type stores a time of day value. This value is stored internally as the
number of seconds after midnight, with midnight itself represented as 0. The default display
format of a time property is HH:MM:SS am/pm.

Time Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

Push

A push defines when it is necessary to push an object from the back end system to the Agentry
Client and how that object’s data is retrieved. A push provides real-time data synchronization
for server-to-client data transfer, targeting a top-level object collection property within the
same module. The push determines if changes have been made to the back end system and also
retrieves the needed data to send those changes to the client. Part of the push definition is the
optional behavior to notify users when data has been pushed to their clients.

There are five child definitions to the push, each a step usage definition. These steps provide
the behaviors of polling the back end system for data changes that include new or modified
business objects, polling and retrieving data for objects to be removed from clients, steps to
retrieve data when changes have been found during a poll, updating the back end system after
the new objects have been processed, and error handling steps.

The push itself defines how often to poll the back end system for changes, whether or not to
display notifications on the Client of data after is has been pushed down and the nature of that
notification, and an optional action that may be executed for each object pushed down to a
Client.

The Push definition is the primary definition for implementing push behavior, but it is not the
only definition type involved. The application-level definition transmit configuration also
plays a part in this behavior. Specifically, a transmit configuration must be defined to maintain
a constant connection between the Agentry Client and Agentry Server.

Additionally, if the system connection to be used for push processing is a SQL Database
connection type, the configuration file SqlBE.ini for the Agentry Server is likely to need
modification. Two sections within this file, EnablePushUser and DisablePushUser
are processed by the Server as a part of the overall push processing for a database system. For
other system connection types this file is not involved. Information on this configuration file
can be found in the Agentry Implementation Guide for both Windows and Linux.

Agentry App Development

340 SAP Mobile Platform

Push Child Definitions

• Retrieval Step: A push retrieval step references a step definition run to determine if object
data has changed in the back end system and how that data is retrieved.

• Removal Step: A push removal step references a step definition run to determine what
objects should be removed from the collection on the Agentry Client.

• Read Step: A push read step references a step definition to be run to continue the data
retrieval for the object collection targeted by the push.

• Response Step: A push response step references a step to be run after the Agentry Server
receives notification from the Agentry Client that an object has been successfully pushed
down.

• Error Step: A push error step references a step definition to be executed when one of the
other step usage definitions within the push return an error.

Push Attributes
General Attributes

• Collection: This attribute specifies the target object collection for which the push will
synchronize data. This must be a top-level object collection property within the same
module as the push definition.

• Name: This is the internal definition name for the push. This must be unique among all
push definitions within the same module.

• Display Name: This is the default display value for the push definition when reference is
made to it on the Agentry Client.

• Poll Interval: This attribute contains a duration value in hours, minutes and seconds,
specifying how often to poll the back end system for modifications. At each poll interval
the push retrieval steps and push removal steps will be processed by the Agentry Server.
The value of the Poll Interval must be less than the transmit configuration attribute
Inactive Time attribute of the transmit configuration defined to support the push behavior.

• Read Steps: This attribute specifies whether to use the read steps defined in the object type
for the push’s target collection property. When this attribute is checked, the read steps in
the object type will be processed to synchronize data rather than the push read steps.

• Queue Messages: This attribute allows for push messages from the Agentry Server to the
Agentry Client to be queued if they are not successfully sent after the first attempt or if the
Agentry Client indicates it is still processing the previously received message.

Notification Attributes

• Dialog Pops Up: This attribute specifies whether or not a notification dialog is displayed
on the Agentry Client after an object has been pushed down to the Client and when that
dialog should be displayed. The options for this attribute are:
• After all data received: This setting will display the notification after all objects have

been successfully pushed to the Client.

Agentry App Development

Agentry App Development 341

• Immediately: This setting will display the notification after each object has been
successfully pushed to the Client. If multiple objects are pushed based on a single poll,
the notification dialog will displayed once for each object.

• No Dialog (sound only): This setting will not display any notification dialog to the user,
with the client’s default system sound being the only one played.

• When user clicks icon: This setting will display an icon on the Agentry Client after
objects have been pushed down. The notification dialog will then not be displayed until
the user clicks this icon.

• Data Received Text: This attribute specifies whether or not to display notification text for
new or replaced object instances and, if enabled, the contents of the notification message.
This includes both the message to display to the user and the text in the notification dialogs
title bar.

• Data Removed Text: This attribute specifies whether or not to display notification text
when object instances are removed and, if enabled, the contents of the notification
message. This includes both the message to display to the user and the text in the
notification dialogs title bar.

• Rec’d & Rem’d Text: This attribute specifies whether or not to display notification text
when both new object instances received from the push and other object instances are
removed. If enabled, the contents of the notification message are also a part of this attribute
setting. This includes both the message to display to the user and the text in the notification
dialogs title bar.

• Notification: This attribute enables or disables the external notification behavior. When
enabled, the client device’s hardware LED light will be activated by the Agentry Client.
This attribute has no affect on client devices without such hardware.

• Play Sound: This attribute enables or disables the system’s default sound for notification
when objects are synchronized by the push. When this attribute is enabled, the option for
how many times to play the sound is set. This will also enable the Interval Between Sounds
attribute.

• Interval Between Sounds: This attribute is enabled when the Play Sound attribute is
enabled and it specifies the sound be played multiple times. The Interval Between Sounds
attribute then specifies the duration of time between each instance of the sound.

Action Attributes

• Action After Object Received: This attribute references an action to execute when an
object is pushed down to the Agentry Client. When an action is selected here, that action
will be executed for each object instance pushed to the Client, targeting that object. This
action is not executed when objects are removed based on the push synchronization. If the
user is currently executing an action when an object is pushed to the client (e.g., the user is
viewing a transaction wizard), the action defined for the push is queued and will be
executed when the current action is completed.

• Action When Push Completes: This attribute references an action to execute when the
push has finished pushing down all object instances to the Agentry Client. This action
targets the object collection targeted by the push.

Agentry App Development

342 SAP Mobile Platform

• Cancel Action: This attribute specifies whether or not any action currently being executed
on the Agentry Client is cancelled when objects are pushed down. If this option is disabled
and an action is being executed while an object is being pushed down to the Agentry
Client, the object will not be received by the Agentry Client.

Push Retrieval Step

A push retrieval step references a step definition run to determine if data has changed in the
back end system and how that data is retrieved. A retrieval step can be executed either once, or
iteratively based on the number of users logged in to receive push data. A push retrieval step is
run as a part of the back end polling performed by the push. The step referenced by a push
retrieval step is expected to return the key property of any object instances to be pushed to the
Agentry Client. It may also return additional property values for the object type. If defined to
one run once per poll period it is also expected to return the Client user ID to which the object
will be sent.

A push retrieval step can also return data for the object type targeted by the fetch, as well as for
its child objects. However, it is recommended that child, or nested collections be synchronized
by the push read steps or the object read steps (depending on how the push is defined). Since
retrieval steps are run every poll period, the step definitions they use should be defined to
perform the least amount of processing necessary to determine if new object data needs to be
retrieved. Non-collection property values for the target object type can also be retrieved by the
retrieval step in this model, but no additional data should be retrieved here for the sake of
efficiency of the push’s polling activity.

The retrieval step may be executed, or run, in one of two ways for a given poll. First it may be
defined to run once per user currently logged in to receive push data. For this type of execution,
the data returned by the retrieval step will be organized internally by the Server for each user.
The step being run should then include logic that includes retrieving data specific to each user,
matching the criteria for the implementation related to how objects are synchronized. The step
itself will then be executed multiple times, once for each user, during a single poll of the back
end. Note that this can be a significant number of executions in a production environment,
where it is common for hundreds of users to be connected to the Server for push processing.
When run in this manner, the user ID value for each user is acessible via the <<userID>>
SDML data tag.

The second option for running push retrieval steps is to run them once per poll period. This
behavior will run the step a single time for a given poll regardless of the number of users
currently connected to the Server for push data. In this scenario, the data returned by the step
must include the user ID specifying which client user will receive a given object. This value
should be identified to the Server as UserID. Once the object instance has been created by the
Server and the synchronization of the push overall is completed, the object instance will be
pushed to that user. When run in this manner individual user ID’s are not available to the step.

When a push retrieval step returns the key property of the push’s target object type, the push
read steps or the object read steps (depending on the definition of the push) will be run to

Agentry App Development

Agentry App Development 343

continue the synchronization of the target object collection. If no key property is returned by
any push retrieval step, it is assumed no new data needs to be pushed to the Client. No read
steps will be run in this situation.

Retrieval Step Attributes

• Step: This attribute references the step definition within the same module to be run as a
push retrieval step. These steps may return values for any property within the targeted
object type of the push, but must return the key property of that object to indicate that one
or more objects should be synchronized by the push and sent to the Client. For steps run
once, the data returned by the step must also include the Client user ID to which the object
will be sent.

• Run: This attribute specifies how often to run the referenced step during a single poll
interval. This may be set to either Run One Time, or Run Once Per User. The former will
execute the step once for a given poll period and the user ID value is not available. The
latter will execute the step once per user currently connected to the Server for push data
during a given poll period and the user ID value is available.

• Read Into: This attribute specifies for which object within the data structure of the
targeted object collection the step will return data. While retrieval steps can return data for
nested collections, it is recommended that this be handled by the push read steps, as these
will only be run when the retrieval steps indicate new data is needed.

Push Removal Step

A push removal step references a step definition run to determine what objects should be
removed from the target collection on the Agentry Client. A removal step can be executed
either once, or iteratively based on the number of users logged in to receive push data. A
removal step is run as a part of the back end polling performed by the push. The step referenced
by a push removal step definition is expected to return the key property of any object instance
to be deleted from the Client. If defined to run once per poll period it is also expected to return
the Client user ID from which the object will be removed.

A removal step may be run once per poll of the back end system, or once per user per poll
period, depending on how it is defined. When a removal step is run once per user, data returned
by the step will be organized according to each user. Note that this scenario can result in a large
number of executions of the step per poll, as the number of users logged in into the Server is
commonly in the hundreds or more in a production environment. When run in this manner, the
user ID value for each user is accessible via the <<userID>> SDML data tag.

When a removal step is defined to run one time, it will be executed once per poll period,
regardless of the number of users connected to the Server. In this situation, the data returned by
the removal step should also include the user ID as entered on the Client, indicating which
client will receive the key property for the object to be removed. It is recommended that this is
how most, if not all removal steps are defined within a push as it is a more efficient model of
data synchronization. When run in this manner individual user ID’s are not available to the
step.

Agentry App Development

344 SAP Mobile Platform

Removal Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push removal step.

• Run: This attribute specifies how often to run the step in a given poll period. The options
for this attribute are Run One Time or Run Once Per User. The former will execute the step
once during the poll period and individual user ID’s are not available. The latter will
execute the step once per user currently connected for push data and individual user ID’s
are available to the step.

• Read Into: Not currently supported - leave set to default.

Push Read Step

A push read step references a step definition to be run to continue to read data for the target
object collection. This is a continuation of the synchronization process begun by the retrieval
steps for the push. A push read step can be executed once or iteratively based on the number of
objects and number of users logged in to receive push data. A push read step is only run if the
retrieval steps indicate their are objects to be retrieved.

The execution of the read step can be based on the number of objects created by the retrieval
steps, the number of objects in a nested collection created by previous retrieval or read steps, or
based on the number of users currently connected to receive push data.

When run once per user, the step will have access to individual user ID’s via the SDML data
tag <<user.agentryID>>. Also, any values stored in the <<user.info>> data tag are
still available. When run in this manner it is important to note that the step will be executed
once for each user during each poll period when the retrieval steps indicate there is data to be
synchronized. For production systems it is not uncommon for the number of users connected
for push data to be in the hundreds or more.

When run once per object, the read step will be executed for each object instance for the
collection targeted by the push created by any other push steps prior to the current step’s
execution. When run in this manner the step will have access to the key property of the object
for which it is currently executing.

When run once per collection object, the read step should target (Read Into) a nested collection
of the collection targeted by the push. The step will then be executed once for each object
instance within in this nested collection created by the push steps prior to the current step’s
execution. The step is expected to return property values for the object type stored in the nested
collection. It should also return the key property of any object between the nested object and
the top-level object type in the data hierarchy of the module. This configuration is primarily
intended for file transfer functionality and it is recommended it not be used for other purposes
unless no alternative is available.

When the read step is defined to run once per poll period, it is expected to return data for the
object type in the collection it targets, which will either be the same as the push’s target
collection, or a nested collection of that target. It will not have access to individual user ID’s or

Agentry App Development

Agentry App Development 345

to any object key properties. It must also return the Client user ID indicating to which user the
object should be sent.

Read Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push read step.

• Run: This attribute specifies how often to run the step in a given poll period. The options
for this attribute are Run One Time or Run Once Per User. The former will execute the step
once during the poll period and individual user information is not available. The latter will
execute the step once per user currently connected for push data and individual user
information, including user ID’s are available to the step.

• Read Into: This attribute specifies which objects to create with the data returned by the
step. This may be the same collection as is targeted by the fetch, or one of its nested
collections. To read data into the push’s target collection, this attribute is left set to its
default value of “None.” For nested collections, the desired collection is selected in the
Add Wizard or in the properties view.

Push Response Step

A push response step references a step to be run when the Agentry Server receives notification
from the Agentry Client that an object has been successfully pushed down. This step is run to
update the necessary back end objects that the object has been processed by the push. A push
response step is always executed once per object pushed to the Client.

Response Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push response step.

• Run: This attribute cannot be changed for this step usage definition. This step type is
always run once per object.

• Read Into: Not currently supported - leave set to default.

Push Error Handling Step

A push error step references a step definition to be executed when one of the other step usage
definitions within the push return an error. An error step is always executed once per object.

The intended purpose of a push error step is to perform any cleanup or similar actions in the
event an error occurs in processing on of the push’s steps. This may include items such as
marking the object data in the back end as not pushed, or other similar processing.

Error Handling Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push error step.

Agentry App Development

346 SAP Mobile Platform

• Run: This attribute cannot be changed for this step usage definition. This step type is
always run once per object.

• Read Into: Not currently supported - leave set to default.

Service Event

A service event defines how the Agentry Server synchronizes data between two back end
systems. A service event will normally perform such a synchronization when a change or
“event” occurs in a source back end system that must be reflected in a destination back end
system. Depending on its type, a Service Event can either actively poll a back end system, or
listen to the source back end for messages notifying it of a change. A service event targets an
object collection to facilitate this data transfer, with the object instances in that collection
storing the data retrieved from the source back end. The synchronization processing of a
service event does not involve or affect any Agentry Clients.

The service event creates object instances based on data retrieved from the source back end
system. It then updates this object data to the destination back end system. The components of
the service event that retrieve data from the source back end system differ for each service
event type. The child definitions to update the destination back end system are the same set of
step usage definitions for all service event types.

There are four types of service events that may be defined:

• Poll With Step: A Poll With Step service event type references a step definition that is run
by the Agentry Server periodically to actively poll the source back end system for data
changes.

• Java Callback: A Java Callback service event type includes a Java code component that is
an extension of the ServiceEvent Agentry Java API class that allows a the source back end
system to call into the Agentry Server as a notification of a modification to that back end
system’s data.

• HTTP-XML Message Received: An HTTP-XML message received service event type
includes XML message mappings that will map messages sent from the source back end
system to the Agentry Server to indicate data has changed in that back end system.

• File System Monitor: A File System Monitor service event type is defined to monitor a
specified directory on the Agentry Server’s host file system for changes and includes
document mappings to map data in that directory’s files to the properties of the service
event’s target object type.

Service Event Child Definitions
While each service event type has different components to capture data changes in the source
back end system, all service event types contain the same child definitions to update the
destination back end system:

• Read Step: A service event read step references a step definition run to retrieve any
additional data for the target object collection from the source back end system.

Agentry App Development

Agentry App Development 347

• Data State Step: A service event data state step references a step definition run to check
for data collisions in the destination back end system before the service event makes any
changes to it.

• Update Step: A service event update step references a step definition run to update the
destination back end system with data stored in the service event’s target object collection.

• Error Handling Step: A service event error handling step references a step definition run
only when one of the other service event child step usage definitions returns an error.

Service Event Attributes
The attributes for a service event vary depending on the service event type. See the service
event type-specific information for details on these attributes.

Service Event Type: Poll With Step

A Poll With Step service event type references a step definition that is run by the Agentry
Server periodically to actively poll the source back end system for data changes. This step
definition is commonly a SQL step, though this is not a requirement. The step polling the
source back end must return the key property of the object for which the service event has been
defined to indicate there is data to be updated to the destination back end system. When the
step returns this value, the service event’s read, data state, and update steps are processed.

This service event type is typically defined when the source back end is a SQL Database
system connection, although any back end may be actively polled provided the correct step
type definition is used. The only requirement of the step referenced by the service event to poll
the source back end is that it return the key property for each object instance of the target object
type to be synchronized.

This service event type includes the poll interval, which is the duration of time between polls
of the source back end by the service event. The number of objects retrieved from the source
back end can be limited to a maximum number of instances per poll interval.

Poll With Step Service Event Attributes

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Step: This attribute references the step definition to be run by the service event to poll the
source back end system. The step referenced here should be written to return the key
property of the target object type of the service event whenever data has changed in the
source back end.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Poll Interval: This attribute specifies the duration of time between polls of the source back
end by the service event. This attribute is set in hours, minutes and seconds. The step

Agentry App Development

348 SAP Mobile Platform

definition referenced in the Step attribute will be run periodically based on the value in the
Poll Interval attribute.

• Object Limit: This attribute specifies the maximum number of object instances to create
using the data returned by the service event’s defined step. If this step returns the key
property values for objects than specified here, the order in which the step returns them
will determine which object instances will be created and which will not.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

Service Event Type: Java Callback

A Java Callback service event type includes a Java code component that is an extension of the
ServiceEvent Agentry Java API class. Included in this class must be a method into which the
source back end system can the Agentry Server as a notification of a modification to that back
end system’s data. this class is instantiated when the service event is loaded by the Server
during startup. The information passed to this method must include the key property of the
service event’s defined object type. When a message is received by this class that includes the
service event’s target object’s key property the read steps, data state steps, and update steps
will be processed by the Agentry Server to update the destination back end system.

The Java code component of this service event type is initially created as a skeleton class. The
developer must then implement the methods for this class to process the message received
from the source back end system. It may include additional methods for processing the
message once received, but only one method within the class can be called by the source back
end. Data captured from the source back end must then be passed from this class to the
Agentry Server using the standards within the Agentry Java API.

Java Callback Service Event Attributes:

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Connection: This attribute references a Java Virtual Machine system connection within
the application. This system connection is the one to with which the service event will
communicate. This connection will be the one over which the source back end system
sends the message to the service event when a data change occurs. This system connection
must exist prior to defining the service event and it must be of type Java Virtual Machine.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

Agentry App Development

Agentry App Development 349

Service Event Type: HTTP-XML Message Received

An HTTP-XML message received service event type includes XML message mappings that
will map messages sent from the source back end system to the Agentry Server to indicate data
has changed in that back end system. This call is made by the back end system via a CGI
message containing XML data or an XML document. The service event will filter messages
using an XPath value. The service event will then handle this message by processing the read,
data state, and update step definitions to update the destination back end system.

This type of service event includes a child definition called message mapping. A given HTTP-
XML Message Received service event may have one or more message mapping. Each
mapping definition is intended to map data from the XML message or document to the
properties of the target object of the service event, or to one of a selection of other data items
within the application.

As a part of the HTTP-XML service event type, an HTTP response is defined. This response is
sent by the Agentry Server back to the HTTP server that initially sent the XML message; that
is, the response is sent back to the source back end system. Included in this response is one of
the standard HTTP response status codes, as well as other possible information. This
information can include fixed string data, or HTTP markup. This response after all processing
for the service event has completed, including all read, data state, and update step execution.

HTTP-XML Message Received Service Event - General Attributes

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Connection: This attribute references an HTTP-XML system connection type within the
same application. This connection is the one over which the source back end system will
send the message to the Agentry Server containing the XML data or document to be
processed by the service event. This system connection must exist prior to defining the
HTTP-XML Message Received service event and must be of type HTTP-XML.

• Message Filter: This attribute contains the XPath statement to filter messages received by
the service event. If the service event can select one or more nodes within the message
document using this XPath, the service event will process the message. If it cannot make
such a selection, it will ignore the message.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

• Run Push: This attribute specifies a push definition to run when this service event type is
called from the back end system. This is provided as an alternative to the default polling

Agentry App Development

350 SAP Mobile Platform

behavior of a push definition, allowing them to be run on demand by the back end system
instead.

HTTP-XML Message Received Service Event - HTTP Response Attributes
HTTP Response

• HTTP Response Code: This attribute specifies the HTTP response status code sent by the
Agentry Server to the source back end system that initially called the service event.

• Response Data Type: This attribute specifies the data type of any data within the HTTP
response status sent by the Agentry Server. This can be set to Fixed String, Small Markup
or Large Markup. A fixed string is a single string value defined in the Response attribute.
Small Markup is a short piece of HTML text, also set in the Response attribute. Large
Markup is a larger chunk of HTML text, likely spanning multiple lines. This text is stored
in the file referenced by the Markup File attribute.

• Markup File: This attribute is available only when the Response Data Type is set to Large
Markup. Markup File references the text file containing the HTML text to be sent as a part
of the HTTP Response by the service event.

• Response: This attribute is available when Response Data Type is set to either Fixed
String or Small Markup. For fixed string, the Response attribute can contain any text value.
For Small Markup the Response attribute should contain HTML text. The contents of the
Response attribute are sent as a part of the HTTP Response by the service event.

Error Response

• Error Response Code: This attribute specifies the HTTP response status code sent by the
Agentry Server to the source back end system that initially called the service event.

• Error Data Type: This attribute specifies the data type of any data within the HTTP
response status sent by the Agentry Server. This can be set to Fixed String, Small Markup
or Large Markup. A fixed string is a single string value defined in the Response attribute.
Small Markup is a short piece of HTML text, also set in the Response attribute. Large
Markup is a larger chunk of HTML text, likely spanning multiple lines. This text is stored
in the file referenced by the Markup File attribute.

• Markup File: This attribute is available only when the Response Data Type is set to
Large Markup. Markup File references the text file containing the HTML text to be sent
as a part of the HTTP Response by the service event.

• Response: This attribute is available when Response Data Type is set to either Fixed
String or Small Markup. For fixed string, the Response attribute can contain any text
value. For Small Markup the Response attribute should contain HTML text. The contents
of the Response attribute are included as a part of the HTTP Response sent by the service
event.

HTTP-XML Service Event Message Mapping

The HTTP-XML service event type includes the child definition type Message Mapping.
Service events of this type can contain one or more of these child definitions. The purpose of a

Agentry App Development

Agentry App Development 351

message mapping is to map data in the XML document that is a part of the message received by
the service event to the properties or other data values within the application.

A part of the message mapping definition is the XPath to the location of the data in the XML
structure. When a data value is found it is then mapped, according to the message mapping, to
either the property values of the object type targeted by the service event, or to one of a list of
other options for data sources within the application.

HTTP XML Service Event Message Mapping Attributes

• Mapping Type: This attribute specifies the mapping type. This may be either XPath
Expression or XML Transformation.

• Base XPath: This attribute is optional and should be used when returning multiple
instances of the same data element in the XML content. When a Base XPath is defined for
a response mapping, the same value will be set by default in the add wizard for subsequent
message mappings within the same parent service event.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath value to extract the desired value from
structured XML data contained in the message received by the service event.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data contained in
the message received by the service event.

• Maps To: This attribute specifies where the value extracted by the message mapping is
stored in the application. This may be one of the following values for a service event:
• Last Update: This selection specifies the extracted value is a date and time indicating

when the object’s source in the back end system was last modified. This value is
mapped to the last update value within the object instance created by the service event.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent message mappings in the same parent service event. The value of this data
tag will be the value extracted by the response mapping. When selected, the attribute
String Name will be available to name the local data tag created. This is the equivalent
to calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent message mappings in the same service event. The value of this
data tag will be the value extracted by the response mapping.

• Parent Object Key Property: This selection will set the value extracted by the message
mapping to the key property of the parent object to the object created by the message
received by the service event. This will not change the parent object’s key property, but
rather is used by the Agentry Server to identify which object is the parent object.

• Property Path: This select will set the value extracted by the message mapping to the
property selected in the Property Path field. This will change the value of the property
to the value extracted from the message received by the service event.

Agentry App Development

352 SAP Mobile Platform

Service Event Type: File System Monitor

A File System Monitor service event type is defined to monitor a specified directory on the
Agentry Server’s host file system for changes. When a file system monitor service event is
defined and published to the Server, the Server will begin monitoring the directory the service
event has been defined to watch, which is then the source back end system for the service
event. When a change occurs to the contents of this directory, the Server will attempt to open
each file in the directory for reading. Once a file is opened successfully, the service event’s
defined command will be executed, followed by its read, data state, and update step definitions
to update the destination back end system.

If the Agentry Server is unable to open a file for reading, it will wait a short period and attempt
the operation again. If it is unable to open the file after this second attempt, it will skip the file
and process the next on found in the directory. When a file is successfully opened, the defined
command for the service event is executed for that file. The service events child step usage
definitions are then processed. Once this is complete, the next file in the directory is processed
according this same procedure. Note that the Agentry Server will delete all files from the
directory that it successfully processes. To prevent this behavior, the command should include
copying the file to a different location, or rename the file to one that does not match the File
Filter attribute of the service event definition.

The command defined for this service event type is primarily intended to prepare files for
transfer or reading by the service event. The command can be any executable file type and is a
Windows batch file (.bat) by default. The file type may be changed by editing the file
extension of the file name in the File attribute of the Command tab.

A file system monitor service event includes the document mapping child definition type. The
service event may contain one or more of these child definitions, each of which will map a file
or file-related data to the properties of the object type targeted by the service event; or
alternately one of the other data components of the application.

File System Monitor Service Event Attributes

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Connection: This attribute references a File system connection type to the Agentry
Server’s host file system. The directory monitored by the service event must exist on this
file system. The Agentry Server must have read-write access to this directory. The system
connection must be of type File System and must exist prior to defining the service event.

• Directory: This attribute specifies the directory to be monitored by the service event. This
path can be either a full path beginning with the file system root, or it may be a relative path
to the installation location of the Agentry Server. The Server must have read-write
privileges to this directory. Changes to this directory monitored by the service event
include the addition of new files or modifications of existing files determined by changes
to the modification date in the file’s metadata.

Agentry App Development

Agentry App Development 353

• File Filter: This attribute can contain any file name matching characters to specify which
files or file types the service event should monitor. This value can include wild cards in the
form of asterisks. Any files at the location specified by the Directory attribute that match
the file name pattern specified in File Filter will be monitored. Any others will be ignored
by the service event. If File Filter is left blank, all files within the directory will be
monitored.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

File System Monitor Service Event Document Mapping

The File System Monitor service event type includes the child definition type Document
Mapping. A document mapping is defined to map a file or other data generated by the service
event’s command to a property within the application. Data that may be mapped includes a file
created by the command, output written by the command to standard error or standard output,
or the exit code passed to the operating system by the command.

Multiple document mappings may be defined for the same parent service event to capture each
of these values. This can allow the application to determine if an error occurs when the service
event’s command is executed, as well as specific information about the error.

File System Monitor Service Event Document Mapping Attributes

• Property: This attribute specifies the property to which the data extracted by the
document mapping is assigned. The data type of the property selected should reflect the
setting for the Output Type attribute.

• Output Type: This attribute specifies which output from the service event’s command
contains the data to be mapped to the item referenced in the Property attribute. This may
be set to one of the following options:
• Command Exit Code: This selection specifies the value returned by the command to

the operating system. This exit code will be the value stored in the item selected in the
Property attribute. The property selected should of type integral number to store the
command exit code in most cases.

• File Created by Command: This selection specifies that the file created by the service
event’s command should be assigned to the item referenced in the Property attribute.
This data of the selected property should be External Data when this Output Type is
defined.

• STDERR: This selection specifies that any output from the service event’s command
written to STDERR, or standard error, is assigned to the item referenced in the Property

Agentry App Development

354 SAP Mobile Platform

attribute. The data type of the selected property should be String when this Output Type
is defined.

• STDOUT: This selection specifies that any output from the service event’s command
written to STDOUT, or standard output, is assigned to the item referenced in the
Property attribute. The data type of the selected property should be String when this
Output Type is defined.

• File Name: This attribute is available only when the Output Type is set to File Created by
Command. The File Name attribute specifies the name of the file created by the service
event’s command that is to be referenced by the item selected in the Property attribute.
This attribute can include the SDML <<script>>, which expands to the name of the file in
which the service event’s command is stored. It is common to use this value as a part of the
name for the file generated by the command.

• Delete File: This attribute specifies whether or not to delete the file created by the service
event’s command. When set, the file will be removed after the service event has finished
processing it. Otherwise the file will remain after the service event has completed
processing.

Step

A step defines a single piece of processing to be performed by the Agentry Server with a
specific back end system. There are different types of steps, defined based on the system
connection for which the step is defined. A step defines what action to take and against which
back end system. It will not be executed by the Agentry Server unless it is referenced by
another definition that defines Server processing.

The step definition must be used by a step usage definition to give it context and purpose. The
step itself defines the back end system and the task to perform. The context of the step will
dictate what values the step will have access to within the application data.

Regardless of the type of step, all may update data to a back end system, including adding,
editing, or deleting that data; and all may retrieve data from the back end system, returning it to
the Agentry Server for use in the application.

There are five types of steps that may be defined, with one each for the Java Virtual Machine,
SQL Database, and HTTP-XML system connection types. The File system connection
supports two step types. When a step definition is created in the Agentry Editor the first
information entered is the system connection for which the step is defined. Based on this
selection the type of step can then be entered. Following are the types of step definitions that
can be defined. The appropriate system connection must exist prior to defining the step.

• SQL Query: A SQL Query step is defined for a SQL Database system connection and
contains the SQL logic to be processed by the Agentry Server for a database back end
system.

• Java Steplet: A Java Step, or Steplet, is defined for a Java Virtual Machine system
connection and contains the Java logic to be processed by the Agentry Server for a Java
interface.

Agentry App Development

Agentry App Development 355

• XML via HTTP: An XML via HTTP step is defined for an HTTP-XML system
connection and defines a URL called by the Agentry Server and also defines how the XML
data returned from this call is mapped to the data members of the mobile application.

• File Command Line: A File Command Line step is defined for a File System Connection
and defines a command to be executed by the Agentry Server on the host system of the
Server.

• File Document Management: A File Document Management step is defined for a File
System Connection and defines a command to be executed by the Agentry Server on the
host system of the Server in support of transferring files between the Server and the
Agentry Client.

Step Type: SQL Query

A SQL Query step is defined for a SQL Database system connection and contains the SQL
logic to be processed by the Agentry Server for a database back end system. The logic for a
SQL Query step is contained in a text file with a .sql extension. The contents of this file are
processed by the Agentry Server prior to submission to the database for execution. This
preprocessing includes expanding any SDML tags. The results from this expansion must be a
valid SQL statement for the target database type.

The contents of the query file for this step type may be accessed directly on the Agentry
Development Server for the application project. The file path listed for this file is relative to the
installation location of this Server. If this file is modified it is not necessary to publish the
application project for the change to be exhibited. In a production environment this file is not
directly accessible in this manner and must be modified through the Agentry Editor. Changes
made in a production environment must be published.

SQL Query Step Attributes
• Name: Contains the unique internal name of the step definition. This value must be unique

among all step definitions within the same module.
• Connection: This attribute references the system connection for which the step is defined.

This attribute is set when the step is initially created and cannot be modified. For a SQL
Query step this must be a SQL Database system connection type.

• File: This attribute contains the path and file name of the .sql file containing the step’s
SQL statement. This path is relative to the path

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location of the Agentry Development
Server.

Step Type: Java Steplet

A Java Step, or Steplet, is defined for a Java Virtual Machine system connection and contains
the Java logic to be processed by the Agentry Server for a Java interface. The logic for a Java
Steplet is contained in a Java source file with a .java extension. This file is added to an

Agentry App Development

356 SAP Mobile Platform

existing Java project in the Eclipse Java perspective. This class created is an extension of the
Agentry Java API class Steplet. The contents of this file are processed by the Java Virtual
Machine running on the host system for the Agentry Server.

With the release of the Agentry Mobile Platform version 5.1 the process for creating of a Java
step definition has changed. The new procedure reflects support for the Java perspective
provided within the Eclipse and allows the developer to add Java logic for a step definition to
existing projects within the Java perspective. The creation of the Java logic portion of a step
definition is now performed through the Java perspective’s wizard for creating classes, and
allows for the selection of the package to which the step is to be added. Java steps created in
previous versions of the mobile platform are still supported and will still reside on the Server’s
file system. New Java steps defined for the application should be created using the Java
wizards provided by the Java Perspective. The file for these steps will then be saved to the file
system according to the configuration of the Java project to which the Steplet is added.

Java Steplet Attributes

• Name: Contains the unique internal name of the step definition. This value must be unique
among all step definitions within the same module.

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For a Java
Steplet this must be a Java Virtual Machine system connection type.

• Source Type: This attribute specifies the source of the Java logic for the step and may be
set to one of the following options:
• Existing Class: This selection will allow for the selection of an existing class within a

project in the Java perspective. The class selected will be the one called when the Java
step is processed by the Server at run time. This class must be an extension of the
Agentry Java API class Steplet.

• New Class: This selection will create a new Java class that is an extension of the
Agentry Java API class Steplet. The Java class wizard within the Java perspective in
Eclipse will be displayed to allow for the creation of this class, including specifying the
project and Java package to which it should be added.

• Source (deprecated): This selection, as indicated, is deprecated and is provided to
support the now deprecated method of managing Java classes for an Agentry mobile
application. This selection will use and store a .java file on the Agentry Server’s file
system. Note that this selection will prevent the ability to organize the source file for
the step in a Java project within the Eclipse Java perspective.

• File: Note that this attribute is deprecated as of version 5.1 of the Agentry Mobile
Platform. While still supported for existing Java steps, it should not be used in new step
definitions. It is only valid when the Source Type attribute is set to the option “Source.”
This attribute contains the path and file name of the .java file containing the step’s SQL
statement. This path is relative to the path

ServerDirectory\Application\Development\Scripts

Agentry App Development

Agentry App Development 357

where ServerDirectory is the installation location of the Agentry Development
Server.

Step Type: XML via HTTP

An XML via HTTP step is defined for an HTTP-XML system connection and defines a URL
called by the Agentry Server and also defines how the XML data returned from this call is
mapped to the data members of the mobile application. This step includes two child
definitions that encapsulate the arguments passed by the Server to the defined URL, and the
mapping of return values to the data members of the application. An XML via HTTP step is
defined for a specific definition type within the same module.

The first information entered for an XML via HTTP step is the definition for which it is
defined, which may be an object, transaction, or fetch. This information is needed by the step
definition for use in its child definitions, which must have access to the property values of the
selected data definition as a part of their behaviors.

Within this step type is the HTTP request. This portion of the step defines the URL called by
the Agentry Server and the HTTP request method. This may be one of GET, HEAD, POST, or
PUT.

The child definitions to an XML via HTTP step include its request arguments and response
mappings. Request arguments provide access to the property values and other data values in
scope for the step to be passed to the URL defined by the step. Included in this definition is the
type of argument the data represents.

Response mappings extract data from the structured XML data or document returned from the
request. They may use of XPaths to locate and retrieve these values from the XML and define
to which property or other data member of the application the XML contents will be mapped.
Response mappings may be used to extract a specific XML element’s contents, or a parent
element may be specified with a second, child element within that parent of which there may
be multiple instances.

XML via HTTP Child Definitions

• Request Argument:
• Response Mapping:

XML via HTTP Step Attributes
General Attributes

• Used For: This attribute specifies the data definition within the module for which the step
will synchronize data. This may be any fetch, transaction, or object definition within the
application. This attribute set by first selecting the type of definition and then selecting the
specific definition within the project.

• Name: Contains the unique internal name for the step definition. This must be unique
among all steps within the same module.

Agentry App Development

358 SAP Mobile Platform

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For an XML
via HTTP step this must be an HTTP-XML system connection type.

HTTP Request Attributes - These attributes are accessible after the step has been defined.
They are organized as a child definition to the step itself and can be navigated to in the Editor
within the Application Explorer view. The HTTP Request for an XML via HTTP step is one of
the rare instances within the Agentry project structure where there may be only one instance of
a child definition within a given parent.

• Name: Contains the unique internal name for the HTTP request within the step definition.
This is set by default to the name of the parent step definition. It may be modified. A given
XML via HTTP step will have only one HTTP request.

• URL: This attribute contains the URL to which the Agentry Server will make a request.
This value will be appended to the value configured as the base URL for the HTTP-XML
system connection. This base URL is configured within the HTTP-XML system
connection configuration options for the Agentry Server. Proper use of both this base URL
option and the URL entered in the requests of the step definitions can support portability
for the application, with the base URL being the implementation-specific portion and the
step’s URL being the portion not likely to change for the same back end system from one
implementation to the next.

• Method: This attribute specifies the HTTP request method for the request. This may be set
to one of GET, HEAD, POST, or PUT.

XML via HTTP Step Request Argument

An HTTP Request Argument is a child definition to the XML via HTTP step definition,
defining the data values passed as arguments to the parent step’s defined URL. Included in the
request argument definition is the type of request and the property value or other data value in
scope for the step to be passed as the argument. Request arguments also have a data type,
which specifies the source for the argument’s data.

A request argument is defined for the parent step only when it is necessary to pass arguments to
the step’s defined URL request. The request allows for access to the property values of the
definition for which the step was defined, as well as values at the user or application level via
the SDML. A fixed string value may also be defined to passed as the argument.

The values accessed via the SDML can be contained in either a small or large markup value.
Both allow for the use of HTML markup text. The difference between these two items is the
manner in which the markup is stored. For a small markup argument, a single field that can
contain one line of markup text is available within the request argument.

Each of these data sources is a different data type within the request argument. A data type is
selected first within the definition, followed by the specific value of that type.

The argument itself also has a type. This may be one of CGI Argument, Cookie, HTTP Header,
or XML Body. The selection of the argument type specifies how the data for the request
argument is passed to the URL defined in the parent step definition.

Agentry App Development

Agentry App Development 359

A given XML via HTTP step can contain multiple arguments. All arguments are listed within
the Properties View of the parent step definition. Within this list, the position of each request
argument definition specifies the order in which the arguments will be passed to the URL
request. This order can be changed by moving the arguments up or down within the list.

Request Argument Attributes

• Argument Type: This attribute specifies how the data within the argument will be passed
to the URL defined in the parent step definition. This may be one of CGI Argument,
Cookie, HTTP Header, or XML Body.

• Name: Contains the unique internal name of the request argument. This value must be
unique among all request arguments within the same step definition. The field label in the
Editor for this attribute will change based on the selection of the Argument Type attribute.

• Data Type: This attribute specifies the type of the data for the argument. This selection
determines the source for the argument data within the mobile application.
• Fixed String: This selection specifies the argument will be a plain text value. When this

is selected the String attribute will be enabled, allowing for the entry of text value to be
passed for the argument.

• Large Markup: This selection specifies the argument will be HTML markup. The
markup text will be stored in a text file. This file is accessible on the Agentry
Development Server for the application project and may be edited directly from this
location, or from within the Agentry Editor. The relative path and name for this file is
listed in the Markup File attribute, which is enabled when the “Large Markup” type is
selected in the Data Type attribute.

• Property Path: This selection specifies that the argument value is contained in a
property of the definition for which the parent step has been defined. When this
selection is made the Property Path attribute is enabled, where the property can be
selected.

• Small Markup: This selection specifies the argument will be HTML markup. The
markup text will be entered in the Markup Text attribute field, which will be enabled
for this selection. This argument Data Type allows for a single line of HTML markup to
be entered for the argument.

• User ID: This selection specifies that user’s login ID for the Agentry Client is passed as
the argument value. No other attributes are enabled in relation to this selection.

• String: This attribute is enabled when the Data Type attribute is set to Fixed String. The
String attribute contains the plain text value passed as the argument value to the parent
step’s URL request.

• Mask in Log: This attribute can be set to hide the value of the argument in logs generated
by the Agentry Server. in place of the value, a series of asterisks is recorded. Typically this
is used for passwords and other sensitive values.

• Markup File: This attribute is enabled when the Data Type attribute is set to Large
Markup. The Markup File attribute lists the relative path and file name for the text file
containing the HTML markup text. This path is relative to the Agentry Development
Server’s installation location. The default value is the location:

Agentry App Development

360 SAP Mobile Platform

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location for the development server. This
path may be changed, relative to this location, though this is rarely necessary for this
definition type.

• Property Path: This attribute is enabled when the Data Type attribute is set to Property
Path. The Property Path attribute references the property definition within the definition
for which the parent step was defined. The value of this property will the value passed as
the argument to the parent step’s URL request.

• Markup Text: This attribute is enabled when the Data Type attribute is set to Small
Markup. The Markup Text attribute can contain a single line of HTML markup text that
will be passed as the argument to the parent step’s URL request.

XML via HTTP Step Response Mapping

An XML Response mapping is a child definition to the XML via HTTP step definition,
defined to extract data returned by the parent step and map it to the property values or other
data members of the application. Data returned may be extracted by the mapping when that
takes the form of a Cookie, HTTP Header, or XML. The value extracted may be assigned to the
properties of the definition for which the step was defined, or to one of several other data
values within the application.

The response mapping defines both the source type, or “Mapping Type,” of the data returned
by the step definition, and the data component of the mobile application where the value is
stored. If the mapping type is an XPath Expression or XSL Transformation, the return data
must be structured XML. Included in the response mapping then is the XPath or XSL to extract
the data from the XML document received by the step after its request was submitted.

Once the data is extracted by the response mapping definition it is assigned to the data
component of the mobile application as specified within the mapping definition. This can
include a property within the definition for which the parent step was defined, as well as
messaging, user ID, the creation of local and local XML data tags, the parent object’s key
property, or the value may be used for validation.

A given XML via HTTP step can contain multiple response mappings. Each will extract data
from the same data set returned by the step to the Agentry Server. The parent step definition’s
property view contains a list of all response mappings. The order in which the mappings are
processed is the position in which the mappings are listed in this view. This order can be
modified by moving the mappings up or down within the list.

Response Mapping Attributes

• Mapping Type: This attribute specifies the type of data from which the value will be
extracted for the response mapping. This may be one of Cookie, HTTP Header, XPath
Expression, or XSL transformation. If XPath or XSL is selected, the return set from the
step is assumed to be an XML document. This requires the definition of the Base XPath

Agentry App Development

Agentry App Development 361

and XPath, or XSL attributes to specify which components of the XML document are to be
extracted.

• Name: Contains the unique internal name for the response mapping. This value must be
unique among all response mappings within the same parent step. The label for this
attribute field in the Editor will change based on the selected Mapping Type.

• Base XPath: This attribute is enabled when the Mapping Type attribute is set to either
XPath Expression or XSL Transformation. The Base XPath is set to locate an element
within the XML Document that contains one or more child elements of the same type. The
XPath attribute then specifies the specific child element type within the element specified
by the Base XPath. The response mapping will iterate over all instances of the child
element, extracting the value of each and assigning to the value specified in the mapping
attributes. This is most commonly used when synchronizing data object instances within a
collection property.

• XPath: This attribute contains the XPath expression for the specific element within the
XML Document whose contents are to be extracted by the response mapping. This
expression is used in combination with the Base XPath (if specified) to provide iterative
processing of multiple instances of the same element within the same parent element
within the document.

• XSL:
• Maps To:

• Error Message: This selection will map the data to error text display by the mobile
application.

• Last Update: This selection specifies the extracted value is a date and time indicating
when the data table’s source in the back end system was last modified. This value is
compared against the internal last update value for the data table as provided by the
Client.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will the value extracted by the response mapping. When selected, the attribute String
Name will be available to name the local data tag created. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping.

• Notification [Cancel] Button Label: This selection specifies that the value extracted by
the response mapping should be used to label the cancel button displayed in the
Notification Dialog displayed by push definitions. If the step is used in any other
manner than push processing, this selection will have no effect.

• Notification [OK] Button Label: This selection specifies that the value extracted by the
response mapping should be used to label the OK button displayed in the Notification
Dialog displayed by push definitions. If the step is used in any other manner than for
push processing, this selection will have no effect.

Agentry App Development

362 SAP Mobile Platform

• Notification Text: This selection specifies that the value extracted by the response
mapping should be used as the message text displayed in the Notification Dialog
displayed by push definitions. If the step is used in any other manner than for push
processing, this selection will have no effect.

• Notification Title: This selection specifies that the value extracted by the response
mapping should be used as the title bar text of the Notification Dialog displayed by
push definitions. If the step is used in any other manner than for push processing, this
selecting will have no effect.

• Parent Object Key Property: This selection specifies that value extracted by the
response mapping should be matched with the key property of the parent object to the
object being synchronized. This is primarily used in fetches and object read steps,
where the data for a nested collection is being retrieved. When this option is selected,
the Key Property attribute will be enabled to allow for the selection of the parent key
property to match with the value.

• Property Path: This selection specifies that value extracted by the mapping is assigned
to a property within the object definition for which the step has been defined. This
selection has no meaning for steps defined for fetch definitions. For steps defined for
transactions this option is selected when the parent step is expected to return the key
property of the object targeted by the transaction. This is only the case when the
transaction step usage definition defines a client response of Update Client Key
Property.

• User ID: This selection will map the value extracted by the response mapping to the
user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Server set the user
ID, setting it here will override that value. This will then be the value available for all
HTTP-XML system connection processing where the data tag <<user.id>> is
referenced.

• Validation: This selection allows for validation within of the user during the request
made by the step. When the validation item is selected, the XPath defined for the step
must successfully locate and XML element. The failure to locate the element is treated
as failed validation.

• String Name: This attribute is enabled when the Maps To attribute is set to “Local String
(<<local>>).” This attribute contains the name of the local data tag to be created. This
name can be set to any character consisting of alphanumeric characters.

• XML Name: This attribute is enabled when the Maps To attribute is set to “Local XML
(<<localXML>>).” This attribute contains the name of the local XML data tag to be
created. This name can set to any string consisting of alphanumeric characters.

• Key Property: This attribute is enabled when the Maps To attribute is set to “Parent
Object Key Property.” The Key Property attribute is set to the key property of an object
that is an ancestor to the object being synchronized.

• Property: This attribute is enabled when the Maps To attribute is set to “Property Path.”
The Property attribute is set to the property whose value will be set to the one extracted by

Agentry App Development

Agentry App Development 363

the parent step definition. The property selected here should be defined within the
definition for which the parent step was defined

Step Type: File Command Line Step

A File Command Line step is defined for a File System Connection and defines a command to
be executed by the Agentry Server on the host system of the Server. This command is
contained in a script file, with a default file extension of .bat, which is the Windows batch
file extension. This extension may be changed to match the script language used in the file.
The command executed by the Agentry Server can be monitored for its return value. The script
file is processed by the Server to expand any SDML tags it may contain prior to execution
against the host system.

The contents of the script file for this step type may be accessed directly on the Agentry
Development Server for the application project. The file path listed for this file is relative to the
installation location of this Server. If this file is modified it is not necessary to publish the
application project for the change to be exhibited. In a production environment this file is not
directly accessible in this manner and must be modified through the Agentry Editor. Changes
made in a production environment must be published.

As an alternative to storing the command in an external file, it may be contained in the
Command attribute of the step. Such a command must consist of a single line. By default the
Command attribute is set to the SDML tag <<script>>, which expands at run time to the
file referenced in the steps File attribute.

A file command step can be defined to wait for the command it calls to complete execution.
When defined in this manner, the back end synchronization for a user will not continue until
the command returns, or until the defined wait period expires. If the wait period is exceeded,
the Agentry Server will log an error and the synchronization will be halted.

If the step is not defined to way for the command to complete, an error will only be logged if
the defined command cannot be executed by the Server for any reason.

The script file or the text in the Command attribute for this step is processed by the Agentry
Server, which runs it through the Server’s SDML pre-processor before executing the step. The
results of this SDML expansion are written to a temporary directory, based on the Server’s
configuration.

File Command Line Step Attributes

• Name: Contains the unique internal name of the step definition. This value must be unique
among all step definitions within the same module.

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For a File
Command Line step this must be a File system connection type.

• File: This attribute contains the path and file name of the script file containing the step’s
commands. This path is relative to the path

Agentry App Development

364 SAP Mobile Platform

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location of the Agentry Development
Server.

• Command: This attribute is set the SDML data tag <<script>> by default. This tag
expands to the script referenced in the File attribute. If the command does not contain this
data tag, its contents are assumed to be the command to be executed by the Server. In this
case the command must be a single line, which may contain SDML tags.

Wait Attributes
• Wait: This attribute specifies whether or not the Agentry Server should wait for the

command executed by the step to complete before processing the next step in the
synchronization process. When set to true, the Server will wait for the duration of time
specified in the Wait Period Limit attribute. If the command does not complete within this
limit, the Server will attempt to kill the command process. It will then log an error message
and halt synchronization.

• Wait Period Limit: This attribute specifies the duration of time the Agentry Server is to
wait for the command executed by the step to complete. This attribute is available only
when the Wait attribute is set to true.

• Delete Script File: This attribute specifies whether or not the script file created by the
Agentry Server as result of processing the script file for SDML expansion should be
deleted or kept. This attribute is available on when the Wait attribute is set to true.

Step Type: File Document Management Step

A File Document Management step is defined for a File System Connection and defines a
command to be executed by the Agentry Server on the host system of the Server in support of
transferring files between the Server and the Agentry Client. The command for this step is
stored in a text file executed as a script by the Server. This step type also includes a child
definition to encapsulate mappings between the file data and the data members of the mobile
application. A File Document Management step is defined for a specific definition type within
the same module.

A file document management step can define a command to be executed to retrieve a file from
a file system or version control system so that it may be transferred to the Agentry Client. The
child definition document mapping can then associate this file with an object property,
normally of type External Data. It may also define a command that moves a file referenced by
an External Data property within a transaction to a permanent location on the file system or
version control system. The file is also associated with the property via the document mapping
child definition.

The definition for which the step is defined may be an object, transaction, or fetch. The
property referencing the file to be transferred should be a child property of the selected
definition.

A component of this definition is the Document Management Script. This script contains the
command or commands the Agentry Server will execute in support of the file transfer

Agentry App Development

Agentry App Development 365

behavior. This script is by default a Windows batch script (.bat). The file extension for the
script may be changed to reflect the type of script language it contains.

The document management step can be defined to wait for the command it executes to return,
or it can execute the command without waiting. If defined to wait for the command, the next
step to be processed in the synchronization will not be run until the command has completed
execution, or until a defined wait period has been exceeded. If the wait period is exceeded, the
Agentry Server will log an error and synchronization will stop.

For downstream synchronization, i.e. fetch, push, or object read step processing, the
command is expected to product a file to be transferred to the Agentry Client. For upstream
synchronization, i.e. transaction processing, the command is expected to process the file after
it has been transferred from the Agentry Client to the Server’s host system. This may include
moving it to another location on the file system, or checking it in or updating it to a version
control system, or any other post-transfer processing that should occur for the file.

In addition to the file itself, it is also possible to capture values from the document
management command run by the step. This is behavior is also defined in the child definition
document mapping. Return values, error codes, and similar data can be assigned to properties
of the appropriate data type.

The contents of the script file for this step type may be accessed directly on the Agentry
Development Server for the application project. The file path listed for this file is relative to the
installation location of this Server. If this file is modified it is not necessary to publish the
application project for the change to be exhibited. In a production environment this file is not
directly accessible in this manner and must be modified through the Agentry Editor. Changes
made in a production environment must be published.

File Document Management Step Child Definitions
Document Mapping: A document mapping definition is a child to a file document
management step and defines the correlation between the file produced by that step to a
property definition, normally of type External Data.

File Document Management Step Attributes

• Name: Contains the unique internal name of the step definition. This value must be unique
among all step definitions within the same module.

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For a File
Document Management step this must be a File system connection type.

Wait Attributes

• Wait: This attribute specifies whether or not the Agentry Server should wait for the
command executed by the step to complete before processing the next step in the
synchronization process. When set to true, the Server will wait for the duration of time
specified in the Wait Period Limit attribute. If the command does not complete within this

Agentry App Development

366 SAP Mobile Platform

limit, the Server will attempt to kill the command process. It will then log an error message
and halt synchronization.

• Wait Period Limit: This attribute specifies the duration of time the Agentry Server is to
wait for the command executed by the step to complete. This attribute is available only
when the Wait attribute is set to true.

• Delete Script File: This attribute specifies whether or not the script file created by the
Agentry Server as a result of processing the script file for SDML expansion should be
deleted or kept. This attribute is available only when the Wait attribute is set to true.

Document Management Script Attributes

• File: This attribute contains the path and file name of the script file containing the step’s
commands. This is relative to the path

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location of the Agentry Development
Server.

• Command: This attribute is set to the SDML data tag <<script>> by default. This tag
expands to the script referenced in the File attribute. If the command does not contain this
data tag, its contents are assumed to be the command to be executed by the Server. In this
case the command must be a single line, which may contain SDML tags.

Document Mapping

A document mapping definition is a child to a file document management step and defines the
correlation between the file produced by that step to a property definition, normally of type
External Data. The specific behavior of a document mapping differs depending on the type of
definition for which the parent step was defined. For objects and fetches, the document
mapping defines where and how to access the file produced by the parent step’s command. For
a transaction, the document mapping defines how and where the file should be provided to the
step’s command.

Because of the differences between a document mapping for an object and fetch, and one for a
transaction, there are different attributes for this definition type depending the how the parent
step has been defined.

When a document mapping is defined within a file document management step for an object or
fetch, the purpose of the document mapping is to capture output from the parent step
definitions document script and map it to a property within the object or fetch. This output is
primarily intended to be a file that is mapped to an external data property. This file will be
transferred down to the Agentry Client. Other outputs may be captured from the document
script, including output written to standard out and standard error, as well as the command’s
exit code as returned to the operating system.

When a document mapping is defined within a file document management step for a
transaction, the purpose of the document mapping is to provide the contents of a property to
the parent step definition’s document script. This input to the command may be provided from

Agentry App Development

Agentry App Development 367

an external data property and passed to the command by either writing the file to the file
system, or by piping it to the commands standard input. When piped to standard input, the
option exists to pass the EOF character to that command after all file data has been passed in.
When writing the file to the file system, the command is then expected to look for the file at
that location and process it accordingly. When the command has completed processing the
file, the option exists to delete the file from the file system. Note that this option will not be
available if the parent document management step has been defined to not wait for the
document script to complete execution.

Document Mapping Attributes - Object and Fetch

• Property: This attributes specifies the property to which the output from the parent step’s
command will be mapped. For a file produced by the command this should be a property of
type External Data. For other output types, the proper data type of the property will vary.

• Output Type: This attribute specifies which output from the command to map to the
selected property. The options to this attribute are:
• Command Exit Code: This selection specifies that the exit code returned by the

command to the operating system should be captured and mapped to the selected
property.

• File Created By Command: This selection specifies that a file created by the command
should be mapped to the selected property. For this output type the Property attribute
should be set to a property of type External Data.

• STDERR: This selection specifies that any output written by the command to standard
error should be mapped to the selected property. This may be done to determine if an
error has occurred, and the nature of that error.

• STDOUT: This selection specifies that any output written by the command to standard
out should be mapped to the selected property.

• File Name: This attribute is enabled when the selected Output Type is “File Created By
Command.” The File Name attribute specifies the name of the file to be mapped to the
selected property. This value may include SDML tags, with the default being
<<script>>-1.tmp.

• Delete File: This attribute is enabled when the selected Output Type is “File Created By
Command.” The Delete File attribute specifies whether to keep the file created by the
command after it has been transferred, or if it should be deleted.

Document Mapping Attributes - Transaction

• Property: This attribute specifies the transaction property containing the value to be
passed to the document command. If the Input Type is “File Input to Command Line,”
this should be an External Data property.

• Input Type: This attribute specifies how the value or file referenced by the selected
property will be passed to the document command of the parent step. This can be set to one
of the following options:
• File Input to Command Line: This selection specifies that file referenced by the

selected property should be written to the file system and that the command will the

Agentry App Development

368 SAP Mobile Platform

read it in from that location. The File Name attribute is enabled when this option is
selected, and specifies the file name to which the file will be saved.

• STDIN: This selection specifies that the value of the selected property should be piped
to the document command through standard input. For external data properties the file
data will be streamed directly to the command without being written to the file system.
When this selection is made the Send EOF attribute is enabled, indicating whether the
EOF character should be sent to the command after the property data as been piped to
the command.

• File Name: This attribute is enabled when the Input Type attribute is set to “File Input to
Command Line.” This attribute contains the name to be given to the file when it is saved to
the file system. This value may include SDML tags. It is set to <<script>>-1.tmp by
default.

• Delete: This attribute is enabled when the Input Type attribute is set to “File Input to
Command Line.” The Delete attributes specifies whether the file saved to the file system
by the Server should be deleted after the document command has finished processing it.

• Send EOF: This attribute is enabled when the Input Type attribute is set to “STDIN.”
This attribute specifies whether or not to send an End of File character to the document
command at the end of the file data. This is provided in support of those processes that
require this character to indicate no further input is being sent.

Module-Level User Interface Definitions Overview

Within the module level of the application project in Agentry there are definitions for both data
and user interface encapsulation. The user interface definitions encapsulate the screens and
behaviors that expose the functionality within the application to the mobile users on the
Agentry Client. These definitions do not have any direct impact on the behavior or
functionality of the application as defined for the Agentry Server.

Of the user interface definitions, those that encompass the screens displayed on the Client are
the most robust. The structure of these definition types is deeper than any of the other module-
level definitions within the application.

Following is a graphic illustrating the module-level user interface definitions and their child
and descendent definition types. This includes definitions that encapsulate the screens and
screen controls displayed on the Agentry Client, the behaviors and functionality, and other
similar user interface-related application components. Excluded from this graphic are the data
definitions within the module. Note that this separation is for discussion purposes only. Within
the application project structure, all child definitions to the module exist at the module level
with no distinction made between them in the Agentry Editor in relation to whether they are
data or user interface definitions.

Agentry App Development

Agentry App Development 369

The rule definition type within the module is actually one that crosses the line between a user
interface and data definition. It is organized here with the user interface definition types, as a
large portion of the rules written for a module affect this aspect of the behavior. However, rules
can also be written and used within data definition types. The rule definition is described in
this reference manual in its own section.

As indicated in this graphic, the screen set definition type is a deep structure, with several
levels of child definitions below it. Note that, while separated in the above graphic, the list
screen and detail screen items are both the same definition type, screen. A screen is a child
definition to the screen set and, when defined, is either a list or detail screen. Each screen type
has distinct child definitions, and thus are separated in the graphic shown here.

The field child definition to the detail screen can have child definitions of its own. This is
dependent on the type of field defined, or the field’s “edit type.” The edit type of a field impacts
the fields appearance and behavior on the Agentry Client. Certain field edit types include child
definitions that support their intended behaviors. Field edit types are discussed individually
within this section of the manual and those that include child definitions are noted.

Overall the user interface definitions within the module display, expose, and provide the
means to capture data to and from the mobile users. User interface definitions can display not
only data from the module, but also data stored in the application level definitions data table
and complex table.

Agentry App Development

370 SAP Mobile Platform

User Interface Definition Types

The definition types within Agentry that define the Agentry Client’s user interface are the
screen set, platform, and screen.

• Screen Set: The screen set is the main Client user interface definition and defines what
definition type its child screens display.

• Platform: The platform definition defines how the screens it uses within the same screen
set appear on a specific device type.

• Screen: A screen definition defines how the property values in the definition being
displayed are presented to the user on the Agentry Client. There are two possible screen
types that may be defined, list screens and detail screens. Screen definitions have
additional child definitions for the controls they display. These child definitions are
dependent on the type of screen (list or detail) and the definition type displayed by the
parent screen set.

Each of these definition types provide a separate portion of the UI functionality to the
application and are broken out into these separate, but related definitions primarily to provide
the separation of data and interface. This separation allows for the multi-device support by a
single Agentry application. The overall structure of the definition hierarchy within Agentry,
and the UI definitions’ place within it, allows the business logic of an application to be
separate from the UI. This also allows the UI to be defined to take full advantage of the
capabilities of each device type.

Screen Set

A screen set definition defines the Agentry Client's user interface. The screen set defines the
definition type to be displayed, which can be an object, transaction, or fetch within the same
module. The properties of this definition type can then be displayed by the screen definitions
within the screen set. Screen sets contain the child definitions screen and platform.

The type of data definition a screen set is defined to display will have an effect on the types of
screens it may contain and how those screens are presented on the Agentry Client. When a
screen set is defined to display an object it may contain both detail and list screens. Each screen
within the screen set is displayed within the same window, with the screens represented by tab
controls. In most cases the fields displayed on these screens are read-only.

When the screen set is defined to display a transaction or fetch it can only contain detail
screens. These screens are displayed in a wizard format, with each screen displayed one at a
time and containing navigation buttons to advance, reverse, cancel, or complete the wizard.
Note that this navigation will also be affected by the action that displays the screen set. The
fields of these screens can be read-only or editable based on each field’s definition.

When a new module is added to an application project a single screen set will be defined within
it automatically. This will be the main screen set for the module, making it the first screen set
displayed on the Agentry Client when that module is viewed by the user. There is only one
main screen set per module. This screen set definition can be altered but cannot be deleted.

Agentry App Development

Agentry App Development 371

Screen Set Child Definitions
The following definitions are child definitions to the screen set:

• Platform: The platform definition defines how the screens it uses within the same screen
set appear on a specific device type.

• Screen: A screen definition defines how the property values in the definition being
displayed are presented to the user on the Agentry Client.

Screen Set Attributes

• Displays: This is a two part attribute consisting of the definition type and the specific
definition of that type the screen set will display. Screen sets can be defined to display
objects, transactions, or fetches. The selection made here makes the data (properties)
within that definition available to the screens defined within the screen set.

• Name: This is the unique internal name of the screen set that identifies the definition
within the module. This value must be unique among all other screen sets in the same
module and can contain no white space.

• Main Screen Set: This attribute cannot be set by the developer and is displayed in the add
screen set wizard and properties screen in the Agentry Editor for reference purposes only.
The main screen set for a module is created automatically by the Editor whenever a new
module is defined.

Platform

A platform definition defines how a screen set’s screens will appear on a specific device type.
A platform is defined to use one or more screens within the same parent screen set. There are
different platform types, each corresponding to a different type of client device. The platform
affects the placement of buttons and the form factor of the screens it uses.

The most important attribute to the platform definition is the Platform Type. This attribute
specifies the platform upon which the screens it uses will be displayed and how those screens
will appear. A given screen set can contain one or more platform definitions. At least one
platform must be defined before screens can be added to the screen set. During publish, at least
one screen must be used by at least one platform within the screen set or an error will be
returned and the publish will not be allowed to proceed.

A platform can use more than one screen within the same screen set. A screen can be used by
more than one platform as well. At run time, when a screen set definition is sent to a client, the
client’s device type will determine which screens that client receives based on the platform
using the screens.

Platform Attributes
General Attributes

Agentry App Development

372 SAP Mobile Platform

• Platform Type: This is the type of device platform to be supported by the screens used by
the platform and will affect the form factor and behavior of those screens.

• Caption: This is the title text displayed in the window on the Client at run time for the
screen set. Since this is at the platform level, the screen set’s window can contain a
different caption on different target devices. This value may be set statically or via a rule
definition for more dynamic text. A rule used here is expected to return a string value and is
evaluated in the context of the object displayed by the screen set.

• Size: This attribute only applies to platform definitions for the Windows desktop, laptop,
and tablet operating systems. For this type of platform the Size attribute specifies the initial
display size of the screens it uses. For other Platform Types this attribute is disabled and
all screens used by the platform are displayed in the full screen size of the device type. Note
that this attribute may be affected or negated by the application definition’s Screen Size
attribute.

• Button Placement: This attribute contains four possible settings: Bottom, Top, Left, and
Right. This attribute specifies where the buttons for all screens used by the platform are
displayed.

• List Navigation: This attribute controls whether or not the object displayed by the screens
used by the platform definition can be changed via navigation buttons drawn automatically
on the Client. When true, these buttons will allow a user to change the object displayed in
the current screen set based on a list of objects in the previous screen in the navigational
flow. In this previous list, the previous or next item in the list is selected and the action
executed to display the current screen set is executed again. This attribute has no effect on
platforms for the module main screen set or for platforms within screen sets displaying a
transaction or fetch. This behavior is applicable when the previous screen was a list screen,
or when it was a detail screen containing a list view or list tile view field.

• Screen Navigation: By default a screen sets screens are displayed as tabs on the Client at
run time. Selecting this option removes the tabs and instead displays a menu button
containing the caption value of each screen definition to allow the user to select different
screens.

Platform Screen Type

The following attributes are only valid for platforms of type iPad or Android and support the
display of a pop up screen using the platform’s screens.

• Screen Types: The options for this attribute include Full Screen and Overlay View. Full
Screen creates standard screens on the Client. Overlay View creates popup screens that
overlay the screen from which the user navigated. These screens can be used for both read
only information as well as for data capture. When Overlay View is selected, the Height
and Width attributes are enabled to specify the size of the overlay screen displayed.

• Height: The vertical size of the overlay screen in pixels.
• Width: The horizontal size of the overlay screen in pixels.

Platform Style Attributes
The style attributes of a platform specify the styles applied to different aspects of the screens
used by the platform. Style definitions must exist before these attributes can be set. The final

Agentry App Development

Agentry App Development 373

appearance of the screen will be affected by the overall application of styles according to the
style hierarchy. There are three groups of style elements for the platform: Screen Styles, Detail
Screen Styles, and List Screen Styles. Screen styles affect all screens used by the platform
regardless of screen type. Detail screen and list screen styles affect only those screens of the
corresponding type.

All style attributes for the platform definition may be set statically by selecting the style from a
list, or by returning the name of a style to apply from a rule definition. Rules evaluated for style
attributes are expected to return a string value containing the name of the style to apply and are
evaluated in the context of the object displayed by the parent screen set.

Screen Styles

• Tabs: The style to apply to the tab controls representing each screen within an object
screen set. Has no affect on screens within a transaction or fetch screen set.

• Buttons: The style to apply to all button definitions for screens used by the platform.
• Focused Buttons: The style to apply to the button that currently has the focus.

Detail Screen Styles

• Screen: The style to apply to the screen as a whole. This will affect all portions of the
screen not displaying a field or button.

• Fields: The style to apply to all fields displayed on the screen.
• Focused Fields: The style to apply to the field that currently has the focus.
• Hyperlinks: The style to field labels defined to be hyperlinks.

List Screen Styles

• Screen: The style to the list screen as a whole. This will affect all portions of the screen not
displaying a list, header label, detail pane, or button.

• Header Label: The style to apply to the list screen’s header label. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control.
• Rows: The style to apply to all rows on the list screen. The Hyperlinks optional style will

override the Rows style for cells with hyperlinks.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row. The Hyperlinks optional style will override the Alternate Rows style for every
other row, specifically cells containing hyperlinks within the row.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style should always be returned via a rule definition that evaluates the object
being listed. The optional Hyperlinks style will be applied to the highlighted row’s cells
containing a hyperlink.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control. The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

Agentry App Development

374 SAP Mobile Platform

• Detail Pane: The style to apply to both the foreground (text) and background of the list
screen’s detail pane. If no detail pane is defined this attribute has no affect on the screen.

Platform Button Attributes
Platforms defined within a screen set displaying a transaction or fetch include an additional set
of attributes related to the buttons displayed on screens used by the platform. Screens within
this type of screen do not contain button definitions, but rather contain buttons added to each
screen automatically by the Client based on the action that displayed the parent screen set and
the position of each screen within the screen set.

• Cancel Action Details: The label for cancel buttons that will cancel the action currently
being executed.

• Previous Screen Details: The label for buttons that allow users to navigate to the previous
screen in the current screen set.

• Previous Record Details: The label for buttons that allow users to navigate to the previous
transaction instance. This button is displayed on the first screen of a screen set when being
displayed by an action with looping behavior.

• Next Screen Details: The label for buttons that allow users to navigate to the next screen in
the current screen set.

• Next Screen (no back up) Details: The label for buttons that allow users to complete the
current instance of a wizard in a loop and start the next iteration; or to move from one
wizard to the next when multiple wizards are displayed by the action.

• Complete Action Details: The label for buttons displayed on the last screen of a screen
set, when there are no additional screen sets displayed by the action and when the current
screen set is not being displayed in a loop.

• Complete Action Details: The label for buttons displayed on the last screen of screen set
being displayed in a loop and that will end that loop.

Platform Screens List
The Properties view for a platform definition within the Agentry Editor includes a Screens tab.
This tab lists all screens within the same parent screen set of the platform. Within this list the
screens to be used by the platform can be selected. The screens listed here are not child
definitions to the platform, but rather a children of the screen set. If a new screen is added to the
screen set by starting the Add Screen Wizard from the platform view, that screen will
automatically be used by that platform.

List Screen

A list screen definition displays an object collection property on the Agentry Client. Object
instances from the collection are displayed as rows in the list. A list screen contains the child
definitions column and button. A column is defined to display the property value for each
object instance in the collection. Buttons are defined to execute actions related to the object
instances. List screens include definable behaviors related to filtering, scanning, and sorting,
as well as other screen enhancements for displaying data stored in the object instances of the
target collection property.

Agentry App Development

Agentry App Development 375

The list screen may or may not display a header label above the list control. A header label can
contain static or dynamic text about the items displayed in the list. A list screen may also
display a detail pane containing static or dynamic text. The detail panes intended usage is to
display the property values of the currently selected object in the list control, reducing the need
for horizontal scrolling on the Agentry Client.

List screens can be defined to include double-click actions, executed when the user double-
clicks an item in the list control, scanning actions and scan filtering, and include rules to
determine what items are displayed in the list. A list screen can also be enabled or disabled via
a rule definition. Disabled screens are not displayed in the screen set on the Agentry Client.

List Screen Child Definitions

• Column Definition: A list screen column defines what object property is displayed for
each record in a list control and how it is formatted on the screen.

• Button Definition: A button definition defines a button control to be displayed for the
screen that will execute an action or display a menu when selected.

List Screen General Attributes
The General Screen attributes set the basic behavior of the List Screen, including how Styles
can be applied to the List Screen.

General Attributes

• Name: The internal name of the list screen. This value must be unique among all screen
definitions, regardless of type, within the same parent screen set.

• Caption: Labels the tab on the Agentry Client for the list screen. This value may or may
not be displayed when there is only one screen displayed within the parent screen set,
depending on the client device type.

• Screen Icon: This is a reference to an image definition within the application. This image
is used as the icon displayed for this screen in tabs.

• Collection: References the object collection property the list screen is to display. This
collection is normally a property of the object definition the parent screen set is defined to
display.

• Enable Rule: References a rule definition expected to return a Boolean value and that is
evaluated in the context of the object definition for the parent screen set. When false is
returned, the screen will be disabled and no tab for it will be displayed within the screen set
window. If all screens within a screen set are disabled, that screen set will not be displayed
and any actions defined to display it will also be disabled. If the main screen set for a
module is disabled, that module cannot be displayed on the Agentry Client.

• Include Rule: References a Rule definition expected to return a Boolean value and that is
evaluated once for and in the context of each object in the collection displayed by the list
screen. When an include rule is specified, only those objects for which the rule evaluates to
true will be listed in the screen’s list control.

• Icons Image: References an image definition to be displayed on the tab for the list screen,
to the left of the screen’s caption text, within the screen set window on the Agentry Client.

Agentry App Development

376 SAP Mobile Platform

The name of this image may be selected from a list, or it may be returned from a rule. When
a rule is referenced, it is expected to return a string value and is evaluated in the context of
the object displayed by the parent screen set.

List Screen Styles

• Screen: The style to apply to the list screen as a whole. This will affect all portions of the
screen not displaying a list, header label, detail pane, or button.

• Header Label: The style to apply to the list screen’s header label. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control.
• Rows: The style to apply to all rows on the list screen. The Hyperlinks optional style will

override the Rows style for cells with hyperlinks.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row. The Hyperlinks optional style will override the Alternate Rows style for every
other row, specifically cells containing hyperlinks within the row.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style should always be returned via a rule definition that evaluates the object
being listed. The optional Hyperlinks style will be applied to the highlighted row’s cells
containing a hyperlink.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control. The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

• Selected No Focus Rows: The style to apply to the selected rows in a list view control or
list screen where the list control does not have the input focus. The optional Hyperlinks
style will be applied to any cells within the selected row containing a hyperlink.

• Detail Pane: The style to apply to both the foreground (text) and background of the list
screen’s detail pane. If no detail pane is defined this attribute has no affect on the screen.

• Buttons: The style to apply to all button definitions on the screen.
• Focused Buttons: The style to apply to the button that currently has the focus.

Actions/Sorting Attributes
The Action/View/Selection attributes control how the user interacts with the List Screen,
including double-clicking on or off an item in the list and behaviors related to sorting and
reordering the columns.

• Double-Click On Item - Action: Specifies the action to execute when the user double-
clicks a list control record.

• Double-Click On Item - Target: Specifies the target of the Double-Click On Item Action.
A target must always be specified for the action and is typically the selected object in the
list.

• Double-Click Off Item - Action: Specifies an action to be executed when the user double-
clicks the list without clicking on an item. This is most commonly used to execute an action
that instantiates an add transaction for the object type being listed.

Agentry App Development

Agentry App Development 377

• Double-Click Off Item - Target: Specifies the target of the Double-Click off Item Action.
A target must always be specified for the action. Typically the target is the parent object of
the object collection property displayed by the list screen.

• Fixed Sort Property: Specifies the property definition within the object type being listed
used to sort the records in the list. The user will not be allowed to re-sort the list when this
attribute is set. The Order option to this attribute is set to specify the sort order, either
ascending or descending.

• Allow Sort: Specifies if the user can resort the list by clicking on a column header. This is
enabled by default, and is disabled if a Fixed Sort Property is set.

• Initial Sort Column: Specifies a column definition by which the list will be sorted upon
initial display of the screen. This attribute requires that a column definition exists before it
can be set. The Order option to this attribute is set to specify the sort order, either ascending
or descending. If the list screen allows the list to be sorted (Allow Sort is true) the list will
be displayed sorted to the order of the last sort action. If a Fixed Sort Property is set, this
attribute is disabled.

• Allow Reorder: Specifies whether or not the user can reorder the columns displayed in the
list by dragging and dropping the column headers in the list. This is enabled by default.

• Allow Filter: Specifies whether or not the user can filter the items in the list. A filter icon is
displayed at the bottom of the screen when enabled. The user can click this icon to select
sorting options. This sets the filter behavior for the entire list screen. This is enabled by
default. Individual column definitions may be defined to prohibit filtering on those
columns.

• Allow Multi-Row Select: Specifies if the user can select more than one record in the list at
the same time. If multiple items are selected in a list, actions that target the selected object
in the list will be executed once for each selected object. The default for selecting multiple
objects requires a Ctrl+Click combination or a click and drag operation by the user,
depending on the device type. The Enable Single Click option may be set to allow
multiple records to be selected with a single click by the user. Deselecting a record requires
the user to click it again. This feature is normally most useful on touch screen devices using
a stylus, as it allows non-sequential records in the list to be selected.

Header/Detail Pane Attributes
Using these attributes, you can display Header text and a Detail Pane in addition to the main
list control of the List Screen.

Header and Detail pane attributes are set to display additional information about the list as a
whole or about the currently selected item in the list. The Header Label is a static line of text
displayed above the list. This text may be static, set via certain available format strings, or set
via a rule. A rule referenced for this purpose is expected to return a string value and is
evaluated in the context of the object displayed by the parent screen set.

The Detail Pane is redrawn each time a new object is selected in the list and almost always
contains either format strings or is set via a rule’s return value. Rules are evaluated in the
context of the selected object in the list and are expected to return a string value.

Agentry App Development

378 SAP Mobile Platform

• Header Label: Specifies the Header text for the list screen. A common use for this header
label is the total number of objects displayed in the list vs. the total number of objects in the
collection, which may be different when a filter is enabled. The format strings used for this
purpose are %DisplayedCount and %TotalCount.

• Detail Pane: Displays a text box on the list screen. The detail pane is updated each time the
user changes their selection in the list screen.

• Position: Controls where the detail pane is displayed on the screen in relation to the list
control. You can position the detail pane below it or to its right.

• Size: Sets the pixel size of the detail pane on the screen. The default is 50. If the Position is
“Bottom” the detail pane will span the width of the screen and the Size will set its height. If
the Position is “Right” the detail pane will span the height of the screen and the Size will
set its width.

• Word Wrap: When enabled, lines of text longer than the width of the detail pane will be
wrapped to the next line. When disabled, text will continue off the screen. The user will
need to scroll the detail pane to view the text.

• Format: Sets the values displayed in the Detail Pane. This pane can be set to a combination
of static text and format strings, which take the form %propertyName. The
propertyName is the name of a property defined within the selected object and will be
updated with the value of that property each time a different object is selected. It may also
be set to the return value of a rule, which is evaluated in the context of the selected object
instance and is expected to return a string.

Scanner Attributes
The scanner attributes for a list screen affect only those list screens used by a scanner platform
within the screen set and only when the list screen is displayed on a client device with a
barcode scanner. At least one column definition within the list screen must be defined to
support scan filtering.

A scanned value will be compared to the column(s) defined for scan filtering and only those
matching this value will then be displayed. Actions may be defined when only one record
matches the scan filter and when no records match.

• Single Match Action: Specifies what action is executed when a scanned barcode value
matches one of the records displayed in the list screen. The target of the action will always
be the record found to match.

• No Match Action: Specifies what action is executed when the scanner filter criteria does
not match any records on the list. This is optional. The target of the action is the object that
is the parent to the collection property displayed by the list.

• Label Type: Specifies what barcode types are accepted by the Agentry Client. If no Label
Type is specified, all types supported by the client device will be supported.

• Minimum Value: The minimum number of characters accepted by the Agentry Client
from the device scanner.

Agentry App Development

Agentry App Development 379

• Maximum Value: The maximum number of characters to be accepted by the Agentry
Client from the device scanner. If the value scanned in contains more characters, it will be
ignored.

List Screen Column

A column definition defines what object property is displayed in a list control column. The
column definition also controls behaviors such as formatting, sorting the list on the column,
whether or not the column can be resized or moved, and whether or not the list can be filtered
on the column. Columns may also be defined to execute an action via hyperlink control.

In addition to or in place of a property value, a column may also display an image definition as
an icon, which can be different for each record based on a Rule definition.

Column Attributes

• Name: Internal name for the column definition. This value must be unique among all
columns definitions in the list screen.

• Label: Specifies the label for the column header. This text is displayed at the top of the
column on the Agentry Client to identify the contents of the column.

• Object Property: Specifies the property to display in the column on the list screen. Set
this to None, to display either a value derived from a format string or only an icon image.
Selecting both an Object Property and specifying an icon image will display both in the
column.

• Enable Rule: References a rule definition evaluated in the context of the object displayed
by the screen set and expected to return a Boolean value. When the rule returns true, the
column is enabled and displayed on the Agentry Client. When it returns false, the column
is disabled and not displayed.

• Icon Image: References an Image definition within the application to specify an icon for
the column. The image name can also be returned using a rule definition to dynamically
determine the image to display for each record. This rule is evaluated in the context of the
object instance for the record and is expected to return the name of an image definition as a
string. Note that not using a rule for this attribute will display the same image for all
records in the list

• List Filter: Specifies if the column should be included in those listed in the filter dialog for
the list. This attribute is ignored in filtering has been disabled for the list screen.

• Scanner Filter: Enables scan filtering functionality for the column. When this attribute is
enabled, the value scanned in by the device will be compared to the values of the column to
create a filter. Multiple columns can be defined for this behavior. However, the values in
the columns should be mutually exclusive. The order of the columns evaluated against the
scanned value is undefined. This attribute is only supported for screens used by a scanner
platform and displayed on a scanner-enabled device.

• Format: Can contain a format string to display one or more property values from the
object type being displayed by the list in a different format than the default for the
property’s data type. This text can also be set via a rule definition, where the expected

Agentry App Development

380 SAP Mobile Platform

return value is a string and is evaluated in the context of the object instance for the record in
the list. To set the format attribute set the Object Property attribute must be set to None.

• Column Width: Specifies the initial size of the column on the Agentry Client. The user
can resize the columns if the list screen definition has not disabled this behavior. If the user
changes the width of a column, the new width is saved by the Agentry Client and will
override the Column Width attribute.

• Hyperlink: Specifying a hyperlink action enables each cell within the column to execute
an action when the user single or double clicks on the hyperlink drawn in that column. The
text of the hyperlink will be the value the column is defined to display. This functionality
can include columns with images. Hyperlink contains two attributes:
• Hyperlink Action: Specifies the action that will be executed when a user single-clicks

a column in a populated row in the list.
• Hyperlink Target: Specifies the target of the Hyperlink Action.

Detail Screen

A detail screen definition displays a single instance of an object, transaction, or fetch on the
Agentry Client. The properties of the definition instance are displayed in fields, a child
definition to the detail screen. Definable behaviors of a detail screen are predominantly
controlled by the screen’s child field and button definitions, which can include read-only or
read-write values within the fields, as well as numerous field type behaviors. Detail screens for
transactions and fetches do not have the child definition button.

The detail screen definition contains attributes for the screen's caption, enabling and disabling
the screen, and the initial focus of the screen. The detail screen is separated into multiple rows
and columns, based on the definition. These row and column positions are used to specify the
location of fields on the screen.

The values of the definition instance displayed by the detail screen are exposed to the user via
the field definitions.

Detail Screen Child Definitions

• Detail Screen Fields: A detail screen field defines field controls for display on a detail
screen to display data to and capture data from the Agentry Client user.

• Buttons: A button definition defines a button control to be displayed for the screen that
will execute an action or display a menu when selected. Detail screens only have button
definitions when the parent screen set is defined to display an object.

Detail Screen Attributes
General Settings

• Name: Internal name for the screen definition. This value must be unique among all screen
definitions within the same parent screen set, regardless of screen type.

• Caption: Labels the tab on the Agentry Client for the detail screen when a part of an object
screen set. For transaction a fetch screen sets, the detail screen caption text is displayed in

Agentry App Development

Agentry App Development 381

the title bar of the window on the Agentry Client. This value may be set to a rule. This rule
is evaluated in the context of the definition instance being displayed, and is expected to
return a string value.

• Screen Icon: This is a reference to an image definition within the application. This image
is used as the icon displayed for this screen in tabs.

• Enable Rule: References a rule definition evaluated in the context of the definition
displayed by the parent screen set and expected to return a Boolean value. When the return
is false, the screen will be disabled and will not be displayed to the user.

• Rows: Sets how many rows the screen will contain. This attribute is used to divide the
screen into rows, which are referenced by the field definitions to determine the position of
each field on the screen. The default settings will vary depending on the platform using the
screen. The grid created by the Rows and Columns attributes is not displayed on the
screen at run time, but is visible in the Agentry Editor for development purposes.

• Columns: Sets how many columns the screen will contain. This attribute is used to divide
the screen into columns, which are referenced by the field definitions to determine the
position of each field on the screen. The default settings will vary depending on the
platform using the screen. The grid created by the Rows and Columns attributes is not
displayed on the at run time, but is visible in the Agentry Editor for development
purposes.s

• Initial Focus: Sets the field to be the initial focus when the screen is first displayed on the
Agentry Client. This attribute requires that fields have been defined for the detail screen.

• Label Position: Specifies the position of the label text for all fields displayed on the detail
screen. The options for this attribute are either Left or Top, with the Left being the default.

Detail Screen Style Attributes

• Screen: The style to apply to the screen as a whole. This will affect all portions of the
screen not displaying a field or button.

• Fields: The style to apply to all fields displayed on the screen.
• Focused Fields: The style to apply to the field that currently has the focus.
• Hyperlinks: The style to apply to any labels define to be hyperlinks.
• Buttons: The style to apply to all buttons on the screen.
• Focused Buttons: The style to apply to the button that currently has the focus.

Images Attributes

• Screen Background Image: This attribute allows for the selection of an image definition
within the application which is displayed as the background image for the detail screen.
This behavior is currently only supported on detail screens used by iOS and Android
platforms.

• Fit to Screen (Lock Aspect Ratio): This attribute specifies that the image should be
resized to fit within the viewable area of the screen. The aspect ratio of the original image is
maintained. This attribute is mutually exclusive from Fit to Screen (Stretch) and Crop to
Screen.

Agentry App Development

382 SAP Mobile Platform

• Fit to Screen (Stretch): This attribute specifies that the image is to be resized to fit within
the viewable area of the screen. The aspect ratio of the original image is not maintained and
the image will always fill the entire viewable area of the screen. This attribute is mutually
exclusive from Fit to Screen (Lock Aspect Ratio) and Crop to Screen.

• Crop to Screen: This attribute specifies that the image is to be cropped to fit within the
viewable area of the screen. Images larger than the viewable area of the screen will not be
fully displayed if this attribute is selected. This attribute is mutually exclusive from Fit to
Screen (Lock Aspect Ratio) and Fit to Screen (Stretch).

• Background Image Position: This attribute specifies the position of the image within the
viewable area of the screen. There are nine radio buttons displayed for this attribute, each
corresponding to the position of the image on the screen both vertically and horizontally.

• Field Opacity - Fields Cover Images: This attribute sets the opacity of the image
displayed on the screen. If selected, fields on the detail screen will always be displayed on
top of the background image. If not selected, the image will overlay the fields on the
screen.

Button

A screen button defines a button control to be displayed on a Client screen. The button may be
displayed as a standard button control, a tool bar button, a menu or menu item, or as a
separator. A button is defined to execute an action when clicked or tapped, unless defined as a
menu or separator. When executing an action the button also defines the target object instance
provided to the action for processing.

The button definition itself allows for different Button Types. These include a traditional
button, called an Action Button; an item to be added to the Action menu displayed on the
Agentry Client’s menu bar, called an Application Menu; a Toolbar Button, which is displayed
on the Agentry Client’s tool bar; and a Separator button, which places extra space between
other button definitions, or a separator line in a menu.

In addition, an Action Button can be defined to be a Popup Menu button. In this case, the
button displayed on the screen will not execute an action, but instead display a menu when
clicked. The contents of the menu are other button definitions for the same screen that will
execute actions when selected. These other buttons must meet the criteria of, first, being
positioned after the menu button, and second, the Popup Menu attribute must be set to true.

All button types except for the separator are defined to execute an action when clicked. The
action definition to execute must exist before creating the button definition. Buttons also
include a target attribute where the object instance targeted by the action being executed is
specified. The selected target object type must be the same as the object type selected for the
action being executed, with the exception of those actions defined with a For Object attribute
setting of None.

Agentry App Development

Agentry App Development 383

Button Attributes
Following are the attributes for a button definition. Some of these attributes are not applicable
to a button definition based on the selection made in the Button Type attribute. The attribute
descriptions in this list specify this information:

• Button Type: This attribute specifies the type of button to define for the screen. The
options are:
• Action Button: Displays a button control on the screen at the position specified by the

platform using the screen at run time.
• Application Menu: Adds a menu item to the Agentry Client’s Action menu. This

menu item will only be a part of the Action menu when the parent screen to the button
has the focus.

• Separator: Places extra space between Action Buttons, or a separator in a popup
menu, depending on where the separator button is displayed Separators cannot be
added to the Agentry Client’s Action menu.

• Toolbar Button: Places a button on the Agentry Client’s toolbar. This button type
must have an image as it will not have a label.

• Name: The unique name for the button definition. This value must be unique among all
buttons within the same screen.

• Image: This attribute references an image definition within the application to be used as
the icon for the button control displayed on the screen. For action button types the icon is
displayed to either the left or right of the button’s label depending on the device’s OS shell.
The image icon for toolbar buttons is required. This will be the image used to identify the
toolbar button. For both Separator and Application Menu Button Types, or if the Action is
set to Popup Menu, the image attribute field is disabled.

• Label: This attribute specifies the label to identify the button on the screen. This value is
the label for Action Button Types, or the text listed as a menu item for both Action Menu
Button Types or Action Buttons included on a popup menu. This attribute is disabled for
both Toolbar and Separator Button Types.

• Action: This is the action to execute on the Agentry Client when the button is clicked or
tapped by the user. This action must be defined before creating the button definition. At run
time if this action is disabled, the button will also be disabled. This attribute may also be set
to Popup Menu. In this case the button will not execute an action, but rather will display a
popup menu when clicked or tapped. The items in this menu will be other button
definitions within the same screen defined to be drawn on the popup menu. Popup menu
buttons do not have an image or a target object instance. Also, the Popup Menu attribute is
not available, as a popup menu button cannot be placed within another popup menu.

• Target: This attributes specifies the target object instance of the button to be passed to the
action the button executes. The object type selected here must match the definition type
defined in the For Object attribute in the action the button is defined to execute. At run time
if the selected Target object instance is not currently in scope, the button will be disabled.
As an example, if the target is the selected object in a list screen, and no object is currently
selected, there is not valid target in scope and the button will be disabled. Separator Button

Agentry App Development

384 SAP Mobile Platform

Types and buttons with an Action attribute setting of Popup Menu do not have a target as
they do not execute an action.

• Popup Menu: This attribute specifies whether the button should be displayed in a popup
menu on the Agentry Client. If this attribute is set to true, and of a button definition
positioned before the current definition is defined with Action attribute of Popup Menu,
the current button definition will be added as a menu item rather than a button control. This
attribute may only be set for Action Button Types.

• Style: This attribute specifies a style to apply to the button definition. The Style attribute is
only available for Action Button Types.

• Focused Style: This attribute specifies a style to apply to the button when the button has
the focus. This attribute is not available for Separator Button Types.

• Shortcut Key: This attribute specifies whether a shortcut key is associated with the button
and the specific key or key combination. This attribute includes the ability to set
combinations of the Ctrl, Alt, and Shift keys, as well as any alphanumeric keys,
function keys from F1 through F24, or hardware buttons (Button 1 through Button 5) on
mobile devices. When setting this attribute, verify the key combination selected is not
configured for any other shortcut, either within the current screen of the mobile application
or for any system shortcuts configured on the client device.

Detail Screen Fields

A detail screen field defines a field control for display on the parent screen. The field displays
data to the user and, when displaying a transaction or a fetch, can capture data from the user. A
field can be defined to have one of several edit types that will affect both the appearance and
behavior of the field on the screen, especially when capturing data.

There are several different edit types that may be selected for a field definition. This edit type
will significantly impact the field’s behavior on the Agentry Client. Despite this, however,
there are several attributes that are common among most fields regardless of edit type. For
many field edit types these common attributes are the only attributes. For others there are
additional attributes specific to the edit type selected for the field definition.

In many use cases a field definition will target a property within the definition it displays. The
value of that property will be displayed to the user and, for transaction and fetch screens, the
user may be able to edit that value. In these situations, the value of the field will be assigned to
the property when the user advances the wizard past that screen. This may be the case when the
user clicks a next button or finish button.

The field may also target other definitions within the application. If the target of a field is not a
property definition, the value of the field will not be copied to that definition. It will only use it
as a data source for the value to display. These targets can be selected using the target browser
and can include other fields on the current screen or other screens within the same screen set.

With the release of the Agentry Mobile Platform version 5.1, when the target is another screen
field that is one of the edit types for displaying complex tables, it is possible to select a
complex table record field from the currently selected record in that target screen field. In

Agentry App Development

Agentry App Development 385

previous releases it was necessary to define an update rule for the field that would retrieve the
complex table record and field to display in the screen field. The additional target browser
behavior negates the need to define such a rule. Existing applications using an update rule for
this purpose will still behave correctly, and can be modified to use the new behavior or left as is
with the same result.

The target for a screen field can also include a field on screens in other screen sets, provided
those screen sets currently exist on the Agentry Client, but are hidden from view due to the
focus being on the current screen.

A field on a wizard screen displaying a property value will enforce the data limits of that
property. This means minimum and maximum values or string lengths defined for the target
property will be enforced by the field definition. For strings, no more than the maximum
number of characters may be entered. For numeric values, the target property’s attributes
related to precision and maximum values will be enforced. For minimum values the user will
receive an error message when trying to advance the wizard of either the minimum number of
characters or the minimum numeric value has not been entered.

The labels for a field may be defined as static text or as a hyperlink. Hyperlink labels may only
be defined for a field displayed on a detail screen that displays an object instance. When a label
is defined as a hyperlink, an action is defined to be executed when the user clicks that label.

Fields may have their displayed value set through an update rule. These fields can still target a
property, normally for transactions and fetches, in which case the value of the field as set by the
update rule will be the value assigned to the property when the user advances the wizard.
When displaying an object, there is normally no reason to target a property with a field
definition whose value is set via an update rule.

Fields may also be hidden and/or disabled via rule evaluation. A hidden field will not be
displayed on the detail screen. An optional behavior related to a hidden field is disabling that
field when it is hidden. A field may also be disabled via a separate rule independent or in lieu of
a hidden rule. A disabled field on a wizard screen will not enforce any required values as
defined by the target property.

Fields are positioned and sized on the detail screen using the columns and rows into which the
detail screen is broken up. The position of a field is set based on the upper left corner of the
field and is specified using the row and column position. The width of the field is specified in
columns, and the height is specified in rows, counting from the position in the field which its
placed.

Common Field Attributes
The following attributes are common to most or all field edit types and result in the same
behaviors for most of the different types of fields.

• Object/Transaction Property: Sets the property definition or other definition whose
value is displayed by the field and/or that is updated with the field’s value. This definition

Agentry App Development

386 SAP Mobile Platform

is said to be “targeted” by the field. This attribute can be set to “-- None --”, in which case
the value displayed by the Field must come from some other source.

• Name: The unique internal name of the Field definition. It must be unique among all fields
within the same detail screen. This is commonly set to match the name of the property the
field targets.

• Label: Sets the label for the field. This text is displayed on the left side of the field. This
label text will be rendered as a hyperlink if that behavior is also defined. This value is
optional and if not set no label nor the space for one will be displayed on the screen.

• Placeholder: This attribute references a rule definition which returns a string value used
as the place holder for the field definition.

• Edit Type: Sets the edit type for the field, selected from a list. This may also be set to “--
Default --”, in which case the edit type of the field will match the data type of the property
being displayed.

• Read-only: Sets the field to be read-only or read/write. Fields targeting an object property
are always read-only and are not affected by this attribute. Fields with any other target will
respect the Read-only attribute setting.

• Shortcut Key: Sets a key or key combination that, when entered by the user, will set the
focus to the field on the detail screen. This can include both keyboard keys and hardware
keys on the client device.

• Format: Sets any format text for the value displayed in the field. If using a format string
the Object/Transaction Property attribute should be set to “-- None --.”

• Label Width: Sets the number of characters that can be displayed in the space given to the
label on the Screen. Character size will vary depending on the font used for the label text.
The total size of a field on the screen does not change based on the Label Width. The
amount of space within the specified size that is given to display the field itself is decreased
as the Label Width is increased. Label text longer than the space provided based on the
Label Width is word wrapped on the screen.

• Position - Column & Row: Sets where the upper-left corner of the field will be displayed.
The column and row specified correspond to the number of columns and rows the detail
screen is defined to contain.

• Size - Width & Height: The Size attributes specify the Width and Height of the field. The
Width is set to the number of columns the field should span and the Height is set to the
number of rows.

Rules/Hyperlink/Special Value Attributes

• Change Focus: Sets if the field will keep the focus of the screen. If this attribute is
checked, when focus is set to the field, it will automatically be redirected to the next field
on the screen. When unchecked, the field will keep the screen focus until the user selects
another control.

• Update Rule: References a rule definition evaluated in the context of the definition being
displayed and expected to return a string value. This rule is evaluated each time the user
interacts with any part of the detail screen. The value returned by the rule is displayed in the

Agentry App Development

Agentry App Development 387

field. Note that this rule will not change the value of the field if it returns the same value for
two or more consecutive evaluations.

• Hidden Rule: References a rule definition evaluated in the context of the definition being
displayed and expected to return a Boolean value. If the rule returns true, the field will be
hidden on the detail screen. If false, the field will be displayed.

• Disable When Hidden: When checked, the field will be disabled whenever the Hidden
Rule returns true. The Enable Rule will not be evaluated. If unchecked, then the Enable
Rule will determine whether the field is enabled independently of whether or not the field
is hidden.

• Enable Rule: References a rule definition evaluated in the context of the definition being
displayed and expected to return a Boolean value. When the rule returns true the field is
enabled. A false return will disable the field. A disabled field will appear grayed out, and
the user will not be able to interact with it. A disabled field will also not update its target
property and no attributes related to the required property value will be enforced.

• Clear When Disabled: When checked, the field will clear any value in the transaction
property it targets if the field is disabled. Disabled fields include are those disabled by the
Enable Rule; or those with the Disable When Hidden attribute is true and the field is
hidden by its Hidden Rule. This attribute only affects fields with the following edit types:
• Boolean
• Date
• Date and Time
• Decimal Number
• Duration
• Identifier
• Integral Number
• String
• Time

• Pattern Recognizer: This attribute enables or disables the behavior of recognizing certain
patterns within text values of the field; e.g., e-mail addresses or phone numbers. When set
to true, the user can hold down the hyperlink text to invoke some OS-defined operation.
Examples may include allowing the user to compose and send an e-mail; or to send a text
message or place a call to a phone number. This functionality is available on iOS Agentry
Clients version 6.0.6 or later and only when the application is configured in an Agentry
Editor version 6.0.8 or later.

• Hyperlink - Action: This attribute references an action and when set will enable the
hyperlink behavior for the field’s label. The label itself will be displayed as hyperlink and
the user will be able to click on the label to execute the defined action. This behavior is only
valid for fields displayed on an object screen.

• Hyperlink - Target: Sets the target object for the Hyperlink Action.
• Hyperlink - Shortcut Key: Sets a shortcut key for the hyperlink. When this key

combination is entered on the Client, the defined Hyperlink Action is executed.
• Special Value: Sets a default value for the field. When a field has a Special Value defined, a

radio button is displayed on the detail screen as a part of the field’s definition. It is drawn

Agentry App Development

388 SAP Mobile Platform

between the label for the field and the actual field control. A second radio button is also
drawn to the immediate left of the field control. When the first radio button is selected, the
Special Value defined for the field is set as the field's actual value, which will then update
the property targeted by the field. When the second radio button is selected, the field
control itself becomes enabled, and the user can enter a value.

• Display Value: The value to display in the field when the property value is equal to the
field’s special value. This only impacts fields on detail screens displaying an object
instance.

• Auto Label and Width: This attribute can contain a label for the first radio button
displayed for special value fields. This label is displayed to the right of the radio button and
can indicate to the user that they are selecting the default value.

• Edit Label and Width: This attribute can contain a label for the second radio button that
enables the field control on the Agentry Client. This label is displayed to the right of the
second radio button and can indicate to users that its selection requires them to enter a
value.

Detail Screen Field Edit Types

Following are the different field edit types that may be selected from the Edit Type attribute’s
list. All field edit types include the Common Field Attributes as a part of their definition. Many
edit types also include additional attributes related to their edit type-specific behavior. These
edit types are denoted as such with an asterisk(*) in this list. Look to the additional information
provided for these field edit types for information on their type-specific attributes.

• Default: Selecting this edit type option will force the field to take on the edit type matching
the data type of the property it targets. If a field has a default edit type and does not target a
property, the field will be a string field.

• Barcode Scan*: The barcode scan field edit type receives input from a barcode scanner.
Use of this field type requires the device to have a barcode scanner, and for the parent detail
screen to be used by a platform that supports scanning. This type of field may also accept
manual input from the user, depending on how it is defined.

• Button*: The button field edit type defines a detail screen field with button behaviors to
execute actions and capture values. This field type will draw a button control on the detail
screen in any position where a field can be placed. For object screens this button may
execute an action. For wizard screens the button can set the value of a property. The type of
button displayed may be a push button, check box, or radio button. Check boxes and radio
buttons may be grouped (meaning only one can be selected at a time) by all targeting the
same property. A value can be defined for this field that will be set to the property the Field
targets when the user clicks this button. There are three types of buttons: Radio Button;
Check Box; and Push Button. This is the default for displaying a Boolean Property.

• Calendar View*: The calendar view field edit type provides an interactive calendar to
display an object collection property, with each object treated as a calendar event. The
objects in the collection property displayed by this field must include properties for start
and end date and times, as well as other calendar related values.

Agentry App Development

Agentry App Development 389

• Complex Table Drop Down*: The complex table drop down field edit type displays
unique values from a defined record field from a complex table in a drop down list. Using a
succession of fields with this edit type can create a cascade. This is a representation of
parent-child values where the users will be required to select a parent value first, and then
select from only those values that are children of the selected parent. Use of this edit type
requires the supporting structure be first defined in the complex table the field displays. A
cascade can also be created using a combination of this field edit type and Complex Table
List fields.

• Complex Table List*: The complex table list field edit type displays the records of a
complex table in a list control on the detail screen. Using a succession of fields with this
edit type can create a cascade. This is a representation of parent-child values where the
users will be required to select a parent value first, and then select from only those values
that are children of the selected parent. Use of this edit type requires the supporting
structure be first defined in the complex table the field displays. A cascade can also be
created using a combination of this field edit type and Complex Table Drop Down fields.

• Complex Table Search*: The complex table search field edit type displays the records of
a complex table in a searchable list of records. This screen is displayed when the user clicks
the associated button for this field type. This is a built-in screen within the Client and will
display the records of the complex table in rows and columns. The user may select any
index for a string field and enter search text to locate a record within the table.

• Complex Table Tree*: The complex table tree field edit type displays the records of a
complex table in a tree control, providing a parent-child relationship to the records. This
screen is displayed when the user clicks the associated button for this field type. This is a
built-in screen within the Client and will display the records of the complex table in a tree
control. The records are organized in this tree using the parent-child index relationships
defined in the complex table.

• Data Table Selection*: The data table selection field edit type lists the records of a data
table in a drop down list control on the detail screen. The code value of the record selected
by the user is returned to the field. If the number of records is too large to fit in a drop down
control, a popup dialog will display the records in a list box.

• Date: The date field edit type allows the user to enter a date value selected from a
calendar control. The user may also manually type a date value into this field. When using
the calendar control, the user clicks the ellipsis button drawn to the right of the field on the
detail screen. This will display the calendar where the user can select a date by scrolling
through the months. It is recommended that this edit type only be used with properties
defined to be date values.

• Date And Time: The date and time field edit type allows the user to enter a date and time
value selected from calendar and time controls, respectively. In this type of field, the user
can enter a date value by selecting it from a calendar and enter a time value in the time
portion of the field. It is recommended this field edit type only be used with date and time
properties.

Agentry App Development

390 SAP Mobile Platform

• Decimal Number: The decimal number field edit type captures decimal values, allowing
only numeric values, a single decimal value, and a negative sign. Any other characters will
not be accepted by this field type.

• Duration: The duration field edit type allows the user to enter a duration value in hours,
minutes and seconds. This field displays a control similar to a time entry, but the values
entered represent a duration of time, rather than a time of day.

• Embedded Image*: The embedded image field edit type displays an image definition on
the detail screen that can be interactive. A transparent grid can overlay this image and each
section, or “cell” within this grid can have an action associated with it. When a given cell is
clicked on the Client that action will be executed. Fields with this edit type have a child
definition called Cell that represents each cell in the grid overlaying the image.

• External Data: The external data field edit type displays controls to show the Windows
File Dialog on the client to allow a file to be selected for an external data property.

• External Field - Active X Control*: The external field-ActiveX Control field edit type is
defined to call out from a field to an active X control, passing values to the control. Use of
this Edit Type also requires use of the Active X interface available with the Agentry Mobile
Platform.

• HTML: The HTML field edit type supports the formatted display of HTML markup text,
or the display of a defined URL for internet navigation.

• Identifier: The identifier field edit type requires the user to enter only positive integers.
This edit type is intended to support the capture and storage of values intended to uniquely
identify some business entity.

• Image Capture*: The image capture field edit type provides integration with the client
device’s built-in digital camera, allowing for images to be captured and stored in
properties of the application.

• Integral Number: The integral number field edit type allows the user to enter only whole
numeric values and an optional negative sign. Any other characters will not be accepted in
this field.

• Label: The label field edit type displays only the label portion of a field definition,
excluding any actual field control. The Label edit type prevents any editing, and no field is
drawn on the detail screen. As will be readily apparent in the Agentry Editor, many of the
common field attributes are disabled for fields with an edit type of Label.

• List Selection*: The list selection field edit type displays a drop down list of values, the
source of which may be an object collection, data table, or complex table. Using an include
rule, you can also list a sub-set of the source items. The values listed in this field edit type
are treated as a temporary data table that exists only in working memory and only for as
long as the field is displayed.

• List Tile View: The list tile view field edit type displays an object collection property in a
tiled view allowing for add and edit interaction with the collection through the field. This
field type will use other screen sets containing detail screens within the same module to
display each object in the collection in a list with each object displayed in it’s own tile. This
can include different screen sets to display, add, or edit objects within the collection.

Agentry App Development

Agentry App Development 391

• List View*: The list view field edit type displays an object collection property in a list
control on a detail screen with the same functionality as provided by a list screen. A field of
this edit type contains the child definition column, matching the column child definition to
the list screen definition.

• Location: The location field edit type is intended to display the value of a location
property, displaying the latitude and longitude in degrees for the location. This field can be
read-only or editable, allowing the user to manually enter latitude and longitude values.
When the field targets a transaction property, it will automatically retrieve the latest
location value from the GPS unit. When this field edit type displays an object property, or if
it does not target any property, a rule can be written to update the field using the
@GPS_LOCATION rule function to update the field.

• Password Validation*: The password validation field edit type requires users to enter
their client password and validates the value entered against the password for the client.
This entered value is hidden with character placement, displaying asterisks in place of
each entered character. Includes the ability to define a message to the user when the
password entered is not valid.

• String: The string field edit type allows the user to enter any printable character values.
This field type can be used to provide a large text field to capture user input by spanning
multiple columns and rows on the detail screen.

• Signature Capture: The signature field edit type allows for the entry of a signature on a
client’s screen that is stored as a bitmap image. The signature edit type cannot be selected
from the edit type list. This is, rather, the default edit type for a field when that field targets
a property with a data type of Signature. To display such a property the correct edit type
selection is “Default.” No other edit type should be used when targeting a signature
property as the behavior of such a combination is undefined.

• Tile Edit*: The tile edit field type displays object properties in a tiled view allowing for
add and edit interaction without starting a wizard screen.

• Tile Display*: The tile display edit type displays an object instance in a tiled view.
• Time: The time field edit type allows the user to enter a time of day value using a time

control. This edit type will display three controls for the field to display and capture the
hours, minutes, and seconds portions of the time value. It is recommended that this field
edit type only be used with time property types.

Field Edit Type - Property Data Type Cross Reference

When the edit type of a field is set to “Default,” the field will take on the behavior of the edit
type that matches the data type of the property the field targets. The table provided here
contains the cross reference between the field’s edit and the property data type. This will then
be the type of field displayed on the detail screen when it targets a property of the type listed
and the edit type of the field is set to “Default.” This refers only to the field edit type on wizard
detail screens. Object detail screens will always display property values in read-only string
fields.

Agentry App Development

392 SAP Mobile Platform

Property Data Type Default Field Edit Type

Boolean Button (check box type)

Collection read-only string field (field should have edit
type specified).

Complex Table Selection Complex Table Search List

Data Table Selection Data Table Selection

Date Date

Date and Time Date and Time

Decimal Number Decimal Number

Duration Duration

External Data External Data

Identifier Identifier

Integral Number Integral Number

Object read-only string field (field should have edit
type specified)

Signature Signature

String String

Time Time

Field Definitions With Edit Type-Specific Attributes

Many of the field edit types available include attributes beyond those common to all fields.
These edit type-specific attributes are necessary to define the behaviors specific to a given
field’s edit type. As an example, a field defined to display complex tables will require
attributes that specific the complex table to be displayed, the index used to sort the records, and
so on.

The following section lists each of these field edit types and describes their type-specific
attributes.

Barcode Scan

The barcode scan field edit type receives input from a barcode scanner. This type of field may
also be defined to behave like a string field, accepting input from the device's keyboard. The
scanning functionality is only available on detail screens used by scanner platforms on devices
equipped with a barcode scanner.

Agentry App Development

Agentry App Development 393

Barcode Scan Attributes
Following are the attributes specific to a barcode scan field edit type. These are in addition to
the common field attributes:

• Label Types: This attribute specifies the name of the barcode label type or types to support
for this field. If the barcode being scanned is not one of these types, it will not be scanned. If
this attribute is left blank, any label type supported by the device will be scanned.

• Minimum Length: This attribute specifies the minimum number of characters to scan in.
If the number of characters is less than this minimum, the value will be ignored. The
default for this attribute is no minimum. This value must be less than or equal to the
Maximum Length attribute value.

• Maximum Length: This attribute specifies the maximum number of characters to scan in.
If the number of characters is greater than this maximum, the value will be ignored. The
default for this attribute is no maximum. This value must be equal to or greater than the
Minimum Length attribute value.

• Allow Typing: This attribute specifies whether or not the user can type a value into the
field in addition to scanning one in. If true, the user can type a value directly into the field.

• Show Scan Button: This attribute specifies whether or not a Scan button is drawn to the
right of the barcode scan field. This button is labeled “Scan” and will activate the device’s
scanner just as if the hardware scanner button is pressed.

• Maintain Scan Focus: This attribute specifies whether or not the scan focus should
always exist for the field when displayed on the current screen. When selected, and when
the user scans a barcode the value scanned in will be set to the barcode field regardless of
where the current input focus may be on the screen.

Button Field Edit Type

The button field edit type defines a detail screen field with button behaviors to execute actions
and capture values. A value can be defined for this field to set the value of the target transaction
property of the field. When displaying an object the button can execute actions. Part of the
definable behavior is the type of button to display, which may be a radio button, check box, or
push button. This is the default edit type for fields targeting Boolean properties.

Included in the functionality of a button field is the ability to group multiple button fields on a
detail screen. If multiple button fields are defined for the same detail screen, and they also
target the same property, these button fields are then grouped. The resulting behavior of such a
configuration is that only one of the buttons may be selected at the same time. This is most
commonly the case when the button fields are defined to display radio button controls.
However, this same behavior will be exhibited for any of the button display types.

Buttons fields defined for object detail screens should be used to execute actions. Button fields
for wizard detail screens displaying a transaction or fetch should be defined to set the value of a
property.

An image can be defined for display in place of one of the available button controls. In this
situation, the image referenced can be an image list, with each image in the list being a square

Agentry App Development

394 SAP Mobile Platform

and the same size. Which image is used is based on the state of the button field. These images
are then used based on their position, as follows:

1. Enabled, not selected
2. Enabled, selected
3. Disabled, not selected
4. Disabled, selected

Button Field Edit Type Attributes
Following are the attributes specific to a Field with an Edit Type of Button.

• Button Type: This specifies the kind of button control to be drawn for the field. This can be
a radio button, check box, or a push button.

• Value When Selected: This attribute specifies the value to be assigned to the target
property of the field when that field is displayed on a transaction or fetch detail screen. For
a button field on a transaction, fetch, or object detail screen, if the target property matches
the value set for this attribute, the button will be in a selected state.

• Action When Selected: This attribute is only enabled for button fields when the parent
detail screen displays an object. The action referenced is executed when the button is
selected. Normally the Button Type for this situation is a Push Button. The Target
attribute references the target object of the action referenced in the action attribute.

• Button Image: This attribute references an image definition to be displayed for this field.
In this situation the Button Type attribute will be ignored and the image selected in the
Button Image attribute will be displayed in its place. The image itself will behave as if it is
a button and will either execute an action when selected or set the value of the field’s target
property.

Calendar View

The calendar view field edit type provides an interactive calendar to display an object
collection property, with each object treated as a calendar event. Properties of the object type
used should represent an event title, an event start date and time and an event end date and time.
Definable behaviors include allowing users to change viewing options, setting start and end
times for a work day, and days included in a work week.

As a part of the calendar view field edit type, actions may be defined for double-clicking a
calendar event as well as for double-clicking a calendar day and time that currently contains no
events. When defining this field edit type, it is likely the field will comprise most, if not all of
the viewable screen area.

The resulting display will be a calendar control that may include events. A given event is
represented by an object instance containing the event’s title, and its start and end date and
times. The event will then be represented in the calendar view as a block spanning the days and
times as provided by the start and end date and time values. Users will be able to interact with
these events and/or with empty time periods on the calendar based on double-click actions that
can be set for the field.

Agentry App Development

Agentry App Development 395

Note that this field edit type was only supported on the desktop builds of the Windows
operating system supported by the Agentry Client in versions of the Agentry Mobile Platform
prior to 5.1. Release version 5.1 and later of the Agentry Mobile Platform provide support for
the mobile Windows operating systems supported by the Agentry Client.

Calendar View Data/Style Attributes
The following attributes for a field with a calendar view edit type define the collection
property to use, and the properties within each object instance contained in the object
collection to use for displaying events in the calendar view. They also include the styles that
may be applied to the calendar view events.

Calendar Data

• Collection: Sets the object collection property that will be used as the data source for
calendar events. Each object instance in this collection will be treated as a calendar event
by the field.

• Event Title: This attribute specifies the value to display as the title of a given event. This
may be either an object property within the objects of the collection, or the return value of a
rule. If set to a rule, the rule is evaluated in the context of the object instance for the event
and is expected to return a string value. This rule will be evaluated once for each object
currently displayed in the calendar view. Changing the view options of the calendar on the
Agentry Client at run time will result in the rule being evaluated again for each object
displayed.

• Event Start: This attribute specifies the value to treat as the start date and time for an
event. This may be either an object property within the objects of the collection, or the
return value of a rule. If set to a rule, the rule is evaluated in the context of the object
instance for the event and is expected to return an integral number treated as an Agentry
date and time value. This rule will be evaluated once for each object currently displayed in
the calendar view. Changing the view options of the calendar on the Agentry Client at run
time will result in the rule being evaluated again for each object displayed.

• Event End: This attribute specifies the value to treat as the end date and time for an event.
This may be either an object property within the objects of the collection, or the return
value of a rule. If set to a rule, the rule is evaluated in the context of the object instance for
the event and is expected to return an integral number treated as an Agentry date and time
value. This rule will be evaluated once for each object currently displayed in the calendar
view. Changing the view options of the calendar on the Agentry Client at run time will
result in the rule being evaluated again for each object displayed.

• Include Rule: Sets the name of the rule that can be used to limit the objects in the
collection that will be displayed.

• Tool Tip Rule: Sets the rule that can be used to format a tool tip text when a user hovers the
cursor over an event displayed in the calendar as an event.

Calendar Styles

• Highlight Events: This attribute provides the style to apply to events that should be
highlighted in the calendar view. This style should be set based on a rule in any real-world

Agentry App Development

396 SAP Mobile Platform

use cases. The rule is evaluated in the context of the object instance representing the event
and is expected to return a string value containing the name of the style to apply to those
events that should be highlighted. An empty string will use the default style.

• Selected Events: This attribute provides the style to apply to a selected event in the
calendar view. The style to be applied may be selected from those that are defined, or the
name of the style can be returned from a rule. If a rule is used, it will be evaluated in the
context of the object instance representing the event when the user selects the event. The
rule is expected to return a string value containing the name of the style to apply.

Calendar View Options Attributes
The calendar view options attributes define behaviors related to the options a user may set,
including whether or not to allow the user to set those options. These include the different
views the calendar supports, the days of the week to treat as work week days vs. weekends, and
whether or not those weekend days should be compressed in the month view.

Calendar Options

• Allow User to modify Options: This attribute controls whether or not users can change
the calendar options on the Agentry Client. If set to true, the remaining attributes set here
are treated as the defaults for the calendar behavior, which the users can then override. If
this attribute is set to false, the options set here will define the behaviors exhibited at all
times for each view supported by the calendar.

• View: Sets the default view for the Calendar:
• Day: Displays the current day
• Month: Displays the entire month, including weekends.
• Week: Displays the entire week, Sunday through Saturday, including both work and

not work days.
• Work week: Displays the current work week. The days in the work week are defined in

the Work Week section.

Day View - These attributes affect the appearance and behavior of the calendar view when set
to the Day View on the Agentry Client.

• Time Scale: Sets the time scale, in minutes, for the time rows in the calendar. Options for
Time scale are in minutes, can be in increments of:60, 30, 15, 10, 6, or 5.

• Start Time: Sets the calendar start time in increments of 30 minutes. The calendar uses a
white background color when displaying times between the start time and end time.

• End Time: Sets the calendar end time in increments of 30 minutes. The calendar uses a
white background color when displaying times between the start time and end time.

Work Week View - These attributes affect the appearance and behavior of the calendar view
when set to the Week or Work Week view on the Agentry Client.

• Sunday - Saturday check boxes: Sets which days of the week are included in a Work
Week. Unchecked days are treated as weekends.

Agentry App Development

Agentry App Development 397

• First Day of Week: Sets the first day of the week displayed on the calendar as the left-most
day.

Month View - This attribute affects the calendar only when the field is set to the month view.

Compress weekends: Check to compress Saturday and Sunday in the calendar month view.
Unchecked, and Saturday and Sunday will display like the other days in the week.

Calendar View Actions Attributes
The attributes for actions in a calendar view allow for the definition of actions to be executed
when the users double-click an event in the calendar, and when double-clicking an open time
slot within the calendar.

• Double-Click on Event Action and Target: These attributes allow for the definition of an
action to be executed when a user double-clicks an event in the calendar, and the target
object of that action. This target is normally the object representing the event just selected.
In most use cases the action may display that event and/or allow the user to edit that event.

• Double-Click off Event Action and Target: These attributes allow for the definition of
an action to be executed when a user double-clicks a time slot within the calendar that does
not currently contain an event. This target is normally the parent object of the collection
being displayed by the calendar view field. In most use cases the action will allow the user
to add a new event starting at the day and time slot double-clicked in the calendar. The
selected begin or end date may be retrieved via the rule function SCREENFIELDVALUE
by passing the name of the calendar view field and either of the parameters
SelectedBeginDate or SelectedEndDate.

Complex Table Drop Down

The complex table drop down field edit type displays a drop down list of unique values from a
defined complex table field. This screen field edit type is normally used in a cascade control
series, allowing users to drill down through records within the table that have a parent-child
relationship.

A cascade is a series of multiple fields all displaying the same complex table. Each cascade
field displays a different complex table field. The records displayed in a field are the child
records to the selected record in the field before it in the cascade. The parent-child relationship
is determined by the structure of the indexes for the complex table being displayed.

The overall behavior of a cascade will force a user to make a selection in the first field in the
cascade, which is a top-level parent record in the complex table. The next field in the cascade
will not be enabled until this selection is made. At this point, the values listed in the second
field will be only those complex table records that are children to the record selected in the first
screen field.

This behavior repeats for each field in the cascade. Defining such a cascade requires that the
complex table displayed by these fields have the needed parent-child indexes defined. Each
cascade screen field must then have a matching child table index at the same level.

Agentry App Development

398 SAP Mobile Platform

As an option to displaying the values of a complex table, this field type can display a complex
table search dialog. Within this dialog the records of the complex table will be listed within
multiple columns, one for each complex table field. The records displayed in this dialog will
be dependent on the selections made in previous fields in the cascade control series. Also as
definable behaviors in this dialog are options to specify which indexes to allow a user to search
on and the specific complex table fields to display in the list.

This field edit type also supports scanning as input. When this behavior is enabled, the value
scanned in must be one that can return a record using the index specified for the screen field.

Both the complex table drop down and complex table list field edit types support cascade
behavior. Fields of both types may used in the same cascade series of fields on a given detail
screen.

Complex Table Drop Down Attributes
Following are the attributes specific to fields with an edit type of complex table drop down.
These are in addition to the common field attributes:

• Complex Table: This attribute specifies the complex table the field is to display. In a
cascade it is possible for each field to display a different complex table, provided the values
selected in one can be used to search the next. This is not the recommended method for
using cascades, as it is more efficient to use a single complex table for all cascade fields.

• Table Index: This attribute specifies the complex table index that should be used to search
that table. For the first field in a cascade, this index should be the top-level index, that is, an
index that does not have a parent index. For subsequent cascade fields, the selected index
should be the child index to the index selected in the field that precedes it in the cascade.

• Cascade Parent: This attribute references another screen field on the same detail screen to
use as the cascade parent for the field. If left set to Auto, the cascade will be determined
based on the selected Table Index. The field whose Table Index is set to the parent index of
the selected Table Index for the field will be treated as the cascade parent screen field. If the
proper index structure is in place in the complex table, the cascade parent can be left set to
auto.

• Display Field: This attribute specifies the complex table field to display for the table
records. Leaving this attribute set to Auto will display the field upon which the index
selected in Table Index is defined. This is the recommended selection for this attribute.
Only unique values of this field will be listed.

• Return Field: This attribute contains the complex table field to return from the selected
record. When left set to Auto, the return field will the field upon which the index selected in
Table Index is defined. This is the recommended selection for this attribute, as this value
will be the one passed to the next field in the cascade.

• Selection Method: This attribute specifies how the records of the complex table being
displayed by the screen field are displayed to the user. Following are the options for this
attribute:
• Always Drop Down Menu - Always list the records of the complex table in a drop down

list.

Agentry App Development

Agentry App Development 399

• Always Open Dialog - Always list the records in a popup dialog.
• Always Open Dialog with Search - Always open a complex table search list dialog that

provides the user with the ability to enter search text to locate the desired record. This
dialog will list all fields, or only those selected in the Search Dialog Indexes list, for
each record in the complex table.

• Open Dialog if Needed - Allows to the specification of record threshold. For this
option, the default is to display the records in a drop down list. If the number of records
to list exceeds the defined threshold, a popup dialog is displayed listing the records in a
list box control.

• Open Threshold: This attribute can be set only of the Selection Method is set to Open
Dialog if Needed. This attribute can be set to the Default, which will vary from one client
device to another, or to a specific number of records. When the Open Threshold is
exceeded, the popup dialog is displayed, listing the records from the table.

• Scanning: This attribute, when set to true, will enable the client device’s scanner (if
present). The user can scan a barcode value, which will be used to search the complex table
by that value using the defined Table Index. If a single matching record is found, that will
be the selection for the field. This attribute only has an impact if the client device has a
scanner, and if the parent detail screen is used by a scanner platform.

• Handle Special Value By: This attribute is available only if a special value has been
defined for the screen field. This attribute specifies what to do when the cascade parent
value changes. You can define the field to then set itself back to the special value, change to
the default text of “Please select,” or to change to the “Please select text” only if the current
selection is not the special value.

Search Dialog Indexes
For detail screen fields defined with an edit type of complex table drop down, there are two
lists of items shown in the properties view of the Editor. The first is the Search Dialog Indexes
tab. Listed in this tab will be one item for each top-level index defined in the complex table the
screen field is displaying. For complex table drop down lists the selected search indexes will
only affect behavior when the Selection Method attribute is set to “Always Open Dialog with
Search.” Each item contains a check box which, when selected, will display that index to the
user as one that can be searched on. Those indexes not checked in this list will not be displayed
to the user.

Search Dialog Fields
For detail screen fields defined with an edit type of complex table drop down, there are two
lists of items shown in the Properties view of the Editor. The second is the Search Dialog
Fields tab. Listed in this tab will be one item for each field defined in the complex table being
displayed by the screen field. For complex table drop down lists the selected fields will only
affect behavior when the Selection Method attribute is set to “Always Open Dialog with
Search.” Each item contains a check box which, when selected, will display that field to the
user in the list of records. Fields that are not selected will not be shown to the user.

Agentry App Development

400 SAP Mobile Platform

Complex Table List

The complex table list field edit type displays the records of a complex table in a list control on
the detail screen. Definable behaviors include the complex table fields to display, the complex
table field value to return when a record is selected, and an action to execute when a record is
double-clicked. This field edit type is normally used in a cascade control, though this is not a
requirement.

A cascade is a series of multiple fields all displaying the same complex table. Each cascade
field displays a different complex table field. The records displayed in a field are the child
records to the selected record in the field before it in the cascade. The parent-child relationship
is determined by the structure of the indexes for the complex table being displayed.

The overall behavior of a cascade will force a user to make a selection in the first field in the
cascade, which is a top-level parent record in the complex table. The next field in the cascade
will not be enabled until this selection is made. At this point, the values listed in the second
field will be only those complex table records that are children to the record selected in the first
screen field.

This behavior repeats for each field in the cascade. Defining such a cascade requires that the
complex table displayed by these fields have the needed parent-child indexes defined. Each
cascade screen field must then have a matching child table index at the same level.

Both the complex table drop down and complex table list field edit types support cascade
behavior. Fields of both types may used in the same cascade series of fields on a given detail
screen.

Complex Table List Attributes
Following are the attributes specific to the complex table list field edit type. These attributes
are in addition to the common field attributes:

• Complex Table: This attribute specifies the complex table the field is to display. In a
cascade it is possible for each field to display a different complex table, provided the values
selected in one can be used to search the next. This is not the recommended method for
using cascades, as it is more efficient to use a single complex table for all cascade fields.

• Table Index: This attribute specifies the complex table index that should be used to search
that table. For the first field in a cascade, this index should be the top-level index, that is, an
index that does not have a parent index. For subsequent cascade fields, the selected index
should be the child index to the index selected in the field that precedes it in the cascade.

• Cascade Parent: This attribute references another screen field on the same detail screen to
use as the cascade parent for the field. If left set to Auto, the cascade will be determined
based on the selected Table Index. The field whose Table Index is set to the parent index of
the selected Table Index for the field will be treated as the cascade parent screen field. If the
proper index structure is in place in the complex table, the cascade parent can be left set to
auto.

Agentry App Development

Agentry App Development 401

• Fields to Display: This attribute can contain the name of each complex table field to
display in the list. Each table field name is listed here, separated by a comma. If no fields
are listed here, all fields are displayed in the list. Each field displayed in the list is
represented by a list column.

• Return Field: This attribute contains the complex table field to return from the selected
record. When left set to Auto, the return field will the field upon which the index selected in
Table Index is defined. This is the recommended selection for this attribute, as this value
will be the one passed to the next field in the cascade.

• Double-Click Action: This attribute references an action to execute if the user double-
clicks a record in the list. The target of this action will always be the object instance the
parent detail screen is displaying. The complex table record the user double-clicks is the
current record and can be accessed as such through the target browser. This attribute can
only be set when the field is displayed on an object detail screen and will have no affect on a
wizard detail screen for a transaction or fetch instance.

• Handle Special Value By: This attribute is available only if a special value has been
defined for the Field. In this case, this attribute specifies what to do when the cascade
parent value changes. You can define the Field to then set itself back to the special value,
change to the default text of Please select, or to change to the Please select text only if the
current selection is not the special value.

Complex Table Search

The complex table search field edit type displays the records of a complex table in a searchable
list. This field edit type displays a field with an ellipses button. When the ellipses button is
clicked, the searchable list screen is displayed. By default users may search the records of the
complex table on any defined top-level index for a string field. Alternately, a single search
index may be specified as a part of the screen field’s definition. This field edit type also
supports scanner functionality to select a record.

When scanner functionality is enabled, the scanned value will be used to search the complex
table on the selected search index. Only those records that match will be listed and the user
may make a selection from this filtered list.

Complex Table Search Attributes
Following are the attributes specific to the complex table search field edit type. These
attributes are in addition to the common field attributes:

• Complex Table: This attribute specifies the complex table whose records will be listed in
the search screen.

• Search Index: This attribute can be set to restrict the index used to search the complex
table. If an index is selected for this attribute, the user will only be able to search the
complex table using that index. By default, all top-level indexes on string fields can be used
to search the records. The Search Index can be defined any index, parent or child, which
will then be used for all searches of the complex table when using this field.

Agentry App Development

402 SAP Mobile Platform

• Parent Value: This attribute can be set to the value by which the records should be filtered
when the Search Index is set to an index that is a child to another index.

• Initial Value: This attribute can be set to a property of the definition. This will set the
initial value of the field to the value of this property. The user can still select a complex
table record to change this value. By default, there is no Initial Value.

• Display Field: This attribute can be set to any field within the complex table and specifies
the field value to display in the screen field for the selected table record. By default the
value displayed in the screen field is the field upon which the complex table’s primary
index has been defined, i.e., the field containing the unique value for each table record.

• Return Field: This attribute can be set to any field within the complex table and specifies
the table field to return to the screen field from the selected table record. By default the
value returned is the table field upon which the complex table’s primary index has been
defined, i.e., the field containing the unique value for each table record.

• Allow Scanning as Input: This attribute can enable scanner functionality for the search
screen. When enabled, the user can scan a value that will be used to search the complex
table using the selected search index. Only those records matching this search will be
listed. This attribute will only affect screen fields for detail screens used by a scanner
platform displayed on client devices with barcode scanners.

Search Dialog Indexes
For detail screen fields defined with an edit type of complex table search, there are two lists of
items shown in the properties view of the Editor. The first is the Search Dialog Indexes tab.
Listed in this tab will be one item for each top-level index defined in the complex table the
screen field is displaying. Each item contains a check box which, when selected, will display
that index to the user as one that can be searched on. Those indexes not checked in this list will
not be displayed to the user.

Search Dialog Fields
For detail screen fields defined with an edit type of complex table search, there are two lists of
items shown in the Properties view of the Editor. The second is the Search Dialog Fields tab.
Listed in this tab will be one item for each field defined in the complex table being displayed
by the screen field. Each item contains a check box which, when selected, will display that
field to the user in the list of records. Fields that are not selected will not be shown to the user,
unless all fields are not selected, in which case all fields of the complex table are displayed as
columns in the list.

This dialog also allows the developer to specify the order in which columns should be
displayed in the list control of the search dialog. For the selected fields, a position value is
assigned and can be adjusted by moving the field up or down in the list.

Complex Table Tree

The complex table tree field edit type displays the records of a complex table in a tree control,
providing a parent-child relationship to the records. Each node in the tree control represents a
complex table record. This edit type displays a field on the detail screen with an ellipses

Agentry App Development

Agentry App Development 403

button. When this button is clicked the screen containing the tree control is displayed.
Definable behaviors include the table indexes to be treated as the parent and child indexes, the
starting point of the records, the number of levels below the start point to display, and the
complex table field values to display from each record in each node of the tree control.

The complex table tree field edit type allows for the creation of parent-child relationships that
do not exist in the complex table’s structure. Part of the definition of a field of this type is the
selection of two indexes in the complex table, both of which are top-level indexes. One will be
used as the parent index and the other the child. This relationship will only exist while the tree
control screen is displayed.

Complex Table Tree Attributes
Following are the attributes specific to the complex table tree field edit type. These attributes
are in addition to the common field attributes:

• Complex Table: This attribute references the complex table whose records will be
displayed in the tree control screen.

• Parent Index: This attribute references the index within the complex table to use as the
parent index. Records will be organized in the tree control according to their common
parent based on this index. Each node will contain child nodes with the same value in the
field for which this index is defined.

• Child Index: This attribute references the index within the complex table to use as the
child index. Each record with a unique value in the field upon which this index was created
will be listed in the tree control under the parent record.

• Search Index: This attribute can be set to restrict the index used to search the complex
table. If an index is selected for this attribute, the user will only be able to search the
complex table using that index. By default, all top-level indexes on string fields can be used
to search the records.

• Parent Root: This attribute can be set to a value found in the complex table field for which
the selected Parent Index is defined. Any records with the Parent Root value in this field
will be treated as the top-level parent records by the complex table tree field. The resulting
behavior will be that these records will be listed as the root nodes in the tree control.

• Display Field: This attribute references a complex table field whose value will be
displayed for each node in the tree control. This same value will also be the one returned to
the field for display on the detail screen containing the complex table tree field definition.
If this value is not set, the default is to display the field for which the complex table’s
primary index was defined. The Display Format attribute to this screen field edit type can
also affect the appearance of the nodes in the tree control.

• Return Field: This attribute specifies the complex table field to return for the selected
record for the purpose of setting the property targeted by the screen field. By default, the
complex table field for which the primary index was defined is the value returned.

• Display Type: This attribute can specify how each node in the tree control will be
displayed. The default is to display the table field value from the Display Field attribute for
the record each node represents. The other alternatives are to display not only the value for
that record, but also the values of each ancestor to that record. This can be in either a

Agentry App Development

404 SAP Mobile Platform

parent-to-child order (Root to Selected Item), or in a child-to-parent order (Selected Item
to Root). The value from each record displayed in the node can be separated in the display
using the Connect Items With attribute (discussed below). The Display Field attribute
contains the field value displayed for each record.

• Display Format: This attribute can contain format strings to format the display of the
selected record in the detail screen field. To access the values of the selected record, use the
format string syntax of %fieldName where fieldName is the name of the complex
table field whose value is to be displayed.

• Tree Format: This attribute can contain format strings to format the display of the nodes in
the tree control. Using these format strings, you can display additional complex table fields
for each record in its respective node. This will be in addition to the value selected in the
display field attribute. To reference a complex table field, the syntax is %fieldName
where fieldName is the name of the complex table field.

• Connect Items With: This attribute can contain a character that will be placed in between
each of the values displayed in a single node. This attribute is only available if the Display
Type is set to either Root to Selected Item, or Selected Item to Root. The character(s)
contained in the Connect Items With attribute will be placed between the values for each
record in the hierarchy within a single node of the tree control.

• Word Wrap: This attribute, when set to true, will wrap the text of the nodes to the next
line, if it spans beyond the viewable area of the screen. The default is to not wrap the node
values, requiring the user to horizontally scroll the tree control for longer values.

• Sort: This attribute controls how child nodes are sorted in relation to nodes that begin with
a hyphen. In many cases, a complex table will contain a default record, such as “--
None--”. The Sort attribute can specify that such records are sorted either before or after
the other nodes. The default setting will place these items wherever they may be sorted
according to the locale settings of the client device.

• Depth: This attribute can specify how many levels of the hierarchy within the complex
table you to display in the tree control. The number of levels refers to the number of
descendents to display below the root node. This value is relative to the Parent Root, if one
is specified. Note that this value does not specify the actual level, but rather the number of
levels counting from the Parent Root.

• Search: If this attribute is enabled the search controls in the complex table tree screen will
be hidden.

• Scanning: This attribute can enable barcode scan searches of the complex table records
within the tree control. The complex table will be searched using the specified Child Index
for the value scanned in. The first matching record will be selected in the tree control. This
attribute only affects complex table tree fields defined for detail screens used by a scanner
platform and displayed on a device equipped with a barcode scanner.

Data Table Selection

The data table selection field edit type lists the records of a data table in a drop down list
control on the detail screen. Definable behaviors of this list include the data table field to
display, the sort order for display, and the value by which to sort. A popup screen may be

Agentry App Development

Agentry App Development 405

displayed based on the number of records in the data table. This threshold is different for each
supported device type.

When displaying the records from the data table in the drop down list, the code, value, or both
may be displayed. Additionally, format strings may be used to format the text for each record.
When a selection is made in the list, the value returned to the field is always the code portion of
the selected record. This will be the value set to the target property of the field.

Data Table Selection Attributes
The following attributes are specific to the data table selection field edit type and are in
addition to the common field attributes.

• Data Table Name: This attribute references the data table whose records will be listed in
the drop down list for this field.

• Sort By: This attribute allows you to sort the values listed in the drop down list by one of
several options: Code, which is the code field in each table record; Value, which is the
value field in each record; Displayed Text, which is the text displayed for each record in the
field; and Order in Data Table, which is the order in which the records are listed in the data
table itself.

• Sort Order: This attribute specifies whether the records displayed are sorted in ascending
or descending order. This is a string sort.

Field Attributes

• Display Type: This attribute specifies which fields from the data table records should be
displayed in the drop down list. The options are: Code, meaning the code field in each table
record; Value, which displays the value field from each record; Code - Value, which
displays both fields from each record, separating them with a hyphen; and Format Text,
which allows you to specify format strings to format the values displayed in the list for
each record.

• Format Text: If the Display Type attribute is set to “Format Text” this attribute will be
enabled. Format strings can then be entered in this attribute to format each record from the
data table. The valid format strings for this field are %code, %value and %position.
This last will display the position number of each record as stored in the data table. This
last option is used mostly for testing purposes and is generally not found in the production
version of an application. This attribute can also contain any other printable characters,
excluding tabs and carriage returns, to format the display of the table’s records.

• Editable: This attribute specifies whether or not users can manually enter text values in the
field for values not found in the data table displayed by the field. When this attribute is set
users can either select from the list or enter a value manually. When not set, users will be
required to select an item from the list. This attribute can be set if the field is defined to be
read-only if the field also has an update rule defined, if that rule can return values not found
in the data table.

Popup Dialog Attributes

Agentry App Development

406 SAP Mobile Platform

• Define separate display type for popup dialog: This attribute allows you to display the
records from the data table differently in the popup dialog vs. the drop down list for the
field. If set to false, the display and format attributes listed above will also affect the popup
dialog. If set to true, the attributes listed next will provide separate display behaviors for
the popup dialog.

• Display Type (Popup Dialog): The options for this attribute are the same as the Display
Type options listed previously. The option selected here will impact the appearance and
behavior of the popup dialog displayed for larger data tables.

• Format Text (Popup Dialog): The format strings for this attribute are the same as the
Format Text options listed previously. The format text entered here will impact the
appearance and behavior of the popup dialog displayed for large data tables.

Embedded Image Field

The embedded image field edit type displays an application-level image definition on the
detail screen that can be interactive. Definable behaviors include whether or not to resize the
image to fit in the space allocated for the field, the cropping behavior of the image displayed,
and the ability to divide the image into cells to elicit different behaviors when different
portions of the image are selected.

Each cell in an embedded image field is represented by a child definition to the field in the
Editor. This definition type is called an image cell. There will be as many of these image cells
as there are cells in the image, which is a multiple of the rows and columns defined for the
field.

Note that the embedded image field edit type was named the image field edit type in versions
of the Agentry Mobile Platform. Starting with version 5.1 and going forward, this field edit
type has been named embedded image. This is to distinguish this field edit type from the image
capture field, which displays the contents of image properties. The embedded image field is
provided to display image definitions at the application level of the application project
hierarchy.

Child Definitions

• Image Cell: The image cell definition is a child definition to fields with an edit type of
embedded image and represents a specific portion of the image being displayed. An image
cell defines the action to execute or the value to set when the corresponding cell of the
image field is selected by the user.

Image Field Edit Type Attributes
The following attributes are specific to the embedded image field edit type. These are in
addition to the common field attributes:

• Image: This attribute specifies the image definition within the application that this field is
to display.

Agentry App Development

Agentry App Development 407

• Grid: This attribute contains two numeric values, rows and columns. The product of these
two values determines the number of image cell definitions for the field. A one by one grid
will create a single cell representing the entire image field.

• Resize to Fit: This attribute specifies whether the image should be resized to fit in the
space allotted to the field.

• Lock the Aspect Ratio: Available only when resize to fit is true, this attribute specifies
whether or not the aspect ratio of the image should remain the same. If true, the aspect ratio
will be locked. If false, an image too large for the field will be resized to the size and shape
of the field, regardless of its affect on the appearance of the image.

• Crop to Fit: This attribute is only available when the resize to fit attribute is false. If Crop
to Fit is true, the image will be cropped on its right and bottom edges to fit within the
field.

• Position: This attribute specifies the position of the image within the space allotted to the
field on the detail screen. This can be one of: upper-left; top; upper-right; left-center;
center; right-center; bottom-left; bottom; or bottom-right.

• Highlight: This attribute specifies whether or not the currently selected cell on the image
field is highlighted. If this attribute is true, you can specify how to highlight the cell(s).
This may be either in 3D, or by specifying a mask color to be applied to the selected cell(s).
Cells are considered selected if either the user selects them on the screen or if the value the
cell is defined to set is equal to the value of the property targeted by the field.

• Highlight Cells on Hover: This attribute specifies whether or not the cell over which the
mouse cursor is currently hovering is highlighted. If this is true, you can specify whether to
highlight the cell in 3D or by specifying a mask color to be applied to that cell. This
attribute only affects the Windows PC platforms.

Image Cell

The image cell is a child definition to a field with an edit type of image. The image cell
definition represents a cell for the parent image field. A cell definition can define an action to
execute or a value to assign to the field’s target property when the cell is selected. Actions may
be executed from detail screens for objects. Values may be assigned to properties from detail
screens for transactions or fetches.

The editor allows for a single image cell to be edited within the image, or to edit multiple cell
images at the same time. This is accomplished using the layout view for the image field. The
grid will overlay the defined image in this view, and the cells may be selected and edited via
right-clicking a cell. Multiple cells may be selected using Ctrl+Click. A single cell can be
defined to set a value or execute an action, and then additional cells can be defined to be the
same as that cell. This allows for multiple cells to be combined to define a region of the image,
based on its appearance.

Image Cell Attributes
The following attributes define the behavior of the image field child definition image cell:

Agentry App Development

408 SAP Mobile Platform

• Cell: This attribute specifies which cell the definition represents. This is a numeric value
displayed in the format (Row, Column), where Row and Column are the points where the
row and column intersect to create the cell.

• Name: This attribute is the name of the cell definition, which is set by default to
Cell_R_C, where R and C are the row and column that make up the Cell.

• Value When Selected (Transactions and Fetches): This attribute is available for
transaction and fetch detail screens and defines the value to be set to the property targeted
by the cell’s parent field definition when the cell is selected.

• Action (Objects): This attribute references the action to execute on object detail screens
when the user selects the cell.

• Action Target: This attribute specifies the object instance that is targeted by the action
executed.

• Tooltip When Hovered Over: This text field can contain any text value. This will be the
text displayed on the client when the user hovers the mouse cursor over the cell. This
attribute only impacts image fields displayed on detail screens for the Windows PC
platforms.

External Field - ActiveX Control

The external field-ActiveX control edit type is defined to call out from a field to an ActiveX
control. Values may be passed to this control from the Agentry Client.

Use of this field requires an ActiveX control exist on the client devices and that control be built
using the Agentry ActiveX Control API, including the implementation of all Expected
Methods.

Using the Agentry Data and Actions tabs allows an ActiveX control to query Agentry for
data and for an ActiveX control to call for Agentry to execute actions. Agentry can also query
the ActiveX control for any values listed in the External Values tab.

External Field - Active X Control Attributes
The following attributes are specific to the External Field - ActiveX control field edit type.
These are in addition to the common field attributes:

• ActiveX Class Name (Prog ID): This attribute contains the class name that the Agentry
Client will interface with for the ActiveX control.

• Allow Scanning as Input: This attribute specifies whether or not the field displayed will
accept barcode scan values as input. This attribute will only impact fields displayed on
detail screens used by a platform that supports scanner behavior and on client devices
equipped with a barcode scanner. When value is scanned for the field, the ActiveX control
expected method AgentryUpdateScanData to pass the barcode value to the ActiveX
control.

• External Values Tab: The External Values tab is a list of values provided by the ActiveX
Control. This will allow the Agentry Client to query the control for data. From the tab, you
can add and delete value names from the list. The ActiveX control referenced by the detail
screen field must include the proper processing within the

Agentry App Development

Agentry App Development 409

AgentryGetSpecificValue method to return the value(s) associated with each of
the External Values listed in this tab.

• Agentry Values Tab: The Agentry Values tab is a List of names and target paths for values
within Agentry, made available to the ActiveX Control. From the tab, you can link Agentry
data with the external values for the ActiveX Control. Both primitive data types as well as
object instances and collection properties can be made available to the ActiveX control.
The name associated with the selected data item is the identifier exposed to the ActiveX
control, which can call the GetPropertyFromMappings Agentry Client-Side API
method, passing the name to retrieve the desired value.

• Actions: Allows the ActiveX control to call for Agentry to execute actions. The Properties
tab gives you a list of Actions and target paths. Within this list actions can be added and
deleted. When an action is added it must also specify a target object for the action. The
ActiveX control can call the ExecuteAgentryAction Agentry Client-Side API
method, passing the name of the action to be executed.

HTML

The HTML field edit type supports the formatted display of HTML markup text, or the display
of a defined URL for internet navigation. Definable behaviors for this field include whether or
not to display the navigation toolbar, a list of parameters to be pased to a URL, and the ability
to provide either a list of permitted or prohibited URL’s to restrict the navigation allowed by
the user.

Included in this field edit type are two child definitions, which are the Domain List and the
URL Parameters. The domain list items can be used to specify to which URL’s users can
navigate. The URL parameters can define the parameters to pass to a URL. These values are
derived from a rule and can therefore be dynamic.

The HTML field edit type can also display HTML pages or text retrieved from some source,
such as the back end system. This allows for a web page to be displayed within the field on the
detail screen, which can then provide links to internal or external pages.

HTML Child Definitions

• Domain: The domain definition is a child definition to detail screen fields with an edit type
of HTML, and can specify the URL’s to which users can navigate or those they should be
prevented from viewing.

• URL Parameter: The URL parameter is a child definition to detail screen fields with an
edit type of HTML, and can specify an argument value to be passed to the URL the field is
defined to display.

Attributes
Navigation Bar

• Initial State-Show Navigation Bar: This attribute specifies whether or not to display the
navigation bar for the HTML field when the parent screen is initially displayed. If this

Agentry App Development

410 SAP Mobile Platform

option is not set, the user can display the navigation bar by right-clicking the field and
selecting the popup menu item to display it.

Domain List

• Domain List Contains: This attribute specifies whether the domains added to the HTML
field as child definitions specify those URL’s to which the user is allowed to navigate, or
those URL’s to which they should be prevented from viewing.

Domain and URL Parameter

The domain definition is a child definition to detail screens with an edit type of HTML, and
can specify the URL’s to which users can navigate or those they should be prevented from
viewing. This definition type contains a single attribute of Name, which contains the URL for
the domain definition. The parent HTML field then specifies whether all child domain
definitions are those that are allowed to be viewed, or those that should be blocked.

The URL parameter is a child definition to detail screen fields with an edit type of HTML, and
can specify an argument value to be passed to the URL the field is defined to display. The value
for each URL parameter is specified via a rule definition, making the values dynamic.

Image Capture

The image capture field edit type provides integration with the client device’s built-in digital
camera, allowing for images to be captured and stored in properties of the application. Using
this field type it is also possible to select an image file on the client device to store in the
property. This field edit type is intended for use only with properties of type image.

The image capture field edit type interacts with the client device’s camera, if one is available.
When displayed on the detail screen, the field will include up to two buttons. One will allow
the user to select a file from the client device’s file system. The other will interact with the
camera, taking a picture that will be captured and displayed in the field. This behavior is
exhibited only on detail screens displaying a transaction or fetch. For object screens, the image
capture field will display the image stored in an image property in a read-only field.

When the camera button for the image capture field is clicked, a dialog is displayed allowing
the user to take a picture using the device’s camera. When the image is captured it is displayed
as a thumbnail in the image capture field. The user can then click this image to display a popup
screen of the image. The size of the image displayed in this popup is dependent on the Initial
Popup Mode attribute for the image capture field. This option allows for the image to initially
be displayed in either full size or to be scaled to fit within the popup screen. This screen will be
no larger than the viewable area of the client device’s display. Within this popup screen the
user can click the image to switch between the scaled and full size image views. The dialog
will contain scroll bars to allow the user to scroll the image if it is larger than the viewable
display area.

Agentry App Development

Agentry App Development 411

Image Capture Attributes

• Allow Image Camera Capture: This attribute specifies whether or not to allow the field
to interact with the device’s camera, if one is available. When this attribute is set, the field
will include a button control that will activate the camera to take a picture

• Allow Image File Capture: This attribute specifies whether or not to allow the field to
capture an image file stored on the device’s file system. When this attribute is set, the field
will include button control that will display the Windows file dialog, allowing the user to
select an image file from the file system.

• Initial Popup Mode: This attribute specifies how the image should be initially displayed
in the popup screen when the image capture field is clicked by the user. The options are
display the captured image in full size or to scale the image display to the size of the popup
dialog. This is the initial display mode and the user can switch between the two by clicking
the image in the popup dialog.

• Image Location: Specifies the location in which the image should be stored once it has
been captured.

• Image Name Prefix: Specifies a string value to affixed to the beginning of the image file
name.

List Tile View

The list tile view field edit type displays an object collection property in a tiled view allowing
for add and edit interaction with the collection through the field. For a given object, the
properties of that object can be displayed in the list tile view in tiles within that object’s record.
The values of a given object can be edited directly in this list, and new object instances can also
be added. This field edit type also supports scan filter functionality.

The list tile view will make use of an existing screen set defined to display the same object type
as is stored in the collection being listed by the field. As a part of a list tile view’s definition, a
screen set is selected to display the objects within the collection. This screen set must be
defined to display the same object type as is found in the collection, and must contain a single
detail screen. When the list tile view field is displayed, each object instance within the
collection will be displayed within the field in a list. Each tile within the list will be shown in
the detail screen from the selected screen set. Two screen sets can be used for read-only display
of the objects within the collection. One is used for all rows within the list. The selected row
screen set can be defined, with a detail screen containing more fields. This will then be the
screen set used to display the selected object.

Similar to this behavior is the ability to add and edit objects for the collection from within the
tile view. A transaction for the add and edit behaviors must exist, as must a screen set to be used
to display the transactions. When an item is selected in the list, the user can click the add icon
button. A new tile will be displayed at the bottom of the list. The screen set in which it will be
displayed will be the one defined for the add behavior. For an edit, the user can select an object
in the list tile view and click the edit icon button. In this case the currently selected tile will

Agentry App Development

412 SAP Mobile Platform

change to use the edit screen set, displaying the edit transaction. The user can change the
values on the screen. They can then either cancel or accept the changes they have made.

As alternatives to this behavior, an action can be specified for both add and edit behaviors.
When the action is executed it will dictate the behavior, displaying the add or edit transaction
in the wizard screen set just as with any other action.

Filtering can be enabled or disabled for the entire list tile view field. When enabled, the
properties of the object type being listed are selected. The user will then only be able to filter
the list on these properties. When a property is selected for this purpose, a Tile Filter child
definition is added to the list tile view. Users will then only be able to filter the items in the list
on one of the selected property values.

Related to the manual filtering, this field edit type also supports scanner filtering. A tile filter
can be defined to support scanner filtering. When a barcode value is scanned in it will be
compared to the values of that tile filter’s property. Only those items that match will be listed.
The parent field can then be defined to execute an action when a single item in this list matches
the scan filter, and a separate action to execute when no items match.

List Tile View Child Definitions

• Tile Filters: The tile filter is a child definition to a detail screen field with an edit type of
list tile view, defining the values upon which the items listed in the parent field can be
filtered.

• Sort Properties: This child definition is a simple list of the object properties by which the
list tile view can be sorted at run time on the Agentry Client. When adding a sort property a
selection is made from the properties defined in the object type for the collection which the
List Tile View field is defined to display.

List Tile View - Collection/Styles Attributes
The list tile view field edit type does not support the following general field attributes:

• Object/Transaction Property
• Format
• Field Style
• Focused Field Style
• Change Focus
• Update Rule
• Special Value

The list tile view data and style attributes set the basic behavior of the view, including how
styles can be applied to the list tile view field.

General Settings

Agentry App Development

Agentry App Development 413

• Collection: References the object collection property the list tile view is to display. This
collection is normally a property of the object definition the parent screen set is defined to
display.

• Include Rule: References a rule definition expected to return a Boolean value and that is
evaluated once for and in the context of each object in the collection displayed by the list
view. When an include rule is specified, only those objects for which the rule evaluates to
true will be listed in the list tile view.

Styles Settings

• Header Label: The style to apply to the list tile view’s header label. If no header label is
defined this attribute has no affect on the screen.

• Rows: The style to apply to all rows on the list tile view.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row.
• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that

row. This style should always be returned via a rule definition that evaluates the object
being listed.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control.

List Tile View - Settings Attributes
Selection Settings

• Allow Multi-Row Select: Specifies if the user can select more than one record in the list at
the same time. If multiple items are selected in a list, actions that target the selected object
in the list will be executed once for each selected object. The default for selecting multiple
objects requires a Ctrl+Click combination (mouse input) or a click and drag operation
(stylus input) by the user, depending on the device type. The Enable Single Click option to
this attribute may be set to allow multiple records to be selected with a single click by the
user. Deselecting a record requires the user to click it again. This feature is normally most
useful on touch screen devices, as it allows non-sequential records in the list to be selected.
If this option is enabled the attributes related to editing the objects in the list tile view will
be disabled. These objects may still be edited as the selected object in the list tile view, but
the action must be executed from a control on the same screen as the list tile view field,
rather than from within the list tile view itself.

Action Settings

• Allow Tile Adds: This attribute specifies whether or not users will be able to add a new
object to the collection being displayed by the list tile view field from within the field.
When this option is selected, the Add Screen Set and Add Transaction attributes must
also be set.

• Allow Tile Edits: This attribute specifies whether or not uses will be able to edit an object
within the collection displayed by the list tile view field. When this option is selected, the

Agentry App Development

414 SAP Mobile Platform

Edit Screen Set and Edit Transaction attributes must also be set. Allow Tile Edits is
disabled if the attribute Allow Multi-Row Select is enabled for the list tile view field.

• Allow Single Click Action: This attribute specifies whether to allow for an action to be
executed when a tile is selected in the list with a single click. If this attribute is set to true, all
default behaviors of the list tile view field for a single click of a tile are disabled, as are the
related attributes within the definition. This includes the following attributes:
• Allow Tile Edits
• Allow Multi-Row Select/Enable Single Click Selection
• All attributes in the section Edit Actions/Tiles

Screen Sets

• Row: This attribute specifies the screen set containing the detail screen to display each
object contained in the collection being listed in the list tile view field. The screen set
selected here will be used for each tile in the list that is not currently selected. The screen
set referenced must be defined for the same object type as is contained in the collection
being listed by the list tile view. The screen set must also contain a single detail screen used
by the same platform as the parent screen of the list tile view.

• Selected: This attribute specifies the screen set containing the detail screen to display each
selected tile in the list tile view field. The screen set selected here will be used only for a
selected tile in the list. The screen set referenced must be defined for the same object type
as is contained in the collection being listed by the list tile view. The screen set must also
contain a single detail screen used by the same platform as the parent screen of the list tile
view.

Add Actions/Tiles

• Add Screen Set: This attribute is enabled when the Allow Tile Adds attribute is set. Add
Scree Set is set to the screen set in which the Add Transaction will be displayed within the
list tile view field. This screen set is displayed when the user selects clicks the add icon
button for the field, allowing the user to add the values for the new object instance.

• Add Transaction: This attribute is enabled when the Allow Tile Adds attribute is set.
Add Transaction is set to the transaction that will capture the values from the user for the
new object instance to be added to the collection being displayed by the list tile view field.
The transaction will be displayed in the list tile view field, with the tile using the screen set
selected in Add Screen Set.

• Add Action: This attribute is enabled when the Allow Tile Adds attribute is not set. Add
Action can be set to the action to execute when the user clicks the add icon button for the
list tile view field. This action will be executed, targeting the object selected in Add
Target. The purpose of the Add Action attribute is to execute an action that will add a new
object instance to the collection being displayed by the list tile view field.

• Add Target: This attribute is enabled when the Allow Tile Adds attribute is not set. Add
Target is set to the object instance that the Add Action should target when executed. In

Agentry App Development

Agentry App Development 415

almost all scenarios the Add Target should be set to the parent object of the collection
being listed by the list tile view field.

• Add Shortcut Key: This attribute is set to the shortcut key combination that will allow the
user to add an object to the collection being displayed by the list tile view field. The
shortcut key will exhibit the same behavior as if the add icon button for the list tile view
field were clicked or tapped by the user, meaning either the defined Add Action will be
executed, or the defined Add Screen Set and Add Transaction will be displayed in a new
tile in the list tile view field.

Edit Actions Tiles

• Edit Screen Set: This attribute is enabled when the Allow Tile Edits attribute is set. Edit
Screen Set is set to the screen set in which the Edit Transaction will be displayed within the
list tile view field for the selected tile. This screen set is displayed when the user selects a
tile in the list and clicks the edit icon button for the field, allowing the user to edit the values
of the selected object instance.

• Edit Transaction: This attribute is enabled when the Allow Tile Edits attribute is set.
Edit Transaction is set to the transaction that will capture the values from the user to
modify the object instance selected in the list tile view field. The edit transaction will be
displayed in the list tile view field with the tile using the screen set selected in Edit Screen
Set.

• Edit Action: This attribute is enabled when the Allow Tile Edits attribute is not set. Edit
Action can be set to the action to execute when the user clicks the edit icon button for the
list tile view field. This action will be executed, targeting the object selected in Edit
Target. The purpose of the Edit Action attribute is to execute an action that will allow the
user to edit the selected object instance in the collection being displayed by the list tile
view field.

• Edit Target: This attribute is enabled when the Allow Tile Edits attribute is not set. Edit
Target is set to the object instance that the Edit Action should target when executed. In
almost all scenarios the Edit Target should be set to the selected object instance of the
collection being listed by the list tile view field.

• Edit Shortcut Key: This attribute is set to the shortcut key combination that will allow the
user to edit the selected object in the list tile view field. The shortcut will exhibit the same
behavior as if the edit icon button for the list tile view field were clicked or tapped by the
user, meaning either the defined Edit Action will be executed, or the defined Edit Screen
Set and Edit Transaction will be displayed in the selected tile of the list tile view field.

Single Click Action - These attributes are enabled only of the attribute Allow Single Click
Action is set to true.

• Single Click Action: This attribute specifies the action to be executed when the user
selects a tile in the list.

• Single Click Target: This attribute specifies the object to be targeted by the Single Click
Action when it is executed.

Agentry App Development

416 SAP Mobile Platform

List Tile View - Filter/Sort Attributes
General Settings

• Fixed Sort Property: Specifies the property definition within the object type being listed
by which to sort the objects in the list tile. The Order option to this attribute is set to specify
the sort order, either ascending or descending. For the list tile view it is recommended that
this attribute be set, as the list tile view cannot be sorted by the user. If a Fixed Sort Property
is not set, the order of the objects in the list will be the order in which they are stored in the
collection.

• Enable Groups: Enables or disables the group and indexing behavior available in iOS
Agentry Clients. When selected, the defined Fixed Sort Property is used to group the
objects listed in the List Tile View field. Tiles will be sorted based on this selection and
grouped by those with the first x number of characters (defined in No. Chars option) sorted
relative to each other and exclusive to those in other groups. If the Fixed Sort Property is a
string property, the No. Chars option is enabled where the number of characters to group
on is defined. For numeric types, grouping is based on the first (highest order) digit. This
value should be less than the maximum length of the selected string property. When
Enable Groups is set to true, the attribute Allow Filter is disabled.

• Show Group Index: This attribute is only available when Enable Groups is selected.
When set to true, this attribute will result in the display of a group index on the right side of
the List Tile View field. The user can select one of the items in this list to filter the List Tile
View to only the matching items.

• Allow Sort: This attribute enables or disables sorting of the List Tile View’s tiles on the
Agentry Client by the user. When enabled, a button is displayed on the top of the list tile
view field that displays a sort dialog when clicked by the user. The user can select a
property within the object type being listed and the sort order of either ascending or
descending. This attribute is disabled if a Fixed Sort Property is defined.

• Initial Sort Property: This attribute allows for the selection of property to sort the list tile
view field on during its initial display on the Agentry Client. If a property is selected for
initial sorting, the option Order is available to define whether or not the initial sort order
should ascending or descending. This attribute is not available unless Allow Sort is set to
true.

• Allow Filter: Specifies whether or not the user can filter the items in the list tile view. A
filter icon is displayed for the list tile view field when enabled. The user can click this icon
to select filter options. Only those properties for which tile filters have been defined within
the list tile view field can be selected by the user in the displayed filter dialog.

• Shortcut Key: This attribute specifies the shortcut key combination the user can enter on
the Agentry Client to display the filter dialog for the list tile view field. This attribute will
have no affect if Allow Filter is not set.

Header

• Header Label: Specifies the header text for the list tile view. A common use for this
header label is the total number of objects displayed in the list vs. the total number of

Agentry App Development

Agentry App Development 417

objects in the collection, which may be different when a filter is enabled. The format
strings used for this purpose are %DisplayedCount and %TotalCount.

List Tile View - Scanner Attributes
The scanner attributes for a list tile view affect only those list tile view fields defined for a
detail screen that is used by a scanner platform within the screen set and only when the screen
set is displayed on a client device with a barcode scanner. At least one tile filter must be defined
within the list tile view to support scan filtering.

Single Match

• Use Edit Row: This attribute specifies whether or not to use the defined edit behavior for
the single object that matches the scan filter settings. When set, the selected object will be
edited via either the defined Edit Action, or the defined Edit Screen Set and Edit
Transaction in the List Tile View Settings attributes. If this attribute is set, the Single
Match Action attribute will be disabled.

• Single Match Action: Specifies what action is executed when a scanned barcode value
uniquely matches an object in the list tile view. The target of the action will always be the
object instance found to match. This attribute will be disabled if the Use Edit Row attribute
is set.

No Match

• Use Add Row: This attribute specifies whether or not to use the defined add behavior of
the list tile view field. When set, defined Add Action will be executed, or the defined Add
Screen Set and Add Transaction in the LIst Tile VIew Settings attributes will be displayed
in a new tile added to the list. If this attribute is set, the No Match Action attribute will be
disabled.

• No Match Action: Specifies what action is executed when the scan filter criteria does not
match any records in the list. The target of the action is the parent object to the collection
property displayed by the list tile view. This attribute will be disabled if the Use Add Row
attribute is set.

Label

• Label Types: Specifies what barcode types are accepted by the Agentry Client. If no
Label Type is specified, all types supported by the client device’s scanner will be
supported. To restrict the label types, enter the name of each label type to support,
separated by a comma. Barcodes not listed will not be processed by the Agentry Client.

• Minimum Value: The minimum number of characters accepted by the Agentry Client
from the device scanner. If the value scanned in contains fewer characters, it will be
ignored.

• Maximum Value: The maximum number of characters to be accepted by the Agentry
Client from the device scanner. If the value scanned in contains more characters, it will be
ignored.

Agentry App Development

418 SAP Mobile Platform

• Shortcut Key: This attribute allows a shortcut key combination to be defined to activate
the device’s barcode scanner. This should be set to a key combination not already defined
as a shortcut for any other items on the current screen or any system-level shortcut keys.

Tile Filter

The tile filter is a child definition to a detail screen field with an edit type of list tile view. A tile
filter defines the property within the object type being listed upon which the items listed in the
parent field can be filtered. This includes both manual, user defined filters as well as barcode
scan filters.

A tile filter targets an object property within the object type being listed by the parent list tile
view field. For this property, the tile filter then defines whether or not the user can filter on this
property manually, and whether or not scan filtering is enabled for this value within the list tile
view.

Tile Filter Attributes

• Object Property: This attributes contains the target path to the object property for the tile
filter.

• Allow Filter: This attribute specifies whether or not the user can select this property from
the list of object properties displayed in the filter dialog on the Agentry Client.

• Scan Filter: This attribute specifies whether or not the value scanned in by the client
device’s barcode scanner should be compared to the value of the property targeted by the
tile filter. It is considered a best practice to set this attribute to true for only one tile filter
within the same list tile view field, but this is not a requirement.

List Selection

The list selection field edit type displays a drop down list of values, the source of which may be
an object collection, data table, or complex table. This list is treated as a temporary data table
created at run time. Part of the definition of this edit type is to specify the values to be treated as
the code and value fields for each record. Definable behaviors include whether to display the
code, value, or both for each item listed. The code field is always the value returned from the
selected item in the list.

A field with this edit type is displayed as a drop down list on the detail screen. If the number of
records displayed in the list is large, a popup dialog will displayed when the user selects the
field.

To use this edit type, either an object collection property or complex table is selected as the
source for the items listed. Within this selected source two data members (object properties or
complex table fields) are selected as the code and value for the records in the temporary data
table.

Another aspect of this edit types behavior is the option to define an include rule. If used, this
rule will be evaluated for each object or record in the defined source and only those items for
which the rule returns true will be listed in the field. Note that this rule evaluation should be

Agentry App Development

Agentry App Development 419

made as efficient as is possible when working with complex tables with large numbers of
records.

List Selection Attributes
The following attributes are specific to the list selection field edit type and are in addition to the
common detail screen field attributes.

• Source: This attribute specifies the source object collection property or complex table for
the field. The collection or complex table may be returned via a rule, or it may selected
from the target browser. Within the target browser, options exist for selecting object
instances or a range of complex table records via a rule. Note that this is separate from
using an include rule, which is another attribute to the field type. In most situations simply
the object collection or complex table is selected here. It may be desirable for complex
tables to return a range of records based on a table index. In this case the search value is
provided in the target browser, which may come from an object property or a rule.
Specifying a search value for the complex table to reduce the number of records for the
field can significantly reduce the number of evaluations needed for the include rule, if one
is used.

• Include: The Include attribute can reference a rule definition that will filter the records
listed to the user. This rule is evaluated in the context of each data instance (object or
complex table record) returned by the Source attribute and is expected to return a Boolean
value. Only those data instances for which this rule returns true will be listed in the field. If
no Include rule is selected, all instances of the selected source will be listed.

• Key: This attribute specifies the data definition within the Source instances to be used as
the code (also known as the Key) field for each record in the temporary data table. This will
either be an object property or complex table field, depending on the selected source.

• Value: This attribute specifies the data definition within the Source instances to be used as
the value field for each record in the temporary data table. This will be either an object
property or complex table field, depending on the selected source.

• Sort By: This attribute allows you to sort the values listed in the drop down list by one of
several options: Code, which is the code field in each table record; Value, which is the
value field in each record; Displayed Text, which is the text displayed for each record in the
field; and Order in Data Table, which is the order in which the records are listed in the data
table itself.

• Sort Order: This attribute specifies whether the records displayed are sorted in ascending
or descending order. This is a string sort.

• Display Type: This attribute specifies which fields from the data table records should be
displayed in the drop down list. The options are: Code, meaning the code field in each table
record; Value, which displays the value field from each record; Code - Value, which
displays both fields from each record, separating them with a hyphen; and Format Text,
which allows you to specify format strings to format the values displayed in the list for
each record.

• Format Text: If the Display Type attribute is set to “Format Text” this attribute will be
enabled. Format strings can then be entered in this attribute to format each record from the

Agentry App Development

420 SAP Mobile Platform

data table. The valid format strings for this field are %code, %value and %position.
This last will display the position number of each record as stored in the data table. This
last option is used mostly for testing purposes and is generally not found in the production
version of an application. This attribute can also contain any other printable characters,
excluding tabs and carriage returns, to format the display of the table’s records.

• Editable - Allow User-Entered Values: This attribute specifies whether or not the user
can manually enter values not found in the source of the list. When set users will be able to
either select an item from the list or manually enter a text value in the field. When not set
the users will be required to select from the items in the list. Note that if the field is set to
read-only, this attribute should still be set if the field has an update rule defined, and if that
rule can return a value not found in the data source for this field.

• Define separate display type for popup dialog: This attribute allows you to display the
records from the data table differently in the popup dialog vs. the drop down list for the
field. If set to false, the display and format attributes listed above will also affect the popup
dialog. If set to true, the attributes listed next will provide separate display behaviors for
the popup dialog.

• Display Type (Popup Dialog): The options for this attribute are the same as the Display
Type options listed previously. The option selected here will impact the appearance and
behavior of the popup dialog displayed for larger data tables.

• Format Text (Popup Dialog): The format strings for this attribute are the same as the
Format Text options listed previously. The format text entered here will impact the
appearance and behavior of the popup dialog displayed for large data tables.

List View

The list view field edit type displays an object collection property in a list control on a detail
screen. This list contains all of the same definable behaviors as a list screen, but is contained
within a detail screen. Multiple list views may be displayed on a single detail screen. This is
the default edit type for a field targeting an object collection property.

When a field is defined with a list view edit type, that field will have column child definitions.
A list view field can be defined on a wizard detail screen for a transaction or fetch. However,
the attributes for the double-click actions will be disabled, as actions may not be executed from
a wizard.

List View Child Definitions

• Column Definition: A list screen column defines what object property is displayed for
each record in a list control and how it is formatted on the screen.

List View Data/Styles Attributes
The list view data and style attributes set the basic behavior of the view, including how styles
can be applied to the list view field.

List Data

Agentry App Development

Agentry App Development 421

• Collection: References the object collection property the list view is to display. This
collection is normally a property of the object definition the parent screen set is defined to
display.

• Include Rule: References a Rule definition expected to return a Boolean value and that is
evaluated once for and in the context of each object in the collection displayed by the list
view. When an include rule is specified, only those objects for which the rule evaluates to
true will be listed in the list view.

• Icons Image: References an image definition containing an image list to be displayed in a
column on the list view. This is an image list with the positions of the images in each list
then referenced by the child column definition’s Icon attribute. Note that columns may
also reference image definitions to use for this same purpose, though they may not be
image lists.

List Styles

• Header Label: The style to apply to the list view’s header label. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control.
• Rows: The style to apply to all rows on the list view. The Hyperlinks optional style will

override the Rows style for cells with hyperlinks.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row. The Hyperlinks optional style will override the Alternate Rows style for every
other row, specifically cells containing hyperlinks within the row.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style should always be returned via a rule definition that evaluates the object
being listed. The optional Hyperlinks style will be applied to the highlighted row’s cells
containing a hyperlink.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control. The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

• Detail Pane: The style to apply to both the foreground (text) and background of the list
view’s detail pane. If no detail pane is defined this attribute has no affect on the screen.

List View Actions/Sorting Attributes
The list view actions and sorting attributes control how the user interacts with the list view,
including double-clicking on or off an item in the list and behaviors related to sorting and
reordering the columns. Note that the double-click attributes will be disabled for list view
fields defined on wizard detail screens.

Double-Click Actions

• Double-Click On Item - Action: Specifies the action to execute when the user double-
clicks a list view record.

Agentry App Development

422 SAP Mobile Platform

• Double-Click On Item - Target: Specifies the target of the Double-Click On Item -
Action. A target must always be specified for the action and is typically the selected object
in the list view.

• Double-Click Off Item - Action: Specifies an action to be executed when the user double-
clicks the list view without clicking on an item. This is most commonly used to execute an
action that instantiates an add transaction for the object type being listed.

• Double-Click Off Item - Target: Specifies the target of the Double-Click off Item -
Action. A target must always be specified for the action. Typically the target is the parent
object of the object collection property displayed by the list view.

Sorting and Selection

• Fixed Sort Property: Specifies the property definition within the object type being listed
by which to sort the items in the list. Selecting a property here prevents the user from
resorting the list on any other column. The Order option to this attribute is set to specify
the sort order, either ascending or descending.

• Allow Sort: Specifies if the user can sort the list by clicking on a column header. This is
enabled by default, and is disabled if a Fixed Sort Property is set.

• Initial Sort Column: Specifies a column definition by which the list will be sorted upon
initial display of the list view. This attribute requires that a column definition exist before it
can be set. The Order option to this attribute is set to specify the sort order, either
ascending or descending. If the list view allows the list to be sorted (Allow Sort is true) the
list will be displayed sorted in the order of the last sort action. If a Fixed Sort Property is
set, this attribute is disabled.

• Allow Multi-Row Select: Specifies if the user can select more than one record in the list at
the same time. If multiple items are selected in a list, actions that target the selected object
in the list will be executed once for each selected object. The default for selecting multiple
objects requires a Ctrl+Click combination (mouse input) or a click and drag operation
(stylus input) by the user, depending on the device type. The Enable Single Click option to
this attribute may be set to allow multiple records to be selected with a single click by the
user. Deselecting a record requires the user to click it again. This feature is normally most
useful on touch screen devices using a stylus, as it allows non-sequential records in the list
to be selected.

• Allow Reorder: Specifies whether or not the user can reorder the columns displayed in the
list view by dragging and dropping the column headers. This is enabled by default.

• Allow Filter: Specifies whether or not the user can filter the items in the list. A filter icon is
displayed at the bottom of the list view field when enabled. The user can click this icon to
select filter options. Individual column definitions may be defined to prohibit filtering on
those columns.

List View Header/Detail Pane Attributes
Using these attributes, a header label or a detail pane may be added to the list view field.
Header label and Detail pane attributes are set to display additional information about the list
as a whole or about the currently selected item in the list. The Header Label is a static line of
text displayed above the list view, within the area given to the field. This text may be static, set

Agentry App Development

Agentry App Development 423

via certain available format strings, or set via a rule. A rule referenced for this purpose is
expected to return a string value and is evaluated in the context of the object displayed by the
parent screen set.

The Detail Pane is redrawn each time a new object is selected in the list and almost always
contains either format strings or is set via a rule’s return value. Rules are evaluated in the
context of the selected object in the list and are expected to return a string value. The detail
pane drawn on the screen is a multi-line, read-only text box that may be scrolled horizontally
or vertically if needed. The detail pane is drawn within the are given to the list view field and
will reduce the amount of space for the list items.

Header

• Header Label: Specifies the header text for the list view. A common use for this header
label is the total number of objects displayed in the list vs. the total number of objects in the
collection, which may be different when a filter is enabled. The format strings used for this
purpose are %DisplayedCount and %TotalCount.

Detail Pane

• Detail Pane: When true, a text box on the list view. The detail pane is updated each time
the user changes their selection in the list view.

• Position: Controls where the detail pane is displayed on the screen in relation to the list
control. This may below the list or to its right.

• Size: Sets the pixel size of the detail pane within the list view field. The default is 50. If the
Position is “Bottom” the detail pane will span the width of the space given to the field and
the Size will set its height. If the Position is “Right” the detail pane will span the height of
the space given to the field and the Size will set its width.

• Word Wrap: When enabled, lines of text longer than the width of the detail pane will be
wrapped to the next line. When disabled, text will continue off the detail pane. The user
will need to scroll the detail pane to view the text.

• Format: Sets the values displayed in the detail pane. This pane can be set to a combination
of static text and format strings, which take the form %propertyName. The
propertyName is the name of a property defined within the selected object and will be
updated with the value of that property each time a different object is selected. It may also
be set to the return value of a rule, which is evaluated in the context of the selected object
instance and is expected to return a string.

List View Scanner Attributes
The scanner attributes for a list view affect only those list view fields defined for a detail screen
that is used by a scanner platform only when the detail screen is displayed on a client device
with a barcode scanner. At least one column definition within the list view must be defined to
support scan filtering.

A scanned value will be compared to the column(s) defined for scan filtering and only those
matching this value will then be displayed. Actions may be executed automatically when a
single record matches the scan filter, or when no records match.

Agentry App Development

424 SAP Mobile Platform

• Show Button: This attribute specifies whether or not a button is displayed to activate the
device’s barcode scanner.

• Single Match Action: Specifies what action is executed when a scanned barcode value
matches one of the records displayed in the list view. The target of the action will always be
the object instance found to match.

• No Match Action: Specifies what action is executed when the scan filter criteria does not
match any records in the list. The target of the action is the parent object to the collection
property displayed by the list view.

• Label Types: Specifies what barcode types are accepted by the Agentry Client. If no Label
Type is specified, all types supported by the client device’s scanner will be supported. To
restrict the label types, enter the name of each label type to support, separated by a comma.

• Minimum Value: The minimum number of characters accepted by the Agentry Client
from the device scanner. If the value scanned in contains fewer characters, it will be
ignored.

• Maximum Value: The maximum number of characters to be accepted by the Agentry
Client from the device scanner. If the value scanned in contains more characters, it will be
ignored.

• Shortcut Key: This attribute can define a shortcut key combination to activate the device’s
barcode scanner. This shortcut cannot be the same as any other shortcut defined for the
current screen or any system level shortcuts configured on the client device.

List View Column

A column definition defines what object property is displayed in a list control column. The
column definition also controls behaviors such as formatting, sorting the list on the column,
whether or not the column can be resized or moved, and whether or not the list can be filtered
on the column. Columns may also be defined to execute an action via hyperlink control.

In addition to or in place of a property value, a column may also display an image definition as
an icon, which can be different for each record based on a rule definition.

Column Attributes

• Object Property: Specifies the property to display in the column on the list view. Set this
to None, to display either a value derived from a format string or only an icon image.
Selecting both an Object Property and specifying an icon image will display both in the
column.

• Name: Internal name for the column definition. This value must be unique among all
columns definitions in the list view.

• Label: Specifies the label for the column header. This text is displayed at the top of the
column on the Agentry Client to identify the contents of the column.

• Enable Rule: References a rule definition evaluated in the context of the object displayed
by the screen set and expected to return a Boolean value. When the rule returns true, the

Agentry App Development

Agentry App Development 425

column is enabled and displayed on the Client. When it returns false, the column is
disabled and not displayed.

• Format: Can contain a format string to display one or more property values from the
object type being displayed by the list in a different format than the default for the
property’s data type. This text can also be set via a rule definition, where the expected
return value is a string and is evaluated in the context of the object instance for the record in
the list. To set the format attribute set the Object Property attribute must be set to None.

• Icon Image: References an Image definition within the application to specify an icon for
the column. The image name can also be returned using a rule definition to dynamically
determine the image to display for each record. This rule is evaluated in the context of the
object instance for the record and is expected to return the name of an image definition as a
string. Note that not using a rule for this attribute will display the same image for all
records in the list

• Column Width: Specifies the initial size of the column on the client. The user can resize
the columns if the list view definition has not disabled this behavior. If the user changes the
width of a column, the new width is saved in the registry on the client device and will
override the Column Width attribute.

• List Filter: Specifies if the column should be included in those listed in the filter dialog for
the list. This attribute is ignored in filtering has been disabled for the list view.

• Scanner Filter: Enables scan filtering functionality for the column. When this attribute is
enabled, the value scanned in by the device will be compared to the values of the column to
create a filter. Multiple columns can be defined for this behavior. However, the values in
the columns should be mutually exclusive. The order of the columns evaluated against the
scanned value is undefined. This attribute is only supported for screens used by a scanner
platform and displayed on a scanner-enabled device.

• Hyperlink: Specifying a hyperlink action enables each cell within the column to execute
an action when the user single or double clicks on the hyperlink drawn in that column. The
text of the hyperlink will be the value the column is defined to display. This functionality
can include columns with images. Hyperlink contains two attributes:
• Hyperlink Action: Specifies the action that will be executed when a user single-clicks

a column in a populated row in the list.
• Hyperlink Target: Specifies the target of the Hyperlink Action.

Password Validation

The password validation edit type requires users to enter their password on a detail screen. The
value entered is validated against the password stored for the Agentry Client for the current
user. The characters entered in this field are replaced with asterisks. This field edit type is used
primarily with transaction authentication functionality.

The value entered in this field is validated against the user’s password when the wizard or
authentication screen set is advanced. If the value entered is not a valid password a message
will be displayed. This message may be the default message provided by the Agentry Client,
or it may be defined as a part of the screen field using the Message attribute.

Agentry App Development

426 SAP Mobile Platform

Password Validation Attributes
The following attributes are specific to the password validation field edit type. These are in
addition to the common field attributes:

• Password Failure Message: This attribute specifies the message to display to the user if
the password entered in the field is invalid. This may be the default message, which is
displayed when Auto is selected, or it may be a message entered in the text box for this
attribute field.

Tile Edit

The tile edit field type displays object properties in a tiled view allowing for add and edit
interaction without starting a wizard screen. For a given object, the properties of that object
can be displayed in the tile edit view in tiles within that object instance. The layout of the tile
edit is defined in a separate screen set and detail screen, used by the tile edit field. The values of
a given object can be edited directly, and new object instances can also be added.

Prior to defining a field with this edit type, the screen set and the transaction it is to use must be
defined. Both are required information when defining a new tile edit field. The screen set must
be defined to display the transaction to capture the data. The screen set must contain a single
detail screen displaying the properties from the transaction.

At run time this field type is displayed within its own detail screen. Within the field is then the
single detail screen from the separate screen set. The fields of this detail screen are displayed
within the tile edit field in the same manner in which they are laid out in the detail screen. The
user can edit any fields defined in the separate detail screen that are not read-only. Within the
tile edit field, if the detail screen displayed is larger than the space given to the field, a vertical
scroll bar is displayed to allow the user to scroll up and down to display fields not immediately
shown.

The tile edit field type does not support the following common field attributes:

• Object Property
• Read-only
• Format
• Change Focus
• Update Rule
• Special Value

Tile Edit Attributes
The following attributes are specific to the tile edit field type. These are in addition to the
common field attributes:

• Tile Edit Screen Set: This attribute specifies the screen set to display for edits. This screen
set should be defined to display the transaction definition specified in the Tile Edit
Transaction attribute.

Agentry App Development

Agentry App Development 427

• Tile Edit Transaction: This attribute specifies the edit transaction instantiated to capture
data entered by the user in the Tile Edit Screen Set. An instance of this transaction is
created, applied, and saved as a pending transaction when the user enters data changes.

• Tile Target: This attribute specifies the object instance that is targeted by the transaction.
• Modify Row Height By: This attribute allows for all rows displayed on the screen within

the Tile Edit field to be modified by the value set in this attribute.
• Hide Buttons: This attribute will hide the OK and Cancel buttons displayed when the tile

is being edited. These are displayed by default. When hidden, values entered by the user
are automatically applied, as is the define transaction, when the Tile Edit field no longer
has the input focus.

• In Progress Edit: This attribute will enable the In Progress Edit style to be applied to the
field when it is currently being edited and the changes it contains have not been applied.
This is a visual indicator to the user that the Tile Edit field currently has the focus and is
actively being edited.

Tile Display

The tile display edit type displays an object instance in a tiled view. The layout and appearance
of the values is defined in a separate screen set and its detail screens. This separate screen set is
used by the tile display field, with its detail screens displayed within the tile display field as a
tab control.

Prior to defining a field with an edit type of tile display, the separate screen set it is to display
must be defined. This screen set must be defined to display the object type desired for display
in the tile display field. The separate screen set can contain a single detail screen. The fields of
this detail screen display the property values of the selected object type.

When the detail screen containing the tile display field is displayed on the client, the separate
screen set and its detail screen are displayed within the viewable area of the tile display field.
These values are read-only.

The tile display edit type does not support the following general field attributes:

• Object Property
• Read-only
• Format
• Change Focus
• Update Rule
• Special Value

Tile Display Attributes
The following attributes are specific to the tile display edit type. These are in addition to the
common field attributes:

• Tile Display Screen Set: This attribute specifies the screen set to display the object
instance within the tile display field. This screen set can contain one detail screen. The

Agentry App Development

428 SAP Mobile Platform

fields of this detail screen are displayed within the tile display field. The screen set must be
defined to display the object definition specified in the Tile Target attribute.

• Tile Target: This attribute specifies the object instance targeted by the tile display field.
This object instance must be of the type the Tile Display Screen Set is defined to display.

• Modify Row Height By: This attribute specifies the rows within the screen being
displayed by the Tile Display field be modified by the value set in this attribute.

• Display Single Screen: This attribute forces the Tile Display field to display only a single
screen from the selected screen set. Otherwise each screen in the screen set is displayed
within the Tile Display, with a tab control displayed for each screen.

Detail Screen Fields With Implicit Edit Types

In addition tot hose detail screen field edit types already addressed, there is a small handful of
edit types which are implicitly set based on the data type of the property the field is defined to
display. These implicit field edit types do not contain any edit type-specific attributes. The
general field behaviors, e.g., position, size, read-only, etc., are defined just as any field would
be. The edit type-specific behaviors are typically take driven by the definition of the property
being displayed.

These edit types cannot be selected from the Edit Type attribute for the field definition.
Instead, when a field is defined to display one of the property data types with which the field
edit type corresponds, the field definition’s Edit Type should be left set to --Default--. As an
example, when displaying a signature capture property type, the field to display this property
will not contain a corresponding Signature Capture edit type. Rather, it is left set to an Edit
Type of --Default--. At run time, the field displayed on the client will be a signature capture
field, and the behavior of the field is driven by the definition of the signature property.

Signature

The signature field edit type allows for the entry of a signature on a client’s screen that is stored
as a bitmap image. This is an implicit edit type in that it cannot be selected when defining a
field definition. Any detail screen field with an edit type of “Default” and targeting a property
with an data type signature will be a signature field. This field edit type has no additional
attributes beyond those of the common field attributes. Much of the behavior of this field is
dictated by the signature property it targets.

Action

An action defines navigation and user interaction for the Agentry Client. Actions are
composed of a series of action steps of varying types. An action is defined to allow the user to
interact with the application in some way.

The action defines the object its steps will act upon, any may also define whether or not users
will be permitted to cancel the action once it has been executed, and also an optional separate
action to execute if the action is cancelled.

Agentry App Development

Agentry App Development 429

The behavior of the action is dictated primarily by its child action step definitions. There are
different types of action steps for different types of Agentry Client behaviors. Each action step
defines a specific task to be performed on the Agentry Client.

Actions can be referenced by several different components of the user interface, such as
buttons, list screens, and others. Whenever an action is executed it will be passed an object
instance. This object instance is determined by the user interface component executing the
action. The action must be defined for an object type. This object type for the action and the
type of object passed to the action on the Agentry Client must be the same. The exception this
is when the action is not defined for any object. Such actions are limited in use and normally
pertain to performing transmits between the Agentry Client and Agentry Server, or actions
that close screen sets but do not open others.

Action Child Definitions
Action Step: An action step defines a single task within an action that is a part of the overall
action execution on the Agentry Client.

Action Attributes

• Name: This is the unique internal name for the action within the application project. This
value must be unique among all actions defined within the same module.

• Display Name: This attribute contains the name displayed for the action on the Agentry
Client.

• Group: This attribute specifies the group into which the action will be organized within
the application project. This attribute has no impact on the action’s behavior at run time.

• For Object: This attribute specifies the object for which the action is defined. An instance
of this object must be passed to the action by the Agentry Client user interface component
executing the action. Therefore, both this attribute and UI component must have the same
type of object defined or in scope when the action is executed.

• Enable Rule: This attribute references a rule definition called in the context of the object
currently in scope on the user interface and is expected to return a Boolean value. When the
rule returns true the action will be enabled and can be executed. When the returns false the
action will be disabled and cannot be executed. Any buttons defined to execute a disabled
action will be displayed as disabled controls.

• Disable Cancel: This attribute specifies whether or not users can cancel an action once its
execution begins. This setting primarily affects the behavior of screen sets defined to
display transactions or fetches and are displayed by the action. When Disable Cancel is set
to true, screen sets will not contain a cancel button, preventing the user from canceling the
action. When set to false (default) the wizards will contain a cancel button.

• Cancel Action: This attribute references another action within the same module to be
executed when the parent action is canceled. The cancel action will be executed in the
same context as the action that was executed first and then canceled by the user. The action
selected here must exist prior to making a selection.

Agentry App Development

430 SAP Mobile Platform

Action Step

An action step defines a single task within an action that is a part of the overall action execution
on the Agentry Client. There are multiple action step types. Each type of step is defined for a
different type of task. These can include navigation, transaction instantiation and display,
transmit initiation, and other behaviors. Each action step type contains its own type-specific
attributes.

The action step definition encapsulates a single task to be performed within the action as a
whole. A given action can contain one or more action steps. Much of the client-side
functionality and behavior that may be defined for a mobile application is exposed in the
action steps.

Action Step Types
Following are the different types of action steps that may be defined:

• Apply: The apply action step type applies all transactions instantiated and completed
before it in the same action.

• Exit Application: The exit application client action step will close the Agentry Client
application when executed.

• External Field Command: The External Field Command action step issues a command
to an ActiveX control when executed.

• List Selection: The List Selection action step type selects the specified row or item in the
selected screen set and screen.

• Message: The message action step type displays a message screen on the Agentry Client
to the user that can contain one or two buttons.

• Navigation: The navigation action step type displays an object screen set on the Agentry
Client.

• Open URL: The Open URL action step type defines a URL to be opened by the client
device’s web browser.

• Print Report: The print report action step type will print the defined report definition on a
printer connected to the client device.

• Save Tile Transactions:
• SubAction: The SubAction action step type executes an action definition from within

another action.
• Transaction: The transaction action step type instantiates a transaction on the Agentry

Client and defines what screen set to display the transaction instance in.
• Transmit: The transmit action step type initiates communications between the Agentry

Client and Agentry Server.
• Windows Command: The Windows command action step type executes a command on

the client device.

Agentry App Development

Agentry App Development 431

Action Step Type: Apply

The apply action step type applies all transactions instantiated and completed before it in the
same action. An apply step is required in any action containing one or more transaction steps
in order for those transactions to affect their target objects and to be saved on the Client.

The apply step definition itself contains no attributes other than a name. However, it is an
important part of transaction behavior within the Agentry Client. The absence of an apply step
within an action that also includes a transaction step will result in the transaction not being
save or applied on the Agentry Client.

The intended purpose of the separate apply step to apply and save a transaction is to allow for
actions continuing multiple transaction steps followed by a single apply step. This allows for
the requirement that multiple transactions be instantiated and completed by a user within a
single action, and to not save any data until all transactions have been finished.

Apply Step Attributes
This action step type has only a Name attribute, which must be unique among all steps within
the same parent action.

Action Step Type: Exit Application

The exit application client action step will close the Agentry Client application when
executed. When this step is performed within an action it will result in the same behavior as if
the Exit menu item is selected in the File menu of the Client. A step of this type should only be
defined as the last step to be executed within an action, as no other action steps that follow it
will be executed.

The primary purpose of this action step type is to support the true and clean shutdown of the
Agentry Client when running on client devices that do not support this behavior easily. Many
client devices and the shells they run will no truly exit an application when the user clicks the
title bar close button. Rather, the application is simply hidden from view. It remains running on
the client device. Additionally, the application does not exhibit any behaviors defined to occur
when the application exits, such as check for, and notifying the user of any pending
transactions.

To support a cleaner shut down, the users should always be instructed to use either the Exit
menu item in the client’s File menu, or to execute an action defined with an Exit Application
action step type.

Exit Application Step Type Attributes
This action step type has only a Name attribute, which must be unique among all steps within
the same parent action.

Agentry App Development

432 SAP Mobile Platform

Action Step Type: External Field Command

The External Field Command action step issues a command to an ActiveX control when
executed. It references the External Field - ActiveX Control field to specify the control to
which the command is to be issued. The action step passes the value of the defined command
string to the ActiveX control, which is then responsible for receiving and processing the string
command accordingly.

The defined command string within this action step type is passed by the Agentry Client to the
ActiveX control through the expected method AgentryExecuteCommand. This method
should be implemented to process the provided command string in the manner deemed
appropriate for that control.

External Field Command Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This must be unique among all steps within the same parent action.

• Screen Set: This attribute specifies the screen set containing the detail screen within
which the External Field - ActiveX Control field is defined. Valid selections for this
attribute include any screen set defined to display an object definition. Screen sets for
transactions and fetches are not valid.

• Screen: This attribute specifies the detail screen containing the External Field - ActiveX
Control field.

• External Control: The External Field - ActiveX Control detail screen field that references
the ActiveX control to which the command string is to be issued.

• Command: The string to be passed to the ActiveX control’s
AgentryExecuteCommand method. This attribute value can be entered into the
attribute field directly, or can be set to the return from a rule definition. A rule referenced by
this attribute is evaluated in a string context and in the context of the action to which the
action step is being added and the object for which that action is defined.

Action Step Type: List Selection

The List Selection action step type selects the specified row or item in the selected screen set
and screen. The specific list control on the screen must also be specified if more than one type
of list field is defined for that screen. The action allows for the specification of record to select
by one of several options, as described in the Select Rows attribute of the field definition.

List Selection Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This must be unique among all steps within the same parent action.

• Screen Set: This attribute specifies the screen set containing the screen and list in which a
selection is to be made.

Agentry App Development

Agentry App Development 433

• Screen: This attribute specifies the screen containing the list in which a selection is to be
made.

• List Control: This attribute specifies the list on the selected detail screen in which a
selection is to be made.

• Select Rows: This attribute specifies how the item in the list is to be selected. Options for
this attribute include:
• By Position: Selecting this option enables the Position attribute, where the position

number of the item to be selected can be specified. This is a numeric value that must be
one or greater and indicates the item to select from either the top or bottom of the list.

• By Rule: This option specifies a rule is to be used to determine the item to be selected.
The object being listed sets the context for the rule being evaluated, with either a true or
false value returned by the rule. The first item for which the rule returns true will be the
one selected in the list.

• First Row: The first row in the list based on it’s current sort order.
• Last Row: The last row in the list based on it’s current sort order.
• Next Row: The row immediately following the row currently selected in the list.
• None (Clear selection): This clears the selection state of any items that may be

currently selected in the list.
• Previous Row: The row immediately preceding the row currently selected in the list.

Action Step Type: Message

The message action step type displays a message screen on the Agentry Client. This screen can
contain a defined title, message text, and either an OK or an OK and Cancel button. When a
Cancel button is clicked in a message screen the parent action of the step is canceled. No
subsequent steps within the action will be executed.

This step type can provide the user with the ability to cancel an action based on some decision.
This step type is commonly used within actions that will delete an object instance on the client.
A message step with two buttons can be defined to confirm the delete of the object prior to
executing the transaction step that will delete it.

When a message step is displayed with only a single button, the user will not be able to cancel
the action within the message displayed. Rather, the single button is displayed for the user to
confirm they have read the message. Once clicked, the action will continue execution with its
next defined action step.

Message Step Attributes

• Step Name: This attribute contains the unique name for the action step. This value must be
unique among all steps within the same parent action.

• Caption: This attribute contains the text to display in the title bar of the message dialog
displayed by the Message Step.

• Message Text: This attribute contains the text to display in the main portion of the
message dialog displayed by the Message Step. Format strings may be used within this

Agentry App Development

434 SAP Mobile Platform

text, or the entire message may be built and returned by a rule. A rule definition referenced
here is evaluated in the context of the object passed to the step by the action. The rule is
expected to return a string value.

• OK Label: This attribute contains the text to label the OK button in the message dialog.
Regardless of the label, clicking this button will always confirm the message, or be
considered a positive response to the message, continuing execution of the action.

• Cancel Label: This attribute can enable or disable the cancel button behavior in the
message log. When disabled, no cancel button is displayed. When enabled, the cancel
button will be displayed and this attribute also then contains the label for that button.
Regardless of the label text, clicking this button will always be considered a negative
response and cancel the parent action’s execution.

Action Step Type: Navigation

The navigation action step type displays an object screen set on the Agentry Client. It includes
optional definable behaviors to specify the screen and control on the screen to which the initial
focus is set. It may also be defined to close the previous screen set displayed. Screen sets may
be defined to display an object, transaction, or fetch. A navigation action step is defined to
display only those screen sets defined to display an object.

When selecting a specific screen within a screen set to be the first one displayed, you will
typically select any of the screens not at position one within the screen set. The screen at
position one within the screen is displayed first by default. If the navigation step displays a
screen set with multiple platforms, and the selected screen definition is not used by one or
more of the platforms, the screen at position one within the screen set is displayed first on those
device platforms.

Similar behavior is exhibited when a specific field is selected within a detail screen to have the
initial focus. If the field does not exist on a screen for a given platform, the default focus field,
as defined within the screen, will contain the initial focus.

If the initial screen defined to be displayed is a list screen, the optional behavior of selecting
one or more rows by default within that list can be defined. There are several options for
selecting the rows, including: by position within the list; conditionally based on a rule; or to
not select any record within the list.

The definable behavior of closing the previous screen set, or closing all open screen sets, can
be used when navigating from one screen set to the next. However, it is recommended that
closing the previous screen behavior not be defined when navigating from a module main
screen set, as closing the main screen set is considered undesirable user interface behavior
except in rare circumstances. Closing all open screen sets will never close the current
module’s main screen set.

Closing the previous screen set or all non-main screen sets may also be defined in a navigation
step that does not display a new screen set. This definition option results in the user being
returned to the previously displayed screen set, i.e. the one from which they navigated to the
current screen set, or the module main screen set. These behaviors are supported to ensure that

Agentry App Development

Agentry App Development 435

a screen set and its screens are truly destroyed when the user wishes to close them. Certain
client devices and their shells do not close a screen once opened. Rather, when a user clicks the
close button (or sometimes an OK button) displayed in a title bar, the screen itself is simply
hidden, but still remains in the background. The navigation step will close a screen set by
destroying the screen object in memory. Closing all open screen sets other than the module
main screen set provides an easy means of returning the user to the module main screen set if
they are multiple levels deep into the application’s screen flow.

Navigation Step Attributes

• Step Name: Contains the unique internal name of the action step definition. This must be
unique among all steps within the same parent action.

• Screen Set: Specifies the object screen to be displayed by the navigation step. This screen
must be defined and exist within the module prior to defining the navigation step. This may
be set to “Do No Display Screen Set,” which will also set the Close Screen attribute to
“Close the screen you are leaving when this navigation step runs.”

• Close Screen: Specifies that the screen set currently displayed when the action is executed
be closed, or alternately that all screen sets other than the module main screen set be
closed. The default setting for this attribute is to not close any screen sets. Valid options for
this attribute include:
• None: Do not close any screen sets. Display the screen set defined in the Screen Set

attribute.
• Close the screen you are leaving when this navigation step runs: The currently

displayed screen set will be closed when the action step is executed. The screen set
defined in the Screen Set attribute, if any, will then be displayed.

• Close all screens except main when this navigation step runs: All open screen sets
except the module main screen set will be closed. The screen set defined in the Screen
Set attribute, if any, will then be displayed. In an application with multiple modules, the
main screen set for all modules except the current module will be closed.

• Screen: Specifies the screen within the screen set to display first. By default, the first
screen displayed is the screen at position one within the screen set. If a detail screen is
selected, the Initial Focus attribute field is enabled. If a list screen is selected, the Select
Rows attribute field is enabled.

• Initial Focus: Available only when the Screen attribute is set to a detail screen. The Initial
Focus can specify a field on the selected detail screen that will have the initial focus when
the navigation step displays the screen set. By default, the field at position one within the
screen will have the initial focus.

• Select Rows: Available only when the Screen attribute is set to a list screen. The following
are the options for this attribute, each of which specifies which row or rows within the list
screen should be selected automatically when the list screen is displayed:
• All Rows: This selection will result in all rows in the list screen being selected initially.

This selection is only applicable to list screens for which the multi-row select behavior
has been enabled.

Agentry App Development

436 SAP Mobile Platform

• Auto: This selection is the default and will not change the selected row on the list
screen.

• By Position: This selection will enable the Position attribute field where the selected
row in the list is specified by its position within the list.

• By Rule: This selection specifies that the initially selected row or rows in the list will be
determined by a rule. When this option is selected, the Row attribute field will be
enabled where the rule can be selected.

• First Row: This selection specifies that the first row in the list will be selected. This is
always the first row from the top of the list.

• Last Row: This selection specifies that the last row in the list will be selected. This is
always the last row from the bottom of the list.

• None (Clear Selection): This selection specifies that no rows will be selected in the
list.

• Position: Available when the Select Rows attribute is set to By Position. The Position
attribute can then be set to a numerical value specifying the row at this position will be
selected. As options to this attribute, the position can be determined by counting from the
top of the list down or counting from the bottom up.

• Rule: Available when the Select Rows attribute is set to By Rule. The Rule attribute can
then be set to the First, Last, or All Rows, where the selected Rule returns either True or
False. All rows is applicable only to list screens for which the multi-row select behavior
has been enabled. The rule referenced here is evaluated once for and in the context of each
object listed on the screen. It is expected to return a Boolean value.

Action Step Type: Open URL

The Open URL action step type defines a URL to be opened by the client device’s web
browser. As a option to this defined URL it is possible to also specify one or more URL
parameters to be passed to the URL. These parameters can be set via a rule, which allows for
the specification of dynamic values obtained from the applications data.

Child Definitions
• URL Parameters: Contains a value to be passed to the defined URL as a parameter (such as

a CGI argument or similar). This can be set via a rule definition to expose access to any
value within the mobile application.

Open URL Attributes
• Step Name: Contains the unique internal name of the action step definition. This must be

unique among all steps within the same parent action.
• URL: Specifies the URL to be passed to the client device’s default web browser. This can

be either a constant value set directly in the field, or returned by a rule definition.

Action Step Type: Print Report

The print report action step type will print the defined report definition on a printer connected
to the client device. This step can control which objects for the report are printed via an include

Agentry App Development

Agentry App Development 437

rule. It can also be defined to allow the user to skip printing the report. At least one report
definition must exist within the same module before a print report action step can be defined.

Print Report Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This value must be unique among all steps within the same action.

• Report: This attribute references the report to be printed by the action step. The report
definition must be defined prior to selecting it for this attribute.

• Include Rule: This attribute allows for optionally including only certain objects within the
collection targeted by the report being printed by the action step. When a rule is referenced
here it is evaluated once for, and in the context of each object instance in the report’s
targeted collection. The rule is expected to return a Boolean value. Only those objects for
which the rule returns true will be printed in the report.

• Allow Skip: This attribute can allow the user to skip printing the report. When this
attribute is set to false (default) the report will always be printed. When set to true, the user
will be prompted to continue with the print job or to cancel.

Action Step Type: Save Tile Transactions

The Save Tile Transactions action step applies all transactions begun in a tile edit or tile list
detail screen field that have not been applied. This can occur based on the overall screen flow
and navigational options defined within the application project.

Save Tile Transactions Action Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This value must be unique among all steps within the same action.

• Save Option: This attribute specifies which transactions are to be applied when the step is
executed. The options include:
• Active Screen Set: Any unapplied transactions from any tile controls on any screen in

the current screen set.
• All Screen Sets: Any unapplied transactions from any tile controls on any screen in

any screen set within the current module.

Action Step Type: SubAction

The SubAction action step type executes an action definition from within another action.
When the sub-action has completed execution the parent action will continue. A SubAction
step can execute an action once or iteratively based on various available criteria. A SubAction
step is also used to execute an action in a different module.

The SubAction step type supports modularity within the actions of an application, providing
for the reuse of actions that provide behaviors applicable to multiple areas of functionality.
SubAction steps are also the primary means by which iterative processing can be implemented
within the client application’s behavior. This step type is also the primary means of providing

Agentry App Development

438 SAP Mobile Platform

cross-module functionality. Using a SubAction step an action in one module may be executed
from an action in another module.

A primary part of a SubAction step’s definition is the object the action it executes targets. This
object should normally be within the context of the parent action’s object. As an example, if
the parent action is defined for Object A, which contains a collection of Object B, the
SubAction step can target an instance of Object B within that collection. The exception to this
is cross-module action execution.

To execute an action across modules, the target object for the SubAction step must be an object
defined in the other module. When an object from a different module is defined as the target,
the actions that may be selected for the SubAction step will be those defined in that module.
Execution of the parent action on the Agentry Client will then result in the action in the second
module being executed as defined. The parent action will then proceed as defined after the
SubAction step has completed execution.

SubAction Step Attributes
General Attributes

• Name: Contains the unique internal name for the step definition. This value must be
unique among all steps within the same parent action.

• Execution Type: Specifies how the sub-action should be executed. There are several
options available for this attribute, many of which providing iterative behavior. When one
of these selections is chosen, the SubAction step is referred to as a Looping SubAction
step. Lopping SubAction steps will have additional attributes that will differ depending on
how the SubAction step loops. Following are the available items for this selection.
• Always - Execute until stopped: This selection will define the SubAction step to

execute repeatedly until the user explicitly ends the processing. This item should only
be selected when the SubAction executes and action that allows the user to either
cancel or finish the processing, normally within a transaction wizard screen set.

• Execute Once: This selection will execute the defined action a single time when the
SubAction step is executed.

• Execute once if rule is true: This selection will execute the defined action a single time
only when the rule referenced in the Execution Rule attribute returns true. If the rule
returns false, the defined sub-action will not be executed and the parent action will
continue execution as defined.

• Execute until rule is false: This selection will execute the defined action until the rule
referenced in the Execution Rule attribute returns false. This rule will be evaluated
after each iteration of the sub-action. This behavior means the SubAction step will
always execute the defined action at least once, as the rule will not be evaluated until
after execution has completed.

• Execute while rule is true: This selection will execute the defined action while the rule
referenced in the Execution Rule attribute returns true. This rule will be evaluated
before the first iteration of the sub-action and before each additional iteration. This

Agentry App Development

Agentry App Development 439

behavior means the SubAction step may or may not execute the defined action, as the
rule will be evaluated to determine if the sub-action should be executed.

• Loop over collection: This selection will execute the sub-action once for each object
instance referenced in the Collection attribute. This may be limited by referencing a
rule in the Execution Rule attribute. In this case, the Execution Rule will be evaluated
once for, and in the context of each object instance in the collection. The rule is
expected to return a Boolean value. The sub-action will then only be executed for each
object instance where the rule returns true.

• Loop over list screen: This selection will execute the sub-action once for each object
listed in the current list screen. This may be limited by referencing a rule n the
Execution Rule attribute. In this case, the Execution Rule will be evaluated once for,
and in the context of each object currently displayed in the list screen. The rule is
expected to return a Boolean value. The sub-action will then only be executed for each
listed object instance where the rule returns true.

• Loop over selected list screen objects: This selection will execute the sub-action once
for each selected object in the current list screen. This selection is provided in support
of the multi-select behavior that may be enabled for list screens. If no items are selected
in the list screen, the sub-action will not be executed by the SubAction step.

• Collection: This attribute is only enabled when the Execution Type is set to “Loop over
collection.” The Collection attribute references the object collection property the
SubAction step is to loop over.

• Execution Rule: This attribute is enabled when the Execution Type is set to “Loop over
collection,” “Loop over list screen,” or to one of the execution types involving a rule. The
Execution Rule references the rule definition to be evaluated to determine the execution
behavior of the sub-action.

• Act on Object: This attribute references the object instance the sub-action is to target. This
selection is normally a child object to the object for which the parent action is defined, or
an instance of the object type for the parent object. It may also be an object defined in
another module. When this last type of object is selected, the available items listed for the
Actions attribute will those actions within the same module as the selected object.

• Action: This attribute references the action the SubAction step will execute as a sub-action
to the step’s parent action. The action selected here must be defined prior to the definition
of the SubAction step. The selected action must be defined for the object type selected in
the Act on Object attribute.

• Begin Loop with Selection: When the Execution Type is set to Loop over displayed list
items, this attribute is enabled allowing for the specification of the first item to be executed
on. When selected, the first item is the one currently selected in the list. When not
specified, the first item is the one at the beginning of the list.

Looping Attributes - These attributes are available only when the Execution Type attribute is
set to one of the iterative options. Depending on the type of iteration, different attributes listed
here will be enabled or disabled.

• Dialog: This attribute is available only when the Execution Type is set to “Loop over
collection” or “Loop over list screen.” The Dialog attribute specifies whether or not to

Agentry App Development

440 SAP Mobile Platform

display a message when there are no items for the SubAction to loop over. This can occur if
the selected collection contains no object instances, or if the list screen currently lists no
items. When Dialog is set to true, the Dialog Message attribute will be enabled allowing
for the definition of the message to display.

• Dialog Message: This attribute is available only when the Dialog attribute is set to true.
The Dialog Message can contain the message text to display when the item to loop over is
empty. The default message displayed is “No valid records found.”

• Back Up: This attribute specifies whether to complete the SubAction step when the user
clicks the Back button in a screen set displaying a transaction or fetch.

• Allow Done: This attribute specifies whether to display a Done button in last screen of a
wizard screen set. The Done button differs from the standard Finish button in that the Done
button will break out of the SubAction’s loop and return execution control to the parent
action. When a SubAction step’s Execution Type is set to “Always - Execute until
stopped,” the Allow Done attribute should be set to true. In other looping SubAction steps,
the Done button will allow the user to end the loop regardless of any other constraints
related to the looping behavior.

Action Step Type: Transaction

The transaction step type instantiates a transaction on the Agentry Client. A transaction step
also defines the screen set in which the transaction instance should be displayed, if any. A
transaction step can also define a target for the transaction as well as a sub-action to execute
after the transaction has been completed.

A transaction step can define a transaction to be instantiated but not displayed in a screen set.
This is a common occurrence when the transaction is a Delete transaction type. Other
transaction types may also be defined in this manner if it is not necessary to capture any data
from the user for the transaction. To not display a transaction instance, the Screen Set attribute
should be set to No Screen Set.

The target object and target property for the transaction may be set in the transaction step. By
default, the target object is passed to the transaction step from the action. The transaction step
can then change the target to a different object, provided it is a valid item within the context of
the object passed in by the action. In many cases it is not necessary to change the target of the
transaction within the transaction action step. This target is normally set when there are
multiple transaction steps within the same action, and one or more of those transactions is
defined for the object type for which the action is defined. In the situations where the target is
specified, it is normally a child object to the object type for which the parent action is defined.

The option of defining a SubAction to execute when the transaction has been completed
provides a means of executing a second action from the transaction step. This sub-action will
be executed only when the transaction step completes the transaction processing; i.e., if the
user clicks cancel in the wizard screen set displaying the transaction the defined SubAction
will not be executed. The action executed as a SubAction to the transaction step is executed as
the last task of the transaction step. This results in the condition that the sub-action is executed
before any apply step within the parent action. The transaction will, therefore, not yet be

Agentry App Development

Agentry App Development 441

applied to the object it targets. This will impact the current data values that will be accessible
within that target object and may, therefore, impact how the sub-action itself is defined, as well
as how any other definitions it references will be defined, specifically as to which data values
the sub-action will have access.

Transaction Step Attributes

• Step Name: This attribute contains the unique internal name for the step definition. This
attribute must be unique among all step definitions within the same parent action.

• Transaction: This attribute references the transaction to be instantiated by the transaction
step. The transaction selected here must exist prior to defining the transaction step.

• Screen Set: This attribute references the screen set in which the transaction will be
displayed. Only screen sets defined to display transactions may be selected for this
attribute. The screen set must exist prior to defining the transaction step.

• Target Object: This attribute can be set to change the target of the transaction from the
object instance passed in by the action, to a different object instance. This attribute is
optional and, if left set to its default, the target of the transaction will be the object instance
passed to the transaction step by the action. The selection of a Target Object should be to an
object instance that is easily related to the action’s object instance wherever possible.

• Target Property: This attribute is obsolete in current versions of the Agentry Mobile
Platform. It exists as a result of behaviors exhibited in early versions of the platform and in
current implementations is no longer necessary. It is still provided for backwards
compatibility and may be deprecated in a future release.

• SubAction: This attribute can specify an action to be executed as a sub-action to the parent
action of the transaction step. The transaction selected for this attribute will only be
executed when the transaction instantiated by the transaction step is completed
successfully. Note that this sub-action is executed prior to the transaction being applied.

Action Step Type: Transmit

The transmit action step type initiates communications between the Agentry Client and
Agentry Server. This includes displaying the Client’s built-in transmit dialog where users can
select a transmit configuration and begin the transmission. Alternately the transmit step can be
defined to begin the transmission automatically and to hide the transmit dialog unless an error
is encountered. The transmit step also defines the non-main fetches to be processed, if any.

Each module will contain at least on action with a defined transmit step. Additional actions
may defined as needed that include transmit steps for various purposes.

The transmit step can be defined to start transmission between the client and server
automatically. The default behavior is to display the Client’s Transmit Dialog, where the user
can select a transmit configuration and then start the transmit. When the transmit step is
defined to automatically start the transmission, the transmit will begin when the step is
executed. The transmit configuration used will be the last one selected by the user; optionally
the transmit step can define the transmit configuration to be used.

Agentry App Development

442 SAP Mobile Platform

The transmit step can also be defined to automatically finish the transmit. By default when a
transmit is complete, the user must close the Transmit Dialog by clicking the finish button.
The transmit step can close this screen automatically when the transmit completes
successfully.

If the transmit step is defined to automatically start and finish the transmit, it can also be
defined to hide the Transmit Dialog. In this case, the dialog will not be displayed to the user
unless an error occurs during the transmission.

The transmit step is where non-main fetches must be selected for processing. The main fetches
of a module will always be run when a transmit occurs. A non-main fetch must be explicitly
selected in a transmit step and will only be processed when that transmit step is executed.

A transmit step can be defined to skip fetch processing altogether. This can only be defined
when the step is first defined to use a transmit configuration for which real-time
communications have been defined. The transmit step can then be defined to simply connect
the user to the Server, process any pending transactions, and the remain connected to receive
push data and/or to allow for background sending. Note that this behavior can negatively
impact the push functionality if the push is defined to use exchange data initially generated by
a fetch. This exchange data will not exist as the fetch will not be processed.

Transmit Step Attributes

• Step Name: Contains the unique internal name of the step definition. This value must be
unique among all step definitions within the same parent action.

• Transmit Config: This attribute can be set to a specific transmit configuration within the
application. If a transmit configuration is selected here, the user will not be able to change
the transmit configuration when the transmit step is executed.

• On-line/Off-line: This attribute specifies whether to change the on-line state of the client
when the transmit step is executed. This will override any selection the user makes on the
client for this state. It will also override the on-line state of the client if it is set to Off-line as
the result of a disconnect.

• Initiate Asynchronous Transmit Only: This attribute is only available if the Transmit
Config attribute is set to a transmit configuration defined to support real-time
communications. If this attribute is set to true, no fetches will be processed during the
transmit. Pending transactions will be sent to the Server to be processed and complex table
and data table definitions will be synchronized.

• Allow user to skip: This attribute allows the user to skip the transmit. This is normally
only set when the parent action contains multiple step definitions, including the transmit
step. The user may skip the transmit behavior when this attribute is set to true and when the
client is in an Off-line state.

• Automatically start transmission: When this attribute is true, the transmission between
the client and server will begin automatically when the transmit step is executed. The
default is to require the user to click the Start button in the Transmit Dialog to being the
transmission.

Agentry App Development

Agentry App Development 443

• Automatically finish transmission: When this attribute is true, the Transmit Dialog will
be closed automatically when the transmit has completed successfully. The default is to
require the user to click the Finish button in this dialog when the transmission has
completed.

• Hide transmission screen: This attribute is available only when the Automatically start
transmission and Automatically finish transmission attribute are both true. The Hide
transmission screen can then be set to true, which will result in the Transmit Dialog not
being displayed when the transmit step is executed. The Transmit Dialog is always
displayed if an error occurs during transmission, regardless of this attribute setting.

• Hide Screen Timeout: This attribute is available only if the Hide transmission screen
attribute is set to true. This timeout value is set in minutes and seconds. If the transmission
takes longer than the duration entered in Hide Screen Timeout, the Transmit Dialog will be
displayed to the user indicating the progress of the transmission. This timeout value should
be selected based on the typical duration of a transmit for the application.

Action Step Type: Windows Command

The Windows command action step type executes a command on the client device. This step
type can be defined to wait for the command to complete execution, to capture the return code
of the external process, and to display an error message based on a non-zero return code. The
Windows command step type is also used to display external files on the client device by
setting the full path and file name as the command. This will result in the file being opened by
the default application for the file type.

The command executed by the Windows command step must include the full path and file
name of the executable to be run or file to be opened. When waiting for the command to return,
the step will block action execution until the command completes, or until the defined wait
period expires. An expired wait periods is treated as a timeout error by the Windows command
step.

Additional error conditions include a non-zero return value by the command to the operating
system. If a non-zero value is returned, the Windows command step will treat this as an error
condition.

The timeout and the error conditions each have associated messages that may be displayed as
defined in the Windows command step. This step type allows for providing the user with the
option to continue or cancel the parent action’s execution. Alternately, the step can be defined
to not allow action execution to continue, or to not allow the user to cancel the action
regardless of the error.

Windows Command Step Attributes

• Step Name: Contains the unique internal name for the step definition. This value must be
unique among all step definitions within the same action.

• Command Line: This attribute contains the command to execute or pass to the operating
system. This may be a string value set within the attribute field, or it may be returned from a
rule definition. The command may contain one or more format strings consisting of the

Agentry App Development

444 SAP Mobile Platform

property names for the object passed to the command step form the action. These format
strings take the form %propertyName. Note for properties of type External Data, the
format string will return the full path and file name of the file referenced by the property. If
a rule is referenced for the command, it may not return a string containing format strings.
The rule is evaluated in the context of the object passed to the Windows command step by
the action. The rule is expected to return a string value.

• Wait: This attribute specifies whether the Windows command step should wait for the
command it executes to return. The default is to not wait, in which case the command line
will be executed and the step will end execution. The timeout message will not be
displayed. The only error captured by the step will be if the command line cannot be
executed by the operating system, e.g. if the command referenced does not exist, or the file
cannot be found. When the Wait attribute is set to true, the Wait Period Limit attribute is
enabled.

• Wait Period Limit: This attribute is enabled only when the Wait attribute is set to true. In
this case, the Wait Period Limit specifies the duration of time the Windows command
step should wait for the command it executes to complete processing and return. If this
duration is exceeded without a return from the command, the step’s defined Timeout
Message will be displayed.

• Error Message: This attribute contains the text to display when an error occurs. This may
be displayed if the command fails to execute, or if the command returns a non-zero value
after completing execution.

• Timeout Message: This attribute contains the text to display when the Wait Period Limit
is exceeded without a return from the command executed by the step. This behavior also
requires the Wait attribute to be set to true.

• Continue Label: This attribute contains the label for the Continue button that is a part of
the dialog that displays the Error Message and Timeout Message. At run time, when this
button is clicked the Windows command step will complete execution and the action will
execute the next defined step. This button may be hidden by selecting the option Not
Allowed, preventing the user from allowing the action to continue the action’s execution
when an error occurs executing the defined command.

• Cancel Label: This attribute contains the label for the Cancel button that is a part of the
dialog that displays the Error Message and Timeout Message. At run time, when this
button is clicked the Windows command step will complete execution and the parent
action will be canceled. This button may be hidden by selecting the option Not Allowed,
preventing the user from cancelling the action when an error occurs executing the defined
command.

Report

A report defines a printed tabular format for the contents of an object collection on the Agentry
Client. Reports can be generated for any object collection within the application data. A report
can then be printed on the client device, provided it is equipped with a printer.

The report definition defines the object collection for the report and the property values for the
collection’s object type to include in the printed report. The report definition does not include

Agentry App Development

Agentry App Development 445

any behaviors related to when to print the report. To print a report on the Agentry Client the
action step type Print Report must be defined within an action.

A report defines the point size for the values it contains. It can also define the header and footer
text to display in the report. Three separate header and footer values may be defined to be
displayed on the left, center, and right of the page across the top and bottom of the report.
Separate point sizes may be defined for the header and footer text. Note that the header and
footer within the report definition are not the same as the report column headers. They are
intended for general information about the report as a whole, not to label individual values
within the report.

The child definition Report Columns defines the which properties to display from the object
type within the target collection, as well as the column header labels within the report table.
The order of the columns within the report definition will specify the order in which the
columns are printed in the report from left to right.

Report Child Definitions
Report Column: A report column defines which property values are listed in the
corresponding printed column of a report.

Report Attributes
General Attributes

• Name: Contains the unique internal name for the report definition. This must be unique
among all reports within the same module.

• Display Name: Contains the default name for the report definition displayed on the Client.
• For Object: This attribute references the parent object of the collection for which the

report will be generated.
• Collection: This attribute references the object collection property whose contents will be

printed in the report.
• Point Size: This attribute specifies the font point size for the data printed in the report. This

excludes the report header and footer, which specify their own point sizes.
• Gridlines: This attribute specifies whether or not to print grid lines in the report to separate

columns and rows in the table. When set to true these lines will be printed in the report
table. When false they will be omitted.

Header/Footer Attributes

• Left, Center, and Right Text: These three text boxes within the definition contain the text
to display at the left, center and right sides of the report page. These values are not column
labels, but are intended for general information to display in the header and/or footer of the
report.

• Point Size: This attribute specifies the font point size of the header or footer text.
• Bold: This attribute specifies whether or not to display the text in bold. When true, the text

will be in bold. When false it will not be.

Agentry App Development

446 SAP Mobile Platform

Report Column

A report column defines which property values are listed in the corresponding printed column
of a report. The column definition includes attributes for formatting the values of the column
and the order of the columns within the report.

Each column defines a property of the object type in the parent reports target collection to be
printed in the report. Included in the column definition is the label for the column in the report
table. Basic formatting can also be defined for the column, including whether or not the
column label should be in bold text, whether or not to word wrap the text within the column,
alignment of the values within the column, and the width of the column as a whole.

As an alternative to selecting a property whose value will be displayed in the column, format
strings or format text may be specified. To make use of this behavior a column should not be
selected, but rather the Format attribute should be set to specify the value to be displayed for
each object. This attribute may contain format strings referencing the properties of the object,
as well as plain text. This attribute may also be set via the return value of a rule, which will be
expected to build the entire string to be displayed in the column for each object.

Report Column Attributes

• Name: Contains the unique internal name for the report column definition. This value
must be unique among report columns within the same report.

• Label: Contains the column label for the header row of the report table.
• Object Property: This attribute references the object property to be printed in the column

for each object instance in the target collection.
• Bold Label: This attribute specifies whether or not he label for the column should be

printed in bold text. When true the label will be printed with bold text.
• Wrap: This attribute specifies whether or not the values of the column should be word

wrapped. If true the values printed in the report will be word wrapped to fit in the space of
the column. If false, the column width will be expanded to allow for the size of the text.

• Alignment: This attribute specifies the alignment of the text within the column. The
options for this attribute are “Left Justified,” “Right Justified,” or “Centered.”

• Column Width: This attribute specifies the width of the column. The units for this
attribute are the number of average sized characters. If left set to Auto, the width of the
column will be set by evenly spacing all Auto Width columns within the report, after space
is allocated for all columns with a defined width.

• Format: This attribute can contain a combination of format strings and standard text to
specify the format of the values printed in the column. Alternately the value printed in the
column can be the return from a rule definition. If a rule is used for this attribute, it will be
evaluated once for, and the context of each object instance within the reports target
collection property. It is expected to return a string value. If this attribute is set either
format text or a rule definition, the Object Property attribute should be set to None.

Agentry App Development

Agentry App Development 447

Rule Function Terms Overview

Rule functions terms are the heart of most rule definitions within an application. While there
are situations where a rule may be defined to contain a single rule term that returns the value of
a global or other such data definition type, most rules are more complex than this and consist of
multiple function calls.

Most rule functions take one or more arguments, each of which contains a data value for the
function. When the function is evaluated, these data values are processed in some manner. The
result of this processing is a single return value that is passed to the function’s caller. A
function will always provide the caller with a value in the data type the caller asks for. Not all
function support all data types for their return values. If a data type is not one supported by the
function, that function will return the null-equivalent of that data type.

There are over a hundred different functions available for a rule definition. These are
organized into Function Categories. These categories denote the general types of behavior for
the functions. The rule editor presents the functions to the developer organized into one of
these categories.

• Conversion Functions - Conversion functions set the context of a given term to a specified
data type. A conversion function supports all return types within the rule definition. The
names of conversion functions dictate what data type they will set for the context of a
function call.

• Logical Functions - Logical functions are those that provide the comparison and decision
making functionality to a rule. This includes if-then-else and comparison operations and
behaviors.

• Mathematical Functions - Mathematical functions provide math operations to rules.
This includes addition, subtraction, multiplication, division, and modulus operations, as
well other mathematical functions, such as rounding, and working with significant digits.

• Property Functions - Property functions are those that operate on properties, usually of a
certain data type. Most property functions are provided for the intended purpose of
working with a given type of property, such as an object collection or external data
property.

• String Functions - String functions provide behaviors for manipulating string values,
including concatenation and parsing operations, string search and replacement, and other
string-related operations.

• System Functions - System functions are those that provide access to information about
the Agentry Client’s host system, or information that is general to the client. This can be
information such as the system’s time and date, or the user ID of the current user. This
category also includes functions to access hardware components of the client device such
as barcode scanners and GPS units.

• Table Functions - The table functions provide access to the records of complex table and
data tables stored on the Agentry Client.

Agentry App Development

448 SAP Mobile Platform

Note that the function categories do not directly impact where a function can be used, or which
rules can use a given function. The categories are an organizational aid built into the rule editor
to aid the developer in locating the rule function that is needed.

Conversion Functions for Rules

The Conversion functions category of rule function terms provide the means for changing the
context in which a function or data term within a rule is called. Within this category of
conversion functions there is one function for the integral number, string, and property data
types. The decimal number data type has two conversion functions, one of which is for use
with significant digit math.

The name for each conversion function represents the data type to which it will set the context
of the term that is its argument. The function term name, then, does not represent the data type
to which a value will be converted, but the data type from which a value will be converted.
Each conversion function supports all return types.

Conversion functions are most commonly used when it is necessary to obtain the return value
of a function that may exhibit different behaviors in different contexts, or when the desired
return data type does not match the supported return type of a given function. The caveat to this
is that the conversion desired is type safe.

An example of this is the string function @FIND. This function searches a source string for a
given sub-string. The function supports three return types, string, integral number and
Boolean. The context in which this function is called will then dictate what type of value it will
return. In a string context the function returns the sub-string when found within the source
string. When called in an integral number context, the function returns the position, as a
number, of the first character within the source string of the found sub-string. In a Boolean
context the function will return true if the sub-string is found and false when it is not. For this
function call a conversion function may be used to change the data type of the context in which
it is called in order to obtain the desired value.

@FROM_DECIMAL_NUMBER

The FROM_DECIMAL_NUMBER function sets the context of its single parameter to a data
type of decimal number. It supports the decimal number, integral number, string, and property
return types. The value of its single parameter will be converted from the decimal number data
type to the data type of the context of the FROM_DECIMAL_NUMBER function call.

One of the main uses of this function is to set the context of another function call to a decimal
number. Certain functions do not directly support non-numeric data types for return. The
FROM_DECIMAL_NUMBER function allows for these other functions to be called in a
decimal number context and to then return that value in a data type such as string. While this
function supports the decimal number return type, it is unnecessary to call this function in this
context.

Agentry App Development

Agentry App Development 449

Parameters

@FROM_DECIMAL_NUMBER
(Convert Parameter, [Precision,
[Rounding Method]])

Convert Parameter Required decimal number parameter, contains the value
to be converted to the data type of the function’s context.

Precision Optional integral number parameter, contains the preci-
sion to which the returned decimal number should be
rounded. Positive values specify the number of digits after
the decimal place. Negative numbers specify number of
digits before the decimal.

Rounding Method Optional integral number parameter, specifies how the
return value should be rounded. The default is to round to
the nearest value. If this parameter is set to 1, the rules
pertaining to NIST rounding will be used to round the
value returned by the function.

Supported Return Types

• Integral Number
• Decimal Number
• String
• Property

@FROM_INTEGRAL_NUMBER

The FROM_INTEGRAL_NUMBER function sets the context of its single parameter to a data
type of integral number. It supports the decimal number, integral number, string, and property
return types. The value of its single parameter will be converted from the integral number data
type to the data type of the context of the FROM_INTEGRAL_NUMBER function call.

One of the main uses of this function is to set the context of another function call to integral
number. Certain functions do not directly support non-numeric data types for return. The
FROM_INTEGRAL_NUMBER function allows for these other functions to be called in an
integral number context and to then return that value in a data type such as string. While this
function supports the integral number return type, it is unnecessary to call this function in this
context.

Agentry App Development

450 SAP Mobile Platform

Parameters

@FROM_INTEGRAL_NUMBER (Convert
Parameter)

Convert Parameter Required integral number parameter, contains the
value to be converted to the data type of the func-
tion’s context.

Supported Return Types

• Integral Number
• Decimal Number
• String
• Property

@FROM_STRING

The FROM_STRING function sets the context of its single parameter to a data type of string.
It supports the decimal number, integral number, string, and property return types. The value
of its single parameter will be converted from the decimal number data type to the data type of
the context of the FROM_STRING function call.

One of the main uses of this function is to set the context of another function call to string. The
FROM_STRING function allows for other functions to be called in a string context and to then
return that value in a data type such as integral or decimal number, depending on the context of
the FROM_STRING function call. While this function supports the string return type, it is
unnecessary to call this function in this context.

Note that converting from a string to a numeric data type is not considered type safe. Such
operations should be limited in use and all reasonable precautions should be made to ensure
the string value being converted to a numeric data type contains only numeric characters. The
FROM_STRING function processes each character of a string one at a time and, in a numeric
conversion, will stop processing with the first non-numeric character found in the source
string. The value returned will then be the numeric value at the point the processing ended,
which is not likely to be a useful value.

Parameters

@FROM_STRING (Convert
Parameter)

Convert Parameter Required string parameter, contains the value to be conver-
ted to the data type of the function’s context.

Agentry App Development

Agentry App Development 451

Supported Return Types

• Integral Number
• Decimal Number
• String
• Property

@FROM_SIG_DECIMAL_NUMBER

The FROM_SIG_DECIMAL_NUMBER function sets the context of its single parameter to a
data type of decimal number. It supports the decimal number, integral number, string, and
property return types. The value of its single parameter will be converted from the decimal
number data type to the data type of the context of the FROM_SIG_DECIMAL_NUMBER
function call. The decimal number of this parameter will respect the rules of significant digit
math.

One of the main uses of this function is to set the context of a decimal value that is either not
stored in a decimal property, or one that is stored in a decimal number property but that does
not have the significant digits math attribute set.

An optional parameter to this function is Precision. This parameter will specify the
number of digits after the decimal to keep, with the last digit being rounded. If the precision is
greater than the number of digits after the decimal, the value will be padded with zeros up to
the specified precision.

Parameters

@FROM_SIG_DECIMAL_NUMBER
(Convert Parameter [, Precision])

Convert Parameter Required decimal number parameter, contains the
value that will be treated as a decimal number with
respect of significant digit math.

Precision Optional integral number parameter, specifies the
number of digits to keep after the decimal in the
value provided by Convert Parameter. If

this value is greater than the number of digits after
the decimal the value will be padded with zeros up to
the specified precision.

Supported Return Types

• Integral Number
• Decimal Number

Agentry App Development

452 SAP Mobile Platform

• String
• Property

@FROM_PROPERTY

The FROM_PROPERTY function takes a variable number of arguments. Each argument is
evaluated as a property and this evaluation is within the context dictated by the argument that
precedes it in the arguments to the function. The overall purpose of this function is to provide a
kind of drill-down access to the value of a property that may be a descendent of the current
object.

One of the main uses of this function is to set the context of another function call to property.
Certain property functions do not directly support other data types for return. The
FROM_PROPERTY function allows for these other functions to be called in a property
context and to then return that value in another data type.

When taking multiple parameters, the FROM_PROPERTY function is likely to be used in an
overall search of a collection for a given object based on a property value, returning another
property within the same object instance.

Parameters

@FROM_PROPERTY
(Property 1 [, ..., Property
N])

Property 1 Required property parameter, contains the value to be evaluated as a
property in the context of the function call. This parameter sets the
context of the next parameter to the function, if present. If this is the
only parameter, it will be returned in the context of the function call.

Property N Optional property parameter(s), contains the value to be evaluated as
a property in the context of the preceding parameter to the function.
This parameter sets the context of the next parameter to the function,
if present. If this is the last parameter, it will be returned in the context
of the function call.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

Agentry App Development

Agentry App Development 453

Logical Functions for Rules

The Logical category of rule function terms within the rule definition provide the decision
making and comparison logic to a rule. Many, though not all, of these functions support the
Boolean return type and will return true or false in this context based on some decision or
comparison. The functions within this category provide behaviors including conjunctions,
value comparisons, and if-then-else if and switch-case logic.

Unlike similar constructs in other development tools, many of the functions within the logical
category support more than two arguments. As an example, the @AND function will take two
or more arguments, returning true only when all of its arguments are true. In other
development languages to provide similar logic, multiple operators may be needed, as in:

if (value1 && value2 && value3 && value4)

Here the presence of multiple and operators are required. In the rule functions, the same logic
would use a single @AND function call, with each value passed as an argument to the
function:

AND (value1, value2, value3, value4)

Many of the other functions provide similar support within the context of their behavior.

@AND

The AND function performs a logical conjunction between its parameters, returning true or
false based on this conjunction. Each of its parameters is evaluated in the order provided as
Boolean values. If any parameter is evaluated as false, the return value is false. Otherwise the
function returns true. The function must have at least one parameter and may contain as many
more as is needed.

Parameters

@AND (Expression
1 [, ..., Expression
N])

Expression 1 Required Boolean parameter, the first to be evaluated by the function. If
false, evaluation stops and the function returns false. If true, the function will
return true if no other parameters are provided or evaluate the next param-
eter.

Expression N Optional Boolean parameters, each evaluated by the function in the order
provided. Evaluation stops for the first false value found and the function
returns false. Otherwise the function returns true.

Agentry App Development

454 SAP Mobile Platform

Supported Return Types
Boolean

@CASE

This function has been deprecated and will not be supported in future releases. It should be
replaced with one of the following: CASE_INT, CASE_STRING, CASE_DEC, or IF. The
CASE function provides switch-case logic, allowing for the evaluation of a single test value
for the purpose of returning one of a multiple number of possible values. The CASE function
takes a variable number of parameters, but with a minimum of three. The first parameter is
evaluated as an integral number. This value is then treated as a positional value for one of the
other parameters to the function, with the second parameter at position 1. The parameter at the
position specified by the position parameter is then returned. The data type of the other
parameters varies depending on the function’s context. For example, if the context of the
function call is a string, the parameters Position1 through PositionN of the function
will be treated as strings.

Parameters

@CASE (Position
To Match, Position1
[, ..., PositionN])

Position To Match Required integral number parameter, indicating which of the case parame-
ters the function should return.

Position 1 Required parameter, evaluated when the Postion To Match param-

eter evaluates to 1. The data type is dictated by the context in which the
function is called.

Position N Optional parameter, evaluated when the Position to Match pa-

rameter evaluates to N, where N is the position of the parameter in the
function’s parameter list. The data type is dictated by the context in which
the function is called.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

Agentry App Development

Agentry App Development 455

@CASE_INT

The CASE_INT function is used to return a single value from a variable list of multiple
possible returns, with a comparison made between a switch and 1 or more case values, both of
type integral number. The first parameter to the function is evaluated as an integral number.
The last parameter to the function is the default return value and is optional. Parameters
between the first and last are provided in pairs. The first parameter in a pair is the value to
which the switch value is compared. If these two values are equal, the second value of the pair
is returned by the function. The comparison between the switch value and the first parameter
of a pair is performed as an integer comparison. The data type for the second parameter in each
pair is dependent on the context in which the function is called. If none of the case parameters
match the switch parameter and a default parameter is provided, that parameter is evaluated
and returned by the function. If no default parameter is provided, the default null equivalent of
the context’s data type is returned, e.g. 0, False, null string, etc.

Parameters

@CASE_INT
(Integer To Match,
Integer 1, Return 1
[, ..., Integer N,
Return N] [,
Otherwise])

Integer To Match Required integral number parameter, contains the value upon which the
function will switch, i.e. compare against each of the Integer N pa-

rameters in turn until a match is found.

Integer 1 Required integral number parameter, contains the value to which Inte-
ger To Match is compared. This parameter must be followed by the

Return 1 parameter, which is the value returned when Integer To
Match matches the Integer 1 value.

Return 1 Required parameter with a context-dependent data type, contains the value
returned if Integer To Match matches Integer 1.

Agentry App Development

456 SAP Mobile Platform

@CASE_INT
(Integer To Match,
Integer 1, Return 1
[, ..., Integer N,
Return N] [,
Otherwise])

Otherwise / Integer N Optional parameter(s), the data type in which it is evaluated is dependent on
whether it is the last parameter to the function, or if it is followed by another
parameter. When this is the last parameter to the function, it will be evalu-
ated in the data type corresponding to the context of the function call. In this
situation the parameter is the default Otherwise parameter, evaluated

by the function when Integer To Match does not match any of the

Integer N parameters. If this parameter is followed by another function

parameter, it is evaluated as an integral number. In this situation it is eval-
uated by the function to determine if the value matches the Integer To
Match parameter value. If it matches, the subsequent parameter is evalu-

ated by the function. If not, the function evaluates the next parameter. Mul-
tiple Integer N parameters can be provided with the requirement that

they are paired with corresponding Return N parameters. Only one

Otherwise parameter may be provided.

Return N Optional parameter(s) with a context-dependent data type, contains the
value returned if Integer To Match matches the corresponding

Integer N parameter.

Supported Return Types:
• Boolean
• Integral Number
• Decimal Number
• String
• Property

@CASE_STRING

The CASE_STRING function is used to return a single value from a variable list of multiple
possible returns, with a comparison made between a switch and one or more case values, each
of type string. The first parameter to the function is evaluated as a string. The last parameter to
the function is the default return value and is optional. Parameters between the first and last are
provided in pairs. The first parameter in a pair is the value to which the switch value is
compared. If these two values are equal, the second value of the pair is returned by the
function. The comparison between the switch value and the first parameter of a pair is
performed as a case-sensitive string comparison. The data type for the second parameter in
each pair is dependent on the context in which the function is called. If none of the case

Agentry App Development

Agentry App Development 457

parameters match the switch parameter, and a default, non-paired parameter is provided, that
parameter is evaluated and returned by the function. If no default parameter is provided, the
default null equivalent of the context’s data type is returned, e.g. 0, False, null string, etc.

Parameters

@CASE_STRING
(String To Match,
String 1, Return 1 [, ...,
String N, Return N,] [,
Otherwise])

String To Match Required string parameter, contains the value upon which the function
will switch, i.e. compare against each of the String N parameters in

turn until a match is found.

String 1 Required string parameter, contains the value to which String To
Match is compared. This parameter must be followed by the Re-
turn 1 parameter, which is the value returned when String To
Match matches the String 1 value.

Return 1 Required parameter with a context-dependent data type, contains the
value returned if String To Match matches String 1.

Otherwise / String N Optional parameter(s), the data type in which it is evaluated is depend-
ent on whether it is the last parameter to the function, or if it is followed
by another parameter. When this is the last parameter to the function, it
will be evaluated in the data type corresponding to the context of the
function call. In this situation, the parameter is the default Other-
wise parameter, evaluated by the function when String To
Match does not match any of the String N parameters. If this

parameter is followed by another function parameter, it is evaluated as a
string. In this situation, it is evaluated by the function to determine if the
value matches the String To Match parameter value. If it

matches, the subsequent parameter is evaluated by the function. If not,
the function evaluates the next parameter. Multiple String N pa-

rameters can be provided with the requirement that they are paired with
corresponding Return N parameters. Only one Otherwise pa-

rameter may be provided.

Return N Optional parameter(s) with a context-dependent data type, contains the
value returned if String To Match matches the corresponding

String N parameter.

Agentry App Development

458 SAP Mobile Platform

Supported Return Types:

• Boolean
• Integral Number
• Decimal Number
• String
• Property

@EQBOOL

The EQBOOL function takes two or more parameters, each of which is evaluated as a Boolean
value and returning true if all parameters are either true or all are false. If all parameters have
the same Boolean value, the function will return true. Otherwise, it will return false. The
function will end evaluation and return false upon the first parameter found to be different than
others passed to it.

Parameters:

@EQBOOL (Boolean 1
[, ..., Boolean N])

Boolean 1 Boolean required parameter, evaluated for comparison to all other
parameters to the function.

Boolean N Optional additional Boolean parameter(s), evaluated for comparison
to Boolean 1.

Supported Return Types
Boolean

@EQDEC

The EQDEC function takes two or more parameters, each evaluated as a decimal value,
compares them for equality, returning true if all are equal or false if any are found to be
different. The function will end evaluation of all parameters at the point where the first
different value is found. If only a single parameter is provided, the function returns true.

Parameters

@EQDEC (Decimal 1
[, ..., Decimal N])

Decimal 1 Required decimal number parameter, evaluated by the function for
comparison to all other parameters.

Agentry App Development

Agentry App Development 459

@EQDEC (Decimal 1
[, ..., Decimal N])

Decimal N Optional decimal number parameter(s), each evaluated by the function
for comparison to Decimal 1.

Supported Return Types
Boolean

@EQNUM

The EQNUM function takes two or more parameters, each evaluated as an integral number,
compares them for equality, and returns true if all values are equal, or false if one or more are
different. This function will end evaluation of all subsequent parameters after the first
parameter is found to be different. If only a single parameter is provided, this function will
return true.

Parameters

@EQNUM(Integer1 [, ...,
IntegerN])

Integer 1 Required integral number parameter, evaluated by the function
for comparison to all other function parameters.

Integer N Optional integral number parameter(s), evaluated by the function
for comparison to Integer 1.

Supported Return Types
Boolean

@EQSTR

The EQSTR function takes one or more parameters, each evaluated as a case-sensitive string,
and compares them for equality, returning true if all values are equal, or false if one or more
values are different. The function will end evaluation of all subsequent parameters when the
first different value is found. The function will return true if only a single parameter is
provided.

Parameters

@EQSTR(String1 [, ...,
StringN])

String 1 Required string parameter, evaluated by the function for comparison
to all other parameters to the function.

Agentry App Development

460 SAP Mobile Platform

@EQSTR(String1 [, ...,
StringN])

String N Optional string parameter(s), each evaluated by the function for com-
parison to String 1.

Supported Return Types
Boolean

@GT

The GT function takes two or more integral number parameters, comparing the second
through the last parameters to the first, returning true if the first parameter is greater than all
subsequent parameters. If any parameter is found to be greater than or equal to the first, the
function will not evaluate any subsequent parameters and will return false.

Parameters

@GT (Integer
1, [, ..., Integer
N])

Integer 1 Required integral number parameter, contains the value to which all other param-
eters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer1. If Integer1 is less than or equal to this parameter, the

function returns false and will not evaluate any subsequent parameters. If In-
teger 1 is greater than this parameter, the function will continue to evaluate

any additional parameters, or return true of no other parameters are provided.

Supported Return Types
Boolean

@GTDEC

The GTDEC function takes two or more decimal number parameters, comparing the second
through the last parameters to the first, returning true if the first parameter is greater than
subsequent parameters. If any parameter is found to be greater than or equal to the first, the
function will return false. It will not evaluate any subsequent parameters.

Agentry App Development

Agentry App Development 461

Parameters

@GTDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter, contains the value to which all other pa-
rameters will be compared.

Decimal N Optional decimal number parameter(s), each containing a value to be compared
against Decimal 1. If Decimal 1 is less than or equal to this parameter,

the function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is greater than this parameter, the function will continue to eval-

uate any additional parameters, or return true if no other parameters are provided.

Supported Return Types
Boolean

@GTEQ

The GTEQ function takes two or more integral number parameters, comparing the second
through the last parameter to the first parameter, and returning true if the first parameter is
greater than or equal to all subsequent parameters. If any other parameter is found to be greater
than the first, the function will return false. It will not evaluate any subsequent parameters. If
only a single parameter is provided the function will always return true.

Parameters

@GTEQ
(Integer 1 [, ...,
Integer N])

Integer 1 Required integral number parameter, contains the value to which all other pa-
rameters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer 1. If Integer 1 is less than this parameter, the function

returns false and will not evaluate any subsequent parameters. If Integer 1 is

greater than or equal to this parameter, the function will continue to evaluate any
additional parameters, or return true of no other parameters are provided.

Supported Return Types
Boolean

Agentry App Development

462 SAP Mobile Platform

@GTEQDEC

The GTEQDEC function takes two or more decimal number parameters, comparing the
second through the last parameters to the first, returning true if the first parameter is greater
than or equal to all subsequent parameters. If any other parameter is found to be greater than
the first, the function will return false. It will not evaluate any subsequent parameters. If only a
single parameter is provided, this function will always return true.

Parameters

@GTEQDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter, contains the value to which all other
parameters will be compared.

Decimal N Optional decimal number parameter(s), each containing a value to be com-
pared against Decimal 1. If Decimal 1 is less than this parameter, the

function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is greater than or equal to this parameter, the function will

continue to evaluate any additional parameters, or return true if no other
parameters are provided.

Supported Return Types
Boolean

@IF

The IF function provides the if-then-else/else if logic to rules. The function can
take a variable number of parameters, and will behave differently based on the parameters.
First, it can take a single parameter whose value is evaluated as a Boolean. If this parameter is
true, the IF function will return true; otherwise it will return false. Note that this form of the
function has limited use, as the condition being checked can be passed directly to what would
otherwise be the caller of the IF function, without actually making the IF function call.

Second, the function can take a multiple number of parameters to provide the if-then-
else/else if logic. The first parameter is a Condition parameter, and is evaluated as a
Boolean. When true is returned, its corresponding Then parameter is evaluated and the
resulting value is returned.

If a Condition parameter returns false, its corresponding Then parameter is not evaluated.
The next Condition parameter is evaluated. A final optional parameter can be provided as
the Else parameter. This parameter is evaluated when all Condition parameters have
evaluated to false. The value resulting from evaluation of the Else parameter is then returned
by the IF function.

Agentry App Development

Agentry App Development 463

All Then parameters and the Else parameter are evaluated in the context of the IF function
call. The expected data type for these parameters is then the data type of that context.

Parameters

@IF (Condition
1 [,Then 1] [, ...
Else If Condition
N, Then N] [,
Else])

Condition 1 Required Boolean parameter, contains the value evaluated by the function to
determine a return. When true, Then 1 is returned if specified. When false,

either the next Else If Condition N parameter is evaluated if speci-

fied. Else is evaluated if no Else If Condition exists. The context

null-equivalent is returned if neither an Else If Condition or Else
parameter is provided. If Condition 1 is the only parameter, its Boolean

value will be returned.

Then 1 Optional parameter, evaluated in the context of the function call. This parameter
is evaluated when Condition 1 is true. The value returned by the evalua-

tion of Then 1 is then returned by the IF function.

Else / Else If Con-
dition N

Optional parameter(s), evaluated when Condition 1 or the preceding

Else If Condition parameter returns false. The data type for this

parameter is dependent on whether it is the last parameter to the function or is
followed by another parameter. If it is the last parameter, it is evaluated in the
context of the function call. Its is the Else parameter to the function and will be

evaluated when all preceding Condition parameters have returned false. If

this parameter is not the last for the function, it is evaluated as a Boolean and is
treated as an Else IF Condition N parameter. If it evaluates to true the

corresponding Then N parameter will be evaluated by the function.

Then N Optional parameter, evaluated in the context of the function call. This parameter
is evaluated when its corresponding Else If Condition N parameter

returns true. The value returned by the evaluation of Then N is then returned

by the IF function.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

Agentry App Development

464 SAP Mobile Platform

• Property

@LT

The LT function takes two or more integral number parameters, comparing the second through
last parameters with the first and returning true if the first parameter is less than all subsequent
parameters. If any subsequent parameter is found to be equal to or less than the first parameter
the function will return false. It will not evaluate any subsequent parameters. If only a single
parameter is provided this function will return true.

Parameters

@LT (Integer 1
[, ..., Integer
N])

Integer 1 Required integral number parameter, contains the value to which all other param-
eters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer 1. If Integer 1 is greater than or equal to this parameter,

the function returns false and will not evaluate any subsequent parameters. If
Integer 1 is less than this parameter, the function will continue to evaluate

any additional parameters, or return true of no other parameters are provided.

Supported Return Types
Boolean

@LTDEC

The LTDEC function takes two or more decimal number parameters, comparing the second
through last parameters with the first and returning true if the first parameter is less than all
subsequent parameters. If any subsequent parameter is found to be equal to or less than the first
parameter the function will return false. It will not evaluate any subsequent parameters. If only
one parameter is provided to this function it will return true.

Parameters

@LTDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter, contains the value to which all other pa-
rameters will be compared.

Agentry App Development

Agentry App Development 465

@LTDEC
(Decimal 1 [, ...,
Decimal N])

Decimal N Optional decimal number parameter(s), each containing a value to be compared
against Decimal 1. If Decimal 1 is greater than or equal to this param-

eter, the function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is less than this parameter, the function will continue to evaluate

any additional parameters, or return true if no other parameters are provided.

Supported Return Types
Boolean

@LTEQ

The LTEQ function takes two or more integral number parameters, comparing the second
through last parameter with the first parameter and returning true if the first parameter is less
than or equal to all subsequent parameters. If any subsequent parameter is found to be less than
the first parameter, the function will return false. It will not evaluate any subsequent
parameters. If only a single parameter is provided, the function will return true.

Parameters

@LT (Integer 1
[, ..., Integer
N])

Integer 1 Required integral number parameter; contains the value to which all other param-
eters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer 1. If Integer 1 is greater than this parameter, the func-

tion returns false and will not evaluate any subsequent parameters. If Integer
1 is less than or equal to this parameter, the function will continue to evaluate any

additional parameters, or return true if no other parameters are provided.

Supported Return Types
Boolean

@LTEQDEC

The LTEQDEC function takes two or more decimal number parameters, comparing the
second through last parameter with the first parameter and returning true if the first parameter
is less than or equal to all subsequent parameters. If any subsequent parameter is found to be
less than the first parameter, the function will return false and it will not evaluate any
subsequent parameters. If only one parameter is provided, the function will return true.

Agentry App Development

466 SAP Mobile Platform

Parameters

@LTEQDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter; contains the value to which all other
parameters will be compared.

Decimal N Optional decimal number parameter(s), each containing a value to be com-
pared against Decimal 1. If Decimal 1 is greater than this parameter,

the function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is less than or equal to this parameter, the function will con-

tinue to evaluate any additional parameters, or return true if no other param-
eters are provided.

Supported Return Types
Boolean

@NAND

The NAND function takes one or more Boolean parameters and evaluates each until the first
true value is found or until all parameters have been evaluated. If a true parameter value is
found, the function returns false. It will return true if all parameters evaluate to false. The
function will end evaluation when the first true value is found.

Parameters

@NAND
(Expression 1 [, ...,
Expression N])

Expression 1 Required Boolean parameter, evaluated by the function for its Boolean
value. If false, the function will return true. If true, the function will continue
to evaluate the next parameter.

Expression N Optional Boolean parameter, evaluated by the function for its Boolean value.
If false, the function will return true. If true, the function will continue to
evaluate the next parameter, or if no more parameters are provided, the
function will return false.

Supported Return Types
Boolean

Agentry App Development

Agentry App Development 467

@NOR

The NOR function takes one or more parameters and returns true if all parameters are false, or
false if any parameter is found to be true. This function supports the Boolean return type. Each
parameter is evaluated as a Boolean.

Parameters

@NOR(Expression1 [, ...,
ExpressionN])

Expression 1 Required Boolean parameter; if true the function will return false. If
false, the function will continue evaluating the next parameter, or
return true if no additional parameters are provided.

Expression N Optional Boolean parameter(s), each evaluated for their Boolean
value. The function will return false and end evaluation with the first
true parameter found. If all parameters are true, the function will
return false.

Supported Return Types
Boolean

@NOT

The NOT function will evaluate all of the parameters as Booleans and return false if all
parameters are true, or true if one or more parameters are false. This function supports the
Boolean return type.

Most calls to this function provide only a single Boolean parameter, the value for which is
inverted and returned.

Parameters

@NOT
(Expression 1
[, ..., Expression
N])

Expression 1 Required Boolean parameter; if the value is true, the function will return false
and not evaluate any subsequent parameters. If the value is false and if there
are no subsequent parameters, the function will return true. If additional pa-
rameters are present, they will be evaluated only when Expression 1 is

false.

Agentry App Development

468 SAP Mobile Platform

@NOT
(Expression 1
[, ..., Expression
N])

Expression N Optional Boolean parameter(s), evaluated by the function in the order provi-
ded. The function will return false for the first parameter found to be true. If all
parameters evaluate to true, the function will return false.

Supported Return Types
Boolean

@OR

The OR function takes two or more Boolean parameters and will return true if any one or more
of its parameters evaluates to true; otherwise it returns false. This function can be called in a
Boolean context.

Parameters

@OR (Expression 1
[, ..., Expression N])

Expression 1 Required Boolean parameter; contains the first value evaluated by the func-
tion for true or false. If this parameter evaluates to true, the function will end
evaluation and return true to the caller.

Expression N Optional Boolean parameter(s); contains the next value evaluated by the
function. Additional parameters are evaluated until a true parameter is
found. The function will end evaluation and return true for the first true
parameter found.

Supported Return Types
Boolean

@XOR

The XOR function provides the exclusive or logic and can take one or more parameters, each
of which is evaluated as a Boolean, and returning true when one and only one of its parameters
is true. If all of the parameters evaluate to false, or if two or more parameters evaluate to true,
this function will return false. This function will end evaluation of all parameters and return
false when the second true value is found.

Agentry App Development

Agentry App Development 469

Parameters

@XOR
(Expression 1 [, ...,
Expression N])

Expression 1 Required Boolean parameter; evaluated by the function in relation to all other
parameters looking for an exclusive true value among the parameter list.

Expression N Optional Boolean parameter(s); evaluated by the function in relation to all
other parameters looking for an exclusive true value among the parameter
list. If both this and any preceding parameter are true, the function will end
evaluation and return false. No additional parameters will be evaluated.

Supported Return Types
Boolean

Mathematical Functions for Rules

The Mathematical category of rule function terms available within the rule definition provide
the mathematical operations. These include addition, subtraction, multiplication, division,
and modulus, as well as several other math-related operations. Additional operations include
returning the minimum and maximum values from a set of values, limiting a value to a given
range, square root operations, rounding, and other similar functions.

@ABS

The ABS function returns the absolute value of the given numerical parameter. The function
takes a single parameter, which is evaluated as either an integral or decimal value matching the
context of the function call.

Parameters

@ABS
(Number)

Number Required number parameter, evaluated as either an integral or decimal number
depending on the context of the function call. The absolute value of this parameter
is returned.

Supported Return Types

• Decimal Number
• Integral Number

Agentry App Development

470 SAP Mobile Platform

@DIFF

The DIFF function takes two or more numeric parameters evaluated in the context of the
function call. The second parameter through the last are subtracted from the first parameter.
The function then returns the result. This function supports an integral or decimal number
return type.

Parameters

@DIFF(Number 1
[, ..., Number N])

Number 1 Required parameter, in a numeric context, contains the value from which
all subsequent parameters will be subtracted. Evaluated as an integral or
decimal number, matching the context of the function call.

Number N Optional parameter(s), in a numeric context, contains the value(s) from
which all subsequent parameters will be subtracted. Evaluated as integral
or decimal number(s), matching the context of the function call.

Supported Return Types

• Integral Number
• Decimal Number

@DISTANCE

The DISTANCE function takes four decimal parameters assumed to be latitude and longitude
values for two map positions, and returns the resulting distance in meters as a decimal value.

When working with GPS location values, this function should not be used. See the System
functions GPS_LOCATION, LATITUDE, LONGITUDE, DISTANCE_MILES,
DISTANCE_KILOMETERS, LOCATION, and IS_VALID_LOCATION.

Parameters

@DISTANCE (x1,
y1, x2, y2)

x1 Required decimal number parameter; contains the x coordinate of the first
position.

y1 Required decimal number parameter; contains the y coordinate of the first
position.

x2 Required decimal number parameter; contains the x coordinate of the second
position.

Agentry App Development

Agentry App Development 471

@DISTANCE (x1,
y1, x2, y2)

y2 Required decimal number parameter; contains the y coordinate of the second
position.

Supported Return Types
Decimal Number

@DIV

The DIV function takes two parameters, for which the data type is dependent on the context of
the function. It divides the first parameter by the second and returns the quotient as either an
integral number or decimal number, depending on the function’s context.

Parameters

@DIV
(Dividend,
Divisor)

Dividend Required parameter containing the dividend value or the value to be divided.
Evaluated as either an integral or decimal number, depending on the function’s
context.

Divisor Required parameter containing the divisor value or the value to divide into
Dividend. Evaluated as either an integral or decimal number, depending on

the function’s context.

Supported Return Types

• Integral Number
• Decimal Number

@FORMAT_DECIMAL

The FORMAT_DECIMAL function converts the given decimal number parameter into a
string. It takes up to five additional optional parameters that are used in formatting the
converted string value. The first parameter is the value to be converted and is required. This
parameter is evaluated as a decimal, though the value itself may be either an integral or
decimal number data type. This function should be used for any read-only detail screen field
displaying a decimal value.

Agentry App Development

472 SAP Mobile Platform

Parameters

@FORMAT_DECIMAL
(Decimal [, Precision, Use
Thousands Separator,
Use Lead Zero, Decimal
Point, Thousands
Separator])

Decimal Required decimal number parameter; contains the value to be for-
matted to a string by the function. If this parameter is a decimal
number property, the definition of that property’s rounding attributes
will affect the final value, specifically when rounding to a specified
precision.

Precision Optional integral number parameter; contains the number of digits
after the decimal to keep when converting Decimal. The last kept

digit will be rounded. If Decimal is a decimal number property,

the property’s rounding attributes will determine the behavior of
rounding for the value returned. If Decimal is a decimal property,

the precision defined for the property will take effect before the
function applies any additional precision to the resulting string re-
turned. If this value is not specified, the precision will be determined
automatically by the function.

Use Thousands Separator Optional Boolean parameter with a default value of false. When true,
the final string value returned will contain a comma to denote thou-
sands, millions, etc. When false, no comma will be present in the
resulting string returned by the function.

Use Lead Zero Optional Boolean parameter with a default value of false. When true,
the final string value returned will contain a leading 0 in the ones
position for decimals that contain only fractional values; e.g. when
false or not specified .23; when true 0.23.

Decimal Point Optional string parameter with a default value of a decimal point (.).
This value may be set to any single character to be used in place of a
decimal point. Many locales use a comma to denote the fractional
portion of a decimal value.

Agentry App Development

Agentry App Development 473

@FORMAT_DECIMAL
(Decimal [, Precision, Use
Thousands Separator,
Use Lead Zero, Decimal
Point, Thousands
Separator])

Thousands Separator Optional string parameter with a default value of comma (,). This
value can be set to any single character to be used in place of a comma
to separate thousands and hundreds, millions and hundred thousands,
etc. This parameter is only evaluated by the function when Use
Thousands Separator is true. Many locales use a period (.)

as the separator character.

Supported Return Types
String

@MAX

The MAX function takes one or more parameters containing numerical values and compares
each to the other, returning the value of the parameter with the greatest value. This function
can be called in a decimal or integral number context and will evaluate its parameters
according to that context.

Parameters

@MAX (Number
1 [, ..., Number
N])

Number 1 Required parameter evaluated as the data type of the context in which the
function is called. Contains the first value to be compared against all other
parameters by the function.

Number N Optional parameter(s) evaluated as the data type of the context in which the
function is called. Each contains the value(s) to be compared against all other
parameters to the function.

Supported Return Types
• Integral Number
• Decimal Number

@MIN

The MIN function takes two or more parameters containing numerical values and compares
each to the other, returning the value of the parameter with the least value. This function can be

Agentry App Development

474 SAP Mobile Platform

called in a decimal or integral number context and will evaluate its parameters according to
that context.

Parameters

@MIN(Number 1 [, ...,
Number N])

Number 1 Required parameter evaluated as the data type of the context in which the
function is called. Contains the first value to be compared against all other
parameters to the function.

Number N Optional parameter(s) evaluated as the data type of the context in which
the function is called. Each contains the value(s) to be compared against
all other parameters to the function.

Supported Return Types

• Integral Number
• Decimal Number

@MOD

The MOD function performs a modulus operation on its two parameters, dividing the first by
the second and returning the remainder. The parameters are evaluated as either decimal or
integral numbers, matching the context of the function.

Parameters

@MOD
(Dividend,
Divisor)

Dividend Required parameter evaluated as either an integral or decimal number matching
the context of the function call. Contains the dividend value, or the value to be
divided by Divisor.

Divisor Required parameter evaluated as either an integral or decimal number matching
the context of the function call. Contains the divisor value, or the value to be
divided into Dividend.

Supported Return Types

• Integral Number
• Decimal Number

Agentry App Development

Agentry App Development 475

@PARSE_FORMATTED_DECIMAL

The PARSE_FORMATTED_DECIMAL function converts the given string into a decimal. It
takes up to two optional parameters that are used for deciphering the format of the number
stored in the string.The first parameter is the value to be converted and is required. This
parameter is evaluated as a string, and a decimal is created from it using the optional
parameters or the client’s locale. This string must be a valid representation of a decimal.

Parameters

@PARSE_FORMATTED_DECIMAL
(String [, Decimal Point, Thousands
Separator])

String Required string parameter, contains the value to be
parsed interpreted as a string and parsed into a dec-
imal by the function.

Decimal Point Optional string parameter with a default value of the
client’s locale decimal separator. This value may be
set to any single character to be considered as a dec-
imal separator.

Thousands Separator Optional string parameter with a default value of the
client’s locale thousands separator. This value may
be set to any single character to be considered as
separating thousand and hundreds, millions and
hundred thousands, etc.

Supported Return Types
Decimal

@PERCENT

The PERCENT function takes one decimal number parameter, divides that parameter by 100,
and returns the result. This function ignores any significant digit rules during the division
process.

Parameters

@PERCENT (Dividend)

Dividend Required decimal number parameter; contains the value to be divided
by 100.

Agentry App Development

476 SAP Mobile Platform

Supported Return Types
Decimal Number

@PRECISION

The PRECISION function takes a single decimal number parameter and returns its precision.
This is the number of digits after the decimal. The function supports string, integral number
and decimal number return types for this precision value. The parameter to it is always
evaluated as a decimal number.

Parameters

@PRECISION
(Decimal)

Decimal Required decimal number parameter; contains the value whose precision
is to be returned by the function, i.e. the number of digits after the decimal.

Supported Return Types

• Integral Number
• Decimal Number
• String

@PROD

The PROD function takes two or more numeric parameters, multiplies the values, and returns
the product. The parameters to the function are evaluated as either decimal or integral
numbers, matching the context of the function call.

Parameters

@PROD
(Number 1 [, ...,
Number N])

Number 1 Required parameter; evaluated as either an integral or decimal number matching
the context of the function call. Contains the value to be multiplied with all other
function parameters.

Number N Optional parameter(s); evaluated as either integral or decimal number(s) match-
ing the context of the function call. Contains the value(s) to be multiplied with all
other function parameters.

Agentry App Development

Agentry App Development 477

Supported Return Types

• Integral Number
• Decimal Number

@RANGE_LIMIT

The RANGE_LIMIT function constrains a given numeric parameter to within a range of
values, returning a value that is no greater than or less than a given set of upper and lower
limits. The function takes three parameters: the value to be constrained; a lower limit; and an
upper limit. If the value to be constrained is greater than the lower limit and less than the upper
limit, the function will return the value. If this value is less than the lower limit, the value of the
lower limit will be returned. If the constrained value is greater then the upper limit, the upper
limit value will be returned. Each of the three parameters are evaluated as either decimal or
integral numbers, matching the context of the function call.

Parameters

@RANGE_LIMIT
(Constrain, Limit 1,
Limit 2)

Constrain Required parameter; evaluated as either an integral or decimal number
matching the context of the function call. Contains the value to be con-
strained by the function. This value will be returned if it is between the
values of the Limit 1 and Limit 2 parameters.

Limit 1 Required parameter; evaluated as either an integral or decimal number
matching the context of the function call. Contains the first limiting value in
the range to which Constrain will be limited. This may be either the

minimum or maximum value to which the return value is to be constrained.

Limit 2 Required parameter; evaluated as either an integral or decimal number
matching the context of the function call. Contains the second limiting value
in the range to which Constrain will be limited. This may be either the

minimum or maximum value to which the return value is to be constrained.

Supported Return Types

• Integral Number
• Decimal Number

@ROUND

The ROUND function will round a numeric value to the specified precision. The first
parameter to the function is the numeric value to be rounded. The second parameter is always
evaluated as an integral number, and specifies the number of digits before or after the decimal

Agentry App Development

478 SAP Mobile Platform

place to which the number should be rounded. This function may be called in an integral or
decimal context.

Parameters

@ROUND
(Number To
Round,
Precision)

Number To
Round

Required parameter; evaluated as either an integral or decimal number matching
the context of the function call. Contains the value to be rounded by the function.

Precision Required integral number parameter; contains the value specifying the precision
to which Number To Round should be rounded. Positive numbers indicate

a precision after the decimal place. Negative numbers indicate position before the
decimal. This parameter can be only negative numbers when the function is
called in an integral number context.

Supported Return Types

• Integral Number
• Decimal Number

@SIGN

The SIGN function takes a single decimal number parameter and returns -1, 0, or 1 if the
parameter is negative, zero, or positive in value, respectively. The function may be called in an
integral or decimal number context. The parameter is always evaluated as a decimal number.

Parameters

@SIGN
(Number)

Number Required number parameter; evaluated as either a decimal or integral number
based on context. Contains the value whose sign is to be determined by the
function.

Supported Return Types

• Integral Number
• Decimal Number

@SIGNIFICANT_DIGITS

The SIGNIFICANT_DIGITS function takes a single parameter evaluated as a decimal
number, and returns the number of significant digits it contains.

Agentry App Development

Agentry App Development 479

Parameters

@SIGNIFICANT_DIGITS
(Decimal)

Decimal Required decimal number parameter; contains the value
whose number of significant digits is to be calculated by the
function.

Supported Return Types

• Integral Number
• Decimal Number
• String

@SQRT

The SQRT function returns the square root of a decimal number to the specified precision. The
number for which the square root is found is evaluated as a decimal number, though whole
integral values can be provided. The precision of the result is specified by an integral number.

Parameters

@SQRT
(Decimal,
Precision)

Decimal Required decimal number parameter; contains the value for which the square root
will be found.

Precision Required integral number parameter; contains the value specifying the precision
to which the square root value will be calculated. The function will round the
result to this precision. If a property is specified for the Decimal argument, the

definition of that property’s rounding behavior will be applied. A Precision
value of 0 indicates no digits after the decimal, and a negative value indicates
digits before the decimal.

Supported Return Types
Decimal Number

@SUM

The SUM function takes one or more numeric parameters, adds the values of each, and returns
the result. This function may be called in an integral number, decimal number, or string
context. The data type of each parameter in the numeric contexts will match that context. In a

Agentry App Development

480 SAP Mobile Platform

string context, the function will treat its parameters as decimal numbers, though integral
numbers may be provided.

Parameters

@SUM
(Number 1 [, ...,
Number N])

Number 1 Required parameter; evaluated as either an integral or decimal number, depend-
ing on the context of the function call. Contains the first value to be summed with
all other parameters to the function.

Number N Optional parameter(s); evaluated as either an integral or decimal number, de-
pending on the context of the function call. Contains the additional value(s) to be
summed with all other parameters to the function.

Supported Return Types

• Integral Number
• Decimal Number
• String

@TOTAL

The TOTAL function will add the values of a given object property together for all instances of
the object in a specified collection property. Optional criteria may be specified to include only
specific objects within the collection being processed.

This function takes three parameters. The first is the object collection property, and the second
is the object property whose value is to be summed in each object instance. An optional third
parameter can be provided to include only certain object instances within the collection in this
operation. This function supports the integral number and decimal number return types.

The object property values are totalled by the function based on the function’s context, not the
data type of the object property definition. This is important to note when the context is in an
integral number, and the properties to be totaled are decimals. In this situation, the fractional
portion of the properties will be truncated from the values prior to being added together.

Agentry App Development

Agentry App Development 481

Parameters

@TOTAL (Object
Collection, [Child
Property [,
Include Criteria]])

Object Collection Required object collection property parameter; contains the object instances
whose property values will be totaled by the function.

Child Property Optional property parameter; specifies the object property to be totaled in each
object instance in Object Collection. These property values will be

evaluated as the data type of the function’s context, which may be either
integral number or decimal number.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in the context
of each object instance in Object Collection. The function will

process each object instance for which this term returns true, and exclude those
for which it returns false. If this parameter is not provided, all object instances
will be processed by the function.

Supported Return Types

• Integral Number
• Decimal Number

@TRUNC

The TRUNC function will truncate the given numeric value to the specified position either
before or after the decimal. The first parameter to the function is the value to be truncated and
will be evaluated as either a decimal or integral number, matching the context of the function
call. The second parameter is evaluated as an integral number and specifies the precision, or
number of digits to which the value should be truncated. A positive precision value counts the
number of digits to the right of the decimal, while a negative precision counts them to the left
of the decimal. Note that this function differs from the ROUND function in that no rounding
occurs. The number is truncated to the specified precision with no rounding behavior.

Agentry App Development

482 SAP Mobile Platform

Parameters

@TRUNC
(Number [,
Precision])

Number Required parameter; evaluated as either an integral or decimal number matching
the context of the function call. Contains the value to be truncated by the func-
tion.

Precision Optional integral number parameter; contains the value specifying the precision
of the resulting truncation. Positive values indicate the number of places to the
right of the decimal, while negative values indicate the number of places to the
left.

Supported Return Types

• Integral Number
• Decimal Number

Property Functions for Rules

The Property category of rule function terms available within the rule definition provide
functions that are specific to working with properties, and in most cases are intended for use
with properties of a given type. While they may take any property as a parameter, the resulting
behavior of the function may not be desired if the selected property is not of the type for which
the function is intended.

Many of the functions within this category are intended for use with collection properties.
Most of these are named to reflect this, beginning with the word COLLECTION, e.g.
@COLLECTION_FIND. Exceptions to this are COUNT and SIZE, which both return the
total number of objects in a collection property, optionally counting only those that meet some
criteria.

Another sub-set of the functions within this category are intended for use with properties of
type external data. External data properties are defined to reference files stored on the client
device from within the mobile application. The functions within this category that are
intended for this property type each begin with the value FILE in their names, e.g.
@FILE_PATH.

Other functions within this category include those that work with the user interface, returning
values or names from the screens and fields of the currently displayed screen or screen set on
the client. Each of these functions begins with the value SCREEN or SCREENSET in their
names, e.g. @SCREENFIELDVALUE.

Agentry App Development

Agentry App Development 483

@COLLECTION_FIND

The COLLECTION_FIND function searches a given collection for the first member for
which the given second parameter returns true. This second parameter is evaluated once for
each member of the collection in a Boolean context. When a member of the search collection
is found, that member is returned to the caller of the function. If no member of the collection
results in the search criteria returning true, an empty property of the type within the search
collection is returned.

Parameters

@COLLECTION_FIND
(Collection Property, Search
Criteria)

Collection Property Required property parameter; the property referenced for this
parameter is assumed to be a collection and contains the members
to be searched by the function using the specified Search
Criteria parameter.

Search Criteria Required Boolean parameter; this term is evaluated once for, and
in the context of each member of Collection Property.

The member of Collection Property returned by the

function will be the first one for which Search Criteria
returns true.

Supported Return Types
Property

@COLLECTION_FIND_BY_DEC

The COLLECTION_FIND_BY_DEC function searches a collection property for the first
member to match a specified decimal value. For object collection properties, the property
within each object of the collection to compare to the search value is also specified. This
function will return the first member within the specified collection property found to match
the provided search decimal value. If no member of the collection matches the search value, an
empty instance of the member type is returned to the function caller.

Agentry App Development

484 SAP Mobile Platform

Parameters

@COLLECTION_FIND_BY_DEC
(Collection Property, Search Decimal
[, Search Property])

Collection Property Required property parameter; this parameter is as-
sumed to be a collection property. References the col-
lection the function will search.

Search Decimal Required decimal number parameter; contains the val-
ue to search for within Collection Proper-
ty.

Search Property Optional property parameter; when Collection
Property contains object instances Search-
Property, specifies the property within that ob-

ject type to compare against Search Decimal.

The value of the property specified for this parameter is
converted from the data type of the property to a dec-
imal number for comparison to Search Deci-
mal.

Supported Return Types
Property

@COLLECTION_FIND_BY_NUM

The COLLECTION_FIND_BY_NUM function searches a collection property for the first
member to match a specified integral value. For object collection properties, the property
within each object of the collection to compare to the search value is also specified. This
function will return the first member within the specified collection property found to match
the provided search integral value. If no member of the collection matches the search value, an
empty instance of the member type is returned to the function caller.

Parameters

@COLLECTION_FIND_BY_NUM
(Collection Property, Search Integral
[, Search Property])

Collection Property Required property parameter; this parameter is as-
sumed to be a collection property. References the col-
lection the function will search.

Agentry App Development

Agentry App Development 485

@COLLECTION_FIND_BY_NUM
(Collection Property, Search Integral
[, Search Property])

Search Integral Required integral number parameter; contains the val-
ue to search for within Collection Proper-
ty.

Search Property Optional property parameter; when Collec-
tionProperty contains object instances

Search Property, specifies the property

within that object type to compare against Search
Integral. The value of the property specified for

this parameter is converted from the data type of the
property to an integral number for comparison to
Search Integral.

Supported Return Types
Property

@COLLECTION_FIND_BY_STR

The COLLECTION_FIND_BY_STR function searches a collection property for the first
member to match a specified string value. For object collection properties, the property within
each object of the collection to compare to the search value is also specified. This function will
return the first member within the specified collection property found to match the provided
search string value. If no member of the collection matches the search value, an empty
instance of the member type is returned to the function caller.

Parameters

@COLLECTION_FIND_BY_STR
(Collection Property, Search String [,
Search Property])

Collection Property Required property parameter; this parameter is as-
sumed to be a collection property. References the col-
lection the function will search.

Search String Required string parameter; contains the value to search
for within Collection Property.

Agentry App Development

486 SAP Mobile Platform

@COLLECTION_FIND_BY_STR
(Collection Property, Search String [,
Search Property])

Search Property Optional property parameter; when Collection
Property contains object instances Search
Property, specifies the property within that object

type to compare against Search String. The

value of the property specified for this parameter is
converted from the data type of the property to a string
for comparison to Search String.

Supported Return Types
Property

@COLLECTION_MAX

The COLLECTION_MAX function searches an object collection for the object instance
whose designated property contains the largest value of all members of the collection and then
returns that maximum value. The function takes parameters for the object collection to be
searched, the property within the object type of the collection whose value is to be compared
between object instances, and optionally a rule term containing the criteria specifying which
objects to search and which to exclude.

The optional Boolean parameter to the function is evaluated once for each object instance
contained in the specified collection. This term is evaluated in the context of each object
instance. The function will then compare only those objects for which this rule term returns
true, with those for which it returns false being excluded from the comparison.

The data type of the property to be compared should be one for which a value comparison
makes sense. While a minimum or maximum value is readily apparent in a primitive data type
such as an integer, such a comparison makes little sense for a signature or external data
property type. For property data types like the latter, the return value is undefined. The data
type of the property to be compared in each function should be considered in relation to the
data type of the function’s context. Though the function supports the integral number, decimal
number, and string return types, the conversion from the property’s data type to the return type
should be “type safe.” Specifically, if the designated property to compare in each object is a
string, the function should not be called in an integral or decimal number context.

Agentry App Development

Agentry App Development 487

Parameters

@COLLECTION_MAX
(Object Collection, Child
Property [, Include
Criteria])

Object Collection Required object collection property parameter; specifies the col-
lection to be processed by the function.

Child Property Required property parameter; specifies the property whose value
will be compared in each object instance in Object Col-
lection. The data type of this property specifies the type of

comparison made between the values for each object instance.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in
the context of each object instance in Object Collection.

The function will compare the Child Property value of

each object instance for which Include Criteria returns

true, and excludes from this processing each object for which false
is returned. If this parameter is omitted, all object instances in the
collection will be processed.

Supported Return Types

• Integral Number
• Decimal Number
• String

@COLLECTION_MIN

The COLLECTION_MIN function searches an object collection for the object instance
whose designated property contains the smallest value of all members of the collection and
then returns that minimum value. The function takes parameters for the object collection to be
searched, the property within the object type of the collection whose value is to be compared
between object instances, and optionally a rule term containing the criteria specifying which
objects to search and which to exclude.

The optional Boolean parameter to the function is evaluated once for each object instance
contained in the specified collection. This term is evaluated in the context of each object
instance. The function will then compare only those objects for which this rule term returns
true, with those for which it returns false being excluded from the comparison.

The data type of the property to be compared should be one for which a value comparison
makes sense. While a minimum or maximum value is readily apparent in a primitive data type

Agentry App Development

488 SAP Mobile Platform

such as an integer, such a comparison makes little sense for a signature or external data
property type. For such property data types as the latter, the return value is undefined.

The data type of the property to be compared in each function should be considered in relation
to the data type of the function’s context. Though the function supports the integral number,
decimal number, and string return types, the conversion from the property’s data type to the
return type should be “type safe.” Specifically, if the designated property to compare in each
object is a string, the function should not be called in an integral or decimal number context.

Parameters

@COLLECTION_MIN
(Object Collection, Child
Property [, Include
Criteria])

Object Collection Required object collection property parameter; specifies the col-
lection to be processed by the function.

Child Property Required property parameter; specifies the property whose value
will be compared in each object instance in Object Collec-
tion. The data type of this property specifies the type of com-

parison made between the values of each object.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in
the context of each object instance in Object Collection.

The function will compare the Child Property value of

each object instance for which Include Criteria returns

true and exclude from this processing each object for which false is
returned. If this parameter is omitted, all object instances in the
collection will be processed.

Supported Return Types

• Integral Number
• Decimal Number
• String

@COUNT

The COUNT function returns the number of object instances in a given collection property
and, optionally, can count only those where some condition is true, returning this count value
or a Boolean indication of whether any objects within the collection were counted. The
function takes two parameters. The first parameter is required and is the object collection
property to be counted. The second parameter is an optional Boolean parameter that is
evaluated once for each object in the collection. It is used to include only certain members of

Agentry App Development

Agentry App Development 489

the collection in those counted. Specifically, each object for which the second parameter
evaluates to true will be counted, and those for which it evaluates to false will not be counted.

Parameters

@COUNT (Object
Collection [, Include
Criteria])

Object Collection Required property parameter; contains the object collection to be counted
by the function.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in the
context of each object instance in Object Collection. The func-

tion will count each object instance for which Include Criteria
returns true and exclude from the count each object for which false is
returned.

Supported Return Types

• Boolean
• Integral Number
• String

@CURRENTVALUE

The CURRENTVALUE function takes a variable number of property parameters. Each is
evaluated in the context of the parameter that precedes it until either an invalid property is
found or the last parameter is evaluated. The value of this property, or of a field on the current
detail screen that targets the property, is returned.

The function can take a single property parameter, evaluated in the context of the function call.
Either this property value is returned by the function, or the value of a detail screen field
targeting that property on the current screen is returned. When multiple parameters are
specified, it is assumed these parameters are either objects or object collections. Each
subsequent parameter should be a child member of the parameter that precedes it in the
function call. Otherwise, the parameter will be treated as an invalid property.

Agentry App Development

490 SAP Mobile Platform

Parameters

@CURRENTVALUE
(Property 1 [, ..., Property
N])

Property 1 Required property parameter; references the first property evaluated
in the context of the function call. This parameter should reference a
property that is a child member of the definition setting the context of
the function call.

Property N Optional property parameter(s); references the next property evalu-
ated by the function in the context of the property that immediately
precedes it in the function’s parameter list. This should be a child
member of that parameter.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

@FILE_CHANGED

The FILE_CHANGED function is provided to work with the external data property type. It
evaluates the file referenced by such a property and returns true if the file has been modified
since it was downloaded to the client device or attached locally. Though the data type of this
function’s single parameter is string, the function expects an external data property and will
return false for any other value provided.

Parameters

@FILE_CHANGED
(File Name)

File Name Required string parameter; specifies the file to be checked by the function
for modifications. Though the data type of this parameter is string, the
intended usage of this function is that this parameter is an external data
property. Specifying any other string value for this parameter will result
in the function always returning false.

Supported Return Types
Boolean

Agentry App Development

Agentry App Development 491

@FILE_EXTENSION

The FILE_EXTENSION function takes a single parameter, normally an external data
property, and returns the file extension referenced by that property as a string. This function is
intended for use with external data properties as a part of the attached document’s
functionality. If the external data property provided as a parameter does not currently
reference a file, the function will return an empty string. The return value from this function is
undefined when the parameter provided is not an external data property.

Parameters

@FILE_EXTENSION
(File Name)

File Name Required string parameter; specifies the file whose file extension is to be
returned. While the data type of this parameter is a string, the intended
parameter is a property of data type external data. The file extension of
the file referenced by such a property is returned by this function. If the
property does not reference a file, the function returns an empty string.

Supported Return Types
String

@FILE_NAME

The FILE_NAME function takes a single parameter, normally an external data property, and
returns the name and extension of the file referenced by that property. This function is intended
for use with external data properties as a part of the attached document’s functionality. If the
external data property provided as a parameter does not currently reference a file, the function
will return an empty string. The return value from this function is undefined when the
parameter provided is not an external data property

Parameters

@FILE_NAME
(File Name)

File Name Required string parameter; specifies the file whose name and extension is to be
returned. While the data type of this parameter is a string, the intended pa-
rameter is a property of data type external data. The name and file extension of
the file referenced by such a property is returned by this function. If the prop-
erty does not reference a file, the function returns an empty string.

Supported Return Types
String

Agentry App Development

492 SAP Mobile Platform

@FILE_PATH

The FILE_PATH function takes a single parameter, normally an external data property, and
returns the full path of the location where the file referenced by that property is stored. This
function is intended for use with external data properties as a part of the attached document’s
functionality. If the external data property provided as a parameter does not currently
reference a file, the function will return an empty string. The return value from this function is
undefined when the parameter provided is not an external data property.

Parameters

@FILE_PATH
(File Name)

File Name Required string parameter; specifies the file whose full path is to be returned.
While the data type of this parameter is a string, the intended parameter is a
property of data type external data. The full path to the location of the file
referenced by such a property is returned by this function. If the property does
not reference a file, the function returns an empty string.

Supported Return Types
String

@FILE_PATH_AND_NAME

The FILE_PATH_AND_NAME function takes a single parameter, normally an external data
property, and returns the full path and name of the file referenced by that property. This
function is intended for use with external data properties as a part of the attached document’s
functionality. If the external data property provided as a parameter does not currently
reference a file, the function will return an empty string. The return value from this function is
undefined when the parameter provided is not an external data property.

Parameters

@FILE_PATH_AND_NAME
(File Name)

File Name Required string parameter; specifies the file whose full path and
name is to be returned. While the data type of this parameter is a
string, the intended parameter is a property of data type external
data. The full path and name of the file referenced by such a
property is returned by this function. If the property does not
reference a file, the function returns an empty string.

Supported Return Types
String

Agentry App Development

Agentry App Development 493

@FILE_SIZE

The FILE_SIZE function takes a single parameter, normally an external data property, and
returns the size in bytes of the file referenced by that property. This function is intended for use
with external data properties as a part of the attached document’s functionality. If the external
data property provided as a parameter does not currently reference a file, the function will
return an empty string. The return value from this function is undefined when the parameter
provided is not an external data property.

Parameters

@FILE_SIZE
(File Name)

File Name Required string parameter; specifies the file whose size is to be returned. While
the data type of this parameter is a string, the intended parameter is a property of
data type external data. The size of the file referenced by such a property is
returned by this function. If the property does not reference a file, the function
returns 0.

Supported Return Types
Integral Number

@IS_SPECIAL_VALUE

The IS_SPECIAL_VALUE function returns a Boolean value indicating whether or not a
specified property is currently set to its special value. The function returns true when the
property value is equal to its defined special value. It returns false when it is not equal to the
defined special value, if no special value is defined for the property, or if the property type does
not include special value attributes.

The function can take one or more parameters to allow for the navigation through the object
data structure of a module, beginning with a child of the object setting the context for the
function call, and drilling down into this structure to the descendent object and, finally, a
property of that object.

Agentry App Development

494 SAP Mobile Platform

Parameters

@IS_SPECIAL_VALUE
(Property 1 [, ..., Property
N])

Property 1 Required property parameter; if the only parameter to the function,
this property’s value will be compared to its special value attribute
settings. If additional parameters are provided, the function will
evaluate the next parameter in the context of this one, assuming it is
a child member of this property.

Property N Optional property parameter(s); with each specifying an object
further down in the data hierarchy of the module. Each subsequent
Property N provided must be a child to the parameter that

immediately precedes it in the function call. The last parameter
provided is compared to its special value attribute settings.

Supported Return Types
Boolean

@IS_VALID_DECIMAL_NUMBER

The IS_VALID_DECIMAL_NUMBER function takes a single parameter and returns true if
the value is a valid decimal. If the value returned when evaluating this parameter as a decimal
number is NaN (Not a Number), the function will return false.

Parameters

@IS_VALID_DECIMAL_NUMBER
(Decimal)

Decimal Required decimal number parameter; contains the
value to be evaluated as a valid decimal number.

Supported Return Types
Boolean

@LASTSCANVALUE

The LASTSCANVALUE returns the last value scanned by the client device and processed by
the mobile application. If called prior to a value being scanned in or on a device without
scanning capabilities, the function will return an empty string. The last scanned value will be
returned regardless of where or when the function is called. Exiting and restarting the mobile
application will remove the scanned value, and the function will return null until a new value is
scanned.

Agentry App Development

Agentry App Development 495

Parameters

@LASTSCANVALUE()

This function takes no parameters.

Supported Return Types
String

@MEMBER

The MEMBER function is used to search an object collection and to return the value of a
property within that collection that matches the given search value. The first match found
within the collection will be returned. The function takes two parameters; the first is an object
collection, and the second is a property with a value that is to be located. The object instance
with the same property name, data type, and value within the object collection is then found
and the value of the object’s key property is returned. If no match is found within the
collection, the function returns the null equivalent for the context’s data type.

Parameters

@MEMBER (Collection
Property, Search
Property)

Collection Property Required property parameter; references the object collection to be
searched by the function.

Search Property Required property parameter; references the property definition for
which an exact match within the Collection Property object

instances is to be searched.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

@NEEDS_XMIT

The NEEDS_XMIT function takes one or more property parameters, expects each to be an
object, and returns true if the last parameter is an object and that object or one of its descendent
objects in the module data structure has a pending transaction. If multiple parameters are
provided to the function, the first parameter is evaluated in the context of the function call.

Agentry App Development

496 SAP Mobile Platform

Each subsequent parameter is evaluated in the context of the parameter that precedes it. If any
parameter evaluates to any definition instance other than an object, the evaluation ends and the
function returns false.

In most current implementations of this function, a single parameter is provided that is a target
path to an object instance selected using the target browser. If a pending transaction targets this
object or any of its descendent objects, this function will return true. Otherwise it returns
false.

Parameters

@NEEDS_XMIT
(Property 1 [, ...,
Property N])

Property 1 Required property parameter; evaluated by the function to determine if it is
an object instance first, and if a pending transaction exists that targets this
object or any of its descendent object instances second. In current imple-
mentations and uses for this function, this is the only parameter provided in
most cases.

Property N Optional property parameters; each is evaluated in the context of the pa-
rameter before it in the function’s parameter list. These parameters are
expected to evaluate to an object instance. The last parameter in this list is
evaluated by the function for pending transactions targeting it or any of its
descendent object instances.

Supported Return Types
Boolean

@SCREENFIELDVALUE

The SCREENFIELDVALUE function returns the current value of a field on the current detail
screen. The name of the field whose value is desired is the only parameter to this function. This
name value is the internal name that uniquely identifies the field definition within the parent
detail screen.

Parameters

@SCREENFIELDVALUE
(Field Name)

Field Name Required string parameter; contains the name of the detail
screen field definition whose current value is to be returned.
This is the internal name of the field definition.

Agentry App Development

Agentry App Development 497

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

@SCREENFIELDNAME

The SCREENFIELDNAME function is supported only in update rules and returns the name
of the current detail screen field being updated by the rule within which the function is called.
If this function is called in a rule not used in an update rule, its return value is undefined. The
function takes no parameters.

Parameters

@SCREENFIELDNAME()

This function takes no parameters.

Supported Return Types
String

@SCREENNAME

The SCREENNAME function returns the name of the screen definition with the focus at the
time of its evaluation. This function takes no parameters.

Parameters

@SCREENNAME ()

This function takes no parameters.

Supported Return Types
String

@SCREENSETNAME

The SCREENSETNAME function returns the name of the current screen set displayed to the
user. The value returned is the internal definition name of the screen set that uniquely identifies
the screen set definition within the module. This function takes no parameters and supports the
string return type. The current screen set is the parent definition to the screen with the current
focus.

Agentry App Development

498 SAP Mobile Platform

Parameters

@SCREENSETNAME ()

This function takes no parameters.

Supported Return Types
String

@SIZE

The SIZE function returns the number of object instances in a given collection property and,
optionally, can count only those where some condition is true, returning this count value or a
Boolean indication of whether any objects within the collection were counted. The function
takes two parameters. The first parameter is required and is the object collection property to be
counted. The second parameter is an optional Boolean parameter that is evaluated once for
each object in the collection. It is used to include only certain members of the collection in
those counted. Specifically, each object for which the second parameter evaluates to true will
be counted, and those for which it evaluates to false will not be.

Parameters

@SIZE (Object
Collection [, Include
Criteria])

Object Collection Required property parameter; contains the object collection to be counted
by the function.

Include Criteria Optional Boolean parameter; this term is evaluated once for and in the
context of each object instance in Object Collection. The func-

tion will count each object instance for which Include Criteria
returns true and exclude from the count each object for which false is
returned.

Supported Return Types

• Boolean
• Integral Number
• String

@TRANSACTIONPROPERTYNAME

The TRANSACTIONPROPERTYNAME function returns the name of the transaction
property for which the rule is being evaluated. This function supports the string return type.
The value returned is the internal definition name of the transaction property. This function is

Agentry App Development

Agentry App Development 499

only supported when part of a rule being evaluated is an initial value rule for a transaction
property. The return from this function in any other context is undefined.

Parameters

@TRANSACTIONPROPERTYNAME ()

This function takes no parameters.

Supported Return Types
String

@TYPE

The TYPE function returns the definition type of the last parameter it evaluates. This function
takes one or more parameters, each evaluated as a property and each evaluated in the context of
the parameter before it in the function’s parameter list. The function supports the integral
number, Boolean, and string return types.

In a Boolean context, the function will return true if the last parameter evaluated exists in the
current context, or false if it does not exist. In a string context, this function returns the name of
the definition type, e.g. object, transaction, etc. In an integral number context, this function
returns the internal identifier for that definition type.

In current implementations this function has limited usage and may be deprecated in a future
release.

Parameters

@TYPE
(Property 1
[, ..., Property
N])

Property 1 Required property parameter; this is the first parameter evaluated by the function in
the context of the function call. This parameter should be a child member of the
definition setting the function’s context. If it is not, the function will return false or
null depending on the data type of the context. If this is the only parameter, and it
exists, the return will be either true or the identifier for the definition type, depending
on context.

Agentry App Development

500 SAP Mobile Platform

@TYPE
(Property 1
[, ..., Property
N])

Property N Optional property parameter(s); each evaluated in the context of the parameter
before it and assumed to be a child member of that previous property. Each addi-
tional Property N parameter will set the context for the next in the list. The last

Property N parameter will be evaluated for its definition type, and the function

will then return true or the identifier for this type if it exists, or else false or null if it
does not exist.

Supported Return Types

• Boolean
• Integral Number
• String

@UI

This function has been deprecated and will not be supported in future releases. It should be
replaced in all existing rule definitions with SCREENFIELDVALUE. The UI function takes a
single parameter that is the field index for the currently displayed screen and returns the value
of that field. The field index is a 0-based index. The parameter must be between 0 and the total
number of field definitions on the current screen minus 1.

The value of the specified field is evaluated in the context of the function call. The UI function
supports the Boolean, integral number, decimal number, string, and property return types.

Parameters

@UI (Field
Index)

Field Index Required integral number parameter; specifies the field on the current detail screen by
its index whose current value is to be returned. This is a 0-based index, with the first
field at index 0 and the last field at the index position equal to the total number of fields
on the screen minus 1. Index numbering occurs from left to right and top to bottom.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

Agentry App Development

Agentry App Development 501

• Property

String Functions for Rules

The String category of rule function terms available within the rule definition provide the
string parsing, concatenation, conversion, and other related behaviors for manipulating string
values. These functions include those that return or remove sub-strings from source strings,
convert strings to all upper or lowercase, trim whitespace, or return formatting characters,
including new lines and tabs.

@CONCATENATE

The CONCATENATE function’s behavior has changed with the release of Agentry 5.1. The
function now takes two or more string parameters and concatenates them together, returning
the resulting string. Previously this function took two strings and an integral number, with this
third (and now deprecated) parameter limiting the length of the string returned by the function.
This same behavior can now be provided by returning the result from CONCATENATE to the
LEFT string function.

Parameters

@CONCATENATE(String 1, [, ...,
String N])

String 1 Required string parameter; contains the string value to which
the remaining parameter(s) will be appended.

String N Optional string parameter(s); each containing a string value
to be appended to the resulting string returned by the func-
tion.

Supported Return Types
String

@FIND

The FIND function searches a source string for a provided sub-string and, depending on the
context of the function call, returns one of the sub-string, the position of its first character
within the source string, or an indicator as to whether or not it was located. This search can
optionally be case-insensitive and may begin at the beginning of the source string or at some
character position within the source string.

Note that this function no longer works with object collection properties. This functionality is
now provided by the new rule function COLLECTION_FIND. Upgrades of projects from
previous platform versions will be modified with the replacement of FIND with
COLLECTION_FIND in any rule definition. This will happen as a part of the standard

Agentry App Development

502 SAP Mobile Platform

upgrade process built into the Agentry Editor and should require no additional actions on the
part of the developer.

When FIND is called in a string context, the function will search a source string for a sub-
string, returning that sub-string when found or an empty string if not found.

When FIND is called in an integral number context, the function will search a source string for
a sub-string, returning the position of the first character of the sub-string within the source
string when found, or -1 if not found. The first character of the string is at position 0.

When FIND is called in a Boolean context, the function will search a source string for a sub-
string, returning true when found and false when not found.

Parameters

@FIND (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the string value to be searched by the
function.

Search String Required string parameter; contains the string value to search for within
Source String. If Search String contains more characters than

Source String, no sub-string will be found.

Case Sensitive Optional Boolean parameter; when specified, determines whether or not the
search should consider or ignore case. When this parameter is true or not
present, the search will be case-sensitive. When this parameter is false, case
will be ignored.

Start Position Optional integral number parameter; when specified, contains the character
position within Source String to begin the search for Search
String. The first character in Source String is at position 0. If this

parameter is not provided, the search will always begin with the first character
of Source String.

Supported Return Types
• Boolean
• Integral Number
• String

@LEFT

The LEFT function returns a sub-string from a specified source string, with the length of the
sub-string specified and beginning with the left-most character in the string. This function

Agentry App Development

Agentry App Development 503

takes two parameters: a source string and the number of characters to extract from the source.
If this length is equal to or greater than the length of the source string, the entire string is
returned. If the length is 0 or less, an empty string is returned.

Parameters

@LEFT
(Source
String,
Length)

Source String Required string parameter; contains the source string from which a sub-string will
be extracted.

Length Optional integral number parameter; contains the maximum number of characters
to extract from Source String. If this value is equal to or longer than

Source String, the entire string is returned. If Length is 0 or less, an empty

string will be returned.

Supported Return Types
String

@LENGTH

The LENGTH function determines the length of the given string and based on context, returns
either the number of characters in the string, or an indicator of whether or not the string is
empty. In an integral context, the number of characters is returned as an integer. In a string
context, the number of characters is returned as a string. In a Boolean context, true is returned
if the source contains at least one character, and false is returned when the string is empty.

Parameters

@LENGTH (Source
String)

Source String Required string parameter; contains the source string whose length
will be determined.

Supported Return Types

• Boolean
• Integral Number
• String

Agentry App Development

504 SAP Mobile Platform

@LOWERCASE

The LOWERCASE function converts all alphabetical characters in the source string to lower
case and returns the result. Any non-alphabetical characters are unchanged.

Parameters

@LOWERCASE (Source
String)

Source String Required string parameter; contains the string value to be con-
verted to lowercase.

Supported Return Types
String

@MID

The MID function parses a source string to return a sub-string that begins at a specified
position and contains at most the specified number of characters. The first parameter to the
function is the source string from which the sub-string is extracted. The second and third
parameters are optional and specify the start and end position within the source string from
which the sub-string is to be extracted. The first character in the source string is at position 0.
The default starting position is 0 if not provided. If the number of characters to return is not
provided, the default is the remaining length of the source string after the start position.

Parameters

@MID (Source
String [, Start
Position [, Max
Length]])

Source String Required string parameter; contains the source string from which the sub-string
will be extracted.

Start Position Optional integral number parameter; contains the zero-based position of the first
character within Source String for the sub-string to be extracted. If this

parameter is not provided, the default start position is 0 and the entire Source
String value will be returned.

Max Length Optional integral number parameter; contains the maximum number of charac-
ters to return from Source String after Start Position. If this

parameter is not provided, all characters after Start Position will be

returned as the sub-string.

Agentry App Development

Agentry App Development 505

Supported Return Types
String

@NEWLINE

The NEWLINE function returns the command characters <CR> <LF>, (0x0D 0x0A), which
result in a Windows new line. The return value of this function can be concatenated with other
strings for formatting purposes.

Parameters

@NEWLINE()

This function takes no parameters.

Supported Return Types
String

@REMOVE

The REMOVE function searches a given source string, removes all instances of a provided
search string, and returns the result. As optional behaviors, parameters can be provided to
specify whether or not the search is case-sensitive, and to specify the starting position within
the source string to begin the search.

Parameters

@REMOVE (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the source string to be searched by the
function.

Search String Required string parameter; contains the sub-string to be removed from
Source String.

Case Sensitive Optional Boolean parameter; when provided, indicates whether or not the
search of Source String for Search String should be case-

sensitive. If this value is true or not specified, the search is case-sensitive. If
set to false, case is ignored.

Agentry App Development

506 SAP Mobile Platform

@REMOVE (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Start Position Optional integral number parameter; when provided, specifies the zero-
based position within SourceString to begin the search. The default

is to begin at position 0.

Supported Return Types
String

@REPLACE

The REPLACE function searches a given source string for a provided search string and
replaces each instance of the search string with a replacement string. By default, this search is
case-sensitive and includes the entire source string. Both of these behaviors can be overridden
based on optional parameters to the function.

Parameters

@REPLACE (Source
String, Search
String, Replace
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the source string to be searched by the
function.

Search String Required string parameter; contains the string value to be searched for
within Source String.

Replace String Required string parameter; contains the string value to replace Search
String within Source String.

Case Sensitive Optional Boolean parameter; when specified, indicates whether the search
should be case-sensitive. When true or if not provided, the search is case-
sensitive. When false, case is ignored.

Agentry App Development

Agentry App Development 507

@REPLACE (Source
String, Search
String, Replace
String [, Case
Sensitive [, Start
Position]])

Start Position Optional integral number parameter; when specified, indicates the zero-
based position within Source String to begin the search. The de-

fault is to search the entire Source String. If Start Position
is less than 0 or is greater than the number of characters in Source
String, an empty string will be returned.

Supported Return Types
String

@RFIND

The RFIND function searches a string for a sub-string of characters beginning with the right-
most character in a string and based on the function’s context, returns the sub-string when
found, the position of the first character of the sub-string within the source string, or an
indictor of whether the sub-string was found. This search can optionally be case-insensitive
and may begin at the right-most character of the source string, or somewhere within the source
string by specifying the first position, counting from the left, to begin searching.

When RFIND is called in a string context, the function will search a source string for a sub-
string, returning that sub-string when found, or an empty string if not found.

When RFIND is called in an integral number context, the function will search a source string
for a sub-string, returning the position of the first character of the sub-string within the source
string when found, or -1 if not found. The left-most character of the source string is at position
0.

When RFIND is called in a Boolean context, the function will search a source string for a
sub-string, returning true when found, or false if not found.

Parameters

@RFIND (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the string value to be searched by the
function.

Agentry App Development

508 SAP Mobile Platform

@RFIND (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Search String Required string parameter; contains the string value to search for within
Source String.

Case Sensitive Optional Boolean parameter; when provided, specifies whether or not the
search of Source String for the Search String value should be

case-sensitive. When this value is true or not provided, the search is case-sen-
sitive. If this value is false, case is ignored.

Start Position Optional integral number parameter; when provided, specifies the zero-based
character position, counting from the left, within Source String to begin

the search. If this value is not provided, the search begins at the right-most
character within Source String. If this value is 0 or negative, an empty

string is returned. If this value is equal to or greater than the total number of
characters within Source String, the entire string is searched.

Supported Return Types

• Boolean
• Integral Number
• String

@RIGHT

The RIGHT function returns a sub-string of specified length from a given source string,
beginning at the right-most character of the source string and counting back towards the
beginning. The function takes two parameters. The first is the source string from which the
sub-string is extracted. The second is the number of characters in the sub-string. If the
specified number of characters is greater than the length of the source string, the entire source
string is returned. If the specified number of characters specified is 0 or less, an empty string is
returned.

Parameters

@RIGHT
(Source,
MaxLength)

Source String Required string parameter; contains the string value from which the sub-string
will be extracted.

Agentry App Development

Agentry App Development 509

@RIGHT
(Source,
MaxLength)

Max Length Required integral number parameter; contains the maximum number of char-
acters to return from Source String. If this value is greater than the

number of characters in Source String, Source String is returned

in its entirety. If Max Length is 0 or negative, an empty string will be

returned.

Supported Return Types
String

@TAB

The TAB function takes no parameters and returns a tab <HT> character (0x09). This function
is most often used to insert a tab into a text value for the purposes of formatting.

Parameters

@TAB()

This function takes no parameters.

Supported Return Types
String

@TRIM

The TRIM function removes any leading or trailing whitespace characters from a given source
string. The following are considered whitespace characters and will be removed from the
beginning and end of the given source string:

• Horizontal tab
• Vertical tabs
• Space
• Newline
• Carriage return
• Formfeed

Agentry App Development

510 SAP Mobile Platform

Parameters

@TRIM (Source
String)

Source String Required string parameter; contains the value from which all leading and
trailing whitespace will be removed.

Supported Return Types
String

@UPPERCASE

The UPPERCASE function converts all alphabetical characters in a given source string to
upper case and returns the result. Any non-alphabetical characters are returned unchanged.

Parameters

@UPPERCASE (Source
String)

Source String Required string parameter; contains the string value to be converted
to upper case by the function.

Supported Return Types
String

System Functions for Rules

The System function category of rule functions available in the rule definition provide
functionality related mostly to accessing values from the mobile application as a whole, those
retrieved by interacting with the client device or specific hardware components of the device,
or by interacting directly with the client device’s operating system.

These functions include those that return date and time values, interact with a client device’s
GPS system, return on-line state information about the mobile application, and other similar
items.

@DATE

The DATE function returns either the current system date of the client device, or the date value
specified as a parameter to the function. The function can also take an optional format
parameter when called in a string context. The function supports the integral number, decimal
number, and string return types.

When called in an integral or decimal number context, the DATE function will return the
number of days before (negative number) or after (positive number) the date January 1, 2001.

Agentry App Development

Agentry App Development 511

This is the Agentry epoch date. When called in a string context the function will return the date
value in the default format of the client device’s locale.

The function’s first parameter, if provided, is a string and contains the date value to be returned
by the function. The second parameter is also optional and is evaluated as a string. It can
contain one or more of the following date format tokens, which will be used to then format the
date value returned by the function. Note that this format parameter is ignored when the
function is called in any context other than string:

Table 1. Rule Date Format Tokens - All date format tokens are case sensitive

Date Token Description

d Day of month as digits with no leading zero for single-digit days.

dd Day of month with leading zero for single-digit days.

ddd Day of week as three letter abbreviation. The function uses the LOCALE_SAB-
BREVDAYNAME value associated with the device’s specified locale.

dddd Day of week as its full name. The function uses the LOCALE_SDAYNAME
value associated with the device’s specified locale

M Month as digits with no leading zero for single-digit months.

MM Month as digits with leading zero for single-digit months.

MMM Month as three letter abbreviation. The function uses the LOCALE_SAB-
BREVMONTHNAME value associated with the device’s specified locale.

MMMM Month as its full name. The function uses the LOCAL_SMONTHNAME value
associated with device’s specified locale.

y Year as last two digits with no leading zero for years less than 10.

yy Year as last two digits with leading zero for years less than 10.

yyyy Full four digit year value.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: d={MM/dd/yyyy} the resulting string will contain the

slash characters separating each date element: 11/17/1967

Agentry App Development

512 SAP Mobile Platform

Parameters

@DATE
([Date String
[, Format
Tokens]])

Date String Optional string parameter; contains the date value to be returned by the function. To
format the current system date, this parameter may be set to a second call to the
DATE function. A data definition such as a property or global of type Date or Date
and Time may be used for this parameter. The time portion of the value will be
truncated. A string may be used, provided the date is in the format MM/dd/
yyyy. A numeric value may be passed for this parameter, in which case it will be

treated as the number of days before or after the Agentry epoch date.

Format Tokens Optional string parameter; contains the date format tokens that will format the
function’s return value when called in a string context. When the function is called
in any other context, this parameter is ignored. A DateString must be speci-

fied before FormatTokens can be provided.

Supported Return Types

• Integral Number
• Decimal Number
• String

@DATE_AND_TIME

The DATE_AND_TIME function returns either the current system date and time of the client
device, or the date and time value specified as an optional parameter to the function. The
function can also take an optional format parameter when called in a string context. The
function supports the integral number, decimal number, and string return types.

When called in an integral or decimal number context, the function will return the number of
seconds before (negative value) or after (positive value) the date and time of January 1, 2001 -
12:00:01 AM. This is the Agentry epoch date and time. When called in a string context, the
function will return a date and time value in the default format for the client device’s locale.

The function’s first parameter, if provided, is a string and contains the date and time value to be
returned by the function.

The second parameter is also optional and is evaluated as a string. It can contain one or more of
the date and time format tokens. The syntax for this parameter is as follows:

d={date format tokens} t={time format tokens}

Agentry App Development

Agentry App Development 513

The tokens within the curly braces will be used to format the date and time value returned by
the function:

Table 2. Rule Date Format Tokens - All date format tokens are case sensitive

Date Token Description

d Day of month as digits with no leading zero for single-digit days.

dd Day of month with leading zero for single-digit days.

ddd Day of week as three letter abbreviation. The function uses the LOCALE_SAB-
BREVDAYNAME value associated with the device’s specified locale.

dddd Day of week as its full name. The function uses the LOCALE_SDAYNAME
value associated with the device’s specified locale

M Month as digits with no leading zero for single-digit months.

MM Month as digits with leading zero for single-digit months.

MMM Month as three letter abbreviation. The function uses the LOCALE_SAB-
BREVMONTHNAME value associated with the device’s specified locale.

MMMM Month as its full name. The function uses the LOCAL_SMONTHNAME value
associated with device’s specified locale.

y Year as last two digits with no leading zero for years less than 10.

yy Year as last two digits with leading zero for years less than 10.

yyyy Full four digit year value.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: d={MM/dd/yyyy} the resulting string will contain the

slash characters separating each date element: 11/17/1967

Table 3. Rule Time Format Tokens - All time format tokens are case sensitive

Time Token Description

h Hour of day in 12 hour clock format with no leading zero for single digit hours.

hh Hour of day in 12 hour clock format with leading zero for single digit hours.

H Hour of day in 24 hour clock format with no leading zero for single digit hours.

HH Hour of day in 24 hour clock format with leading zero for single digit hours.

m Minute of the hour with no leading zero for single digit minutes.

mm Minute of the hour with leading zero for single digit minutes.

Agentry App Development

514 SAP Mobile Platform

Time Token Description

s Seconds of the minute with no leading zero for single digit minutes.

ss Seconds of the minute with leading zero for single digit minutes.

t One character time marker string, such as A or P.

tt Two character time marker string, such as AM or PM.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: t={hh:mm:ss} the resulting string will contain the

colon characters separating each time element: 10:12:32

Parameters

@DATE_AND_TIME
([Date Time String [,
Format Tokens]])

Date Time String Optional string parameter; contains the date and time value to be re-
turned by the function. To format the current system date and time, this
parameter may be set to a second call to the DATE_AND_TIME func-
tion. A data definition such as a property or global of type Date, Date and
Time, or Time may be used for this parameter. A string may be used,
provided the date and time is in the format hh:mm:ss MM/dd/
yyyy. A numeric value may be passed for this parameter, in which case

it will be treated as the number of seconds before or after the Agentry
epoch date and time.

Format Tokens Optional string parameter; contains the date and time format tokens that
will format the function’s return value when called in a string context.
When the function is called in any other context, this parameter is
ignored. A Date Time String must be specified before For-
mat Tokens can be provided.

Supported Return Types

• Integral Number
• Decimal Number
• String

@DISTANCE_MILES

The DISTANCE_MILES function takes two GPS location parameters and returns the total
distance between them in miles as a decimal number. The distance returned is always 0 or a

Agentry App Development

Agentry App Development 515

positive number. The function may return an invalid decimal value (NaN) if either of the two
GPS location parameters to the function are invalid location values.

This function is intended for use on devices equipped with a GPS unit, though it will return a
distance in miles for any two valid GPS location values.

Parameters

@DISTANCE_MILES (GPS
Location 1, GPS Location 2)

GPS Location 1 Required location parameter; contains one of the two GPS
location values between which the distance will be calculated
by the function.

GPS Location 2 Required location parameter; contains one of the two GPS
location values between which the distance will be calculated
by the function.

Supported Return Types
Decimal Number

@DISTANCE_KILOMETERS

The DISTANCE_KILOMETERS function takes two GPS location parameters and returns the
total distance between them in kilometers as a decimal number. The distance returned is
always 0 or a positive number. The function may return an invalid decimal value (NaN) if
either of the two GPS location parameters to the function are invalid.

This function is intended for use on devices equipped with a GPS unit, though it will return a
distance in kilometers for any two valid GPS location values.

Parameters

@DISTANCE_KILOMETERS (GPS
Location1, GPS Location2)

GPS Location 1 Required location parameter; contains one of the two
GPS location values between which the distance will be
calculated by the function.

GPS Location 2 Required location parameter; contains one of the two
GPS location values between which the distance will be
calculated by the function.

Supported Return Types
Decimal Number

Agentry App Development

516 SAP Mobile Platform

@GPS_LOCATION

The GPS_LOCATION function returns the GPS location of the device’s current position,
optionally based on a maximum age for the GPS data. This function can take a single optional
parameter of type integral number treated as the maximum number of seconds for the GPS
data. This function will return an invalid location value if the client device is not equipped with
a GPS unit or if the GPS unit is not accessible to the client application.

If the maximum age of the GPS data available to the function exceeds the maximum age
parameter provided to the function, the function will query the GPS unit for a current location.
The function will set all components of the location data type, including the location value
itself, as well as the number of satellites and precision as reported by the GPS unit.

Parameters

@GPS_LOCATION
([Max Age])

Max Age Optional integral number parameter; specifies the maximum age in
seconds of the GPS data for which a location should be returned. If this
parameter is not provided, the function will return the most recent
location.

Supported Return Types
Location

@IS_VALID_LOCATION

The IS_VALID_LOCATION function takes a single GPS location parameter and returns true
or false based on whether or not the value of the parameter is a valid location value. If this
parameter is a GPS location property type, the definition of that property’s precision attributes
will be used as a part of determining the parameters validity. Empty location values are always
invalid.

Parameters

@IS_VALID_LOCATION
(Location)

Location Required location parameter; contains the GPS location value to be
checked for validity. If the value of this parameter is valid, the
function will return true. If this parameter is a location property
type, the property’s precision attributes will be used to determine if
the value is valid.

Agentry App Development

Agentry App Development 517

Supported Return Types
Boolean

@JAVASCRIPT

The JAVASCRIPT function is provided to allow JavaScript logic to be embedded within a rule
definition. Included in the JAVASCRIPT function’s behavior is the ability to pass values to the
script being processed from the rule definition. The value returned by the JavaScript logic will
be the value returned by the function. This function takes one required parameter, and as many
additional parameters as needed to pass in additional values. The supported return types of the
JAVASCRIPT function are Boolean, integral number, decimal number, or string.

The first parameter to the JAVASCRIPT function is the JavaScript logic to be processed. This
parameter may be any string value from any source within the application. In most cases, it is
recommended that the rule term JavaScript Text is used, which is an available item within the
rule editor. The main purpose for this term is that it provides a large text box control to display
multiple lines of text, making it easier to write and edit JavaScript logic.

Additional parameters to the JAVASCRIPT parameter are referenced within the JavaScript
logic through the zero-based array argv[]. This array is available in all JavaScript logic
processed by the JAVASCRIPT rule function. The second parameter to JAVASCRIPT is stored
in the argv[0] element, the third is in argv[1], and so on.

The data types of the additional parameters are strings. The parameters will be converted to
this data type and will be passed to the JavaScript as such. These values can then be converted
to a different data type where necessary within the JavaScript logic.

The JavaScript engine used to process the script logic is SpiderMonkey. Note that the Data
Object Model (DOM) and the XMLHttpRequest object are not implemented as a part of
this JavaScript support.

The usage of JavaScript within rule definitions is intended to be supplemental functionality. It
is not recommended that all rules be written exclusively with JavaScript, as the processing of
such script files is less efficient than the processing of rule definitions. The main intent is to
allow a developer to implement certain pieces of logic using JavaScript wherever it is deemed
appropriate to do so.

Agentry App Development

518 SAP Mobile Platform

Parameters

@JAVASCRIPT
(JavaScript [, ...,
ArgV String N])

JavaScript Required string parameter; contains the JavaScript logic to be processed by
the JavaScript engine. In most cases, this logic will be contained in the special
rule term JavaScript text, though any data term that may be safely converted
to a string and that contains valid JavaScript may be used.

ArgV String N Optional string parameter(s); contains value(s) passed to the JavaScript and
available in the argv[] array. The value of the second JAVASCRIPT

parameter, i.e. ArgV String 1, is available within the array element

argv[0], the next optional JAVASCRIPT parameter’s value is stored in

argv[1], and so on. The members of this array are strings and should be

converted within the JavaScript logic where necessary.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

@LATITUDE

The LATITUDE function returns the latitude of a provided GPS location in degrees. The
function takes a single location parameter from which the latitude portion of the coordinates is
returned. This function will return an invalid decimal value (NaN) if the GPS location
parameter is invalid.

This function is primarily intended for use on client devices equipped with GPS units, though
it will return a latitude for any valid GPS location value provided. It does not interact with the
GPS unit directly.

Parameters

@LATITUDE (GPS
Location)

GPS Location Required location parameter; specifies the GPS location from which the
latitude will be calculated. If this is not a valid GPS location value, the
function will return an invalid decimal value (NaN).

Agentry App Development

Agentry App Development 519

Supported Return Types
Decimal Number

@LOCATION

The LOCATION function takes two decimal number parameters, treated as degrees of latitude
and longitude, and returns the GPS location for those two values. The function may return an
invalid GPS location if either the latitude or longitude parameters are invalid values.

Longitude values must be in the range -179 and 180, inclusive. Latitude values must be in the
range of -90 and 90, inclusive. The returned location value includes the GPS location, a
satellite count of 50, and a precision of 1.0.

This function is intended for use on devices equipped with a GPS unit, though it will return a
GPS location for a given valid set of longitude and latitude values.

Parameters

@LOCATION
(Latitude,
Longitude)

Latitude Required decimal number parameter; provides the latitude in degrees of the
location to be returned as a GPS location by the function. Valid latitude values
are in degrees with a range of -90 to 90, inclusive.

Longitude Required decimal number parameter; provides the longitude in degrees of the
location to be returned as a GPS location by the function. Valid longitude
values are in degrees in the range -179 to 180, inclusive.

Supported Return Types
Location

@LONGITUDE

The LONGITUDE function returns the longitude for a given GPS location. The function takes
a single location parameter from which the longitude portion of the coordinates is returned.
This function will return an invalid decimal value (NaN) if the GPS location parameter is
invalid.

This function is primarily intended for use with devices equipped with a GPS unit, though it
will return a longitude value for any valid GPS location value provided. It does not interact
with the GPS unit directly.

Agentry App Development

520 SAP Mobile Platform

Parameters

@LONGITUDE (GPS
Location)

GPS Location Required location parameter; contains the GPS location from which
the longitude in degrees is calculated by the function.

Supported Return Types
Location

@MODULE_ENABLED

The MODULE_ENABLED function returns a Boolean value indicating whether or not the
module specified by name is enabled or disabled. The function will return true if the module is
enabled. It will return false if the module is disabled or is not present. The function takes a
single string parameter containing the name of the module definition to be checked.

Parameters

@MODULE_ENABLED (Module
Name)

Module Name Required string parameter; contains the definition name of
the module to be checked by the function.

Supported Return Types
Boolean

@OFFLINE

The OFFLINE function returns a value indicating whether or not the client application is in an
off-line state. The function supports the Boolean and integral number return types. In a
Boolean context, this function will return true of the client application is in an off-line state,
and false if it is in an on-line state. In an integral number context, the function will return a
non-zero value of the client application is in an off-line state, and zero if in an on-line state.

Parameters

@OFFLINE ()

This function takes no parameters.

Agentry App Development

Agentry App Development 521

Supported Return Types

• Boolean
• Integral Number

@TIME

The TIME function returns either the current system time of the client device, or the time value
specified as an optional parameter to the function. The function can also take an optional
format parameter when called in a string context. The function supports the integral number,
decimal number, and string return types.

When called in an integral or decimal number context, the function will return the number of
seconds before (negative value) or after (positive value) the time 12:00:00 AM. This is the
Agentry epoch time. When called in a string context, the function will return a time value in the
default format for the client device’s locale.

The function’s first parameter, if provided, is a string and contains the time value to be
returned by the function.

The second parameter is also optional and is evaluated as a string. It can contain one or more of
the time format tokens. The syntax for this parameter is as follows:

t={time format tokens}

The tokens within the curly braces will be used to format the time value returned by the
function:

Table 4. Rule Time Format Tokens - All time format tokens are case sensitive

Time Token Description

h Hour of day in 12 hour clock format with no leading zero for single digit hours.

hh Hour of day in 12 hour clock format with leading zero for single digit hours.

H Hour of day in 24 hour clock format with no leading zero for single digit hours.

HH Hour of day in 24 hour clock format with leading zero for single digit hours.

m Minute of the hour with no leading zero for single digit minutes.

mm Minute of the hour with leading zero for single digit minutes.

s Seconds of the minute with no leading zero for single digit minutes.

ss Seconds of the minute with leading zero for single digit minutes.

t One character time marker string, such as A or P.

Agentry App Development

522 SAP Mobile Platform

Time Token Description

tt Two character time marker string, such as AM or PM.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: t={hh:mm:ss} the resulting string will contain the

colon characters separating each time element: 10:12:32

Parameters

@TIME
([Time String
[, Format
Tokens]])

Time String Optional string parameter; contains the time value to be returned by the function. To
format the current system time, this parameter may be set to a second call to the
TIME function. A data definition such as a property or global of type Time or Date
and Time may be used for this parameter. The date portion of a Date and Time value
will be truncated. A string may be used provided the time is in the format
hh:mm:ss. A numeric value may be passed for this parameter, in which case it

will be treated as the number of seconds before or after the Agentry epoch time.

Format To-
kens

Optional string parameter; contains the time format tokens that will format the
function’s return value when called in a string context. When the function is called
in any other context, this parameter is ignored. The Time String parameter

must be specified before Format Tokens can be provided.

Supported Return Types

• Integral Number
• Decimal Number
• String

@TIME_TICKS

The TIME_TICKS function returns the number of milliseconds since the client device booted,
excluding any time the device was in sleep or hibernation modes, or any similar modes of
operation. The function supports the integral number, decimal number, and string return types.

The difference between the return values of two separate calls to this function can be used to
calculate duration values for various purposes.

Agentry App Development

Agentry App Development 523

Parameters

@TIME_TICKS ()

This function takes no parameters.

Supported Return Types
• Integral Number
• Decimal Number
• String

@USERID

The USERID function returns the user ID value entered to log into the client application. This
value is returned as a string.

Parameters

@USERID ()

This function takes no parameters.

Supported Return Types
String

Table Functions for Rules

The Table functions category of rule functions available within the rule definition provide
access to the complex tables and data tables of an application. This category consists of three
functions. The first two return a record from a complex table or data table based on some
search criteria. The third returns the total number of records within a complex table.

@COMPLEXTABLE

The COMPLEXTABLE function searches the specified complex table for a single record and
returns a single field from that record. The parameters to this function include, at a minimum,
the name of the complex table to be searched and the value to search for within the records. If
only these two values are provided, the function will search the complex table using the table’s
primary index, returning the field upon which the primary index has been defined from the
record found.

As optional parameters to the function, the index to search upon and the field to return from the
matching record can be specified by passing in the definition names of each. While optional,
these parameters are provided in most use cases.

An additional variation on the parameters passed to the function is in the situation when a
search index is specified, and that index is a child to another index within the table. In this

Agentry App Development

524 SAP Mobile Platform

scenario, additional search values must also be provided to the function. The requirement is
for each index, starting with the one specified up to the top-level index (one that has no parent
index) in the structure, there must also be a corresponding search value provided to the
function.

As an example, assume a complex table with three indexes defined: A, B, and C. Index C is a
child index to B, and B in turn is a child index to A, which is a top-level index in the table.
When searching this table with the COMPLEXTABLE function, if index C is specified as the
search index, search values for indexes A, B, and C must be provided. During the search, the
function will begin by finding records that match on index A, then within that set those records
that match index B, and finally within that sub-set the first record that matches index C.

Parameters

@COMPLEXTABLE
(Table Name, Search
Value, [Parent Search
Value N,] [Search Index,
Return Field])

Table Name Required string parameter; contains the name of the complex table to
be searched by the function.

Search Value Required string parameter; contains the value used to search the
complex table records.

Parent Search Value N String parameter(s); required and specified only when Search
Index is a child index. One Parent Search Value must

then be specified for each index above the Search Index in the

index hierarchy.

Search Index Optional string parameter; provides the name of the index within the
complex table used by the function to locate the desired record based
on the Search Value and possibly Parent Search
Values. If this parameter is not provided, the primary index of the

complex table is used by the function.

Return Field Optional string parameter; provides the name of the complex table
field whose value is returned from the record found by the function.
If this parameter is not specified, the field for which the primary
index of the complex table is defined is the default field value re-
turned.

Supported Return Types

• Boolean

Agentry App Development

Agentry App Development 525

• Integral Number
• Decimal Number
• String

@TABLE

The TABLE function searches a data table for a record with the specified key value and returns
the value field for the matching record. The search performed by this function is a record by
record search, attempting to match the provided search value with the key field of each record.
Data tables contain no indexes or guaranteed record order, and therefore the search is
performed in a first to last manner. Data tables with large numbers of records will take longer
to search, both by the TABLE function as well as any other methods. The value field returned
is converted to the data type of the function’s context, which may be integral number, Boolean,
or string.

Parameters

@TABLE (Table
Name, Search String)

Table Name Required string parameter; contains the name of the data table the function
will search.

Search String Required string parameter; contains the key value the function will use to
search the data table records.

Supported Return Types

• Boolean
• Integral Number
• String

@TABLE_COUNT

The TABLE_COUNT function takes a single string parameter that is assumed to be the name
of a data table within the application. The function counts the number of records in the named
table and returns the result. This function supports the integral number return type.

Agentry App Development

526 SAP Mobile Platform

Parameters

@TABLE_COUNT
(Table Name)

Table Name Required string parameter; contains the name of the data table whose
total number of records is to be returned. If this parameter contains a
name that does not match any defined data tables, the function will
return zero.

Supported Return Types
Integral Number

Syclo Data Markup Language

When synchronizing data between the mobile application and the back end system, it is
necessary to have access to the mobile application’s data values. This access is provided in
Agentry using the Syclo Data Markup Language, or SDML. The SDML is a markup language
consisting of tags that provide access to the data values of the mobile application.
Additionally, the SDML includes a full set of functions, or function tags, that can be used to
perform logical operations in relation to this values or to drive the overall logic the Agentry
Server will execute against the back end system.

The SDML tags used during synchronization are a part of the text within the scripts for step
definitions defined for SQL Database, HTTP-XML, and File system connection types. Also,
the synchronization components of data tables and complex tables for each of these system
connection types can contain SDML. In addition to SQL Step definitions, other .sql script
files run by the Server may also contain SDML tags. Steps defined for Java Virtual Machine
system connections also include the ability to access SDML tags, but these tags may not be
contained directly in the source code of the Java Steplet files used by these steps.

The Agentry Server will pre-process the script files of steps containing SDML markup. This
processing is referred to as tag expansion. Each tag within the script is expanded, with the
value it represents replacing the tag at the exact position of that tag within the file. Function
tags are expanded with the results of their expansion being placed in the exact position of the
function call within the file. Once the tag expansion has completed, the resulting text is
submitted to the back end system for processing.

The two categories of tags within the SDML are data tags and function tags. Data tags
represent data values available to the script file based on when it is executed. This information
must be known when writing the script in which the SDML will be contained. For step
definitions the values in scope are dictated by the step usage definition running them.
For .sql scripts run by the server, but not a part of the step definition, the values in scope will
vary depending on how that script is used. Certain values are globally available, such as the
user ID as entered by the user to log into the Agentry Client.

Agentry App Development

Agentry App Development 527

Function tags are globally available, with certain exceptions. Function tags provide the
logical, mathematical, string manipulation, and other similar functionality to the SDML.
Function tags can take values passed in as arguments, parameters, or expressions. These
values are processed by the function during tag expansion, with the resulting value of the
function call being placed within the script.

Following is a basic example of a simple SQL statement containing SDML data tags:

SELECT
 A.FIELD1,
 B.FIELD2,
 C.FIELD3,
FROM
 TABLEA A,
 TABLEB B,
 TABLEC C
WHERE
 A.NAME = ‘<<user.agentryID>>’ AND
 A.ACCTNUM = ‘<<object.acctnum>>’ AND
 B.ACCTNUM = A.ACCTNUM AND
 C.ACCTNUM = B.ACCTNUM

In this example, the value <<user.agentryID>> is replaced with the user ID as entered
when the user logged into the Agentry Client. The data tag<<object.acctnum>> will be
replaced with the value of the acctnum property of the object currently being processed.

SDML Data Tags Overview

Data tags provide the access to the production data of the application within the
synchronization components of the mobile application. This includes access to property
values, global definition values, query constants, and client and server information system
information. Each of these items just listed are referred to as the data tag’s data source.

In addition to the tag’s data source, all data tags also have a certain data type. The data source
and the data type of a tag combine to give the data tag its overall behavior. This behavior
includes how the value is expanded during data tag expansion, as well as the parameters that
the tag will support. By and large, the data tags created for properties are the tags that have the
most complex behavior.

Data tags that provide access to data other than from properties or globals are strings. Those
data tags that are based on a property definition are one of several data types, based on the
property data type.

Data Tag Data Types
Within the SDML, all data tags have a data type. This data type affects how the data tag is
processed during tag expansion. Do not confuse the data tag’s type with the data type for that
same value in the back end system. When the Agentry Server has completed tag expansion the
resulting values within the script are plain text. At this point, the methodology for denoting the
value’s data type will depend on the type of back end system in use.

Agentry App Development

528 SAP Mobile Platform

As an example, for a database system connection, data tags with a data type of date and time
will be expanded with the date and time conversion function for that database as a part of the
text, as in:

<<object.statusDate>>

If this data tag is a date and time and used in a script for an Oracle database, it would expand
to:

to_date(‘01/12/2004 14:23:45’, ‘mm/dd/yyyy hh24:mi:ss’)

As you can see, the date and time value has been wrapped in the to_date function call for
Oracle, which converts string values into dates and times.

The data types for data tags are as follows. Note that all data types other than string are
applicable only to tags for global and property values:

• String
• Integral Number
• Decimal Number
• Boolean
• Date
• Time
• Date and Time
• Signature

The Scope of Data Tags
The data tags within the SDML may or may not be valid in one area verses another. The scope
of a data tag will vary from one to the next. Certain tags are only valid in steps used by a fetch.
Others are only available in steps used by transactions. Still others are available globally. It is
important to note that for scripts within step definitions, the scope for a data tag is determined
by the type of step definition and also the step usage definition referencing the step to be
processed at run time. For example, the data tags that are in scope for a step used by an object
read step will be different from the tags that are in scope for a step used by a transaction’s
server update step. The terms used to describe a data tag’s scope are:

• Global: A data tag with Global scope is valid in all scripts processed by the Agentry
Server. NOTE: Do not confuse the term Global used here to denote a tag’s scope with the
definition type global. Values for a global definition do have a global scope. However,
there are other data tags that also are globally available to the application’s
synchronization components.

• Definition-Type: A data tag with the Definition-Type scope is one that is in scope only for
a certain type of definition, such as a Transaction or Object. The Type portion of this scope
specifies the definition type for which the data tag is applicable.

• Definition: A data tag with the Definition scope is one that is only in scope for instances of
a specific definition. For example, the data tags in scope for an Object named Customer

Agentry App Development

Agentry App Development 529

will be different than those for an Object named Order. Data tags that have a Definition
scope are those that provide access to the properties of an object.

<<user>> Data Tag Container

The user data tag is a container tag for several user-realted values. Each of these values is
represented by a member tag within the user containter. Of these members, two contain
members of their own. All members of the user data tag container are available in all scripts
processed by the Agentry Server.

Table 5. <<user>> Data Tag Members

Tag Name Description

<<user.name>> Returns the name of the client user. By default this will be the ID entered
by the user to log into the client. This value may be overridden.

<<user.deviceID>> Returns the device ID for the client device upon which the Agentry Client
is running. This value is set by the original equipment manufacturer.

<<user.agentryID>> Returns the user ID entered to log into the Agentry Client. This value
cannot be overriden during synchronization.

<<user.client>> A data tag container within <<user>>. Member data tags provide infor-
mation about the client application and client device as provided by the
Agentry Client during synchronization.

<<user.info>> A data tag container within <<user>>. Member data tags are variable and
set during synchronization based on the logic of the mobile application.

<<user.client>> Data Tag Container

The <<user.client>> data tag container is a member of the <<user>> container.
Members of <<user.client>> provide information about the client device’s hardware
and software, and information about the Agentry Client application.

Many of the member data tags of <<user.client>> are valid only on client devices
running a Windows operating system. Such members names begin with the text Win_ and will
return empty strings for any other client device type. This members providing information
about the Agentry Client software or the host system are invalid for web browser clients.

Table 6. <<user.client>> Member Data Tags

Tag Name Description

<<user.client.time>> Returns the date and time of the client device
when the transmission between the Agentry
Client and Server began.

Agentry App Development

530 SAP Mobile Platform

Tag Name Description

<<user.client.Language>> Returns the two character abbreviation for
the client device’s configured locale.

<<user.client.Win_MajorVersion>> Returns the major version number of the
Windows operating system installed on the
client device.

<<user.client.LocaleID>> Returns the local ID for the configured lo-
cale of the client device.

<<user.client.Win_ServicePack>> Returns the service pack installed on the
Windows operating system on the client de-
vice.

<<user.client.timeDifference>> Returns the difference in time’s between the
client device and the Agentry Server’s host
system. This value is represented in number
of seconds where negative values indicate
the client is behind the server.

<<user.client.Win_MinorVersion>> Returns the minor version number of the
Windows operating system installed on the
client device.

<<user.client.FirstLogin>> Returns the text value true or false based on
whether the current transmit is the result of
the user’s initial login to the Agentry Client.
This value is representative of the fist time a
user transmits from a given client device.

<<user.client.Platform>> Returns the platform type of the client de-
vice.

<<user.client.timeZone>> Returns the time zone to which the client
device has been set.

<<user.client.timeZoneBias>> Returns the difference in seconds between
the client’s time zone and Greenwich Mean
Time (GMT).

<<user.client.screenHeight>> Returns the height of the client device’s
screen in pixels.

<<user.client.screenWidth>> Returns the width of the client device’s
screen in pixels.

Agentry App Development

Agentry App Development 531

Tag Name Description

<<user.client.PreviousUser>> Returns the text true or false based on
whether the current synchronization pro-
cessing is a part of a previous user transmit
resulting from a user change on the Agentry
Client.

<<user.client.Win_ComputerName>> Returns the network name of the client de-
vice.

<<user.client.Win_PlatformID>> Returns the platform ID of the client device.
The specific value is dependent on the sys-
tem and OEM settings.

<<user.client.Country>> Returns the abbreviated country name for
the client device, as indicated by the de-
vice’s locale settings.

<<user.client.Win_OS>> Returns the type of Windows operating sys-
tem (e.g. Mobile, XP, etc.) of the client de-
vice.

<<user.client.clientTime>> Returns the current time of the client device
when the transmission began.

<<user.client.ClientVersion>> Returns the Agentry Client executable’s
Agentry version number, such as 6.0.0.0.

<<user.client.Win_UserName>> Returns the Windows account login under
which the client device is currently running.
This tag is only valid on Windows devices
where an account name is entered. It will
return an empty string for all other device
types.

<<user.client.Win_BuildNumber>> Returns the build number of the Windows
operating system installed on the client de-
vice.

<<user.client.clientTimeZone>> Returns the time zone configured on the cli-
ent device.

<<user.client.WinCE_Platform>> Returns the platform type of the client de-
vice. This value is valid only for client de-
vices running a mobile version of the Win-
dows operating system.

Agentry App Development

532 SAP Mobile Platform

Tag Name Description

<<user.client.TestEnvironment-
Version>>

Returns the version number of the Agentry
Test Environment. This value is valid only
when the client is the ATE. Returns an emp-
ty string for all other clients.

<<user.client.Win_ProcessorLe-
velCode>>

Returns the processor level code of the client
device’s processor. This value is dependent
on the original equipment manufacturer.

<<user.client.Win_ProcessorRevi-
sion>>

Returns the processor revision of the client
devices processor. This value is dependent
on the original equipment manufacturer.

<<user.client.clientTimeZoneDif-
ference>>

Returns the difference in seconds between
the client’s time zone and Greenwich Mean
Time (GMT).

<<user.client.Win_ProcessorArch-
titecture>>

Returns the processor architecture of the
client device’s processor. This value is de-
pendent on the original equipment manu-
facturer.

<<user.client.Win_ProcessorArch-
itectureID>>

Returns the processor architecture ID of the
client device’s processor. This value is de-
pendent on the original equipment manu-
facturer.

<<user.client.Win_Processor-
Count>>

Returns the number of processors on the
client device.

<<user.client.isDaylightSav-
ings>>

Returns the text true or false based on
whether or not the client device is currently
in daylight savings time.

<<user.client.xmitConfigGroup>> Returns the defined group of the transmit
configuration definition selected by the user
for the current transmission.

<<user.client.xmitConfigName>> Returns the name of the transmit configura-
tion definition selected by the user for the
current transmission. This is the internal
definition name.

Agentry App Development

Agentry App Development 533

<<user.info>> Data Tag Container

The <<user.info>> data tag container is a special data tag provided to allow for user-
specific data to be captured at the beginning of the synchronization process and made
available globally to all other synchronization processing. The members of this container tag
are determined based on values returned from the back end system. The methodology for this
depends on the type of system connection for the back end system.

Members within the <<user.info>> container are named when retrieved. Those values
are then referenced using the syntax:

<<user.info.tagName>>

The members within this container tag are retrieved using either SQL queries run from the
SqlBE.ini section [UserInfo]; or they are set via an HTTP-XML system connection’s
response mappings. Specifically, the response mappings within the validate user requests for
this system connection type.

When creating these tags via a SQL Database system connection, the column in the return set
of the query retrieving these values will be the name for the data tag. When creating these tags
using the HTTP-XML system connection, a part of the response mapping definition is the
attribute containing the tag’s name.

For both system connection types, the tags available in the <<user.info>> container are set
immediately following user validation and are available to all synchronization processing that
takes place after this point.

When a tag is added to this container in one system connection it will be available to
synchronization components for all other system connections.

<<server>> Data Tag Container

The <<server>> data tag container includes members that return values and information about
the Agentry Server instance for the current transmission. Each of these tags will return values
specific to the current Server instance for the current transmission.

Table 7. <<server>. Member Data Tags

Tag Name Description

<<server.ad-
min.name>>

Returns the value configured in the agentry.ini server con-

figuration file section [Server]. The configuration option ad-
ministratorName contains the value returned by this tag.

<<server.ad-
min.phone>>

Returns the value configured in the agentry.ini server con-

figuration file section [Server]. The configuration option ad-
ministratorPhone contains the value returned by this tag.

Agentry App Development

534 SAP Mobile Platform

Tag Name Description

<<server.ad-
min.email>>

Returns the value configured in the agentry.ini server con-

figuration file section [Server]. The configuration option ad-
ministratorEmail contains the value returned by this tag.

<<server.system-
Name>>

Returns the value configured in the agentry.ini server configuration
file section [Server]. The configuration option systemName con-

tains the value returned by this tag. If this configuration option is not
set or is not present, the default return from this tag is Agentry Server.

<<server.serial-
Number>>

Returns the serial number entered when the Agentry Server was in-
stalled. This value will be unique for all Server instances in a multi-
server production implementation.

Data Tags for Application Globals

The values of any application global definition can be returned using SDML data tags. The
syntax for a global data tag is as follows:

<<groupName.globalName [length=n]>>

The groupName is the defined group for the global definition. The global name is internal
definition name of the global. These tags will return the current value of the global definition.
If the global value has been overridden the override value will be returned. References to
global data tags in synchronization components processed by the Agentry Server prior to the
global override processing will return the global’s defined value.

All global data tags are strings, regardless of the data type of the global definition. Global data
tags accept a single named parameter specifying the length of the string to return from the
global. When a length is specified the data tag will return no more characters than specified in
the length parameter, counting from the left. Any characters beyond the specified length will
be truncated from the returned value.

Query Constants Files and Data Tags

Installed with the Agentry Server are two query constants files provided for use with SQL
Database system connections: Oracle_sd.ini and SqlServer_sd.ini. Each is
intended for use with the database type for which they are named. The contents of these files
include a single configuration section, [Database], within which are a set of configuration
options listed as key and value pairs. Within each file exist the same keys. The values for these
items are different in each file.

The purpose of these values is to provide support for applications which may synchronize with
the same back end system, but which may be driven by different database types. These files
support query reuse between these systems by providing expressions matching a given

Agentry App Development

Agentry App Development 535

vendors variation in support of the ANSI SQL and database-type specific functions. The
contents of these files are listed next, with the value for each key listed for both files:

Table 8. Query Constant Files Keys and Values

key Oracle_sd.ini Value SqlServ-
er_sd.ini Value

name Oracle SqlServer

getSystemTime sysdate getdate()

timeStampFormat to_date('%m/%d/%Y %H:%M:
%S', 'mm/dd/yyyy HH24:MI:SS')

'%m/%d/%Y %H:
%M:%S'

dateFormat to_date('%m/%d/%Y', 'mm/dd/
yyyy')

%m/%d/%Y'

timeFormat to_date('%H:%M:%S',
'HH24:MI:SS')

'%H:%M:%S'

tempdate to_date('01/02/1901 12:00:00',
'mm/dd/yyyy HH24:MI:SS')

convert(DATETIME,
'01/02/1901
12:00:00')

substring substr substring

stringcat || +

charFunction chr char

nullFunction nvl isNull

singleRow from dual null

unicodePrefix N N

terminalErrorCodes 00028;01001;01012;03113;0311
4;

12203;12500;12505;12535;1257
1

0;1;2;4;5;11;53

retryWithChangeErrorCo-
des

null null

retryWithoutChangeEr-
rorCodes

00060 00060

Agentry App Development

536 SAP Mobile Platform

key Oracle_sd.ini Value SqlServ-
er_sd.ini Value

fatalWithMessageErrorC-
odes

null null

fatalWithoutMessageEr-
rorCodes

null null

Each of these values is specific to a database type. The key for each value is available using
SDML data tags using the syntax:

<<database.keyName>>

These data tags will return the value as specified in the query constant file in use for the SQL
Database system connection. The file used by a system connection is set in the [SQL-n]
section of the agentry.ini file by setting the configuration option
queryConstantFiles.

This file is processed by the Server at startup and data tags are created and made available to all
SQL scripts processed by the Agentry Server.

Other values may be added to this file within other sections. The syntax for referencing these
values is:

<<sectionName.keyName>>

Following is a description of each of these data tags intended purpose:

Tag Name Description

<<database.name>> Returns the name of the database type for
which the file was created. This value should
not be altered in the source file

<<database.getSystemTime>> Returns the database-specific system date
and time function.

<<database.timeStampFormat>> Returns the database-specific date and time
tokens used to format date and time values.
This setting is used by the Agentry Server
when expanding date and time data tags and
should not be altered in the source file. This
may be passed to the format parameter for
date and time values within data tags.

Agentry App Development

Agentry App Development 537

Tag Name Description

<<database.dateFormat>> Returns the database-specific date tokens
used to format date and time values. This
setting is used by the Agentry Server when
expanding date data tags and should not be
altered in the source file. This may be passed
to the format parameter for date and time
values within data tags.

<<database.timeFormat>> Returns the database-specific time tokens
used to format date and time values. This
setting is used by the Agentry Server when
expanding time data tags and should not be
altered in the source file. This may be passed
to the format parameter for date and time
values within data tags.

<<database.tempdate>> Returns the date and time of January 2, 1901,
12:00:01 am in the database-specific format
for dates and times. This value can be used in
synchronization when last update or other
date and time values for data definitions con-
tain invalid date and times. If a different date
and time is necessary it can be altered in the
query constants file.

<<database.substring>> Returns the database-specific function for
extracting a substring from a source string.

<<database.stringcat>> Returns the database-specific character for
concatenating string values.

<<database.charFunction>> Returns the database-specific function for
converting values to the character or VAR-
CHAR data type.

<<database.nullFunction>> Returns the database-specific function used
to test values for null and optionally replace
those values with a default.

<<database.singleRow>> Returns the required FROM portion of a
query to select values from nothing.

<<database.unicodePrefix>> Returns the prefix to append to values to in-
dicate they are encoded in unicode.

Agentry App Development

538 SAP Mobile Platform

Password Data Tags

The following two data tags are available only in SQL Scripts run from the
[ChangePassword] section of the SqlBE.ini configuration file of the Agentry Server.
They contain the old and new passwords for a user when that user is performing a password
change from the Agentry Client.

Tag Name Description

newPassword Returns the new password entered by the user when changing the password
on the Agentry Client.

oldPassword Returns the previous password being change by the user when changing the
password on the Agentry Client.

Complex Table Data Tags

The synchronization components for complex tables have specific data tags available
providing information about the definition and its current data. These include whether or not
the table is in a rebuild state, the last update date and time indicating when the table was last
synchronized on the client, and the name of the table. These tags are in addition to those that
are globally available.

Tag Description

<<name>> Returns the internal name of the complex table definition as entered in the
application project.

<<rebuild>> Returns true or false, indicating whether or not the table is in a rebuild state. This
is intended for use in synchronization to determine if the synchronization should
retrieve only modifications to the table’s data, or if all records for the table
should be retrieved. Returns true when a change to the complex table definition
has been published to the Agentry Server; if the synchronization logic includes
the data tag <<user.agentryID>> and the value of that tag changes from the
previous transmit; or if the tables force reload logic indicates the table should be
in a rebuild state.

<<lastUp-
date>>

Returns the date and time provided by the client when the complex table was last
synchronized. By default this value is provided by the Agentry Server based on a
query of the back end system. However, synchronization of the complex table
should include retrieving this value with the table’s data. The latest date and time
retrieved during that process will be used as the complex table’s last update
value. This tag supports the use of the named parameter format to format the

time and date using date and time tokens.

Agentry App Development

Agentry App Development 539

Data Table Data Tags

The synchronization components for data tables have specific data tags available providing
information about the definition and its current data. These include the last update date and
time indicating when the table was last synchronized on the client, and the name of the table.
These tags are in addition to those that are globally available.

Tag Description

<<name>> Returns the internal name of the data table definition as entered in the application
project.

<<lastUp-
date>>

Returns the date and time provided by the client when the data table was last
synchronized. By default this value is provided by the Agentry Server based on a
query of the back end system. However, synchronization of the data table should
include retrieving this value with the table’s data. The latest date and time re-
trieved during that process will be used as the data table’s last update value. This
tag supports the use of the named parameter format to format the time and date

using date and time tokens.

Property Data Tags Overview

The data tags for property values within the application have unique, additional behaviors to
the other data tags within Agentry. There are common items to all property data tags, including
access to raw values and indicator of the property value in relation to its defined special value.
There are also behaviors for data tags specific to the data type of the property the tag
represents. Another aspect unique to property data tags is their scope. The property values
available within the SDML will vary depending on which synchronization definition is
referencing the tag.

The first item to be aware of with property data tags is that they are only available in step
definitions. The specific properties in scope for a step will depend on which step usage
definition is running the step during synchronization. No property data tags are available to
any other synchronization component beyond the step definitions of a module.

Property Data Tag Parameters
Data tags for properties, regardless of data type, support two parameters specific to properties.
These are the .isSpecial and .raw parameters. The syntax for these parameters is as
follows:

<<object.propertyName.isSpecial>>
<<object.propertyName.raw>>

The .isSpecial parameter returns a true or false value indicating whether or not the
current property value is equal to the property’s defined special value. True indicates it is equal

Agentry App Development

540 SAP Mobile Platform

to the special value. False will be returned when the property value is anything other than the
special value or if the property does not have a special value.

The .raw parameter is available to all property data tags regardless of data type, though its
exact behavior will be data type-specific. The purpose of the .raw parameter is to return the
value of the property without any formatting of the data. By default many of the property data
tags will return the value in a formatted manner befitting the data type of the property. As an
example, string properties are automatically dequoted during expansion. If the .raw
parameter is used, the value will not be dequoted during expansion. Other data types have
different behaviors related to the formatting and therefore the value returned by .raw will be
different for each data type.

Data Tags for Fetch Client Exchange and Server Exchange Steps
Steps run by fetch definitions will have access to all properties defined for the fetch. Object
key properties for the object instances in the collection targeted by the fetch may also be
available depending on how the step usage definition’s Run attribute setting.

The following lists describe the data tags in scope for each of the fetch step usage definition
Run attribute settings.

Table 9. Run Attribute: Run One Time

Tag Description

<<collectionName>> This tag returns the collection targeted by the
fetch. This tag may be passed to the <<fore-
ach...>> function tag to iterate over the object
instances within the collection. For each object
instance, the tags available include the key prop-
erty of the object type, and the last update (<<las-
tUpdate>>) value of each object.

Either:

• <<fetch.propertyName>>
• <<fetchName.propertyName>>

Any properties defined within the fetch definition
are available using the syntax shown.

<<fetch.messageNumber>> This data tag returns the fetch’s message number
as recorded in the messages.log file gen-

erated by the Agentry Server. This is typically
used for debugging and similar purposes.

Agentry App Development

Agentry App Development 541

Table 10. Run Attribute: Run Once per Object

Tag Description

<<object.keyPropertyName>> This tag returns the key property of the object
instance currently being processed by the step.

<<lastUpdate>> This tag returns the last update value of the object
instance currently being processed by the step.

<<fetch.messageNumber>> This data tag returns the fetch’s message number
as recorded in the messages.log file gen-

erated by the Agentry Server. This is typically
used for debugging and similar purposes.

Data Tags for Transaction Step Usage Definitions
All step usage definitions within transactions include the same data tags within their scope.
Following is a list of these data tags:

Tag Description

<<timestamp>> Returns the date and time when the transaction was ap-
plied on the Agentry Client. This value is obtained from
the client device.

<<transaction.property-
Name>>

Returns the value of the transaction property, proper-
tyName. All properties within a transaction are availa-

ble via data tags.

<<objectName.keyProper-
tyName>>

Returns the key property of the object targeted by the
transaction. The object name must be used in this syntax,
as the generic object designation is not valid in this

context.

<<transaction.message-
Number>>

Returns the value of the transaction’s message number as
recorded in the messages.log file generated by the

Agentry Server. Typically used for debugging and similar
purposes.

Property Data Tags for Push Step Usage Definitions
Steps run as push retrieval and push removal steps are either once per poll period or once per
user per poll period. For either run setting, these steps do not have access to object properties
and therefore have no available property data tags.

For a given poll, push read steps can be run once, once per user, once per object, or once per
collection object. When run once per object, the steps will be able to use property data tags to
access the key property of any object for the target collection created by the push retrieval steps
or previous push read steps. When run once per collection object, the data tag for that child

Agentry App Development

542 SAP Mobile Platform

object type’s key property will be available to the step. The child objects in the collection must
have been defined before the step that needs to reference the key property.

Push response and error steps are both always run once per object. Therefore these steps have
access to the key property of the object for which they are run.

Property Data Tags for Service Event Step Usage Definitions
The step usage definitions for service events include read steps, data state steps, update steps,
and error handling steps.

Service event read steps can be defined to run once or to run once per object. When defined to
run once, the read step will have access to the collection created by the service event’s
synchronization components.

When defined to run once per object, the read steps the property data tags for the object type
will be available. These will expand to the property value of the object instance currently be
processed by the error handling step. For all of these values the syntax of the SDML property
data tag is <<object.propertyName>>.

Data state steps and update steps within service events are always run once per object and will
have access to all property values of the object instance being processed.

Error handling steps can be defined to run one time or run once per object. When defined to run
one time, the error handling steps will have access to the object collection being synchronized
by the service event. When defined to run once per object, the property data tags for the object
type will be available. These will expand to the property value of the object instance currently
be processed by the error handling step. For all of these values, the syntax of the SDML
property data tag is <<object.propertyName>>.

Property Data Tags for Object Read Steps
Object read steps are run as a part of downstream synchronization that may occur for various
synchronization processes, including fetch, push, service event, and transaction processing.
Also, the read step itself may be defined to run one time or run once per object. Both of these
aspects of an object read step can impact the property data tags available to the step.

When the object read step is run after a fetch, any fetch properties will be in scope for the
object read step. These must be referenced as <<fetch.propertyName>>.

For all four situations, the read step will be run either in the context of a target collection, for a
specific object instance, or for an instance of an object in a collection property of the object
definition that contains the read step, based on the run attribute.

When defined to run one time the object read step will have access to the collection targeted by
the fetch, push, or service event run immediately before the object read steps. If run one time
the object read steps will have access to the key property and last update values for the object
currently being processed. If defined to run once per collection object, the properties of the
object collection property available to the read step include the key property of the child
object, as well as the key property of the step’s parent object. In this case, both objects must be

Agentry App Development

Agentry App Development 543

referenced by their definition names, as in: <<customer.customerID>>,
<<order.orderID>>.

Data Tags and Property Data Types

The data tags to access property values are different from other data tags. The basics of there
use are the same as all data tags. However, data tags for properties include additional
parameters to access the property values and those parameters depend upon the data type of
the property they are referencing.

Boolean
A Boolean property will result in a Boolean data tag. Like their property counterparts,
Boolean data tags are either true or false. When passed as an argument to a function tag, there
are special syntactical rules that apply to Boolean data tags.

When data tag expansion occurs, a Boolean data tag will result in either the text “true” or
“false.” Because of this fact, when a Boolean data tag is used as a parameter to a function tag, it
should not be enclosed in markers (<< and >>). When a Boolean is not enclosed in these
markers, the value of either true or false is passed to the function, rather than the text values of
“true” or “false”. This is important since, if the text values are passed to a function that is
expecting a Boolean value, it will always consider the value passed in to be true. Remember
that true is a value and false is the absence of a value. The text “false” is a value and, thus, will
be treated as true in the context of a Boolean parameter.

When a Boolean data tag is passed as an argument to a function, it is likely that the Boolean
value of true or false is desired, not the text. In this case, you omit the markers around the tag.
This will result in the Boolean value of the tag being passed as an argument to the function. So,
in the following examples:

<<if <<object.BooleanProp>> ... >>

<<if object.BooleanProp ... >>

The first will result in the Boolean data tag being expanded to result in:

<<if “false” ... >>

This will result in the text value of “false” being passed to the function.

The second line will result in the Boolean value of true or false being passed to the
<<if...>>, rather then the text “true” or “false.” Note that referencing a Boolean without
the markers is only valid when the Boolean tag is passed as an argument to a function.

Agentry App Development

544 SAP Mobile Platform

Strings
There are four property data types that will result in a string data tag. These property data types
include:
• String
• Complex Table Selection
• Data Table Selection
• External Data (provides access to the file name and location, not the file data)
The value of the item the data tag provides access to will be placed in the script at expansion
time. There is, however, a minor modification to the value that will occur for scripts used in
SQL system connections. Any single quotes within the string will be escaped for the database,
that is, a second single quote will be placed before the existing quote. This is the standard
escape character in most database systems and is necessary as the single quote is used to
denote the beginning and end of a string in a SQL statement. So, when expanded, if a string
data tag contains the value:

The customer’s car has front end damage.

the value in the script when data tag expansion occurs will be:

The customer’’s car has front end damage.

Note the two single quotes in place of the previously single quote (used as an apostrophe here)
within the word “customer’s”. As explained in the chapter on function tags, the
<<dequote...>> function also provides this ability. However, for string data tags with a
property as its data source, this behavior is automatic.

Another optional behavior in string property data tags is the ability to truncate the value, if
needed. This is accomplished through the optional named parameter, length=. The syntax for
this is as follows:

<<parent.stringDataTag length=n>>

Denoting this data tag in this manner, the value of the string will be truncated to the length of n.
This truncation occurs before any quotes are escaped, so that the extra quotes added in that
process are not affected by the truncation. As stated, length is an optional parameter and, if not
provided, the entire value of the string will be placed in the script file during data tag
expansion.

Another optional parameter to a property string data tag is raw. This parameter will return the
value of the string without escaping the quotes it may contain. The syntax for this is:

<<object.stringDataTag.raw>>

Integral and Decimal Numbers
Integral data tags result from properties of the types Integral Number and Identifier. Decimal
data tags result from properties of type Decimal Number. During data tag expansion, the value

Agentry App Development

Agentry App Development 545

of these tags are placed in the script without modification. In this respect these two data types
are treated the same. It is when these values are passed as arguments to functions where the
difference between the two types becomes important.

Integral Number data tags will contain whole number values. These data tags can be used with
the math function tags that accept integral numbers. Many of the function tags that can accept
the use of numerical values have a type parameter. When using this type of data tag, the value
to the type parameter of the function is Int.

Decimal Number data tags will contain numerical values that have a fractional portion, such as
2.4 or 3.00. These data tags can be used with math function tags that accept decimal numbers.
Many of the function tags that accept the use of numerical data, math tags as well as others, can
accept a type parameter. When using this type of data tag, the value for the type parameter is
Float.

Date
Date data tags contain a calendar date value. During data tag expansion of a SQL script, date
tags are expanded in such a way that the resulting text is enclosed in the conversion function of
the target database system that converts string values to date values. So, if a date data tag,
StatusDate, contains the value 01/25/2006, then the data tag

<<transaction.StatusDate>>

in an Oracle database will be expanded to the value

to_date(‘01/25/2006’, ‘MM/DD/YYYY’)

It is possible to get just the date value as a string by using the raw parameter, which is available
to all date data tags. Continuing with the previous example, the data tag

<<transaction.StatusDate.raw>>

will be expanded to the value

01/25/2006

This can be useful if the date value is to be within some sort of string value within the database,
such as a description. In this case, you do not want to convert the value to a database date
format, but rather use it as a string.

Time
Time data tags contain a time of day value, in a 24 hour format. When data tag expansion
occurs in a SQL script, the resulting value is enclosed in the conversion function for the target
database system that is used to convert string values into times. So, if a data tag named
EndTime contains the value 13:10:43, then the data tag

<<transaction.EndTime>>

Agentry App Development

546 SAP Mobile Platform

in an Oracle database will be expanded to

to_date(‘13:10:43’, ‘HH24:MI:SS’)

It is possible to access the value as a string, without the conversion function, by using the
parameter raw, which is available to all Time data tags. Using the previous example data tag

<<transaction.EndTime.raw>>

will expand to the value

13:10:43

This is used whenever you wish to access just the time string, without converting it to the
database time format.

Date And Time
Date and Time data tags are, in essence, a combination of the Time data type and the Date data
type. This data tag type contains the calendar date and time of day in a single value. When data
tag expansion occurs in a SQL script, the resulting value is enclosed in the conversion function
for the target database system that is used to convert string values into dates and times. If a data
tag named InspectionDateTime contains the value 02/13/2005 13:20:35, then the data
tag:

<<transaction.InspectionDateTime>>

in an Oracle database will be expanded to

to_date(‘02/13/2005 13:20:35’, ‘MM/DD/YYYY HH24:MI:SS’)

As with other data types, it is possible to access the string value without wrapping it in a
conversion function, by using the parameter raw, which is available in all Date and Time data
tags. Using the previous example data tag

<<transaction.InspectionDateTime.raw>>

will expand to

02/13/2005 13:20:35

This is used whenever just the date and time value is desired, without wishing to convert it
before being processed by the enterprise system.

Formatting Dates and Times
These three data types that deal with dates and times support the use of the named parameter
format=. This parameter accepts one or more of several date and time tokens. These tokens are
combined to provide a picture of how the data should be placed in the file. When a date, time,

Agentry App Development

Agentry App Development 547

or date and time data tag contains the format parameter, the default format is overridden,
including the conversion function within which the values are normally contained.

Following is a list of the tokens supported by these data tag types. In each of the examples the
date and time is 02/07/2001 10:09:03 AM. The Example column contains the value for the
token listed. The Short Form contains the example of the value that results by preceding the
token with a hyphen, as in: %-m
Token Description Example Short

Form

%a The three letter abbreviation of the day. Wed We

%A The name of the day. Wednesday Wed

%b The three-letter abbreviation of the month. Feb n/a

%B The name of the month. February Feb

%d The date of the month. 07 7

%j The Julian date, with a leading 0. 038 38

%m The two digit month (01-12) 02 2

%w The numerical day of the week (0-6 Sunday = 0) 3 n/a

%y The two-digit year 01 1

%Y The four-digit year. 2001 n/a

%R or %r The raw format of the value 36543,37 n/a

%H The hour of the day, 24 hour format. 10 n/a

%h or %I The hour of the day, 12 hour format 10 n/a

%M The minutes of the hour. 09 9

%p AM or PM indicator. A a

%S Seconds of the minute. 03 3

%Z The time zone when the time was recorded. Central
Standard
Time

n/a

non-to-
ken char-
acters

Any non-format token character, or any character not
preceded by the % sign passed to the named parameter
format will be returned unchanged at the position at which
it was placed in the parameter value.

n/a n/a

Agentry App Development

548 SAP Mobile Platform

Signature
Signature data tags result from Signature property types. This data tag type is used with the
signature capture functionality available in Agentry. This functionality allows for an
application to capture and store a signature the user enters on the screen. The image is stored as
a bitmap, and is also available in the raw pixels.

This data tag type supports the following parameters. The value returned for all of these
parameters is a string, with the exception of bmp, row.n, and raw.

• type - Will return either “image” or “none” during expansion. Image indicates that there
is an image and the transaction was performed on a client device that supports this
functionality. None indicates that the device does not support the signature capture
functionality.

• bmp - This parameter returns the signature, if it exists, in a bitmap format. This returns a
string of hexadecimal values that may be used as an argument to another utility program
that processes the data, e.g. stores it in a database.

• height - This parameter returns the height, in pixels, of the signature image.

• width - This parameter returns the width, in pixels, of the signature image.

• row.n - This parameter returns the row of pixels, specified by n

• signed - Returns either true or false. True is returned when a signature has been captured
on the client, or, for devices that do not support this functionality, if the check box control
that replaces it has been checked. These values are returned as text values of “true” or
“false.”

• raw - Returns the pixels that make up the image.

The syntax for these parameters is:

<<transaction.signatureProp.parameter>>

Of these parameters, only type and signed are always available. The others will return a
data tag not found error if a signature was not captured on the client, i.e. signed returns false.
Therefore, the return value of signed should be checked before attempting to access the
other parameters.

Image
Image data tags result from Image property types. This data tag type is used with the image
capture functionality available in Agentry. This functionality allows the application to interact
with a device’s built in still camera, when present. A captured image is stored on the device as
a file and referenced by the image property.

During synchronization this file data is sent to the server for processing as a part of the
transaction data. To access this image data there are two options. The first is to use a file
document management step. In this case, it is likely not necessary to reference the data tags for
the image property, though they can be when necessary. For other step types access to the

Agentry App Development

Agentry App Development 549

image data requires the use of SDML data tags. Data tags for the image property include two
parameters in the format <<transaction.imageProperty.parameter>>.

The following list describes these parameters and their purpose:

• data - This parameter returns the image data in ASCII-encoded hexadecimal values.

• type - This parameter returns the image type as stored on the client device. The possible
return values of this parameter are jpeg, bitmap, and unknown when the file type is
not determined.

<<agent>> Data Tag Container

The <<agent>> data tag container includes only a single member, .version. The data tag
<<agent.version>> returns the full version of the Agentry Server.

This is the only member of this data tag member in the <<agentry>> data tag container.
Additional members may be added in a future release.

SDML Function Tags Overview

SDML Function tags provide value processing and evaluation to the SDML. Function tags are
represented in print with the syntax <<funcName...>>. Within the SDML there are
numerous functions that provide processing for logic operations, string operations, and
mathematical operations.

Function tags within the SDML will often return a value. That return value is placed at the
point where the function tag exists within the script file in which it is contained. The use of
function tags can provide a significant source of operational power, allowing for different sets
of logic to be processed by a script at runtime, depending on conditions.

The following sections list each of the function tags available, including descriptions of their
purpose and behavior, as well as usage syntax and similar information.

<<if>>

The <<if...>> function provides the if-then-else logic to the SDML. This is the most
common decision making mechanism within any language. The <<if>> function receives a
single argument, which it evaluates as being either true or false. If the argument is true, its first
expression, trueExpression, is returned. Otherwise, the falseExpression value is
returned. This expression must be preceded by the keyword else. falseExpression is
optional and if it is not present, the else keyword cannot appear either.

This function can be used to return something as basic as a single word, or as complex as an
entire SQL statement. The contents of either expression can contain SDML text as well. In the
case where there is no else portion, and the boolArg is false, the return value of the
<<if...>> function is an empty string.

Agentry App Development

550 SAP Mobile Platform

Arguments

<<if boolArg
“trueExpression” [else
“falseExpression”]>>

boolArg The value to be evaluated as either true or false. May be a Boolean
data tag or the Boolean return value of function call. If this argument
is a Boolean data tag, the tag should be entered by name, excluding
the tag markers (<< and >>) to return the Boolean value of that

property, rather than the text value.

Expressions

• trueExpression – Required expression containing the value to be returned by the function
when boolArg is true. This expression must be enclosed in double quotes.

• falseExpression – Optional expression containing the value to be returned by the function
when boolArg is false. This expression must be preceded by the keyword else and the
expression itself must be enclosed in double quotes.

Parameters

• N/A

<<case>>

The <<case...>> function provides the switch-case logic to the SDML. It takes a
required switch argument and at least one case-expression argument pair. It may take as many
additional case-expression pairs as are needed, plus an optional default argument.

During expansion, this function tag compares the value of the switch argument to each
provided case argument in turn. It will return the expression argument for the first case
argument to which the switch argument matches.

As an optional argument, a default value may be provided that will be returned by the function
when the switch argument does not match any provided case argument. The syntax for the
default return value is default=returnValue, where default is a keyword. For this
reason, neither the value of the switch argument, nor any of the case arguments may be the
value default.

Agentry App Development

Agentry App Development 551

Arguments

<<case switch
case1=exprssion1
[caseN=expressionN]
[default=defaultExpression]>>

switch The value the function will switch on, comparing to the value
of each case argument until a match is found.

case1 The first case argument to the function. This is a required
argument and must be immediately followed by an equal
sign (=) with no whitespace between the case argument and
the sign. The expression1 argument immediately follows the
equal sign, also with no whitespace allowed.

expression1 The first expression argument to the function. This is a

required argument and contains the value the function will
return when switch matches case1. case1 and expression1
are separated by an equal sign with no whitespace allowed
between then, as in: case1=expression1. Any

SDML text in expression1 will be expanded after it

has been returned by the function.

caseN Additional optional case arguments to the function. If

case1 does not match switch, the function will com-

pare each subsequent case argument in order until a match is
found. Each caseN argument must be followed by and

equal sign and then a corresponding expressionN val-

ue. No whitespace can exist between each case-expression
pair.

expressionN Additional optional expression arguments to the func-

tion. Each case argument must be followed by a correspond-
ing expressionN value. Each case-expression argument pair
must be separated by an equal sign with no white space
allowed between then, as in: caseN=expressionN.

Any SDML text in expressionN will be expanded after

it has been returned by the function.

Agentry App Development

552 SAP Mobile Platform

<<case switch
case1=exprssion1
[caseN=expressionN]
[default=defaultExpression]>>

default=defaultExpression This optional argument specifies the expression returned by
the function should the switch not match any of the

case values. The syntax for this argument requires the text

default= followed by the default expression the func-

tion should return.

Parameters
None

<<skip>>

The <<skip...>> function will force the Agentry Server to skip the step definition in
which the function call is contained. This function takes an optional comment argument, the
contents of which will be the log message generated by the Server for the log file of the step
type’s system connection. This function is only valid when called within the script component
of a module-level step definition.

This function can be used during testing to skip over a script that you do not wish to run, or in
certain production situations where you may not wish a script to run under certain conditions.
The primary intent of this function is the result of the requirements of the contents of a SQL
step’s script. This script cannot be empty, nor can it contain only SDML logic with no valid
SQL statement to be processed. Depending on conditional processing, such as queries
returned by the <<if...>> function, it is possible for a script to return a valid SQL
statement in one condition, but not in another. In this situation, the <<skip>> function
should be the expression returned when no SQL statement should be run. Note that this
function is not limited to SQL step definitions, though this is its primary intended use.

Arguments

<<skip
[“comment”]>>

comment This is an optional argument. It contains any text value that will be used as
a log message generated by the Server for the log file of the step type’s
system connection.

Parameters
None

Agentry App Development

Agentry App Development 553

<<stop>>

The <<stop...>> function will stop the Agentry Server’s interactions with the the back
end system. Any subsequent steps within the same group of the same parent definition will not
be processed. The function takes an optional comment argument, the contents of which will be
written as a log message by the server to the log file for the parent step’s back end log category.

As an example of the function’s behavior, if the second of four client exchange steps within a
fetch contains a <<stop>> function, that step and those that come after it will not be run.
This function will result in a commit being performed, committing any changes made
previously by the processing of the previous steps within the same parent.

Arguments

<<stop
[“comment”]>>

comment This optional argument contains text which will be written as a log mes-
sage by the server to the log file for the parent step’s back end log cate-
gory.

Parameters
None

<<abort>>

The <<abort...>> function within a step will result in that step’s processing being halted.
Any subsequent steps within the same parent definition will also not be processed. Any
changes made by the previous steps in the group will be rolled back. This function takes an
optional comment argument, the contents of which will be written as a log message by the
Agentry Server to the log category of the step’s system connection.

As an example of this function’s behavior, if the third of five steps in a fetch’s server exchange
steps is aborted, steps four and five will not be run either. Changes made by the first two steps
will be rolled back.

Note that the <<abort>> and <<rollback>> functions perform the exact same behavior.

Arguments

<<abort
[“comment”]>>

comment This optional argument contains text which will be written as a log mes-
sage by the Agentry Server to the log category of the step’s system con-
nection.

Agentry App Development

554 SAP Mobile Platform

Parameters
None.

<<rollback>>

The <<rollback...>> function within a step will result in that step’s processing being
halted. Any subsequent steps within the same parent definition will also not be processed. Any
changes made by the previous steps in the group will be rolled back. This function takes an
optional comment argument, the contents of which will be written as a log message by the
Agentry Server to the log category of the step’s system connection.

As an example of this function’s behavior, if the third of five steps in a fetch’s server exchange
steps is rolled back, steps four and five will not be run either. Changes made by the first two
steps will be rolled back.

Note that the <<abort>> and <<rollback>> functions perform the exact same behavior.

Arguments

<<rollback
[“comment”]>>

comment This optional argument contains text which will be written as a log mes-
sage by the Agentry Server to the log category of the step’s system con-
nection.

Parameters
None.

<<and>>

Description
The <<and...>> function performs a logical conjunction of two or more Boolean values. If
all arguments to the function are true, the function will return true. Otherwise, the
<<and...>> function will return false.

This function is almost always used as an argument to another function, normally the
<<if...>> function. The reason for this is that the value returned is a Boolean value within
the SDML and will simply return the text values of “true” or “false,” if not an argument to
another function.

Agentry App Development

Agentry App Development 555

Arguments

<<and boolArg1
boolArg2
[boolArg3...boolArg

boolArg1-N The boolean values checked for true or false by the function. May be
either a Boolean data tag, or a function that returns a Boolean value.
The function must have at least two arguments, and up to as many as
needed. Each is checked in the order listed, until a false value is found.

Parameters
None

<<or>>

Description
The <<or...>> function performs the logical disjunction of two or more Boolean values.
Each argument is compared in the order listed until a true value is found, at which point the
function returns true. If all arguments contain a false value, then the function will return false.

This function is almost always used as an argument to another function, normally the
<<if...>> function. The reason for this is that the value returned is a Boolean value within
the SDML and will simply return the text value of either “true” or “false” if not passed as an
argument to a function.

Arguments

<<or boolArg1 boolArg2
[boolArg3...boolArgN]>>

boolArg1-N The boolean values checked for true or false by the function.
May be either a Boolean data tag, or a function that returns a
Boolean value. The function must have at least two arguments,
and up to as many as needed. Each is checked in the order listed,
until a true value is found.

Parameters
None

<<not>>

The <<not...>> function inverts the Boolean value of boolArg and returns this inverted
value. If boolArg is true, the function will return false, and vice versa.

Agentry App Development

556 SAP Mobile Platform

This function is almost always used as an argument to another function, normally the
<<if...>> function. The reason for this is that the value returned is a Boolean value within
the SDML and will simply return the text value of either “true” or “false” if not passed to
another function.

Syntax
<<not boolArg>>

Return Value
Boolean

Arguments

<<not boolArg>>

boolArg A boolean value that is inverted by the function. May be a Boolean data tag or a
function that returns a Boolean value.

Parameters
None

<<eq>>

The <<eq...>> function compares arg1 and arg2, based on the value of the “type”
parameter if present, and returns true if the two values are found to be equal. Otherwise, this
function returns false. If the type parameter is not specified, the default comparison is String.

When a type is specified any values not of that type are converted prior to the comparison. So,
if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1, and
the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated.

Arguments

<<eq arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Agentry App Development

Agentry App Development 557

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are Integral Numbers.
• Float - The arguments are Decimal Numbers (short for “floating point number”)
• String - The arguments are String values.

<<ne>>

Description
The <<ne...>> function compares arg1 and arg2, based on the value of the “type” parameter if
present, and returns false if the two values are found to be equal. Otherwise, this function
returns true. If the type parameter is not specified, the default comparison is as Strings.

When a type is specified any values not of that type are converted prior to the comparison. So,
if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1, and
the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated.

Syntax
<<ne arg1 arg2 [type=Int|Float|String]>>

Arguments

<<ne arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

Agentry App Development

558 SAP Mobile Platform

<<gt>>

The <<gt...>> function compares arg1 and arg2, based on the value of the “type”
parameter if present. It returns true if arg1 is greater than arg2. If arg1 is less than or equal
to arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings. When comparing values of different data types, it is strongly recommended that you
do specify the type.

When a type is specified any values not of that type are converted prior to the comparison. So,
if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1, and
the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Arguments

<<gt arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<lt>>

Description
The <<lt...>> function compares arg1 and arg2, based on the value of the “type”
parameter if present. It returns true if arg1 is less than arg2. If arg1 is greater than or equal
to arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings.

When a type is specified any values not of that type are converted prior to the comparison.
So, if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1,
and the type is Int, these two values would be considered equal, as the decimal value would be

Agentry App Development

Agentry App Development 559

converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Arguments

<<lt arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

Expressions
None

<<ge>>

The <<ge...>> function compares arg1 and arg2, based on the value of the type
parameter if present. It returns true if arg1 is greater than or equal to arg2. If arg1 is less
than arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings.

When a type is specified any values not of that type are converted prior to the comparison.
So, if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1,
and the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Agentry App Development

560 SAP Mobile Platform

Arguments

<<ge arg1 arg2
[type=Int|Float|
String]>>

arg1 - The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 - The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<le>>

Description
The <<le...>> function compares arg1 and arg2, based on the value of the type
parameter if present. It returns true if arg1 is less than or equal to arg2. If arg1 is greater
than arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings.

When a type is specified any values not of that type are converted prior to the comparison.
So, if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1,
and the type is Int, these two values would be considered equal, as the decimal value would
be converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Agentry App Development

Agentry App Development 561

Arguments

<<le arg1 arg2
[type=Int|
Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded value,
data tag, or a function. The data type of the value must be Integral Number,
Decimal Number, or String.

arg2 The second value of the two compared by the function. May be a hard coded value,
data tag, or a function. The data type of the value must be Integral Number,
Decimal Number, or String.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<empty>>

The <<empty...>> function allows you to check whether or not an object collection has
any objects or if it is empty. If the collection contains no objects, this function will return true.
If the collection contains at least one object this function will return false. This function is only
valid when an object collection property is in scope for the step definition in which it is used.

Arguments

<<empty objectCollectionArg>>

objectCollectionArg This argument is a data tag representing an object collection.
This collection must be defined. It is evaluated by the func-
tion for members.

Parameters
None

<<notEmpty>>

The <<notEmpty...>> function allows you to check whether or not an object collection
has any objects or if it is empty. If the collection contains no objects, this function will return

Agentry App Development

562 SAP Mobile Platform

false. If the collection contains at least one object this function will return true. This function is
only valid when an object collection property is in scope for the step definition in which it is
used.

Arguments

<<notEmpty
objectCollectionArg>>

objectCollectionArg This argument is a data tag representing an object collection.
This collection must be defined. It is evaluated by the func-
tion for members.

Parameters
None

<<size>>

The <<size...>> function returns the number ofobject instances in an object collection.
This value is always 0 or higher.

Arguments

<<size objectCollectionArg>>

objectCollectionArg This is the object collection whose members are to be counted.

Parameters
None

<<exists>>

The <<exists...>> function determines whether or not the specified object collection
exists. If the collection specified by the objectCollectionArg argument exists, this
function will return true. Otherwise it returns false.

A common use for this function outside of development testing is to verify the data tag
returned by a call to the function <<sql...>> exists and contains data.

This function may also useful during testing or debugging of an application. It can be useful in
applications that are deployed with various configurations from one installation to the next.
The usage of this function can be helpful in determining if a specific configuration contains all
of the definitions necessary.

Agentry App Development

Agentry App Development 563

Arguments

<<exists
objectCollectionArg>>

objectCollectionArg This argument is the data tag representing the object collection
that whose existence is to be checked. This argument must be a
data tag that contains the name of an object collection whose
existence is to be confirmed.

Parameters
None

<<foreach>>

The <<foreach...>> function allows for iteration over an object collection property.
This function takes as its single argument the name of an object collection. The expression
can contain text and SDML that will be returned once for each member of the named
collection. If the collection is empty, nothing is returned.

This function allows you to iterate over a collection of objects. The expression specified will
be returned once for each member and normally contains SQL and SDML that is to be
processed for a single object. The <<foreach...>> function is commonly used for
INSERT statements, which can only insert a single record at a time. It is often seen in SQL
steps used to update a client exchange table during fetch processing.

The expression to the function can also contain an additional data tag, <<my>>. This tag
represents the current member of the collection being processed by the function. To use the
<<my>> data tag, the same syntax is used as in other areas where property data tags are used.

There is also the optional <<key>> tag available within a <<foreach>> expression, which
provides the name of the current key being iterated over. This is normally only used in
conjunction with SQL Flunkies, explained later in this chapter.

Arguments

<<foreach
objectCollectionArg
expression>>

objectCollectionArg The name of a collection that the function is to iterate over.

expression The text to be returned once for each member of the collection.
The expression can contain plain text and SDML. It will be
submitted for expansion once for each collection member.

Agentry App Development

564 SAP Mobile Platform

Parameters
None

<<upper>>

The <<upper...>> function converts a given string to all uppercase characters. The value
returned is the string passed in with all characters converted to upper case. Any non-
alphabetical characters, such as numbers, symbols, or punctuation (%, $, etc.) are returned
unchanged.

Arguments

<<upper
stringArg>>

stringArg This argument is a string value to be converted by the function. It can be either
a hard coded value, a data tag, or a string return value from a function.

Parameters
None

<<lower>>

The <<lower...>> function converts a given string to all lower case characters. The value
returned is the string passed in with all characters converted to lower case. Any non-
alphabetical characters, such as numbers, symbols, or punctuation (“%”, “$”, etc.) are
returned unchanged.

Arguments

<<lower
stringArg>>

stringArg This argument is a string value to be converted by the function. May be a hard
coded value, a data tag, or a string return value from a function.

Parameters
None

<<length>>

This function returns the length of a string value. All printable characters within the string are
counted. This includes white space characters, where tabs are counted as a single character,
and symbols, such as $ or %. Non-printable characters are also counted, such as newline and
carriage returns. Remember in Windows systems that the end of a line in a multi-line string

Agentry App Development

Agentry App Development 565

value contains two command characters, \n and \r, which will be counted by the <<length...>>
function as one character each.

Arguments

<<length
stringArg>>

stringArg The string value evaluated by the function. May be a hard coded value, a
string data tag, or the return value of another function.

Parameters
None

<<join>>

Description
The <<join...>> function concatenates two or more string values together, with each
separated by the value of the optional named parameter, join. If the join parameter is not
specified, the values are concatenated together without any character separating them.

Arguments

<<join stringArg1 stringArg2
[stringArg3...stringArgN]
join=joinString>>

stringArg1/stringArg2 The required arguments to the function, which are the strings
that will be joined. May be a hard coded value, an string data
tag, or the return value of a function.

stringArg3-N The optional additional strings to be joined. May be a hard
coded value, string data tag, or the return value of another
function.

Parameters

• joinString – The value of this optional named parameter contains the character or string
used to join the arguments together.

<<dequote>>

The <<dequote...>> function, by default, removes any double-quote characters from a
given string. It contains three optional named parameters, however, that significantly alter and
enhance this functionality. First, by including the quote parameter, you can specify a different
character to be removed form the given string or strings.

Agentry App Development

566 SAP Mobile Platform

Second, the replace parameter can specify the character you wish to replace the quote
character with. Finally, the join parameter allows you to specify the character used to join
multiple string arguments to the function together.

Arguments

<<dequote stringArg1
[stringArgN]
[quote=quoteChar]
[replace=repChar]
[join=joinString]>>

stringArg1 This argument contains the string to be “dequoted.” May be a hard
coded value, a data tag, or the return value of another function call.

stringArgN Additional, optional argument(s) to be dequoted, and joined to-
gether with the previous arguments.

Parameters

• quote – The value to this named parameter is the character to be removed from the given
string or strings. If not provided, the default value is double quotes. If the value to this
parameter contains more than one character, the first will be used and the rest ignored.

• replace – The value to this named parameter is the single character to replace the “quote”
character with in the string. If the value to this parameter contains more than one character,
the first will be used and the rest ignored.

• join – The value to the named parameter is the character or string used to join together the
arguments to the function. If not provided, each string is separated by a single white space.

<<trunc>>

The <<trunc...>> function will truncate the given stringArg to the number of characters
of the value given to the required length parameter. By default, the characters are counted from
the left most position up to and including the character at the position specified by the length
parameter. This includes any white space characters, and also includes the end of line
characters of line feed an carriage return, which each count as one.

If the from parameter is given and its value is “left”, the counting begins at the right-most
character of the string, truncating the left characters beyond the given length.

If the stringArg is shorter or equal to the length specified, the entire string is returned.

Agentry App Development

Agentry App Development 567

Arguments

<<trunc stringArg
length=lengthParam
[from=left|right]>>

stringArg This argument contains the string to be truncated by the func-
tion. May be a hard coded value, a data tag, or another function.

Parameters

• length – This required named parameter specifies the length to which the stringArg value
should be truncated.

• from – This optional named parameter specifies the portion of the stringArg value to be
truncated. The values are left or right; any other value will be ignored and the default value
of right will be used.

<<wordTrunc>>

The <<wordTrunc...>> function is similar to the <<trunc...>> function in that it
will truncate a string to a given length. The length parameter specifies the maximum length of
the string and must be provided to the function. The difference between this function and
<<trunc...>> is that <<wordTrunc...>> will always end its truncation on a white
space. That is, the truncation of the string will be at the end of a whole word.

The string returned by the function will be, at most, the size of the length specified. However, if
the specified length ends in the middle of the word, the last white space character before this
point will be where the string returned ends.

The start parameter specifies the starting point of the function. If this parameter is given, the
function will count from the beginning of the string up to the start character. Then, the function
will count from this point up to the length value of characters.

If the string contains no white space, then length number of characters will be returned. If the
string is shorter or equal to the length, the entire string will be returned.

Syntax
<<wordTrunc stringArg length=lengthParam [start=startParam]>>

Arguments

• stringArg – The string value to be truncated by the function. May be a hard coded value, a
string data tag, or the return value of another function, provided it returns a string.

Agentry App Development

568 SAP Mobile Platform

Parameters

• length – This required named parameter specifies the maximum length of the string
returned by the function.

• start – This optional named parameter specifies the starting position from which the
function will begin counting. Any characters before this position will be truncated, as will
any characters beyond the value of the length parameter. If this parameter is not present,
the starting position will always be the first character of the string, as specified by the from
parameter.

<<cgi>>

The <<cgi...>> function can operate with either a single unnamed argument, or with many
arguments in name-and-value pairs. If a single stringArg is given, it expands to a string that has
all characters converted to CGI scoped values. If one or more name and value pair arguments
are given, they are formatted to a string that is the named pairs, joined by ampersands (&), with
the values CGI escaped.

The CGI function escapes strings following the CGI conventions certain characters are
replaced with a % followed by two hexadecimal digits that are the ASCII value for the
character.

The stringArg will have any characters it contains escaped according to CGI conventions. The
name-and-value pairs will be formatted into named parameters and values, with the values
also escaped according to CGI standards. The order of the named parameters is not preserved
when this function is expanded. Also, the CGI function escapes spaces with %20's rather than
with +'s. Both are allowed by the CGI convention.

Arguments

<<cgi stringArg>> --OR-- <<cgi
named1=value
[named2=value...namedN=value]>>

stringArg A text string that will be escaped according to CGI
conventions. This may be a hard coded value, a data
tag, or the return value of a function.

named1-n A named parameter to be returned with a value that
will be formatted according to CGI conventions.
May be a hard coded value, a data tag, or the return
value of a function.

Agentry App Development

Agentry App Development 569

<<cgi stringArg>> --OR-- <<cgi
named1=value
[named2=value...namedN=value]>>

value A value to the corresponding named parameters that
will be formatted according to CGI conventions.
May be a hard coded value, a data tag, or the return
value of a function.

Parameters
None

<<sum>>

The <<sum...>> function provides the operation of the plus sign (+) operator in other
languages. This function will sum the arguments and return the result. There must be at least
two arguments provided to the function, and there can be as many more arguments as needed.

The data type of these values can be Strings, provided the string contains only numbers, sign,
and a single decimal. The values of string data types will be converted before being passed to
the function.

Arguments

<<sum numArg1 numArg2
[numArg3...numArgN]>>

numArg1-2 The required arguments, numerical, that are summed together.
Maybe a hard coded value, data tag, or the return value of another
function. If the value is hard coded and contains a negative or
postivie sign, the entire value must be enclosed in double quotes,
as in “-12.34”.

numArg3-N The optional numeric aguments to be summed together with all
other arguments. May be a hard coded value, data tag, or the return
value of antoher function. If the value is hard coded and contains a
negative or postiive sign, the entire value must be enclosed in
double quotes, as in “-10.23”.

Parameters
None

Agentry App Development

570 SAP Mobile Platform

<<diff>>

The <<diff...>> function provides the operation of the minus sign (-) operator in other
languages. This function subtracts the second argument from the first and returns the
difference. This function takes two and only two arguments.

String data tags or string return values may be passed to the function, provided those values
contain only numeric, sign, and a single decimal character.

Arguments

<<diff
numArg1
numArg2>>

numArg1 The first numerical value from which numArg2 is subtracted. May be a hard

coded value, data tag, or the return value of another function. If the value is hard
coded and contains a negative or positive sign, the entire value must be enclosed in
double quotes, as in “-12.34”.

numArg2 The second numerical value that will be subtracted from numArg1. May be a

hard coded value, data tag, or the return value of another function. If the value is
hard coded and contains a negative or positive sign, the entire value must be
enclosed in double quotes, as in “-10.23”.

Parameters
None

<<prod>>

The <<prod...>> function provides the operation provided by the multiplication
operator, either x, or more commonly *, in other languages. This function multiples the first
argument by the second and returns the product.

A String data tag may be passed as an argument to the function, provided it contains only
numerical characters, sign, and a single decimal character.

Agentry App Development

Agentry App Development 571

Arguments

<<prod
numArg1
numArg2>>

numArg1 This required argument contains the value that will be multiplied by numArg2.

May be a hard coded value, data tag, or the return value of antoher function. If the
value is hard coded and contains a negative or postivie sign, the entire value must
be enclosed in double quotes, as in “-12.34”.

numArg2 This required argument contains the value to multiplied by numArg1. May be a

hard coded value, data tag, or the return value of antoher function. If the value is
hard coded and contains a negative or postiive sign, the entire value must be
enclosed in double quotes, as in “-10.23”.

Parameters
None

<<div>>

The <<div...>> function provides the same operation as is provided by the division sign (/)
operator in other languages. This function divides the second argument into the first and
returns the results.

A string data tag may be passed as an argument to the function, provided it contains only
numerical characters, sign, and a single decimal character.

Arguments

<<div
dividendArg
divisorArg>>

dividendArg This required argument contains the number to be divided by the divisor-
Arg. May be a hard coded value, data tag, or the return value of a antoher

function. If the value is hard coded and contains a negative or postivie sign, the
entire value must be enclosed in double quotes, as in “-12.34”.

divisorArg This required argument contains the number to be divided into the divi-
dendArg. May be a hard coded value, data tag, or the return value of another

function. This value must not be 0. If the value is hard coded and contains a
negative or postiive sign, the entire value must be enclosed in double quotes, as
in “-10.23”.

Agentry App Development

572 SAP Mobile Platform

Parameters
None

<<remainder>>

The <<remainder...>> function provides the modulus operation of the modulus sign
operator, usually %, in other languages. This function divides the first argument by the second
and returns the remainder of the division.

String data tags can be passed as arguments to the function, provided the value contains only
numeric characters, sign, and a single decimal character.

Arguments

<<remainder
dividendArg
divisorArg>>

dividendArg The value to be divided by the divisorArg. May be a hard coded value, data tag,
or the return value of another function. If the value is hard coded, and it contains
a positive or negative sign, the entire value must be enclosed in quotes, as in
“-12.34”.

divisorArg The value to be divided into the dividendArg. May be a hard coded value,

data tag, or the return value of another function. If the value is hard coded, and it
contains a positive or negative sign, the entire value must be enclosed in double
quotes, as in “-10.23”. The value of this argument must not be 0.

Parameters
None

<<local>>

The <<local...>> function allows you to create data tags within the script. The data tags
created are always string values. Their scope is limited to the step within which they are
created, and the other steps within the same parent definition that follow it. So, if an object
contains 4 read steps, and the second contains a <<local...>> function call, the data tag or
tags created will be available in the second step as well as the third and fourth. It will not be
available in the first.

If the value for a tagName argument is a hard coded value, or contains a mixture of text and
SDML, the value must be enclosed in quotes.

To reference a local data tag, the syntax is <<local.tagName>>, where tagName is the
name given in the function call. Local data tags support the named parameter length=,

Agentry App Development

Agentry App Development 573

which will truncate the string to the given value. String values are not dequoted; time and date
values are not wrapped in any type of conversion function.

Arguments

<<local tagName1=value
[tagName2=value...tagNameN=value]>>

tagName1 This required argument is the name that will be
given to the data tag created. Its corresponding
value will be the value the tag contains.

tagName2-N These optional arguments are the same as tag-
Name1 and allow for the creation of multiple
data tags with the same function call.

Parameters

• length – This optional named parameter takes a non-negative whole number and specifies
the maximum number of characters to assign to the local data tag created by the function.

<<sql>>

The <<sql...>> function allows you to create data tags based on the data returned by a
SQL statement, specifically a SELECT statement. All records returned by the statement are
stored in the newly created data tag, commonly referred to as a SQL flunky. Each field of each
record returned by the SELECT statement can be accessed in the flunky.

The flunky created is named the same as the argument you provide. This SQL flunky has a
scope limited to the script within which it is contained.

The <<sql...>> function is normally used to retrieve a small number of records, usually
consisting of one or two selected fields, to retrieve data using a simple SELECT statement,
where otherwise it may be necessary to create a more complex statement within the script. The
statement used in the function call should never be used to perform the main processing of the
script, nor to return large numbers of records. Rather, it should be used to aid in this main
processing. Furthermore, the statement should never contain UPDATE or INSERT
statements. Additionally, if the SELECT statement is returning more than 10 records at a time,
the design of your script should be reevaluated and adjusted so that this is not the case. The
main reason for this is performance.

While the <<sql...>> function will not cause any delays or hitches in processing if used
correctly, using it to return large amounts of data will slow down the processing of the Agentry
Server considerably. Each record returned by the function must be processed by the Agentry
Server and stored in memory until the script has completed processing. This can tie up a
significant amount of the system resources in the event of a large number of records being
returned.

Agentry App Development

574 SAP Mobile Platform

As stated, the SQL flunky created by the <<sql...>> function call is only in scope within
the script in which it is called. If the value is needed in other Steps within the same parent
definition, the desired values can be assigned to a local flunky, via use of the <<local...>>
function described previously.

The syntax to reference the SQL flunky created by this function is as follows

<<sql.nameArg[.recordIndex][.fieldName]>>

All SQL flunkies are referenced beginning with sql. The nameArg is the name of the
argument as you provided when calling the <<sql...>> function. The recordIndex is a
numerical value indicating which record within the data set you wish to access. The records
are referenced in the order in which they were returned by the database system, and are
indexed starting with 0. The field name is the name of the column, or its alias, that contains the
data you wish to retrieve. So, to access a field named COST in the first record of a SQL flunky
named prodCost, the tag would be <<sql.prodCost.0.COST>>

Arguments

<<sql
nameArg=“SQLStatement”>>

nameArg The name of the SQL flunky to be created as a result of
processing the argument value, SQLStatement. The

SQLStatement must always be enclosed in double

quotes and should contain a SELECT statement.

Parameters
None

<<include>>

The <<include...>> function allows you to include the contents of another file within the
file calling the function. This content will be included at the point where the function call is
placed. The included file should always be a plain text file.

This function is only used in specific cases and there are certain caveats that accompany its
usage. These caveats are related to the fact that the file referenced does not need to be
associated with any definition within the Agentry Editor. Because of this fact, the included file
may not be controlled or monitored by the Editor. This means that, during a publish, this file
will not be copied or transferred in any way to the Agentry Server. Therefore, changes made to
this file will not be updated to the Server during a publish, meaning the file must be moved
separately if changes are made to it.

Related to this, if the included file does not exist in a location that is accessible to both the
Editor and Server, it must be copied to two separate locations, one for each of these
components.

Agentry App Development

Agentry App Development 575

Arguments

<<include fileName>>

fileName The name of the file whose contents are to be included in the file calling
the function.

Parameters
None

Agentry Test Script Overview

The Agentry Test Script is an XML schema supported by the Agentry Test Environment that
can be used to automate testing the Client behavior of a mobile application built on Agentry.
The Agentry Test Environment includes a script recorder that allows for the recording of test
scripts, and can then play back those test scripts.

The test script language includes the ability to interact with all controls present on the client
application’s interface, including field selection, data entry, button clicks, and navigation.
Additionally, this language also supports the ability to check the current values of labels,
fields, and other items displayed on the client application’s interface for expected values.

In addition to direct client interaction, the test script also includes the ability to query database
systems for expected values. This can be used after transmit to verify the proper functioning of
transactions related to the back end processing that is defined within those transactions.

Elements within the test script XML schema are logically grouped into the following
categories:

• Script Elements: Elements for the script itself, including the top-level <script> element
and elements related to logging and script execution.

• Button Elements: Elements that allow for interaction with button definitions, including
selection (or “clicking”), checking the state of the button, and label values.

• Field Elements: Elements that allow for interaction with detail screen fields. Note that
certain field edit types are supported by elements in other groups.

• List Elements: Elements for working with list controls of various types. This includes list
controls on list screens, as well as the various list types that can be defined for detail screen
fields.

• Tree Elements: Elements for working with tree controls. This includes tree controls
presented by detail screen fields.

• Scanner Elements: Elements for simulating scanner behaviors, including passing values
in as barcode scanner values.

• SQL Elements: Elements for creating connections to and running queries against
database back end systems. Values can be returned by these queries and checked against
expected values.

Agentry App Development

576 SAP Mobile Platform

• Tab Elements: Elements for working with the tab controls presented by screen sets for
each child screen definition.

• Window Elements: Elements for closing windows on the client. Rarely used, as
navigational actions defined to close screen sets should be used wherever present.

• Client Elements: Elements for affecting the client process, including restarting and other
behaviors.

• Client Host Elements: Elements to interact directly with the client device, which may in
turn affect the test client, such as entering key strokes or executing commands on the client
device.

Common Test Script Element Attributes
The following attributes are common to the bulk of the elements within the Agentry Test Script
XML schema. They relate primarily to time outs for the execution of a given element, and the
amount of time to pause between the execution of one element and the next. Setting these
attributes in the <script> element of the test script will set defaults for the entire script
execution that can then be overridden by individual child elements if needed.

Name Description Data Type Default
Value

Re-
quired

timeout The amount of time to wait for the element
to finish processing before returning an er-
ror. This value can be set in the <script>
element for the entire script and/or at each
processing element within the test script.
Child elements with this attribute will over-
ride the value set in parent elements. The
value is specified in milliseconds.

Positive In-
teger

N/A No

sleep The amount of time to pause after the ele-
ment is executed. This value can be set in the
<script> element for the entire test script
and/or at each processing element within the
test script. Child elements with this attribute
will override the value set in parent ele-
ments. The value is specified in millisec-
onds.

Positive In-
teger

N/A No

Agentry Test Script: Script Elements Overview

The script elements within the Agentry Test Script language include the top-level <script>
element that is the root to all test scripts, as well as elements for logging messages and pausing
the execution of the script.

Agentry App Development

Agentry App Development 577

When a new test script is created by the Script Recorder in the ATE, it automatically creates the
<script> element and required attributes. The other elements <script-log> and
<script-pause> are manually added when needed.

Included in the <script> element is the attribute specifying the name space for the Agentry
Test Script language, which is xmlns:ags="urn:script.Agentry.Syclo". If a
script is created manually this should be an attribute included in the <script> element.

<script>

The <script> element is the root element for any Agentry Test Script. All elements are
contained within the <script> element, either directly or as descendents. Two of its
attributes, timeout and sleep, will affect how each element it contains is processed. The
timeout attribute sets the duration of time to wait for an element to be processed. Setting the
timeout in the <script> element will set a timeout for all elements. Other elements may
individually override this duration with their own timeout attributes. The sleep attribute
will set the amount of time to wait for before processing an element within the test script.
Setting this attribute for the <script> element will affect all elements, waiting to process
each for the configured time. Other elements may individually override this duration with
their own sleep attributes.

Structure
Contained By:

• None - Root element for Agentry Test Script files.

Table 11. Attributes

Name Description Data
Type

Default Value Re-
quired

xmlns This attribute defines the
base namespace.

String urn:script:Agen-
try:Syclo

Yes

xmlns:ags This attribute defines the
ags namespace, making

it the default namespace.

String urn:script:Agen-
try.Syclo

Yes

xmlns:meta This attribute defines the
meta namespace used

for comments.

String urn:meta:Editor.Agen-
try.Syclo

Yes

Agentry App Development

578 SAP Mobile Platform

Name Description Data
Type

Default Value Re-
quired

show-exe-
cute

This attribute enables or
disables displaying log
messages from the test
script on standard output.
When set to true log mes-
sages are written to stand-
ard output.

Boo-
lean

False No

common
script attrib-
utes

This element includes the
following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<script-log>

The <script-log> element will write a log statement to the log file
AgentryScriptOutput.log. The contents of this element are the message written to
the log file. The log message level must also be specified in the level attribute to the element,
which indicates the severity of the log message.

Structure
Contains:

• Text - The log message to be written to the AgentryScriptOutput.log log file.

Contained By:

• <script>

Agentry App Development

Agentry App Development 579

Table 12. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

level This attribute can contain either a numeric or string
value indicating the severity of the log message. The
following list includes both the numeric and string
values, only one or the other of which should be used
for this attribute:

• 1 - critical

• 2 - high

• 3 - mediumHigh

• 4 - medium

• 5 - mediumLow

• 6 - low

• 7 - veryLow

String N/A Yes

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<script-pause>

The <script-pause> element will pause playback of the test script, displaying a popup
dialog within the Agentry Test Environment. The playback will not resume until this popup
message is acknowledged.

Structure
Contains:

• None

Contained By:

• <script>
Attributes: None

Agentry Test Script: Button Elements Overview

The button-related elements available in the Agentry Test Script structure can be used to
simulate a user pushing a button on a screen as a part of a sequence of interactions.
Additionally, these elements can be used to test the state of the button, such as enabled or

Agentry App Development

580 SAP Mobile Platform

disabled, its label value, and so forth, and to wait for the button to be enabled for attempting to
push it.

Common Button Element Attributes
The following attributes are available to all button elements within the Agentry Test Script
language:

Name Description Data
Type

Default
Value

Re-
quired

id The identifier of the button, typically set by the
script recorder in the ATE and not modified man-
ually. If specified, the name and label cannot

be present.

String N/A No

name The resource name of the button the element af-
fects or monitors. If specified, the id and label
attributes cannot be present.

String N/A No

label The label text of the button definition the element
affects or monitors. If specified, the id and

name attributes cannot be present.

String N/A No

<button-expect>

The <button-expect> element is used to verify the state of a button definition within a
screen. This includes the button’s label text, enabled state, checked state, whether or not it is a
popup button, and whether or not it is visible. The type of button definition checked by this
element will dictate the supported states and other expected values for the button definition.

If any of the configured expected state information is not matched by the button, a script error
is thrown.

Structure
Contains:

• Text - The expected label for the button definition as displayed on the screen.

Contained By:

• <script>

Agentry App Development

Agentry App Development 581

Table 13. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

enabled This attribute specifies the expected enabled state of
the button. The value t is true, meaning the button is

expected to be enabled. The value f is false, meaning

the button is expected to be disabled.

string t No

checked This attribute specifies the expected checked state of
the button, which is either checked or unchecked. The
value t is true, meaning the button is expected to

checked. The value f is false, meaning the button is

expected to not be checked.

string t No

popup This attribute specifies whether the button is expected
to be an Action Button with a defined action of popup
menu. The value t is true, meaning the button is ex-

pected to be a popup menu. The value f is false,

meaning the button is not expected to be a popup
menu.

string f No

visible This attribute specifies whether the button is expected
to be visible or not. The value t is true, meaning the

button is expected to be visible. The value f is false,

meaning the button is not expected to be visible.

string t No

common
button attrib-
utes

For <button-expect> these attributes specify

the expected related items for each attribute.

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<button-push>

The <button-push> element is used to push, or click, a button on the current screen. The
button can be pushed in combination with the Shift, Ctrl, and/or Alt keys when in a
<script> context as optional attributes to the element. If the button is disabled when this
element is processed a script error is thrown.

In a <field-popup> context the element will push a button on the popup dialog displayed.
The contents of the <button-push> element contain the label of the button to be pushed. In
this context none of the attributes are supported.

Agentry App Development

582 SAP Mobile Platform

Structure
Contains:

• In a <script> context any text contents ignored.

• In a <field-popup> context this element contains text that specifies the button to push
in the popup screen. Valid contents include:
• 0-9
• +/-
• . (decimal)
• “Back,” “Clear,” or “Close”

Contained By:

• <script>
• <field-popup>

Table 14. Attributes - <script> context only

Name Description Data
Type

De-
fault
Value

Re-
quired

shift This attribute specifies whether the Shift key

should be held down in combination with the button
push. The value t is true and the shift key will be

held down. The value f is false.

string f No

ctrl This attribute specifies whether the Ctrl key should

be held down in combination with the button push.
The value t is true and the Ctrl key will be held

down. The value f is false.

string f No

alt This attribute specifies whether the Alt key should

be held down in combination with the button push.
The value t is true and the Alt key will be held

down. The value f is false.

string f No

check This attribute specifies whether the control should be
checked or unchecked. The value t is true and will
result in the control being checked. The value f is
false. This attribute is valid only for check box con-
trols on built-in client screens.

string t No

Agentry App Development

Agentry App Development 583

Name Description Data
Type

De-
fault
Value

Re-
quired

common
button attrib-
utes

For <button-push> these attributes specify the

button to be pushed.

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<button-wait>

The <button-wait> element will force the test script to wait for the specified button’s
state to change either from enabled to disabled, or from disabled to enabled, depending on the
element’s configuration. The script will wait until either the specified state change occurs or
until the timeout value for the <script> or the <button-wait> element is reached. If the
button‘s state does not changed before the timeout has elapsed a script error will be thrown.

Structure
Contains:

• None

Contained By:

• <script>

Table 15. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

enabled This attribute specifies whether to wait for the button
to be enabled or disabled. The value t is true and the

element will wait until the button is enabled. The val-
ue f is false and the element will wait until the button

is disabled.

string t No

common
button attrib-
utes

These attributes when set for the <button-
wait> element specify the button to be monitored

for a state changed.

Agentry App Development

584 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Test Script: Field Elements Overview

The elements related to detail screen fields within the Agentry Test Script are provided to
allow for interaction with the detail screen fields of the application. This includes field
selection, entering values, testing for expected values, pushing or selecting fields with an edit
type of button, and interacting with date, time, and duration related field types.

Common Field Element Attributes
The following lit includes the common attributes for most field-related XML elements within
the Agentry Test Script. These attributes are used by the elements in different ways depending
on the purpose and behavior of the element.

Name Description Data
Type

Default Val-
ue

Re-
quired

id The identifier of the field definition, typically
set by the script recorder in the ATE and not
modified manually. If the id attribute is

specified, the name and label attributes

cannot be present.

String N/A No

name The resource name of the field the element
affects or monitors. If the name attribute is

specified, the id and label attributes can-

not be present.

String N/A No

label The label text of the field definition the ele-
ment affects or monitors. If the label at-

tribute is specified, the name and id attrib-

utes cannot be present.

String N/A No

<field-button-push>

The <field-button-push> element will push the button control for a detail screen,
provided that field’s edit type includes a button control. Following is a list of the field edit
types for which this element will push a button:

• Barcode Scan (when defined to include a scan button)

Agentry App Development

Agentry App Development 585

• Button
• List Tile View - Add, Edit, and Filter Buttons
• Complex Table Search
• Complex Table Drop Down
• Complex Table List
• Complex Table Tree
• Data Table Selection (displays drop down list or popup list view based on field’s

definition)
• External Data

Structure
Contains:

• None

Contained By:

• <script>

Table 16. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

buttonLabel This attribute contains the label text of the field’s
button that is to be pushed. Many field’s button con-
trols do not contain text, or the text changes based on
theme. It is recommended that the label attribute

be used to specify the label of the field containing the
button control to be pushed.

string none No

buttonCon-
trol

This attribute specifies the control ID of the button
control that is to be pushed. This is normally set by the
Script Recorder within the ATE under specific cir-
cumstances and is normally not set when manually
editing a test script.

string none No

common
button attrib-
utes

The following common button attributes are a part of
this element:

• name

• label

• id

N/A N/A N/A

Agentry App Development

586 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<field-expect>

The <field-expect> element allows for the validation of a detail screen field’s value and state.
State information includes hidden or visible, and enabled or disabled. The contents of the field
that can be validated include its current value, for duration fields the current value of each
portion of the duration value (hours, minutes, seconds), for list fields the total number of rows
in a list, or the current value of a row or rows within a list. When validating the value of a field,
the validation attribute should be set indicating the type of validation. To validate multiple
facets of a field, such as current value and enabled or disabled, multiple <field-expect>
elements are required to validate each facet. To validate the value of multiple rows within a list,
the <field-expect> element must contain on <row> element for each row to be
validated. Note that only drop down lists may be validated by this element. For list view or list
tile view fields, the <list-expect> element must be used. If the field does not match the
expected criteria as specified by the <field-expect> element, a script error is thrown.

Structure
Contains:

• Text - The value that the field is expected to contain, or the value of the state being checked
by the element.

• <row>
Contained By:

• <script>

Agentry App Development

Agentry App Development 587

Table 17. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

type This attribute specifies what is being checked for
within the field by this element. Valid values in-
clude:

• string - The field’s string value

• bool - The field’s Boolean value.

• long - The field’s integral number value.

• decimal - The field’s decimal number value.

• validateValue - The field’s value.

• enabled - The field’s enabled or disabled state.

• visible - The field’s visible or hidden state.

• list - The field is a drop down list.

• format - The label for a button field.

string string No

special This attribute specifies that the field’s value should
or should not be equal to its defined special value.
The value t is true and the field is expected to be

set to its special value. The value f is false.

string f No

part This attribute is valid only when checking a dura-
tion field. It specifies the portion of the duration
value to be checked. Valid values for this attribute
include:

• hours - The hours portion of the duration.

• decimalHours - The hours portion of the du-
ration as a decimal.

• minutes - The minutes portion of the duration.

• seconds - The seconds portion of the duration.

string none Re-
quired
for dura-
tion field
edit
types.
Other-
wise ig-
nored.

Agentry App Development

588 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

row The row index to be checked by the element when
the field is a drop down list. This index is 0-based,
meaning the first row in the list is at position 0.
This attribute is only valid when the edit type of the
field is Complex Table Drop Down, Data Table
Selection, or List Selection. If the <field-
expect> contains one or more <row> ele-

ments, the first row checked is indicated by this
attribute. Additional <row> elements are expec-

ted to be contained in the list in the order in which
their corresponding <row> elements are con-

tained in the <field-expect>.

non-nega-
tive inte-
ger

none Re-
quired
for drop
down
list
fields.
Other-
wise ig-
nored.

count This attribute specifies the expected number of
rows in the list.

non-nega-
tive inte-
ger

none No

common
field attrib-
utes

This element contains the following common field
attributes:

• name
• id
• label

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most ele-
ments within the Agentry Test Script.

N/A N/A N/A

<field-label-select>

The <field-label-select> element allows for selecting, or “clicking”, the label of a
field when that field label is defined as a hyperlink. The field’s label to be selected is specified
using one of the name or label attributes. If the field’s label is not a hyperlink, or if it cannot
be selected for some other reason (e.g. the action it executes is disabled) a script error will be
thrown.

Structure
Contains:

• None

Contained By:

Agentry App Development

Agentry App Development 589

• <script>

Table 18. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
field attrib-
utes

This element includes the following common field
element attributes:

• name

• label

• id

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<field-popup>

The <field-popup> element will open the numeric popup screen that allows for the entry
of numeric values into a detail screen field. This element is valid for fields with an edit type of
Decimal Number, Integral Number, or Duration. This element can contain the <edit-
select> and <button-push> elements to select values in the popup screen and to push
the buttons on the popup to enter values, respectively. If this element is used for field with an
edit type other than those it supports a script error will be thrown.

Structure
Contains:

• <edit-select>
• <button-push>
Contained By:

• <script>

Agentry App Development

590 SAP Mobile Platform

Table 19. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

part This attribute specifies the portion of a duration field
for which the popup screen will be displayed. This
attribute is ignored for other field edit types. Valid
values for this attribute include:

• hours

• minutes

• seconds

string none Required
for Dura-
tion
fields.
Other-
wise ig-
nored.

common
field attrib-
utes

This element includes the following common field
attributes:

• name

• label

• id

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<edit-select>

The <edit-select> element selects the numeric values in a field by position. This
element is contained by the <field-popup>, which specifies the field and, for duration
fields, the part of the field in which the selection is made. The <edit-select> element
selects the characters based on position within the field as specified by its start and end
attributes. The first character is at position 0. All characters from the specified start up to
and including the end character are selected.

Structure
Contains:

• None

Contained By:

• <field-popup>

Agentry App Development

Agentry App Development 591

Table 20. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

start The first character within the field to select. Char-
acters are specified using a 0-based index, mean-
ing the first character is at position 0 within the
field.

non-nega-
tive integer

0 Yes

end The last character within the field to select. Char-
acters are specified using a 0-based index, mean-
ing the first character is at position 0 within the
field.

non-nega-
tive integer

0 Yes

<field-set>

The <field-set> element sets the value of a detail screen field. The contents of the field
specify the value to be set. The attributes name or label are used to specify which field to set.
Other attributes can be used to set the value of the field to its defined special value, to check or
uncheck a check box field, to select or deselect a radio button field, or to set just a portion of a
date, time, date and time, or duration field. This element is used to set the value of most fields,
regardless of field type. Other elements exist to allow for setting field values but should only be
employed in less common situations. For most testing purposes the <field-set> element
is sufficient. It is the element inserted into a test script generated by the Test Script Recorder
within the Agentry Test Environment.

Structure
Contains:

• Text - The value to which the field will be set.

Contained By:

• <script>

Table 21. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

special This attribute specifies whether the field should be set
to its defined special value. The value t is true and the

field will be set to its defined special value. The value
f is false.

Boo-
lean

f No

Agentry App Development

592 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

part This attribute specifies the portion of the field to set.
This attribute is only valid for fields with an edit type
of Date, Time, Date and Time, or Duration. Valid
values for this attribute include:

• year

• month

• day

• hours

• minutes

• seconds

string none Re-
quired
for date,
time,
and du-
ration
fields.
Other-
wise ig-
nored.

checked This attribute specifies whether or not to check or
select a field with an edit type of Button that is either a
check box or radio button. The value t is true and will

check or select the box or radio button. The f is false

and will uncheck or deselect the button field.

Boo-
lean

f Re-
quired
for But-
ton
fields of
type ra-
dio or
check
box.
Other-
wise ig-
nored.

common
field attrib-
utes

This element includes the following common field
attributes:

• name

• label

• id

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Test Script: List Elements Overview

The list-related elements of the Agentry Test Script allow for interaction with the various list
controls of the Agentry Client. These include list screens, and the various list field edit types
that can be defined for detail screens. The list-related elements support the selection of items

Agentry App Development

Agentry App Development 593

in a list, double-clicking items, checking for the expected values of list items and column
headers, expected values of list headers and detail panes.

Common List Element Attributes
The following attributes are found in most of the list-related elements of the Agentry Test
Script. The purpose and use of these attributes depends on the nature of the element for which
they are set.

Nam
e

Description Data
Type

Default
Value

Re-
quired

id The identifier of the list definition, typically set by
the script recorder in the ATE and not modified
manually. If the id attribute is specified, the

name and label attributes cannot be present.

String N/A No

name The resource name of the list the element affects
or monitors. If the name attribute is specified, the

id and label attributes cannot be present.

String N/A No

label The label text of the list (if applicable) the element
affects or monitors. If the label attribute is

specified, the name and id attributes cannot be

present.

String N/A No

row The row within the list to be affected by the ele-
ment. This may be the row number, with the first
row in the list at position zero (0), or one of the
values:

• selected - currently select row

• first - first row in the list

• last - last row in the list

• next - the next row after the currently selected
one

• previous - the previous row after the currently
selected one

String N/A No

<list-double-click>

The <list-double-click> element allows for an item to be double-clicked within a list.
The item to be double-clicked may be the currently selected item, or this element can specify
the item. To specify an item the row number can be used or text can be specified to select the
item. If a screen contains multiple lists the field can be found by specifying the name or label
for the the field definition. This element can be used with list screens to double-click an item in

Agentry App Development

594 SAP Mobile Platform

the list control on the screen, or with detail screens containing a field with an edit type of List
View.

Structure
Contains:

• None

Contained By:

• <script>

Table 22. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common list
attributes

This element includes the following common list at-
tributes:

• name

• id

• label

• row

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<list-expect>

The <list-expect> element verifies the contents of a list control on a list screen. It can
also verify a detail screen field with an edit type of List View. This element can verify the
contents of the list, including the number of rows display, the number of selected rows, the
values displayed in each column for each row, the presence of a value in a column in any row,
the contents of the list’s header label and detail pane, and the contents of the column header on
each column within the list. When used on a detail screen containing multiple lists, the specific
list to verify can be found using the field’s name or label. If the list does not meet the expected
criteria a script error is thrown. The expected values and state of the list and its items can be
specified using the elements attributes as well as the elements it can contain.

Structure
Contains:

• Text - The value to use to locate the desired row to verify within the list. Text content and
element content are mutually exclusive for the <list-expect> element.

Agentry App Development

Agentry App Development 595

• <row>
• <column>
• <header>
• <columnheader>
• <detail>
Contained By:

• <script>
Table 23. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute specifies the column to be verified
by the <list-expect> element. This may be either
the column’s header label or a numeric value in-
dicating the columns position from left to right,
with the left-most column at position 1.

string None No

count This attribute specifies the total number of rows
the list should contain. This may any numeric in-
teger no less than zero.

non-nega-
tive inte-
ger

None No

selected-
count

This attribute specifies the total number of rows
currently selected in the list. This may any numeric
integer no less than zero.

non-nega-
tive inte-
ger

None No

common list
attributes

This element includes the following common list
attributes:

• name

• id

• label

• row

• column

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most ele-
ments within the Agentry Test Script.

N/A N/A N/A

<list-select>

The <list-select> element will select an item in a list. This element can be used to select
items in the list control of a list screen, in detail screen fields with an edit type of List View, or
when the edit type of a detail screen field is List Tile View. This element may also be used to

Agentry App Development

596 SAP Mobile Platform

deselect an already selected item in the list. List items can be selected based on row position or
column value. The contents of the <list-select> element will be the value to search for
in a specified column when select by column value. Of the row cannot be found or selected in
the list a script error is thrown.

Structure
Contains:

• Text - The value of a column by which the item will be found and selected.

Contained By:

• <script>

Table 24. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute specifies the column by which the item
will be found. This may be either the columns header
label text or a numeric value specifying the column’s
position from left to right, with the left-most column
at position 1. This attribute is set to “none” for List
Tile View detail screen fields.

String None Re-
quired
when
the row
attribute
is set to a
value of
“text.”

select This attribute specifies whether to select or deselect
the row. The value t is true and will result in the row

being selected. The value f is false and the row will be

deselected.

String t No

common list
attributes

This element includes the following common list at-
tributes:

• name

• id

• label

• row

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry App Development

Agentry App Development 597

<list-sort-by>

The <list-sort-by> element will sort a list by a specified column. This element can sort the
items of a list control on a list screen, or the items in detail screen field with an edit type of list
view. The column to sort the list on is specified in the elements column attribute. If the
specified column cannot be found or if the list cannot be sorted on the column a script error is
thrown.

Structure
Contains:

• None

Contained By:

• <script>

Table 25. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute specifies the column upon which the list
should be sorted. This may be either the column
header label text or the position of the column from
left to right, with the left-most column at position 1.

string None Yes

common list
attributes

This element includes the following common list at-
tributes:

• name

• id

• label

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<detail>

The <detail> element can be contained in a <list-expect> element. When present the
<detail> element must then contain a <text> element. The contents of the <text>
element is then the text expected to be found in the detail pane of a list screen or a detail screen
field with an edit type of List View. If the contents of the detail pane do not match the contents
of the <text> element a script error is thrown.

Agentry App Development

598 SAP Mobile Platform

Structure
Contains:

• <text> - This element contains the text expected to be found in the detail pane of the list.

Contained By:

• <list-expect>
Attributes: None

<header>

The <header> element can be contained in a <list-expect> element and, when present
must contain a <text> element. The contents of the <text> element is then the text
expected to be found in the lists header label. This element is valid only when the <list-
expect> element containing it is for a list screen or a detail screen field with an edit type of
List View. If the header pane does not match the contents of the <text> element a script error
is thrown.

Structure
Contains:

• <text> - This element contains the expected text in the lists header label.

Contained By:

• <list-expect>
Attributes: None

<columnheader>

The <columnheader> element verifies the label displayed on a column header in a list.
This element is contained in a <list-expect> element and, when present must contain a
<text> element. The contents of the <text> element is the text expected to be in the label
of the column header. This element can be used to verify header labels for columns in the list
control of a list screen or the columns in a detail screen field with an edit type of List View. If
the header of the specified column does not match the contents of the <text> element the or
if the specified column cannot be found a script error is thrown. The column to verify is
specified using the <columnheader> attribute column.

Structure
Contains:

• <text>
Contained By:

Agentry App Development

Agentry App Development 599

• <list-expect>

Table 26. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute can specify the column header to be
verified as a part of the parent <list-expect> element
processing. The contents of this attribute is either the
column header label or the column index, with the
left-most column at position 1.

string none No

<row>

The <row> element verifies the contents and state of a row in a list control. This element can
be contained by the <field-expect> and <list-expect> elements. Multiple <row>
elements may be contained by the same parent element to verify multiple rows in the same list.
The <row> element can specify the row to be verified, or this may be specified by the parent
element’s row attribute. The contents of the row can include the text value indicating the
expected contents of the row.

The <row> element may also contain one or more <column> elements. Each <column>
element will verify the expected contents and/or state of the column it identifies within the row
identified by the <row> element.

Structure
Contains:

• <column>
Contained By:

• <field-expect> - Only contained by this element when verifying the contents of a
field with an edit type that displays a list control on the detail screen.

• <list-expect>
• Text - The expected contents of the row.

Agentry App Development

600 SAP Mobile Platform

Table 27. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

row This attribute contains the row position within the list.
The top-most row is at position 1. Note that the same
list may have a different row at the same numeric
position based on sorting of the list.

posi-
tive in-
teger

None No

selected This attribute specifies the expected selected state of
the row. This is a Boolean value. The value t is true and
the row is expected to be selected. The value f is false
and the row is expected to not be selected.

Boo-
lean

none No

<menu-expect>

The <menu-expect> element verifies the contents and state of a menu. This element must
contain at least one <menu> element specifying the menu to be verified. The <menu>
element itself will likely contain other elements regarding the items within the menu.

Structure
Contains:

• <menu>
Contained By:

• <script>

Table 28. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

Agentry App Development

Agentry App Development 601

<menu-select>

The <menu-select> element is used to select a menu item. This element must contain a
single <menu> element, which in turn must contain a single <item> element. These
elements specify the menu and item to be selected by the <menu-select> element.

Structure
Contains:

• <menu>
Contained By:

• <script>

Table 29. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<menu>

The <menu> element is contained by <menu-select> and <menu-expect>. The
<menu> element identifies the menu to be acted on by the containing element. When
contained by a <menu-expect> this element specifies what type of verification is to be
performed. The <menu> element will contain one or more <item> elements identifying the
menu item to be selected or verified. The <menu> element may also contain one or more
<separator> elements when contained by a <menu-expect> element. The
<separator> element will indicate the expected position of a menu separator.

Structure
Contains:

• Text - The name of the menu to be acted on by this element.
• <item>
• <separator>
Contained By:

Agentry App Development

602 SAP Mobile Platform

• <menu-select>
• <menu-expect>

Table 30. Attributes

Name Description Data
Type

De-
fault
Value

Required

type This attribute is only used when the <menu>
element is contained by a <menu-expect>
element. The type attribute specifies what is to
be verified within the named menu. Valid op-
tions for this attribute include:

• exact - The <item> and <separa-
tor> elements contained by the <menu>
element must match exactly with the con-
tents of the menu.

• sub-set - The <item> and <separa-
tor> elements contained by the <menu>
element must exist within the menu, but
others may also be present.

• no separators - The <item> elements con-

tained by the <menu> element must exist

within the menu. Any separators within the
menu are ignored and the <menu> element

should contain no <separator> ele-

ments.

string exact No - valid only
when <menu> is

contained by a
<menu-ex-
pect>

<item>

The <item> element is contained by the <menu> element, which in turn can be contained by
a <menu-expect> or <menu-select> element. When the ancestor element is a
<menu-expect> the <item> element specifies the expected state and value of the menu
item identified by the <menu> element. When the ancestor is a <menu-select> the
<item> element specifies the menu item to be selected. For both use cases the contents of the
<item> element is the name of the menu item.

When the ancestor of the <item> element is a <menu-expect> the <item> element
includes attributes to specify the expected state and other information about the named menu
item. These include the enabled/disabled state and whether or not the menu item is checked
(selected). These attributes are ignored when the ancestor element is a <menu-select>.

Agentry App Development

Agentry App Development 603

In a <menu-expect> context, if the expected state of the menu item does not match the
attributes of the <item> attribute a script error is thrown. In a <menu-select> context if
the menu item cannot be selected a script error is thrown

Structure
Contains:

• Text - The name of the menu item to be acted on.

Contained By:

• <menu-select>
• <menu-expect>

Table 31. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

checked This attribute is only valid when the ancestor element
is a <menu-expect> This is a Boolean attribute. The
value t is true and indicates the menu item is expected
to be checked. The value f is false and indicates the
menu item is not expected to be checked.

Boo-
lean

None No

enabled This attribute is only valid when the ancestor element
is a <menu-expect>. This is a Boolean attribute. The
value t is true and indicates the menu item is expected
to be enabled. The value f is false and indicates the
menu item is expected to be disabled.

Agentry Test Script: Tree Elements Overview

The tree-related elements of the Agentry Test Script are used to work with tree controls
presented on the Agentry client. This includes any detail screen fields that present a tree
control. The tree-related elements should be used in place of the field-related elements for
fields that present a tree control.

The elements in this group can be used to select nodes within a tree control, expand and
collapse nodes, double-click nodes, a check for expected values of a node within the tree
control.

Common Tree Element Attributes
The following list contains attributes found in most of the tree-related elements of the Agentry
Test Script. The elements use these attributes differently depending on the purpose and
behavior of the element.

Agentry App Development

604 SAP Mobile Platform

Name Description Data
Type

Default
Value

Re-
quired

name The resource name of the tree control. If name is

specified, label cannot be present.

String N/A No

label The label of the tree control. If the label is

specified, name cannot be present.

String N/A No

node The node within the tree control to be affected by
the element. The value of the attribute is the dis-
play value of the node in the tree control.

String N/A No

sibling The sibling node to the currently selected node in
the control. This attribute is set to the expected
value of the node in the tree control.

String N/A No

child The child node to the currently selected node in
tree control. The value of this attribute is set to the
expected value of the child node in the tree con-
trol.

String N/A No

<tree-select>

The <tree-select> element will select the specified node in a tree control. The node
selected can be specified by its relationship to the currently selected node in the tree control,
optionally in combination with that node’s currently displayed text value.

Structure
Contains:

• Text - The text displayed for the tree node.

Contained By:

• <script>

Agentry App Development

Agentry App Development 605

Table 32. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• name

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-expect>

The <tree-expect> is used to verify the expected state and values of a tree control node.
This element will contain one or more <node> elements. The <tree-expect> node
specifies the node to be verified. Information the tree-expect node will verify includes the
existence of the specified node and the total count of child nodes it contains. The <node>
elements contained in a <tree-expect> then specify the expected child nodes of that
node. The <tree-expect> node specifies the type of verification to perform for the
specified node in the tree control. This options are to verify the child nodes match those
<node> elements within <tree-expect> exactly, or to verify the child nodes include
those <node> elements within the <tree-expect>. In the case of the latter verification,
other child nodes may exist in the tree control. The first verification is referred to as an “exact”
verification type. The latter is a “sub-set” verification. If the selected tree control node does not
match the parameters of the <tree-expect> element, a script error is thrown.

Structure
Contains:

• Text - The expected contents of the specified node in the tree control.
• <node>
Contained By:

• <script>

Agentry App Development

606 SAP Mobile Platform

Table 33. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

count This attribute can specify the expected number of
child nodes for the specified node being verified. If
this attribute is not provided, the count of child
nodes is not performed or checked.

non-nega-
tive inte-
ger

N/A No

type This attribute specifies the type of verification to
perform. Valid values for this attribute are:

• exact - All child nodes for the tree control node
must exactly match all <node> elements

contained in the <tree-expect> ele-

ment.

• sub-set - For each <node> element con-

tained in the <tree-expect> element

there must be a matching child node in the tree
control Additional child nodes may also exist.

string sub-set No

common tree
control at-
tributes

This element includes the following common tree
control attribute:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common
script attributes:

• timeout

• sleep

N/A N/A N/A

<node>

The <node> element is contained by the <tree-expect> element. Multiple <node>
elements may exist within the same <tree-expect>, with each representing an expected
child node in the tree control. The contents of the <node> element is the text expected to be
displayed for the node. If a <node> element does not match a corresponding node in the tree
control, the containing <tree-expect> node will throw a script error. The order of the
<node> elements must match the order of the expected nodes within the tree control.

Agentry App Development

Agentry App Development 607

Structure
Contains:

• Text - The expected value displayed for the child node in the tree control.

Contained By:

• <tree-expect>
Attributes: None

<tree-expand>

The <tree-expand> element will expand the currently selected node in a tree control.
Optionally, a node can be specified, in which case the specified node will be selected and
expanded by the element. If the node is already expanded this element will have no affect. If
the specified node cannot be selected a script error is thrown.

Structure
Contains:

• Text - The currently displayed text of the tree control node to expand.

Contained By:

• <script>

Table 34. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

Agentry App Development

608 SAP Mobile Platform

<tree-collapse>

The <tree-collapse> element will collapse a currently expanded node in a tree control.
Optionally, the element can specify the node to be collapsed, in which case the node will first
be selected and then collapsed. If a node in the tree control is not specified, the currently
selected node will be collapsed. If the node is currently collapsed, this element will have no
affect. If the specified tree control node cannot be selected a script error will be thrown. Note
that if a node in the tree control exists but is currently hidden because its parent or ancestor
node is not expanded, the <tree-collapse> node will not be able to select the node.

Structure
Contains:

• Text - The currently displayed value of the node to be collapsed.

Contained By:

• <script>
Table 35. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-toggle>

The <tree-toggle> element will toggle the specified node in a tree control; i.e., the
specified node will be expanded if currently collapsed, or collapsed if currently expanded. If
the specified node cannot be found in the tree control a script error will be thrown.

Structure
Contains:

Agentry App Development

Agentry App Development 609

• Text - The displayed text of the tree control node to be toggled

Contained By:

• <script>

Table 36. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-double-click>

The <tree-double-click> element will double-click a node in the tree control. Optionally the
node to double-click can be specified. Otherwise the currently selected node will be double-
clicked. The node to double-click must currently be visible in the tree control. If the specified
node cannot be selected a script error will be thrown.

Structure
Contains:

• Text - The currently displayed text for the tree control node to be double-clicked.

Contained By:

• <script>

Agentry App Development

610 SAP Mobile Platform

Table 37. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-count-visible>

The <tree-count-visible> element will verify the number of currently visible nodes
in a tree control. This count is based on the nodes a user can currently see on the client’s screen,
not the total number of nodes in the tree control. If the specified number of nodes is not
currently visible in the tree control a script error is thrown.

Structure
Contains:

• Text - A non-negative value specifying the number of nodes expected to be currently
visible in the tree control.

Contained By:

• <script>

Agentry App Development

Agentry App Development 611

Table 38. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

Agentry Test Script: Scanner Elements Overview

The scanner-related elements within the Agentry Test Script are used to test barcode scanner
functionality. Included in this group of elements are those to start a barcode scan, set the scan
value, and enable and disable the scanner simulator within the ATE.

It is important to note that these elements work directly through the barcode Scanner simulator
within the Agentry Test Environment. The <scan-enable> element should be called to
enable this simulator prior to calling the <scan-start> element, which passes the barcode
value into the simulator, which in turn passes the value to the test client.

Alternately, if barcode scanner functionality is to be use, the barcode scanner can be enabled
within the ATE prior to executing the test script. This will negate the need to enable it from
within the script, which also requires the test client to be restarted.

<scan-data>

The <scan-data> element contains the default scan data to be passed by the Agentry Test
Environment’s scan simulator to the test client. This element does not perform the actual scan
and does not directly pass the data to the test client. Rather, this element contains the data to be
passed to the test client when a scan is called for. The element <scan-start> will perform
the actual scan and can contain a value to pass to the test client. If <scan-start> does not
contain a value, and if it is preceded by a <scan-data> element, the value in <scan-
data> will be the one passed to the test client.

Agentry App Development

612 SAP Mobile Platform

Structure
Contains:

• Text - The default value to pass to the test client from the ATE’s scan simulator.

Contained By:

• <script>

Table 39. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<scan-enable>

The <scan-enable> element will enable or disable the scan simulator in the Agentry Test
Environment. When this element is processed it should be followed by a <restart-
client> element in the test script, as enabling or disabling the scan simulator requires the
test client to be restarted. The contents of this element can be the text values true or false,
where true will enable the scan simulator and false will disable it.

Structure
Contains:

• Text - The true or false value to enable or disable the scan simulator in the Agentry
Test Environment.

Contained By:

• <script>

Agentry App Development

Agentry App Development 613

Table 40. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<scan-start>

The <scan-start> element will pass the value it contains to the test client through the
Agentry Test Environment’s scan simulator. Alternately, the value passed to the test client can
be contained in a separate <scan-data> element. To pass this default value the proper
syntax for the <scan-start> element is:

</ags:scan-start> -- OR -- </scan-start>

The use of an open and close marker for this element, such as: <scan-start></scan-
start> will result in an error during test script playback.

Structure
Contains:

• Text - Option text value to be passed to the test client through the Agentry Test
Environment’s scan simulator.

Contained By:

• <script>

Table 41. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

Agentry App Development

614 SAP Mobile Platform

Agentry Test Script: SQL Elements Overview

The SQL elements within the Agentry Test Script are provided to allow for the interrogation of
the back end system processing built into the mobile application from within the test script.
These elements do not affect the test client in any way. Rather, they are added to a test script to
connect to and run queries against a database. Values returned by these queries can then be
checked for expected values to validate the proper back end processing of the mobile
application.

The primary use case for these elements is to check the proper processing of the mobile
application’s transactions. Typically these statements would be added to the script after a
transmit is performed within the script that includes sending transactions to the Agentry
Server for processing.

However, the SQL elements can be added at any point within the script where it is desirable to
check the data in the back end as it relates to the mobile applications synchronization
processing. Updates or changes made to exchange information and similar data can certainly
be verified using these elements if desired.

The SQL elements are not added to the test script by the script recorder, but rather should be
manually added to the script once it has been created.

Note that these elements are intended only for connecting directly to a database server.
However, they can be used in testing an application with other types of system connections,
provided there is direct access available to the database that may be behind the Java or Web
Service interface.

<dsn-create-sql>

The <dsn-create-sql> element will create a System Data Source Name in ODBC
representing a connection to a SQL Server database. This is a permanent DSN added to the
host system and is not needed if an existing System DSN is already present. This element
includes attributes specifying the DSN name, the database instance, SQL Server host, and
authentication method (SQL or Windows). Any other parameters for a DSN are set to their
defaults as configured on the host system. When using this element within a script, it is
recommended that a corresponding <dsn-remove-sql> element exists to remove the
same DSN created to allow for the same test script to be played multiple times on the same host
system. If the DSN cannot be created a script error is thrown.

Structure
Contains:

• None

Contained By:

• <script>

Agentry App Development

Agentry App Development 615

Table 42. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

dsn This attribute specifies the name given to the DSN.
This value can contain no whitespace and must adhere
to all requirements of a DSN name as specified in
ODBC.

string None Yes

server This attribute specifies the host system upon which
the SQL Server service is running.

string None Yes

database This attribute specifies the database instance to which
the DSN should connect.

string None Yes

authentica-
tion

This attribute specifies the authentication method to
be used to create a connection the SQL Server service
and database. This may be one of:

• SQL - The SQL Server authentication method.
Connections made using this DSN will require
the user login and password of a user account
configured in the SQL Server service with per-
missions to access the database instance.

• WINDOWS - The integrated Windows authenti-
cation method. The test script that uses the DSN
created must be run as a Windows user known to
the SQL Server system and with permissions to
access the target database.

string None Yes

description This attribute can contain a text value that will be
added to the System DSN as a description.

string None No

overwrite This attribute specifies whether or not to overwrite an
existing System DSN with the same name as the one
this element will created. This is a Boolean value,
with true indicating the existing DSN should be over-
written and false indicating it should not.

Boo-
lean

False No

Agentry App Development

616 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

ignoreErrors This attribute specifies whether or not any errors re-
turned when creating the System DSN should be ig-
nored. This is a Boolean value, with true indicating
errors should be ignored and false indicating they
should not be ignored. If this attribute is false or not
specified, any error returned when attempting to cre-
ate the System DSN will result in a script error being
thrown.

Boo-
lean

False No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<dsn-remove-sql>

The <dsn-remove-sql> element is used to remove an ODBC System Data Source Name
for a SQL Server database. The name of the DSN to be removed is specified in the dsn
attribute to the element. Note that this element will permanently remove the DSN and will not
be possible to recover it once this element has been processed.

Structure
Contains:

• None

Contained By:

• <script>

Table 43. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

dsn The name of the ODBC System Data Source Name to
be removed. The DSN named here must be for a SQL
Server connection.

string None Yes

Agentry App Development

Agentry App Development 617

Name Description Data
Type

De-
fault
Value

Re-
quired

ignoreErrors This attribute specifies whether or not any errors re-
turned with the attempt to delete the DSN should be
ignored. This is a Boolean value with true indicating
errors should be ignored. If this attribute is false or not
specified, errors will not be ignored and, if any are
returned, a script error will be thrown.

Boo-
lean

False No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<sql-command>

The <sql-command> element will execute a SQL command against a database system.
This element must be contained by a <sql-connect> element that creates a connection to
the database system against which the SQL command will be executed. The <sql-
command> element can contain the SQL statement to be executed, or it may reference a text
file containing the command or commands to be executed. Results from executing the
commands against a database can be logged based on the settings of the containing <sql-
connect> element. The <sql-command> element can contain a <sql-expect>
element that can verify the return set of any SELECT statement run by the <sql-command>
element. Based on the <sql-command> element’s ignoreErrors attribute setting,
errors in executing the SQL command can be ignored or not. If errors are not ignored (default
behavior) a script error will be thrown in the event an error occurs in executing the SQL
statement. The <sql-command> element must either reference a file in its commandFile
attribute containing the SQL command(s) to execute, or the text contents of the element itself
must include a single SQL command.

Structure
Contains:

• Text - The SQL command to be executed against the database. Should not be present if a
file is referenced in the commandFile attribute.

• <sql-expect>
Contained By:

• <sql-connect>

Agentry App Development

618 SAP Mobile Platform

Table 44. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

command-
File

This attribute can contain the full path and file name,
including file extension, of a plain text file containing
the SQL command(s) to be executed against the da-
tabase. This attribute should not be specified if the
contents of the <sql-command> element include

the SQL command to be executed.

string none No

ignoreErrors This attribute specifies whether or not errors returned
when attempting to execute the SQL command
should be ignored. This is a Boolean value. When true
errors will be ignored. When false errors will not be
ignored and a script error will be thrown when an error
occurs.

Boo-
lean

False No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<sql-connect>

The <sql-connect> element will open a connection to a database server using the
specified connection protocols and user credentials. The contents of this element include the
<sql-command> element, which contains the SQL command to execute against the
database with which the <sql-connect> element opens a connection. This connection
will be closed after the processing of the <sql-connect> element and its contents has
completed. In order for this element open a connection the host system upon which the test
script is being played must have the proper configuration in place for the connection. For
example the ODBC System DSN for a SQL Server database, or the TNS Name for an Oracle
database connection. The attributes of this element specify whether or not to save the results of
execution of any SQL commands to a log file.

Structure
Contains:

• <sql-command>
Contained By:

• <script>

Agentry App Development

Agentry App Development 619

Table 45. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

dbConnection-
Name

The name of the connection configuration
component for the target database; e.g. DSN,
TNS Name, etc.

String None Yes

dbConnectionType The type of connection to make. This must
match the connection configuration compo-
nent type named in dbConnectionName. Valid
values for this attribute include:

• DB2

• Informix

• Interbase

• MsSQL

• ODBC (recommended setting for SQL
Server connections)

• Oracle

• Postgre

• SQLBase

• SQLServer

• Sysbase

String None Yes

dbConnectionU-
serID

The user ID to connect to the database system. String None Yes

dbConnection-
Password

The password for the user ID. String None Yes

commandFile The full path and file name, including exten-
sions, of a plain text file containing the SQL
command(s) to execute once connected. This
attribute is optional and should if used when
one or more <sql-command> elements

are contained in the <sql-connect> el-

ement, will be executed before those com-
mands.

String None No

Agentry App Development

620 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

saveQuery This attribute specifies whether or not to log
the SQL command executed against the data-
base. This is a Boolean value, with true indi-
cating the query should be saved. This attribute
is ignored if saveFile is not present.

Boo-
lean

False No

saveResult This attribute specifies whether or not to log
the result of executing the SQL command(s)
contained within the <sql-connect> el-

ement or any <sql-command> elements it

contains. This is a Boolean value, with true
indicating the results should be saved. Note
that results are the responses of the database
system, not the data returned by a query. This
attribute is ignored if saveFile is not

present.

Boo-
lean

False No

saveFile This attribute can contain the full path and file
name to which log messages from any SQL
commands will be written. If this attribute is
not set saveQuery and saveResult
are ignored.

String False No

ignoreErrors This attribute specifies whether or not any er-
rors generated by the <sql-connec-
tion> element’s operations should be ignor-

ed. This is a Boolean value, with true indicating
errors should be ignored. If not set or set to
false (default) any errors resulting from at-
tempting to connect to the database, or in exe-
cuting a SQL command, will result in a script
error being thrown. Any <sql-command>
elements contained in the <sql-con-
nect> element can override this setting.

Boo-
lean

False No

common script at-
tributes

This element includes the following common
script attributes:

• timeout

• sleep

N/A N/A N/A

Agentry App Development

Agentry App Development 621

<sql-expect>

The <sql-expect> element is used to verify the return set from a SELECT statement
executed from within a <sql-command> element. The <sql-expect> is contained
within the <sql-command> that executed the command. It can then specify the expected
number of records in the return set. The <sql-expect> in can also contain one or more
<sql-row> elements, each of which will contain one or more <sql-column> elements.
The <sql-row> and <sql-column> elements will verify the expected contents of the
return set of the SELECT statement. The <sql-expect> element can also specify if the
order of the return set should match the order of the <sql-row> elements it contains, or
merely verify the existence of the same records, regardless of order. If the return set does not
match the expected return a script error is thrown.

Structure
Contains:

• <sql-row>
Contained By:

• <sql-command>

Table 46. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

count This attribute can specify the expected number of
records, or row, in the return set. If this attribute is
not specified, the number of rows is not factored
into the validation of the return set.

non-nega-
tive inte-
ger

none No

strictOrder This attribute specifies whether or not the order of
the rows in the return set is expected to match the
order of <sql-row> elements contained in the

<sql-expect> This is a Boolean attribute,

with true specifying the order must match, and
false specifying it does not. If false is specified, the
rows in the return set can be in any order related to
the order of <sql-row> elements. However, all

<sql-row> elements must have corresponding

<records>.

Agentry App Development

622 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common
script attributes:

• timeout

• sleep

N/A N/A N/A

<sql-row>

The <sql-row> element is contained in a <sql-expect> element. The <sql-row>
element is generally a container for one or more <sql-column> elements, which specify
the expected data in a given row. The <sql-row> element itself does not include any specific
expected values. The order of the <sql-row> elements may impact the verification of the
expected return set depending on the settings of the <sql-expect> element in which it is
contained.

Structure
Contains:

• <sql-column>
Contained By:

• <sql-expect>
Attributes: None

<sql-column>

The <sql-column> element is contained in a <sql-row> element and specifies the
expected data returned in that column. The <sql-column> element can specify the name of
the column whose data is to be verified. Alternately, the <sql-row> element can contain
<sql-column> elements with no name specification, in which case the data in the columns
of the record must be in the same order as the <sql-column> elements within the <sql-
row>. If the data specified in the <sql-columnm> elements contents does no match the
data in the column within the row of the return set a script error is thrown.

Structure
Contains:

• Text - The expected value of the column within the row.

Contained By:

Agentry App Development

Agentry App Development 623

• <sql-row>

Table 47. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

name This attribute can specify the name of the column
within the record of the return set whose data is to be
verified by the <sql-column> element. If this

attribute is omitted, the <sql-column> elements

must match the order of the columns in the rows of the
return set or a script error is thrown. Note the either all
<sql-column> elements within the same

<sql-row> must specify the name attribute, or

none of them can.

String None No

Agentry Test Script: Tab Elements Overview

The tab-related elements in the Agentry Test Script language are provided to allow for the
selection of tabs within a screen set on the Client, and to test for expected values within the
labels of those tabs.

In later versions of Agentry, screens within a screen set can be presented without tabs and
instead using a popup menu to allow users to select a different screen within the screen set. The
tab elements will work with this interface option as well.

<tab-expect>

The <tab-expect> element can be used to verify the label of a tab. The contents of the
element specify the label expected to be displayed for the tab. The tab may be specified based
on the screen definition’s name, the screen’s position index, a position relative to the currently
selected tab’s position, or by specifying the first or last tab from left to right. If the tab’s label
does not match the text contents of the <tab-expect> element a script error is thrown. If
the tab, name, and label attributes are all omitted from this element, the currently selected tab’s
label is verified.

Structure
Contains:

• Text - The expected label for the tab.

Contained By:

• <script>

Agentry App Development

624 SAP Mobile Platform

Table 48. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

tab This attribute can be set to specify the tab to select
based on its position relative to the currently selected
tab, the first or last tab, or by specifying a positive
integer matching the screen’s position index within
the screen set. Valid values for this attribute include:

• first - The first (or left-most) tab displayed.

• last - The last (or right-most) tab displayed.

• next - The next tab to the right of the currently
selected tab.

• previous - The previous tab to the right of the
currently selected tab.

• A positive integer matching the screen definitions
position within the screen set.

String None No

name This attribute can be set to the screen definitions name
to specify the tab whose label is to be verified.

String None No

label This attribute can be set to specify the label for the tab
whose label is to be verified. While supported for the
<tab-expect> element, it makes little sense to

use this attribute.

String None No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tab-select>

The <tab-select> element will select a tab on the client, in essence selecting the screen
within a multi-screen screen set. The tab may be selected based on the tab’s label (screen
caption), the screen definition’s name, the screen’s position index, a position relative to the
currently selected tab’s position, or by specifying the first or last tab from left to right.

Structure
Contains:
• None

Contained By:

Agentry App Development

Agentry App Development 625

• <script>

Table 49. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

tab This attribute can be set to specify the tab to select
based on its position relative to the currently selected
tab, the first or last tab, or by specifying a positive
integer matching the screen’s position index within
the screen set. Valid values for this attribute include:

• first - The first (or left-most) tab displayed.

• last - The last (or right-most) tab displayed.

• next - The next tab to the right of the currently
selected tab.

• previous - The previous tab to the right of the
currently selected tab.

• A positive integer matching the screen definitions
position within the screen set.

String None No

name This attribute can be set to the screen definition’s
name to specify the tab to be selected.

String None No

label This attribute can be set to the label of the tab, which is
the screen definitions caption attribute value, to be
selected.

String None No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

Agentry Test Script: Window Elements Overview

The window-related elements within the Agentry Test Script are provided to allow for
interaction with the windows presented by the mobile client application. This is, in essence,
the same as interacting with the screen set itself.

The elements provided include those to close the window to either return to the previous
window or to return to the window presenting the main screen set of the module, to check for
expected values in the title bar of the currently displayed screen, and also those to support
entering a signature value in a detail screen displaying a property of type Signature.

Agentry App Development

626 SAP Mobile Platform

Note that the elements to close the current window should only be used if there is no
navigational action available within the application to perform this operation. If such an action
is present, it should be used just as if a user were executing that action.

<window-close>

The <window-close> element will close the current or specified window on the Client.
Note that if an action button or some other control exists to close a window on the client that
control should be used. If the specified window cannot be found a script error is thrown.

Structure
Contains:

• Text - The caption of the window to be closed.

Contained By:

• <script>

Table 50. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<window-close-main>

The <window-close-main> will close the test client running within the ATE. This will
be the equivalent of selecting the File | Exit menu item in the client’s menu bar.

Structure
Contains:

• None

Contained By:

• <script>

Agentry App Development

Agentry App Development 627

Table 51. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<window-expect>

The <window-expect> element will verify the caption of the currently displayed screen
on the client. If the screen caption does not match the expected value a script error is thrown.

Structure
Contains:

• Text - The expected caption of the screen/window displayed on the client.

Contained By:

• <script>

Table 52. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• window

• timeout

• sleep

N/A N/A N/A

<window-sign>

The <window-sign> element is provided to enter a signature in a signature capture field.
This element will enter either a default signature, which is an X character, or may enter a more
sophisticated image in the signature capture field. To specify the signature to enter other than
the default signature, the <window-sign> element must contain two or more <point>
elements, each of which specifies a point to draw a line in the signature capture field.

Agentry App Development

628 SAP Mobile Platform

Structure
Contains:

• <point>
Contained By:

• <script>

Table 53. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• window

• control - for this element always set to
IDC_SIGNATURE_CAPTURE.

• timeout

• sleep

N/A N/A N/A

<point>

The <point> element specifies a point within a signature capture control. The exact position
is specified via two pixel coordinates, x and y. Two <point> elements contained within the
same <window-signature> element will be connected. Subsequent <point> elements will
continue to be connected, that is, the first and second <point> will be connected via a single
line, then the second and third <point> elements will be connected, and so forth. If either the
x or y coordinate of a point are outside the boundaries defined for the signature capture field a
script error is thrown.

Structure
Contains:

• None

Contained By:

• <window-sign>

Agentry App Development

Agentry App Development 629

Table 54. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

x The x, or horizontal coordinate for the point,
specified in pixels, with the left-most pixel at po-
sition 0.

non-nega-
tive inte-
ger

none Yes

y The y, or vertical coordinate for the point, specified
in pixels with the bottom-most pixel at position 0.

non-nega-
tive inte-
ger

none Yes

Agentry Test Script: Client Elements Overview

The client-related elements of the Agentry Test Script are used to affect or interact with the
client process itself. These elements can restart the client and retrieve and set registry key
values.

Typically these elements are added manually to a test script, as the script recorded in the ATE
does not support recording these values.

Those elements related to the registry should be used with caution and only by those with an
understanding of the registry keys and values for the Agentry Test Environment and Client. If
present, the script must be run by a user with permission to change Windows registry keys on
the host system for the ATE.

<client-restart>

The <client-restart> element will restart the client process running within the
Agentry Test Environment. As optional behavior for this element, using the <registry>,
<key>, and <value> elements, one or more registry keys may be added, deleted, or
modified during this restart. Note that this element will restart the test client running within the
ATE. It will not restart the ATE itself.

Structure
Contains:

• <registry>
Contained By:

• <script>

Agentry App Development

630 SAP Mobile Platform

Table 55. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<registry>

The <registry> element can be used with the <restart-client> element to create or modify
registry keys and values. This element requires the use of a <key> child element to specify the
registry key to be affected.

Structure
Contains:

• <key>
Contained By:

• <restart-client>
Attributes:

• None

<key>

The <key> element specifies a registry key to be modified or created. Nested registry keys
require nested <key> elements within the test script. If a specified key does not exist will be
created. The reset attribute allows for the specified key to be deleted and recreated. If the
<key> element contains a <value> element, the contents of the <value> will specify the
value to which the named key should be set.

Structure
Contains:

• <key>
• <value>
Contained By:

• <registry>
• <key>

Agentry App Development

Agentry App Development 631

Table 56. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

name This attribute specifies the name of the registry key to
be affected by the <key> element. May also contain

one of:

• HKLM - HKEY_LOCAL_MACHINE

• HKCU - HKEY_CURRENT_USER

string none Yes

reset This attributes specifies whether the named key
should be reset. The value t is treated as true and will

result in the key being deleted and recreated. The
value f is false.

string f No

<value>

The <value> element specifies the value to be set for the named registry key. The <value>
element must be contained by a <key> element. The <value> element names the registry
key that is to be modified within the one named by the containing <key> element. The
<value> element can specify that the named key’s value is to be added, modified, or deleted.
When adding or modifying the value of a key, the <value> element also specifies the data
type of the registry key value.

Structure
Contains:

• Text - contains the value to be set for the key. Ignored when the reset attribute is set to
true.

Contained By:

• <key>

Table 57. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

name The name of the registry key to be affected by the
<value> element.

String None Yes

Agentry App Development

632 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

type Specifies the data type of the value expected for the
registry key. Must be one of:

• binary
• dword
• string

String None Yes - ig-
nored if
reset is
true.

reset Specifies whether or not the specified key should
be deleted. The value t is true and will delete the

value of named registry key. The value f is false.

String f No

common
script attrib-
utes

A set of related attributes common to most ele-
ments within the Agentry Test Script.

N/A N/A N/A

Agentry Test Script: Client Host Elements overview

The client host-related elements provided in the Agentry Test Script are used to perform
actions on the client host itself, outside the test client. This includes the ability to execute
commands on the host system and to specify key’s to be pressed on the client device.

While the test script runs only on the Agentry Test Environment, which can only be installed to
a desktop, the interactions between the test client and host system can be scripted to mimic the
behaviors of the target device type.

<command-line>

The <command-line> element allows for the execution of a command on the client device
during test script playback. This element can specify how long to wait for the command to
return and its expected exit code. The contents of the element are the commands to execute.
Alternately a command may be specified using the cmd attribute of the element. These
commands can be written to a temporary file that itself will then be executed by the
<command-line> element. The default file extension for this file is .bat, though this can
be overridden. If the specified command cannot be executed a script error is thrown.

Structure
Contains:

• Text - The command(s) to be executed by the element.

Contained By:

• <script>

Agentry App Development

Agentry App Development 633

Table 58. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

cmd This attribute specifies the command to be execu-
ted by the element, or to pass parameters to a tem-
porary file created by the element that will be exe-
cuted. The first value in this parameter should be
the token %1 when used to pass parameters to a

temporary script file. This should then be followed
by the parameters, each separated by whitespace.
The contents of the element should then be the
command with the tokens %1 through %n for each

parameter specified in the cmd attribute.

string None No

ext This attribute specifies the file extension for the
temporary file to contain the commands executed
by the element. The default file extension
is .bat. The value of this attribute can optionally

include a leading period (.).

string .bat No

waitFor This attribute specifies the duration of time in mil-
liseconds to wait for the command to complete
execution. The value -1 indicates to wait indefi-

nitely. The value 0 indicates to execute the com-

mand and not wait for it to complete. The script
will continue playback regardless of the result of
executing the command. If the command does not
exit before the specified duration elapses a script
error is thrown.

integer 0 No

expectedEx-
it

This attribute specifies the expected exit code to be
returned by the processes executed by the com-
mand. This can be any non-negative integral num-
ber. This attribute is ignored if waitFor is set to 0.

If this attribute is not specified, the exit code of the
command will not be checked. If the exit code
differs from the value specified a script error is
thrown.

non-nega-
tive inte-
ger.

None No

Agentry App Development

634 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common
script attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<key-press>

The <key-press> element will enter a single keystroke, mimicking that keystroke on a
standard keyboard. This element includes the option of including key the combinations using
the Alt, Ctrl, and/or Shift keys. Only a single character or keystroke can be set using the
<key-press> element.

Structure
Contains:

• None

Contained By:

• <script>

Agentry App Development

Agentry App Development 635

Table 59. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

key This attribute specifies the key stroke to enter. This
may be one of the following values:

• Any single printable character

• “backspace” - The backspace key.

• “tab” - The Tab key.

• “enter” - The Enter/Return key.

• “return” - The Enter/Return key.

• “pause” - The Pause key.

• “esc” - The Escape (Esc) key.

• “space” - The spacebar.

• “page up” - The Page Up key.

• “page down” - The Page Down key.

• “end” - The End key.

• “home” - The Home key.

• “left” - The left arrow key.

• “right” - The right arrow key.

• “up” - The up arrow key.

• “down” - The down arrow key.

• “print screen” - The Print Screen key.

• “insert” - The Insert key.

• “delete” The Delete key.

• “Fn” - n is any numeric value from 1 to 24. That
function key is then pressed.

charac-
ter

None Yes

shift This attribute specifies whether to depress the
Shift key in combination with the key attribute.

The value t is true and will depress the Shift key.

The value f is false.

Boo-
lean

f No

ctrl This attribute specifies whether to depress the Ctrl
key in combination with the key attribute. The value t
is true and will depress the Ctrl key. The value f is

false.

Boo-
lean

f No

Agentry App Development

636 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

alt This attribute specifies whether to depress the Alt
key in combination with the key attribute. The value t
is true and will depress the Alt key. The value f is

false.

Boo-
lean

f No

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Java API
The Agentry Java API is provided for Agentry applications that make use of a Java system
connection for data synchronization. This API exposes the mobile application data to the Java
logic, system and user information, and other key data needed during synchronization.

com.syclo.agentry package

utility package

java_logging package

AgentryHandler class
This is an implementation of the Java Logging API's Handler class that will route log
messages to the Agentry Server Java System Connection's log file.

Syntax
public class AgentryHandler extends Handler

Members
All members of AgentryHandler, including inherited members. Variables

Modifier and Type Variable Description

protected Formatter _defaultFormatter on page
640

This is the default formatter
used by this handler.

Constructors

Agentry App Development

Agentry App Development 637

Modifier and Type Constructor Description

public AgentryHandler() on page
639

Constructs a new AgentryHan-
dler object.

Methods

Modifier and Type Method Description

public void close() on page 640 Agentry log files cannot be
closed from Java; this method
does nothing.

public void flush() on page 640 The Agentry server always
flushes its log files; this method
does not do anything explicit.

protected LogLevel mapLogLevel(Level) on page
640

Maps a Java log level to an
Agentry log level, as described
in the class documentation.

public void publish(LogRecord) on page
640

Publishes a log record to the
Agentry server.

Usage
It is also capable of routing messages to an Agentry user log file, if it receives objects of class
UserLogRecord instead of objects of the base class LogRecord. UserLogRecord objects
can be easily generated by using the UserLogger class.

Both the Java Logging API and the Agentry Server support the concept of log levels. The
logging level of the Agentry Server is configured in the AgentryLogging.ini file, and
the Agentry Server supports six levels, 0 through 5, with level 0 messages always being
logged. For each system connection, there is a level setting in the configuration file, and all
messages at or below that setting will be logged.

The levels in the Java Logging API map to the log levels in Agentry as follows:

Java Logging API Agentry Purpose

Level#SEVERE Level 0 Severe errors, always logged

Level#WARNING Level 1 Warnings or recoverable errors

Level#INFO Level 2 "Now doing this" type messages

Agentry App Development

638 SAP Mobile Platform

Java Logging API Agentry Purpose

Level#CONFIG Level 2 Configuration settings and rela-
ted messages. Note that this will
map to the same Agentry level
as Level.INFO messages.

Level#FINE Level 3 Details of why a decision is be-
ing made. This is the level that
the Server.debug and User.de-
bug methods will log at.

Level#FINER Level 4 Values being set from files, user
input, etc; details of calcula-
tions.

Level#FINEST Level 5 Really low level details. This is
the level that the AJAPI classes
and the Agentry Server will log
at, so if you enable this you may
get a lot of log messages. Be-
cause of this, using this level in
end-user code is discouraged.

Configuration:

By default each AgentryHandler is initialized using the following LogManager
configuration properties:

• com.syclo.agentry.utility.java_logging.AgentryHandler.leve
l

• Specifies the default level (defaults to Level#ALL).
• com.syclo.agentry.utility.java_logging.AgentryHandler.filt

er
• Specifies the name of a Filter class (defaults to no filter).
• com.syclo.agentry.utility.java_logging.AgentryHandler.form

atter
• Specifies the name of a Formatter class to use (defaults to an internal formatter that

produces just the text of the message by itself; Agentry will add a timestamp to the
message when it logs it).

AgentryHandler() constructor
Constructs a new AgentryHandler object.

Syntax
public AgentryHandler ()

Agentry App Development

Agentry App Development 639

close() method
Agentry log files cannot be closed from Java; this method does nothing.

Syntax
public void close ()

flush() method
The Agentry server always flushes its log files; this method does not do anything explicit.

Syntax
public void flush ()

mapLogLevel(Level) method
Maps a Java log level to an Agentry log level, as described in the class documentation.

Syntax
protected LogLevel mapLogLevel (Level javaLevel)

Parameters

• javaLevel – the Java log level

Returns
An LogLevel constant

Usage
If you have custom log levels, you can subclass this class and override this method to map your
custom log levels to Agentry's levels. Otherwise, this method will make a best-guess attempt
at mapping custom log levels, based on which of Java's levels the custom levels fall between
(for example, if your custom level's integer value is greater than Level.INFO but less than
Level.WARNING, it will be treated as equivalent to Level.INFO).

publish(LogRecord) method
Publishes a log record to the Agentry server.

Syntax
public void publish (LogRecord record)

_defaultFormatter variable
This is the default formatter used by this handler.

Syntax
protected Formatter _defaultFormatter

Agentry App Development

640 SAP Mobile Platform

Usage
It just does localization and parameter substitution, and otherwise returns the message without
any other adornment.

AgentryJavaLoggingConfigurator class
This class is used by the Java System Connection to set up a default configuration for the Java
Logging API.

Syntax
public class AgentryJavaLoggingConfigurator

Members
All members of AgentryJavaLoggingConfigurator, including inherited members. Nested
classes

Modifier and Type Class Description

class ReallySimpleFormatter on page
641

This is a basic formatter class
that is used for the AgentryJa-
vaCompiler log file handler (to
mimic the format that com.syc-
lo.agentry.utility.Logger was
using).

Constructors

Modifier and Type Constructor Description

public AgentryJavaLoggingConfigu-
rator() on page 642

Configure the Java Logging API
via the properties file at com/
syclo/agentry/internal/log-
ging.properties.

Usage
The default configuration will set up a single root logger using the AgentryHandler handler,
which will result in all log messages being routed to the Java System Connection's log file on
the Agentry Server.

AgentryJavaLoggingConfigurator.ReallySimpleFormatter class
This is a basic formatter class that is used for the AgentryJavaCompiler log file handler (to
mimic the format that com.syclo.agentry.utility.Logger was using).

Syntax
class ReallySimpleFormatter extends Formatter

Agentry App Development

Agentry App Development 641

Members
All members of ReallySimpleFormatter, including inherited members. Methods

Modifier and Type Method Description

public String format(LogRecord) on page
642

Usage
It just prefixes the log message with a timestamp.

format(LogRecord) method

Syntax
public String format (LogRecord record)

AgentryJavaLoggingConfigurator() constructor
Configure the Java Logging API via the properties file at com/syclo/agentry/internal/
logging.properties.

Syntax
public AgentryJavaLoggingConfigurator () throws IOException

Exceptions

• IOException – if the logging properties file cannot be loaded.

Usage
In addition, add special file handlers for the various classes in
com.syclo.agentry.internal, to mimic what those classes used to do with the
deprecated com.syclo.agentry.utility.Logger class.

UserLogRecord class
This class is used to create a log record that, if received by an instance of AgentryHandler, will
be routed to a user-specific log file on the Agentry server.

Syntax
public class UserLogRecord extends LogRecord

Members
All members of UserLogRecord, including inherited members. Constructors

Agentry App Development

642 SAP Mobile Platform

Modifier and Type Constructor Description

public UserLogRecord(User, Level,
String) on page 645

Constructs a new UserLogRe-
cord object.

public UserLogRecord(User, LogRe-
cord) on page 645

Constructs a new UserLogRe-
cord object that copies all of its
information from an existing
LogRecord object.

Methods

Modifier and Type Method Description

public boolean equals(Object) on page 645

public Level getLevel() on page 645

public String getLoggerName() on page
645

public String getMessage() on page 646

public long getMillis() on page 646

public Object[] getParameters() on page 646

public ResourceBundle getResourceBundle() on page
646

public String getResourceBundleName() on
page 646

public long getSequenceNumber() on page
646

public String getSourceClassName() on page
646

public String getSourceMethodName() on
page 646

public int getThreadID() on page 647

public Throwable getThrown() on page 647

public User getUser() on page 647 Returns the user that this log re-
cord pertains to.

public int hashCode() on page 647

Agentry App Development

Agentry App Development 643

Modifier and Type Method Description

public void setLevel(Level) on page 647

public void setLoggerName(String) on
page 647

public void setMessage(String) on page
647

public void setMillis(long) on page 648

public void setParameters(Object[]) on
page 648

public void setResourceBundle(Resource-
Bundle) on page 648

public void setResourceBundle-
Name(String) on page 648

public void setSequenceNumber(long) on
page 648

public void setSourceClassName(String)
on page 648

public void setSourceMethodName(String)
on page 648

public void setThreadID(int) on page
648

public void setThrown(Throwable) on page
649

public String toString() on page 649

Usage
You can create instances of this class directly and hand them off to Logger objects to log
user-specific messages, but it is far more convenient to use the UserLogger class, which is a
subclass of Logger that handles converting LogRecord objects to UserLogRecord
objects for you.

Note that it is perfectly acceptable for one of these objects to find its way to any other type of
Handler object; other handlers will log these objects the same way they would log any other
LogRecord object.

Agentry App Development

644 SAP Mobile Platform

UserLogRecord(User, Level, String) constructor
Constructs a new UserLogRecord object.

Syntax
public UserLogRecord (User user , Level level , String msg)

Parameters

• user – The user to log the message for
• level – The message level
• msg – The log message

UserLogRecord(User, LogRecord) constructor
Constructs a new UserLogRecord object that copies all of its information from an existing
LogRecord object.

Syntax
public UserLogRecord (User user , LogRecord record)

Parameters

• user – The user to log the message for
• record – The LogRecord object containing the original log message information.

Usage
This will copy all of the information from the existing log record, including message
parameters.

equals(Object) method

Syntax
public boolean equals (Object obj)

getLevel() method

Syntax
public Level getLevel ()

getLoggerName() method

Syntax
public String getLoggerName ()

Agentry App Development

Agentry App Development 645

getMessage() method

Syntax
public String getMessage ()

getMillis() method

Syntax
public long getMillis ()

getParameters() method

Syntax
public Object[] getParameters ()

getResourceBundle() method

Syntax
public ResourceBundle getResourceBundle ()

getResourceBundleName() method

Syntax
public String getResourceBundleName ()

getSequenceNumber() method

Syntax
public long getSequenceNumber ()

getSourceClassName() method

Syntax
public String getSourceClassName ()

getSourceMethodName() method

Syntax
public String getSourceMethodName ()

Agentry App Development

646 SAP Mobile Platform

getThreadID() method

Syntax
public int getThreadID ()

getThrown() method

Syntax
public Throwable getThrown ()

getUser() method
Returns the user that this log record pertains to.

Syntax
public User getUser ()

Returns
the User object.

hashCode() method

Syntax
public int hashCode ()

setLevel(Level) method

Syntax
public void setLevel (Level level)

setLoggerName(String) method

Syntax
public void setLoggerName (String name)

setMessage(String) method

Syntax
public void setMessage (String message)

Agentry App Development

Agentry App Development 647

setMillis(long) method

Syntax
public void setMillis (long millis)

setParameters(Object[]) method

Syntax
public void setParameters (Object[] parameters)

setResourceBundle(ResourceBundle) method

Syntax
public void setResourceBundle (ResourceBundle bundle)

setResourceBundleName(String) method

Syntax
public void setResourceBundleName (String name)

setSequenceNumber(long) method

Syntax
public void setSequenceNumber (long seq)

setSourceClassName(String) method

Syntax
public void setSourceClassName (String sourceClassName)

setSourceMethodName(String) method

Syntax
public void setSourceMethodName (String sourceMethodName)

setThreadID(int) method

Syntax
public void setThreadID (int threadID)

Agentry App Development

648 SAP Mobile Platform

setThrown(Throwable) method

Syntax
public void setThrown (Throwable thrown)

toString() method

Syntax
public String toString ()

UserLogger class
This class is used in combination with AgentryHandler to route messages to the user-specific
log files on the Agentry Server.

Syntax
public class UserLogger extends Logger

Members
All members of UserLogger, including inherited members. Methods

Modifier and Type Method Description

public User getUser() on page 650 Returns the user that this logger
is logging for.

public static UserLogger getUserLogger(String, User) on
page 650

Returns an instance of UserLog-
ger that uses the named Logger
instance to log messages to the
Agentry server for the given
user.

public static UserLogger getUserLogger(String, String,
User) on page 650

Returns an instance of UserLog-
ger that uses the named Logger
instance to log messages to the
Agentry server for the given
user.

public void log(LogRecord) on page 651

Usage
It acts as a child logger of an existing Logger object. When its log methods are called, it
creates log records of the class UserLogRecord instead of LogRecord, and then passes those
log records to its parent logger. If these log records eventually find their way to an
AgentryHandler instance, that instance will know to route the messages to user-specific
logs on the Agentry server, if those logs are enabled via the AgentryLogging.ini file.

Agentry App Development

Agentry App Development 649

getUser() method
Returns the user that this logger is logging for.

Syntax
public User getUser ()

Returns
the User object.

getUserLogger(String, User) method
Returns an instance of UserLogger that uses the named Logger instance to log messages to the
Agentry server for the given user.

Syntax
public static UserLogger getUserLogger (String name , User
user)

Parameters

• name – The logger name. Note that the same Logger object may be used by multiple
UserLogger objects to log messages for multiple users.

• user – The user to log messages for.

Returns
A new UserLogger object, or null if Logger.getLogger(String) would have
returned null for the same logger name.

getUserLogger(String, String, User) method
Returns an instance of UserLogger that uses the named Logger instance to log messages to the
Agentry server for the given user.

Syntax
public static UserLogger getUserLogger (String name , String
resourceBundleName , User user)

Parameters

• name – The logger name. Note that the same Logger object may be used by multiple
UserLogger objects to log messages for multiple users.

• resourceBundleName – The name of a resource bundle to use for localizing messages for
this logger. May be null if no localization is necessary.

• user – The user to log messages for.

Agentry App Development

650 SAP Mobile Platform

Returns
A new UserLogger object, or null if Logger.getLogger(String) would have
returned null for the same logger name.

log(LogRecord) method

Syntax
public void log (LogRecord record)

log4j package

AgentryAppender class
AgentryAppender is a Log4j Appender that will route log messages to the Agentry Server Java
System Connection's log file.

Syntax
public class AgentryAppender extends AppenderSkeleton

Members
All members of AgentryAppender, including inherited members. Variables

Modifier and Type Variable Description

public static final String AGEN-
TRY_USER_MDC_KEY on
page 654

MDC key for adding an Agentry
User object to the Log4j MDC.

Constructors

Modifier and Type Constructor Description

public AgentryAppender() on page
653

Constructs a new AgentryAp-
pender object.

Methods

Modifier and Type Method Description

protected void append(LoggingEvent) on page
653

public void close() on page 653

protected LogLevel mapLogLevel(Level) on page
653

Maps a Log4j log level to an
Agentry log level, as described
in the class documentation.

Agentry App Development

Agentry App Development 651

Modifier and Type Method Description

public boolean requiresLayout() on page
653

Usage
It is also capable of routing messages to an Agentry user log file, if the key named by
AGENTRY_USER_MDC_KEY is set to an Agentry User object in Log4j's MDC.

Both Log4j and the Agentry Server support the concept of log levels. The logging level of the
Agentry Server is configured in the AgentryLogging.ini file, and the Agentry Server
supports six levels, 0 through 5, with level 0 messages always being logged. For each system
connection, there is a level setting in the configuration file, and all messages at or below that
setting will be logged.

The levels in Log4j map to the log levels in Agentry as follows:

Log4j Agentry Purpose

Level.FATAL, Lev-
el.ERROR

Level 0 Severe errors, always logged

Level.WARN Level 1 Warnings or recoverable errors

Level.INFO Level 2 "Now doing this" type messages

Level.DEBUG Level 3 Details of why a decision is be-
ing made.

Level.TRACE Level 4 Values being set from files, user
input, etc; details of calculations

Note that there is currently no Log4j level that corresponds to log level 5 in Agentry. That log
level is generally used by very low-level logging in the Agentry Server itself, so its use in
end-user applications would be discouraged anyways.

AgentryAppender supports the basic settings used by other Log4j appenders, including
layouts. It is not required to have a layout configured for the appender; if no layout is
configured, then messages will be sent directly to Agentry with no special formatting.

NOTE: If you want to use this class you must have Log4j on your Agentry server's class path,
as configured in Agentry.ini. Log4j is not distributed with the Agentry Server. It can be
obtained from the Apache Log4j web site. This appender is intended for use with Log4j 1.2.x;
it may work with later versions, but there is no guarantee.

Agentry App Development

652 SAP Mobile Platform

http://logging.apache.org/log4j/1.2

AgentryAppender() constructor
Constructs a new AgentryAppender object.

Syntax
public AgentryAppender ()

append(LoggingEvent) method

Syntax
protected void append (LoggingEvent event)

close() method

Syntax
public void close ()

mapLogLevel(Level) method
Maps a Log4j log level to an Agentry log level, as described in the class documentation.

Syntax
protected LogLevel mapLogLevel (Level log4jLevel)

Parameters

• log4jLevel – the Java log level

Returns
An LogLevel constant

Usage
If you have custom log levels, you can subclass this class and override this method to map your
custom log levels to Agentry's levels. Otherwise, this method will make a best-guess attempt
at mapping custom log levels, based on which of Java's levels the custom levels fall between
(for example, if your custom level's integer value is greater than Level.INFO but less than
Level.WARNING, it will be treated as equivalent to Level.INFO).

requiresLayout() method

Syntax
public boolean requiresLayout ()

Agentry App Development

Agentry App Development 653

AGENTRY_USER_MDC_KEY variable
MDC key for adding an Agentry User object to the Log4j MDC.

Syntax
public static final String AGENTRY_USER_MDC_KEY

Usage
If a user is set in the MDC when a message is logged, then that message will be routed to the
user's log file in the Agentry Server, instead of to the Java System Connection's log file.

DataTableMapIterator< K, V > class
This is a helper class that makes it easy to return Map objects from the iterator method of a
DataTable.

Syntax
public class DataTableMapIterator< K, V > extends
java::util::Iterator< DataTableObject >

Members
All members of DataTableMapIterator< K, V >, including inherited members. Methods

Modifier and Type Method Description

public DataTableMapIterator(Map<
K, V >) on page 654

Constructs a new DataTableMa-
pIterator object.

public boolean hasNext() on page 655

public DataTableObject next() on page 655 Returns a new DataTableObject
that contains the key and value
of the next entry in the map.

public void remove() on page 655

Usage
It iterates over the contents of the map and returns each map entry as a DataTableObject.

DataTableMapIterator(Map< K, V >) method
Constructs a new DataTableMapIterator object.

Syntax
public DataTableMapIterator (Map< K, V > map)

Agentry App Development

654 SAP Mobile Platform

Parameters

• map – The Map to iterate over.

hasNext() method

Syntax
public boolean hasNext ()

next() method
Returns a new DataTableObject that contains the key and value of the next entry in the map.

Syntax
public DataTableObject next ()

remove() method

Syntax
public void remove ()

Logger class
Deprecated. Use java.util.logging or log4j. This class implements basic log file functionality,
if you wish to log to another file other than Agentry's server or user log files.

Syntax
public class Logger

Members
All members of Logger, including inherited members. Constructors

Modifier and Type Constructor Description

public Logger(String, boolean) on
page 656

Create a new log file.

Methods

Modifier and Type Method Description

public void appendDebug(String) on page
656

Append a message to the active
debug buffer.

public void beginDebug(String) on page
657

Opens up a multiline debug buf-
fer and adds the given message
to it.

Agentry App Development

Agentry App Development 655

Modifier and Type Method Description

public synchronized void debug(String) on page 657 Write a message to the log file.

public synchronized void debug(String, Map< String,
String >, String) on page 657

Write the contents of a Map ob-
ject to the log file.

public void endDebug(String) on page
657

Close the debug buffer and write
it to the log file.

public boolean isDebugMode() on page 658 Returns whether a debug buffer
has been opened by beginDebug
and is still open.

Usage
If you need more powerful logging than what this class provides, you should look at the
logging functionality that was added in JDK 1.4, or use Apache log4j or something like it.

Logger(String, boolean) constructor
Create a new log file.

Syntax
public Logger (String fileName , boolean overwrite) throws
IOException

Parameters

• fileName – The log file name
• overwrite – true means to overwrite any existing file, false means append to any

existing file.

Exceptions

• IOException – if an error occurs.

appendDebug(String) method
Append a message to the active debug buffer.

Syntax
public void appendDebug (String message)

Parameters

• message – The message

Agentry App Development

656 SAP Mobile Platform

beginDebug(String) method
Opens up a multiline debug buffer and adds the given message to it.

Syntax
public void beginDebug (String message)

Parameters

• message – The debugging message

Usage
Additional messages can be added by calling appendDebug. The contents of the buffer will not
be written to the log file until endDebug is called.

debug(String) method
Write a message to the log file.

Syntax
public synchronized void debug (String message)

Parameters

• message – The message

debug(String, Map< String, String >, String) method
Write the contents of a Map object to the log file.

Syntax
public synchronized void debug (String header , Map< String,
String > messages , String footer)

Parameters

• header – The header message
• messages – The map to dump
• footer – The footer message

endDebug(String) method
Close the debug buffer and write it to the log file.

Syntax
public void endDebug (String message)

Agentry App Development

Agentry App Development 657

Parameters

• message – The final debug message

isDebugMode() method
Returns whether a debug buffer has been opened by beginDebug and is still open.

Syntax
public boolean isDebugMode ()

Returns
true if a debug buffer is active.

AgentryException class
Base class for checked exceptions that can be thrown from various methods in the AJAPI.

Syntax
public class AgentryException extends Exception

Derived classes

• BusinessLogicException on page 661
• FatalTransactionException on page 684
• FatalTransactionExceptionStop on page 687
• LoginException on page 696
• RetryTransactionException on page 725
• RetryTransactionWithChangeException on page 727
• StepletAbortException on page 776
• StepletStopException on page 777

Members
All members of AgentryException, including inherited members. Constructors

Modifier and Type Constructor Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

Agentry App Development

658 SAP Mobile Platform

Modifier and Type Constructor Description

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Methods

Modifier and Type Method Description

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
Throwing this base class from a method will generally result in an error being logged in the
server event log, and the client getting a "Server error - please contact your administrator (13)"
message.

AgentryException(String) constructor
Constructs a new AgentryException object.

Syntax
public AgentryException (String message)

Parameters

• message – The error message.

AgentryException(String, Throwable) constructor
Constructs a new AgentryException object.

Syntax
public AgentryException (String message , Throwable cause)

Agentry App Development

Agentry App Development 659

Parameters

• message – The error message.
• cause – The causing exception.

AgentryException(String, String, String, Throwable) constructor
Constructs a new AgentryException object, for methods that support throwing exceptions that
may appear in the client.

Syntax
public AgentryException (String title , String text , String okLabel ,
Throwable cause)

Parameters

• title – The window title.
• text – The window text. This will also be used as the message text of the exception when it

is logged (it will be returned when getMessage() is called).
• okLabel – The window button label.
• cause – The causing exception

Usage
For now this is pretty much supported only by steplets that are being used as part of Agentry
transactions.

AgentryException(String, String, String) constructor
Constructs a new AgentryException object, for methods that support throwing exceptions that
may appear in the client.

Syntax
public AgentryException (String title , String text , String
okLabel)

Parameters

• title – The window title.
• text – The window text. This will also be used as the message text of the exception when it

is logged (it will be returned when getMessage() is called).
• okLabel – The window button label.

Usage
For now this is pretty much supported only by steplets that are being used as part of Agentry
transactions.

Agentry App Development

660 SAP Mobile Platform

getNotificationText() method
Returns the notification window text.

Syntax
public final String getNotificationText ()

Returns
the text

getNotificationTitle() method
Returns the notification window title.

Syntax
public final String getNotificationTitle ()

Returns
the title

getOkButtonLabel() method
Returns the notification window button label.

Syntax
public final String getOkButtonLabel ()

Returns
the label

BusinessLogicException class
This exception represents an error condition that should be reported to the client.

Syntax
public class BusinessLogicException extends AgentryException

Members
All members of BusinessLogicException, including inherited members. Constructors

Modifier and Type Constructor Description

public BusinessLogicExcep-
tion(String) on page 662

Construct a new exception.

public BusinessLogicExcep-
tion(String, Throwable) on page
663

Constructs a new BusinessLo-
gicException object.

Agentry App Development

Agentry App Development 661

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
It can be thrown from any of the various client-related session methods, such as the methods
on Steplet, DataTable , and ComplexTable. The error message in this exception will
be displayed in the client's transmit window; in addition, if the
printBusinessLogicStackTrace configuration option is enabled in the
agentry.ini file for the Java system connection, then a full stack trace for the exception
will also be displayed in the client's transmit window.

BusinessLogicException(String) constructor
Construct a new exception.

Syntax
public BusinessLogicException (String message)

Parameters

• message – The error message

Agentry App Development

662 SAP Mobile Platform

BusinessLogicException(String, Throwable) constructor
Constructs a new BusinessLogicException object.

Syntax
public BusinessLogicException (String message , Throwable
cause)

Parameters

• message – The error message
• cause – The causing exception

ComplexTableSession class
The ComplexTableSession class encapsulates the processing involved in a complex table
synchronization within an Agentry-based application.

Syntax
public class ComplexTableSession extends Session

Members
All members of ComplexTableSession, including inherited members. Constructors

Modifier and Type Constructor Description

public ComplexTableSession(String,
Server, SessionData, User) on
page 664

Construct a new session.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

Agentry App Development

Agentry App Development 663

Modifier and Type Member Description

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Usage
This class contains the session data for the complex table synchronization, as well the User
object for the user performing the synchronization, and a reference to the Server singleton
object.

ComplexTableSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public ComplexTableSession (String tableName , Server server ,
SessionData sessionData , User user)

Parameters

• tableName – The complex table name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this transmit.
• user – The client user performing the transmit.

Usage
This constructor is called by the Server.createComplexTableSession method. Subclasses
should implement a constructor with the same signature as this one.

Agentry App Development

664 SAP Mobile Platform

ComplexTable< CTOBJ > class
The ComplexTable class encapsulates the data retrieval for a complex table within an
Agentry-based application.

Syntax
public abstract class ComplexTable< CTOBJ > extends
AgentryJavaBackEndManagedObject

Members
All members of ComplexTable< CTOBJ >, including inherited members. Variables

Modifier and Type Variable Description

protected SycloCalendar _clientLastDataUpdateTime on
page 675

Storage for the client's last up-
date time that was passed into
the constructor.

protected boolean _rebuilding on page 676 This member will be set by the
Agentry Server to whatever the
willRebuildTable() method re-
turns.

protected ComplexTableSes-
sion

_session on page 676 Storage for the session that was
passed into the constructor.

Methods

Modifier and Type Method Description

public void build() on page 668 This method is called by the
Agentry Server after it calls
willRebuildTable(), but before
it calls dataIterator() or deleteIt-
erator().

final boolean checkForReload() on page
668

This method is called by the
Agentry Server to indicate
whether a reload should be
done.

public ComplexTable(ComplexTable-
Session, GregorianCalendar) on
page 669

Constructs a new ComplexTa-
ble object.

Agentry App Development

Agentry App Development 665

Modifier and Type Method Description

public abstract Iterator<
CTOBJ >

dataIterator() on page 669 This method should return ei-
ther a partial or complete list of
the records for the complex ta-
ble, depending on the result of
calling willRebuildTable().

public Iterator< CTOBJ > deleteIterator() on page 670 This method should return a list
of the records that have been
deleted from the complex table
since the client's last update
time, which can be retrieved via
getClientLastDataUpdate-
Time()).

public SycloCalendar getClientLastDataUpdate-
Time() on page 671

Returns the time when the client
last retrieved data for this com-
plex table.

public GregorianCalendar getNewDataUpdateTime() on
page 671

Returns the new "last data up-
date time", as set by a prior call
to setNewDataUpdateTime.

public ComplexTableSession getSession() on page 671 Return the session for this com-
plex table transmission.

public final void initialize() on page 671 Deprecated. Subclass overrides
of this method should be re-
named to build(). This method
has been renamed to build().

public boolean isRebuilding() on page 672 This method returns the previ-
ously cached result of the Agen-
try Server's call to the willRe-
buildTable() method.

final int lastUpdateDate() on page
672

Returns the day-of-month com-
ponent of the complex table da-
ta's last update time.

final int lastUpdateHours() on page
672

Returns the hour component of
the complex table data's last up-
date time.

final int lastUpdateMinutes() on page
672

Returns the minute component
of the complex table data's last
update time.

Agentry App Development

666 SAP Mobile Platform

Modifier and Type Method Description

final int lastUpdateMonth() on page
673

Returns the month component
of the complex table data's last
update time.

final int lastUpdateSeconds() on page
673

Returns the seconds component
of the complex table data's last
update time.

final int lastUpdateYear() on page
673

Returns the year component of
the complex table data's last up-
date time.

public final boolean reload() on page 674 Deprecated. Subclass overrides
of this method should be re-
named to willRebuildTable().
This method has been renamed
to willRebuildTable().

public void setNewDataUpdateTime(Gre-
gorianCalendar) on page 674

This method sets the new "last
data update time" for the com-
plex table.

public boolean willRebuildTable() on page
675

This method is called by the
Agentry server to determine
whether the server should re-
build the client's complex table
from scratch.

Usage
When implementing a complex table using a Java Interface system connection, this class will
always be extended.

Complex tables in Agentry support both full and incremental updates. It is up to an
implementing subclass to determine which mechanism to use, based on whether the
underlying data source supports time-stamped data. If it does, an implementation can return a
"last update" timestamp along with the complex table data. The next time a client requests an
update of the table, it will pass back that timestamp, and this class can then return only the data
changes (additions, updates, and deletions) that have occurred since that time.

Data objects are returned from this class to the Agentry server via iterators. The data objects
themselves are structured in the same manner as the data objects for a Steplet, in that their data
is stored in public member fields that are accessed directly by Agentry, and are mapped to
corresponding fields in the Complex Table when the table is defined in the Agentry Editor.

Agentry App Development

Agentry App Development 667

The synchronization process for a complex table involves determining first which records
have been deleted from the complex table and retrieving those records' unique identifiers.
Then, the records that have been added or updated since the last client update are retrieved.
The Agentry Server will call the methods of this class in the following sequence:

1. Constructor - passes in the client's last update date
2. willRebuildTable() - tells Agentry whether to expect a full or incremental update
3. build() - can be used to gather records
4. dataIterator() - returns new or updated records
5. lastUpdate* methods - returns the new data timestamp (set via a call to

setNewDataUpdateTime)
6. deleteIterator() - returns keys for deleted records; may not be called if

willRebuildTable() returned true

7. lastUpdate* methods (again - should return the same value as the previous call); may
not be called if willRebuildTable() returned true

Note that for each client transmit, a new instance of this class is created by the Agentry server.

build() method
This method is called by the Agentry Server after it calls willRebuildTable(), but before it calls
dataIterator() or deleteIterator().

Syntax
public void build () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

Usage
It can be used to build up the data sets for the complex table, if it is more convenient to query
both the updates and the deletes in a single place rather than querying them separately in the
iterator methods.

checkForReload() method
This method is called by the Agentry Server to indicate whether a reload should be done.

Syntax
final boolean checkForReload () throws AgentryException

Returns
true if the table should be reloaded

Agentry App Development

668 SAP Mobile Platform

Exceptions

• AgentryException class – if an error occurs

Usage
It calls willRebuildTable() and saves the result into the _rebuilding member variable.

ComplexTable(ComplexTableSession, GregorianCalendar) method
Constructs a new ComplexTable object.

Syntax
public ComplexTable (ComplexTableSession session ,
GregorianCalendar clientLastDataUpdate)

Parameters

• session – A ComplexTableSession object that provides the access to the session data
pertinent to the complex table application component.

• clientLastDataUpdate – This argument contains the date and time of the client's last data
update.

Usage
Subclasses need to implement the same constructor and pass the parameters back to this
constructor via super().

This constructor will set the return value of the default implementation of the
willRebuildTable() method to true if the clientLastDataUpdate parameter contains
the invalid date/time value, or to false if not.

dataIterator() method
This method should return either a partial or complete list of the records for the complex table,
depending on the result of calling willRebuildTable().

Syntax
public abstract Iterator< CTOBJ > dataIterator () throws
AgentryException

Returns
an Iterator object that will iterate over the records of the complex table.

Exceptions

• AgentryException class – if an error occurs.

Agentry App Development

Agentry App Development 669

Usage
It returns these records in the form of a Iterator object that iterates over a list of objects.
Subclasses should override this method to return the desired data.

If willRebuildTable() returns false (indicating that the client will receive an incremental
update), then this method should only return those records that have been added to the
complex table since the client's last update time (which can be retrieved via
getClientLastDataUpdateTime()). If willRebuildTable() returns true (indicating that the
client should rebuild its complex table from scratch), then this method should return the
complete set of complex table records.

deleteIterator() method
This method should return a list of the records that have been deleted from the complex table
since the client's last update time, which can be retrieved via
getClientLastDataUpdateTime()).

Syntax
public Iterator< CTOBJ > deleteIterator () throws
AgentryException

Returns
a Iterator object that will iterate over the records that have been deleted from the complex table
since the client's last update.

Exceptions

• AgentryException class – if an error occurs.

Usage
It returns these records in the form of a Iterator object that iterates over a list of objects that
identify the deleted records via their unique keys. Subclasses should override this method to
return the desired data. Note that the objects returned do not need to be fully populated, they
only need to contain their unique identifiers (which are configured in the Agentry application).

The actual behavior of this method is dependent on the result of the willRebuildTable()
method. If that method returns false, then this method should return a list of deleted records.
If that method returns true, then this method should return an empty iterator. The default
behavior of this method is to return an empty iterator, so if your willRebuildTable()
implementation will always return true, then you don't need to override this method.

Note that in some versions of Agentry, this method may not be called at all if
willRebuildTable() returns true, since there should be no deleted objects in that case.

Agentry App Development

670 SAP Mobile Platform

getClientLastDataUpdateTime() method
Returns the time when the client last retrieved data for this complex table.

Syntax
public SycloCalendar getClientLastDataUpdateTime ()

Returns
the client's last data update time.

getNewDataUpdateTime() method
Returns the new "last data update time", as set by a prior call to setNewDataUpdateTime.

Syntax
public GregorianCalendar getNewDataUpdateTime ()

Returns
The new update time, or null if setNewDataUpdateTime() hasn't been called yet.

getSession() method
Return the session for this complex table transmission.

Syntax
public ComplexTableSession getSession ()

Returns
the session

initialize() method [deprecated]
Deprecated. Subclass overrides of this method should be renamed to build(). This method has
been renamed to build().

Syntax
public final void initialize () throws AgentryException

Exceptions

• AgentryException class – not thrown
• UnsupportedOperationException – to report that the method is no longer used.

Usage
Override that method instead of this one. This method is only here to cause compilation errors
in legacy code, and may be removed in a future release.

Agentry App Development

Agentry App Development 671

isRebuilding() method
This method returns the previously cached result of the Agentry Server's call to the
willRebuildTable() method.

Syntax
public boolean isRebuilding ()

Returns
the value of the _rebuilding member variable.

lastUpdateDate() method
Returns the day-of-month component of the complex table data's last update time.

Syntax
final int lastUpdateDate ()

Returns
The day-of-month component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateHours() method
Returns the hour component of the complex table data's last update time.

Syntax
final int lastUpdateHours ()

Returns
The hour component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateMinutes() method
Returns the minute component of the complex table data's last update time.

Syntax
final int lastUpdateMinutes ()

Returns
The minute component of the complex table data's last update time.

Agentry App Development

672 SAP Mobile Platform

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateMonth() method
Returns the month component of the complex table data's last update time.

Syntax
final int lastUpdateMonth ()

Returns
The month component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateSeconds() method
Returns the seconds component of the complex table data's last update time.

Syntax
final int lastUpdateSeconds ()

Returns
The seconds component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateYear() method
Returns the year component of the complex table data's last update time.

Syntax
final int lastUpdateYear ()

Returns
The year component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

Agentry App Development

Agentry App Development 673

reload() method [deprecated]
Deprecated. Subclass overrides of this method should be renamed to willRebuildTable(). This
method has been renamed to willRebuildTable().

Syntax
public final boolean reload () throws AgentryException

Returns
Nothing. Always throws UnsupportedOperationException.

Exceptions

• AgentryException class – not thrown
• UnsupportedOperationException – to report that the method is no longer used.

Usage
Override that method instead of this one. This method is only here to cause compilation errors
in legacy code, and may be removed in a future release.

setNewDataUpdateTime(GregorianCalendar) method
This method sets the new "last data update time" for the complex table.

Syntax
public void setNewDataUpdateTime (GregorianCalendar
dataUpdateTime)

Parameters

• dataUpdateTime – The last update time of the complex table's data.

Exceptions

• IllegalArgumentException – if dataUpdateTime is null, or is set to the Agentry
"invalid" date/time value.

Usage
By default, the last update time will be "now"; however, if your underlying data source has a
concept of a last update time, you can pass that on to the Agentry Server by calling this method
from the constructor, build(), or dataIterator() to set it.

Note that calling this method does not affect the return value of
getClientLastDataUpdateTime(); the two values are maintained separately.

Agentry App Development

674 SAP Mobile Platform

willRebuildTable() method
This method is called by the Agentry server to determine whether the server should rebuild the
client's complex table from scratch.

Syntax
public boolean willRebuildTable () throws AgentryException

Returns
true if the client's table should be rebuilt from scratch, or false if the client's existing table
should be updated.

Exceptions

• AgentryException class – if an error occurs.

Usage
If you return true from this method, then a subsequent call to dataIterator() should return the
full set of complex table records and deleteIterator() should return nothing; if you return
false from this method then dataIterator() and deleteIterator() should return incremental
changes.

Note that if the client's last data update date was invalid, then the Agentry Server will assume
that the table needs to be reloaded and will not call this method at all.

When the Agentry server calls this method, it will store the result of the call into the
_rebuilding field. That field will also be initialized by the constructor to true if
_clientLastDataUpdateTime is invalid or false if it is not, so that the field will contain the
correct value even if the Agentry server does not call this method.

The default implementation of this method returns the value of _rebuilding as set by the
constructor.

_clientLastDataUpdateTime variable
Storage for the client's last update time that was passed into the constructor.

Syntax
protected SycloCalendar _clientLastDataUpdateTime

Usage
This is a SycloCalendar instead of a GregorianCalendar because it is possible for it to contain
Agentry's "invalid" timestamp.

Agentry App Development

Agentry App Development 675

_rebuilding variable
This member will be set by the Agentry Server to whatever the willRebuildTable() method
returns.

Syntax
protected boolean _rebuilding

Usage
It can be read via the isRebuilding() method.

_session variable
Storage for the session that was passed into the constructor.

Syntax
protected ComplexTableSession _session

DataTableObject class
This class represents a single row in an Agentry data table, which consists of a key/value pair.

Syntax
public class DataTableObject extends Object

Members
All members of DataTableObject, including inherited members. Variables

Modifier and Type Variable Description

public String code on page 678 The code/key for the row.

public String value on page 678 The value for the row.

Constructors

Modifier and Type Constructor Description

public DataTableObject(String,
String) on page 677

Constructs a new DataTableOb-
ject object.

Methods

Modifier and Type Method Description

public String code() on page 677 Deprecated. Use getKey(). Re-
turn the code/key for this row.

public boolean equals(Object) on page 677

Agentry App Development

676 SAP Mobile Platform

Modifier and Type Method Description

public String getKey() on page 677 Return the code/key for this
row.

public String getValue() on page 678 Return the value for this row.

public int hashCode() on page 678

public String value() on page 678 Deprecated. Use getValue().
Return the value for this row.

DataTableObject(String, String) constructor
Constructs a new DataTableObject object.

Syntax
public DataTableObject (String code1 , String value1)

Parameters

• code1 – The code/key for the row
• value1 – The value for the row

code() method [deprecated]
Deprecated. Use getKey(). Return the code/key for this row.

Syntax
public String code ()

Returns
the code

equals(Object) method

Syntax
public boolean equals (Object obj)

getKey() method
Return the code/key for this row.

Syntax
public String getKey ()

Returns
the code

Agentry App Development

Agentry App Development 677

getValue() method
Return the value for this row.

Syntax
public String getValue ()

Returns
the value

hashCode() method

Syntax
public int hashCode ()

value() method [deprecated]
Deprecated. Use getValue(). Return the value for this row.

Syntax
public String value ()

Returns
the value

code variable
The code/key for the row.

Syntax
public String code

value variable
The value for the row.

Syntax
public String value

DataTableSession class
The DataTableSession class encapsulates the processing involved in a data table retrieval
within an Agentry-based application.

Syntax
public class DataTableSession extends Session

Agentry App Development

678 SAP Mobile Platform

Members
All members of DataTableSession, including inherited members. Constructors

Modifier and Type Constructor Description

public DataTableSession(String, Serv-
er, SessionData, User) on page
680

Construct a new session.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Agentry App Development

Agentry App Development 679

Usage
This class contains the session data for the data table retrieval, as well the User object for the
user performing the retrieval, and a reference to the Server singleton object.

DataTableSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public DataTableSession (String tableName , Server server ,
SessionData sessionData , User user)

Parameters

• tableName – The data table name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this transmit.
• user – The client user performing the transmit.

Usage
This constructor is called by the Server.createDataTableSession method. Subclasses should
implement a constructor with the same signature as this one.

DataTable< DTOBJ extends DataTableObject > class
The DataTable class in the AJAPI encapsulates the synchronization of a data table.

Syntax
public abstract class DataTable< DTOBJ extends
DataTableObject > extends AgentryJavaBackEndManagedObject

Members
All members of DataTable< DTOBJ extends DataTableObject >, including inherited
members. Variables

Modifier and Type Variable Description

protected SycloCalendar _clientLastDataUpdateTime on
page 684

Client's last data update date.

protected DataTableSession _session on page 684 Storage for the session that was
passed into the constructor.

Methods

Agentry App Development

680 SAP Mobile Platform

Modifier and Type Method Description

public DataTable(DataTableSession,
GregorianCalendar) on page
682

Constructs a new DataTable.

public SycloCalendar getClientLastDataUpdate-
Time() on page 682

Returns the client's last data up-
date date and time.

public DataTableSession getSession() on page 682 Returns the session data for this
data table transmission.

public void initialize() on page 683 This method is called after this
object is constructed.

public abstract boolean isOutOfDate() on page 683 Returns whether the client's da-
ta is out of date, based on the last
update date passed in via the
constructor.

public abstract Iterator<
DTOBJ >

iterator() on page 683 Builds an Iterator object that
will iterate through the DataTa-
bleObject objects that contain
the rows for the data table.

Usage
When a data table is created in the Agentry Editor, a subclass is automatically defined that
extends this class. The designer must implement this subclass in order to retrieve the data for
the data table. Such an implementation should retrieve the data table's data from some source,
construct a list or set of DataTableObject objects, and then return an iterator object that iterates
over that list.

The DataTable class provides two main pieces of functionality. First, it determines if the
data table needs to be reloaded and, second, it provides the factory method to construct a
Iterator object to process the returned data.

The Agentry server will call the methods of this class in the following sequence:

1. Constructor
2. initialize()
3. isOutOfDate()
4. iterator() (only if isOutOfDate() returned true)

Note that for each client transmit, a new instance of this class is created by the Agentry server.

Agentry App Development

Agentry App Development 681

DataTable(DataTableSession, GregorianCalendar) method
Constructs a new DataTable.

Syntax
public DataTable (DataTableSession session , GregorianCalendar
clientLastDataUpdate)

Parameters

• session – An object of type DataTableSession that provides access to pertinent session
data for the data table.

• clientLastDataUpdate – This argument contains the date and time that the data table was
last updated on the client application. This value can be accessed through the protected
member _clientLastDataUpdateTime.

Usage
This method is called by the Agentry Server (indirectly via whatever subclasses you define)
whenever a data table request is received from the client application. Extensions of this class
should take the same arguments as this class, and pass those arguments on to this parent
constructor.

getClientLastDataUpdateTime() method
Returns the client's last data update date and time.

Syntax
public SycloCalendar getClientLastDataUpdateTime ()

Returns
the date and time of the client's last update. This might be the Agentry "Invalid Date" time,
which indicates that the client did not have any copy of the data table at all; note that it is
generally safe to not check for the "invalid date" value, since it is a time far in the past (circa
1900) and therefore should fail any check against a recent date and time.

getSession() method
Returns the session data for this data table transmission.

Syntax
public DataTableSession getSession ()

Returns
the session data

Agentry App Development

682 SAP Mobile Platform

initialize() method
This method is called after this object is constructed.

Syntax
public void initialize () throws AgentryException

Exceptions

• AgentryException class – if an error occurs

Usage
Initialization can be performed here if it might result in an exception.

isOutOfDate() method
Returns whether the client's data is out of date, based on the last update date passed in via the
constructor.

Syntax
public abstract boolean isOutOfDate () throws AgentryException

Returns
true if the client's data is out of date, or false if not.

Exceptions

• AgentryException class – if an error occurs

Usage
If this returns true, then the Agentry Server will call iterator() to retrieve the latest data for
the data table and send it to the client.

iterator() method
Builds an Iterator object that will iterate through the DataTableObject objects that contain the
rows for the data table.

Syntax
public abstract Iterator< DTOBJ > iterator () throws
AgentryException

Returns
an Iterator object.

Agentry App Development

Agentry App Development 683

Exceptions

• AgentryException class – if an error occurs.

Usage
This is called by the Agentry Server to retrieve the actual data for the data table, when the
isOutOfDate() method returns true. Note that once the data has been sent to the client, the
server will change the last update date and time on the client to "now".

_clientLastDataUpdateTime variable
Client's last data update date.

Syntax
protected SycloCalendar _clientLastDataUpdateTime

_session variable
Storage for the session that was passed into the constructor.

Syntax
protected DataTableSession _session

FatalTransactionException class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
in a way that cannot be corrected or recovered from.

Syntax
public class FatalTransactionException extends
AgentryException

Members
All members of FatalTransactionException, including inherited members. Constructors

Modifier and Type Constructor Description

public FatalTransactionExcep-
tion(String) on page 686

Constructs a new FatalTransac-
tionException object.

public FatalTransactionExcep-
tion(String, Throwable) on page
686

Constructs a new FatalTransac-
tionException object.

public FatalTransactionExcep-
tion(String, String, String) on
page 686

Constructs a new FatalTransac-
tionException object that will
cause an error notification win-
dow to appear on the client.

Agentry App Development

684 SAP Mobile Platform

Modifier and Type Constructor Description

public FatalTransactionExcep-
tion(String, String, String,
Throwable) on page 687

Constructs a new FatalTransac-
tionException object that will
cause an error notification win-
dow to appear on the client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
It will remove the transaction from the client and save it to the failed transactions queue on the
Agentry Server. It will optionally display an error notification window to the client user.

This exception combines and replaces the functionality of the
SycloFatalExceptionWithMessage and
SycloFatalExceptionWithoutMessage exceptions from version 4 of the AJAPI.

Agentry App Development

Agentry App Development 685

FatalTransactionException(String) constructor
Constructs a new FatalTransactionException object.

Syntax
public FatalTransactionException (String message)

Parameters

• message – The error message, which will be logged

Usage
No error notification window will be displayed on the client.

This constructor creates an exception that results in a "Fatal without message" transaction
error.

FatalTransactionException(String, Throwable) constructor
Constructs a new FatalTransactionException object.

Syntax
public FatalTransactionException (String message , Throwable
cause)

Parameters

• message – The error message, which will be logged
• cause – The underlying exception

Usage
No error notification window will be displayed on the client.

This constructor creates an exception that results in a "Fatal without message" transaction
error.

FatalTransactionException(String, String, String) constructor
Constructs a new FatalTransactionException object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionException (String title , String text ,
String okLabel)

Parameters

• title – The window title for the error displayed on the client.

Agentry App Development

686 SAP Mobile Platform

• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.

Usage
This constructor creates an exception that results in a "Fatal with message" transaction error.

FatalTransactionException(String, String, String, Throwable) constructor
Constructs a new FatalTransactionException object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionException (String title , String text ,
String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

Usage
This constructor creates an exception that results in a "Fatal with message" transaction error.

FatalTransactionExceptionStop class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
in a way that cannot be corrected or recovered from.

Syntax
public class FatalTransactionExceptionStop extends
AgentryException

Members
All members of FatalTransactionExceptionStop, including inherited members. Constructors

Modifier and Type Constructor Description

public FatalTransactionException-
Stop(String, String, String) on
page 688

Constructs a new FatalTransac-
tionExceptionStop object that
will cause an error notification
window to appear on the client.

Agentry App Development

Agentry App Development 687

Modifier and Type Constructor Description

public FatalTransactionException-
Stop(String, String, String,
Throwable) on page 689

Constructs a new FatalTransac-
tionExceptionStop object that
will cause an error notification
window to appear on the client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
It will remove the transaction from the client and save it to the failed transactions queue on the
Agentry Server. It will display an error notification window to the client user. The tranmit will
always be stopped (the user will not be given the choice to stop)

FatalTransactionExceptionStop(String, String, String) constructor
Constructs a new FatalTransactionExceptionStop object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionExceptionStop (String title , String text ,
String okLabel)

Agentry App Development

688 SAP Mobile Platform

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.

Usage
This constructor creates an exception that results in a "Fatal with message, always stop"
transaction error.

FatalTransactionExceptionStop(String, String, String, Throwable) constructor
Constructs a new FatalTransactionExceptionStop object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionExceptionStop (String title , String text ,
String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

Usage
This constructor creates an exception that results in a "Fatal with message, always stop"
transaction error.

FetchSession class
The FetchSession class encapsulates the processing involved in a fetch.

Syntax
public class FetchSession extends Session

Members
All members of FetchSession, including inherited members. Constructors

Modifier and Type Constructor Description

public FetchSession(String, Server,
SessionData, User) on page
692

Construct a new session.

Methods

Agentry App Development

Agentry App Development 689

Modifier and Type Method Description

public void beginClientExchange() on page
692

This method is called by the
server prior to the "Client Ex-
change Steps" within the fetch
are executed.

public void beginFetchObjectRead() on
page 692

This method is called by the
server prior to the execution of
the "Object Read Steps" for the
fetch.

public void beginFetchRemoval() on page
693

This method is called by the
server prior to the "Removal
Steps" within the fetch are exe-
cuted.

public void beginServerExchange() on
page 693

This method is called by the
server prior to the "Server Ex-
change Steps" within the fetch
are executed.

public void endClientExchange() on page
693

This method is called after the
"Client Exchange Steps" for the
fetch have been successfully
completed.

public void endFetchObjectRead() on page
693

This method is called after the
"Object Read Steps" for the
fetch have been successfully
completed.

public void endFetchRemoval() on page
694

This method is called after the
"Removal Steps" for the fetch
have been successfully comple-
ted.

public void endServerExchange() on page
694

This method is called after the
"Server Exchange Steps" for the
fetch have been successfully
completed.

Inherited members from Session

Agentry App Development

690 SAP Mobile Platform

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a fetch is the component of the application that defines how data is synchronized with
the back end system. It is made up of steps (which are implemented by the Steplet class in the
Java system connection), each of which perform a specific task related to the synchronization
process. These steps are organized into groups within the fetch for specific areas of the data
synchronization. These areas include the "Object Read", "Client Exchange", "Server
Exchange", and "Removal" steps.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJAPI perform no additional specific
actions. A designer can extend this class if special processing is required before or after each

Agentry App Development

Agentry App Development 691

of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createFetchSession() method must be overridden to return the
designer implemented subclass of the FetchSession class.

FetchSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public FetchSession (String fetchName , Server server ,
SessionData sessionData , User user)

Parameters

• fetchName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Usage
This constructor is called by the Server.createFetchSession method. Subclasses should
implement a constructor with the same signature as this one.

beginClientExchange() method
This method is called by the server prior to the "Client Exchange Steps" within the fetch are
executed.

Syntax
public void beginClientExchange ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginFetchObjectRead() method
This method is called by the server prior to the execution of the "Object Read Steps" for the
fetch.

Syntax
public void beginFetchObjectRead ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry App Development

692 SAP Mobile Platform

beginFetchRemoval() method
This method is called by the server prior to the "Removal Steps" within the fetch are executed.

Syntax
public void beginFetchRemoval ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginServerExchange() method
This method is called by the server prior to the "Server Exchange Steps" within the fetch are
executed.

Syntax
public void beginServerExchange ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endClientExchange() method
This method is called after the "Client Exchange Steps" for the fetch have been successfully
completed.

Syntax
public void endClientExchange ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endFetchObjectRead() method
This method is called after the "Object Read Steps" for the fetch have been successfully
completed.

Syntax
public void endFetchObjectRead ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

Agentry App Development

Agentry App Development 693

endFetchRemoval() method
This method is called after the "Removal Steps" for the fetch have been successfully
completed.

Syntax
public void endFetchRemoval ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endServerExchange() method
This method is called after the "Server Exchange Steps" for the fetch have been successfully
completed.

Syntax
public void endServerExchange ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

LoginBlockedException class
This exception is thrown from the login methods of the Server class to indicate that the user has
been blocked from accessing this system connection.

Syntax
public class LoginBlockedException extends LoginException

Members
All members of LoginBlockedException, including inherited members. Constructors

Modifier and Type Constructor Description

public LoginBlockedException() on
page 696

Constructs a new LoginBlocke-
dException object.

public LoginBlockedExcep-
tion(String) on page 696

Constructs a new LoginBlocke-
dException object.

public LoginBlockedExcep-
tion(String, Throwable) on page
696

Constructs a new LoginBlocke-
dException object.

Inherited members from LoginException

Agentry App Development

694 SAP Mobile Platform

Modifier and Type Member Description

public LoginException() on page
698

Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
It indicates that no further logins should be attempted until the problem is corrected. It can be
used, for example, to indicate that the user does not have sufficient privileges to access a
remote system, or that the user's account has been locked out due to too many incorrect
passwords.

Agentry App Development

Agentry App Development 695

LoginBlockedException() constructor
Constructs a new LoginBlockedException object.

Syntax
public LoginBlockedException ()

Usage
The client will report a default error message.

LoginBlockedException(String) constructor
Constructs a new LoginBlockedException object.

Syntax
public LoginBlockedException (String message)

Parameters

• message – The error message, which will be displayed on the client.

LoginBlockedException(String, Throwable) constructor
Constructs a new LoginBlockedException object.

Syntax
public LoginBlockedException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

LoginException class
This is the base class for all login/authentication exceptions.

Syntax
public class LoginException extends AgentryException

Derived classes

• LoginBlockedException on page 694
• LoginSkippedException on page 699
• PasswordExpiredCannotChangeException on page 701
• PasswordExpiredException on page 703

Agentry App Development

696 SAP Mobile Platform

• PasswordInvalidException on page 706
• PasswordWarningCannotChangeException on page 708
• PasswordWarningException on page 710

Members
All members of LoginException, including inherited members. Constructors

Modifier and Type Constructor Description

public LoginException() on page
698

Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

Agentry App Development

Agentry App Development 697

Modifier and Type Member Description

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
Subclasses of this exception are thrown from the login methods of the Server class.

If given message text, this class will place the message text into the notificationText
field of AgentryException as well as using it for the exception's message. This is done to make
it easier for the Java Back End to retrieve the unadulterated message text, since the C++
exception wrapper classes sometimes augment the exception's message text.

LoginException() constructor
Constructs a new login exception.

Syntax
public LoginException ()

Usage
The client will report a default error message.

LoginException(String) constructor
Constructs a new login exception with the given error message, which will be passed to the
Agentry client.

Syntax
public LoginException (String message)

Parameters

• message – The error message.

LoginException(String, Throwable) constructor
Constructs a new login exception with the given error message, which will be passed to the
Agentry client.

Syntax
public LoginException (String message , Throwable cause)

Parameters

• message – The error message.
• cause – The underlying exception that triggered this exception.

Agentry App Development

698 SAP Mobile Platform

LoginSkippedException class
This exception can be thrown from the login methods of the Server class to indicate that the
system connection is not authenticating the user at all, and that some other system connection
must be relied upon to perform the authentication.

Syntax
public class LoginSkippedException extends LoginException

Members
All members of LoginSkippedException, including inherited members. Constructors

Modifier and Type Constructor Description

public LoginSkippedException() on
page 700

Constructs a new LoginSkippe-
dException object.

public LoginSkippedExcep-
tion(String) on page 700

Constructs a new LoginSkippe-
dException object.

public LoginSkippedExcep-
tion(String, Throwable) on page
701

Constructs a new LoginSkippe-
dException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 698 Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

Agentry App Development

Agentry App Development 699

Modifier and Type Member Description

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
It is functionally equivalent to setting the enableAuthentication setting for the Java
System connection (in the Agentry.ini file) to false, except that it can be thrown on a
per-user basis.

LoginSkippedException() constructor
Constructs a new LoginSkippedException object.

Syntax
public LoginSkippedException ()

Usage
The client will report a default error message.

LoginSkippedException(String) constructor
Constructs a new LoginSkippedException object.

Syntax
public LoginSkippedException (String message)

Agentry App Development

700 SAP Mobile Platform

Parameters

• message – The error message, which will be displayed on the client.

LoginSkippedException(String, Throwable) constructor
Constructs a new LoginSkippedException object.

Syntax
public LoginSkippedException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordExpiredCannotChangeException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password has expired, and that this system connection does not support changing it.

Syntax
public class PasswordExpiredCannotChangeException extends
LoginException

Members
All members of PasswordExpiredCannotChangeException, including inherited members.
Constructors

Modifier and Type Constructor Description

public PasswordExpiredCannotChan-
geException() on page 703

Constructs a new PasswordEx-
piredCannotChangeException
object.

public PasswordExpiredCannotChan-
geException(String) on page
703

Constructs a new LoginBlocke-
dException object.

public PasswordExpiredCannotChan-
geException(String, Throwa-
ble) on page 703

Constructs a new LoginBlocke-
dException object.

Inherited members from LoginException

Agentry App Development

Agentry App Development 701

Modifier and Type Member Description

public LoginException() on page 698 Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The user will not be allowed to proceed with their transmission until they change their
password via some other means (such as via another system).

Agentry App Development

702 SAP Mobile Platform

This exception should be used instead of PasswordExpiredException if the various password-
changing methods of User have not been implemented.

PasswordExpiredCannotChangeException() constructor
Constructs a new PasswordExpiredCannotChangeException object.

Syntax
public PasswordExpiredCannotChangeException ()

Usage
The client will report a default error message.

PasswordExpiredCannotChangeException(String) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredCannotChangeException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordExpiredCannotChangeException(String, Throwable) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredCannotChangeException (String message ,
Throwable cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordExpiredException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password has expired and must be changed before the client's transmission will be
allowed to proceed.

Syntax
public class PasswordExpiredException extends LoginException

Members
All members of PasswordExpiredException, including inherited members. Constructors

Agentry App Development

Agentry App Development 703

Modifier and Type Constructor Description

public PasswordExpiredException()
on page 705

Constructs a new PasswordEx-
piredException object.

public PasswordExpiredExcep-
tion(String) on page 705

Constructs a new LoginBlocke-
dException object.

public PasswordExpiredExcep-
tion(String, Throwable) on page
705

Constructs a new LoginBlocke-
dException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 698 Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Agentry App Development

704 SAP Mobile Platform

Modifier and Type Member Description

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The user will be prompted to enter a new password; if they do, the various password-changing
methods of the User class will be invoked.

PasswordExpiredException() constructor
Constructs a new PasswordExpiredException object.

Syntax
public PasswordExpiredException ()

Usage
The client will report a default error message.

PasswordExpiredException(String) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordExpiredException(String, Throwable) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

Agentry App Development

Agentry App Development 705

PasswordInvalidException class
This exception can be thrown from the various login methods of the Server class to indicate
that the user's password was wrong.

Syntax
public class PasswordInvalidException extends LoginException

Members
All members of PasswordInvalidException, including inherited members. Constructors

Modifier and Type Constructor Description

public PasswordInvalidException() on
page 707

Constructs a new PasswordIn-
validException object.

public PasswordInvalidExcep-
tion(String) on page 707

Constructs a new PasswordIn-
validException object.

public PasswordInvalidExcep-
tion(String, Throwable) on page
708

Constructs a new PasswordIn-
validException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 698 Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

Agentry App Development

706 SAP Mobile Platform

Modifier and Type Member Description

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
It can also be used to indicate other transitory authentication failures (such as the remote
system being unreachable).

PasswordInvalidException() constructor
Constructs a new PasswordInvalidException object.

Syntax
public PasswordInvalidException ()

Usage
The client will report a default error message.

PasswordInvalidException(String) constructor
Constructs a new PasswordInvalidException object.

Syntax
public PasswordInvalidException (String message)

Parameters

• message – The error message, which will be displayed on the client.

Agentry App Development

Agentry App Development 707

PasswordInvalidException(String, Throwable) constructor
Constructs a new PasswordInvalidException object.

Syntax
public PasswordInvalidException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordWarningCannotChangeException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password is going to expire soon, and that this system connection does not support
changing it.

Syntax
public class PasswordWarningCannotChangeException extends
LoginException

Members
All members of PasswordWarningCannotChangeException, including inherited members.
Constructors

Modifier and Type Constructor Description

public PasswordWarningCannotChan-
geException() on page 710

Constructs a new PasswordWar-
ningCannotChangeException
object.

public PasswordWarningCannotChan-
geException(String) on page
710

Constructs a new PasswordWar-
ningCannotChangeException
object.

public PasswordWarningCannotChan-
geException(String, Throwa-
ble) on page 710

Constructs a new PasswordWar-
ningCannotChangeException
object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 698 Constructs a new login excep-
tion.

Agentry App Development

708 SAP Mobile Platform

Modifier and Type Member Description

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The user will not be allowed to proceed with their transmission until they change their
password via some other means (such as via another system).

This exception should be used instead of PasswordWarningException if the various password-
changing methods of User have not been implemented.

Agentry App Development

Agentry App Development 709

PasswordWarningCannotChangeException() constructor
Constructs a new PasswordWarningCannotChangeException object.

Syntax
public PasswordWarningCannotChangeException ()

Usage
The client will report a default error message.

PasswordWarningCannotChangeException(String) constructor
Constructs a new PasswordWarningCannotChangeException object.

Syntax
public PasswordWarningCannotChangeException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordWarningCannotChangeException(String, Throwable) constructor
Constructs a new PasswordWarningCannotChangeException object.

Syntax
public PasswordWarningCannotChangeException (String message ,
Throwable cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordWarningException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password is going to expire soon.

Syntax
public class PasswordWarningException extends LoginException

Members
All members of PasswordWarningException, including inherited members. Constructors

Agentry App Development

710 SAP Mobile Platform

Modifier and Type Constructor Description

public PasswordWarningException()
on page 712

Constructs a new PasswordWar-
ningException object.

public PasswordWarningExcep-
tion(String) on page 712

Constructs a new PasswordWar-
ningException object.

public PasswordWarningExcep-
tion(String, Throwable) on page
712

Constructs a new PasswordWar-
ningException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 698 Constructs a new login excep-
tion.

public LoginException(String) on
page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 698

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Agentry App Development

Agentry App Development 711

Modifier and Type Member Description

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The user will be given the opportunity to change their password in response to this exception;
if they do, the various password-changing methods of the User class will be invoked.

PasswordWarningException() constructor
Constructs a new PasswordWarningException object.

Syntax
public PasswordWarningException ()

Usage
The client will report a default error message.

PasswordWarningException(String) constructor
Constructs a new PasswordWarningException object.

Syntax
public PasswordWarningException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordWarningException(String, Throwable) constructor
Constructs a new PasswordWarningException object.

Syntax
public PasswordWarningException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

Agentry App Development

712 SAP Mobile Platform

PushSession class
The PushSession class encapsulates the user-independent part of the processing involved in a
push within an Agentry-based application.

Syntax
public class PushSession extends Session

Members
All members of PushSession, including inherited members. Constructors

Modifier and Type Constructor Description

public PushSession(String, Server,
SessionData) on page 716

Construct a new session.

Methods

Modifier and Type Method Description

public final void beginPushError() on page
716

Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

public void beginPushReadStep() on page
717

This method is called by the
server prior to the execution of
the "Object Read" steps for the
push.

public void beginPushRemoval() on page
717

This method is called by the
server prior to the execution of
the "Removal" steps for the
push.

Agentry App Development

Agentry App Development 713

Modifier and Type Method Description

public final void beginPushResponse() on page
717

Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

public void beginPushRetrieval() on page
718

This method is called by the
server prior to the execution of
the "Retrieval" steps for the
push.

public final void endPushError() on page 718 Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

public void endPushReadStep() on page
718

This method is called by the
server after the "Object Read"
Steps for the push have been
successfully executed.

public void endPushRemoval() on page
719

This method is called by the
server after the "Removal" steps
for the push have been success-
fully executed.

public final void endPushResponse() on page
719

Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

Agentry App Development

714 SAP Mobile Platform

Modifier and Type Method Description

public void endPushRetrieval() on page
719

This method is called by the
server after the "Retrieval" steps
for the push have been success-
fully executed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a push is an application component that defines the transfer of data between the client
and the server. Unlike fetches, the transfer within a push is initiated by the server, rather than

Agentry App Development

Agentry App Development 715

the client. A push is made up of steps, grouped in varying categories. The steps in each of these
groups are run separately. The groups are "Retrieval", "Removal", "Object Read", "Response"
and "Error"; this class handles the "Retrieval", "Removal", and "Object Read" step groups, as
those are independent of users. The remaining groups, "Response" and "Error", are user-
dependent and are handled by the PushUserSession class.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJAPI perform no additional specific
actions. A designer can extend this class if special processing is required before or after each
of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createPushSession method must be overridden to return the new
subclass.

PushSession(String, Server, SessionData) constructor
Construct a new session.

Syntax
public PushSession (String pushName , Server server , SessionData
sessionData)

Parameters

• pushName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.

Usage
This constructor is called by the Server.createPushSession method. Subclasses should
implement a constructor with the same signature as this one.

beginPushError() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void beginPushError ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

Agentry App Development

716 SAP Mobile Platform

beginPushReadStep() method
This method is called by the server prior to the execution of the "Object Read" steps for the
push.

Syntax
public void beginPushReadStep () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the object read steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginPushRemoval() method
This method is called by the server prior to the execution of the "Removal" steps for the push.

Syntax
public void beginPushRemoval () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the removal steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginPushResponse() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void beginPushResponse ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

Agentry App Development

Agentry App Development 717

beginPushRetrieval() method
This method is called by the server prior to the execution of the "Retrieval" steps for the push.

Syntax
public void beginPushRetrieval () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the retrieval steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endPushError() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void endPushError ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

endPushReadStep() method
This method is called by the server after the "Object Read" Steps for the push have been
successfully executed.

Syntax
public void endPushReadStep ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry App Development

718 SAP Mobile Platform

endPushRemoval() method
This method is called by the server after the "Removal" steps for the push have been
successfully executed.

Syntax
public void endPushRemoval ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endPushResponse() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void endPushResponse ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

endPushRetrieval() method
This method is called by the server after the "Retrieval" steps for the push have been
successfully executed.

Syntax
public void endPushRetrieval ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

PushUserSession class
The PushSession class encapsulates the user-independent part of the processing involved in a
push within an Agentry-based application.

Syntax
public class PushUserSession extends Session

Members
All members of PushUserSession, including inherited members. Constructors

Agentry App Development

Agentry App Development 719

Modifier and Type Constructor Description

public PushUserSession(String, Serv-
er, SessionData, User) on page
722

Construct a new session.

Methods

Modifier and Type Method Description

public void beginDisablePush() on page
723

This method is called by the
server prior to disabling a user
push on any of the system con-
nections.

public void beginEnablePush() on page
723

This method is called by the
server prior to enabling a user
push on any of the system con-
nections.

public void beginPushError() on page
723

This method is called by the
server prior to the execution of
the "Error Steps" for the push.

public void beginPushResponse() on page
724

This method is called by the
server prior to the execution of
the "Response Steps" for the
push.

public void disablePush() on page 724 This method is called when a
user requests that a push be dis-
abled on their behalf.

public void enablePush() on page 724 This method is called when a
user requests that a push be en-
abled on their behalf.

public void endDisablePush() on page
724

This method is called after a
user push has been disabled on
all of the system connections.

public void endEnablePush() on page
725

This method is called after a
user push has been enabled on
all of the system connections.

Agentry App Development

720 SAP Mobile Platform

Modifier and Type Method Description

public void endPushError() on page 725 This method is called by the
server after the "Error Steps" for
the push have been successfully
executed.

public void endPushResponse() on page
725

This method is called by the
server after the "Response
Steps" for the push have been
successfully executed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

Agentry App Development

Agentry App Development 721

Modifier and Type Member Description

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a push is an application component that defines the transfer of data between the client
and the server. Unlike fetches, the transfer within a push is initiated by the server, rather than
the client. A push is made up of steps, grouped in varying categories. The steps in each of these
groups are run separately. The groups are "Retrieval", "Removal", "Object Read", "Response"
and "Error"; this class handles the "Response" and "Error" groups, which are user-dependent.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJ-API perform no additional specific
actions. A designer can extend this class if special processing is required before or after each
of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createPushUserSession method must be overridden to return the new
subclass.

This class also provides methods for notifying the Agentry server when it should enable or
disable push events for a particular user.

PushUserSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public PushUserSession (String pushName , Server server ,
SessionData sessionData , User user)

Parameters

• pushName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Usage
This constructor is called by the Server.createPushUserSession method. Subclasses should
implement a constructor with the same signature as this one.

Agentry App Development

722 SAP Mobile Platform

beginDisablePush() method
This method is called by the server prior to disabling a user push on any of the system
connections.

Syntax
public void beginDisablePush () throws AgentryException

Exceptions

• AgentryException class – to block disabling of the user push.

Usage
It can be used to start a remote transaction.

beginEnablePush() method
This method is called by the server prior to enabling a user push on any of the system
connections.

Syntax
public void beginEnablePush () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

Usage
It can be used to start a remote transaction.

beginPushError() method
This method is called by the server prior to the execution of the "Error Steps" for the push.

Syntax
public void beginPushError () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the response steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry App Development

Agentry App Development 723

beginPushResponse() method
This method is called by the server prior to the execution of the "Response Steps" for the
push.

Syntax
public void beginPushResponse () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the response steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

disablePush() method
This method is called when a user requests that a push be disabled on their behalf.

Syntax
public void disablePush () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

enablePush() method
This method is called when a user requests that a push be enabled on their behalf.

Syntax
public void enablePush () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

endDisablePush() method
This method is called after a user push has been disabled on all of the system connections.

Syntax
public void endDisablePush ()

Usage
It can be used to commit a remote transaction. It cannot fail.

Agentry App Development

724 SAP Mobile Platform

endEnablePush() method
This method is called after a user push has been enabled on all of the system connections.

Syntax
public void endEnablePush ()

Usage
It can be used to commit a remote transaction. It cannot fail.

endPushError() method
This method is called by the server after the "Error Steps" for the push have been successfully
executed.

Syntax
public void endPushError ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endPushResponse() method
This method is called by the server after the "Response Steps" for the push have been
successfully executed.

Syntax
public void endPushResponse ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

RetryTransactionException class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
temporarily, and that it should be retried by the client.

Syntax
public class RetryTransactionException extends
AgentryException

Members
All members of RetryTransactionException, including inherited members. Constructors

Agentry App Development

Agentry App Development 725

Modifier and Type Constructor Description

public RetryTransactionExcep-
tion(String, String, String) on
page 727

Constructs a new RetryTransac-
tionException object.

public RetryTransactionExcep-
tion(String, String, String,
Throwable) on page 727

Constructs a new RetryTransac-
tionException object.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The client will resend the transaction immediately, and if it fails a second time then the
transaction will be marked as fatal.

This exception is equivalent to the "Retry Without Change" transaction error fatality.

Agentry App Development

726 SAP Mobile Platform

RetryTransactionException(String, String, String) constructor
Constructs a new RetryTransactionException object.

Syntax
public RetryTransactionException (String title , String
notification , String okButtonLabel)

Parameters

• title – The window title for the notification displayed on the client.
• notification – The window text for the notification displayed on the client.
• okButtonLabel – The label for the acknowledgment button in the client's notification

window.

RetryTransactionException(String, String, String, Throwable) constructor
Constructs a new RetryTransactionException object.

Syntax
public RetryTransactionException (String title , String text ,
String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

RetryTransactionWithChangeException class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
in a correctable manner, and that it should be retried by the client after prompting the user to
make changes to the transaction.

Syntax
public class RetryTransactionWithChangeException extends
AgentryException

Members
All members of RetryTransactionWithChangeException, including inherited members.
Constructors

Agentry App Development

Agentry App Development 727

Modifier and Type Constructor Description

public RetryTransactionWithChan-
geException(String, String,
String) on page 729

Constructs a new RetryTransac-
tionWithChangeException ob-
ject.

public RetryTransactionWithChan-
geException(String, String,
String, Throwable) on page
729

Constructs a new RetryTransac-
tionWithChangeException ob-
ject.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
This exception is equivalent to the "Retry With Change" transaction error fatality.

Agentry App Development

728 SAP Mobile Platform

RetryTransactionWithChangeException(String, String, String) constructor
Constructs a new RetryTransactionWithChangeException object.

Syntax
public RetryTransactionWithChangeException (String title ,
String text , String okLabel)

Parameters

• title – The window title for the notification displayed on the client.
• text – The text for the notification window displayed on the client, which should describe

to the user what changes they need to make in order for the transaction to succeed.
• okLabel – The label for the acknowledgment button in the client's notification window.

RetryTransactionWithChangeException(String, String, String, Throwable)
constructor
Constructs a new RetryTransactionWithChangeException object.

Syntax
public RetryTransactionWithChangeException (String title ,
String text , String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

Server class
The Server Java class is intended to encapsulate the Java system connection within the
Agentry Server.

Syntax
public class Server extends AgentryJavaBackEndManagedObject

Members
All members of Server, including inherited members. Constructors

Modifier and Type Constructor Description

public Server() on page 740 Constructs a new Server object.

Methods

Agentry App Development

Agentry App Development 729

Modifier and Type Method Description

public ComplexTableSession createComplexTableSes-
sion(String, SessionData, User)
on page 740

Factory method that creates a
new ComplexTableSession ob-
ject.

public DataTableSession createDataTableSession(String,
SessionData, User) on page
741

Factory method that creates a
new DataTableSession object.

public final FetchSession createFetchSession(String,
Server, SessionData, User) on
page 742

Deprecated. Use createFetch-
Session(String, SessionData,
User) (i.e. remove the Server ar-
gument). This method is no lon-
ger supported; override create-
FetchSession(String, Session-
Data, User) instead.

public FetchSession createFetchSession(String, Ses-
sionData, User) on page 742

Factory method that creates a
new FetchSession object.

public final FetchSession createPushSession(String,
Server, SessionData) on page
743

Deprecated. Use createPush-
Session(String, SessionData)
(i.e. remove the Server argu-
ment). This method is no longer
supported; override createPush-
Session(String, SessionData)
instead.

public PushSession createPushSession(String, Ses-
sionData) on page 743

Factory method that creates a
new PushSession object for a
push session that is not tied to a
specific user.

public final FetchSession createPushUserSession(String,
Server, SessionData, User) on
page 744

Deprecated. Use createPushU-
serSession(String, SessionData,
User) (i.e. remove the Server ar-
gument). This method is no lon-
ger supported; override create-
PushUserSession(String, Ses-
sionData, User) instead.

public PushUserSession createPushUserSession(String,
SessionData, User) on page
744

Factory method that creates a
new PushUserSession object for
a push session.

Agentry App Development

730 SAP Mobile Platform

Modifier and Type Method Description

public final ServiceEventSes-
sion

createServiceEventSes-
sion(String, Server, SessionDa-
ta) on page 745

Deprecated. Use createServi-
ceEventSession(String, Ses-
sionData) (i.e. remove the Serv-
er argument). This method is no
longer supported; override cre-
ateServiceEventSession(String,
SessionData) instead.

public ServiceEventSession createServiceEventSes-
sion(String, SessionData) on
page 746

Factory method that creates a
new ServiceEventSession ob-
ject.

public final FetchSession createTransactionSes-
sion(String, Server, SessionDa-
ta, User) on page 746

Deprecated. Use createTransac-
tionSession(String, SessionDa-
ta, User) (i.e. remove the Server
argument). This method is no
longer supported; override cre-
ateTransactionSession(String,
SessionData, User) instead.

public TransactionSession createTransactionSes-
sion(String, SessionData, User)
on page 747

Factory method that creates a
new TransactionSession object.

public final User createUser(String, int) on page
747

Deprecated. Use createUs-
er(String) instead. This method
is no longer supported; override
createUser(String) instead.

public User createUser(String) on page
748

Factory method that creates a
new User object.

public final void debug(String) on page 748 Writes a debug message to the
Agentry Server's Java System
Connection log file.

public final String decryptPassword(String) on
page 749

Decodes a password that has
been encoded via Agentry's
quickPW utility.

public File findConfigurationFile(String)
on page 749

Locates a configuration file in
the Agentry application's de-
ployment returns a.

Agentry App Development

Agentry App Development 731

Modifier and Type Method Description

public static final String getImplementationVersion() on
page 749

Retrieves the implementation
version of the AJAPI release
that this Server class is from.

public static Server getInstance() on page 750 Return the singleton instance of
this class.

public static final String getSpecificationVersion() on
page 750

Retrieves the specification ver-
sion of the AJAPI that this Serv-
er implements.

public String getTimeZone() on page 750 This is called by the Agentry
server to find out what time zone
is being used by whatever re-
mote server this implementa-
tion is communicating with.

public LoginEnumeration login(String, String, Session-
Data) on page 751

Deprecated. Override log-
in(User, String, SessionData)
instead. This method is called
when a user initially connects to
the Agentry Server from a client
application and that server's sys-
tem connection's enableAu-
thentication option is set to true
in the Agentry.ini file.

public void login(User, String, SessionDa-
ta) on page 751

This method authenticates a cli-
ent user against the Java System
Connection.

Agentry App Development

732 SAP Mobile Platform

Modifier and Type Method Description

public LoginEnumeration loginBlocked(String, String-
Buffer) on page 752

Deprecated. Override logi-
nBlocked(User, String, String-
Buffer, SessionData) instead.
This method is called by the
Agentry Server when authenti-
cation of a client user is blocked,
either because this class re-
turned a blocked login from the
login(String, String, Session-
Data) or loginPreviousUs-
er(String, String, SessionData)
methods, or because another
system connection blocked the
login.

public void loginBlocked(User, StringBuff-
er, SessionData) on page 753

Deprecated. Override logi-
nBlocked(User, String, String-
Buffer, SessionData) instead.
This method is called by the
Agentry Server when authenti-
cation of a client user is blocked,
either because this class threw
LoginBlockedException from
the login, loginPreviousUser, or
loginFailed methods, or be-
cause another system connec-
tion blocked the login.

public void loginBlocked(User, String,
StringBuffer, SessionData) on
page 753

This method is called by the
Agentry Server when authenti-
cation of a client user is blocked,
either because this class threw
LoginBlockedException from
the login, loginPreviousUser, or
loginFailed methods, or be-
cause another system connec-
tion blocked the login.

Agentry App Development

Agentry App Development 733

Modifier and Type Method Description

public LoginEnumeration loginFailed(String, StringBuff-
er) on page 754

Deprecated. Override logi-
nFailed(User, String, LoginFai-
lureReason, StringBuffer, Ses-
sionData) instead. This method
is called by the Agentry Server
when authentication of a client
user fails, either because this
class returned a failed login
from the login or loginPreviou-
sUser methods, or because an-
other system connection failed
the login.

public void loginFailed(User, String, Logi-
nFailureReason, StringBuffer,
SessionData) on page 755

This method is called by the
Agentry Server when authenti-
cation of a client user fails, ei-
ther because this class threw
PasswordInvalidException
from the login or loginPreviou-
sUser methods, or because an-
other system connection repor-
ted a login failure.

public LoginEnumeration loginPreviousUser(String,
String, SessionData) on page
756

Deprecated. Override loginPre-
viousUser(User, String, Ses-
sionData) instead. This method
is called when a user has previ-
ously logged into Agentry suc-
cessfully, and is now logging in
again due to having been dis-
connected.

public void loginPreviousUser(User,
String, SessionData) on page
756

This method is called when a
user has previously logged into
Agentry successfully, and is
now logging in again due to
having been disconnected.

final void setDebugEnabled(boolean) on
page 757

Deprecated. This is only here
because the Agentry server will
call it. Setter method called by
the Agentry server to enable/
disable debugging.

Agentry App Development

734 SAP Mobile Platform

Modifier and Type Method Description

public void shutdown() on page 757 This method is called by the
Agentry Server when the Java
system connection is being shut
down.

public void startup() on page 757 This method is called by the
Agentry Server when the Java
system connection starts up and
creates an instance of this class;
it is called immediately after the
class is constructed.

Usage
The bulk of the methods within this class are factory methods for various other object types. If
the designer overrides one of the classes constructed by these factory methods, a subclass of
the Server class must also be created. This implementation must override the appropriate
factory methods to construct objects of the appropriate type.

In addition to these factory methods, there are also methods related to login and logout, server
startup and shutdown, and debugging. By default, these methods perform no application-
related processing; they merely print a message to the debug log indicating that these events
have or are about to occur. If additional processing is required for an application, these
methods should be overridden in a subclass of the Server class.

When an Agentry Server with a Java System Connection is started, the server will construct a
singleton instance of the Server class or a subclass of it, as specified by the serverClass
setting in the Java system connection section of the Agentry.ini file. This Server object
will persist until the Agentry Server is shutdown. If the designer has implemented an
extension of the Server class, this new class must be named in the serverClass option in
the Agentry.ini file in the section containing the configuration options for the Java
Interface system connection.

Note, the constructor is public even though this class is a singleton. This is mainly for legacy
reasons: the Agentry.ini file names a subclass of this class instead of naming a factory
class, and we kept it that way rather than changing it to take a factory class name to maintain
compatibility with AJAPI version 4 (since the server supports both versions of the AJAPI).

As such, in this version of the AJAPI, this class is not a strict singleton, although it should be
treated as such. Applications should not try to create another instance of it, although it is
acceptable (since it is hard to avoid) to do so in unit tests.

Eventually, this class will likely become a true singleton and the Agentry server will adopt the
factory pattern to instantiate it, so you may wish to do so now in unit tests using a factory
similar to:

Agentry App Development

Agentry App Development 735

public class ServerFactory
{
 private static class LazyHolder
 {
 private static final Server _instance = new Server();
 }

 public static Server getServerInstance()
 {
 return LazyHolder._instance;
 }
}

(Note, this example follows the "Initialization on Demand Holder" pattern; see this article on
Wikipedia for information on how/why it works.)

Server.LoginEnumeration enum
Deprecated. These constants are only used by the deprecated login methods. New code should
be fixed to use the new exception-based login methods. Return values for the login method.

Members
All members of LoginEnumeration, including inherited members. Variables

Modifier and Type Variable Description

public Login_Invalid on page 737 Indicates that the login and
password are not valid for any
user profile on the system or that
the login attempt failed for some
reason other than the user being
blocked, or the user having an
expired password.

public Login_InvalidBlocked on page
738

Indicates that the user has been
blocked from accessing the re-
mote system.

public Login_Pass on page 738 Indicates that the user was not
validated by the system connec-
tion.

public Login_Valid on page 738 Indicates that the user ID and
password are valid and that the
user should be allowed to pro-
ceed with their transmission to
the Agentry Server.

Agentry App Development

736 SAP Mobile Platform

http://en.wikipedia.org/wiki/Initialization_on_demand_holder_idiom
http://en.wikipedia.org/wiki/Initialization_on_demand_holder_idiom

Modifier and Type Variable Description

public Login_ValidPasswordExpired
on page 738

Indicates that the user ID is valid
but that the password has ex-
pired.

public Login_ValidPasswordExpired-
NoChange on page 738

Indicates that the user ID is val-
id, but that the password has ex-
pired.

public Login_ValidPasswordWarning
on page 739

Indicates that user ID and pass-
word values are valid, but that
the password will be expiring in
the near future.

public Login_ValidPasswordWarning-
NoChange on page 739

Indicates that the user ID and
password values are valid, but
that the password will be expir-
ing in the near future.

Methods

Modifier and Type Method Description

public void throwException() on page
737

Throws an exception that corre-
sponds to this enum value.

throwException() method
Throws an exception that corresponds to this enum value.

Syntax
public void throwException () throws LoginException

Exceptions

• LoginException class – the exception that corresponds to this enum.

Login_Invalid variable
Indicates that the login and password are not valid for any user profile on the system or that the
login attempt failed for some reason other than the user being blocked, or the user having an
expired password.

Syntax
public Login_Invalid

Agentry App Development

Agentry App Development 737

Login_InvalidBlocked variable
Indicates that the user has been blocked from accessing the remote system.

Syntax
public Login_InvalidBlocked

Login_Pass variable
Indicates that the user was not validated by the system connection.

Syntax
public Login_Pass

Usage
Another system connection must validate the user before the user will be allowed to access the
Agentry Server from the client application. Returning this value has the same effect as setting
enableAuthentication to false in the Java section of Agentry.ini, except that it
can be used on a per-user basis.

Login_Valid variable
Indicates that the user ID and password are valid and that the user should be allowed to proceed
with their transmission to the Agentry Server.

Syntax
public Login_Valid

Login_ValidPasswordExpired variable
Indicates that the user ID is valid but that the password has expired.

Syntax
public Login_ValidPasswordExpired

Usage
The user will be prompted to change their password on the client application before being
allowed to proceed with the transmission.

Login_ValidPasswordExpiredNoChange variable
Indicates that the user ID is valid, but that the password has expired.

Syntax
public Login_ValidPasswordExpiredNoChange

Agentry App Development

738 SAP Mobile Platform

Usage
The user will not be allowed to change the password from within the Agentry-based
application and will not be allowed to proceed with their transmission until the password has
been updated.

Login_ValidPasswordWarning variable
Indicates that user ID and password values are valid, but that the password will be expiring in
the near future.

Syntax
public Login_ValidPasswordWarning

Usage
The user will be prompted to change his or her password on the client application, but can
bypass the change and still be allowed to proceed with the transmission to the Agentry Server.

Login_ValidPasswordWarningNoChange variable
Indicates that the user ID and password values are valid, but that the password will be expiring
in the near future.

Syntax
public Login_ValidPasswordWarningNoChange

Usage
The user will be notified that their password is near its expiration, but will not be allowed to
modify the password value from within the Agentry-based application.

Server.LoginFailureReason enum
These are used in loginFailed to indicate the reason why a login failed.

Members
All members of LoginFailureReason, including inherited members. Variables

Modifier and Type Variable Description

public NoBackEndsAuthenticated on
page 740

Indicates that the login failed
because no back-ends were con-
figured to authenticate.

public PasswordExpiredCannotCh-
ange on page 740

Indicates that the login failed
because a password was expired
and Agentry cannot change it.

Agentry App Development

Agentry App Development 739

Modifier and Type Variable Description

public PasswordInvalid on page 740 Indicates that the login failed
due to an invalid password.

NoBackEndsAuthenticated variable
Indicates that the login failed because no back-ends were configured to authenticate.

Syntax
public NoBackEndsAuthenticated

PasswordExpiredCannotChange variable
Indicates that the login failed because a password was expired and Agentry cannot change it.

Syntax
public PasswordExpiredCannotChange

PasswordInvalid variable
Indicates that the login failed due to an invalid password.

Syntax
public PasswordInvalid

Server() constructor
Constructs a new Server object.

Syntax
public Server ()

Usage
This constructor is called by the Agentry server when the Java Interface system connection is
started.

See the main class documentation for notes on why this constructor is public even though this
class is a singleton.

createComplexTableSession(String, SessionData, User) method
Factory method that creates a new ComplexTableSession object.

Syntax
public ComplexTableSession createComplexTableSession (String
tableName , SessionData sessionData , User user)

Agentry App Development

740 SAP Mobile Platform

Parameters

• tableName – The name of the complex table being processed, as configured by the
designer in the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is retrieving the complex table.

Returns
A new ComplexTableSession object.

Usage
This method is called by the Agentry Server whenever a complex table synchronization is to
be processed. If the ComplexTableSession class is extended, then this method must be
overridden to return the new subclass.

createDataTableSession(String, SessionData, User) method
Factory method that creates a new DataTableSession object.

Syntax
public DataTableSession createDataTableSession (String
tableName , SessionData sessionData , User user)

Parameters

• tableName – The name of the data table being processed, as configured by the designer in
the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is retrieving the complex table.

Returns
A new DataTableSession object.

Usage
This method is called by the Agentry Server whenever a data table retrieval is to be processed.
If the DataTableSession class is extended, then this method must be overridden to return the
new subclass.

Agentry App Development

Agentry App Development 741

createFetchSession(String, Server, SessionData, User) method [deprecated]
Deprecated. Use createFetchSession(String, SessionData, User) (i.e. remove the Server
argument). This method is no longer supported; override createFetchSession(String,
SessionData, User) instead.

Syntax
public final FetchSession createFetchSession (String name ,
Server server , SessionData data , User user)

Parameters

• name – not used
• server – not used
• data – not used
• user – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createFetchSession(String, SessionData, User) method
Factory method that creates a new FetchSession object.

Syntax
public FetchSession createFetchSession (String fetchName ,
SessionData sessionData , User user)

Parameters

• fetchName – The name of the fetch being processed, as configured by the designer in the
Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is performing the fetch.

Returns
A new FetchSession object.

Agentry App Development

742 SAP Mobile Platform

Usage
It is called by the Agentry Server whenever a fetch is requested by the client application. If the
FetchSession class is extended, then this method must be overridden to return the new
subclass.

createPushSession(String, Server, SessionData) method [deprecated]
Deprecated. Use createPushSession(String, SessionData) (i.e. remove the Server argument).
This method is no longer supported; override createPushSession(String, SessionData)
instead.

Syntax
public final FetchSession createPushSession (String name ,
Server server , SessionData data)

Parameters

• name – not used
• server – not used
• data – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createPushSession(String, SessionData) method
Factory method that creates a new PushSession object for a push session that is not tied to a
specific user.

Syntax
public PushSession createPushSession (String pushName ,
SessionData sessionData)

Parameters

• pushName – The name of the push being processed, as configured by the designer in the
Agentry Editor.

Agentry App Development

Agentry App Development 743

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

Returns
A new PushSession object.

Usage
It is called by the Agentry Server whenever a push is being processed by the server. If the
PushSession class is extended, then this method must be overridden to return the new subclass.

createPushUserSession(String, Server, SessionData, User) method [deprecated]
Deprecated. Use createPushUserSession(String, SessionData, User) (i.e. remove the Server
argument). This method is no longer supported; override createPushUserSession(String,
SessionData, User) instead.

Syntax
public final FetchSession createPushUserSession (String name ,
Server server , SessionData data , User user)

Parameters

• name – not used
• server – not used
• data – not used
• user – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createPushUserSession(String, SessionData, User) method
Factory method that creates a new PushUserSession object for a push session.

Syntax
public PushUserSession createPushUserSession (String pushName ,
SessionData sessionData , User user)

Agentry App Development

744 SAP Mobile Platform

Parameters

• pushName – The name of the push being processed, as configured by the designer in the
Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is performing the push.

Returns
A new PushUserSession object.

Usage
It is called by the Agentry Server whenever the user-specific steps of a push are being
processed by the server. If the PushUserSession class is extended, then this method must be
overridden to return the new subclass.

createServiceEventSession(String, Server, SessionData) method [deprecated]
Deprecated. Use createServiceEventSession(String, SessionData) (i.e. remove the Server
argument). This method is no longer supported; override createServiceEventSession(String,
SessionData) instead.

Syntax
public final ServiceEventSession createServiceEventSession
(String serviceName , Server server , SessionData sessionData)

Parameters

• serviceName – not used
• server – not used
• sessionData – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

Agentry App Development

Agentry App Development 745

createServiceEventSession(String, SessionData) method
Factory method that creates a new ServiceEventSession object.

Syntax
public ServiceEventSession createServiceEventSession (String
serviceName , SessionData sessionData)

Parameters

• serviceName – The name of the service event being processed, as configured by the
designer in the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

Returns
A new ServiceEventSession object.

Usage
This method is called by the Agentry Server whenever a service event is to be processed. If the
ServiceEventSession class is extended, then this method must be overridden to return the new
subclass.

createTransactionSession(String, Server, SessionData, User) method [deprecated]
Deprecated. Use createTransactionSession(String, SessionData, User) (i.e. remove the Server
argument). This method is no longer supported; override createTransactionSession(String,
SessionData, User) instead.

Syntax
public final FetchSession createTransactionSession (String
name , Server server , SessionData data , User user)

Parameters

• name – not used
• server – not used
• data – not used
• user – not used

Returns
nothing, throws UnsupportedOperationException.

Agentry App Development

746 SAP Mobile Platform

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createTransactionSession(String, SessionData, User) method
Factory method that creates a new TransactionSession object.

Syntax
public TransactionSession createTransactionSession (String
transactionName , SessionData sessionData , User user)

Parameters

• transactionName – The name of the transaction being processed, as configured by the
designer in the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is performing the transaction.

Returns
A new TransactionSession object.

Usage
This method is called by the Agentry Server whenever a transaction is to be processed. If the
TransactionSession class is extended, then this method must be overridden to return the new
subclass.

createUser(String, int) method [deprecated]
Deprecated. Use createUser(String) instead. This method is no longer supported; override
createUser(String) instead.

Syntax
public final User createUser (String name , int x)

Parameters

• name – not used
• x – not used

Returns
nothing, throws UnsupportedOperationException.

Agentry App Development

Agentry App Development 747

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createUser(String) method
Factory method that creates a new User object.

Syntax
public User createUser (String name)

Parameters

• name – The user name value from the Agentry client application.

Returns
A new User object.

Usage
This method is called by the Agentry Server to create objects that represent client users. If a
new subclass of User is created for an application, then this method must be extended to
construct the new subclass.

debug(String) method
Writes a debug message to the Agentry Server's Java System Connection log file.

Syntax
public final void debug (String serverMessage)

Parameters

• serverMessage – The message to log

Usage
This message will only appear in the log file if debug logging is turned on for the Java system
connection.

This method is a convenience method that calls into the Java Logging API to do the actual
logging, and assumes that Agentry's default Java Logging configuration is in place (which will
route log messages back to the Agentry server). It will log to a logger named
"com.syclo.agentry.Server", at the FINE level (which translates to log detail level 3 in
Agentry).

Agentry App Development

748 SAP Mobile Platform

When invoked outside of Agentry (e.g. in unit tests), this will log to the console, as that is
Java's normal default logging configuration.

decryptPassword(String) method
Decodes a password that has been encoded via Agentry's quickPW utility.

Syntax
public final String decryptPassword (String password)

Parameters
• password – The encoded password.

Returns
The decoded password.

findConfigurationFile(String) method
Locates a configuration file in the Agentry application's deployment returns a.

Syntax
public File findConfigurationFile (String filename)

Parameters
• filename – the name of the configuration file

Returns
aFile object referencing the file in the correct directory

Usage
File object that can be used to access the file. If the file does not exist, this method will return an
object that can be used to create the file in an appropriate location.

getImplementationVersion() method
Retrieves the implementation version of the AJAPI release that this Server class is from.

Syntax
public static final String getImplementationVersion ()

Returns
The implementation version, which is the same as the full version (including build number) of
the Agentry Server that this class's JAR file came with. This will return the empty string if you
are running out of raw class files and not a released AJAPI JAR.

Usage
This is the same as the version of the Agentry Server that the AJAPI JAR file came with.

Agentry App Development

Agentry App Development 749

This information is retrieved from the AJAPI JAR manifest file via the Package class.

Note that this does not necessarily reflect the version of the API that this JAR implements; for
example, if this JAR implements version 4 of the AJAPI, but it comes with version 5.0.0.3 of
the Agentry server, this will return 5.0.0.3, not 4! If you want to know the AJAPI version that is
implemented, call getSpecificationVersion() instead.

getInstance() method
Return the singleton instance of this class.

Syntax
public static Server getInstance ()

Returns
the running instance of this class

Usage
Note that this method will not create the server; you have to call the constructor once to do that
(see the constructor docs for the reasons why).

getSpecificationVersion() method
Retrieves the specification version of the AJAPI that this Server implements.

Syntax
public static final String getSpecificationVersion ()

Returns
The AJAPI version that this AJAPI package implements. This will return the empty string if
you are running out of raw class files and not a released AJAPI JAR.

Usage
This will tell you what version of the AJAPI you are using, but not what version of Agentry it
came with; if you want to know the latter, call getImplementationVersion() instead.

getTimeZone() method
This is called by the Agentry server to find out what time zone is being used by whatever
remote server this implementation is communicating with.

Syntax
public String getTimeZone ()

Returns
The timezone name.

Agentry App Development

750 SAP Mobile Platform

Usage
This will override the timeZoneName setting in the Agentry.ini file.

If this method returns a name that the Agentry server doesn't recognize (and odds are it won't,
especially on Windows), then it needs to be mapped in the [TimeZoneAliases] section
of the Agentry.ini file. If this method returns an empty string (the default
implementation), then the timeZoneName setting in the Agentry.ini file will be used.

login(String, String, SessionData) method [deprecated]
Deprecated. Override login(User, String, SessionData) instead. This method is called when a
user initially connects to the Agentry Server from a client application and that server's system
connection's enableAuthentication option is set to true in the Agentry.ini file.

Syntax
public LoginEnumeration login (String userId , String password ,
SessionData sessionData)

Parameters

• userId – The user ID from the client application for the current user.
• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Returns
One of the constants from Server.LoginEnumeration.

Usage
The return value of this function indicates whether or not the user ID and password are valid.
By default, this method returns the enumerated value Login_Pass, which means that this
system connection is not responsible for authenticating the user. Override this method to
implement logic to perform full validation of the user against a remote system.

login(User, String, SessionData) method
This method authenticates a client user against the Java System Connection.

Syntax
public void login (User user , String password , SessionData
sessionData) throws LoginException

Parameters

• user – The User object that identifies the client user. The user name can be read from this
object.

Agentry App Development

Agentry App Development 751

• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Exceptions

• LoginException class – if the login fails for any reason, or if the login succeeds but an
exceptional condition exists (such as an expired or soon-to-be expired password).

Usage
This method is called when a user initially connects to the Agentry Server from a client
application and the enableAuthentication option is set to true in the Java section of
the Agentry.ini file. Override this method to implement logic to perform full validation
of the user against a remote system.

This method should return normally if the authentication of the user succeeds. If login fails for
any reason, the appropriate LoginException subclass should be thrown. An exception should
also be thrown for other conditions such as expired or soon-to-be-expiring passwords. By
default, this method throws LoginSkippedException, which means that this system
connection is not responsible for authenticating the user (it is equivalent to setting
enableAuthentication to false in Agentry.ini, except that it can be thrown on a
per-user basis).

If you throw PasswordInvalidException or LoginBlockedException, then either loginFailed
or loginBlocked, respectively, will be called. From those methods you can return a more
detailed error message indicating why the login failed.

loginBlocked(String, StringBuffer) method [deprecated]
Deprecated. Override loginBlocked(User, String, StringBuffer, SessionData) instead. This
method is called by the Agentry Server when authentication of a client user is blocked, either
because this class returned a blocked login from the login(String, String, SessionData) or
loginPreviousUser(String, String, SessionData) methods, or because another system
connection blocked the login.

Syntax
public LoginEnumeration loginBlocked (String userId ,
StringBuffer error)

Parameters

• userId – The user ID for the user whose login attempt has failed.
• error – A StringBuffer that contains the error message that was returned by the system

connection that blocked the login. This message will ultimately be logged on the server
and displayed on the client. The error message can be changed by modifying the contents
of this buffer.

Agentry App Development

752 SAP Mobile Platform

Returns
Always returns Server.LoginEnumeration#Login_InvalidBlocked

Usage
It should clean up any user-related resources; it can also return additional information about
why the login failed.

loginBlocked(User, StringBuffer, SessionData) method [deprecated]
Deprecated. Override loginBlocked(User, String, StringBuffer, SessionData) instead. This
method is called by the Agentry Server when authentication of a client user is blocked, either
because this class threw LoginBlockedException from the login, loginPreviousUser, or
loginFailed methods, or because another system connection blocked the login.

Syntax
public void loginBlocked (User user , StringBuffer error ,
SessionData sessionData)

Parameters

• user – The User object for the user whose login attempt was blocked.
• error – A StringBuffer that contains the error message that was returned by the system

connection that blocked the login. This message will ultimately be logged on the server
and displayed on the client. The error message can be changed by modifying the contents
of this buffer.

• sessionData – The session data. In addition to its usual contents, this data will contain
additional information about which system connection blocked the login. This
information will be available as the values for the SDML keys failed.backend.id
(the system connection number) and failed.backend.name (the system connection
name, as configured in Agentry.ini).

Usage
It should clean up any user-related resources.

loginBlocked(User, String, StringBuffer, SessionData) method
This method is called by the Agentry Server when authentication of a client user is blocked,
either because this class threw LoginBlockedException from the login, loginPreviousUser, or
loginFailed methods, or because another system connection blocked the login.

Syntax
public void loginBlocked (User user , String userId , StringBuffer
error , SessionData sessionData)

Agentry App Development

Agentry App Development 753

Parameters

• user – The User object for the user whose login attempt has blocked. This can be null, if
the login was blocked by another system connection before the createUser and login
methods of this system connection were called.

• userId – The user name of the user that was logging in. This parameter might be useful if
user is null, but you still need to take some sort of action for the user for some reason. If
user is not null, then this parameter will be equal to the user name contained in
user.

• error – A StringBuffer that contains the error message that was returned by the system
connection that blocked the login. This message will ultimately be logged on the server
and displayed on the client. The error message can be changed by modifying the contents
of this buffer.

• sessionData – The session data. In addition to its usual contents, this data will contain
additional information about which system connection blocked the login. This
information will be available as the values for the SDML keys failed.backend.id
(the system connection number) and failed.backend.name (the system connection
name, as configured in Agentry.ini).

Usage
It should clean up any user-related resources.

loginFailed(String, StringBuffer) method [deprecated]
Deprecated. Override loginFailed(User, String, LoginFailureReason, StringBuffer,
SessionData) instead. This method is called by the Agentry Server when authentication of a
client user fails, either because this class returned a failed login from the login or
loginPreviousUser methods, or because another system connection failed the login.

Syntax
public LoginEnumeration loginFailed (String userId ,
StringBuffer error)

Parameters

• userId – The user ID for the user whose login attempt has failed.
• error – A StringBuffer that will be written to the user's debug log by the Agentry server

when this method returns. It should be used to log useful error information within the user's
debug log about why the login failed; it will always be logged regardless of the Agentry
server's debug settings.

Returns
Login_Invalid or Login_InvalidBlocked. If the latter is returned, then loginBlocked(String,
StringBuffer) will be invoked as well.

Agentry App Development

754 SAP Mobile Platform

Usage
It should clean up any user-related resources; it can also return additional information about
why the login failed.

loginFailed(User, String, LoginFailureReason, StringBuffer, SessionData) method
This method is called by the Agentry Server when authentication of a client user fails, either
because this class threw PasswordInvalidException from the login or loginPreviousUser
methods, or because another system connection reported a login failure.

Syntax
public void loginFailed (User user , String userId ,
LoginFailureReason reason , StringBuffer error , SessionData
sessionData) throws LoginBlockedException

Parameters

• user – The User object for the user whose login attempt has failed. This can be null, if
the login was failed by another system connection before the createUser and login
methods of this system connection were called.

• userId – The user name of the user that was logging in. This parameter might be useful if
user is null, but you still need to take some sort of action for the user for some reason. If
user is not null, then this parameter will be equal to the user name contained in
user.

• reason – The reason for the login failure.
• error – A StringBuffer that contains the error message that was returned by the system

connection that failed the login. This message will ultimately be logged on the server and
displayed on the client. The error message can be changed by modifying the contents of
this buffer.

• sessionData – The session data. In addition to its usual contents, this data will contain
additional information about which system connection failed the login, if the failure
reason was not NoBackEndsAuthenticated. This information will be available as the
values for the SDML keys failed.backend.id (the system connection number) and
failed.backend.name (the system connection name, as configured in
Agentry.ini).

Exceptions

• LoginBlockedException class – if the login failure should be treated as a blocked login
instead. This will trigger a subsequent call to loginBlocked in this system connection, as
well as the equivalent in other system connections.

Usage
It should clean up any user-related resources.

Agentry App Development

Agentry App Development 755

loginPreviousUser(String, String, SessionData) method [deprecated]
Deprecated. Override loginPreviousUser(User, String, SessionData) instead. This method is
called when a user has previously logged into Agentry successfully, and is now logging in
again due to having been disconnected.

Syntax
public LoginEnumeration loginPreviousUser (String userId ,
String password , SessionData sessionData)

Parameters

• userId – The user ID from the client application for the current user.
• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Returns
One of the constants from Server.LoginEnumeration.

Usage
This method is only called if both the enableAuthentication and
enablePreviousUserAuthentication options are true in the Agentry.ini
file for the Java system connection. It should function in the same manner as login(String,
String, SessionData).

The default implementation of this method returns Login_Pass.

loginPreviousUser(User, String, SessionData) method
This method is called when a user has previously logged into Agentry successfully, and is now
logging in again due to having been disconnected.

Syntax
public void loginPreviousUser (User user , String password ,
SessionData sessionData) throws LoginException

Parameters

• user – The User object that identifies the client user. The user name can be read from this
object.

• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Agentry App Development

756 SAP Mobile Platform

Exceptions

• LoginException class – if the login fails for any reason, or if the login succeeds but an
exceptional condition exists (such as an expired or soon-to-be expired password).

Usage
This method is only called if both the enableAuthentication and
enablePreviousUserAuthentication options are true in the Agentry.ini
file for the Java system connection. It should function in the same manner as login(User,
String, SessionData).

The default implementation of this method throws LoginSkippedException.

setDebugEnabled(boolean) method [deprecated]
Deprecated. This is only here because the Agentry server will call it. Setter method called by
the Agentry server to enable/disable debugging.

Syntax
final void setDebugEnabled (boolean debug)

Parameters

• debug – true if debugging is enabled, false if not.

Usage
Subclasses must never call this.

shutdown() method
This method is called by the Agentry Server when the Java system connection is being shut
down.

Syntax
public void shutdown ()

Usage
It should perform any cleanup that needs to be done.

startup() method
This method is called by the Agentry Server when the Java system connection starts up and
creates an instance of this class; it is called immediately after the class is constructed.

Syntax
public void startup ()

Agentry App Development

Agentry App Development 757

Usage
It exists as a complement to the shutdown method. Current versions of Agentry ignore the
value returned by this method, so there's really nothing you can do here that you couldn't just
do in the constructor.

ServiceEvent class
This class implements a Java Callback Service Event in Agentry.

Syntax
public class ServiceEvent extends
AgentryJavaBackEndManagedObject

Members
All members of ServiceEvent, including inherited members. Variables

Modifier and Type Variable Description

protected Server _server on page 760 The active Server implementa-
tion in the Agentry Java system
connection.

protected SessionData _sessionData on page 760 Session data for this service
event session.

Constructors

Modifier and Type Constructor Description

public ServiceEvent(Server, Session-
Data, CallbackInterface) on
page 759

Constructs a new ServiceEvent
object.

Methods

Modifier and Type Method Description

public final void dataReceived(Object) on page
759

This method should be called
once you have obtained an ob-
ject's data from the remote sys-
tem.

Usage
In a Java Callback Service Event, a remote enterprise system initiates a call into this class, then
retrieves data for a single Agentry object and passes that data back to the Agentry server. (The
Agentry object can be a collection, if you need to handle multiple objects of the same type at
once.) The general process works like this:

Agentry App Development

758 SAP Mobile Platform

1. The enterprise system somehow triggers a call to a method in your custom subclass of
ServiceEvent.

2. Your custom method acquires data from the enterprise system for a single Agentry object
and stores it into a custom Java object. This object is implemented the same way as objects
returned by ComplexTable or Steplet - it must contain public fields that can be mapped
back to fields in an Agentry object.

3. Your custom method then calls the dataReceived method with the new object, which
communicates that object back to Agentry.

4. Agentry processes the object, maps it to the Agentry object, and fires the various steps
defined for the Service Event in the application for handling the object, which in turn will
cause the various methods of ServiceEventSession to be invoked.

How the enterprise system actually triggers a call into this class is up to you. Possible methods
might include remote RMI calls into the Agentry JVM, receiving JMS messages, or whatever
else you can come up with.

ServiceEvent(Server, SessionData, CallbackInterface) constructor
Constructs a new ServiceEvent object.

Syntax
public ServiceEvent (Server server , SessionData sessionData ,
CallbackInterface cbi)

Parameters

• server – The active Server object, which will be stored into _server.

• sessionData – The session data for this service event, which will be stored into
_sessionData.

• cbi – The native callback object provided by Agentry; do not use this object directly, it will
be handled by the dataReceived method of this class.

Usage
Subclasses should provide a constructor with the same arguments, and pass them untouched to
this constructor. This constructor will store its arguments into the corresponding member
variables of this class, which can then be accessed directly by subclasses.

dataReceived(Object) method
This method should be called once you have obtained an object's data from the remote system.

Syntax
public final void dataReceived (Object data) throws
AgentryException

Agentry App Development

Agentry App Development 759

Parameters

• data – The object to send back to Agentry.

Exceptions

• AgentryException class – if an error occurs.

Usage
It will pass that object back to the Agentry server, which will then copy the object's data to the
corresponding object in the Agentry application using the mappings configured in the Agentry
Editor for this service event.

_server variable
The active Server implementation in the Agentry Java system connection.

Syntax
protected Server _server

_sessionData variable
Session data for this service event session.

Syntax
protected SessionData _sessionData

ServiceEventSession class
The ServiceEventSession class encapsulates the processing involved in a service event.

Syntax
public class ServiceEventSession extends Session

Members
All members of ServiceEventSession, including inherited members. Constructors

Modifier and Type Constructor Description

public ServiceEventSession(String,
Server, SessionData) on page
763

Construct a new session.

Methods

Agentry App Development

760 SAP Mobile Platform

Modifier and Type Method Description

public void beginDataAndUpdateSteps()
on page 763

This method is called by the
server prior to the execution of
the "Data State Steps" and "Up-
date Steps" (which are grouped
together) for the service event.

public void beginReadSteps() on page
763

This method is called by the
server prior to the execution of
the "Read Steps" for the service
event.

public void beginServiceEventError() on
page 764

This method is called by the
server prior to the execution of
the "Error Steps" for the service
event.

public void endDataAndUpdateSteps() on
page 764

This method is called after the
"Data State Steps" and "Update
Steps" (which are grouped to-
gether) for the service event
have been successfully comple-
ted.

public void endReadSteps() on page 764 This method is called after the
"Read Steps" for the service
event have been successfully
completed.

public void endServiceEventError() on
page 764

This method is called after the
"Error Steps" for the service
event have been successfully
completed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

Agentry App Development

Agentry App Development 761

Modifier and Type Member Description

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a service event is the component of the application that defines how data is
synchronized between the Agentry Server and another external server application. It is made
up of steps (which are implemented by the Steplet class in the Java system connection), each of
which perform a specific task related to the synchronization process. These steps are
organized into groups within the service event for specific areas of the data synchronization.
These areas include the "Read", "Data State", "Update", and "Error Handling" steps.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJAPI perform no additional specific
actions. A designer can extend this class if special processing is required before or after each
of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createServiceEventSession method must be overridden to return
the designer implemented subclass of the ServiceEventSession class.

Agentry App Development

762 SAP Mobile Platform

ServiceEventSession(String, Server, SessionData) constructor
Construct a new session.

Syntax
public ServiceEventSession (String serviceEventName , Server
server , SessionData sessionData)

Parameters

• serviceEventName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.

Usage
This constructor is called by the Server.createServiceEventSession method. Subclasses
should implement a constructor with the same signature.

beginDataAndUpdateSteps() method
This method is called by the server prior to the execution of the "Data State Steps" and "Update
Steps" (which are grouped together) for the service event.

Syntax
public void beginDataAndUpdateSteps ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginReadSteps() method
This method is called by the server prior to the execution of the "Read Steps" for the service
event.

Syntax
public void beginReadSteps ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry App Development

Agentry App Development 763

beginServiceEventError() method
This method is called by the server prior to the execution of the "Error Steps" for the service
event.

Syntax
public void beginServiceEventError ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endDataAndUpdateSteps() method
This method is called after the "Data State Steps" and "Update Steps" (which are grouped
together) for the service event have been successfully completed.

Syntax
public void endDataAndUpdateSteps ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endReadSteps() method
This method is called after the "Read Steps" for the service event have been successfully
completed.

Syntax
public void endReadSteps ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endServiceEventError() method
This method is called after the "Error Steps" for the service event have been successfully
completed.

Syntax
public void endServiceEventError ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

Agentry App Development

764 SAP Mobile Platform

Session class
This is the base class for the various session types in Agentry.

Syntax
public class Session extends AgentryJavaBackEndManagedObject

Derived classes

• ComplexTableSession on page 663
• DataTableSession on page 678
• FetchSession on page 689
• PushSession on page 713
• PushUserSession on page 719
• ServiceEventSession on page 760
• TransactionSession on page 783

Members
All members of Session, including inherited members. Constructors

Modifier and Type Constructor Description

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

Methods

Modifier and Type Method Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

Agentry App Development

Agentry App Development 765

Modifier and Type Method Description

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
768

Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

public void sessionAborted() on page
768

This is called if the session is
aborted (e.g., by an exception).

Usage
A session generally refers to the carrying out of a particular action, fetch, push, transaction,
etc. in an Agentry application. It contains information about the server and user executing the
session, and also holds a SessionData object that provides access back into the Agentry server
to retrieve application-specific data.

Session(String, Server, SessionData, User) constructor
Construct a new session, and save each of the arguments so that they can be retrieved later via
the getName(), getServer(), getSessionData(), and getUser() methods.

Syntax
protected Session (String name , Server server , SessionData
sessionData , User user)

Parameters

• name – The session name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.
• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Session(String, Server, SessionData) constructor
Construct a new session, and save each of the arguments so that they can be retrieved later via
the getName(), getServer(), and getSessionData() methods.

Syntax
protected Session (String name , Server server , SessionData
sessionData)

Agentry App Development

766 SAP Mobile Platform

Parameters

• name – The session name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.
• sessionData – Session data for this fetch.

debug(String) method
Write the given message to a debug log, if debugging is enabled.

Syntax
public final void debug (String message)

Parameters

• message – The message to log

Usage
If this is a user-specific session then the message will be written to the user log, otherwise it
will be written to the server log.

This method is simply a convenience method that calls User.debug() if the session has a
user, or Server.debug() if it doesn't.

getName() method
Returns the name of the session, as configured in the Agentry application.

Syntax
public String getName ()

Returns
The session name.

getServer() method
Returns the Server singleton object that the Java system connection is currently using.

Syntax
public Server getServer ()

Returns
The server instance

Usage
This will be an instance of the class named in the serverClass option of the Java system
connection in the agentry.ini file.

Agentry App Development

Agentry App Development 767

getSessionData() method
Returns the session data for this session.

Syntax
public SessionData getSessionData ()

Returns
The session data.

getUser() method
Returns the user for this session, if any.

Syntax
public User getUser ()

Returns
an object of whatever class is being returned by the active implementation of the Server
class, or null if this session is not user-specific.

sessionAborted() method
This is called if the session is aborted (e.g., by an exception).

Syntax
public void sessionAborted ()

Steplet class
The Steplet class within the AJAPI encapsulates the data synchronization for a step
application component.

Syntax
public abstract class Steplet extends
AgentryJavaBackEndManagedObject

Members
All members of Steplet, including inherited members. Variables

Modifier and Type Variable Description

protected Session _session on page 775 Session data, set by the con-
structor.

Constructors

Agentry App Development

768 SAP Mobile Platform

Modifier and Type Constructor Description

public Steplet(FetchSession) on page
771

Constructs a new Steplet that
will be used as part of a fetch.

public Steplet(PushSession) on page
771

Constructs a new Steplet that
will be used as part of a push.

public Steplet(PushUserSession) on
page 771

Constructs a new Steplet that
will be used as part of a push.

public Steplet(TransactionSession) on
page 771

Constructs a new Steplet that
will be used as part of a trans-
action.

public Steplet(ServiceEventSession)
on page 772

Constructs a new Steplet that
will be used as part of a service
event.

Methods

Modifier and Type Method Description

public abstract boolean doSteplet() on page 772 Perform the necessary actions
of this steplet.

public String getNotificationText() on page
773

This method is called for Trans-
action Error-Handling Steplets.

public String getNotificationTitle() on page
773

This method is called for Trans-
action Error-Handling Steplets.

public String getOkButtonLabel() on page
773

This method is called for Trans-
action Error-Handling Steplets.

public Object getReturnData() on page 774 The Agentry server will call this
method to obtain the data pro-
duced by the doSteplet method.

public Session getSession() on page 774 Returns the Session object for
this steplet.

Agentry App Development

Agentry App Development 769

Modifier and Type Method Description

public String notificationText() on page
775

Deprecated. Override getNoti-
ficationText() instead. The de-
fault implementation of this
method will call that method.
This method may be made final
or removed in a future release.
Use getNotificationText() in-
stead.

public String notificationTitle() on page
775

Deprecated. Override getNoti-
ficationTitle() instead. The de-
fault implementation of this
method will call that method.
This method may be made final
or removed in a future release.
Use getNotificationTitle() in-
stead.

public String okButtonLabel() on page 775 Deprecated. Override getOk-
ButtonLabel() instead. The de-
fault implementation of this
method will call that method.
This method may be made final
or removed in a future release.
Use getOkButtonLabel() in-
stead.

Usage
The Agentry Editor provides a template subclass of this class for each step in the application
that uses a Java system connection; these subclasses must override the methods in this class to
implement their behavior. A basic steplet needs to implement doSteplet() and
getReturnData(). Steplets that will be used in Agentry transaction error-handling steps can
also override the notificationTitle(), notificationText(), and okButtonLabel() methods to
control the contents of a failed transaction's error notification windows.

A typical steplet implementation will implement doSteplet() to retrieve a set of data from a
remote system, package that data into an object or array of objects, and save the data in a
member field. The implementation of the getReturnData() method will then return that data as
either a single object or an array of objects. These objects will will in turn contain publicly-
visible fields that are mapped within the Agentry application (via the Agentry Editor) to the
fields of corresponding Agentry objects. The Agentry server will read data directly from the
fields of these objects; the server will not use getter/setter methods to read them.

Agentry App Development

770 SAP Mobile Platform

A steplet can throw StepletStopException to stop processing of itself but allow processing of
subsequence steplets in a session to continue, or it can throw StepletAbortException to stop
processing of itself and any subsequent steplets in the session. It can also throw a
BusinessLogicException exception to report an error message to the client's transmit window.
Steplets that are used in transaction steps can also throw RetryTransactionException,
RetryTransactionWithChangeException, or FatalTransactionException to abort the
transaction in various ways.

Steplet(FetchSession) constructor
Constructs a new Steplet that will be used as part of a fetch.

Syntax
public Steplet (FetchSession session)

Parameters

• session – Fetch session information, stored into the _session member variable.

Steplet(PushSession) constructor
Constructs a new Steplet that will be used as part of a push.

Syntax
public Steplet (PushSession session)

Parameters

• session – Push session information, stored into the _session member variable

Steplet(PushUserSession) constructor
Constructs a new Steplet that will be used as part of a push.

Syntax
public Steplet (PushUserSession session)

Parameters

• session – Push user session information, stored into the _session member variable

Steplet(TransactionSession) constructor
Constructs a new Steplet that will be used as part of a transaction.

Syntax
public Steplet (TransactionSession session)

Agentry App Development

Agentry App Development 771

Parameters

• session – Transaction session information, stored into the _session member variable

Steplet(ServiceEventSession) constructor
Constructs a new Steplet that will be used as part of a service event.

Syntax
public Steplet (ServiceEventSession session)

Parameters

• session – Service event session information, stored into the _session member variable

doSteplet() method
Perform the necessary actions of this steplet.

Syntax
public abstract boolean doSteplet () throws AgentryException

Returns
For fetch, push, transaction update step, and service event read, data, and update steplets:
true if the steplet produced data that the Agentry server should read from the
_returnData field, or false if no data was produced. For transaction data state and error
handling steplets, and service event error handling steplets: the meaning of the return value is
configured in the Agentry Editor.

Exceptions

• AgentryException class – if an error occurs.

Usage
A steplet can obtain various parameters from Agentry via the session information stored in the
_session member variable. Steplet objects that retrieve data that will be read by the
Agentry server should store that data in a public field named _returnData, which the
Agentry Server will read via reflection if this method returns true.

A steplet can throw StepletStopException to stop processing of itself but allow processing of
subsequence steplets in a session to continue, or it can throw StepletAbortException to stop
processing of itself and any subsequent steplets in the session. It can also throw a
BusinessLogicException exception to report an error message to the client's transmit window.
Steplets used in transactions can also throw any of the transaction-related exceptions
(FatalTransactionException, RetryTransactionWithChangeException, and
RetryTransactionException).

Agentry App Development

772 SAP Mobile Platform

getNotificationText() method
This method is called for Transaction Error-Handling Steplets.

Syntax
public String getNotificationText ()

Returns
the notification window text, or an empty string to use the text from the original exception that
caused this error-handling steplet to be invoked.

Usage
It is intended to provide the error-handling steplet with a chance to override the notification
window text from the original transaction failure exception. This method overrides the
window text for the notification window; if it returns an empty string, then the text from the
original exception will be used.

getNotificationTitle() method
This method is called for Transaction Error-Handling Steplets.

Syntax
public String getNotificationTitle ()

Returns
the notification window title, or an empty string to use the title from the original exception that
caused this error-handling steplet to be invoked.

Usage
It is intended to provide the error-handling steplet with a chance to override the notification
window text from the original transaction failure exception. This method overrides the
window title for the notification window; if it returns an empty string, then the title from the
original exception will be used.

getOkButtonLabel() method
This method is called for Transaction Error-Handling Steplets.

Syntax
public String getOkButtonLabel ()

Returns
the button label, or an empty string to use the label from the original exception that caused this
error-handling steplet to be invoked.

Agentry App Development

Agentry App Development 773

Usage
It is intended to provide the error-handling steplet with a chance to override the notification
window text from the original transaction failure exception. This method overrides the button
label for the notification window; if it returns an empty string, then the button label from the
original exception will be used.

getReturnData() method
The Agentry server will call this method to obtain the data produced by the doSteplet method.

Syntax
public Object getReturnData ()

Returns
A data object or an array of data objects

Usage
It will only be called if doSteplet returned true and the steplet is being used by a data or fetch
step in the Agentry application.

The objects returned by this method will be mapped to Agentry objects according to the field
mappings defined in the Agentry application. This method should return either a single such
object, or an array of them.

The implementation of this method typically should be very simple, in that it should just return
some data that was built up in doSteplet. All of the "heavy lifting" should be done in that
method.

Migration tip: If you are migrating an application from AJAPI version 4 (which returned
steplet data via a special field named _returnData), just override this method to return the
value of your steplet's _returnData field. If you do not override this method, the Agentry
server will attempt to read that field anyways (for backwards compatibility), but this behavior
is considered deprecated and should not be relied on in future versions of Agentry. It's also
faster to have this method return the field, since otherwise the Agentry server will need to use
reflection to read it.

getSession() method
Returns the Session object for this steplet.

Syntax
public Session getSession ()

Returns
the session.

Agentry App Development

774 SAP Mobile Platform

notificationText() method [deprecated]
Deprecated. Override getNotificationText() instead. The default implementation of this
method will call that method. This method may be made final or removed in a future release.
Use getNotificationText() instead.

Syntax
public String notificationText ()

Returns
the text

notificationTitle() method [deprecated]
Deprecated. Override getNotificationTitle() instead. The default implementation of this
method will call that method. This method may be made final or removed in a future release.
Use getNotificationTitle() instead.

Syntax
public String notificationTitle ()

Returns
the title

okButtonLabel() method [deprecated]
Deprecated. Override getOkButtonLabel() instead. The default implementation of this
method will call that method. This method may be made final or removed in a future release.
Use getOkButtonLabel() instead.

Syntax
public String okButtonLabel ()

Returns
the label

_session variable
Session data, set by the constructor.

Syntax
protected Session _session

Agentry App Development

Agentry App Development 775

StepletAbortException class
This exception can be thrown from a Steplet object to abort processing of that steplet and any
subsequent steplets in the session.

Syntax
public class StepletAbortException extends AgentryException

Members
All members of StepletAbortException, including inherited members. Constructors

Modifier and Type Constructor Description

public StepletAbortException(String)
on page 777

Constructs a new StepletAbor-
tException object.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The Agentry Server will roll back any transactional work that has been done so far for the step,
and will not execute any subsequent steps. It will trigger the sessionAborted method of
the appropriate session object.

Agentry App Development

776 SAP Mobile Platform

StepletAbortException(String) constructor
Constructs a new StepletAbortException object.

Syntax
public StepletAbortException (String message)

Parameters

• message – The error message to log to the server's event log.

StepletStopException class
This exception can be thrown from a Steplet object to stop the processing of the currently
executing step and signal to the Agentry Server that any transaction-based work completed
thus far should be committed.

Syntax
public class StepletStopException extends AgentryException

Members
All members of StepletStopException, including inherited members. Constructors

Modifier and Type Constructor Description

public StepletStopException(String)
on page 778

Constructs a new StepletSto-
pException object.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 659

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 660

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Agentry App Development

Agentry App Development 777

Modifier and Type Member Description

public final String getNotificationText() on page
661

Returns the notification window
text.

public final String getNotificationTitle() on page
661

Returns the notification window
title.

public final String getOkButtonLabel() on page
661

Returns the notification window
button label.

Usage
The Agentry Server will then continue processing any remaining steps.

StepletStopException(String) constructor
Constructs a new StepletStopException object.

Syntax
public StepletStopException (String message)

Parameters

• message – The error message to log

SycloCalendar class
This class extends GregorianCalendar with methods for detecting Agentry's "invalid date"
value.

Syntax
public class SycloCalendar extends GregorianCalendar

Members
All members of SycloCalendar, including inherited members. Constructors

Modifier and Type Constructor Description

public SycloCalendar(GregorianCa-
lendar) on page 779

Constructs a new SycloCalen-
dar object using the data from an
existing GregorianCalendar ob-
ject and the default locale.

public SycloCalendar(GregorianCa-
lendar, Locale) on page 780

Constructs a new SycloCalen-
dar object using the data from an
existing GregorianCalendar ob-
ject and the given locale.

Agentry App Development

778 SAP Mobile Platform

Modifier and Type Constructor Description

public SycloCalendar() on page 780 Constructs a new SycloCalen-
dar object.

public SycloCalendar(int, int, int, int,
int, int) on page 780

Constructs a new SycloCalen-
dar object.

public SycloCalendar(int, int, int, int,
int) on page 781

Constructs a new SycloCalen-
dar object.

public SycloCalendar(int, int, int) on
page 781

Constructs a new SycloCalen-
dar object.

public SycloCalendar(Locale) on page
781

Constructs a new SycloCalen-
dar object.

public SycloCalendar(TimeZone, Lo-
cale) on page 781

Constructs a new SycloCalen-
dar object.

public SycloCalendar(TimeZone) on
page 782

Constructs a new SycloCalen-
dar object.

Methods

Modifier and Type Method Description

public static GregorianCalendar getInvalidTimeAndDate() on
page 782

Returns the Agentry invalid date
value.

public boolean isInvalidTimeAndDate() on
page 782

Checks to see if this object con-
tains Agentry's "invalid date"
value.

public static boolean isInvalidTimeAndDate(Gregor-
ianCalendar) on page 782

Returns whether the given date
matches Agentry's "invalid
date" value.

SycloCalendar(GregorianCalendar) constructor
Constructs a new SycloCalendar object using the data from an existing GregorianCalendar
object and the default locale.

Syntax
public SycloCalendar (GregorianCalendar cal)

Parameters

• cal – The existing object

Agentry App Development

Agentry App Development 779

Usage
If you need a non-default locale, use SycloCalendar(GregorianCalendar, Locale); this
constructor cannot read the locale from the given calendar object because GregorianCalendar
does not provide a method for doing that.

SycloCalendar(GregorianCalendar, Locale) constructor
Constructs a new SycloCalendar object using the data from an existing GregorianCalendar
object and the given locale.

Syntax
public SycloCalendar (GregorianCalendar cal , Locale locale)

Parameters

• cal – The existing object
• locale – The locale

SycloCalendar() constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar ()

SycloCalendar(int, int, int, int, int, int) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (int year , int month , int dayOfMonth , int
hourOfDay , int minute , int second)

Parameters

• year – The year
• month – The month
• dayOfMonth – The day of the month
• hourOfDay – The hours
• minute – The minutes
• second – The seconds

Agentry App Development

780 SAP Mobile Platform

SycloCalendar(int, int, int, int, int) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (int year , int month , int dayOfMonth , int
hourOfDay , int minute)

Parameters

• year – The year
• month – The month
• dayOfMonth – The day of the month
• hourOfDay – The hours
• minute – The minutes

SycloCalendar(int, int, int) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (int year , int month , int dayOfMonth)

Parameters

• year – The year
• month – The month
• dayOfMonth – The day of the month

SycloCalendar(Locale) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (Locale locale)

Parameters

• locale – The locale

SycloCalendar(TimeZone, Locale) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (TimeZone zone , Locale locale)

Agentry App Development

Agentry App Development 781

Parameters

• zone – The time zone
• locale – The locale

SycloCalendar(TimeZone) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (TimeZone zone)

Parameters

• zone – The time zone

getInvalidTimeAndDate() method
Returns the Agentry invalid date value.

Syntax
public static GregorianCalendar getInvalidTimeAndDate ()

Returns
the invalid date.

isInvalidTimeAndDate() method
Checks to see if this object contains Agentry's "invalid date" value.

Syntax
public boolean isInvalidTimeAndDate ()

Returns
true if the date is invalid, or false if not.

isInvalidTimeAndDate(GregorianCalendar) method
Returns whether the given date matches Agentry's "invalid date" value.

Syntax
public static boolean isInvalidTimeAndDate (GregorianCalendar
testDate)

Parameters

• testDate – the date to check

Agentry App Development

782 SAP Mobile Platform

Returns
true if the date is invalid, or false if not.

TransactionSession class
The TransactionSession class encapsulates the processing related to transactions.

Syntax
public class TransactionSession extends Session

Members
All members of TransactionSession, including inherited members. Constructors

Modifier and Type Constructor Description

public TransactionSession(String,
Server, SessionData, User) on
page 784

Construct a new session.

Methods

Modifier and Type Method Description

public void beginTransaction() on page
785

This method is called by the
Agentry Server prior to execut-
ing the steps for the transaction.

public void endTransaction() on page
785

This method is called after the
steps for the transaction have
been successfully processed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 767 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 767 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 767 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

Agentry App Development

Agentry App Development 783

Modifier and Type Member Description

public SessionData getSessionData() on page 768 Returns the session data for this
session.

public User getUser() on page 768 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 766

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 768 This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, transactions are the application component that defines data modifications made by
the user on the client application. These changes are then transmitted to the Agentry Server for
processing. The processing for a transaction is defined by its steps. This class contains
methods that allow the implementation of processing that may be required before or after the
transaction steps are processed.

A designer can extend this class if special processing is required before or after a transaction is
processed. If this class is extended, the Server class must also be extended and its
createTransactionSession method must be overridden to return the designer
implemented subclass of the TransactionSession class.

TransactionSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public TransactionSession (String transactionName , Server server ,
SessionData sessionData , User user)

Parameters

• transactionName – The fetch name, as configured in the Agentry application.

Agentry App Development

784 SAP Mobile Platform

• server – The Server object that the Java System connection was configured to use.
• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Usage
This constructor is called by the Server.createTransactionSession method. Subclasses should
implement a constructor with the same signature.

beginTransaction() method
This method is called by the Agentry Server prior to executing the steps for the transaction.

Syntax
public void beginTransaction ()

Usage
Any processing that should take place at this point should be implemented in this method.

endTransaction() method
This method is called after the steps for the transaction have been successfully processed.

Syntax
public void endTransaction ()

Usage
Any processing that should take place at this point should be implemented in this method.

User class
This class represents an Agentry client user.

Syntax
public class User extends AgentryJavaBackEndManagedObject

Members
All members of User, including inherited members. Variables

Modifier and Type Variable Description

protected String _name on page 795 User name.

Constructors

Modifier and Type Constructor Description

public User(String) on page 789 This is the constructor method
for objects of type User.

Methods

Agentry App Development

Agentry App Development 785

Modifier and Type Method Description

public final GregorianCalendar backendTimeAndDate() on
page 789

Deprecated. This method has
been renamed to getSystem-
ConnectionTime(). This meth-
od has been renamed to getSys-
temConnectionTime().

public void beginChangePassword() on
page 790

This is the first method called
when a user is attempting to
change their password.

public ChangePasswordResult changePassword(String, String)
on page 790

This method is called when a
user is attempting to change
their password.

public void changePasswordFailed(String-
Buffer) on page 791

This method is called when the
changePassword(String, String)
method returns any value other
than ChangePassword_Success
or ChangePassword_NotHan-
dled.

public void changePasswordSessionAbor-
ted() on page 791

This method is called if the
password change operation is
aborted for any reason.

public final void debug(String) on page 791 Writes a debugging message to
the user's log file on the Agentry
server.

public void endChangePassword() on page
792

This method is called when the
user's password has been suc-
cessfully changed.

public String getName() on page 792 Returns the user's name.

public GregorianCalendar getSystemConnectionTime()
on page 792

This is called by the Agentry
server to find out what time the
Java system connection thinks it
is right now.

public final void getTimeZone(StringBuffer) on
page 793

Deprecated. This method has
been moved to Server#getTime-
Zone(). This method is no lon-
ger supported.

Agentry App Development

786 SAP Mobile Platform

Modifier and Type Method Description

public void loggedIn() on page 793 This method is called after a
user has been successfully log-
ged in.

public void loggedOut() on page 793 This method is called after the
transmission has been comple-
ted and after the user is logged
out of the system.

public void reLoggedIn() on page 794 This method is called when a
user logs into the Agentry Serv-
er and the server still has a pre-
vious login session for that user.

public void revalidate(String) on page
794

This method authenticates a cli-
ent user against the Java System
Connection.

public void timedOut() on page 795 This method is called in the
event a user session times out.

public void update(GregorianCalendar) on
page 795

This method is called periodi-
cally (once every second or so)
by the Agentry Server.

Usage
This class is created by the Server#createUser(String) factory method. It contains methods for
notifying the application of successful login, logout, and other events. It also contains methods
which can be overridden to allow Agentry to change a user's password on a remote system.

Applications can extend this class to implement their own behavior; however, if you do so you
must also override the Server#createUser(String) factory method to return the new subclass.
You must then change the serverClass setting in the Agentry.ini configuration file to
tell the Agentry Java system connection to use your new Server subclass.

User.ChangePasswordResult enum
Outcomes for password changes, returned by the User#changePassword(String, String)
method and its ilk.

Members
All members of ChangePasswordResult, including inherited members. Variables

Agentry App Development

Agentry App Development 787

Modifier and Type Variable Description

public ChangePassword_Blocked on
page 788

The user has been blocked; the
password has not been changed.

public ChangePassword_Failure on
page 788

The attempt to change the user's
password has failed.

public ChangePassword_NotHandled
on page 789

The user's password change is
not handled by this System Con-
nection.

public ChangePassword_Success on
page 789

The user's password has been
successfully changed.

Methods

Modifier and Type Method Description

public int getValue() on page 788 Called by Agentry to retrieve
the integer value for the enum.

getValue() method
Called by Agentry to retrieve the integer value for the enum.

Syntax
public int getValue ()

Returns
the value

ChangePassword_Blocked variable
The user has been blocked; the password has not been changed.

Syntax
public ChangePassword_Blocked

ChangePassword_Failure variable
The attempt to change the user's password has failed.

Syntax
public ChangePassword_Failure

Agentry App Development

788 SAP Mobile Platform

ChangePassword_NotHandled variable
The user's password change is not handled by this System Connection.

Syntax
public ChangePassword_NotHandled

Usage
(Normally used in environments where multiple back-end systems are in place).

ChangePassword_Success variable
The user's password has been successfully changed.

Syntax
public ChangePassword_Success

User(String) constructor
This is the constructor method for objects of type User.

Syntax
public User (String name)

Parameters

• name – The user ID as entered on the client application. This value is accessible by calling
the name() member method.

Usage
The API class Server will call this method prior to attempting to log the user into the system
and/or perform the data synchronization with the Java interface.

backendTimeAndDate() method [deprecated]
Deprecated. This method has been renamed to getSystemConnectionTime(). This method has
been renamed to getSystemConnectionTime().

Syntax
public final GregorianCalendar backendTimeAndDate () throws
AgentryException

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• AgentryException class – not thrown

Agentry App Development

Agentry App Development 789

• UnsupportedOperationException – to indicate that the method is no longer supported
and should not be called.

Usage
Override that method instead.

beginChangePassword() method
This is the first method called when a user is attempting to change their password.

Syntax
public void beginChangePassword ()

Usage
It is intended to allow the designer to implement any functionality or processing that may be
necessary prior to changing the user's password. Typically this method will start a password
change transaction with a remote server. The actual password change functionality should not
be a part of this processing.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

changePassword(String, String) method
This method is called when a user is attempting to change their password.

Syntax
public ChangePasswordResult changePassword (String oldPassword ,
String newPassword)

Parameters

• oldPassword – The current password for the user.
• newPassword – The value that user's password should be changed to.

Returns
one of the constants from User.ChangePasswordResult

Usage
This method can be overridden to implement password changing against a remote system. The
return value indicates the success or failure, and the reason for the failure, of the change
password attempt.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

Agentry App Development

790 SAP Mobile Platform

changePasswordFailed(StringBuffer) method
This method is called when the changePassword(String, String) method returns any value
other than ChangePassword_Success or ChangePassword_NotHandled.

Syntax
public void changePasswordFailed (StringBuffer errorString)

Parameters

• errorString – This is a string value that can be set to a text value. This value will be written
out to the user's debug log. It should indicate the reason why the password change failed.

Usage
This method can be overridden to perform any necessary processing in the event a password
change fails.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

changePasswordSessionAborted() method
This method is called if the password change operation is aborted for any reason.

Syntax
public void changePasswordSessionAborted ()

Usage
It should roll back anything that was started by the beginChangePassword() method.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

debug(String) method
Writes a debugging message to the user's log file on the Agentry server.

Syntax
public final void debug (String userMessage)

Parameters

• userMessage – The message to log

Usage
This will only work if per-user logging is turned on in AgentryLogging.ini.

This method is a convenience method that calls into the Java Logging API to do the actual
logging, and assumes that Agentry's default Java Logging configuration is in place (which will

Agentry App Development

Agentry App Development 791

route log messages back to the Agentry server). It will log to a logger named
"com.syclo.agentry.Server", at the FINE level (which translates to log detail level 3 in
Agentry).

When invoked outside of Agentry (e.g. in unit tests), this will log to the console, as that is
Java's normal default logging configuration.

endChangePassword() method
This method is called when the user's password has been successfully changed.

Syntax
public void endChangePassword ()

Usage
Designers can override this method to perform any additional processing that may be required
after the user's password has been modified. This method will still be called even if
changePasswordFailed() is called before it.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

getName() method
Returns the user's name.

Syntax
public String getName ()

Returns
the user name

getSystemConnectionTime() method
This is called by the Agentry server to find out what time the Java system connection thinks it
is right now.

Syntax
public GregorianCalendar getSystemConnectionTime () throws
AgentryException

Returns
The current date and time from the remote system's perspective.

Exceptions

• AgentryException class – if the current date and time cannot be determined.

Agentry App Development

792 SAP Mobile Platform

Usage
Implementations that are communicating with remote servers should override this method to
return the time on the remote server, if possible, in order to help Agentry calculate the
difference between the time on the client and the time on the remote system. If you override the
Server#getTimeZone method or set the Java system connection's time zone explicitly in
Agentry.ini, then you should override this method to return the current time in the same
time zone that that method is reporting.

getTimeZone(StringBuffer) method [deprecated]
Deprecated. This method has been moved to Server#getTimeZone(). This method is no longer
supported.

Syntax
public final void getTimeZone (StringBuffer tz)

Parameters
• tz – not used

Exceptions
• UnsupportedOperationException – to indicate that the method is no longer supported

and should not be called.

Usage
Override Server#getTimeZone() instead, as the time zone affects the entire Java system
connection and not a specific user.

loggedIn() method
This method is called after a user has been successfully logged in.

Syntax
public void loggedIn ()

Usage
The default version of this method writes a message to the user's debug log, if debugging is
active, and returns. This method can be overridden if additional processing is required after a
user has successfully logged in and before the transmission is processed.

loggedOut() method
This method is called after the transmission has been completed and after the user is logged out
of the system.

Syntax
public void loggedOut ()

Agentry App Development

Agentry App Development 793

Usage
This is the last method called prior to the destruction of a User object. The default version of
this method performs only the single task of logging a message to the user's debug log, if
debugging is enabled. This method can be overridden to disconnect a user from a remote
system or perform other cleanup.

reLoggedIn() method
This method is called when a user logs into the Agentry Server and the server still has a
previous login session for that user.

Syntax
public void reLoggedIn ()

Usage
This can occur if a user loses network connectivity in the middle of a transmission. This
method can be overridden to perform any special processing that may be needed in this
situation.

revalidate(String) method
This method authenticates a client user against the Java System Connection.

Syntax
public void revalidate (String password) throws LoginException

Parameters

• password – The password for the current user, as entered on the client application.

Exceptions

• LoginException class – if the login fails for any reason, or if the login succeeds but an
exceptional condition exists (such as an expired or soon-to-be expired password).

Usage
This method is called when a user reconnects to the Agentry Server from a client application
and the enableAuthentication option is set to true in the Java section of the
Agentry.ini file. Override this method to implement logic to perform full validation of
the user against a remote system.

This method should return normally if the authentication of the user succeeds. If
authentication fails for any reason, the appropriate LoginException subclass should be
thrown. An exception should also be thrown for other conditions such as expired or soon-to-
be-expiring passwords. By default, this method throws PasswordInvalidException, which
means that the password is not valid for the user.

Agentry App Development

794 SAP Mobile Platform

timedOut() method
This method is called in the event a user session times out.

Syntax
public void timedOut ()

Usage
A time out occurs when a transmission is idle for longer than the configured maximum time
limit. This method can be overridden to perform any tasks that may be needed in this event.

In the event of a timeout, the user will also be logged out of the Agentry Server, which will
trigger calls to the loggedOut() method as well.

update(GregorianCalendar) method
This method is called periodically (once every second or so) by the Agentry Server.

Syntax
public void update (GregorianCalendar update)

Parameters

• update – The time when the timer tick occurred, should be "now" more or less.

Usage
This method can be overridden if some sort of routine maintenance is required, such as
sending a keep-alive to a remote server.

_name variable
User name.

Syntax
protected String _name

Usage
Can be obtained via the getName() method.

SessionData interface
The SessionData interface is used throughout the AJAPI classes.

Syntax
public interface SessionData

Members
All members of SessionData, including inherited members. Constructors

Agentry App Development

Agentry App Development 795

Modifier and Type Constructor Description

public SessionData sessionData(String) on page
797

Returns a new SessionData ob-
ject, configured with the given
SDML name prefix, that has ac-
cess to the same session data as
this object.

Methods

Modifier and Type Method Description

public String eval(String) on page 798 Evaluates the given string as an
Agentry SDML expression and
returns the result.

public boolean getBoolean(String) on page
798

Returns the specified property
as a Boolean value.

public byte[] getBytes(String) on page 798 Returns the specified property
as an array of bytes.

public double getDouble(String) on page
799

Returns the specified property
as a double-precision floating
point decimal value.

public float getFloat(String) on page 799 Returns the specified property
as a floating point decimal val-
ue.

public int getInteger(String) on page
799

Returns the specified property
as an integer value.

public long getLong(String) on page 799 Returns the specified property
as a long integer value.

public String getString(String) on page
800

Returns the specified property
as a string.

public GregorianCalendar getTimeAndDate(String) on
page 800

Returns the specified property
as a date contained in a Gregor-
ianCalendar object.

public String getTimeAndDate(String,
String) on page 800

Returns the specified property
as a date string using the given
format, specified as an Agentry
date format string (not a Java
date format string!).

Agentry App Development

796 SAP Mobile Platform

Usage
It can also be used within the designer-implemented extensions of those classes. This class
encapsulates the Server Data Markup Language (SDML) functionality available in Agentry.
Through a SessionData object, the designer can access the data specific to the current
session.

This class contains several getter methods to return specified pieces of data. Each of these
methods returns the data as a different data type, such as a string or integer. All of these
methods take a single argument of type String that specifies the data to return. A an
example, to retrieve the data for a string property within a transaction named "Description",
the following line of code would be used:
String desc = _sessionData.getString("Description");

When calling these methods, it is important to make sure that the appropriate method is called
for the desired data type. No errors will be reported for mismatched data types. For example, if
a property within a transaction is of type integer, and the value is retrieved by calling getString,
the value will be returned as a String value. In some cases this may be desirable behavior, but in
others it can cause undesirable results.

The primary implementation of this interface is a private class that can only be instantiated by
the Agentry Server, since it calls back into the running Agentry server to obtain its data. For
unit-testing purposes, you can also create a new subclass or mock implementation of this
interface; one example of such a testing version is TestSessionData.

sessionData(String) constructor
Returns a new SessionData object, configured with the given SDML name prefix, that has
access to the same session data as this object.

Syntax
public SessionData sessionData (String sessionData)

Parameters

• sessionData – The new SDML name prefix.

Returns
A new SessionData object that prefixes all property references with the prefix given by
sessionData.

Usage
This can be used to create a session data object that is effectively restricted to only accessing
data that starts with the given prefix.

Agentry App Development

Agentry App Development 797

eval(String) method
Evaluates the given string as an Agentry SDML expression and returns the result.

Syntax
public String eval (String sdmlString)

Parameters

• sdmlString – The SDML string to evaluate (without the enclosing angle brackets).

Returns
The result as a string.

getBoolean(String) method
Returns the specified property as a Boolean value.

Syntax
public boolean getBoolean (String property)

Parameters

• property – The property name

Returns
The property value as a Boolean.

getBytes(String) method
Returns the specified property as an array of bytes.

Syntax
public byte[] getBytes (String property) throws AgentryException

Parameters

• property – The property name

Returns
The property value as an array of bytes

Exceptions

• AgentryException class – if the property cannot be interpreted as bytes

Agentry App Development

798 SAP Mobile Platform

getDouble(String) method
Returns the specified property as a double-precision floating point decimal value.

Syntax
public double getDouble (String property)

Parameters

• property – The property name

Returns
The property value as a double.

getFloat(String) method
Returns the specified property as a floating point decimal value.

Syntax
public float getFloat (String property)

Parameters

• property – The property name

Returns
The property value as a float.

getInteger(String) method
Returns the specified property as an integer value.

Syntax
public int getInteger (String property)

Parameters

• property – The property name

Returns
The property value as an integer.

getLong(String) method
Returns the specified property as a long integer value.

Syntax
public long getLong (String property)

Agentry App Development

Agentry App Development 799

Parameters

• property – The property name

Returns
The property value as a long integer.

getString(String) method
Returns the specified property as a string.

Syntax
public String getString (String property)

Parameters

• property – The property name

Returns
The property value as a string.

getTimeAndDate(String) method
Returns the specified property as a date contained in a GregorianCalendar object.

Syntax
public GregorianCalendar getTimeAndDate (String property) throws
AgentryException

Parameters

• property – The property name

Returns
The property value as a date. If the property was empty, then this will return the current date.

Exceptions

• AgentryException class – if the value cannot be parsed as a date.

getTimeAndDate(String, String) method
Returns the specified property as a date string using the given format, specified as an Agentry
date format string (not a Java date format string!).

Syntax
public String getTimeAndDate (String property , String format)

Agentry App Development

800 SAP Mobile Platform

Parameters

• property – The property name
• format – The date format to use. Note that this is an Agentry Server date format, not the

format used by e.g., SimpleDateFormat!

Returns
The property value as a formatted string.

Usage
If you prefer to use Java date format strings, then just call getTimeAndDate(String) to get a
Calendar object and feed it to a SimpleDateFormat object.

Agentry SAP Framework

Agentry SAP Framework

The Agentry SAP Framework provides an efficient way to build mobile solutions for SAP®

using SAP Mobile Platform. The framework was developed to address the following business
needs:

• Establish a common mobile integration service layer and architecture for the mobile
adaptation of enterprise business processes and business object data for enterprise mobile
applications.

• Define a consistent integration pattern for mobile data object modeling, change detections,
data distribution, delta sync calculation, and data pushes.

• Provide a framework for mobile application logging, tracing, administration, and
monitoring.

• Uses a combined coding and configuration approach that enables a comprehensive and
flexible application paradigm. Standard objects are configurable and extensible. Partners
and customers are able to develop their own integration services using the same integration
pattern.

• Uses the latest technology supported by SAP, to protect the return on investment.

The framework consists of several components shown in the following diagram.

Agentry App Development

Agentry App Development 801

Figure 1: Agentry SAP Framework System Components

Software Component Layering
The Agentry SAP Framework uses a layered software component approach; dependency
between each software component layer is by design and encouraged in order to provide
maximum reusability. There are two categories of software components within the Agentry
SAP Framework: the Foundation Add-On Component, and the Application Add-On
Components, as shown in the following diagram.

Agentry App Development

802 SAP Mobile Platform

Figure 2: Agentry SAP Framework System Components

The Foundation Add-On Component (SMFND) is designed for a Netweaver ABAP-based
system. It can be deployed to any SAP systems based on Netweaver AS ABAPA 7.x. The
foundation component defines the standard integration patterns supported by the framework.
It provides class libraries, RFC module pools, system programs, utilities, application
configuration tools, and system administration tools. Application integration services are
developed using the foundation component.

Application add-on components are developed using the integration patterns, services, and
tools provided by the foundation component. Application add-on components provide an
application level integration support for mobile applications.

A layered approach is used when developing the application add-ons. A standard application
add-on is developed for each SAP Business Suite system and supports all mobile applications
for the suite system. There is no mobile application-specific add-on using this approach. Each
standard application add-on is designed to provide mobile integration support for all standard
business processes and business objects within a specific suite system. Mobile integration
services are designed and developed to be shared and reused by multiple mobile applications
requiring the same business process and business object.

Currently only onPremise SAP ERP systems and SAP CRM systems are supported by the
framework. Add-On SMERP supports the SAP ERP system and Add-On SMCRM supports
the SAP CRM system.

The two standard application add-ons supported by the framework are SMERP Add-On for
SAP ERP Systems and SMCRM Add-On for SAP CRM Systems. SMERP supports ERP-
based mobile applications such as SAP Work Manager, SAP Inventory Manager, and SAP
Rounds Manager. SMCRM supports CRM-based mobile applications such as SAP CRM
Service Manager and SAP Sales Manager.

SAP Industry Solutions provides specialized industry specific business processes and
features. To support these processes, specialized application add-ons have been developed.
SMISU Add-On for SAP ERP Systems with IS-Utility is currently supported by the
framework. It provides additional support for meter management integration services for SAP
IS-Utility systems, in addition to the standard plant maintenance processes supported by the
SMERP add-on. SMISU add-on has a dependency of SMERP add-on.

Agentry App Development

Agentry App Development 803

SAP Framework

The framework consists of core components. These components are logically grouped in three
main layers:

• Change detection layer
• Business logic layer
• Integration layer

Within the framework, there also exists the configuration module and system monitor. The
configuration module provides the interface to the integration framework to allow for the
configuration and administration of the various components within it. The system monitor
provides an administrative interface to monitor processing related to users, pushes, and other
synchronization tasks within the framework.

Change Detection
The change detection layer of the Agentry SAP Framework contains the exchange tables and
triggers used to detect and track changes made to the data in the SAP system, and stores
exchange information used during synchronization between the mobile application and SAP.
Included in the change detection layer are the following:

• Mobile Exchange Persistent Layer - Contains the exchange tables used during
synchronization to compare data on the Client to data in the SAP system, and to support the
synchronization of only the differences.

• Delta Detection Routines - Contains the triggers, created in the SAP enhancement
framework, to detect changes to production data of importance to the mobile application.

• Change Detection Configuration Set - Configuration tools, including the interface
presented in the Configuration portal, to allow for the creation, configuration, and
administration of the components of the change detection layer.

• Exchange Object - Presented in the Configuration Panel, the exchange object
encapsulates the SAP tables, exchange table, class handler, and other components
involved in the change detection process. Exchange objects are utilized by the fetch
process to determine what data has changed since the last transmit of the mobile device.

Business Logic Layer
The business logic layer contains the logical components to work with the exchange data
objects in the change detection layer for downstream synchronization, as well as the logical
components to update data from transactions in the mobile application to the SAP system.
Included in the business logic layer are the following:

• Application Data Filter Services - Specifies the filtering of data to be retrieved from the
SAP system for transmission down to the mobile application. Not all fields from a given
table will necessarily be sent to the mobile application. The application data filter services
allow for the specification of the specific fields from a table to be sent to the mobile
application.

Agentry App Development

804 SAP Mobile Platform

• Data Object Class Handler Repository - Contains the logic used by the mobile data
objects to synchronize data. A class handler is created to retrieve data from or update data
to the SAP system, making calls to the standard SAP BAPIs.

• Application Authorization Services - Contains the security settings specific to the
mobile user group. Settings for authorization services can be applicable to users of all
mobile applications synchronizing data through the Agentry SAP Framework, for a
specific application, or for a specific class handler within the business logic layer.

• Mobile Integration Configuration Set - Configuration tools, including the interface
presented in the Configuration Panel, to allow for the creation, configuration, and
administration of the components of the business logic layer.

• Mobile Data Object - Presented in the Configuration Panel, the mobile data object
encapsulates the class handler, exchange object (in the change detection layer), the
application data filtering services, and other components involved in the synchronization
of data. The mobile data object references the exchange object in the change detection
layer to support its synchronization. It in turn is referenced by the BAPI wrappers within
the integration layer.

Integration
The integration layer of the Agentry SAP Framework contains the BAPI wrappers that present
the integration point to the mobile application servers. The Java steplets, complex table, and
data table classes within the synchronization definitions of the mobile application call into
these BAPI wrappers, through the SAP Java Connector (SAP JCo). The BAPI wrappers, in
turn, call into the mobile data objects, which include the business logic for synchronization.

The architecture and design of the BAPI wrappers is intended to exclude the business logic
related to the synchronization of the production data. This structure minimizes the necessity of
modifying Java code within the mobile application as the result of changes to the
synchronization processing configured in the integration of the Agentry SAP Framework.

Configuration Module
The configuration module is the web interface for the Agentry SAP Framework Configuration
Panel. This interface provides the tools to create, configure, and administer the components of
the integration of the Agentry SAP Framework.

System Monitor
The system monitor is the web interface for the Agentry SAP Framework Administration and
Monitoring Panel. This monitoring panel is provided to view mobile users’ synchronization
activities, including fetches, transactions, and pushes.

Mobile Exchange Persistent Layer

The mobile exchange persistent layer allows the transfer of data from SAP to the mobile client
as well as the transfer of data from the mobile client to SAP. This exchange process provides a
consistent way to manage and capture mobile client-related master and transaction data

Agentry App Development

Agentry App Development 805

changes within SAP. The mobile exchange persistent layer uses the SAP NetWeaver
enhancement framework to implement change detection triggers.

Figure 3: System Diagram - xChange Framework

Delta Detection Routine

The delta detection routines are the triggers within the enhancement framework that detect
modifications to data of concern to the mobile application. When changes are made to
production data in the back end system, the delta detection routines will capture the change
event. If a given change is one that will affect the data in the mobile application, then the
routine will update the appropriate exchange table in the mobile exchange persistent layer.
Intelligence is incorporated in the delta detection routines to determine if a change is one of
concern to the mobile application. If it is not, then the change is ignored by the routine.

Change Detection Configuration Set

The change detection configuration set controls how the change detection should be carried
out by the mobile exchange persistent layer. Customer-defined configurations are protected
through a reserved customer namespace, such as “Y*” or “Z*”. The change detection
configuration set is mobile application-independent. However, it is a set of mobile
application-specific change detection rules. The rules are configurable through the Agentry
SAP Framework Configuration Panel.

Data Object Handler Class Repository

The data object class handler repository links BAPI wrappers with mobile data objects and
encapsulates all business logic related to mobile applications. Internally standard BAPIs or
custom logic can be implemented to provide optimal mobile support. The object-oriented
design provides benefits such as reliability, reusability, extensibility and maintainability.

Agentry App Development

806 SAP Mobile Platform

All transaction updates are performed through standard BAPIs in order to ensure data
integrity. The repository also supports streamlining multiple SAP transactions or multiple
BAPIs for improved business processes. The data objects within the repository are
application-dependent and delivered in the relevant package based on SAP’s hierarchy, such
as /SYCLO/MM or /SYCLO/PM.

The mobile data objects contained within the repository support result-set field selection, data
filtering and security checks as defined by the integration rules. The mobile data objects also
support monitoring and logging applications. Mobile data objects are configurable through
the Agentry SAP Framework Configuration Panel. Different rules can be defined for every
class handler for each mobile application.

Mobile Integration Configuration Set

The Mobile Integration Configuration Set within the business logic layer contains the user
interface components presented in the Configuration Panel. The tools within this
configuration set allow for the creation, configuration, and administration of the components
within the business logic layer.

Application Authentication Services

Application authentication services allow you to perform additional mobile-related
authentications that are not available using the standard SAP authentications and security
profiles. These additional authorizations are configured using the Security Settings screen in
the Configuration Panel.

BAPI Wrapper

The BAPI wrapper layer provides a consistent way to expose business logic and data from the
SAP system to external mobile applications. The BAPI wrappers are decoupled from the
business logic in SAP, making them easy to reconfigure or customize.

The standard BAPI wrapper library consists of a collection of custom developed BAPIs based
on the SAP integration framework. BAPI wrappers improve interface consistency with
standard naming conventions and development standards. The BAPI wrapper library is
application-dependent and delivered in the relevant package based on SAP’s hierarchy, such
as /SYCLO/MM or SYCLO/PM. BAPI wrappers set parameters for mobile data objects to
post and pull data in the SAP system. When the Server calls to SAP, these calls are
encapsulated in a BAPI wrapper to ensure that SAP responds in a consistent manner and
performs the actions that Agentry SAP Framework is asking for.

The Configuration Panel is used to configure BAPI wrappers by assigning them to mobile data
objects and handler methods (GET, CREATE, UPDATE, or DELETE), function groups, and
packages within SAP.

Agentry App Development

Agentry App Development 807

Java Connector

The Java connector is a standard SAP Java connector. See the appropriate SAP documentation
for more details.

System Diagram - Java Connector

System Monitor

Administration and monitoring activities that take place behind the SAP Java connector for
the Agentry SAP Framework are performed through the System Administration and
Monitoring Panel. The Administration Panel is a problem-detection tool utilizing SAP’s
standard application log database. It allows administrators to trace who is logging into the
mobile applications, what work they’re doing, and the data being transferred between the
mobile devices and the SAP system. The Administration Panel speeds problem resolution
using real-time data and traceability.

Configuration Module

The Configuration Module is the Agentry SAP Framework configuration web interface panel.
The Configuration Panel simplifies modifications to existing mobile applications. It adds a
layer of business logic for filtering at a system or user level. Data is mapped to the Agentry
SAP Framework and pulled from SAP modules based on the user’s credentials in the SAP
system. Therefore, administrators can allow remote workers to only navigate and see data
relevant to their job location or function.

Agentry App Development

808 SAP Mobile Platform

Working with Push Scenarios

A push scenario pushes emergency work orders to the corresponding recipients. Use the
following diagram and steps to follow a push instance from generation in SAP to reception on
the Client.

Push Process Flow

1. The push exchange process initiates the push trigger based on the push conditions.
Conditions are defined as filter rules in the push exchange object. For instance, work
order priority = 1 is considered an emergency work order in the base product
release.

2. The work order that satisfies the push conditions inserts a record into the push register
table /SYCLO/PSH01 with an object key as the work order number and a push status of
NEW.

3. The event /SYCLO/BACKGROUND_JOB_EVENT is raised after the work order is
saved, which triggers the background job for the push processer agent.

Agentry App Development

Agentry App Development 809

4. The push processer job /SYCLO/CORE_PUSH_PROC_PROG is triggered, either by
using the event or the time frequency. This trigger is based on specific customer processes.

5. The push processer determines the recipients for the push work order and builds the data
for each recipient as a separate instance. The instance is stored in the outbound message
queue /SYCLO/PSH02 with queue ID = PUSH, using the staging database.

6. The push instance displays one of the following statuses, viewable in the push monitor in
the Administration Panel:
• NEW
• PROCESS
• CANCEL
• COMPLETED
• SRV_COMP

7. The Agentry application within the SAP Mobile Server calls the push BAPI /SYCLO/
PM_DOPUSHWORKORDER_GET for every predefined time interval and checks the
push queue for new items.

8. The Agentry application within the SAP Mobile Server sends the push data to the
respective Clients depending on the user credentials that match the push instance.

9. Once the Client receives the push message, it sends the Client confirmation back to the
Server and the Server calls the BAPI /SYCLO/CORE_PUSH_STAT_UPD to update the
confirmation with status CLNT_CONF back to SAP.

Outbound Trigger Overview

An outbound trigger allows a mobile application to interface with external systems such as the
Agentry application within the SAP Mobile Server from SAP. Outbound triggers can be
integrated into standard mobile application processes, such as push processing. Different
types of outbound triggers can be defined, such as an HTTP trigger, file trigger, Web service
trigger, etc. You define an outbound trigger definition in the IMG activity.

Requirements

Outbound triggers are configured for each mobile application. Therefore, the mobile
application must be defined first. The Outbound trigger handler must be developed before it
can be assigned to a trigger. An outbound trigger handler should implement interface /
SYCLO/IF_CORE_OUTB_TRIGGER and should be a subclass of /SYCLO/
CL_CORE_OTRIG_BASE.

Agentry SAP Framework Administration Functions in SAP

All components of the Agentry SAP Framework administration in SAP, such as BAPI
wrappers and mobile data objects, support logging. Activity logs generated by the Agentry
SAP Framework are integrated into the standard SAP application log database.

The following are administration and monitoring functions available in SAP:

• Agentry SAP Framework Push Instance Purge Utility

Agentry App Development

810 SAP Mobile Platform

• Agentry SAP Framework Data Cache Purge Utility
• Agentry SAP Framework Generic Purge Utility
• Agentry SAP Framework Exchange Table Purge Utility
• Agentry SAP Framework Subscription Queue Purge Utility
• Agentry SAP Framework Log Deletion
• Agentry SAP Framework Log Display
• Agentry SAP Framework Statistics Log Purge Utility

The manual process of purging data is important during configuration and modification in a
development environment. Be sure to purge data after each test after reviewing it and starting
the next test. This way, the data found in the logs is applicable to the newest test activities and
will not cause confusion. Periodic purging of data also contributes to an optimum running
environment.

Exchange table histories can be set to automatically delete after a set period of days through
the Configuration Panel. All other data purges and log deletions must be done through SAP.

Accessing Administrative Functions in SAP

1. Log into SAP.

2. Type /n/syclo/smart into the command field and click the green checkmark to the
left of the field, or press Enter.

The Agentry SAP Framework Administration window displays. Expand the SAP menu
tree by clicking the arrows to the left of the menu items. Expand as follows: SAP menu >
System Administration > Operation. The available administrative functions display:

Agentry App Development

Agentry App Development 811

3. Double-click on the desired administrative function to open the SAP window for that
function.

Agentry SAP Framework Push Instance Purge Utility

The push instance purge utility is used to purge exchange table information that was used
during the push processing. Once the push data is pushed to Client devices, the exchange
information is no longer needed and can be purged.

Note: The purge utility in SAP performs a manual purge. Automatic purges of push instances
are configured in the Push Scenario Definition panel of the Configuration Panel.

When desired fields are filled, click on the clock icon in the upper left to execute the purge.

SAP Administration - Push Instance Purge Utility Program

Agentry App Development

812 SAP Mobile Platform

Runtime Settings

• Mobile Application: Click the box icon to the right of the Mobile Application field to
bring up a window displaying all mobile application choices.

• Push Instance GUID: Use the Push Instance GUID range fields to select GUIDs
contained within the push instance table in SAP to purge.

• Push Status: Use the Push Status range fields to select statuses contained within the push
instance table in SAP to purge. By default, all statuses are included if the fields are not
filled in. The push statuses are as follows:
• NEW
• PROCESS
• SRV_COMP
• COMPLETED
• CANCEL

• Scenario ID: Use the Scenario ID range fields to select scenario IDs contained within the
push instance table to purge.

• Record ID: Use the Record ID range fields to select record IDs contained within the push
instance table to purge.

• Expiration Date: Use the Expiration Date field to choose a date when the purge utility
operation will expire. The expiration date is automatically filled with the current date.

• Expiration Time: Use the Expiration Time field to choose a time when the purge utility
operation will expire.

• Maximum No. of Instances: Type in the maximum number of instances to purge from the
instance table.

Agentry App Development

Agentry App Development 813

• Test Run: When this box is checked, records are not purged upon execution. Rather, a list
of the records selected for purging displays, in order to determine that the purge parameters
are correct. Once records are purged, they cannot be recovered.

Agentry SAP Framework Data Cache Purge Utility

Use the data cache purge utility to manage and purge packages associated with messages and
the outbound message queue from SAP. The outbound message queue is the only way SAP
communicates with the Client device. Packages are the data attached to outbound messages.
In this way, an administrator can send a message to multiple users while referencing only one
data package, rather than an individual data package for each outbound message.

SAP Administration - Data Cache Purge Utility Program

Runtime Settings

• Mobile Application: Select the desired mobile application with which the outbound
messages or packages are associated.

Agentry App Development

814 SAP Mobile Platform

• Expiration Date: Use the Expiration Date field to choose a date when the purge utility
operation will expire. When used with Expiration Time, this is the maximum expiration
timestamp from which to purge messages from the cache (i.e.; purge messages that are set
to expire 2013.10.06 at 3 p.m. or earlier). If an expiration date / time are provided, they are
converted into a timestamp. The utility will only delete those messages whose expiration,
or timestamp, is less than or equal to the provided timestamp. If this timestamp is not
provided, deletion will occur without respect to the messages’ expiration.

• Expiration Time: Use the Expiration Time field to choose a time when the purge utility
operation will expire. When used with Expiration Date, this is the maximum expiration
timestamp from which to purge messages from the cache (i.e.; purge messages that are set
to expire 2013.10.06 at 3 p.m. or earlier). If an expiration date / time are provided, they are
converted into a timestamp. The utility will only delete those messages whose expiration,
or timestamp, is less than or equal to the provided timestamp. If this timestamp is not
provided, deletion will occur without respect to the messages’ expiration.

• Data Handler Name: Use the Data Handler Name range fields to select data handler
names contained within the data cache to purge. Data handlers are responsible for
messages within packages to be purged. It limits the purge to the class handler responsible
for handling the message.

• Data Handler Method: Use the Data Handler Method range fields to select data handler
methods contained within the data cache to purge. Data handlers are responsible for
messages within packages to be purged. It limits the purge to the method of a class handler
responsible for handling the message.

• Configuration Object Name: Use the Configuration Object Name range fields to select
configuration object names contained within the data cache to purge. Limits the purge to
the configuration object that owns, or is the source of, the message.

Package Deletion Settings
Select the Delete Packages option to purge packages stored in SAP.

Note: If a data package is associated with a message GUID, it cannot be deleted.

• Delete Packages: Select this radio button if you wish to delete the packages found through
the Package Deletion Settings.

• Storage Unit GUID: Each package is associated with a unique storage unit GUID

Message Deletion Settings
Select the Delete Outbound Messages option to purge outbound messages stored in SAP.

Note: All packages associated with outbound messages will also be deleted if the Delete
Outbound Messages option is chosen.

• Message GUID: Each outbound message is associated with a unique message GUID
• Message Status: Use the following available message statuses:

• NEW

Agentry App Development

Agentry App Development 815

• SEND
• RECEIVED
• CANCEL
• CONFIRMED

• Message Status: Use the Message status range fields to select message statuses contained
within the data cache to purge.

• Message Counter: Use the Message Counter range fields to select message counters
contained within the data cache to purge.

Test Run
When this box is checked, packages or messages are not purged upon execution. Rather, a list
of the packages or records selected for purging appears, in order to determine that the purge
parameters are correct. Once packages or records are purged, they cannot be recovered.

Agentry SAP Framework Generic Purge Utility

Use the generic purge utility to delete records in SAP pertaining to specific user IDs or
middleware server records.

SAP Administration - Purge Utility Program

When a box in the MDW Selections field is checked, additional fields for the selection appear,
allowing specific purging criteria to be set for the selection.

Agentry App Development

816 SAP Mobile Platform

• Mobile Application: Select the desired mobile application with which the middleware
server records are associated.

• User GUID: Use the User GUID range fields to select user GUIDs contained within the
middleware server records to purge.

User Registry
When the User Registry box is checked, all records pertaining to that user ID, such as session
and object records, are also purged. Each mobile user ID is a user GUID in SAP. Mobile users
need a separate user GUID for each mobile application they use.

Generic Purge Utility - User Registry

Check the User Registry box to purge user records according to the following criteria:

• User Date Earlier Than: Highlight the field and use the calendar to select a date to purge
user records existing before the selected date.

• User Time Earlier Than: Highlight the field and use the time display window to select a
time to purge user records existing before that time.

Session Registry
Every time a user ID connects to SAP, a session record is created. Each session record has a
GUID, a start time stamp and an end time stamp.

Generic Purge Utility - Session Registry

Check the Session Registry box to purge session records according to the following criteria:

• Session Date Earlier Than: Highlight the field and use the calendar to select a date to
purge session records created before the selected date.

Agentry App Development

Agentry App Development 817

• Session Time Earlier Than: Highlight the field and use the time display window to select
a time to purge session records created before that time.

• Session GUID: Either type in the GUID or use the Multiple Selection icon to the right of
the field to select a range of GUIDs.

Object Registry
Each object on each Client device has a unique GUID contained within the object registry
table. The object registry is used by the fetch process to calculate what data is needed by each
Client device based on change detections since last transmit.

Generic Purge Utility - Object Registry

Check the Object Registry box to purge object records according to the following criteria:

• Object Date Earlier Than: Highlight the field and use the calendar to select a date to
purge object records created before the selected date.

• Object Time Earlier Than: Highlight the field and use the time display window to select
a time to purge object records created before that time.

• Object GUID: Either type in the GUID or use the Multiple Selection icon to the right of
the field to select a range of GUIDs.

User Push History
When push history is enabled, every time an object is pushed to a user it is recorded to a history
table (/SYCLO/PSH05). The user push history purge utility removes old history records, or
specific history records, by specifying a date/time or record GUIDs from which to purge.

Note: In order for history records to appear, the push (distribution) handler has to support the
history function.

Generic Purge Utility - User Push History

Agentry App Development

818 SAP Mobile Platform

Check the User Push History box to purge object records according to the following criteria:

• Update Date Earlier Than: Highlight the field and use the calendar to select a date to
purge user push history created before the selected date.

• Update Time Earlier Than: Highlight the field and use the time display window to select
a time to purge user push history created before that time.

• Push History Record GUID: Either type in the GUID or use the Multiple Selection icon
to the right of the field to select a range of GUIDs.

Cross Reference
The reference tables contained within SAP facilitate the key mapping process for Agentry
applications. When a user creates a local object with a temporary ID and transmits to the
system, the object is assigned an object GUID. Agentry can also break down a document into
smaller chunks of information, each with its own reference GUID mapped to the object GUID.

Generic Purge Utility - Cross Reference

Check the Cross Reference box to purge cross references according to the following criteria:

• Ref. Obj. Date Earlier Than: Highlight the field and use the calendar to select a date to
purge reference object records created before the selected date.

• Ref. Obj. Time Earlier Than: Highlight the field and use the time display window to
select a time to purge reference object records created before that time.

• Reference GUID: Either type in the GUID or use the Multiple Selection icon to the right
of the field to select a range of GUIDs.

Agentry App Development

Agentry App Development 819

Server
A system can contain multiple middleware servers within the system. Each server has a unique
GUID associated with it.

Generic Purge Utility - Server

Check the Server box to purge server records according to the following criteria:

• Server Date Earlier Than: Highlight the field and use the calendar to select a date to
purge server session records created before the selected date.

• Session Time Earlier Than: Highlight the field and use the time display window to select
a time to purge server session records created before that time.

• Server GUID: Either type in the GUID or use the Multiple Selection icon to the right of
the field to select a range of GUIDs.

• Only Delete Locked Server: Check this box if you only want to purge server records on
the locked server.

Mobile Status
Whenever a technician changes the status of an object and transmits from the mobile device,
the status management tables in SAP are updated. Each object has a unique object key
associated with that object.

Generic Purge Utility - Status Selections

Agentry App Development

820 SAP Mobile Platform

Check the Mobile Status box to purge mobile object records according to the following
criteria:

• Status Date Earlier Than: Highlight the field and use the calendar to select a date to
purge mobile status records created before the selected date.

• Status Time Earlier Than: Highlight the field and use the time display window to select a
time to purge mobile status records created before that time.

• Object Key: Either type in the object key or use the Multiple Selection icon to the right of
the field to select a range of object keys.

Test Run
Check the Test Run box in order to have SAP display another window that shows in table
format the records that will be deleted based on the criteria selected in the Purge Utility
Program screen. Once records are purged from the system, they cannot be recovered.

Generic Purge Utility - Deleted Session Table Entries Table

Agentry SAP Framework Exchange Table Purge Utility Program

Use the purge utility for the exchange tables to purge obsolete exchange objects from one or
more mobile applications in SAP. Obsolete records are determined based on the purge
frequency configured in the Agentry SAP Framework Configuration Panel.

To determine the purge frequency in the Agentry SAP Framework Configuration Panel,
navigate to the Exchange Object Configuration menu item under the Mobile Application
Settings section. In the tab Technical Settings, set the Days to Keep History field to the
desired number of days and click the Save button.

When field selection is complete, click on the Clock icon at the top left of the screen to execute
the exchange table purge.

SAP Administration - Exchange Table Purge Utility Program

Agentry App Development

Agentry App Development 821

Selection Criteria

• Mobile Application: Use the mobile application range fields to select one or more mobile
applications from which to purge objects from the exchange tables.

Note: Selection choices may vary depending on which mobile applications are available
on the system. If there is only one mobile application, this field does not apply.

• Exchange Object: Use the exchange object range fields to select one or more exchange
objects from which to purge tables.

• Last Changed By: Use the range fields to select one or more user names who made
changes from which to purge tables.

• Object Key: Key of the exchanged object. This ID is governed by how the field OBJKEY
is populated in the relevant exchange table. The keys will vary from object to object.

• Exchange Action: Use I for Insert, U for Update, and/or D for Delete.
• Record Status: [blank] is used for the standard purge, D = Delete, and S = Skip.
• Delete All Entries: Select this checkbox to purge all obsolete records from the exchange

tables, regardless of the application or exchange objects.

Agentry SAP Framework Statistics Record Purge Utility

Use the statistics record purge utility to delete statistic records generated by the SAP
integration framework. Statistic records for mobile applications and individual mobile users
can be purged selectively.

Agentry App Development

822 SAP Mobile Platform

Agentry SAP Framework Log Deletion

Use the log deletion function to delete expired logs from SAP. When desired fields are filled,
click on the Clock icon to execute the deletion.

SAP Administration - Delete Expired Logs

Agentry App Development

Agentry App Development 823

Expiry Date
Click the first radio button to only delete logs which have reached their expiry date. Click the
second radio button to delete logs that have reached their expiry date as well as logs that can be
deleted before their expiry date has passed.

Agentry App Development

824 SAP Mobile Platform

Selection Conditions

• Object: Select the desired object by either typing it in the field or clicking on the selection
icon. The object is usually set to /syclo/.

• Subobject: Select from the following subobjects if the main object is /syclo/:
• ADMIN - Administration portal logs
• BAPI - Client application logs
• CONFIG - Configuration portal logs
• DEFAULT - All logs not covered through the rest of the subobjects
• EXCHANGE - Exchange and transaction process logs

• External ID: Each log entry has an external ID, depending on what the log is for.
• Transaction Code: Not used
• User: SAP user ID that created the logs
• Log Number: Each log entry has a log number associated with it. If the log number or

range of numbers is known, enter them here.
• Problem Class: The problem class of the logs
• from (date/time): Select the beginning start date and time of the logs to delete by clicking

in the fields and using the calendar and the time window display to choose the correct date
and time.

• to (date/time): Select the end date and time of the logs to delete by clicking in the fields
and using the calendar and the time window display to choose the correct date and time.

Options

• Only calculate how many: Click this radio button to generate a popup window with the
number of table logs that fit the criteria for deletion. Selecting this option does not result in
any log deletion.

• Generate list: Click this radio button to generate a list of which table logs fit the field
criteria for deletion. This list opens a different SAP window with multiple options for
working within the list, including individual selection of table logs to delete. Selecting this
option does not result in any log deletion.

• Delete immediately: Click this radio button to delete all table logs immediately. The
system will still confirm the deletion of logs in a popup window before permanently
deleting them.

Delete by Number of Logs

• COMMIT Counter: Type in the number of logs desired to delete.

Agentry SAP Framework Log Display

Use the log display utility to view activity logs based on the criteria selected on the main
screen. When all desired criterion are selected, click on the Clock icon at the top of the screen
to execute the request and display the desired logs.

Agentry App Development

Agentry App Development 825

SAP Administration - Analyze Application Log

• Object: Select the desired object by either typing it in the field or clicking on the selection
icon to the right of the field. The object is usually set to /syclo/ to view logs.

• Subobject: Select from the following subobjects if the main object is /syclo/:

• ADMIN - Administration portal logs
• BAPI - Client application logs
• CONFIG - Configuration portal logs

Agentry App Development

826 SAP Mobile Platform

• DEFAULT - All logs not covered through the rest of the subobjects
• EXCHANGE - Exchange and transaction process logs

• External ID: Type the external ID into the field.

Time Restriction

• From (Date/Time): Click on the white square icons to the right of the date and time fields
to select a start date and time of the beginning of the logs chosen for display. The date and
time are automatically set for the current date at 00:00:00 hours.

• To (Date/Time): Click on the white square icons to the right of the date and time fields to
select an end date and time of the final logs chosen for display. The date and time are
automatically set for the current date at 23:59:59 hours.

Log Triggered By

• User: SAP user ID
• Transaction Code: Standard SAP transaction codes
• Program: Standard SAP programs

Log Class
Select the appropriate standard SAP log class. Log classifications are based on the
implementation by the developer.

Log Creation
Select the appropriate log creation setting. These are standard SAP settings based on the
implementation by the developer.

Log Source and Formatting
Select the appropriate log source and formatting setting. These are standard SAP settings
based on the implementation by the developer.

Enable SAP Solution Manager to Diagnose Agentry Issues

You can use the SAP Solution Manager to diagnose issues with the Agentry SAP Framework.

To enable this SAP Solution Manager 7 EhP 1 must be installed.

• OSS Note 1371097 Diagnostics Setup for Agentry Servers
• End-To-End Root Cause Analysis System Landscape Setup Guide

available here:

https://service.sap.com/~sapidb/011000358700000074392009E

Agentry App Development

Agentry App Development 827

Reporting Issues Using SAP Service Marketplace
You can report issues with the Agentry SAP Framework using the SAP Service Marketplace.
Customer issues entered into the SAP Service Marketplace are automatically sent to SAP’s
Technical Support team.

Java Development for SAP

In order to modify the communications between the SAP Agentry Server and the SAP system,
it is necessary to implement a Java development environment. This section contains some
information to aid the developer or implementor in creating this environment.

Set Up the SAP Java Project in Eclipse

Once the Java IDE has been installed, you must set up the development or build project that
will allow you to modify, compile, and debug the Java portion of the SAP application.

The following items must be a part of your Java development project:

• The Java source files for the SAP application
• The jCo.jar file
• The Agentry-level *.class files, provided with the SAP Agentry Server in the sub-directory

Java\Syclo\Agentry. All of the *.class files in this folder should be part of the
project.

• Optionally, the junit.jar file, provided with the Eclipse Java IDE.

• Retrieve the Java source files for the SAP application by contacting SAP's Customer
Support. Included in these files will be the Java source files for all of the Java classes used
by the SAP. These include the steplet classes used in the Java step definitions, and the
classes used by the data tables and complex tables of the application. When creating the
project in your Java IDE, the Java source files from SAP should be imported to the
development project in the IDE.

• The Java files provided by SAP are the source files for your project. The *.class files must
also be a part of the project's build path. These are the Java files that make up the Agentry
Java API. They are installed with the SAP and can be referenced from the Server's
installation location, or they can be copied to a location convenient to the IDE.

• The jCo.jar file for the SAP Java Connector toolkit must be a part of the build path for the
project. This can be referenced in the SAP Agentry Server location, or at some other
location convenient to the Java IDE. If the Editor is installed to a separate host system from
that of the SAP Agentry Server, the JCo.jar file must be extracted from the Java Connector
ZIP file. It can be placed in any convenient location. Be sure to note this location as it will
be needed in the Java project created in the IDE.

• SAP recommends that you include this junit.jar file in your build path if you are using the
Eclipse IDE. The junit.jar file is provided with Eclipse and is a library of Java classes used
for debugging purposes, several of which are implemented in the SAP Java classes. If this

Agentry App Development

828 SAP Mobile Platform

is not included in your project, you will receive warnings related to these classes at build
time. The junit.jar file can be found in the Eclipse install directory at:

C:\eclipse\plugins\org.junit_4.2.8

Java Architecture

The Java back end uses classes of type SAPObject to represent data objects sent to and from
the client. Most of these classes are POJOS (Plain Old Java Objects), meaning they store data
in fields, provide accessory/mutator methods, and know how to construct themselves when
told to by other code.

SAPObjects
SAPObjects can be composed of other SAPObjects stored as arrays of SAPObjects (e.g.,
Notifications have NotificationItems, etc). Since fetch BAPIs will now bring down child
objects as well, the logic will populate the children using a single BAPI call without the need
for read steps.

StepHandler
Stephandler classes provide the calling interface to classes subclassing the Agentry Java API
(steplets, data tables, complex tables). Methods in StepHandler classes should be static.
StepHandler methods also provide an interface for JUnit test suites.

All of this metadata is encapsulated in the SAPObject class rather than in an external file.

BAPI
The BAPI class encapsulates all of the BAPI processing needed by the Java back end. It is
abstract because there are specific kinds of BAPIs:

• FetchBAPI: FetchBAPIs are the type of BAPIs that create SAPObjects from the exchange
process. The SAPObjects are then parsed by Agentry for use on the client.

• DataTableBAPI
• ComplexTableBAPI
• TransactionBAPI: TransactionBAPIs take an Agentry transaction on the client and turn it

into one or more JCO.Tables, then run the BAPI passing the tables in order to update
SAP.

The BAPI objects that the code will use will be subclasses of FetchBAPI, TransactionBAPI,
DataTableBAPI or ComplexTableBAPI. Developers need to write these BAPI classes to call
the BAPIs to do the things that the “application” needs to do. A developer-written BAPI is a
specific ABAP function call for a particular application (i.e., fetch all work orders for a user,
send up a locally added notification, etc.).

Note that there is not necessarily a one-to-one correspondence between BAPI classes and
ABAP function names (e.g. /SYCLO/MM_DOPHYSINVDOC_GET).

BAPI classes do the following:

Agentry App Development

Agentry App Development 829

• Create themselves out of the JCO.Repository when necessary. This is just before they are
about to be called, but a developer might make these poolable/cacheable.

• Set input values in JCO.Table parameters, such as search ranges in the case of FetchBAPIs
or transaction data in the case of TransactionBAPIs.

• Are executed when called (Get the results or post the data to SAP).
• Report exceptions and errors back to calling code. This includes reading return tables and

parsing for error messages when necessary.

Data Flow

The synchronization processes described in the following sections illustrate the default
processes as provided by SAP with the application. During implementation, these standard
processes may be configured to support implementation-specific needs.

Data Flow - Fetch

A fetch defines how the SAP Agentry Server synchronizes data for a target object collection.
This object collection must be a top-level collection within the module. A fetch is made up of
steps that retrieve the data for the collection from the back end system. These steps are grouped
into three categories within the Fetch definition: Client Exchange Steps, Server Exchange
Steps, and Removal Steps. A fetch may also include properties to store data captured from the
user and validation rules for those property values.

The following diagram and steps depict what happens when the Agentry Client must load or
reload a fetch.

Agentry App Development

830 SAP Mobile Platform

Figure 4: Data Flow - Fetch

1. A Server exchange steplet defined in a fetch calls the steplet doSteplet() method to
fetch objects for the user.

2. The doSteplet() method calls the appropriate method in the appropriate
xxxStepHandler class.

3. The xxxStepHandler method instantiates the necessary appropriate
xxxFetchBAPI object, passing the User object and clientLastUpdate
parameter to it.

4. The xxxFetchBAPI constructor retrieves the JCo function object from the repository,
using the connection on User.

5. xxxFetchBAPI class sets BAPI import parameters IV_xxx and/or IS_xxx.

6. xxxFetchBAPI constructor adds IT_xxx records to BAPI import tables for search
criteria or other input parameters.

7. xxxStepHandler method calls processResults() method from
xxxFetchBAPI.

8. xxxFetchBAPI processResults() calls execute() method on BAPI and
checks for exceptions.

9. xxxFetchBAPI processResults() reads appropriate ET_xx_RETURNS table
for error messages.

10.xxxFetchBAPI processResults() iterates over ET_xx_RETURNS table and
reads records from the table.

Agentry App Development

Agentry App Development 831

11. For each record, xxxFetchBAPI processResults() calls appropriate constructor
in the appropriate SAPObject subtype.

12. The SAPObject subtype constructor maps JCo record column names to field names.

13.xxxFetchBAPI processResults() collects these SAPObjects in an array and
passes it back to xxxStepHandler.

14.xxxStephandler passes SAPObjects array back to steplet doSteplet().

15. Steplet doSteplet() stores SAPObjects array in _returnData.

16. Agentry application within the SAP Mobile Server parses _returnData and sends
object collection up to Client.

Data Flow - Complex Table

The complex table definition defines a table of records containing multiple fields stored on the
SAP Client in a structured and searchable format. A complex table can contain large amounts
of data with records numbering in the thousands. Included in the complex table are the fields
for its records and indexes on fields to provide search functionality and structure to the overall
data in the table. The complex table definition also defines how its data is synchronized.

The following diagram and steps depict what happens when the Agentry Client must load or
reload a complex table.

Figure 5: Data Flow - Complex Table

Agentry App Development

832 SAP Mobile Platform

1. The complex table's initialize() method is called.

2. The initialize() method calls a ComplexTableStepHandler build()
static method passing the User object.

3. The ComplexTableStepHandler build() method constructs the necessary
CTBAPI class, passing the User object and clientLastUpdate parameter to it.

4. The CTBAPI constructor retrieves the JCo function object from the repository, using the
connection on User.

5. CTBAPI sets BAPI import parameter IS_BAPI_INPUT.

6. CTBAPI adds IT_xxx record(s) to ComplexTableObject import tables for search
criteria or other input parameters.

7. ComplexTableStepHandler build() method calls getNumRows() method in
CTBAPI.

8. CTBAPI getNumRows() method calls the execute() function and checks for
exceptions.

9. CTBAPI getNumRows() method reads ET_RETURN table in the BAPI class for error
messages.

10.CTBAPI getNumRows() method iterates over ET_COMPLEX_TABLE and reads
records from the table.

11. For each record, CTBAPI getNumRows() method calls the appropriate constructor in
the appropriate SAPObject subtype.

12. The SAPObject subtype constructor maps the JCo record column names to field names.

13.CTBAPI getNumRows() method collects the SAPObjects in
ComplexTableIterator and passes them back to
ComplexTableStepHandler.

14.ET_EXCHANGE_ACTION_DELETED is read and follows the same steps as 10 - 13.
These SAPObjects populate another ComplexTableIterator.

15.ComplexTableHandler passes the iterators back to ComplexTable
dataIterator() and deleteIterator().

16.ComplexTable initialize() stores the iterators in
ComplextTableIterator and returns them to Agentry in dataIterator() and
deleteIterator.

17. Agentry application defined in the SAP Mobile Server parses these iterators and sends
table rows up to Client.

Data Flow - Standard Data Table

The complex table selection property type is used to store a selection made by the user from a
complex table. The value stored in a complex table selection property is the key field of the
selected record within the complex table. The data type of this value will be a string, integral
number, or decimal number, based on the data type of the key field.

Agentry App Development

Agentry App Development 833

The following diagram and steps depict what happens when the Agentry Client must load or
reload a data table.

Figure 6: Data Flow - Standard Data Table

1. The data table’s initialize() method is called.

2. The initialize() method calls a DataTableStepHandler build() static
method passing the User object.

3. The DataTableStepHandler build() method constructs the necessary DTBAPI
class, passing the User object, clientLastUpdate parameter, and table name to it.

4. The DTBAPI constructor retrieves the JCo function object for /SYCLO/CORE_DT_GET
from the repository, using the connection on User.

5. DTBAPI sets the table name in the table IT_DOID, in the field DO_ID in the BAPI import
parameters.

6. DTBAPI adds IT_xxx record(s) to DTObject import tables for search criteria or other
input parameters.

7. DataTableStepHandler build() method calls getNumRows() method in
DTBAPI.

8. DTBAPI getNumRows() calls the execute() function and checks for exceptions.

9. DTBAPI getNumRows() reads ET_RETURN table in the BAPI class for error
messages.

Agentry App Development

834 SAP Mobile Platform

10.CTBAPI getNumRows() method iterates over ET_DATA_TABLE and reads records
from the table.

11. For each record, DTBAPI getRows() method calls the appropriate constructor in the
appropriate SAPObject subtype.

12. The SAPObject subtype constructor maps the JCo record column names to field names.

13.DTBAPI getNumRows() method collects the SAPObjects in DataTable and
passes them back to DataTableStepHandler.

14. DataTableStepHandler build() method passes the DataTableObject back to the initialize()
method and is then stored in the appropriate field.

15. Agentry application within the SAP Mobile Server parses these iterators and sends the
table rows to the client.

Data Flow - Transaction

The transaction definition defines data to be captured on the SAP Client. As a part of its
definition, the transaction includes a target object type, data values to be captured, client-side
data validation, and updating its data to the back end system by the SAP Agentry Server during
synchronization. Transactions can add new object instances, edit an existing object, delete an
object, or modify a complex table or data table record. Each of these behaviors is exhibited by
a different transaction type, selected during the creation of the transaction.

The following diagram and steps depict what happens when the Agentry client must load or
reload a transaction.

Agentry App Development

Agentry App Development 835

Figure 7: Data Flow - Transaction

1. A Server exchange steplet defined in a Transaction calls Steplet doSteplet() method to
begin the transaction.

2. Steplet's doSteplet() calls appropriate method in the xxxStepHandler class to create,
update, or delete objects in SAP.

3. xxxStephandler method constructs the necessary SAPObject subtype by passing the User
to the SAPObject's constructor.

4. xxxStepHandler method instantiates the necessary xxxCreateBAPI or xxxUpdateBAPI
object, passing the SAPObject to constructor.

5. The xxxCreateBAPI or xxxUpdateBAPI constructor maps the SAPObject's fields to the
necessary JCO record columns.

6. xxxCreateBAPI or xxxUpdateBAPI constructor retrieves JCO function object from the
repository, using the connection on User.

7. xxxCreateBAPI or xxxUpdateBAPI constructor sets BAPI import parameters IV_xxx
and/or IS_xxx.

8. xxxCreateBAPI or xxxUpdateBAPI constructor adds IT_xxx records to BAPI import
tables.

9. xxxStepHandler method calls add(), update() or delete() method of xxxCreateBAPI or
xxxUpdateBAPI.

10. xxxCreateBAPI or xxxUpdateBAPI calls the execute() method on BAPI and checks for
exceptions.

Agentry App Development

836 SAP Mobile Platform

11. xxxCreateBAPI or xxxUpdateBAPI reads ET_RETURN table for error messages.
12. If successful, control passes back to xxxStepHandler, Steplet, and Agentry.

Accessing the Agentry SAP Framework Configuration Panel

1. Log into SAP.

2. Type the command SPRO into the command box and click the green check mark or click
Enter.

The Customizing: Execute Project screen displays.

3. Click the SAP Reference IMG button.

The Display IMG screen displays.

Agentry App Development

Agentry App Development 837

4. Expand the Agentry SAP Framework Configuration line by clicking on the arrow to the
left of the line.

Agentry SAP Framework submenus display. Expand any one of the submenus to display
specific configuration functions and click the clock icon to open the Agentry SAP
Framework ConfigPanel.

Agentry App Development

838 SAP Mobile Platform

Note: Clicking the paper icon displays a screen with a brief description of the specific
configuration function.

The SAP NetWeaver Web Application Server log on screen opens in a browser window.

Note: Depending on your configuration, the log on screen may be different than what is
shown.

5. Expand any one of the submenus to display specific configuration functions and click the
clock icon to open the Agentry SAP Framework Configuration panel.

6. Fill in any necessary fields for your specific implementation and click Log On.

The Agentry SAP Framework Configuration portal opens in the browser window. The
window that opens corresponds to the submenu line item chosen in SAP.

7. Click the ConfigPanel Home link at the top of the screen to navigate to the main
configuration page.

Agentry App Development

Agentry App Development 839

The Agentry SAP Framework Configuration Panel home page displays.

Standard Operations in the Configuration Panel

While each mobile application configuration is unique, there are certain standard buttons and
options available to perform the configurations.

Filtering by Mobile Application
If more than one mobile application is available on the same system, you can use the filter
function to only view items for a specific application. The filter option is found on the main
portal home page, as well as any other page where multiple application items could be
displayed.

To filter by application, click the arrow to the right of the Mobile Application Filter field and
select the appropriate mobile application. To remove the selection and view all items for all
mobile applications on the system, click in the field again and select the asterisk (*) symbol.

Creating, Copying, Deleting, and Changing Items
There are four standard actions available to configure different components and items within
your mobile application setup.

• Create: Creates a new item. All modifiable fields are empty.
• Copy: Copies the item that was highlighted and creates a new item. All modifiable fields

are filled in with the information from the existing item and are available for changes prior
to saving.

• Delete: Deletes the highlighted item.
• Change: Allows changes to be made to the highlighted item in the modifiable fields.

Agentry App Development

840 SAP Mobile Platform

Saving or Cancelling Changes to an Item
Once the Create, Copy, or Change button is clicked, the Save and Cancel buttons appear. After
making any changes to the configuration, click Save to save the changes or Cancel to discard
the changes.

Note: If the Save and Cancel buttons are active, the ConfigPanel Home main menu link is not
available. You must either save your changes or cancel out of the changes in order to return to
the main Configuration portal page.

Message List
Certain actions can generate system messages. These messages can be error messages or
informational messages. If you perform an action that prompts a system message, a message
bar appears above the main panel with a brief description of the message.

Click the Show List button to display the detailed view of the message list.

Figure 8: Configuration Panel - Detailed Message Display

Agentry SAP Framework Configuration Panel Overview

All configuration activities for Agentry SAP Framework are performed using the
Configuration screen.

Configuration changes made through the Configuration portal have significant impact to the
behavior of the framework component and mobile applications. Changes should be made in
the development environment and fully tested before they are migrated to the rest of the SAP
system landscape.

The following user authorizations are required in order to work with the configuration portal:

• Authorization object - S_ICF

Agentry App Development

Agentry App Development 841

• Authorization field - ICF_FIELD - SERVICE
• Authorization field - ICF_VALUE - SYCLOADM
• Authorization object - S_TCODE
• Authorization field - TCD - /SYCLO/CONFIGPANEL

If you create additional security roles through the Security Settings panel in the ConfigPanel,
you must incorporate them into the system as well.

Figure 9: Agentry SAP Framework Configuration Panel Main Screen

Configuration Panel - Technical Settings

Framework technical settings affect all components of the framework, including mobile data
objects, BAPI wrappers, and exchange objects.

Figure 10: Agentry SAP Framework Configuration Panel Technical Settings
Screen

Agentry App Development

842 SAP Mobile Platform

Configuration Panel - Mobile Application Settings

Mobile application settings are used to define and configure how the mobile application, such
as SAP, functions. There are three areas used to configure the mobile application:

• Mobile Application Configuration - Defines basic information about mobile
applications, such as release and descriptions

• Push Scenario Definition - Defines Push Scenarios to push data to mobile devices when
qualified data sets change in the back end

• Subscription Agent Definition - Defines how subscription requests for back end system
data are handled

See the applicable sections in this manual for further information.

Configuration Panel - Back End Change Detection Settings

Back end change detection settings are used to define and configure how the mobile
application, such as SAP, communicates with SAP and the object tables contained within
SAP. There are two areas used to configure the back end change detection:

• Exchange Object Configuration - Change detection rules for SAP data objects, such as
master data and transaction data, defined for each mobile application

• EFI Assignment - Enhancement Framework Implementation trigger assigned to
Exchange Objects

Note: You must create tables and objects in SAP and Agentry before you can create or
configure information in the Configuration Panel.

See the applicable sections in this manual for further information.

Configuration Panel - Mobile Integration Settings

Mobile integration settings are used to link BAPI wrappers with mobile data objects and
encapsulate the business logic related to the mobile application.

There are three areas used to configure mobile integration:

• Mobile Data Object Configuration - Data extraction and distribution logic and rules
defined for configuration of master data and transaction data

• BAPI Wrapper Configuration - Agentry Integration BAPI Wrappers assigned to Mobile
Data Objects

• Outbound Trigger Configuration - Triggers to interface with external systems

See these sections in the manual for further information.

Configuration Panel - Security Settings

Use the Security Settings page in the Configuration Panel to set mobile application security
parameters at the following levels:

Agentry App Development

Agentry App Development 843

• System- Security at this level is application-independent and applies to all components
built on the SAP integration framework

• Product - Security at this level is at the SAP application level
• Class Handler - Security at this level is specific to a data object class handler

All security checks are carried out by the SAP integration framework at runtime.

Technical Settings

Use the Technical Settings Detail screen in the Agentry SAP Framework Configuration Panel
to change the settings for the application logs viewable in SAP. Here, you can change
framework technical settings such as the logging level and conversion exit.

Application Logging Level
Defines the logging level for all framework components. Logging entries are recorded in the
SAP application log database under the object /syclo/. The logging levels are:

• No logging
• Abort
• Error
• Warning
• Info
• Debug
• Trace

Enqueue Wait Time (Sec)
If an SAP object is locked and inaccessible during an update by a mobile device, this
parameter controls the number of seconds the underlying component should continue to
attempt to access the locked object in intervals of 1 second. If accessing the locked object is
still unsuccessful after the wait time, the update process is aborted.

Internal Conversion Exit Active
When checked, the framework runtime data manager performs standard SAP external-to-
internal format conversion exit for all inbound BAPI parameters. This option is enabled by
default. This setting should only be changed by the application developer, as it will have direct
impact to the result of the mobile application.

Agentry App Development

844 SAP Mobile Platform

External Conversion Exit Active
When enabled, the framework runtime data manager performs standard SAP internal-to-
external format conversion exit for all outbound BAPI parameters. This option is enabled by
default. This setting should only be changed by the application developer, as it will have direct
impact to the result of the mobile application.

Range Parameter Check Active
When enabled, the framework runtime data manager will perform checks on all SAP range
parameters of inbound BAPI parameters. The SAP range parameter has the structure of SIGN,
OPTION, LOW and HIGH. Check routine will set the SIGN value to ‘I’ and the OPTION
value to ‘EQ’ if not specified. This option is enabled by default. This setting should only be
changed by the application developer, as it will have direct impact to the result of the mobile
application.

Collection Mode
Collection mode determines how system statistic records are written to the database. Two
modes are supported currently: synchronously and asynchronously. When Synchronously is
selected, the statistics record is written to the database in real-time during BAPI calls.
However, selecting this option incurs a performance penalty. Selecting Asynchronously
means that statistics are collected in-memory and written asynchronously to the database at
the end of the BAPI call.

Statistic Collection Active
When enabled, the framework records all runtime statistics associated with the BAPI calls
between the middleware server and SAP. This collection provides data for the KPI statistics
collections found in the Administration portal. This setting should only be changed by the
application developer, as it will have direct impact to the result of the mobile application.

Created By, Creation Time Stamp, Last Changed By, Changed Time Stamp
The user ID and time stamps are automatically logged when a record is created or changed.

Mobile Application Configuration

Use the Mobile Application Configuration page to set general settings for the entire SAP
mobile application.

Mobile Application - General

Use the General tab to create or change basic information about a mobile application.

Mobile Application - General Settings

Agentry App Development

Agentry App Development 845

Basic Data

• Mobile Application: The name of the mobile application, limited to 40 characters. This is
a required field.

• Description: A brief, easy to understand description of the mobile application, limited to
60 characters. This is a required field.

• Release: The release number of the mobile application

User Management Setting
Disable Automatic User Creation: When checked, a new user GUID is not automatically
created when a new mobile client is detected in the system. The system administrator must
manually create and maintain mobile users through the Administration portal.

Server Management Setting
Disable Automatic Server Registration: When checked, a new server GUID is not
automatically created when a new server is detected in the system. The system administrator
must manually create and maintain servers through the Administration portal.

Multi Back End Setting

• Multi Back End Enabled: When checked, enables a specific mobile application to
connect to multiple SAP systems, consisting of one host server and one or more satellite
servers

• System Role: Drop-down menu listing Host or Satellite -
• A host system is the connection between SAP and the Agentry application in the SAP

Mobile Server. The host server provides the logic to the Agentry application and

Agentry App Development

846 SAP Mobile Platform

functions as a bridge to the satellite server(s). There can only be one host server per
system.

• Satellite servers communicate with SAP through the host server.

In order to complete multi-back end configuration, the host and satellite servers must be
configured in the System Components tab. See the Mobile Application - System Components
section for more details.

Administrative Info

• Created By: SAP user ID of the person who created the mobile data object
• Creation Time Stamp: Date and time of the creation of the mobile data object
• Last Changed By: SAP user ID of the person who last changed the mobile data object
• Changed Time Stamp: Date and time of the change to the mobile data object

Mobile Application - Mobile Status Setting

Use the Mobile Status Setting tab to map the available mobile statuses that a mobile data
object (MDO) supports on the client side. If a user status also exists for the same MDO, you
can link it to the mobile status and the system status through this tab.

Mobile Application - Mobile Status Setting

Agentry App Development

Agentry App Development 847

Mobile Application Info

• Mobile Application: (Read Only) The name of the mobile application
• Mobile Application Description: (Read Only) A brief, easy to understand description of

the mobile application
• Release: (Read Only) The release number of the mobile application

Mobile Status Mapping

• Create button: Click Create to create a new mobile status detail. Fill in the fields in the
Mobile Status Detail section to automatically fill in the fields in this table.

• Delete button: Click Delete to delete an existing mobile status detail. To delete a mobile
status detail, click the rectangle to the left of the Object Type column in the row you want to
delete and click Delete.

• Object Type: (Read Only) Object type from the Mobile Status Detail section
• Mobile Status: (Read Only) Mobile status from the Mobile Status Detail section

Agentry App Development

848 SAP Mobile Platform

• System Status: (Read Only) System status from the Mobile Status Detail section
• User Status: (Read Only) User status from the Mobile Status Detail section

Mobile Status Detail

• Object Type: The specific object in a mobile application, i.e., NOTIFICATION
• Mobile Status: Status defined by the mobile application
• Label on Mobile: Not used
• System Status: Standard SAP status code
• User Status: SAP user status code as defined in SAP

Mobile Application - Conversion Exit Setting

Use the Conversion Exit Setting tab to list the SAP conversion exits to exclude during runtime
by the framework.

Mobile Application - Conversion Exit Setting

Agentry App Development

Agentry App Development 849

Mobile Application Info

• Mobile Application: (Read Only) The name of the mobile application
• Mobile App(lication) Desc(ription): (Read Only) A brief, easy to understand description

of the mobile application
• Release: (Read Only) The release number of the mobile application

Conversion Exit List

• Add button: Click Add to create a new conversion exit detail. Fill in the fields in the
Conversion Exit Detail section to automatically fill in the fields in this table.

• Delete button: Click Delete to delete an existing conversion exit detail. To delete a
conversion exit detail, click the rectangle to the left of the Conversion Exit column in the
row you want to delete and click Delete.

• Conversion Exit: (Read Only) Conversion exit from the Conversion Exit Detail section.
• Active Flag (column 1): (Read Only) When checked, the Skip Conversion box is checked

in the Conversion Exit Detail section
• Skip Conversion (column 2): (Read Only) When checked, the Skip on Initial box is

checked in the Conversion Exit Detail section
• Skip On Initial (column 3): (Read Only) When checked, the Setting Scope box is

checked in the Conversion Exit Detail section
• Setting Scope: (Read Only) Conversion exit scope from the Conversion Exit Detail

section

Conversion Exit Detail

• Conversion Exit: Name of the conversion exit as found in SAP
• Setting Scope: Choose from the drop down menu choices:

• All Conversion Exit - Both input and output conversion exit routines are excluded
• Input Conversion Exit - Conversion routines are exited when data is sent to SAP
• Output Conversion Exit - Conversion routines are exited when data is pulled out of

SAP
• Skip Conversion: When checked, the conversion routine is always exited. When you

check this box, it automatically checks the box in the first Active Flag column in the table
above.

• Skip on Initial: When checked, the conversion routine is only excluded when the initial
field does not contain a value. If the initial field contains any value, the conversion routine
runs. When you check this box, it automatically checks the box in the second Active Flag
column in the table above.

• Setting Enabled: When checked, the settings configured for the conversion exit are
enabled and the exit is active. When you check this box, it automatically checks the box in
the third Active Flag column in the table above.

Agentry App Development

850 SAP Mobile Platform

Mobile Application - System Components

Use this tab to define system components in a multi-back end system. Configuration in this tab
is not necessary if the application does not require a multi-back end system.

Note: You must check the Multi Back End Enabled box in the General tab of the Mobile
Application Configuration pane in order for system component configuration to function.

Mobile Application - System Components

Mobile Application Info

• Mobile Application: (Read Only) The name of the mobile application
• Release: (Read Only) The release number of the mobile application
• Mobile App(lication) Desc(ription): (Read Only) A brief, easy to understand description

of the mobile application
• Multi Back End Enabled: (Read Only) When checked, the multi-backend was activated

in the General tab

System Component List

• Add button: Click Add to create a new system component detail. Fill in the fields in the
System Component Detail section to automatically fill in the fields in this table.

Agentry App Development

Agentry App Development 851

• Delete button: Click Delete to delete an existing system component detail. To delete a
system component detail, click the rectangle to the left of the System Component column
in the row you wish to delete and click Delete.

• System Component: (Read Only) System component from the System Component
Detail section

• System Role: (Read Only) System role from the System Component Detail section
• RFC Destination: (Read Only) RFC destination from the System Component Detail

section
• Active Flag: (Read Only) When checked, the Active Flag box is checked in the System

Component Detail section
• Component Mobile App: In multi-back end scenarios, when different back end names

are used, this is the application name that can virtually tie all applications together

System Component Detail

• System Component: Descriptive name of the component. This is a required field.
• RFC Destination: Must be defined in SAP prior to configuration in Agentry SAP

Framework. Use transaction code SM59 in SAP to create or change the RFC destination.
• Host: (Read Only) Identifying host name, defined in SAP
• System Number: (Read Only) Identifying server number, defined in SAP
• Client: (Read Only) Number of the client that the system component connects to, defined

in SAP
• System Role: Determines if the system component is a host or a satellite. There can only

be one host per multi-back end system.
• Active Flag: When checked, the system component is activated in the multi-back end

system
• Component Mobile App: Common application name for multi-back end systems
• Created By: SAP user ID of the person who created the mobile data object
• Creation Time Stamp: Date and time of the creation of the mobile data object
• Last Changed By: SAP user ID of the person who last changed the mobile data object
• Changed Time Stamp: Date and time of the change to the mobile data object

Mobile Application - Parameters

Use this tab to define system parameters.

Mobile Application - Parameters

Agentry App Development

852 SAP Mobile Platform

Mobile Application Info

• Mobile Application: (Read Only) The name of the mobile application
• Release: (Read Only) The release number of the mobile application
• Mobile Application Description: (Read Only) A brief, easy to understand description of

the mobile application

Parameter List

Note: The columns in the Parameter List table are read-only. Use the Parameter Detail section
to make any additions or edits to the table.

• Add button: Click Add to create a new parameter detail. Fill in the fields in the Parameter
Detail section to automatically fill in the fields in this table.

• Delete button: Click Delete to delete an existing parameter detail. To delete a parameter
detail, click the rectangle to the left of the Parameter Group column in the row you want to
delete and click Delete.

• Parameter Group: Parameter group from the Parameter Detail section

Agentry App Development

Agentry App Development 853

• Param. Name: Parameter name from the Parameter Detail section
• Param. Value: Parameter detail from the Parameter Detail section
• Param. Scope: Parameter scope from the Parameter Detail section
• Active Flag: When checked, the Active Flag box is checked in the Parameter Detail

section.
• No Runtime Change: When checked, the No Runtime Change box is checked in the

Parameter Detail section
• Comment: Comments from the Parameter Detail section

Parameter Detail

• Parameter Group: The group to which the parameter belongs. Groups are a means of
organizing parameters. References to a parameter include both the group name and the
parameter name.

• Param. Name: The unique name of the parameter
• Param. Scope: The scope of the parameter value. There are two options:

• Mobile Application: Value for all users of the application
• Mobile User: Value that can be overridden for individual users. To override a user’s

parameter value, see the Administration & Monitoring portal information on
parameters.

• Param. Value: The currently configured value of the parameter. References to this
parameter will return this value

• Rule Id: If enabled, this is the rule to be used at run time
• Use Rule: When checked, you can define a rule to be used at run time
• Rule Input Param: If the specified rule has optional parameters, define them here
• Active Flag: When checked, the parameter is used by the mobile application. Inactive

parameters are not available to the mobile application.
• No Runtime Change: When checked, the value of the parameter cannot be overridden.

The configured value is always the value. If not checked, parameter values can be
overridden at runtime through synchronization processing.

• Comment: Any comments applicable to the parameter that describe its purpose or value.
This has no effect on the parameter’s behavior and is provided for reference purposes
only.

Mobile Application - Client Globals

Use this tab to define client globals.

Mobile Application - Client Globals

Agentry App Development

854 SAP Mobile Platform

Mobile Application Info

• Mobile Application: (Read Only) The name of the mobile application
• Release: (Read Only) The release number of the mobile application
• Mobile Application Description: (Read Only) A brief, easy to understand description of

the mobile application

Client Global List

Note: The columns in the Client Global List table are read only. Use the Client Global Detail
section to make any additions or edits to the table.

• Add button: Click Add to create a new global. Fill in the fields in the Client Global Detail
section to automatically fill in the fields in this table.

• Delete button: Click Delete to delete an existing global. To delete a global, press the
rectangle to the left of the Global Group column in the row you wish to delete and click
Delete.

• Global Group: Global group from the Client Global Detail section

Agentry App Development

Agentry App Development 855

• Global Name: Client global group name from the Client Global Detail section
• Global Value: Client global value from the Client Global Detail section
• Global Scope: Global scope from the Client Global Detail section
• Active Flag: When checked, the Active Flag box is checked in the Client Global Detail

section
• No Runtime Change: When checked, the No Runtime Change box is checked in the

Client Global Detail section
• Comment: Comments from the Client Global Detail section

Client Global Detail

• Client Global Group: The group to which the global belongs. Groups are a means of
organizing globals. References to a global include both the group name and the global
name.

• Client Global Name: The unique name for the global
• Global Scope: The scope of the global value. There are two options:

• Mobile Application: Value for all users of the application
• Mobile User: Value that can be overridden for individual users.

• Client Global Value: The currently configured value of the global. References to the
global return this value.

• Rule ID: Name, or ID, of the ABAP or class
• Use Rule: When checked, the rule listed in the Rule ID field is active. If this value is active,

then the Client Global Value field is not used.
• Rule Input Param: Parameters to use with the rule. Examples include a key value pair, a

user parameter, or a table.
• Comment: Displays any comments added to the global to describe its purpose or current

value. This has no effect on the global’s behavior and is provided for reference purposes
only.

• Active Flag: When checked, the client global is activated in the system. Inactive globals
are not available to the mobile application.

• No Runtime Change: When checked, the value of the global cannot be overridden. The
configured value in the Configuration portal will always be the value. Globals without this
setting can be overridden at runtime through synchronization processing.

Push Scenario Definition

A push scenario is the data that the SAP Agentry Server can push to mobile application users.
For example, an Emergency Service order is pushed down to the SAP Client of a single user or
multiple users. The Push Scenario Definition panel provides an interface to configure what
data is pushed and the triggers that initiate a push.

Pushing data from SAP to the mobile client using the ABAP Add-On push framework consists
of two key steps:

Agentry App Development

856 SAP Mobile Platform

1. Push relevant data change is detected in SAP and a push instance is registered with the
push registry.

2. The new push instance entry in the push registry is processed by a system program (push
processor). The data content to be pushed and the recipients for the push instance are
determined. For each recipient, a message is generated in his/her out box of the outbound
message queue, and waits for pick up.

Push Scenario Definition - General Data

Use the General Data tab of the Push Scenario Detail screen to modify data for a push scenario.
You can define source, subscriber, notification, and activation settings.

Push Scenario Definition - General Data Tab

Agentry App Development

Agentry App Development 857

Basic Data

• Scenario ID: Name of the push scenario
• Alias: Alias of the push scenario
• Mobile Application: Application to which the push scenario belongs

Source Setting

• Source Type: Type of source object associated with the push scenario
• Source Object: Drop-down list containing the available source objects for the push

scenario

Note: In order for an exchange object to be listed in the drop-down menu, the Push
Relevant box must be checked in the Push Settings tab of the Push Scenario Definition
screen.

• Source Handler: Class handler associated with the source object for the push scenario.
This is a non-editable field.

Distribution Setting

• Distribution Type: Type of distributed object associated with the push scenario
• Distribution Object: Name of the specific object associated with the push scenario,

chosen by a drop-down list
• Distribution Handler: Name of the class handler from the class repository that is

responsible for updating the exchange table. This field is automatically filled when
choosing the source object and is not editable.

Subscriber Setting

• Subscriber Type: Drop-down list to choose if the push is sent to all users, users with
active connections, or users defined in a scenario subscriber list.

• Validity (Hr): Amount of time, in hours, of the validity of the data to be pushed to clients.
When the time limit has passed, the data within the push scenario is no longer valid and
will not be pushed to any more mobile applications.

• Priority: The priority assigned to the push, with the default set to 0. The higher the priority
setting, the higher the push is in the push queue. For instance, a push priority set to 0 is
processed before a different push with a priority set to 5. For push instances with the same
set priority or default priority, the pushes are processed in the order in which they were
created.

Notification Setting

• Email Notification: When checked, sends an email to all users affected by the push
scenario.

Agentry App Development

858 SAP Mobile Platform

Note: User set up for email notification must be performed in the System Administration
and Monitoring portal in the Administration - User Management panel before email
notification is performed.

• No Data Package: When checked, the data package, or push information, is not sent to the
mobile device when the email notification is sent. A user must connect to the system and
perform a regular fetch in order to retrieve the push information. In this way, users do not
receive outdated push information if they are seldom actively connected to the system.

• Email Subject: Subject, or header, of the email message
• Email Message (140 chars): Body of the email message, limited to 140 characters. The

limit is to support short messages to websites such as Twitter.
A special variable, &OBJKEY&, is available for use in the body of the email message.
This variable is substituted for the actual object identifier content during runtime and
presented on the mobile Client.

Activation

• Active Flag: When checked, the push scenario is in an active state. If unchecked, the push
scenario is not performed.

• Enable Push History: When checked, the push history table in SAP is populated. The
push history table contains a list of users and the object keys pushed to those users.

• Require Metadata: The metadata table is only populated for the push transaction when
this option is checked. When unchecked, the default, the metadata table is not populated,
saving Server resources.

• Enable Fetch Callback: Fetch callback is used to augment data, in order to make it a
two-step process. If implemented, an extra callback routine is invoked when Agentry is
retrieving push messages for SAP. Note that you must enable the logic on the back end as
well, before fetch callback will be possible. When information changes in SAP, a push is
triggered and the distribution agent writes persisting information into the queue. This
information is written to the database, which historically has created overhead to the
system. The fetch callback avoids the overhead by not performing calculations in the
queue; rather, it waits for Agentry to get the push. At that point, calculations for the fetch
occur. In this way, the overhead of writing to the database is eliminated. An advantage to
implementing fetch callback is that the copy is always fresh, as it is on demand. This
eliminates obsolete copies. However, the disadvantage of using fetch callback is that
calculations occur every time Agentry demands it.

Administrative Info

• Created By: SAP user ID of the person who created the push scenario
• Creation Time Stamp: Date and time of the creation of the push scenario
• Last Changed By: SAP user ID of the person who last changed the push scenario
• Changed Time Stamp: Date and time of the change to the push scenario

Agentry App Development

Agentry App Development 859

Example
The following sample screen shows that a push is enabled for all the transaction types defined
in the list. For example, if a sales order is created and/or updated in the SAP back end, the
changes for the transaction are pushed to the mobile client to the appropriate user without any
transmit or trigger from the mobile client.

Push Scenario Definition - Event Setting

Use the Event Setting tab of the Push Scenario Detail screen to control how the push
processing is triggered for specific events when data is changed in SAP and triggers a push.
Event settings can be set using variables or by assigning specific events or queues to initiate
the push process.

You can initiate push processing either via an SAP background event or via an SAP qRFC.
Each of these options is described in the appropriate section following the “Push Scenario
Definition - Event Setting Tab” screen shot.

Push Scenario Definition - Event Setting Tab

Agentry App Development

860 SAP Mobile Platform

Basic Data

• Scenario ID: Name of the push scenario
• Mobile Application: Application to which the push scenario belongs

Background Event Setting Detail
Complete this section to enable push processing via an SAP background event.

If you enable this option, an SAP background event is raised after a push instance is registered
with the push registry. The event can subsequently start an SAP background job that is
subscribed to the background event. The started SAP background job can process new push
instances in the push registry.

• Disable Background Event Trigger: Uncheck this box when using the Background
Event Setting Detail fields. When checked, the push process is triggered by the

Agentry App Development

Agentry App Development 861

information configured here, rather than by the background event and no background
event is raised after the push instance is registered with the push registry.

• Event ID: Either a static or variable event ID to be raised. For information on variables,
hover over the field to read the tool tip that appears. Event IDs are used to determine when
to raise the event.

• Event Parameter: A free-text field to configure parameters associated with the Event ID
when raised. Parameters can be static or use variables. For information on variables, hover
over the field to read the tool tip that appears. Typical parameters can be push scenario IDs,
etc.

• Push Event Rule: This is a special ABAP class routine that returns the Event ID and event
parameters programmatically. A standard routine is provided, but a custom routine can be
developed by the customer if there is a business need.

Special variables can be used when defining the Event ID. Special variables are substituted at
runtime. If special variables are used, the push event rule must be defined in order for the
substitution to occur. Special variables include the following:

• &OBJKEY&
• &OBJKEY_REF&
• &MOBILE_APP&
• &INSTANCE_GUID&
• &SCENARIO_ID&
• &SOURCE_OBJECT&
• &SOURCE_TYPE&
• &DATUM&
• &UZEIT&
• &UNAME&
• &HOST&

Monitoring SAP background event trigger by push instances

To monitor the SAP push, use the following tools:

• Go to the Administration & Monitoring Portal -> Monitoring -> Push Instance
Monitor and search for push instances using proper search filters. Verify the Event ID and
the event parameter of the push instance.

• Use the transaction code SM37 to search and verify that SAP background jobs are being
triggered properly by the Event ID and the event parameters raised during the push
process.

qRFC Setting Detail
Complete this section to enable push processing via SAP qRFC.

If you enable this option, after a push instance is registered with the push registry, a new entry
is added to the SAP qRFC queue for the specific push instance. The qRFC queue entry is

Agentry App Development

862 SAP Mobile Platform

processed automatically by the SAP system. When the qRFC queue is processed, the specific
push instance is processed by the push processor.

• Enable qRFC Processing: When checked, enables initiating the push process through the
qRFC queue.

• Queue Name: Either a static or a variable qRFC queue name.
• qRFC Rule: This is a special ABAP class routine that returns the qRFC queue name

programmatically. A standard routine is provided, but a custom routine can be developed
by the customer if there is a business need.

• Allow Instance Merge: When checked, if multiple processes are triggered on the same
SAP object, the instances are merged to save processing time.

• Exclude Status SRV_COMP: When checked, push instances with SRV_COMP status
are not reprocessed.

• Maximum Select Delay: This is the number of seconds to wait before reading from the
push registry DB table. This is only needed for slow systems. This is typically set to 1 or 0.
If the system takes longer to write to the database, set to higher than 1.

• Select Retry: Number of times to retry the select from DB table is nothing is found. This is
only needed for slow systems.

Special variables can be used when defining the queue name. Special variables are substituted
at runtime. If special variables are used, the push event rule must be defined in order for the
substitution to occur. Special variables include the following:

• &OBJKEY&
• &OBJKEY_REF&
• &MOBILE_APP&
• &INSTANCE_GUID&
• &SCENARIO_ID&
• &SOURCE_OBJECT&
• &SOURCE_TYPE&
• &DATUM&
• &UZEIT&
• &UNAME&
• &HOST&

Monitoring push instance processing via SAP qRFC

To monitor the SAP push, use the following tools:

• Go to the Administration & Monitoring Portal -> Monitoring -> Push Instance
Monitor and search for push instances using proper search filters. Verify the qRFC queue
name of the push instance.

Agentry App Development

Agentry App Development 863

• Use the transaction code SMQ1 to search and verify that there are not outstanding entries
waiting in the qRFC queue.

Example
The following sample screen shows that a push is enabled via the SAP qRFC queue.

Push Scenario Definition - Outbound Trigger

Use the Outbound Trigger tab of the Push Scenario Detail screen to assign one or more
outbound triggers to the push scenario. After push generation, the outbound trigger should be
enabled to notify the Agentry application in the SAP Mobile Server.

Push Scenario Definition - Outbound Trigger Tab

Agentry App Development

864 SAP Mobile Platform

Basic Data

• Scenario ID: Name of the push scenario
• Mobile Application: Application to which the push scenario belongs

Outbound Trigger Setting Detail

• Enable Outbound Trigger: When checked, allows all “active” outbound triggers to
process.

• Use Single Instance Processing: When checked, the system sends each outbound trigger
action as a separate XML file. This is usually reserved for test mode. In most instances, you
will want to leave this option unchecked to initiate batch processing rather than single
instance processing.

• Data Fetch Retry Wait (Seconds): Setting a data fetch retry wait reduces the hits to the
Server in cases of Server miscommunication.

Agentry App Development

Agentry App Development 865

Outbound Trigger Setting Detail
This table shows all outbound triggers assigned to this push scenario with the following three
fields:

• Seq. No.: When there are multiple triggers for the push scenario, the sequence number
defines the order in which the triggers are processed.

• Outbound Trigger ID: The identification number of the outbound trigger
• Active: Indicates whether or not the outbound trigger is active. Note: you must use the

Enable Outbound Trigger checkbox to enable processing for active triggers.

Push Scenario Definition - Outbound Trigger Tab in Change Mode

Agentry App Development

866 SAP Mobile Platform

When in Change Mode, use the action buttons that display to add or remove triggers to the
push scenario or to change the sequence of the selected triggers.

Example
The following sample screen shows that an outbound trigger is enabled for Sales Order. For
example, if a sales order is created and/or updated in the SAP back end, notifications of the
changes for the transaction are sent to the Agentry application.

Push Scenario Definitions - Subscription Settings

Use this tab to define the push scenarios allowed through subscription. Enable the subscription
settings when the push is based on a subscription-based push or receives OnDemand requests
from the mobile client.

Agentry App Development

Agentry App Development 867

Subscription Settings

Once you select one of the available push scenarios from the list in the left panel, the Basic
Data section is automatically populated.

Subscription Agent Settings
To allow subscriptions to the push scenario, check the Allow Subscription check box and
enter a Subscription Agent ID.

Note: For subscriptions to work, you must also select the Source Type Client On Demand
Request, which appropriately changes the Subscriber Type. You must also complete the
information on the Subscription Agent Definition screen.

The subscription agent is a simple Yes/No gatekeeper. It either accepts or does not accept the
push request based on logic in the back end, or based on quota requests. If the subscription
agent approves the push request, it generates a push instance. The subscription agent then puts
a subscription request into the Subscription Request table. The table dictates which user
requests which request key. After this, an instance is generated as an OnDemand request, with
a reference to the Subscription Request table. The push is then processed as a normal push,
through the push channel, rather than through the fetch channel.

OnDemand Push
With an OnDemand push, the client receives information through the push channel, rather
than the fetch channel. In this way, the user can still work on the device, even while the push is
adding data to the device. As an example, a user can request a PDF document to be added to the
device, and requests it. An OnDemand push is used to retrieve that PDF from the back end and
add it to the device through the push channel. Use the Source Type field to configure which
type of push is required for the chosen subscription setting.

Agentry App Development

868 SAP Mobile Platform

Subscription-Based Push
A subscription-based push uses the same concept as an OnDemand push. When there is a
change in the back end, the push will figure out who subscribes to the data being pushed and
then push that data out to the users, to their client devices. Use the Source Type field to
configure which type of push is required for the chosen subscription setting.

Example
The following sample screen shows that OnDemand push is enabled for FactSheet generation
push. To allow subscriptions to the push scenario, check the Allow Subscriptions check box
and enter a Subscription Agent ID.

Subscription Agent Definition

The Subscription Agent Definition page allows you to define how subscription requests for
back end System data are handled. On Demand subscriptions allow you to define push
options. For instance, some accounts or activities have attachments which are not
automatically pushed down. If subscribed, however, a Sales Manager can get those
attachments On Demand, based on the settings defined on this page.

Agentry App Development

Agentry App Development 869

Basic Data

• Subscription Agent ID: the name of the on demand push requirement subscription
• Subscription Agent Description: text description of the agent ID
• Mobile Application: the most current valid application version

Agent Handler Info

• Subscription Agent Handler: the handler name and location for this subscription agent
• Maximum Delivery: maximum number of items that will be delivered through the On

Demand request
• Wait Interval (Second): this is the time, in seconds, to wait between pushes
• Open Subscription Quota: Enter a non-zero value to limit the number of open

subscription requests in the system. If this field has a value, no new subscription requests
are accepted once this quota is reached.

• Default Validity (Hr): the amount of time, in hours, that the On Demand request is valid
• No Push Request: check this box to indicate Client On Demand Push Requests are not

allowed
• Keep Subscription Request History: check this box to keep a history log of all

subscription requests

Agentry App Development

870 SAP Mobile Platform

Authorization Setting
• Required User Role for Requestor: To require requestors to have a specific role, enter

the role here
• Required User Role for Subscribers: To require subscribers to have a specific role, enter

the role here

Activation
• Active Flag: check this box to indicate that the On Demand Push Request is active

Next Steps
In order for the Subscription Agent ID to work, you must do the following:
1. Go to the Push Scenario Detail screen and on the General Data tab, select the Source Type

Client On Demand Request. This changes the subscriber type.
2. On the Push Scenario Detail screen, go to the Subscription Settings tab and select Allow

Subscription.

Exchange Object Configuration

The exchange object defines what in the exchange table is to be updated in the exchange
persistent layer, what class handler should be called to update the exchange table, and what
fields are related to the change detection. Use the Configuration Panel to specify which
changes are relevant to the mobile application and what conditions must be satisfied for an
update action to be triggered.

Exchange Object - Technical Settings

Use the Technical Settings tab to configure basic settings for an exchange object.

Exchange Object - Technical Settings Tab

Agentry App Development

Agentry App Development 871

• Exchange Object: ID of the exchange object, limited to 40 characters
• Exchange Object Description: Brief description of the exchange object, limited to 60

characters
• Mobile Application: Specific mobile application to which the exchange object belongs

using a drop-down selection field
• Application Area: Classifies the exchange object based on standard SAP application

areas using a drop-down selection field
• Reference Business Object: Standard SAP business object
• Exchange Table Name: Name of the table stored in SAP that contains the technical data
• Exchange Table Description: Brief description of the exchange table
• Exchange Lock Object: SAP lock object used when updating the exchange table
• No Exchange Table Update: When checked, the record is not written to the exchange

table in SAP when the record is changed.
• Exchange Object Handler: Name of class handler from the repository that is responsible

for updating the exchange table
• Active Flag: When checked the exchange object is in an active state. If unchecked, the

exchange object performs no actions.
• Days to Keep History: Number of days the historical data should be kept in the exchange

table.

Administrative Info

• Created By: SAP user ID of the person who created the exchange object
• Creation Time Stamp: Date and time of the creation of the exchange object
• Last Changed By: SAP user ID of the person who last changed the exchange object
• Changed Time Stamp: Date and time of the change to the exchange object

Example
The following screen sample shows that the exchange process is enabled for Equipment. Any
changes for Equipment master data will be recorded in the exchange table and transmitted to
the Client during the next transmit.

Agentry App Development

872 SAP Mobile Platform

Exchange Object - Change Detection Field Selection

The Change Detection Field Selection tab provides the ability to optimize the change
detection process for mobile applications. If a value change is detected for any fields within
the group, the object identifier is written to the exchange table, indicating that a change has
been made. If the Active Flag is not checked for a field, any value changes made to that field
will not be detected and recorded to SAP during the exchange process. By default, all fields are
initially checked.

Agentry App Development

Agentry App Development 873

Figure 11: Exchange Object - Change Detection Field Selection Tab

Exchange Object by Application Area
The Exchange Object by Application tree lists all application areas and the exchange objects
linked to each application area. Expand the tree by clicking on the arrows to the left of the
application area to display the exchange objects associated with it.

Exchange Object Info

• Exchange Object: ID of the exchange object. This is a non-editable field.
• Exchange Object Description: Brief description of the exchange object. This is a non-

editable field.
• Exchange Object Handler: Name of class handler from the repository that is responsible

for updating the exchange table. This is a non-editable field.

Exchange Object Field Selector

• Field Catalog: All fields that can be detected by the class handler when changes are made,
grouped by the technical table name of the SAP business object. This is a non-editable
field.

• Active Flag: When checked, either the table or a field within a table is active. Any value
change to the selected field will be detected by the class handler.

Agentry App Development

874 SAP Mobile Platform

Note: Checking the Active Flag box on a Table row selects all fields within the table.

• Short Description: Brief description of the table or the field within the table. This is a
non-editable field.

Selection Proposal
In a typical installation, it is not desirable to have all fields in all exchange tables checked as
active for change detection. Rather, only the fields that are active on the mobile data object that
are brought down to the mobile device should also be active in the exchange object.

Based on mobile data object usage in the mobile application, the Selection Proposal will
examine the active flags that are checked for an exchange object’s table fields and provide
recommendations to the administrator on which fields in the exchange object should be
checked or unchecked.

Example
The properties for the enabled exchange object Equipment that should be captured and
recorded in the exchange table are defined on the Change Detection Condition Filter tab.

The properties for account general data that triggers the exchange are defined on this tab, as
shown in the following sample.

Exchange Object - Change Detection Condition Filter

The Change Detection Condition Filter tab provides the ability to restrict change detection
based on data content. For exchange handlers to support this feature, you must define data
filter conditions for which the underlying SAP business object must qualify before the change
detection process is triggered. The condition is defined at the table field level and is in the SAP
range table format.

Agentry App Development

Agentry App Development 875

Exchange Table Object Info

• Exchange Object: ID of the exchange object. This is a non-editable field.
• Exchange Object Description: Brief description of the exchange object. This is a non-

editable field.
• Exchange Object Handler: Name of class handler from the repository that is responsible

for updating the exchange table. This is a non-editable field.

Exception Settings

• Ignore Data Creation: When checked, new records/data created are not processed to the
exchange table

• Ignore Data Deletion: When checked, deleted records/data are not processed to the
exchange table

• Ignore Data Update: When checked, updated records/data are not processed to the
exchange table

Defined Filters
The Defined Filters box lists all data filters supported by the class handlers.

Agentry App Development

876 SAP Mobile Platform

Rule Editor

• Filter Name: Name of the filter as defined in the class handler method. This information is
defined by the class handler developer and is not editable.

• Reference Table Name: Technical name of the SAP database table where this filter is
applied. This information is defined by the class handler developer and is not editable.

• Reference Field Name: Technical name of the SAP database table field where this filter is
applied. This information is defined by the class handler developer and is not editable.

• Data Filter Rule Key: Internal technical key used by the framework at runtime

Enter Range Value

• Sign: Value for the SAP Range table column SIGN
• Option: Value for the SAP Range table column OPTION
• Low Value: Value for the SAP Range table column LOW
• High Value: Value for the SAP Range table column HIGH
• Active Flag: When checked, the rule is active

Rule List
The Rule List table displays a list of rules that have been defined.

• Rule No.: Number of the rule that is defined, in chronological order
• Rule Type: Rule type, automatically assigned by the rule type selected in the DOF Rule

Type field
• Rule Value: Internal rule value saved by SAP
• Active Flag: When checked, the rule is active

Example
The following sample screen shows that any exchange detected for the Account will be
considered only if the Account is maintained in one of the roles defined in the ROLE_TYPE
filter criteria.

Agentry App Development

Agentry App Development 877

The properties for the enabled exchange object Account that should be captured and recorded
in the exchange table are listed in this tab.

The properties for account general data that triggers the exchange are defined on the Change
Detection Field Selection tab.

Exchange Object - Linkage Settings

The Linkage Settings tab allows the exchange objects that are linked together to communicate
with each other. The communication is one-directional, with the exchange object sending
information to the object(s) listed in the Linked Exchange Objects List. When there is a value
change to the exchange object, that value change information is passed on to the linked
exchange objects. The linked exchange objects then go through additional processes related to
the value change.

Exchange Object - Linkage Settings

Agentry App Development

878 SAP Mobile Platform

Exchange Object Info

• Exchange Object: ID of the exchange object. This is a non-editable field.
• Exchange Object Description: Brief description of the exchange object. This is a non-

editable field.
• Exchange Object Handler: Name of class handler from the repository that is responsible

for updating the exchange table. This is a non-editable field.

Linkage Settings
With the Linkage Hierarchy, you have the ability to go ‘n’ levels deep with linked objects. Any
node changes triggers changes to the lower-level nodes linked to the parent node. These
relationships are defined in the Linked Exchange Objects list.

For example:

Measuring Point
 Functional Location
 Work Order

If the Measuring Point data changes, then the Functional Location and the Work Order will
change as well.

Agentry App Development

Agentry App Development 879

• Maximum Linkage Hierarchy Level: the maximum number of levels allowed to be set
for linkage in the hierarchy

Linked Exchange Objects List

• Add Linkage button: Use this button to add a new linked exchange object. Click the Add
Linkage button and use the fields in the Linkage Detail section to add information.

• Delete Linkage button: Use this button to delete a linkage. Highlight the row you wish to
delete by clicking on the rectangle to the left of the Target Exchange Object cell and click
the Delete Linkage button.

• Target Exchange Object: Displays the target exchange object selected in the Linkage
Detail section.

• Linkage Type: Displays either an ‘A’ for asynchronous or an ‘S’ for synchronous,
selected in the Linkage Detail section.

• Active Flag: When checked in the Linkage Detail section, the linkage between exchange
objects is active.

Linkage Detail

• Target Exchange Object: The exchange objects that are linked to the exchange object
listed in the Exchange Object Info section.

• Linkage Type: Currently, Synchronous is the only option available. When a value change
occurs to the exchange object, notification to the linked exchange object is performed in
real-time.

• Exclude Data Creation / Update / Deletion: The linkage for a source exchange object to
a target exchange may be limited by the action done on the source object. The possible
actions are Create, Update, and Delete. By checking any of these three ‘exclude’ boxes, the
linkage is not triggered for that action.

• Active Flag: When checked, the linkage between the exchange object and the target
exchange object is active.

Exchange Object - Push Settings

If the exchange object will be part of a push instance, it must be configured in the Push Settings
tab before the object can appear in the Push Scenario definition Source Object drop-down
menu.

Agentry App Development

880 SAP Mobile Platform

Exchange Object Info

• Exchange Object: ID of the exchange object. This is a non-editable field.
• Exchange Object Description: Brief description of the exchange object. This is a non-

editable field.
• Exchange Object Handler: Name of class handler from the repository that is responsible

for updating the exchange table. This is a non-editable field.

Push Settings
Push Relevant: When checked, the exchange object is listed as a selection in the Source
Object drop-down list in the Push Scenario Definition screen.

EFI Assignment

Enhancement Framework Implementation (EFI) source code plug-ins are implemented by the
Agentry SAP Framework for each business object where change detection must be
implemented. The source code plug-in is provided as an ABAP include file. Each exchange
object is assigned to a plug-in to handle the actual change detection process. EFIs are typically
available across multiple mobile applications running on the same system.

EFIs collect before and after images of data in an SAP object that has been created, modified,
or deleted. The EFI then hands those images to the exchange object, which continues with the
data processing. Therefore, the EFIs must be linked to the appropriate exchange objects.

Enhancement Implementation Includes
The Enhancement Implementation Includes list is a tree of the include file list in the package.
Click on the arrow to the left of the first item to expand the list.

Enhancement Implementation Includes Tree

Agentry App Development

Agentry App Development 881

EFI Assignment - General Settings

Use the General tab to modify the general settings for a chosen EFI file.

EFI Assignment Detail - General Settings

• EFI Include Name: Source code plug-in file name.
• Description: Short description of the EFI. This is not an editable field and is automatically

filled in when the EFI Include Name is selected.
• Package: Package where the EFI is located. This is not an editable field and is

automatically filled in when the EFI Include Name is selected.

EFI Assignment - Assignment Settings

Use the Assignment tab to modify the EFI assignments.

EFI Assignment - Assignment Settings

Agentry App Development

882 SAP Mobile Platform

EFI Info
The fields in this section are taken from information in the General tab and are not editable.

• EFI Include Name: Source code plug-in include file name
• Description: Description of the EFI include file name
• Package: SAP package to which the include file belongs

EFI Assignment List
EFI Assignment table: Table that displays which plug-ins are assigned to a specific include
file. All column information is replicated in the Assignment Detail section directly below the
table.

To highlight an individual row, click on the grey square to the left of the EFI Include Name
column in that row.

Assignment Detail
Information in this section will change depending on which row is highlighted in the EFI
Assignment List section table.

• Mobile Application: The specific mobile application and its release number. This field is
non-editable.

• Exchange Object: Exchange object to which the EFI include file is assigned.

Agentry App Development

Agentry App Development 883

• Exch. Object Desc: A brief, easy to understand description of the exchange object,
limited to 60 characters.

• Active Flag: When checked, the exchange object is in an active state. If unchecked, the
EFI is not linked to the assigned mobile data object.

Administrative Info

• Created By: SAP user ID of the person who created the EFI assignments
• Creation Time Stamp: Date and time of the creation of the EFI assignments
• Last Changed By: SAP user ID of the person who last changed the EFI assignments
• Changed Time Stamp: Date and time of the change to the EFI assignments

Mobile Data Object Configuration

A mobile data object represents a mobile semantic view of data and activity combination for
an SAP business object. Mobile data objects are data repositories in the namespace that can
get, create, update, and delete information in SAP. They encapsulate the business logic of
mobile applications by defining transactions, data structures, and business rules.

There are three types of mobile data objects:

• DT - Data Table: A simple representation of SAP business objects KEY and VALUE.
• CT - Complex Table: A two-dimensional representation of a business object with a single

table of multiple columns.
• DO - Standard Data Object: A multi-dimensional representation of a business object

with multiple tables representing different subsets of the business object.

Warning! Mobile data objects should be created, copied, or changed only by the mobile
application developer or system administrator.

The configuration portal is used to easily modify mobile data object properties such as object
type, class handlers, data filters, and other settings. For example, instead of modifying BAPIs
to change what information is retrieved from SAP and pushed out to mobile devices,
administrators can use the Configuration portal to modify mobile data objects and set up data
filter rules.

Mobile Data Object - General Settings

Use the General Setting tab to modify the general settings for a chosen mobile data object.

Mobile Data Object - General Setting Tab

Agentry App Development

884 SAP Mobile Platform

Basic Data
The Basic Data section provides general information about the specific mobile data object.
This information is used in multiple panels in the Configuration portal.

• Mobile Data Object ID: The name of the mobile data object, limited to 40 characters.
This is a required field.

• Description: A brief, easy to understand description of the mobile data object, limited to
60 characters. This is a required field.

Agentry App Development

Agentry App Development 885

• Data Object Type: A drop-down list of the three mobile data object types:
• Data Table - A simple representation of the SAP business objects KEY and VALUE
• Complex Table - A two-dimensional representation of the business object with a single

table of multiple columns
• Standard Data Object - A multi-dimensional representation of a complete business

object. It can have multiple tables representing different subsets of the business
objects.

• Mobile Application: The name of the mobile application. Choose the mobile application
from the drop-down list.

• Reference Business Object: The SAP business object for which the mobile data object is
being created

Data Object Handler Settings
The Data Object Handler Settings section is used to configure the methods of the mobile data
object.

• Data Object Handler: Name of the ABAP OO class handler from SAP’s class repository.
The ABAP OO class handler is developed by the application developer with predefined
business logic and scope to perform fetch, create, delete, or update activities for an SAP
business object.

• Get Method: Method defined in the class handler that fetches data for the underlying SAP
business object. This is an optional field.

• Create Method: Method defined in the class handler that creates data for the underlying
SAP business object. This is an optional field.

• Update Method: Method defined in the class handler that updates data for the underlying
SAP business object. This is an optional field.

• Delete Method: Method defined in the class handler that deletes data for the underlying
SAP business object. This is an optional field.

• Skip Exception Processing: When checked, if an exception occurs during mobile data
object handling, the exception processing step is not invoked.

Exchange Object Settings
The Exchange Object Settings section allows the mobile data object to be associated with an
exchange object. The exchange object is configured through the Exchange Object
Configuration panel in the Configuration portal.

• Exchange Object: The name of the exchange object as defined in the SAP mobile
exchange persistent layer. Specify this field by choosing an exchange object from the
drop-down menu if the selected class handler should use the mobile exchange persistent
layer to determine data exchanges to the mobile application.

• Enable Conv. Exit Overwrite: When checked, you will be able to define specific internal
and external conversion settings in the Framework Technical Settings panel.

Agentry App Development

886 SAP Mobile Platform

Middleware Reference Info
If the middleware is specified, the mobile data object will perform the standard exchange
process as well as perform a lookup in the client object register table to determine what
information the client contains. If data has been removed from the client that still exists in the
SAP table, the data is re-added to the client during the transmit.

• Reference Middleware Object Type: Middleware objects are set through the
Administration portal. This is an optional field.

Activation
Use this checkbox to enable or disable a mobile data object in the application without deleting
the mobile data object.

Data Object Active: When checked, the mobile data object is in an active state. If unchecked,
the mobile data object performs no actions.

Administrative Info
This section is used to easily determine which SAP user created or modified a specific mobile
data object in the system.

• Created By: SAP user ID of the person who created the mobile data object
• Creation Time Stamp: Date and time of the creation of the mobile data object
• Last Changed By: SAP user ID of the person who last changed the mobile data object
• Changed Time Stamp: Date and time of the change to the mobile data object

Mobile Data Object - ResultSet Field Selection

When a field selector function is enabled for a class handler, the option to select fields for the
GET method to populate is available. The class handler is designed to be mobile application-
neutral. It can typically supply more data than the mobile application needs. Therefore, in
order to preserve system performance, you can customize field usage settings to only retrieve
required data for the mobile application. This ability prevents the need to develop a new class
handler for each mobile application.

Mobile Data Object - ResultSet Field Selection Tab

Agentry App Development

Agentry App Development 887

Handler Info

• Mobile Data Object ID: Name of the mobile data object
• Description: Description of the mobile data object, limited to 60 characters. This is a

required field.
• Data Object Handler: Name of the ABAP OO class handler from SAP’s class repository.

The ABAP OO class handler is developed by the application developer with predefined
business logic and scope to perform fetch, create, delete, or update activities for an SAP
business object.

• Get Method: Name of the GET method set in the General Setting tab.

Field Selection Detail

• Field Catalog column: Lists all the fields that can be returned by the class handler
method, grouped in the order of the name of the class handler method, SAP table name, and
field name. To display all information in this column, click on the arrows to the left of a
name in order to expand the row.

• Field Active column: When checked, the data for the selected field is returned by the class
handler method.

• Field Description column: Description of the specific field in the SAP table.
• Data Format column: How data is presented

Agentry App Development

888 SAP Mobile Platform

• Sort Options: When there is a large amount of information presented, use the sort options
to find the information required easily. When a different radio button is selected, the rows
are collapsed and must be expanded again to display the new field sorting.

Mobile Data Object - Data Filter

When a data filter function is enabled for a class handler, the option exists to define various
types of filter rules to control what data can be viewed by the mobile application based on a
customer’s business process. In an SAP environment, each user is assigned a role-based
profile with authorization restrictions for what data is viewed and which activities performed.

For example, a user who works for a specific plant should not be able to view data for another
plant. Data filter rules allow you to restrict data access for mobile applications. Data filters can
be user-dependent or applied to the entire mobile application.

Mobile Data Object - Data Filter Tab

Handler Info
• Mobile Data Object ID: Name of the mobile data object
• Description: Description of the mobile data object, limited to 60 characters. This is a

required field.
• Data Object Handler: Name of the ABAP OO class handler from SAP’s class repository.

The ABAP OO class handler is developed by the application developer with predefined

Agentry App Development

Agentry App Development 889

business logic and scope to perform fetch, create, delete, or update activities for an SAP
business object.

Defined Filters
The Defined Filters tree lists all data filters supported by the class handlers defined in the Data
Object Handler Settings field in the General Setting tab. To expand the tree, click on the arrows
to the left of the class handler methods to display the filters associated with the methods.

Rule Editor

• Method Name: Name of the class handler method where the data filter is defined. The
data filter function is only supported for the GET method.

• Filter Name: Name of the filter as defined in the class handler method. This information is
defined by the class handler developer and is not editable.

• Reference Table Name: Technical name of the SAP database table where this filter is
applied. This information is defined by the class handler developer and is not editable.

• Reference Field Name: Technical name of the SAP database table field where this filter is
applied. This information is defined by the class handler developer and is not editable.

• Data Filter Rule Key: Internal technical key used by the framework at runtime
• DOF Rule Type: Type of rule

There are three different types of rules:

• User Profile Parameter
• Static Value in Range Format
• Syclo Filter Class Handler
• Runtime Session Data

The settings are dependent on the specific type of rule set for the filter.

Data Filter - User Profile Parameter Rule

Agentry App Development

890 SAP Mobile Platform

• Parameter ID: Memory parameter ID as defined in SAP and specified in the user profile.
Click on the icon to the right of the field box to perform a search on all available parameter
IDs.

• Description: Description of the memory parameter ID. This is not an editable field and is
automatically filled in when the parameter ID is selected.

• Active Flag: When checked, the rule is active.

Data Filter - Static Value in Range Format

• Sign: Value for the SAP Range table column SIGN
• Option: Value for the SAP Range table column OPTION
• Low Value: Value for the SAP Range table column LOW
• High Value: Value for the SAP Range table column HIGH
• Active Flag: When checked, the rule is active

Data Filter - Syclo Filter Class Handler

• Syclo Data Filter Handler: Name of the handler class as defined in the system.

Agentry App Development

Agentry App Development 891

• Parameter: Additional processing information that is passed to the class handler. The
parameters are entered as free-text, and the syntax of the parameter stream is defined by the
developer.

• Active Flag: When checked, the rule is active.

Data Filter - Runtime Session Data

• Runtime Session Data Name:
• Runtime Session Data Group:
• Active Flag: When checked, the rule is active.

Rule List
The Rule List table displays a list of rules that have been defined.

• Rule No.: Number of the rule that is defined, in chronological order
• Rule Type: Rule type, automatically assigned by the rule type selected in the DOF Rule

Type field
• Rule Value: Internal rule value saved by SAP

Mobile Data Object - Data Staging

If an application processes a large amount of objects, data staging of the objects can assist with
processing times. If an object is configured for data staging, the data within the object is stored
as a package and is split into packets. The data can contain metadata and tagging for easy
lifecycle management and data lookup. Standard APIs are provided for package management.

The following figure illustrates a general-purpose data staging model.

Agentry App Development

892 SAP Mobile Platform

Figure 12: Mobile Data Object - Data Staging Model

Mobile Data Object - Data Staging Tab

Handler Info

• Mobile Data Object ID: Name of the mobile data object

Agentry App Development

Agentry App Development 893

• Description: Description of the mobile data object, limited to 60 characters. This is a
required field.

• Data Object Handler: Name of the ABAP OO class handler from SAP’s class repository.
The ABAP OO class handler is developed by the application developer with predefined
business logic and scope to perform fetch, create, delete, or update activities for an SAP
business object.

Data Staging Setting

• Disable Conversion Exit for Package Read:
• Require Metadata:
• Get / Create / Update / Delete Method Setting: When a checkbox is marked for a specific

method, data staging is active for that method.

Mobile Data Object - Proxy Setting

Agentry App Development

894 SAP Mobile Platform

Figure 13: Mobile Data Object - Proxy Setting Tab

Handler Info

• Mobile Data Object ID: Name of the mobile data object
• Description: Description of the mobile data object, limited to 60 characters. This is a

required field.
• Data Object Handler: Name of the ABAP OO class handler from SAP’s class repository.

The ABAP OO class handler is developed by the application developer with predefined
business logic and scope to perform fetch, create, delete, or update activities for an SAP
business object.

Proxy Settings
The following four settings are available for each of the methods.

• System Component: Identifies the remote system

Agentry App Development

Agentry App Development 895

• Proxy Type: BAPI Proxy is the only supported proxy type
• Proxy Name: BAPI name of the remote system
• Proxy Active: When checked, proxy settings are active for the specific method.

Mobile Data Object - Composite Settings Tab

Use to Composite Settings tab to define the data object type Composite Settings. This allows
you to combine and use multiple MDOs.

Handler Info

• Mobile Data Object ID: the ID of the MDO to be used
• Description: description of the MDO being used
• Data Object Handler: name of the handler for the data object

Composite Settings

• Origin Method Type: by default this is GET method
• Assigned Mobile Data Object: the MDO ID
• Assigned Method Type: the defined method type
• Active Flag: indicates if this setting is active or not
• Input Cascade: indicates whether cascading has been allowed
• Output FIFO: output settings indicate first in, first out

Agentry App Development

896 SAP Mobile Platform

• Output Append: indicates if results will be aggregated

Composite Assignment Detail

• Origin Method Type: by default, this is GET method
• Assigned Mobile Data Object ID: enter the MDO ID
• Assigned Method Type: enter the method type
• Active Flag: check this to indicate active status
• Input Parameter Cascading: when the BAPI is called, this allows a chain of MDOs to

execute
• Output First In First Out: check this todefine the output as first in, first out
• Output Allow Appending: check this to aggregate results

BAPI Wrapper Configuration

A BAPI wrapper is created by the application developer to expose SAP data and business logic
to the mobile application. By design, the BAPI wrapper does not contain any business logic.
Each BAPI wrapper must be assigned to a specific method type (GET, CREATE, UPDATE, or
DELETE) of a mobile data object to perform the required business logic. By decoupling the
business logic from the BAPI wrapper, it is possible to switch mobile data objects without
affecting the underlying mobile application definition.

BAPI Wrapper - General Settings

Use the General tab to modify the general settings for a chosen BAPI wrapper.

BAPI Wrapper - General Settings

Agentry App Development

Agentry App Development 897

BAPI Wrapper Info

• BAPI Wrapper Name: Technical name of the Remote Function Call (RFC) function
module defined in the system

• Description: Description of the BAPI wrapper, limited to 60 characters. This is a required
field.

• Function Group: Function group to which the BAPI belongs
• Function Group Description: Description of the function group, limited to 60 characters.
• Package: SAP group to which the function group and the BAPI wrapper both belong

BAPI Wrapper List
The BAPI wrapper list provides an expandable tree of the available BAPI wrapper function
groups and the BAPI wrapper name(s) associated with each function group. Use the arrows to
the left of the function name to display all BAPI wrapper names under the function group.

Technical Info

• Field Name column: Field name of the structure
• Field Label column: Text describing the structure

Agentry App Development

898 SAP Mobile Platform

• Data Format column: Standard SAP data type
• Conversion Routine column: SAP-defined conversion routine

BAPI Wrapper - Assignment Settings

Use the Assignment tab to hook up BAPI wrapper assignments to mobile data objects. In this
tab, you can change a BAPI wrapper’s assignment to specific mobile data objects, assign a
new mobile data object to the BAPI wrapper, or delete a mobile data object assignment from
the BAPI wrapper.

BAPI Wrapper - Assignment Settings

BAPI Wrapper Info
• BAPI Wrapper Name: Technical name of the Remote Function Call (RFC) function

module defined in the system
• Description: Description of the BAPI wrapper, limited to 60 characters. This is a required

field.

Mobile Data Object Assignment List
Mobile Data Object Assignment table: Table that displays which mobile data objects are
assigned to each BAPI wrapper. All column information is replicated in the Assignment Detail
section directly below the table.

To highlight an individual row, click on the grey square to the left of the Mobile Application
column in that row.

Agentry App Development

Agentry App Development 899

Assignment Detail
Information in this section will change depending on which row is highlighted in the Mobile
Data Assignment List section table.

• Mobile Application: The specific mobile application and its release number. This field is
non-editable.

• Mobile Data Object ID: The name of the mobile data object in a drop-down field.
• Description: A brief, easy to understand description of the mobile data object, limited to

60 characters. This field is non-editable.
• Method Type: Mobile data object method (GET, CREATE, UPDATE, or DELETE) that

is assigned to the BAPI wrapper.
• Active Flag: When checked, the mobile data object is in an active state. If unchecked, the

mobile data object performs no actions.
• Default Assignment: When checked, the specific mobile data object assigned to that

BAPI wrapper is primary. If no mobile data object ID is specified in the standard BAPI
wrapper input parameter ‘IS_BAPI_INPUT-DO_ID’, then the primary mobile data object
is used during runtime.
It is possible to assign multiple MDOs to the same BAPI in a single mobile application. To
override the default MDO assignment at runtime and to specify the desired MDO, the
DO_ID field must be defined in IS_BAPI_INPUT.

Administrative Info

• Created By: SAP user ID of the person who created the BAPI wrapper assignments
• Creation Time Stamp: Date and time of the creation of the BAPI wrapper assignments
• Last Changed By: SAP user ID of the person who last changed the BAPI wrapper

assignments
• Changed Time Stamp: Date and time of the change to the BAPI wrapper assignments

Security Settings

Security settings are used to provide additional rules and roles on top of the standard SAP-
provided rules and roles.

Security Settings - System Security

Use this tab to configure system security settings that are mobile application-independent.
System security settings apply to all applications running on the framework.

Security Settings - System Security

Agentry App Development

900 SAP Mobile Platform

Security Check Rule List

• Add Rule button: Press the Add Rule button to add a new system security rule. Fill in the
fields in the Rule Detail section to automatically fill in the fields in this table.

• Delete Rule button: Press the Delete Rule button to delete an system security rule. To
delete a system security rule, press the rectangle to the left of the Rule Type column in the
row you wish to delete and press the Delete Rule button.

• Rule Type: Rule Type from the Rule Detail section. This is a non-editable field.
• Object Name: Taken from the Profile field in the Rule Detail section if rule type

Authorization Object is chosen. This is a non-editable field.

Agentry App Development

Agentry App Development 901

• Authorization Field Name: Standard SAP authorization object name. This is a non-
editable field.

• Authorization Field Value: Free-text field. Text entered depends on developer
implementation in SAP. This is a non-editable field.

• System Admin Indicator: When Rule Type: User Role is selected, taken from the System
Admin Indicator field in the Rule Detail section. This is a non-editable field.

Rule Detail - Rule Type: User Role

• Rule Type: User Role: In addition to the standard SAP user profile rules, the user role can
add restrictions on what a user can or cannot see in menus or other mobile application
screens.

• Role: User role in SAP. To search for a user role, click on the white box icon to the right of
the Role field to display the Role Selection search window.

• Name: Brief description of the role. This is a non-editable field.
• System Admin Indicator: Drop-down menu with four choices:

• System administrator: User role can view system activity and make changes to
system administration setup in the Administration portal.

• System administration - View only: User role can view the system activity in the
Administration portal, but cannot make changes to the setup.

• System configurator: User role can view system configuration and make changes to
the setup in the Configuration portal.

• System configuration - View only: User role can view the system configuration in the
Configuration portal, but cannot make changes to the setup.

Once the System Admin Indicator roles have been configured, the configurations and roles are
available in both the Configuration and the Administration & Monitoring portals.

Rule Detail - Rule Type: Authorization Profile

• Rule Type: Authorization Profile: A collection of objects, or roles, such as Technician or
Supervisor.

• Profile: Authorization profile in SAP. To search for an authorization profile, click on the
white box icon to the right of the Profile field. The Profile Selection window displays.

• Text: Brief description of the authorization profile. This is a non-editable field.

Rule Detail - Rule Type: Authorization Object

• Rule Type: Authorization Object: Baseline object used across mobile applications
• Authorization Object: Authorization object in SAP.
• Authorization Field: Standard SAP authorization object name
• Authorization Field: Free-text field. Text entered depends on developer implementation

in SAP.

Agentry App Development

902 SAP Mobile Platform

Security Settings - Product Security

Use this tab to configure security settings for a specific mobile application.

Security Settings - Product Security

Security Check Rule List

• Add Rule button: Press the Add Rule button to add a new product security rule. Fill in the
fields in the Rule Detail section to automatically fill in the fields in this table.

Agentry App Development

Agentry App Development 903

• Delete Rule button: Press the Delete Rule button to delete an product security rule. To
delete a product security rule, press the rectangle to the left of the Rule Type column in the
row you wish to delete and press the Delete Rule button.

• Product: Mobile application chosen in the Rule Detail section. This is a non-editable
field.

• Rule Type: Rule Type from the Rule Detail section. This is a non-editable field.
• Object Name: Taken from the Profile field in the Rule Detail section if rule type

Authorization Object is chosen. This is a non-editable field.
• Authorization Field: Taken from the Authorization Field selection if rule type

Authorization Object is chosen. Standard SAP authorization object name. This is a non-
editable field.

• Authorization Field Value: Taken from the Field Value selection if rule type
Authorization Object is chosen.

Rule Detail - Security Rule Type: User Role

• Product: Select the mobile application that will contain the product security rule.
• Rule Type: User Role: In addition to the standard SAP user profile rules, the user role can

add restrictions on what a user can or cannot see in menus or other mobile application
screens.

• Role: Select a user role contained within SAP.
• Name: After the user role is selected, this non-editable field is filled in with the descriptive

name of the user role.

Rule Detail - Security Rule Type: Authorization Profile

• Product: Select the mobile application that will contain the product security rule.
• Rule Type: Authorization Profile: A collection of objects, or roles, such as Technician or

Supervisor.
• Profile: Select an authorization profile contained within SAP.
• Text: After the authorization profile is selected, this non-editable field is filled in with the

descriptive name of the authorization profile.

Rule Detail - Security Rule Type: Authorization Object

• Product: Select the mobile application that will contain the product security rule.
• Rule Type: Authorization Object: Baseline object used across mobile applications.
• Authorization Object: Select an authorization object contained within SAP.
• Authorization Field: Select a field contained within SAP.
• Field Value: Free-text field for additional object configuration. Text entered depends on

developer implementation in SAP.

Agentry App Development

904 SAP Mobile Platform

Security Settings - Class Handler Security

Use this tab to configure class handler security settings that cross mobile applications, but are
only applicable for the selected data object handler chosen in the Rule Detail pane.

Security Settings - Class Handler Security

Security Check Rule List

• Add Rule button: Press the [Add Rule] button to add a new class handler security rule.
Fill in the fields in the Rule Detail section to automatically fill in the fields in this table.

• Delete Rule button: Press the [Delete Rule] button to delete an class handler security rule.
To delete a class handler security rule, press the rectangle to the left of the Rule Type
column in the row you wish to delete and press the Delete Rule button.

Agentry App Development

Agentry App Development 905

• Class Handler: Taken from the Data Object Handler field in the Rule Detail section. This
is a non-editable field.

• Class Method: Taken from the Handler Method field in the Rule Detail section. This is a
non-editable field.

• Rule Type: Rule Type from the Rule Detail section. This is a non-editable field.
• Object Name: Taken from the Profile field in the Rule Detail section if rule type

Authorization Object is chosen. This is a non-editable field.
• Authorization Field: Taken from the Authorization Field selection if rule type

Authorization Object is chosen. Standard SAP authorization object name. This is a non-
editable field.

• Authorization Field Value: Taken from the Field Value selection if rule type
Authorization Object is chosen.

Rule Detail - Security Rule Type: User Role

• Data Object Handler: Select the desired class handler from the drop-down list.
• Handler Method: Select the desired handler method from the drop-down list.
• Rule Type: User Role: In addition to the standard SAP user profile rules, the user role can

add restrictions on what a user can or cannot see in menus or other mobile application
screens.

• Role: Select a user role contained within SAP.
• Name: After the user role is selected, this non-editable field is filled in with the descriptive

name of the user role.

Rule Detail - Security Rule Type: Authorization Profile

• Data Object Handler: Select the desired class handler from the drop-down list.
• Handler Method: Select the desired handler method from the drop-down list.
• Rule Type: Authorization Profile: A collection of objects, or roles, such as Technician or

Supervisor.
• Profile: Select an authorization profile contained within SAP.
• Text: After the authorization profile is selected, this non-editable field is filled in with the

descriptive name of the authorization profile.

Rule Detail - Security Rule Type: Authorization Object

• Data Object Handler: Select the desired class handler from the drop-down list.
• Handler Method: Select the desired handler method from the drop-down list.
• Rule Type: Authorization Object: Baseline object used across mobile applications
• Authorization Object: Select an authorization object contained within SAP.
• Authorization Field: Select a field contained within SAP.
• Field Value: Free-text field for additional object configuration. Text entered depends on

developer implementation in SAP.

Agentry App Development

906 SAP Mobile Platform

System Administration

All components of the Agentry SAP Framework Administration, such as BAPI wrappers,
mobile data objects and exchange objects, support logging. Activity logs generated by the
Agentry SAP Framework are integrated into the standard SAP Application Log database.

The recommended time frame for keeping the logs is:

• Customization Table logs - Do not delete
• Exchange Table logs - Keep no more than 6 months (180 days)
• System logs - Keep no more than 30 days

Viewing the Mobile Application Log
To view the application logs:

1. Start the Mobile Administration Menu by running the command /n/syclo/smart
from the command field of SAPGUI session.

2. Select the transaction /SYCLO/SLG1 - Application Log: Display Logs to launch the
start screen of the log display.

3. Enter the desired the selection criteria. Make sure Object is set to /SYCLO/. Execute the
transaction to view log details.

Agentry App Development

Agentry App Development 907

Deleting an SAP Mobile Application Log
You should purge these logs every 30 days. To delete an application log:

1. Select transaction /SYCLO/SLG2 - Application Log: Delete Logs to launch the
selection screen.

Agentry App Development

908 SAP Mobile Platform

2. Enter selection criteria, and execute the transaction to purge the log database. The system
will confirm deletion of logs in a popup window before deleting them.

Purge Utility for Exchange Persistent Layer
The purge utility for the exchange persistent layer is a tool that allows the system administrator
to purge the content of the exchange tables. Exchange tables are not intended to be history
tables. They should be purged periodically to maintain the exchange performance with the
mobile application. It is recommended that you keep these tables no longer than every six
months (180 days).

To purge the exchange table online:

1. Select transaction /SYCLO/EX_PURGE - Exchange Table Purge Utility to launch the
selection screen.

Agentry App Development

Agentry App Development 909

2. Specify the list of Mobile Applications to be included. Leave this blank to include all
applications installed.

3. Specify the list of Exchange Objects to be included. Leave this blank to include all
exchange objects.

4. Enable the option Delete All Entries to delete all records in the exchange tables. If the
delete all option is not chosen, check the Value of 'Days To Keep History in the exchange
object settings to determine what data should be purged.

5. Use the program /SYCLO/CORE_EXCH_PURGE_PROG to schedule a background
job to carry out a periodic purge automatically.

Accessing the Administration and Monitoring Portal

Prerequisites

The person performing this procedure must log into the SAP system as a user with the
following authorizations:

• Authorization object - S_ICF
• Authorization field - ICF_FIELD - SERVICE
• Authorization field - ICF_VALUE - SYCLOADM
• Authorization object - S_TCODE
• Authorization field - TCD - /SYCLO/ADMIN

Task

1. Log into SAP under an account with one of the authorizations provided in the prerequisites
to this procedure.

2. Type /n/syclo/smart into the command field and click the green check mark to the
left of the field, or press Enter.

The SAP Easy Access Agentry SAP Framework window displays.

Agentry App Development

910 SAP Mobile Platform

3. Expand the SAP menu tree by clicking the arrows to the left of the menu items. Expand as
follows: SAP menu | System Administration |Administration & Monitor.

The available administrative functions display.

4. Double-click on the Administration & Monitoring Portal menu item.

The SAP NetWeaver Web Application Server logon screen opens in a browser window.

Agentry App Development

Agentry App Development 911

Note: Depending on your configuration, the log on screen may be different than what is
shown.

5. Fill in any necessary fields for your specific implementation and click the Log On button.

The System Administration & Monitoring portal opens in the browser window.

Agentry App Development

912 SAP Mobile Platform

Administration Portal - Mobile Solution Overview

An administrator can monitor the current system status through the main overview panel.

Mobile Solution Overview Panel

Today’s Date: The date is automatically set to the current date when the Administration portal
is first accessed. To view system status for past dates: click the calendar icon to the right of the
date field and choose the desired date.

1. Click the calendar icon to the right of the date field and choose the desired date.

Mobile Solution Overview - Date Selection

Agentry App Development

Agentry App Development 913

2. Click the Refresh button to refresh the Operation Status statistics for the chosen date.
3. To revert back to the current date, select the calendar icon again and choose the current

date, highlighted by the blue box. Then click the Refresh button to refresh the Operation
Status statistics.

Current System Status (Checks of critical framework settings): Brief overview of the
current system status through use of an icon and status text. Click on the View Detail
hyperlink to view the System Status Detail table as shown in the following example.

Current System Status Detail
The System Status Detail table appears when the View Detail hyperlink to the right of the
Current Systems Status (Checks of critical framework settings) line is clicked. This table
provides an account of the framework and its status during the selected date.

Mobile Solution Overview - System Status Detail

• Seq. No.: Row number of the system tests performed
• Status: Icon display of the system status

Agentry App Development

914 SAP Mobile Platform

• System Status Message: Text message giving a status description. There are three main
system tests performed:
• Configuration framework system setting - If this setting does not exist, or returns an

error status message, applications will not be able to run on the framework.
• Syclo number range interval - Automatic number counter. If this is not set up during

the system installation, the counters will not work. See the installation guide for more
details.

• Connection test - This test is dynamic and only appears if the system is multi-back end
enabled. For the system to post a Success value for this test, the RFC destinations must
be defined.

• Value: Text status of the system test

Click the Close Message List button to close the table view.

Mobile Solution Overview - Operation Status

The Operation Status panel of the Mobile Solution Overview provides a high-level status of
activity on the system. Clicking on the View Detail link to the right of each status displays a
more detailed status table below the Operation Status panel.

To access operation status details for a different date, choose a different date using the calendar
icon at the top of the panel. Be sure to click Refresh in order to refresh the panel statistics to the
newly-selected date.

Note: If statistics collection is not enabled in SAP, some operation status details will not be
available through the Administration & Monitoring portal.

Mobile Solution Overview - Operation Status

Total Number of Mobile Applications
Lists the number of mobile applications in use on the system.

Mobile Solution Overview - Mobile Application Count Detail

Agentry App Development

Agentry App Development 915

• Seq. No.: Row number in the table
• Status: Not used in this table
• Mobile Application: Name and release of the mobile application
• Value: Number of specific mobile applications in use on the system

Total Number of Mobile Users
Lists the total number of mobile users on the system on the date chosen.

Mobile Solution Overview - Mobile User Count Detail

Agentry App Development

916 SAP Mobile Platform

• Seq. No.: Row number in the table
• Status: Not used in this table
• Mobile Application: Name of the mobile application
• Value: Number of active users on the specific mobile application

Number of Active Users
Lists the total number of active users on the system on the date chosen.

Mobile Solution Overview - Active User Count Detail

Agentry App Development

Agentry App Development 917

• Seq. No.: Row number in the table
• Status: Not used in this table
• Mobile Application: Name of the mobile application
• Value: Number of active users on the mobile application

Number of Push Instances
Lists the total number of pushes initiated on the system on the date chosen.

Mobile Solution Overview - Push Instance Count Detail

• Seq. No.: Row number in the table

Agentry App Development

918 SAP Mobile Platform

• Status: Not used in this table
• Mobile Application, Scenario ID, Push Status: Name of the mobile application, name of

the push instance, and status of the push instance
• Value: Number of push instances initiated on each mobile application

Total Number of Middleware Servers
Lists the total number of middleware servers present on the system.

Mobile Solution Overview - Middleware Server Count Detail

• Seq. No.:Row number in the table
• Status: Not used in this table
• Server: Port, Serial Number: Name of the middleware server, the port it uses to connect

to the framework, and the serial number assigned to it in SAP.
• Value: Number of middleware servers with that server name, port and serial number. This

number will always be 1.

Total Number of Communication Sessions
Lists the total number of communication sessions for the date chosen.

Mobile Solution Overview - Communication Session Count Detail

Agentry App Development

Agentry App Development 919

• Seq. No.: Row number in the table
• Status: Not used in this table
• Server: Port, Mobile Application: Name of the server, the port it uses to connect to the

framework, and the mobile application used on the server for the communication sessions
• Value: Number of communication sessions on the specific server listed

Number of Users with Exception
If a user encounters issues during a transmit, the user ID, the mobile application, and the
application ID is logged.

Mobile Solution Overview - User Exception Count Detail

Agentry App Development

920 SAP Mobile Platform

• Seq. No.: Row number in the table
• Status: Visual indicator showing the severity of the exception
• Mobile Application: Name of the mobile application, GUID of the mobile application,

and user name causing the exception
• Value: Number of exceptions the listed user has on the listed mobile application

Administration Portal - Administration

The Administration panel is used to create and manage the following three areas:

• User Management - System administrators can create new mobile user IDs, as well as
manage all settings associated with specific user IDs.

• Server Management - System administrators can create new connections to new servers,
as well as manage all settings associated with specific servers.

• Runtime Logging Level Setting - System administrators can create or modify new
logging parameters associated with specific user GUIDs.

• Mobile Application Parameters - Use the Mobile Application Parameter Management
panel to override parameter settings in a production environment for a specific user or for
the whole application, depending on the selection you make for the parameter scope.

Administrative Info
Each management panel contains a section at the bottom of the page called Administrative
Info. Expand the section by clicking on the white box icon to the right of the Administrative
Info heading.

Administration Portal - Administrative Info

• Created By: SAP user ID of the person who created the information
• Creation Time Stamp: Time and date the information was created
• Last Changed By: SAP user ID of the person who modified information in the panel
• Changed Time Stamp: Time and date the information was modified

Administration - User Management

The Middleware User Management panel is used to create and manage mobile client user IDs.
These IDs are layered on top of the user’s SAP user ID.

A user must have an SAP user ID before being able to access any mobile applications. A user
must also have a separate user GUID for each mobile application they access. In this way, the
system can track and calculate exchange episodes for each application a user accesses while
keeping the exchanges separated by mobile application.

Agentry App Development

Agentry App Development 921

Administration - Middleware User Management

Basic Search Parameters
Use this field to search for users on a specific mobile application, or refine the search even
further by the user ID or last activity time. Once specific user(s) are found, their information
can be changed if necessary.

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application. This is a required field to enable the Search function.

• User: SAP user ID
• Last Activity Time: Use the drop-down menu to select a window of time. The default is

set to All, which is equal to selecting no specific time period.
• Search: Click the Search button once after you have entered all required and additional

search parameters. If the search returns results, they are displayed in the Search Result
section. If the search parameters are not fulfilled, a message stating “No data found”
displays in the Search Result section.

Agentry App Development

922 SAP Mobile Platform

Search Result
When you click the Search button in the Basic Search Parameters section, the Search Result
table is populated. You can also create a new user in this section using the Create button. In
this case, it is not necessary to search for an existing user.

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet.
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Mobile User Detail - Basic Info
When a user is selected in the Search Results table, the fields are populated in the Basic Info
section. Click Change to modify editable fields. Click Create in the Search Result section to
create a new user through the editable fields. Fields with a red asterisk beside them are
mandatory.

• Mobile Application: Name of the mobile application chosen in the Basic Search
Parameters section

• User GUID: User GUID for the specific mobile application chosen. Each user has a
different GUID for each mobile application assigned in SAP.

• User Name: User ID chosen from the table in the Search Result section
• SAP Personnel Number: User ID number assigned to the user in SAP
• Middleware License Number: Server serial number of the middleware server that is

running the chosen mobile application
• Device ID: If a user is assigned to a mobile device connected to the chosen application and

the mobile device has an ID, the field is populated.
• Device User ID: User ID assigned to the mobile device
• Group ID: Allows you to define additional information about a user, such as a crew

number or team name. This is a free-text field.
• Email Address: Email address of the user. Email are sent through the Push Scenario

Definition panel in the Configuration portal. Email are also used in the User Monitor panel
under Monitoring in the Administration portal.

Agentry App Development

Agentry App Development 923

• HTTP Address: Web address or site links that users can access, such as a Twitter feed
• Default Address Type: Select either Email Address or HTTP Address from the drop-

down menu for the default email sending method
• Source System: Originating SAP system of the user ID. This is useful in multi-backend

systems.
• Lock Flag: If checked, user is unable to access the mobile application from the mobile

device. This is used if a mobile device is lost or stolen and the application data must be
made inaccessible.

Mobile User Detail - Cross Reference List
The Cross Reference list is used in systems that contain multi-back ends. When a user is
created or modified, that user’s information will need to be replicated across the systems. This
detail view provides statistics and information for each user on a multi-back end system.

Figure 14: Mobile User Detail - Cross Reference List

• System Component: System where the user ID resides
• Reference User GUID: SAP user GUID
• Sync Required: If box is checked, synchronization is required
• Last Sync Time: Time and date of last synchronization
• Sync Status: Descriptive text detailing the synchronization status
• Created By: SAP ID of the user who created the new user ID
• Creation Time Stamp: Time and date of the
• Last Changed By: SAP ID of the user who made the change
• Changed Time Stamp: Time and date of last change

Mobile User Detail - Client Registration Info
The Client Registration Info tab is used for RIM products only.

Agentry App Development

924 SAP Mobile Platform

Figure 15: Mobile User Detail - Client Registration Info

Administration - Server Management

The Middleware Server Management panel is used to create and manage the middleware
servers on the system.

Administration - Middleware Server Management

Agentry App Development

Agentry App Development 925

Basic Search Parameters
Use this field to search for users on a specific mobile application, or refine the search even
further by the user ID or last activity time. Once specific user(s) are found, their information
can be changed if necessary.

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application. This is a required field to enable the Search function.

• Server Name: Name given to the middleware server either through SAP or when creating
a new server configuration in this panel.

• Server Port: Port on the server assigned to the selected mobile application
• Serial Number: The serial number of the server assigned to the mobile application
• Search: Click Search once all required and additional search parameters are filled. If the

search returns results, they are displayed in the Search Result section. If the search
parameters are not fulfilled, a message stating “No data found” displays in the Search
Result section.

Search Result
When you click Search in the Basic Search Parameters section, the Search Result table is
populated. You can also create a new server in this section using Create. In this case, it is not
necessary to search for an existing server.

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet.
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click on the Filter link to display filter choices in order to further filter the
data displayed. If a filter is in use, click on Delete Filter to remove the filter and display all
data returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Middleware Server Detail - Basic Info
When you select a server in the Search Results table, the fields are populated in the Basic Info
section. Click Change to modify editable fields. Click Create in the Search Result section to
create a new server by populating the editable fields. Fields with a red asterisk beside them are
mandatory.

Agentry App Development

926 SAP Mobile Platform

• Mobile Application: Name of the mobile application chosen in the Basic Search
Parameters section

• Server GUID: Server GUID for the specific mobile application chosen. Each server has a
different GUID for each mobile application assigned in SAP.

• Server Name: Server name chosen from the table in the Search Result section
• Port: Port the Agentry application in the SAP Mobile Server has assigned to the specific

mobile application chosen
• Middleware Svr (Server) SerNo (Serial Number): Customer license number
• Server URL (FQDN): Fully qualified domain name that can identify the Agentry

application defined in the SAP Mobile Server. In this way, SAP can identify and broadcast
to the middleware server without using an IP address. If the IP address of the middleware
server changes, use this method as the preferred way to communicate.

• Target Host: If a target host is specified, a broadcast of push notification is sent to the IP or
URL specified in the Target Host field, instead of to the middleware server’s own IP or
URL. Use this if a dedicated middleware or server should receive the broadcast from
SAP.

• Local Outbound Trigger Port: By default, each middleware server running the same
mobile application use the same port number to receive push notification broadcasts from
SAP. This is the default in the outbound trigger setting Target Host Port Number. If, for
some reason, individual middleware servers listen to push notifications on a different port,
specify the port number here. The listed port number in this field will then supercede the
port number set in Outbound Trigger Settings.

• Outbound Trigger URL Type: Use either the IP address or server URL when
broadcasting push notifications.

• Lock Flag: If checked, the server will no longer accept users attempting to connect. Set the
lock flag to temporarily lock down a server without deleting it from the system.

• Disabled for Outbound Trigger: If checked, the Outbound Trigger is unavailable for the
selected server.

Administration - Runtime Logging Level Setting

The Runtime Logging Level Setting panel is used to create and manage logging levels for
specific mobile applications and user GUIDs. These settings override the logging level setting
defined in the Technical Settings panel of the Configuration portal. The logging level setting
defined in the Configuration portal applies to all applications running on the framework.
However, at times more detail on a specific user or mobile application is desired without
making changes to the entire framework.

With the runtime logging level setting, administrators can make dynamic adjustments to the
logging level settings. Overrides to the framework settings can be made in two different areas:
an individual mobile application or individual users running a specific mobile application.
When troubleshooting of the user or the mobile application is complete, the administrator can
reset the logging levels back to the default settings specified in the Configuration portal by
un-checking the active flag.

Agentry App Development

Agentry App Development 927

Administration - Runtime Parameter Management

Basic Search Parameters
Use these fields to search for logging parameters on a specific mobile application, or refine the
search even further by the user ID. Once specific logging parameters are found, their
information can be changed if necessary.

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application. This is a required field to enable the search function.

• User GUID: User GUID associated with the selected mobile application
• Param Name: Name of the selected parameter. Parameters are set and configured in the

Configuration portal.
• Search: Click Search once all required and additional search parameters are set. If the

search returns results, they are displayed in the Search Result section. If the search
parameters are not fulfilled, a message stating “No data found” displays in the Search
Result section.

Agentry App Development

928 SAP Mobile Platform

Search Result
When you click Search in the Basic Search Parameters section, the Search Result table is
populated. You can also create a new runtime parameter in this section using the Create
button. In this case, it is not necessary to search for an existing runtime parameter.

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click on the Filter link to display filter choices in order to further filter the
data displayed. If a filter is in use, click on Delete Filter to remove the filter and display all
data returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Runtime Parameter Detail - Basic Info

• Mobile Application: Name of the mobile application chosen in the Basic Search
Parameters section

• User GUID: User GUID for the specific mobile application chosen. Each user has a
different GUID for each mobile application assigned in SAP.

• SAP User ID: User ID assigned in SAP
• Param. Name: Name assigned to the logging parameter
• Parameter Group: A non-editable field that identifies the system category of the

parameter group
• Param. Value: A numerical value corresponding to logging levels:

• 0 - No logging
• 1 - Abort
• 2 - Error
• 3 - Warning
• 4 - Info
• 5 - Debug
• 6 - Trace

• Active Flag: Check this box in order to enable the logging levels set through this panel.
Uncheck to disable the logging levels set through this panel and to return to the logging
levels set through the Technical Settings panel in the Configuration Panel.

Agentry App Development

Agentry App Development 929

• Effective Date / Time: Effective date and time of the logging level change
• Duration (Hrs): Duration, in hours, of the logging level change

Administration Portal - Settings

All of the screens in the Administration portal contain a Settings link in the Search Result
section. Configuring the settings for results display can assist in filtering and sorting user data,
especially if there are many user results returned in a search.

To access the Settings section, click on the Settings link at the top right of the Search Result
section. This opens the Settings view.

Note: Each of the portal screens requires individual setup of the settings.

• View: If multiple views are saved, use the drop-down menu to select the appropriate view
to change.
Use the Save As button to save the particular configuration created or modified with a
descriptive title. Use the View drop-down menu in the Search Result section to select the
desired view. The created view is available in all Settings tabs.
If a view is no longer needed, select the view in the drop-down menu and click Delete.
To display view properties or to rename the view, click the Properties button.

• OK: When done with configuration in the tabs, click OK to change the settings in the
Search Result table or test the printing configuration. Clicking OK does not commit the
changes permanently.

• Cancel: Click Cancel to cancel any changes made during the configuration session.
• Apply: Click Apply when all configuration is finished and tested. Clicking Apply

commits the changes so they are available from session to session.

Column Selection
The Column Selection tab configures the columns and their results that are displayed in the
search result table.

Management Settings - Column Selection

Agentry App Development

930 SAP Mobile Platform

Sort
At times a search performed by using the standard Basic Search Parameters can result in a
large amount of information displayed. Use the Sort tab to determine which columns are used
to sort the information, depending on the needs of the administrator. The sorting function
works in that the first row in the Sorted Columns is the primary source for sorting. Each
additional row refines the sorting further. For instance, if a user is active on more than one
server, sort by user name and then Server Serial No to display that user’s activity in order of the
serial number.

Management Settings - Sort

Agentry App Development

Agentry App Development 931

Filter
Administrators can create different filters in order obtain a more detailed view from the search
results. When the filter is no longer needed on the search results table, click the Delete Filter
link.

Management Settings - Filter

Agentry App Development

932 SAP Mobile Platform

Display
Use the Display tab to control how the table in the Search Result section displays.

Management Settings - Display

Agentry App Development

Agentry App Development 933

Print Version
The Print Version tab configures specific print settings.

Management Settings - Print Version

Agentry App Development

934 SAP Mobile Platform

Administration Portal - Monitoring

The Monitoring panel is used to monitor the following areas:

• User Monitor
• Push Instance Monitor
• Communication Session Monitor
• Object Mobile Status Monitor
• Mobile Transaction History Monitor
• Subscription Queue Monitor

The Monitoring panels are only used for monitoring users and activity. An administrator
cannot create new information or change existing information through these panels. To create
or modify information, navigate to the appropriate panel in the portal and save the changes.

Administration Portal - Settings

All of the screens in the Administration portal contain a Settings link in the Search Result
section. Configuring the settings for results display can assist in filtering and sorting user data,
especially if there are many user results returned in a search.

To access the Settings section, click on the Settings link at the top right of the Search Result
section. This opens the Settings view.

Agentry App Development

Agentry App Development 935

Note: Each of the portal screens requires individual setup of the settings.

• View: If multiple views are saved, use the drop-down menu to select the appropriate view
to change.
Use the Save As button to save the particular configuration created or modified with a
descriptive title. Use the View drop-down menu in the Search Result section to select the
desired view. The created view is available in all Settings tabs.
If a view is no longer needed, select the view in the drop-down menu and click Delete.
To display view properties or to rename the view, click the Properties button.

• OK: When done with configuration in the tabs, click OK to change the settings in the
Search Result table or test the printing configuration. Clicking OK does not commit the
changes permanently.

• Cancel: Click Cancel to cancel any changes made during the configuration session.
• Apply: Click Apply when all configuration is finished and tested. Clicking Apply

commits the changes so they are available from session to session.

Column Selection
The Column Selection tab configures the columns and their results that are displayed in the
search result table.

Management Settings - Column Selection

Agentry App Development

936 SAP Mobile Platform

Sort
At times a search performed by using the standard Basic Search Parameters can result in a
large amount of information displayed. Use the Sort tab to determine which columns are used
to sort the information, depending on the needs of the administrator. The sorting function
works in that the first row in the Sorted Columns is the primary source for sorting. Each
additional row refines the sorting further. For instance, if a user is active on more than one
server, sort by user name and then Server Serial No to display that user’s activity in order of the
serial number.

Management Settings - Sort

Filter
Administrators can create different filters in order obtain a more detailed view from the search
results. When the filter is no longer needed on the search results table, click the Delete Filter
link.

Management Settings - Filter

Agentry App Development

Agentry App Development 937

Display
Use the Display tab to control how the table in the Search Result section displays.

Management Settings - Display

Agentry App Development

938 SAP Mobile Platform

Print Version
The Print Version tab configures specific print settings.

Management Settings - Print Version

Agentry App Development

Agentry App Development 939

Monitoring - User Monitor

The User Monitor panel allows an administrator to locate and view specific users and mobile
application use. An administrator can also send specific users email to their mobile devices or
HTTP addresses through this panel.

Note: The Client Registration Info tab is for RIM products only and will not be covered in this
manual.

Monitoring - Mobile User Monitoring

Agentry App Development

940 SAP Mobile Platform

Basic Search Parameters

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application.

• User: SAP user ID. Manually type in the SAP user ID or click the white box icon to the
right of the field for optional search methods.

• Last Activity Time: Use the drop-down menu to select a window of time. The default is
set to All, which is equal to selecting all activity times. All times are available unless the
historical logs have been purged in SAP.

• User GUID: User GUID assigned to their mobile device.
• Search: Click Search to initiate the search process. If no results are valid in the search

parameters, the message No Data Found displays in the Search Results table. If valid data
is returned, it displays in the Search Results table according to the Settings and Filter setup
configured by the administrator.

• Send Email: Press to start the Send System Emails action.

Search Result
When you click Search in the Basic Search Parameters section, the Search Result table is
populated. Click on the rectangle to the left of the first column in the desired row to populate
the tabs in the Mobile User Detail section below.

Agentry App Development

Agentry App Development 941

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Mobile User Detail - General Info

The General Info tab displays detailed information about the specific user highlighted in the
Search Results table.

Mobile User Detail - General Info

• User Name: SAP User ID
• User GUID: User GUID for the specific mobile application chosen. Each user has a

different GUID for each mobile application assigned in SAP.
• SAP Personnel Number: User ID number assigned to the user in SAP
• Middleware User Group ID: Group ID assigned to the specific user through the User

Management panel in the Administration portal
• Lock Flag: If checked in the User Management panel, the user is unable to access the

mobile application from the mobile device. This is used if a mobile device is lost or stolen
and the application data must be made inaccessible.

• Mobile Application: Name of the mobile application chosen in the Basic Search
Parameters section

Agentry App Development

942 SAP Mobile Platform

• Middleware Svr SerNo: Server serial number of the middleware server that is running the
chosen mobile application

• Created By: SAP user ID of the person who created the user shown
• Creation Time Stamp: Creation time and date of the mobile user
• Last Changed By: SAP user ID of the person who modified information of the mobile

user shown
• Changed Time Stamp: Time and date when the mobile user’s information was modified

Mobile User Detail - Client Object Info

The Client Object Info tab displays everything that is contained on the client device associated
with a specific mobile user GUID as of the last transmit.

Mobile User Detail - Client Object Info

• Object GUID: Internal identifier of the record
• Middleware Object Ty: Type of object, such as notification or work order
• Middleware Object Ky: Object key, or ID of the object
• Changed Time Stamp: Time and date the object was entered into the system

Note: For details on how to disable and re-enable items, see the topic “Disabling and Re-
enabling Contacts, Transactions, and FactSheets” in the “Common Changes” chapter.

Mobile User Detail - Cross Reference List

When a user creates an object on their mobile device, that object generates a local key. Upon
the next transmit, SAP assigns a key to the object and maps the newly-assigned object key to
the old local object key that was generated by the client device. The cross reference list
displays the object GUIDs for a mobile application on a mobile device and their local object
keys mapped to their SAP object keys.

Mobile User Detail - Cross Reference List

Agentry App Development

Agentry App Development 943

• MDW Reference GUID: Standard internal ID of the record
• Middleware Object Ty: Object type, such as work order or notification
• Source Object Ky: Object key originating from the client device, which is then mapped to

the key assigned to the object by SAP
• Target Object Ky: Key that SAP assigns to the object, which is then mapped to the key

originating from the client device

Mobile User Detail - Outbound Message Queue

The Outbound Message Queue tab displays all messages in the SAP outbound message queue
sent through the client device associated with the user and their mobile application highlighted
in the Search Results table.

Mobile User Details - Outbound Message Queue

• Message GUID: GUID assigned to the message when it was created
• Channel ID: Channel for the outbound message that identifies the source of the message
• Message No.: Readable identifier of the message as an incremental integer
• Data Package ID: The data package identifier, if a data package is associated with the

outbound message
• Expiration Time: Time set for the message to expire
• Message Status: Status of the message. Statuses include New, Read, Send, and Confirm.

Agentry App Development

944 SAP Mobile Platform

• Confirmation Time: Time the message was successfully received on the device
• Read Time: Time the message was opened, or read, on the device
• Send Time: Time message is sent from the mobile device
• Creation Time Stamp: Time message was created, or started, on the system

Mobile User Detail - Communication Sessions

The Communication Sessions tab displays all transmissions associated with the user and the
mobile application highlighted in the Search Results table.

Mobile User Detail - Communication Sessions

• Session GUID: Internal identifier of the session
• Server GUID: Identifier of the server on which the user initiated the session
• Active Flag: Indicator that a user stayed connected to the server throughout the session. If

a client remains connected, the active flag is shown as 1.
• Close Time Stamp: Time and date the session was ended
• Creation Time Stamp: Time and date the session was initiated

Monitoring - Push Instance Monitor

The Push Instance Monitor panel allows an administrator to search for and view details of
push instances by specific mobile applications.

Monitoring - Push Instance Monitor

Agentry App Development

Agentry App Development 945

Basic Search Parameters

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application.

• Scenario ID: Type of push, selected from the drop-down menu, to search for in the pushes
in the application

• Time Limit: Use the drop-down menu to select a window of time. The default is set to All,
which is equal to selecting all push instances. All instances are available unless the
historical logs have been purged in SAP.

• Recipient User ID: User ID receiving the push
• Status Included: Status of the push instance on the middleware server. Choosing no status

returns all push instances on the mobile application. Multiple statuses can be chosen for
the search. The following are the different status levels and their meanings:
• NEW - Set when data in SAP has changed and the system configuration indicates that a

push process is needed. No other information is available or set when status is in the
NEW stage.

• ENQUEUE - Set when the push process program is running on the data that triggered
the push process. During this time, the data is locked so that it cannot be changed
during the push process.

• PROCESS - Standard status. The push process agent processes the instance in the
push register and determines the proper recipients of the push data. The push data have
been prepared for each recipient in the outbound queue in order for Agentry to pick it
up.

• CANCEL - Set for a push instance if there are subsequent newer push instances in the
push register for the same work order. In this case, only the last push instance is
processed in order to prevent multiple pushes for the same work order sent to the same
mobile device.

Agentry App Development

946 SAP Mobile Platform

• COMPLETED - Set when either no recipient is determined or all push recipients for
the push have CLNT_CONF status with respect to the recipient’s push message.

• SRV_COMP - Set for a push instance when all recipients have SRV_CONF status
with respect to the individual push recipient’s push message. If there are multiple push
messages for the same work order and the recipients are waiting for Agentry to pick up
the work orders, only the latest push event is sent to Agentry and the rest are set to
SRV_CONF automatically by the push fetch BAPI. This prevents multiple copies of
the same work order sent to each client.

• Max. No. of Records: Default is set to 2,000. Type in maximum number of records
returned.

• Search: Click Search to initiate the search process. If no results are valid in the search
parameters, the message No Data Found displays in the Search Results table. If valid data
is returned, it displays in the Search Results table according to the Settings and Filter setup
configured by the administrator.

Search Result
When you click Search in the Basic Search Parameters section, the Search Result table is
populated. Click on the rectangle to the left of the first column in the desired row to populate
the tabs in the Push Instance Detail section below.

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Push Instance Monitor - Subscriber View

The Subscriber View tab on the Push Instance Monitor panel provides a recipient list
containing all users and detailed information about the push instance associated with their user
IDs.

Push Instance Detail - Subscriber View

Agentry App Development

Agentry App Development 947

• User Name: Name of user who received the push instance
• Current Status: Status of the push instance at the time the search was performed
• Creation Time: Time the push instance was created
• Client Confirmation Time: Time and date that the client confirms it has received the

push
• Server Confirmation Time: Time and date when the middleware server confirmed it

received the push in its cache
• Cancellation Time: Time and date of a manual or automatic cancellation of a push. For

example, if a new push is created, the old pushes can be manually cancelled, as they are
now out of date.

• Expiration Time: Time and date of a push expiration. If a client does not pick up a push
before it expires, it is shown here.

• Middleware Server Connection By User: Name of the Agentry server that the user is
connected to.

• Outbound Message ID: Message ID
• Internal Package ID: Data package ID
• OTrigger Proc. Time: Time and date when the outbound trigger was processed

Push Instance Monitor - Push Scenario Info

The Push Scenario Info tab on the Push Instance Monitor panel provides technical information
about the selected push instance highlighted in the Search Result table. Information displayed
in this tab is created and configured using the Configuration portal, Push Scenario Definitions
panel.

Push Instance Detail - Push Scenario Info

Agentry App Development

948 SAP Mobile Platform

• Scenario ID: Name of the push instance scenario
• Validity (Hr): Hours that the push scenario remains valid after the initial push to clients
• Mobile Application: Name of the mobile application where the push instance resides
• Source Type: Type of source object associated with the push scenario
• Source Object: Name of the mobile data object that contains the push scenario. The

source object is created or modified in the Mobile Data Object configuration panel in the
Configuration portal.

• Source Handler: Class handler associated with the source object for the push scenario
• Subscriber Type: Corresponds to the Subscriber Type in the Subscriber Settings section

of the Push Scenario Definition panel in the Configuration portal.
• Distribution Type: Corresponds to the Distribution Type in the Distribution Settings

section of the Push Scenario Definition panel in the Configuration portal. MDO, or mobile
data object, is the only setting available.

• Distribution Object: Name of the distribution object that is set in the Distribution
Settings section of the Push Scenario Definition panel in the Configuration portal.

• Distribution Handler: Name of the distribution handler associated with the mobile data
object contained in the push instance. The distribution handler is selected or changed in the
Mobile Data Object Configuration panel, General Setting tab in the Configuration portal.

Monitoring - Communication Session Monitor

The Communication Session Monitor panel provides an administrator a detailed history of
communications on a specific mobile application. The communications monitor can provide a
history for everything in the system, unless the history has been purged from SAP.

Monitoring - Communication Session History Monitor

Agentry App Development

Agentry App Development 949

Basic Search Parameters

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application.

• Server ID: Name of the middleware server
• Time Limit: Use the drop-down menu to select a window of time. The default is set to All,

which is equal to selecting all communication sessions. All sessions are available unless
the historical logs have been purged in SAP.

• User: SAP user ID. Manually type in the SAP user ID or click the white box icon to the
right of the field for optional search methods.

• Online Session Only: Select from True or False:
• True - Picks up online-only communication sessions
• False - Picks up both online and offline communication sessions

• User GUID: User GUID assigned to their mobile device.
• Max. No. of Records: Default is set to 2,000. Type in maximum number of records

returned.

Search Result
When you click Search in the Basic Search Parameters section, the Search Result table is
populated. Click on the triangle to the left of the initial search result row to display the tree of
results.

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Monitoring - Object Mobile Status Monitor

The Data Object Mobile Status Monitor provides the administrator a history of SAP objects
affected by a mobile user’s actions. The actions are recorded in SAP and the monitor panel
provides a user-friendly way to access the information.

Agentry App Development

950 SAP Mobile Platform

Monitoring - Data Object Mobile Status History Monitor

Basic Search Parameters

• Mobile Application: Name of the mobile application. Use the drop-down menu to choose
the correct mobile application.

• Last Changed Time: Use the drop-down menu to select a window of time. The default is
set to All, which is equal to selecting all mobile object change times. All logs are available
unless the they have been purged in SAP.

• Object Type: Type of object defined in the mobile application definition.
• Mobile Status: Historical view of status changes for the mobile object
• Sort Field: Additional information about the object, if any is provided
• Object Key: Internal ID of the object
• Max. No. of Records: Default is set to 2,000. Type in maximum number of records

returned.

Search Result
When you click Search in the Basic Search Parameters section, the Search Result table is
populated. Click on the triangle to the left of the initial search result row to display the tree of
results.

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the

Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

Agentry App Development

Agentry App Development 951

• Search Result Table: Table that displays the search results. Columns are dependent on the
configuration built through the Settings link above the table. See the section
Administration Portal - Management Settings for details on specific settings.

Administration Portal - Statistics

The Statistics panel is used to view statistics in the following three areas:

• Communication Session Statistics
• Application BAPI Wrapper Call Statistics
• Push Scenario Statistics

The statistics panels display graphical views of various key performance indicator (KPI) data.
The Statistics panels are view-only. An administrator cannot create new information or
change existing information through these panels.

There are three tabs for each statistic, each allowing a different graphical view: Daily, Weekly,
and Monthly. The following examples depict a representation of each type of graph.

The Daily Chart tab shows a graphical representation of the chosen statistics broken down into
hours.

Figure 16: Daily KPI Chart

The Weekly Chart tab shows a graphical representation of the chosen statistics broken down
into days, with a total of seven days.

Agentry App Development

952 SAP Mobile Platform

Figure 17: Weekly KPI Chart

The Monthly Chart tab shows a graphical representation of the chosen statistics broken down
into days, with a total of the amount of days in the selected month.

Figure 18: Monthly KPI Chart

Agentry App Development

Agentry App Development 953

Retrieving and Recalculating Statistics

Each panel in the Statistics section automatically displays the current date’s statistics. If
statistics are needed for prior dates, use the following procedure.

1. Click the calendar icon to the right of the date field and choose the desired date.

2. Click the [Refresh] button to refresh the statistics for the chosen date.

The new statistics graph displays in the KPI table.

3. If the current date is selected, to check if the statistics have changed, click [Re-calculate
Statistics] in order to recalculate.

Statistics - Communication Session Statistics

The KPIs available through the Communication Session Statistics panel display information
on the system operation status for the chosen date.

Statistics - Communication Session Statistics

Daily KPI Summary

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.

Agentry App Development

954 SAP Mobile Platform

• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel
spreadsheet

• Statistics Category/Characteristic Name/Characteristic Value: Use to filter statistics
further. Select from the choices available through the dropdown menus. If the field is
blank, no choices are available.

• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the
Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Daily KPI Summary table: Contains rows that display which statistics are available for
the selected date. Highlight a row to display that graph. The graphs available are as
follows:
• KPI - COMM_SESSION_LOAD: The KPI - COMM_SESSION_LOAD is a

graphical representation of the system load for the date chosen. The more sessions
there are per hour, the heavier the load on the system, which could cause performance
issues. Session load statistics are based on the number of sessions connecting; it does
not take into account duration of the sessions.

• KPI - CONNECTING_USER_COUNT: The KPI -
CONNECTING_USER_COUNT is a graphical representation of the total users
connecting to the system for the date chosen. Data gathered for this graph does not take
into account a single user logging into multiple sessions; it only counts unique user IDs
connecting to the system.

Statistics - Application BAPI Wrapper Call Statistics

The KPIs available through the Application BAPI Wrapper Call Stats panel display
information on the number of BAPI calls for the chosen date. This statistical information can
be useful in troubleshooting end user behaviors and use of the mobile application(s).

Statistics - Application BAPI Wrapper Call Statistics

Agentry App Development

Agentry App Development 955

Daily KPI Summary

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Statistics Category/Characteristic Name/Characteristic Value: Use to filter statistics

further. Select from the choices available through the drop-down menus. If field is blank,
no choices are available.

• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the
Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Daily KPI Summary table: Contains rows that display which statistics are available for
the selected date. Highlight a row to display that graph. The graphs available are as
follows:
• KPI - CRT_BAPI_CALL_COUNT: The KPI - CRT_BAPI_CALL_COUNT is a

graphical representation of how many BAPI calls were detected. The more calls there
are per hour, the heavier the load on the backend system, which could cause
performance issues. BAPI call statistics are based on the number of calls; it does not
take into account what is called during the transaction process.

• KPI - ERROR_BAPI_CALL_COUNT: The KPI - ERROR_BAPI_CALL_COUNT
is a graphical representation of how many BAPI calls returned with an error message.
These statistics can provide a good indicator to begin troubleshooting performance
issues with the system, if necessary.

• KPI - GET_BAPI_CALL_COUNT: The KPI - GET_BAPI_CALL_COUNT is a
graphical representation of how many GET BAPI calls were made.

• KPI - DEL_BAPI_CALL_COUNT: The KPI - DEL_BAPI_CALL_COUNT is a
graphical representation of how many DELETE BAPI calls were made.

• KPI - UPD_BAPI_CALL_COUNT: The KPI - UPD_BAPI_CALL_COUNT is a
graphical representation of how many UPDATE BAPI calls were made.

• KPI - INITSYNC_BAPI_CALL_COUNT: The KPI -
INITSYNC_BAPI_CALL_COUNT is a graphical representation of initial
synchronizations (i.e., all data is transmitted to a mobile device, not just data changed
since last transmit) on the system. If a large amount of initial synchronization
transmissions are present on the system for a specific time period, it could indicate
issues with the system.

• KPI - ALL_BAPI_CALL_COUNT: The KPI - ALL_BAPI_CALL_COUNT is a
graphical representation of all BAPI calls made during the time period.

Agentry App Development

956 SAP Mobile Platform

Statistics - Push Scenario Statistics

The KPIs available through the Push Scenario Statistics panel display the amount of pushes
that occurred for the chosen date on an hourly basis. This statistical information can be useful
in determining peak loads and to assess factors that drive push scenarios.

Statistics - Push Scenario Statistics

Daily KPI Summary

• View: If the administrator sets up different views using the Settings link, the drop-down
menu will display those view names. Select a different view for specific data needs.

• Print Version: If enabled, creates a PDF version of the data in the Search Results table.
• Export to Microsoft Excel: Exports all data in the Search Results table to an Excel

spreadsheet
• Statistics Category/Characteristic Name/Characteristic Value: Use to filter statistics

further. Select from the choices available through the drop-down menus. If field is blank,
no choices are available.

• Filter/Delete Filter: If the Filter tab is utilized in the Settings window accessed by the
Settings link, click the Filter link to display filter choices in order to further filter the data
displayed. If a filter is in use, click Delete Filter to remove the filter and display all data
returned by the initial search performed.

Agentry App Development

Agentry App Development 957

• Settings: Click this link to display a Settings panel in order to modify how search results
are displayed. See the section on changing Administrator settings for more details.

• Daily KPI Summary table: Contains rows that display which statistics are available for
the selected date. Highlight a row to display that graph. The graphs available are as
follows:
• KPI - PUSH_INSTANCE_LOAD: The KPI - PUSH_INSTANCE_LOAD is a

graphical representation of total number of pushes on the system.
• KPI - PUSH _INST_CANCEL_COUNT: The KPI -

PUSH_INSTANCE_CANCEL_COUNT is a graphical representation of total number
of push instances with a CANCEL status.

• KPI - PUSH _AVG_TIME_CMPLETE: The KPI -
PUSH_AVG_TIME_CMPLETE is a graphical representation of the average time
between when a push instance is created and when it reaches a COMPLETE status.

• KPI - PUSH _AVG_TIME_PROCESS: The KPI - PUSH_AVG_TIME_PROCESS
is a graphical representation of the average time between when a push instance is
created and when it is processed by the push processor.

• KPI - PUSH _AVG_TIME_SVR_CONF: The KPI -
PUSH_AVG_TIME_SVR_CONF is a graphical representation of the average time
between when a push instance is created and when it reaches SVR_CONF status.

• KPI - PUSH _AVG_TIME_CLNT_CONF: The KPI -
PUSH_AVG_TIME_CLNT_CONF is a graphical representation of the average time
between when a push instance is created and when it reaches CLNT_CONF status.

• KPI - PUSH _CLNTCNF_TIME_TOPRANK: The KPI -
PUSH_CLNTCNF_TIME_TOPRANK is a graphical representation of the shortest
time between when a push instance is created and when it reaches CLNT_CONF
status.

• KPI - PUSH _CLNTCNF_TIME_LOWRANK: The KPI -
PUSH_CLNTCNF_TIME_LOWRANK is a graphical representation of the longest
time between when a push instance is created and when it reaches CLNT_CONF
status.

Copying an Object to the Customer Namespace

The following procedure provides information on making a copy of a mobile data object
(MDO) or exchange object within the Agentry SAP Framework. For configuration changes
where an MDO or exchange object is being modified, it is recommended that a copy is first
made and placed in the customer namespace. In any of the procedures provided where an
MDO or an exchange object should be copied, refer to this procedure for instructions.
Copying these elements before making a modification ensures changes made to the
application can be easily rolled back without affecting the originals.

Once a copy is made of an MDO and that copy is then modified for a configuration change, it
will likely be necessary to adjust the BAPI wrapper assignment to reference the new MDO.
Similarly, when an exchange object is copied and then modified, the EFI trigger assignment
may need to be changed to the new exchange object. These procedures are covered separately.

Agentry App Development

958 SAP Mobile Platform

1. Log into the Configuration Panel of the Agentry SAP Framework.

2. Click either Exchange Object Configuration or Mobile Data Object Configuration
from the navigation menu.

The Data Object Detail panel opens.

Note: Figures shown in this procedure are taken from the Mobile Data Object
configuration page. Screens may look different when configuring an exchange object. For
either, the ability to copy is provided.

3. In the list of MDOs or exchange objects, select the one to be copied.

Agentry App Development

Agentry App Development 959

4. Click Copy.

5. In the Basic Data, or main panel object ID field, add a ‘Z’ to the beginning of the object
name.

6. When finished, click Save to save the object copy.

A copy of the original object is created in the SAP customer namespace. The element can
now be modified, with the back up element available for rollback purposes, if necessary.

Adding a New Downstream Synchronization Process

The exchange process detects changes from transaction updates and records the change
activity into an exchange table /SYCLO/<fieldname>_EX. The exchange table information
is used by the mobile data object class handler to accomplish the delta exchange process so
that the mobile application only sends and receives delta data using a time stamp.

Agentry App Development

960 SAP Mobile Platform

The source code plug-in is implemented using the enhancement framework. To implement
this, either the multi-instance BADI or the enhancement spot must include source code to
update the exchange table for the current change. In order to implement the enhancement, the
location of the enhancement must be identified. The location of the enhancement should be
such that the old/new values of the changed records are available. These old/new values will be
used by the exchange process to identify changes based on field selections and filter
conditions configured for the exchange object.

The source code plug-in is either an include program /SYCLO/<module>_EFI_<key field
name>_EX_INCL or an update module /SYCLO/<module>_<exchange
name>_SAVE_EX. If the enhancement is being implemented in an UPDATE module, the
plug-in is an INCLUDE program. Otherwise, it is an UPDATE module (the INCLUDE
program is called within this module) to ensure the exchange table is updated in an UPDATE
TASK.

The INCLUDE program is then assigned to an exchange object in the Agentry SAP
Framework Configuration portal to activate the actual change detection process.

Agentry App Development

Agentry App Development 961

Implementing Downstream Synchronization

1. Implement the exchange process in SAP:

If there are similar objects already existing in SAP for any of these steps, it may be easier to
select that object, right click, and choose the Copy menu item. After the object is copied,
right click and select the Change menu item to make the necessary changes.

Agentry App Development

962 SAP Mobile Platform

a) Add or modify the appropriate exchange table to store the change activity record.
b) Add or modify the appropriate lock object to trigger the lock mechanism for the update

process.
c) Add or modify the exchange class handler.
d) Add or modify the methods by redefining the method

GET_FIELD_SELECTOR_TABLES to enable the field selector function for the
exchange object.

e) List the database tables supported by the exchange handler for change detection field
selection and pass it to ET_FLDSEL_TABLE_LIST.

f) If required, redefine the method GET_TABLE_FILTER_LIST to enable the change
detection filter function for the class handler. This provides the ability to restrict
change detection based on data content.

g) List the filters supported by this exchange class handler along with the table name and
the field name and pass it to the output table ET_DATA_FILTERS. Take the data object
filter name from the technical properties of the field.

h) Add or modify the EFI enhancements.
i) Add or modify the EFI includes and insert in the appropriate enhancement location.

The following areas may need to be added or modified when developing the source
code plug-in:

• Determine the current transaction update mechanism.
• Construct an object key for the exchange table.
• Build the data table with old and new values to detect changes based on field

selections and filter conditions configured for the exchange object.
• Call the exchange object class handler method UPDATE_EXCHANGE to update

the exchange table with the current action and timestamp.
j) Add or modify the handler base by inheriting all the properties from the superclass /

SYCLO/CL_CORE_EX_HANDLER_BASE. This superclass contains the base
methods to fulfill the business logic related to the exchange process.

k) Add or modify the subclass.

2. Implement the downstream synchronization in Agentry Editor:

a) Create new steplets for fetches and transactions.
b) Create the associated stephandlers.
c) Create the new POJO for the exchange object.

3. Add the new exchange object in the Agentry SAP Framework Configuration portal:

a) Add or modify the exchange object.
b) Add or modify the mobile data object.
c) Add or modify the BAPI wrapper and assign the object to the BAPI wrapper.
d) Add or modify the EFI.

Agentry App Development

Agentry App Development 963

Working with BAPI Wrappers

BAPI wrappers are an element type within the Agentry SAP Framework. The BAPI wrappers
are the elements through which calls are made by the SAP Agentry Server to the elements
configured in the MDOs, (i.e., the GET, CREATE, UPDATE, and DELETE methods). A BAPI
wrapper is assigned to an MDO in the Agentry SAP Framework. The BAPI wrapper defines
the inputs and outputs for the calls made to it and the data it returns to the SAP Agentry
Server.

When making modifications or configuration changes to MDOs, and when a copy of the MDO
is made in the customer namespace as a a part of the modification, the assignment settings of a
BAPI wrapper must be changed to reference the new copy.

Changing the MDO Assignment of a BAPI Wrapper

Once an MDO is created, it must be assigned to a BAPI wrapper. During runtime, the MDO
invoked is determined based on the BAPI wrapper assignment. This procedure describes the
steps needed to change a BAPI wrapper’s MDO assignment.

1. Open the Syclo Agentry SAP Framework Configuration portal through SAP.

2. Click the BAPI Wrapper Configuration menu item.

3. Navigate to and highlight the BAPI wrapper that will use the new or modified MDO or
Z-MDO in the BAPI Wrapper List tree.

Agentry App Development

964 SAP Mobile Platform

4. Click the Assignment tab.

5. Click Change.

6. Use the Add button in the Mobile Data Object Assignment List panel to add the new Z-
MDO.

7. Click the arrow to the right of the Mobile Data Object ID field and select the desired MDO
from the drop-down list.

8. Change the Method Type field to select the MDO method to be called by the BAPI
wrapper.

9. Highlight the original MDO in the Mobile Data Object Assignment List table and click
Delete.

The original is no longer assigned to the BAPI wrapper, leaving the newly-added Z-MDO.

10. Click Save to save the changes.

Agentry App Development

Agentry App Development 965

Changing MDO Filter Rules

Many of the common configuration changes made for an implementation involve the
modification or addition of one or more filter rules within an MDO. In SAP, each user is
assigned a role-based profile with authorization permissions on viewable data and available
activities. For example, a user working in one plant should not be able to view data for another
plant. When business activities performed by a user are mobilized through the mobile
application, the ability to extend the same restrictions to the mobile application is necessary.
Data filter rules provide the function to restrict data access for mobile applications.

This procedure describes the steps necessary, in general, to modify a data filter rule for an
MDO. The specific settings of a given rule will vary depending on the overall nature of the
change being made. Subsequent procedures will reference this process and provide the
detailed values and settings for the filter rules involved in the specific change.

1. Open the Agentry SAP Framework Configuration portal through SAP.

2. From the ConfigPanel Home page, click the Mobile Data Object Configuration menu
item.

The Mobile Data Object Configuration page displays.

3. Expand the Mobile Data Object tree in the Data Object Navigation Tree section and
highlight the MDO created earlier in this procedure.

4. Expand the desired method in the Defined Filters list.

5. Under the method are listed all current filters defined for the method. Select the filter
whose rules should be modified.

The current rule filter settings are displayed in the Rule Editor section. All existing rules
for the filter are displayed in the Rule List table.

6. To add a new rule, edit an existing one, or delete a rule from the filter, click Change at the
top of the page. Many of the fields in the Rule Editor section become editable, and two new
buttons are displayed to the right of the Rule List field, Create and Delete.

7. To delete a rule from the filter, select that rule in the list and click Delete. If no further
changes are to be made, click Save at the top of the page to completely remove the rule
from the filter. If additional changes are still needed, the filter can be saved after all
changes are complete.

8. To add a new rule to the filter, click Create to the right of the Rule List. To edit an existing
rule within the filter, select it in the Rule List. This will display the current settings for the
rule in the DOF Rule Type, Sign, Option, Low Value, High Value, and Active Flag fields
within the Rule Editor section.

9. Set or modify the editable fields according to the needs of the application. For a detailed
description of all fields, see Mobile Data Object - Data Filter.

Agentry App Development

966 SAP Mobile Platform

10. Be sure the Active Flag field is set to true for each added or edited field before saving
changes. Inactive filter rules will have no effect on the synchronization processing. An
Active Flag is set by clicking in the box in order to display a checkmark.

11. When all desired changes have been made to the filter rules click Save to apply those
changes.

Creating a New Filter Rule

1. Click the BAPI Wrapper Settings in the Navigation Panel.

2. Navigate to the BAPI Wrapper that uses the MDO you are modifying, in the BAPI
Wrapper List.

3. Click the Assignment Tab and click the Change Button.

4. Use the Add button to add ZMDO version of the complex table, with the newly created
field. Use the delete button to delete the original complex table.

5. Click the Save button to save the changes.

6. From the SAP user menu, click SMART Mobile Suite Configuration.

This will launch a web browser, which will log into the SMART Mobile Suite
Configuration Site.

7. Click the Mobile Data Object Settings.

This will display the Mobile Data Object Settings Drop down menu:

8. Expand this Menu and select desired Data object for the data filter.

9. Select the Data Filter Tab.

10. Click the Create button near the top of the screen.

11. Use the filer settings to define the new filter.

12. Click the Save button to save your changes.

13. Use the ATE to verify the filters perform as expected on the client. Validate the expected
material is fetched to the device, by paying attention to the transmit log as it completes.

Adding a New Data Table

1. Create a new data table in the Configuration portal.

a) Create a new subclass in the Z namespace from /syclo/cl_dt_DO.
b) Override get_data_table method to retrieve data from SAP.
c) Override get_data_filter_list method to support any filter logic.
d) Create a new mobile data object in the Z namespace, referred to as a Z-MDO.

2. Add the new data table definition to Agentry.

a) Open the SAP project in Agentry.

Agentry App Development

Agentry App Development 967

b) Create the new data table.
c) Make any other applicable changes to the application that is using the new data table,

such as displaying the new value or modifying rules to search on the new values.

3. Configure Java synchronization between the data table and Agentry.

a) Open the appropriate Java project for the SAP application.
b) Modify the new data table class created when the data table definitions was added to

the Agentry application project.
c) Create the associated stephandlers.
d) Create the new POJO for the data table.
e) Publish the application to the SAP Agentry Development Server in preparation for

testing. Restart the Server as changes were also made to the Java logic in support of the
new data table.

Next

Perform a transmit from the Agentry Test Environment and verify that the new data table and
all related functionality are producing desired results.

Adding a New Complex Table

Adding a new complex table to the application requires four main tasks:

• Creating or modifying the exchange tables and associated objects in SAP.
• Using the Agentry SAP Framework Configuration portal to create a new MDO or Z-MDO

for the complex table.
• Creating new complex table Java class, step handler and POJO for the new complex table

in the Java editor in Eclipse.
• Using Agentry Editor to modify the application to make use of and support the new

complex table.

1. Create or modify the exchange process in SAP

a) Determine the enhancement spot in SAP if an exchange process is required. An
enhancement spot is a location in the SAP code where access is available to the data
that is changing either through a transaction or a BAPI.

b) Create the enhancement implementation. The enhancement implementation should be
in an update module.

c) Create the exchange table.
d) Create the lock object associated with the exchange table.
e) Create the EFI implementation. The EFI implementation reads the data being changed

in SAP and calls the method /syclo/cl_cor_exch_serve=>update_exchange to update
the exchange table.

f) Determine and create the structure of the data that is sent back in the
ET_COMPLEX_TABLE parameter of the BAPI wrapper.

Agentry App Development

968 SAP Mobile Platform

g) Determine and create the structure of the deleted records that are sent back in the
ET_EXCHANGE_ACTION_DELETED parameter of the BAPI wrapper.

h) Create the MDO handler class, which will inherit from the class /SYCLO/
CL_CORE_CT_HANDLER.

2. Create a new complex table in the Configuration portal

a) Create a new complex table MDO or copy an existing MDO to the Z-namespace.
b) If needed, create a new BAPI wrapper in the Z-namespace using the BAPI include

template /syclo/core_bapi_template_incl.
c) Assign the new Z-MDO to the new BAPI wrapper, or assign the new Z-MDO to an

existing BAPI wrapper, depending on your configuration.

3. Create the complex table in the Agentry Editor

a) Create a new complex table in Agentry Editor to make use of and support the data in
SAP.

b) Create the field definitions within the complex table to
c) Add any necessary indexes to the complex table.

4. Configure Java synchronization between the complex table and Agentry

a) Open the appropriate Java project for the SAP application.
b) Modify the new complex table class created when the complex table definitions was

added to the Agentry application project.
c) Create the associated step handlers.
d) Create the new POJO for the complex table.
e) Publish the application to the SAP Agentry Development Server in preparation for

testing. Restart the Server as changes were also made to the Java logic in support of the
new complex table.

Next

Perform a transmit from the Agentry Test Environment and verify that the new complex table
and all related functionality are producing desired results.

Adding a New Data Object

Adding a new data object to the application requires four main tasks:

• Redefine methods in SAP to allow for the new data object.
• Using the Agentry SAP Framework Configuration portal to create a new MDO or Z-MDO.
• Creating new data object Java class, stephandler and POJO for the new data object in the

the Java editor in Eclipse.
• Using the Agentry Editor to modify the application to make use of and support the new

data object.

1. Redefine methods in SAP

Agentry App Development

Agentry App Development 969

a) Redefine the get_field_selector_tables method for the class handler to enable field
selector function for the mobile data object.

b) In the get_field_selector_tables method, list the database tables supported by the class
handler GET method for the result set field selection ET_FLDSEL_TABLE_LIST.

c) List out the mandatory key fields from the required tables and pass them to the output
table ET_REQ_FIELD_LIST to ensure that all key fields are included in the output
selection.

d) Redefine the get_data_filter_list method to enable data filter function for the class
handler and define the necessary filter rules to control what data can be viewed by the
mobile application.

e) List the filters supported by the get_data_filter_list method along with the table and
field names and pass them to the output table ET_DATA_FILTERS. Take the data
object filter (DOF) name from the technical properties of the field.

2. Create a new data object in the Configuration portal

a) Create a new mobile data object in the Z namespace, referred to as a Z-MDO.
b) Create a new subclass in the Z namespace from /syclo/cl_DO_Handler_base.
c) Override the GET, CREATE, UPDATE, and DELETE methods as needed to retrieve

data from SAP.
d) Create a new BAPI Wrapper in the Z namespace using the BAPI include template: /

syclo/core_bapi_template_incl. Or, assign the Z-MDO to an existing BAPI wrapper.
e) Assign the new Z-MDO to the new BAPI wrapper if it was not assigned to an existing

BAPI wrapper.

3. Configure Java synchronization between the data object and Agentry

a) Create new steplets for fetchs and transactions.
b) Create the associated stephandlers.
c) Create the new POJO for the data object.

4. Add the new data object definitions to Agentry

a) Open the SAP project in Agentry.
b) Create the new data object to represent the business object from SAP.
c) Create the transactions and read steps of the data object.
d) Create any necessary fetches or transactions associated with the data object.
e) Publish the application to the SAP Agentry Development Server in preparation for

testing. Restart the Server as changes were also made to the Java logic in support of the
new data object.

Next

1. Perform a transmit from the Agentry Test Environment and verify that the new data object
and all related functionality are producing desired results.

2. Publish the application, including the supporting Java synchronization logic, to the SAP
Agentry Production Server for deployment.

Agentry App Development

970 SAP Mobile Platform

Adding new Values to be Retrieved for Mobile Application Definitions

Prerequisites

The following items must be addressed prior to performing this procedure:

• The desired values to be added to those being retrieved should be determined and noted, as
should the tables within which they reside within SAP.

• The person performing this procedure must have access to the Agentry SAP Framework
Configuration Panel and have permissions to change the configuration settings of the
elements within it.

Task

Use this procedure to add new fields to complex tables or objects. The following procedure
uses a complex table as an example. However, these steps will accomplish the same goal to add
new values to object definitions as well. Where there are differences, they are noted in this
procedure.

1. Within the Agentry SAP Framework Configuration Panel ConfigPanel Home page, select
the menu link Mobile Data Object Configuration. Select the proper MDO from the list
on the left of the configuration page, which displays its current settings.

2. Copy this MDO to the Z namespace. All changes to the MDO should be made to this new
copy in the Z namespace. The original MDO should not be modified.

For information on copying an MDO, see the procedure section “Copying an MDO or
Exchange Object to the Customer Namespace.”

3. Select the additional fields in the MDO:

a) Navigate to the Mobile Data Object Configuration panel in the Configuration Panel
and double-click the appropriate MDO.

b) Click the Result Set Field Selection tab and click the Change button.
c) In the Field Selection Detail pane, expand the table to which active fields will be added.

The Field Active column displays in white, with check mark boxes enabled.

Agentry App Development

Agentry App Development 971

d) Scroll through the fields to determine which ones to enable or disable. Checking the
box enables the field, while un-checking the box disables the field.

e) Click Save to save your changes.

4. Navigate to the ConfigPanel Home page and select the BAPI Configuration link. In this
page, change the BAPI wrapper assignment of the proper BAPI wrapper to use the MDO in
the Z namespace just modified in the previous step.

For information and instructions on changing a BAPI wrapper’s MDO assignment, see the
procedure section “Changing the MDO Assignment of a BAPI Wrapper.”

5. Complete Java synchronization through Eclipse:

a) Open the appropriate Java project in Eclipse for the mobile application.
b) Locate the appropriate BAPI wrapper Java file in the project. You can find this by

locating the BAPI wrapper name that is associated with the MDO in the Configuration
portal. Copy this BAPI wrapper name and perform a file search within Eclipse to locate
the correct Java file.

c) Open the POJO declaration within the Java file.
d) Locate the public strings and the properties. Add new data members to the class

matching the fields selected for retrieval in the MDO. Also define the new setter
methods for those selected fields.

Agentry App Development

972 SAP Mobile Platform

e) Save and compile the Java code by running the build-mm.xml script. This should
initially be performed on the SAP Agentry Development Server to allow for testing
before publishing to the Production server.

6. Add the new fields to the complex table or object definition in Agentry:
a) Open the SAP project in Agentry.
b) Navigate to the complex table or object that will contain the newly-added fields.
c) For complex tables, select the Fields tab and click the green plus icon to add a new

field.
d) Add the new field using the wizard, naming it to match the name given to the values in

the Java class. When done, click the Finish button.
e) Click on the Indexes tab to add new indexes if necessary.
f) For objects, select the Properties tab and click the green plus icon to add a new field.
g) Add the new property using the wizard, naming it to match the name given to the values

in the Java class. When done, click the Finish button.
h) Make any other applicable changes to the application that is using the complex table or

object, such as displaying the new value or modifying rules to search on the new values.
i) Publish the application to the SAP Agentry Development Server in preparation for

testing. Restart the SAP Agentry Development Server as changes were also made to
the Java logic in support of the new fields.

With the completion of this procedure, one or more new values will be retrieved as a part of the
data for the object or complex table definition. These new values may be displayed, edited,
searched on, or used in any other appropriate manner on the client.

Next

When these modifications are complete, the application should be thoroughly tested. It should
be verified that the values added are retrieved as expected. Any functionality related to these

Agentry App Development

Agentry App Development 973

values should also be tested. Once testing is successful, the modifications made should be
migrated to the production system according to migration processes in place at the
implementation site.

Adding New Fields to an Exchange Object

Use this procedure to add new fields exchange objects.

The following are accomplished in this procedure:

• A new field is enabled in the exchange object through the Configuration portal
• Java synchronization is achieved in Eclipse
• The new object is added in the Agentry editor

1. If a new exchange object is needed, copy an existing exchange object to the Z namespace in
SAP.

For more information, see the section Copying an Object to the Z Namespace.

2. Add new fields to the exchange object:

a) Navigate to the Exchange Object Configuration panel in the Configuration portal and
double-click the appropriate exchange object.

b) Click the Change Detection Field Selection tab and click the Change the button.
c) In the Exchange Object Field Selector Detail pane, expand the table to which active

fields will be added.

The Field Active column displays in white, with checkmark boxes enabled.

d) Scroll through the fields to determine which ones to enable or disable. Checking the
box enables the field, which unchecking the box disables the field.

e) Save your changes by clicking the Save button.

3. Complete Java synchronization through Eclipse:

Agentry App Development

974 SAP Mobile Platform

a) Open the appropriate project in Java, or create a new project.
b) Locate and open the appropriate Java file in the project.
c) Locate the public strings and the properties. Add the new table fields checked in the

Exchange Object Field Selector Detail pane in the Configuration portal.

d) Save and compile the Java code by running the build-mm.xml script. This should
initially be performed on the Development server to allow for testing before publishing
to the Production server.

4. Add the new fields to the exchange object in Agentry:

a) Open the SAP project in Agentry.
b) Navigate to the appropriate object.
c) Add any new required properties, transactions, or read steps associated with the new

fields.
d) Click the Finish button when done.
e) Make any other applicable changes to the application that is using the modified object.
f) Publish the application to the SAP Agentry Development Server in preparation for

testing. Restart the Server as changes were also made to the Java logic in support of the
new fields.

Working with Push Scenarios

A push scenario pushes emergency work orders to the corresponding recipients. Use the
following diagram and steps to follow a push instance from generation in SAP to reception on
the Client.

Push Process Flow

Agentry App Development

Agentry App Development 975

1. The push exchange process initiates the push trigger based on the push conditions.
Conditions are defined as filter rules in the push exchange object. For instance, work
order priority = 1 is considered an emergency work order in the base product
release.

2. The work order that satisfies the push conditions inserts a record into the push register
table /SYCLO/PSH01 with an object key as the work order number and a push status of
NEW.

3. The event /SYCLO/BACKGROUND_JOB_EVENT is raised after the work order is
saved, which triggers the background job for the push processer agent.

4. The push processer job /SYCLO/CORE_PUSH_PROC_PROG is triggered, either by
using the event or the time frequency. This trigger is based on specific customer processes.

5. The push processer determines the recipients for the push work order and builds the data
for each recipient as a separate instance. The instance is stored in the outbound message
queue /SYCLO/PSH02 with queue ID = PUSH, using the staging database.

6. The push instance displays one of the following statuses, viewable in the push monitor in
the Administration Panel:
• NEW
• PROCESS

Agentry App Development

976 SAP Mobile Platform

• CANCEL
• COMPLETED
• SRV_COMP

7. The Agentry application within the SAP Mobile Server calls the push BAPI /SYCLO/
PM_DOPUSHWORKORDER_GET for every predefined time interval and checks the
push queue for new items.

8. The Agentry application within the SAP Mobile Server sends the push data to the
respective Clients depending on the user credentials that match the push instance.

9. Once the Client receives the push message, it sends the Client confirmation back to the
Server and the Server calls the BAPI /SYCLO/CORE_PUSH_STAT_UPD to update the
confirmation with status CLNT_CONF back to SAP.

Adding a New Push Scenario

In order to create a new push scenario, the following need to be defined:

• Source attributes
• Distribution settings
• Subscriber list

1. Generate the MDO class handler for the work order push:

a) Create a new class interface by inheriting all the properties from the base class /
SYCLO/CL_CORE_DO_HANDLER_BASE.

b) Activate the push by redefining the method CHECK_PUSH_SUPPORTED to
determine whether the push service is supported by this handler.

c) Redefine the method DETERMINE_PUSH_RECIPIENTS to identify valid users for
the emergency work order push.

d) Based on the work order assignment type, determine valid partner information and
obtain the recipients from the middleware user registry table /<namespace>/MDW00.

e) Redefine the method BUILD_PUSH_DATA to prepare user-dependent data to be
pushed to the recipients. Each recipient will have a separate set of data collection
images (push instance) and moved to the outbound queue.

f) Redefine the method GET_DATA_FILTER_LIST to enable the data filter function for
the class handler.

g) List the filters supported by this class handler method along with the table name and
filter name and pass it to the output table ET_DATA_FILTERS.

2. Redefine the GET method to enable the fetch process for the class handler:

a) Convert the RFC parameter list into OO parameter format.
b) Build filter rules from the data object filter service and BAPI input parameters.
c) Get the outbound message queue data from the push registry cache tables for the MDW

user GUID range supplied through the BAPI parameter interface.
d) Build the output data in OO parameter format.

Agentry App Development

Agentry App Development 977

e) Cache the exceptions, if any, to the output return table.
f) In the Agentry SAP Framework Configuration portal, navigate to the Mobile Data

Object panel and assign the GET class handler to the appropriate mobile data object.

3. Create the BAPI wrapper for the push work order fetch (GET):

a) Create a new RFC.
b) Assign the input parameter IS_BAPI_INPUT Type: /SYCLO/

CORE_BAPI_INPUT_STR, which is the Syclo BAPI wrapper standard input setting.
This structure contains the mobile object data such as the mobile user name, device ID,
timestamp from the mobile, mobile data object ID, staging information, session and
user GUIDs, etc.

c) Assign the export parameter ES_BAPI_OUTPUT Type: /SYCLO/
CORE_BAPI_OUTPUT_STR, which is the Syclo BAPI wrapper standard output
structure. This structure contains the timestamp from SAP to the mobile device,
package information, etc.

d) Assign the appropriate tables parameters. This tab contains all the filter ranges and
output data structures.

4. Implement the exchange process for the work order push:

a) Create a new configuration entry for the exchange process that is utilizing the push.
b) Enable the push settings and additional filter conditions relevant to the push instance.
c) Configure the exchange push settings to identify whether the push is active or not, as

well as additional filter criteria used to maintain push conditions.

Sending Email Using the Administration & Monitoring Portal

At times, administrators may need to broadcast system messages or other information to a
group of users or all users on the system. The Administration portal provides a way to
communicate with users through email or text messages rather than through the mobile
device, which may not be connected and available.

Note: User email or HTTP addresses and preferences are set in the Administration portal,
Administration menu, User Management panel.

1. Access the Administration & Monitoring portal.

2. Click on the Monitoring hyperlink at the top of the screen, and then click the User
Monitor menu option in the navigation panel.

3. Click the [Send Email] button.

The Send System Emails screen displays.

Agentry App Development

978 SAP Mobile Platform

4. Check or uncheck the Selected boxes for all desired mobile user GUIDs.

5. Fill out the title, or header of the email.

6. Type in the body of the email in the Email Content box.

7. Click [Send] to send the email to all marked user GUIDs or [Close] to cancel out of the
screen and discard changes.

If the email is sent successfully, a message displays.

Agentry Device Client Branding SDK
Use the Agentry Device Client Branding SDK to brand the device clients before provisioning
to users.

Agentry Client Installer and Executable Branding

The Agentry Clients as provided with the SAP® Mobile Platform are branded based on SAP
standards. It is possible to rebrand the client components of the Agentry archetype, including
both the installers for these components as well as the actual client executables.

Windows PC and Windows Mobile Clients
The branding process for Windows and Windows Mobile Agentry Clients and their installers
involves the use of a branding SDK provided with the development tools for SAP Mobile

Agentry App Development

Agentry App Development 979

Platform. Instructions are provided in this guide on the setup and usage of this SDK to rebrand
these clients.

Android Clients and iOS Clients
To rebrand the Agentry Clients for iOS and Android, see the information provided on the
OpenUI SDK. Included in this SDK are the resources needed to also rebrand the clients for
these platforms.

Agentry Windows and Windows Mobile Clients Branding Overview

These instructions will walk you through the steps needed to create branded Agentry Client
installers using the Nullsoft NSIS software. This simple process is comprised of the following
steps:

• Download and install Nullsoft NSIS
• Create the branding sources
• Customize the installers
• Build and test the branded installers

Branding Agentry Installers

Prerequisites

NSIS (Nullsoft Scriptable Install System) is a professional open source system that is used to
create Windows installers. This is the software used to create the branded installers for the
Agentry Clients.

In order to brand the Client installers, you will need to have Microsoft’s Cabwiz.exe
installed on your system.

Task

The following main steps walk you through the basics of creating branded installers for the
Agentry Client.

1. Download and install Nullsoft NSIS.

a) Open a browser and go to http://nsis.sourceforge.net.

You are brought to the Nullsoft Scriptable Install System Main Page.
b) Click the [Download] link under “Latest NSIS release.”

An NSIS setup file is downloaded to your computer.
c) Run the nsis-[version]-setup.exe.

Make sure to note the location where you install the NSIS files because you will need
this information later in the branding process.

After you run the NSIS setup program, a full set of NSIS files is installed on your computer.
Typically, you will put the NSIS folder inside your Program Files folder. Be sure to note the

Agentry App Development

980 SAP Mobile Platform

location because you will need the full path information when you build the branded
installer.

2. Create the branding source. The same Agentry installers that are used to install the
products are used to create the branding installer sources for the Client.

a) To create the branding Client installer source, run
ClientWinCE_Branding_sdk.exe.

Use the switch “/Branding=[folder name]” to put the branding Client
installer into a folder of your choice.

b) When creating a Client installer source, you must also build CAB files for each
supported device and for each supported scanner. To do this in a single step, run the
command script cabs/BuildCabs.cmd.

Note: In order to run the Cabs script, you must have Microsoft’s Cabwiz.exe.

These steps create all the files necessary to complete the customization of the Client
installer.

3. Customize the installers. Once you have the branding source files, you are ready to use
those files to modify items such as the company name, product name, and installer names.
You must customize the installers for the Client .nsi files, as necessary.

a) Optionally, make a copy of the AgentryClientWinCE.nsi file.

You can optionally make a copy of the files so that you always have the original in case
your modified file ever gets overwritten. If you do not make a copy, and need the
original files, you can re-install them.

b) Open the .nsi files in a text editor, one at a time, and follow the instructions in the file
to modify the common items. These items include things like product name, company
name, installer name, company URL, and the uninstaller executable name.

Your modified .nsi files should now contain all custom branding details for your Client
installer.

Note: If you want to do more advanced branding, including things such as your company
logos, you need to go to the Nullsoft Web site for complete programming instructions.

Here is a screen shot of the text editor, highlighting the lines you would typically modify
for the Server installer.

Agentry App Development

Agentry App Development 981

4. Once you have downloaded and customized the Agentry Client.nsi files, you must
recompile the installer to incorporate the branded files.

a) Open a Command Prompt and follow the instructions to compile the installer.

An example of the command for the Client installer would be:

“c:\Program Files (x86)\nsis\makensis.exe” /DgPlatform=Win32 /
DBranding=c:\MK_BrandingFiles\MK_Client_Branding.nsi
AgentryClient.nsi

b) Re-run the Client installers and check that your custom modifications properly display
in the applicable installation Wizard.

You now have branded installers for the Agentry Client.

Next

If you want to do more extensive branding, such as adding your company logo, you need to go
to the Nullsoft Web site for programming instructions.

Agentry App Development

982 SAP Mobile Platform

Agentry ActiveX SDK

The Agentry ActiveX SDK is a collection of resources provided to developers to support inter
process communications between the Agentry Client and another process or application
running the same client device.

Note: The ActiveX API and Agentry Client API should both be considered deprecated in the
SAP Mobile Platform 3.0 release. They are provided solely for backwards compatibility in
support of exisiting implementations in which either of these resources were used. With the
release of the SAP Mobile Platform 3.0, the OpenUI SDK should be used for all new
development work.

There are two options available for interacting with external processes. These options consist
of ActiveX, or using the Client API. The ActiveX interface to the Agentry Client has been
available for quite some time and has been expanded and augmented with continuing
increases in the exposure of the Agentry Client functionality and data. The Agentry Client API
exposes the ability to execute actions, instantiate and apply transactions, and request a rule
evaluation, all from an external process running on the same device as the Agentry Client.

The Agentry ActiveX SDK includes the resources needed to make use of the API’s it provides
and some samples. It may be beneficial for the uninitiated to review these samples, and
possibly even compile and build one or more of them to become more familiar with the overall
structure and logic involved in building processes or controls that interact with the Agentry
Client.

Agentry ActiveX Client API
The Agentry ActiveX Client API (ActiveX API) provides numerous resources for creating an
ActiveX control that is displayed on the Agentry Client’s user interface and that can interact
with the Agentry Client in several different ways, including passing various types of data
between the Agentry Client and ActiveX control, requests made by the control of the client to
execute actions, and for the Agentry Client to be aware of various control-related events such
as data entry and changes in focus.

The ActiveX API provided by Syclo includes numerous resources needed by the ActiveX
control that must be included in the build and compile stages. There are methods within the
Agentry Client that are exposed to the ActiveX control, as well as methods that are expected to
exist within the control that will be called at various times by the Agentry Client to notify the
control of certain events related to the control and/or the user’s interaction with it.

Agentry Client API
The Agentry Client API has been provided to expose certain functionality within the Agentry
Client to external processes. Similar to the ActiveX API, the external process can request the
Agentry Client to execute actions. In addition, the process can also request the Agentry Client

Agentry App Development

Agentry App Development 983

to instantiate a transaction using values provided by the external process, and to then apply that
transaction. The external process can also call through the Client API to request a rule
evaluation and to receive the value returned by that rule.

A significant difference between the Client API and the ActiveX API is how the
communications are supported. When using the ActiveX API it is a requirement that an
ActiveX control be used and displayed on the Agentry Client’s user interface. In some
situations this is either not practical, or such a control makes no sense for the intended purpose.
The Agentry Client API allows for interaction between an external process and the Agentry
Client with such a control. The external process must be built using the provided resources in
the Agentry SDK, and call the methods provided by the Client API to perform the desired
processing.

System Support, Usage, and API Differences
Both the Agentry ActiveX Client API and the Agentry Client API are available for use with
Agentry Client’s running on Windows devices, desktops, and laptops. ActiveX is a Microsoft
protocol provided exclusively for their family of Windows operating systems, and therefore
cannot be used in conjunction with Agentry Clients for platforms other than Windows. The
Agentry Client API is at this time available only for Windows platforms as well.

The primary driver for selecting the Agentry Client API for external processes or the Agentry
ActiveX Client API is whether or not a control should be or is needed to be displayed on the
Agentry Client’s user interface. If there is no need for such a control, or if such a control does
not make sense in the context in which the processing or work flow is performed, then the
developer should investigate using the Agentry Client API for external processes. If, however,
a control is needed, then the Agentry ActiveX Client API must be used.

Other differences include the functionality exposed and available by each API. The Agentry
Client API for external processes allows for the execution of actions, the evaluation of rules,
and the instantiation and application of transactions. All three of these processes are
performed in the context of the module MainObject.

Changes to the Agentry ActiveX SDK
For developers familiar with the Agentry ActiveX Client API, it is important to note some
items related to the recent addition of the Agentry Client API for external processes. The most
important difference is that the Client API does not utilize any of the resources provided by the
SDK for ActiveX, nor does it use the methods, field types, action types, or other components
provided to support ActiveX controls. The Agentry Client API for external processes is a
separate entity and all support and resources related to its usage are mutually exclusive from
the Agentry ActiveX Client API related resources.

No changes were made to the ActiveX API related to the addition of the Agentry Client API.
Any existing ActiveX controls built using the ActiveX API provided previously are still
supported and no change to them is needed.

Agentry App Development

984 SAP Mobile Platform

Technical Overview - ActiveX Controls and the Agentry Client

The Agentry Client is capable of interfacing with an external ActiveX control installed to the
same host device. This functionality is supported through the implementation of several
separate but tightly coupled components within the Agentry architecture:

• The External Field - ActiveX Control detail screen field edit type
• The Agentry Client API containing methods that can be called by the ActiveX control
• The ActiveX control’s proper implementation of the interface points (methods) expected

by the Agentry Client
• The client action step type External Field Command

Using the above components together, it is possible for the Agentry Client to display an
ActiveX control within the Client’s user interface, to pass data from the Client to the Control,
to pass data from the ActiveX control to the Agentry Client, to execute actions on the Agentry
Client at the request of the ActiveX control, and to issue commands from the Agentry Client to
the ActiveX control.

Provide Data to the ActiveX Control
The External Field - ActiveX Control screen field edit type includes in its definition a list of
objects and properties, known as the Agentry Values for that field. Each of these properties is
selected and added as an Agentry Value for the screen field. When a value is added, the specific
property or object is selected and given an arbitrary name.

The ActiveX control can call into methods provided in the Agentry Client API to retrieve these
values. The value to retrieve is specified via the name given to it in the Agentry Values list. All
property values, regardless of the data type within the Agentry application project, are
provided to the ActiveX control as strings.

Pass Data to the Agentry Client
The ActiveX control can call methods in the Agentry Client API to notify it of a change in its
current value, or to indicate that the value has been fully entered. A call to these methods
results in an immediate call by the Agentry Client back to the ActiveX control to retrieve the
current value. The value returned by this subsequent call is then set as the current value of the
External Field - ActiveX Control screen field. If no further changes are made, this value will
set the value of the property target by the External Field if that field is displayed in a wizard
screen for a transaction or fetch.

Execute Actions in the Agentry Client
The ActiveX control can call into the Agentry Client API to execute actions defined within the
mobile application. This behavior requires the action or actions the control may execute to be
listed within the External Field - ActiveX Control screen field. Only those actions listed within
the detail screen field can be executed by the ActiveX control. The ActiveX control calls the
appropriate method within the Agentry Client API, passing the name of the Action to be
executed.

Agentry App Development

Agentry App Development 985

Issue Commands to the ActiveX Control
The Agentry Client can issue a command to the ActiveX Control. An action step of type
External Field Command can be defined to pass a string value to the ActiveX control. The
ActiveX control receives this command string via a method called by the Agentry Client when
the action step is executed. The action step defines the External Field - ActiveX Control screen
field that references the ActiveX control. This screen field must reside on a detail screen
within a screen set defined to display an Object. Screen sets displaying transactions and
fetches will not be valid options in the action step when it is defined.

External Field - ActiveX Control

The external field-ActiveX control edit type is defined to call out from a field to an ActiveX
control. Values may be passed to this control from the Agentry Client.

Use of this field requires an ActiveX control exist on the client devices and that control be built
using the Agentry ActiveX Control API, including the implementation of all Expected
Methods.

Using the Agentry Data and Actions tabs allows an ActiveX control to query Agentry for
data and for an ActiveX control to call for Agentry to execute actions. Agentry can also query
the ActiveX control for any values listed in the External Values tab.

External Field - Active X Control Attributes
The following attributes are specific to the External Field - ActiveX control field edit type.
These are in addition to the common field attributes:

• ActiveX Class Name (Prog ID): This attribute contains the class name that the Agentry
Client will interface with for the ActiveX control.

• Allow Scanning as Input: This attribute specifies whether or not the field displayed will
accept barcode scan values as input. This attribute will only impact fields displayed on
detail screens used by a platform that supports scanner behavior and on client devices
equipped with a barcode scanner. When value is scanned for the field, the ActiveX control
expected method AgentryUpdateScanData to pass the barcode value to the ActiveX
control.

• External Values Tab: The External Values tab is a list of values provided by the ActiveX
Control. This will allow the Agentry Client to query the control for data. From the tab, you
can add and delete value names from the list. The ActiveX control referenced by the detail
screen field must include the proper processing within the
AgentryGetSpecificValue method to return the value(s) associated with each of
the External Values listed in this tab.

• Agentry Values Tab: The Agentry Values tab is a List of names and target paths for values
within Agentry, made available to the ActiveX Control. From the tab, you can link Agentry
data with the external values for the ActiveX Control. Both primitive data types as well as
object instances and collection properties can be made available to the ActiveX control.
The name associated with the selected data item is the identifier exposed to the ActiveX

Agentry App Development

986 SAP Mobile Platform

control, which can call the GetPropertyFromMappings Agentry Client-Side API
method, passing the name to retrieve the desired value.

• Actions: Allows the ActiveX control to call for Agentry to execute actions. The Properties
tab gives you a list of Actions and target paths. Within this list actions can be added and
deleted. When an action is added it must also specify a target object for the action. The
ActiveX control can call the ExecuteAgentryAction Agentry Client-Side API
method, passing the name of the action to be executed.

Action Step Type: External Field Command

The External Field Command action step issues a command to an ActiveX control when
executed. It references the External Field - ActiveX Control field to specify the control to
which the command is to be issued. The action step passes the value of the defined command
string to the ActiveX control, which is then responsible for receiving and processing the string
command accordingly.

The defined command string within this action step type is passed by the Agentry Client to the
ActiveX control through the expected method AgentryExecuteCommand. This method
should be implemented to process the provided command string in the manner deemed
appropriate for that control.

External Field Command Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This must be unique among all steps within the same parent action.

• Screen Set: This attribute specifies the screen set containing the detail screen within
which the External Field - ActiveX Control field is defined. Valid selections for this
attribute include any screen set defined to display an object definition. Screen sets for
transactions and fetches are not valid.

• Screen: This attribute specifies the detail screen containing the External Field - ActiveX
Control field.

• External Control: The External Field - ActiveX Control detail screen field that references
the ActiveX control to which the command string is to be issued.

• Command: The string to be passed to the ActiveX control’s
AgentryExecuteCommand method. This attribute value can be entered into the
attribute field directly, or can be set to the return from a rule definition. A rule referenced by
this attribute is evaluated in a string context and in the context of the action to which the
action step is being added and the object for which that action is defined.

ActiveX Control - Features Log

The following provides a quick overview of the progression of the ActiveX control
functionality supported by the Agentry Mobile Platform, and which release these features
were implemented. Features and behaviors related to the ActiveX control are available
beginning with the release in which it is listed, and in all subsequent releases unless otherwise
noted.

Agentry App Development

Agentry App Development 987

Agentry Mobile Platform 5.2.8
The following features were added and changes were made to the 5.2.8 service pack release of
the Agentry Mobile Platform in relation to the ActiveX control functionality:

• The ability to pass objects and object collections to the ActiveX Control. This is supported
with the addition of the following client-side API methods:
• AgentryActiveXPropertyType
• GetPropertyFromMappings
• GetPropertyFromObject
• GetPropertyType
• PropertyAsString*

• NextCollectionProperty
• CollectionHasNextProperty
• RewindCollection

• The ability to issue a command to the ActiveX Control. This is supported with the addition
of the following:
• New Action Step Type: External Field Command
• New Expected ActiveX Control Method: AgentryExecuteCommand

* - The PropertyAsString method is a replacement for the client-side API method
GetAgentryString, which has been deprecated. This method is still supported for
backwards compatibility, but should not be used in new development. Where possible, it is
recommended that existing implementations are modified to use the PropertyAsString
method in place of GetAgentryString.

Agentry Mobile Platform 5.1
The following features were added and changes were made to the 5.1 minor release of the
Agentry Mobile Platform in relation to the ActiveX control functionality:

• Implementation of the Agentry Client-Side API to expose various aspects of the Agentry
Client to the ActiveX control. Many of the following new features are supported with the
implementation of this new API for the Agentry Client. The API itself is made available to
the ActiveX control via the following:
• IAgentryActiveXControlHost COM interface

• AgentrySetActiveXControlHost - ActiveX control expected method
(provides IAgentryActiveXControlHost COM interface to the ActiveX
control)

• The ability to pass data from the Agentry Client to the ActiveX control, based on a request
by the control. Support for this functionality is provided with the following additions:
• Agentry Data List added to the External Field - ActiveX Control detail screen field

edit type.
• GetAgentryString - Agentry Client-Side API method

Agentry App Development

988 SAP Mobile Platform

• Support for the ActiveX control to request an action be executed on the Agentry Client.
This functionality is provided with the following additions:
• Agentry Actions List added to the External Field - ActiveX Control detail screen

field edit type.
• ExecuteAgentryAction - Agentry Client-Side API method

• Support for the ActiveX control to notify the Agentry Client when its value changes or is
fully entered. This functionality is supported with the following additions:
• ActiveXControlValueChanged - Agentry Client-Side API method

• ActiveXControlValueEntered - Agentry Client-Side API method

• Support for the Agentry Client to request values from the ActiveX Control via target paths.
This functionality is supported with the following additions:
• External Data List added to the External Field - ActiveX Control detail screen field

edit type.
• AgentryGetSpecificValue - ActiveX control expected method

Agentry Mobile Platform 5.0
The following features were added and changes were made to the 5.0 major release of the
Agentry Mobile Platform in relation to the ActiveX control functionality:

• Support for the Agentry Test Script functionality, including recording and playback
features provided in the Agentry Test Environment. This includes the following client-side
API methods:
• AgentrySetScriptValue
• AgentryGetScriptValue

Agentry Mobile Platform 4.3
In the 4.3 minor release of the Agentry Mobile Platform, the ability to pass values read into the
Agentry Client by the device’s barcode scanner to the ActiveX was added. This feature is
exposed in the External Field - ActiveX Control detail screen field type. This definition type
was modified to include the Scanning attribute. When set to true, barcode values read in by the
Agentry Client are passed to the ActiveX control referenced by the detail screen field.

Agentry Client ActiveX API Methods

The following methods are available within the Agentry Client and can be called from an
ActiveX control installed to the same client device. This assumes the ActiveX control has been
referenced and loaded by an External Field - ActiveX Control detail screen field within the
mobile application running on the Agentry Client.

The information provided for each method includes its intended purpose and the description
of the method parameters.

Included in these methods are those called to retrieve values from the mobile application,
execute actions defined within the mobile application, and to notify the application that the
value of the ActiveX control has changed or has been fully entered.

Agentry App Development

Agentry App Development 989

In order to retrieve data values from the application and to execute actions within it, these
items must be listed in the External Field - ActiveX Control detail screen field definition
within the application project. Only those values and actions listed as available are accessible
to the ActiveX control at run time.

ActiveXControlValueChanged
This method should be called to notify the Agentry Client that the value of the ActiveX control
has changed. The Agentry Client will evaluate any update rules currently in context for the
detail screen. Note that this differs from the ActiveXControlValueEntered method,
which should be called when the value has been completely entered in the ActiveX control.
Rather, ActiveXControlValueChanged is called for each value change that Agentry
Client should be aware of in order to process the changed value within update rules defined for
other fields on the same detail screen.

Parameters
None

ActiveXControlValueEntered
This method should be called to notify the Agentry Client the value of the ActiveX control has
been fully entered. The Agentry Client will evaluate any update rules currently in context for
the detail screen, and will perform any additional operations based on the auto-next or auto-
focus behaviors defined for the detail screen fields.

Parameters
None

ExecuteAgentryAction
This method can be called to execute an action on the Agentry Client. This action must be
listed in the Actions list for the External Field – ActiveX Control detail screen field. This
method blocks until:

• A wizard screen is displayed
• The Action completes execution
• The Action is canceled by an action step of type message
• The Agentry Client reports that it cannot execute the action

Note that the method will not wait for the completion of a wizard screen set. When such a
screen set is displayed, the ActionResult parameter will contain a value of
Action_Pending.

Parameters

• ActionName - Contains the definition name of the Action to be executed

Agentry App Development

990 SAP Mobile Platform

• ActionResult - This value is set after the action is executed and indicates the status of
the action execution. This will be one of the following enumerated values:
• Action_BackUp: Reserved for future use.
• Action_Error: Returned when the action could not be executed for any reason.

Common causes for this return include if the action named is not one defined for the
screen field, if another action is currently being executed on the Client, or if the defined
target object for the action cannot be resolved.

• Action_Cancel: Returned of the action is cancelled. This will only be returned if
the action is canceled in an action step of type Message. This method does not block
when wizard screens are displayed and therefore will not capture the cancellation of a
wizard screen set by the user.

• Action_Pending: Returned if the action executed successfully and displayed a
wizard screen set.

• Action_Complete: Returned if the Action executes and completes successfully
without having displayed a wizard screen set.

GetPropertyFromMappings
This method retrieves the property named in the name parameter. The property is returned in
the property parameter. This method can return any value listed in the Agentry Values of
the External Field - ActiveX Control field within the mobile application. The name parameter
is set to the name of the value as defined in the Agentry Values list. As of version 5.2.8 of the
Agentry Mobile Platform, these properties can be of type collection and object in addition to
the other property types support in previous versions.

Prototype

void GetPropertyFromMappings(BSTR name, VARIANT* property)

Parameters

• name - The name of the object or property to be retrieved, as defined in the External Field -
ActiveX Control’s Agentry Values list.

• property - The property retrieved by the method.

Return Value
None (see the property parameter description)

GetPropertyFromObject
This method returns the named property from the previously retrieved object. This method is
called after GetPropertyFromMappings, with the property parameter to that
method passed to GetPropertyFromObject as the object parameter. Note that this
method will return an invalid result if the object parameter is provided any value other than an
object.

Agentry App Development

Agentry App Development 991

The name of the property to be returned is provided as the definition name of that property
definition within the application project. The property is returned in the property
parameter.

Prototype

void GetPropertyFromObject

 (VARIANT const object, BSTR propertyName, VARIANT* property)

Parameters

• object - The object from which the property is to be retrieved. This parameter should be
the value returned in the property parameter of the GetPropertyFromMappings
method when that parameter references an object; or from a previous call to
GetPropertyFromObject when the property it returns is an object property.

• propertyName - The name of the property definition to be retrieved within the object.
This is the definition name of the property within the Agentry application project.

• property - This parameter will be set to the property referenced by the
propertyName parameter. The type will be set to AXPT_Invalid if the
propertyName parameter contains a name not found in the object’s properties.

Return Value
None (see property parameter description)

GetPropertyType
This method returns the property type of the item provided in the property parameter. Note
that this can include objects if a single object instance is defined as a property to another
object. To avoid confusion, a collection property containing objects will return the collection
property type, not object.

The types returned by this method will be one of the values in the enumerated list
AgentryActiveXPropertyType. See the description of this enumerated list for details
of the values it defines.

Prototype

void GetPropertyType
 (VARIANT const property, enum AgentryActiveXPropertyType* type)

Parameters

• property - The property for which the type is to be determined.

Agentry App Development

992 SAP Mobile Platform

• type - The enumerated value of the property type, as defined in the
ActiveXPropertyType enumerated list.

Return Value
None (see type parameter description for method return)

PropertyAsString
This method takes the property parameter and returns the value of the property it
references as a string. This string is assigned to the value parameter. Providing an invalid
property type, including an object or collection property, returns an empty string in the value
parameter.

The GetPropertyFromMappings or GetPropertyFromObject methods must be
called prior to calling PropertyAsString. The property parameter set by the
GetPropertyFromMappings or GetPropertyFromObject methods should be
passed as the property parameter to PropertyAsString.

Prototype

void PropertyAsString (VARIANT const property, BSTR* value)

Parameters

• property - The property for which the value is to be retrieved.

• value - The string representation of the property value.

Return Value
None (see the value parameter description for this function’s return value)

NextCollectionProperty
This method returns the next member of the collection property referenced in the
collection parameter. The method also updates the position pointer within the
collection parameter to point to the next member of the collection property. The returned
member is referenced in the property parameter to this method. If there is no next member,
the type for this property is set to AXPT_Invalid. This can be checked using the
GetPropertyType method, passing the property parameter to it.

The GetMappedProperty method should be called prior to this method. When the
property returned in the property parameter is a collection, NextCollectionProperty
is called to retrieve the members of that collection. When these members are object instances,
the GetPropertyFromObject method is called subsequent to
NextCollectionProperty to retrieve the property values found within the object
instance.

Agentry App Development

Agentry App Development 993

Prototype

BOOL NextCollectionProperty (VARIANT* collection, VARIANT*
property)

Parameters

• collection - This parameter is the reference to the property returned by the
GetMappedProperty method when the property it returns is a collection.

• property - The next member of the collection property referenced by collection. This
property type should always be checked with the GetPropertyType method before
attempting to reference it to ensure it is not set to AXPT_Invalid. This type is returned
when there is no next member in the collection.

Return Value
Boolean value indicating whether the position pointer references a valid collection member,
or the end of the collection:

• true - Returned if the position pointer of the collection parameter points to a valid
member of the collection.

• false - Returned if the position pointer of the collection parameter indicates the end of
the collection has been reached.

CollectionHasNextProperty
This method returns true if the current position pointer within the collection parameter
is pointing to a valid member of the collection; that is, if a call to
NextCollectionProperty will return an actual instance from the collection. If the
position pointer is at the end of the collection, this method returns false.

Prototype

BOOL CollectionHasNextProperty (VARIANT const collection)

Parameters

• collection - The collection property to be evaluated for a valid next member based on
the collection’s position pointer.

Return Value
Boolean value indicating whether the position pointer references a valid collection member,
or the end of the collection:

• true - Returned if the position pointer of the collection parameter points to a valid
member of the collection.

Agentry App Development

994 SAP Mobile Platform

• false - Returned if the position pointer of the collection parameter indicates the end of
the collection has been reached.

RewindCollection
This method resets the collection parameter’s internal position pointer to the first
member of the collection. The NextCollectionProperty method will return the first
member of the collection property in the next subsequent call.

Prototype

void RewindCollection (VARIANT* collection)

Parameters

• collection - The collection whose internal position pointer should be reset to the first
member of that collection.

Return Value
None

GetAgentryString
Note: This method has been deprecated with the 5.2.8 service pack release of the Agentry
Mobile Platform. The method ProperyAsString should be used in its place. This method
is supported for backwards compatibility only. New development should use the
PropertyAsString method in all cases, as GetAgentryString may be removed at a
future time.

This method can be called to access a value on the Agentry Client. This value must be defined
as an Agentry Data item in the External Field - ActiveX Control detail screen field. The name
of the value, as defined in the Agentry Data list, is passed to the methods DataItem
parameter. The value of that item is returned in the agentryString parameter as a string
value regardless of the property’s data type within the mobile application.

Prototype

HRESULT GetAgentryString (BSTR DataItem, BSTR agentryString)

Return Value
The HRESULT return indicates the status of the method call.

Enumerated List: AgentryActiveXPropertyType
The following list contains the members of the enumerated list
AgentryActiveXPropertyType, along with the corresponding property type in the

Agentry App Development

Agentry App Development 995

Agentry application project. One of these values is returned by the GetPropertyType
method within the Agentry Client ActiveX API indicating the data type of the referenced
property.

AgentryActiveXPropertyType Members

• AXPT_Invalid - Returned when the property parameter does not reference a valid
property

• AXPT_Collection - Property is a collection property

• AXPT_ComplexTableSelection - Property is a complex table selection

• AXPT_Boolean - Property is a Boolean

• AXPT_DataTableSelection - Property is a data table selection

• AXPT_Date - Property is a date

• AXPT_DateAndTime - Property is a date and time

• AXPT_DecimalNumber - Property is a decimal

• AXPT_Duration - Property is a duration

• AXPT_ExternalData - Property is an external data

• AXPT_Identifier - Property is an identifier

• AXPT_Image - Property is an image

• AXPT_IntegerNumber - Property is an integral number

• AXPT_Location - Property is a GPS location

• AXPT_Object - Property is an object instance

• AXPT_Signature - Property is a signature

• AXPT_String - Property is a string

• AXPT_Time - Property is a time

Expected Methods Implemented in ActiveX Control

In order for the Agentry Client to interface with an ActiveX control, it is a requirement of that
control that it implements certain methods with the proper prototypes. Following is a
description of each of these methods, their prototypes, and when the method is called by the
Agentry Client at run time.

It is important that each of these methods is implemented, even those that are provided for
functionality not currently implemented. Those methods not expected to be used should
include at least a stub implementation within the ActiveX control.

Currently the Agentry Client can directly integrate with ActiveX controls built using C++ and
Visual Basic. Included in the following sections are two lists of method prototypes for each of
the expected methods. The first is for C++ implementations, and second is for Visual Basic.

Note: See the section at the end of this technical bulletin on integrating ActiveX controls built
on .NET.

Agentry App Development

996 SAP Mobile Platform

ActiveX Expected Method Declarations - eMbedded Visual C++

When using the Visual C++ wizard to add methods, create the methods with the parameter and
return types exactly the same as shown below. The method declarations in the control class
header should appear identical to the following, with the exception of any word wrapping
resulting from this publication.

afx_msg BOOL AgentryInitialize(LPCTSTR initialValue, LPCTSTR
formatString,
 BOOL readOnly, BOOL autoChangeFocus, long parentHwnd, VARIANT
messageIDs);
afx_msg void AgentryDestroy();
afx_msg void AgentryEnable(BOOL state);
afx_msg BSTR AgentryGetValue();
afx_msg void AgentrySetFocus(long type);
afx_msg void AgentryShow(BOOL state);
afx_msg void AgentryUpdateRuleEvaluated(LPCTSTR ruleResult);
afx_msg void AgentryUpdateScanData(BSTR scanResult);
afx_msg BSTR AgentryGetSpecificValue(LONG opcode, VARIANT
specificValue);
afx_msg BSTR AgentryGetScriptValue();
afx_msg void AgentrySetScriptValue(BSTR str);
afx_msg void AgentrySetActiveXControlHost(IUnknown* host);
afx_msg LONG AgentryExecuteCommand(LPCTSTR str);

The methods section of the IDL file for the Agentry ActiveX interface should appear identical
to the following:

methods:
[id(1)] boolean AgentryInitialize(BSTR initialValue, BSTR
formatString,
 boolean readOnly, boolean autoChangeFocus, long parentHwnd,
 VARIANT messageIDs);
[id(2)] void AgentryDestroy();
[id(3)] void AgentryEnable(boolean state);
[id(4)] BSTR AgentryGetValue();
[id(5)] void AgentrySetFocus(long type);
[id(6)] void AgentryShow(boolean state);
[id(7)] void AgentryUpdateRuleEvaluated(BSTR ruleResult);
[id(8)] void AgentryUpdateScanData(BSTR scanResult);
[id(9)] BSTR AgentryGetSpecificValue(LONG opcode, VARIANT
specificValue);
[id(10)] BSTR AgentryGetScriptValue();
[id(11)] void AgentrySetScriptValue(BSTR str);
[id(12)] void AgentrySetActiveXControlHost(IUnknown* host);
[id(13)] LONG AgentryExecuteCommand(BSTR str)

ActiveX Expected Method Declarations - MS Visual Basic

The methods expected by the Agentry Client should be declared exactly as listed below, with
the exception of any word wrapping resulting from this publication.

Agentry App Development

Agentry App Development 997

Public Function AgentryInitialize(initialValue As String,
 formatString As String, readOnly As Boolean, autoChangeFocus As
Boolean,
 parentHwnd As Long, VARIANT messageIDs) As BooleanPublic Function
AgentryDestroy()
Public Function AgentryEnable(state As Boolean)
Public Function AgentryGetValue() As String
Public Function AgentrySetFocus(focusType As Long)
Public Function AgentryShow(state As Boolean)
Public Function AgentryUpdateRuleEvaluated(ruleResult As String)
Public Function AgentryUpdateScanData(scanResult As String);
Public Function AgentryGetSpecificValue(opcode As Long,
 VARIANT specificValue);Public Function AgentryGetScriptValue();
Public Function AgentrySetScriptValue(str As String);
Public Function AgentrySetActiveXControlHost(IUnknown* host);

AgentryInitialize
This method initializes the ActiveX control. It is called by the Agentry Client immediately
after the External Field - ActiveX Control detail screen field is created. If this method returns
false, indicating the control failed to initialize, the Agentry Client will not display the
ActiveX control.

Parameters

• initialValue - The value of the property targeted by the External Field - ActiveX
Control field in the Agentry Client.

• formatString - The value of the Format attribute defined in the External Field -
ActiveX Control field in the Agentry Client.

• readOnly - The value of the Read Only attribute defined in the External Field - ActiveX
Control field in the Agentry Client. true indicates the field is defined to be read-only.

• autoChangeFocus - The value of the Automatically change focus to next control
attribute of the External Field - ActiveX Control field in the Agentry Client. true
indicates this attribute has been set.

• parentHwnd - The HWND that corresponds to the parent window of the ActiveX
control The ActiveX control should use this to send messages to the Agentry Client.

• messageIDs - NOTE: This value, while still provided, should be considered deprecated
See the Agentry Client ActiveX API methods ActiveXControlValueChanged and
ActiveXControlValueEntered for the current manner of performing these
operations. A safe array stored within a VARIANT. The safe array contains an array of
long values that correspond to each message ID for each message that may be sent to the
Agentry Client. Within C++ the array index begins at zero and within the Vidual Basic the
array index begins with one.
• First index position: Send this message to the parentHwnd to notify the Agentry

Client a value has changed within the control and it is time for the Agentry Client to

Agentry App Development

998 SAP Mobile Platform

evaluate the field update rules and enable rules defined for all fields on the current
detail screen.

• Second index position: Sends this message to the parentHwnd to notify the Agentry
Client a value has been completely entered in the control and it is time to automatically
change focus to the next control.

Return Value

• true - This method should be implemented to return true when the ActiveX control has
been successfully initialized.

• false - This method should be implemented to return false when the ActiveX control
has failed to initialize. The Agentry Client will not display the control on the screen and
will not call any other methods within the ActiveX control.

AgentrySetActiveXControlHost
This method provides the pointer to the IAgentryActiveXControlHost object to the
ActiveX control. This pointer is passed over as an IUknown pointer for the control host
interface and should be queried to obtain the IAgentryActiveXControlHost object.
This object provides the interface to the Agentry Client. It contains the methods that make up
the Agentry Client-Side ActiveX API.

Parameters

• host - IUknown pointer to the IAgentryActiveXControlHost object. Query
this pointer to obtain the control host object.

Return Value
This method should be implemented with a void return.

AgentryDestroy
This method is called by the Agentry Client just before the External Field - ActiveX Control
detail screen field is destroyed. This method should be implemented to perform any cleanup
that may be necessary before the control is deleted.

Parameters
None

AgentryGetValue
This method is called by the Agentry Client to retrieve the current value of the ActiveX
Control. This method is called by the Agentry Client either when the user advances past the
screen displaying the External Field - ActiveX Control field in order to obtain the value to set
to the target property of the field definition; or when a rule is evaluated by the Agentry Client
that references the External Field - ActiveX Control.

Agentry App Development

Agentry App Development 999

Parameters
None

Return Value

• BSTR - String to be returned to the Agentry Client as the ActiveX control’s value.

AgentrySetFocus
This method is called by the Agentry Client when the focus is set to the External Field -
ActiveX Control detail screen field due to one of the following events:

• Auto Focus: The parent screen has just been displayed, that screen’s Focus Field attribute
is defined as Auto, and the External Field - ActiveX Control detail screen field is in the
position to receive the focus.

• Initial Focus: The parent screen has just been displayed and that screen’s Focus Field
attribute is defined to set the focus explicitly to the External Field - ActiveX Control detail
screen field.

• Auto Change Focus: The previous detail screen field is defined to automatically change
focus to the next field, the External Field - ActiveX Control field is the next field, and the
user has just entered a value in the previous field.

• OS Focus: The OS has sent a message that the External Field - ActiveX Control should
receive the focus. This can occur when the user tabs to the field, selects the field’s hot key,
and other similar situations.

The value of the type parameter to this method indicates which of the above is the reason for
the External Field - ActiveX Control to have received the focus should it be necessary to
perform different processing based on the focus event.

Parameters

• type - The value indicating why the field has received the focus. These are numeric
values corresponding to one of the above described events:
• Auto Focus: 1
• Initial Focus: 2
• Auto Change Focus: 3
• OS Focus: 4

Return Value
None

AgentryGetSpecificValue
This method is called by the Agentry Client to retrieve a value by name from the ActiveX
control. The name passed will be one of those values contained in the External Field - Active X

Agentry App Development

1000 SAP Mobile Platform

Control definition’s External Data list. This method should be implemented to receive any of
the names as defined in the field definition, and to return the appropriate string value
represented by that value name.

The External Data values listed in the External Field - ActiveX Control field’s definition are
available for reference in target paths within the Agentry application project. This method is
called by the Agentry Client whenever one of these values is so referenced.

Parameters

• opcode - deprecated value that should be a part of the method’s prototype but not used
within the method’s implementation.

• specificValue - The string name of the value to be returned by the method, as listed in
the External Field - ActiveX Control’s External Data list.

Return Value

• BSTR - The string representation of the named value requested by the Agentry Client.

AgentryUpdateScanData
This method is called by the Agentry Client immediately after a value has been scanned in by
the client device for the External Field - ActiveX Control screen field. This method passes the
scanned value to the ActiveX control in the scanResult parameter.

Parameters

• scanResult - This is the string value of the barcode value scanned in on the client
device for the External Field - ActiveX Control screen field.

AgentryEnable
This method is called by the Agentry Client immediately after the enable rule for the External
Field - ActiveX Control field has been evaluated. The state parameter to this method accepts
the result of the enable rule’s evaluation, which is a Boolean value. This method should be
implemented to perform whatever processing may be necessary when the field is enabled and
when it is disabled.

Parameters

• state - This parameter contains the Boolean value of the enable rule’s return. true
indicates the field is enabled, false indicates it has been disabled.

AgentryShow
This method is called by the Agentry Client immediately after the Hidden Rule is evaluated for
the External Field - ActiveX Control field. This rule returns a Boolean value indicating

Agentry App Development

Agentry App Development 1001

whether or not the field should be displayed or hidden on the screen. The state parameter to
this method indicates whether or not the field is shown.

Note that the Hidden Rule evaluated by the Agentry Client returns true when the field should
be hidden, and false when it should be displayed. The value passed to the AgentryShow
method is the inverse of the rule’s return, meaning a state parameter value of true
indicates the field is displayed, and false indicates it is hidden on the Client.

Parameters
• state - This parameter indicates whether the field is shown on the client screen. true

indicates the field is currently displayed, false indicates it has been hidden.

AgentryUpdateRuleEvaluated
This method is called by the Agentry Client immediately after the update rule for the External
Field - ActiveX Control detail screen field has been evaluated. The return from the field’s
update rule is passed to this method in the ruleResult parameter. The
AgentryUpdateRuleEvaluated method should be implemented to process this value
as the one currently displayed in the field on the client.

Parameters
• ruleResult - The string result of the External Field - ActiveX Control’s update rule

evaluation.

AgentryGetScriptValue
This method is provided exclusively for support of the Agentry Test Script functionality
available in the Agentry Test Environment. This method is called by the Agentry Test Script
Recorder when a <field-expect> method is recorded for the test script. It is also called
during script playback when the <field-expect> element is processed for an External
Field - ActiveX Control detail screen field. The method takes no parameters and is expected to
return the value of the ActiveX control to be evaluated by the <field-expect> element.

Parameters
None

Return Value
The value of the ActiveX control as a string (BSTR) to be provided to the test script currently
being recorded or executed by the Agentry Test Environment.

AgentrySetScriptValue
This method is provided exclusively to support the Agentry Test Script functionality available
within the Agentry Test Environment. This method is called by the Agentry Test Environment
during script playback when a <field-set> element is executed. The value for the

Agentry App Development

1002 SAP Mobile Platform

ActiveX control is passed to this method’s str parameter. The
AgentrySetScriptValue method should be implemented to process this parameter
value such that it is set as the current value of the control as entered by a user.

Parameters

• str - The value to be set as the current value of the ActiveX control, provided as a string.

Return Value
None

Agentry Client API for External Processes Technical Overview

The Agentry Client API for external processes provides four methods that may be called by an
external process to request information and data from, and to invoke transactions and execute
actions on the Agentry Client. In order to use this API the external process must be built using
the resources provided by the Agentry Client SDK for this API. The resources provided were
built and are maintained using Visual Studio 2008 in the Visual C++ language. These same
tools must be used to build the external process that is to make calls into the API.

The Agentry Client API for external processes does not include any corresponding controls or
other similar components within the Agentry Client. It is limited to the methods made
available to external processes to call.

Each of these methods includes a parameter containing the Agentry Client context object.
This object is provided by the AgentryInitialilze method, which must be called prior
to calling any of the other methods, and this object is then passed to each of the other methods
when called.

Retrieving Data from the Agentry Client
Data is returned to the external process via the EvaluateAgentryRule method within the
Agentry Client API. The rule to be evaluated and the module in which it has been defined are
passed to the method parameters, along with a string variable in which the return value of the
rule is provided. Using this method rules can be called within the Agentry Client from the
external process to retrieve values from the Client. The returned values can be calculated or
conditional values based on the structure of the rule definition, or they can simply be property
values or other similar data items, again based on the rule structure.

Executing Actions on the Agentry Client
Actions can be executed by the external process via the ExecuteAgentryAction method
within the Agentry Client API. The action to be executed and the module in which it has been
defined are passed to the method. The method returns a Boolean indicator of success or failure
to execute the action.

Agentry App Development

Agentry App Development 1003

Transaction Processing on the Agentry Client from External Processes
Edit transactions can be instantiated, properties within them populated with values, and
subsequently applied on the Agentry Client as a result of a request from an external process via
the ExecuteAgentryTransaction method. The edit transaction to be processed, the
module in which it is defined, and values for one or more of its properties are passed to the
method as parameters. Not all properties within the transaction need to be populated by the
method call, and any not provided are initialized according to the property definitions just as if
the transaction were instantiated via standard Agentry Client processing.

AgentryInitialize
The AgentryInitialize method is called to initialize a pointer to an
AgentryClientContext object. This pointer is a required parameter to all other
methods within the Agentry Client API for external processes. The single parameter to this
method is a pointer to an object pointer of type AgentryClientContext. The pointer
should be declared prior to calling the method and initialized to NULL. The address of the
AgentryClientContext object is provided with the call to the
AgentryInitialize method.

This method must be called when the external process is executed. The handle it returns
(AgentryClientContext object pointer) should be preserved and passed to any
subsequent Agentry Client API for external processes method calls. This handle should be
passed to the AgentryUnInitialize method as a part of the external processes’s
shutdown procedures. See information provided on this method for details.

Prototype

bool AgentryInitialize(AgentryClientContext** ppCtx)

Parameters
• ppCtx - The AgentryClientContext object initialized by this method and passed

to all other method calls within this API. A NULL pointer should initially be created to
such an object, and the pointer should then be passed to this method, as in:

AgentryClientContext *ctx = NULL;
AgentryInitialize(&ctx);

Return Value
The Boolean return value indicates whether or not the AgentryClientContext object
was successfully initialized. The method returns false in the event of failure, which can occur
if the Agentry Client is not currently running, as well as under other conditions. The return
from this method should always be checked prior to using the AgentryClientContext
object pointer it initializes. The external process should include processing to account for a
false return indicating a failed initialization of this handle.

Agentry App Development

1004 SAP Mobile Platform

AgentryUnInitialize
the AgentryUnInitialize method is provided to allow the
AgentryClientContext handle object to be properly cleaned up when the external
process is exiting. this method should be called as a part of the processes’s shutdown routines.
It’s only parameter is the handle, which should be the same as the one passed to a previous call
to the AgentryInitialize method.

Prototype

bool AgentryUnInitialize(AgentryClientContext* pCtx)

Parameters

• AgentryClientContext - This parameter is passed to the method so that the handle
for the AgentryClientContext object can be properly cleaned up when the external
process is shutting down and the handle is no longer needed.

Return Value
The Boolean return value from the method indicates the success or failure of the uninitialize
processing.

EvaluateAgentryRule
The EvaluateAgentryRule method can be called by the external process to request a
named rule be evaluated by the Agentry Client. Included in the parameters to this method are
the internal names of the module in which the rule is contained and the name of the rule to be
evaluated. Also included are the AgentryContext and a string parameter in which the
return value of the rule will be captured.

Rules evaluated by the EvaluateAgentryRule method are evaluated in the context of the
module MainObject of the same module in which the rule is defined. Any rule in the module
may be evaluated via this method, with the rule’s return value provided as a string. This value
can then be converted to other data types as needed within the external process.

Prototype

bool EvaluateAgentryRule(AgentryContext* pCtx,
 const std::tstring& ModuleName,
 const std::tstring& RuleName,
 std::tstring& Value)

Agentry App Development

Agentry App Development 1005

Parameters

• pCtx - Pointer to the AgentryContext object returned by a call made to the
AgentryInitialize() method.

• ModuleName - The name of the module definition within the Agentry application project
in which the rule to be evaluated is defined.

• RuleName - The name of the rule to be evaluated and whose return value is to be captured
in the Value parameter.

• Value - Reference to a string value within the external process in which the return value
of the rule definition will be contained. Regardless of the rule context or structure, the
return value is always provided as a string value and can be cast to other data types within
the external process.

Return Value
The Boolean return of this method indicates whether or not the rule was found and evaluated.
If this fails for any reason the function returns false and the value of the Value parameter is a
null string. The return value should always be checked before attempting to use the Value
parameter and the external process should include logic to account for a failed rule evaluation.

ExecuteAgentryAction

The ExecuteAgentryAction method is called to request the Agentry Client execute an
action. In addition to the AgentryConext, the method takes parameters specifying the
name of the module in which the action to be executed is defined, as well as the name of the
action itself. The action is always executed in the context of the module MainObject. The
action being executed, therefore, must be defined for the MainObject or for no object.
SubAction steps executing actions for other objects can be defined within the action executed
by the method should it be necessary to execute an action for a different object type.

Actions may not be executed immediately under certain conditions; specifically, if another
action is currently being executed. In such cases the action is queued by the Agentry Client to
be executed as soon as it is able. The method will return true in such a case and the action will
be executed when the first opportunity arises. The Agentry Client contains only a single action
queue in which all queued actions are stored until executed. The other primary situation in
which actions can be queued relates to Push Actions. Actions are executed from this queue in a
first in-first out order.

Actions will not be executed and the method will return false if the Agentry Client is currently
running, but the user has not yet completed the login process successfully, e.g., the login
screen is currently displayed, the server selection screen is displayed, etc.; or if the named
action or module cannot be found within the business logic currently running on the Agentry
Client.

Agentry App Development

1006 SAP Mobile Platform

Prototype

bool
ExecuteAgentryAction(Age
ntryContext* pCtx,
 const std::tstring& ModuleName,
 const std::tstring&
ActionName)

Parameters

• pCtx - Pointer to the AgentryContext object returned by a call made to the
AgentryInitialize() method.

• ModuleName - The name of the module definition within the Agentry application project
in which the action to be executed is defined.

• ActionName - The name of the action to be executed by the Agentry Client.

Return Value
The Boolean return of this method indicates whether or not the action was found and either
executed or placed in the pending actions queue to be executed when possible. If this fails for
any reason the function returns false and the named action will not be executed by the Agentry
Client. The return value should always be checked and the external process should include
logic to account for a failed action execution.

ExecuteAgentryTransaction

The ExecuteAgentryTransaction method is called by the external process to request
an edit transaction be instantiated and applied, i.e., to be processed, by the Agentry Client. In
addition to the AgentryContext object, the method takes the name of the module in which
the transaction is defined, the name of the transaction itself, and a reference to an
AgentryPropertyVector containing the transaction property values to be set within the
transaction.

The transaction to be processed must be an edit transaction and must be defined for the module
MainObject, as it is instantiated in the context of that object. Add and delete transactions are
not supported.

When a transaction is processed via as a result of a call to this method, the properties of that
transaction are first initialized according to the initial value attributes of those properties, with
the exception of “Rule - After Data Entry.” Next, any values passed to the method call are
copied to the transaction properties, which will replace any initialization values that may be
present. The transaction is then processed by the Agentry Client. Property values are then set
for any properties which are initialized to “Rule - After data entry.” The current value of such
properties are overwritten with the value returned by the rule. Finally the transaction is
applied, which includes setting the values of the object properties targeted by the transaction
properties, and the transaction itself is saved to the client device as a pending transaction.

Agentry App Development

Agentry App Development 1007

Prototype

bool
ExecuteAgentryTransaction(
 AgentryContext* pCtx,
 const std::tstring&
ModuleName,
 const std::tstring&
TransactioName,
 const
AgentryPropertyVector& properties)

Parameters

• pCtx - Pointer to the AgentryContext object returned by a call made to the
AgentryInitialize() method.

• ModuleName - The name of the module definition within the Agentry application project
in which the transaction to be processed is defined.

• TransactionName - The name of the transaction to be processed by the Agentry
Client.

• properties - Reference to an AgentryPropertyVector containing the property
values to be set when the transaction is instantiated. See the section on the API data types
for more details on AgentryPropertyVectors.

Return Value
The Boolean return of this method indicates whether or not the transaction was found and
processed. If this fails for any reason the function returns false and the named transaction will
not be processed by the Agentry Client. The return value should always be checked and the
external process should include logic to account for failed transaction processing.

Data Types Defined in the Agentry Client API for External Processes

Within the Agentry Client API for external processes there are certain data types defined:
AgentryContext, which is an object obtained using the AgentryInitialize()
method, and AgentryPropertiesVector, which is established via a type definition as a
vector of AgentryAttrPair items. AgentryAttrPair is a standard pair of strings.

AgentryAttrPair and AgentryPropertiesVector
The AgentryPropertiesVector is provided to allow for property values of a
transaction to be set by the external process and passed to the Agentry Client via the
ExecuteAgentryTransaction method. This data type is declared in the include file
AgentryExternal.h, which should be included in the project containing the external
process logic.

This data type is declared by the following typedef statements:

Agentry App Development

1008 SAP Mobile Platform

typedef std::pair<std::tstring, std::tstring> AgentryAttrPair
typedef std::vector<AgentryAttrPair> AgentryPropertiesVector

The first typedef statement creates a standard pair of string values identified as
AgentryAttrPair. This type is then the member type for the vector declared by the
second statement, which is identified as the type AgentryPropertiesVector.

Within the elements of an AgentryAttrPair are stored the name and value of a property
within the transaction definition, with the first element of the pair containing the property
definition name, and the second containing the value. All values are stored as strings within a
given pair and the second element is converted, when necessary, by the Agentry Client to the
property data type before assigning the value to the specified property within the transaction.
This behavior negates the need to perform any data type conversion within the external
process as it would relate to property data types.

AgentryClientContext
This object type is internal to the Agentry Client. A declaration is provided for this object in
the AgentryExternal.h header file. A handle to this object is provided by the
AgentryInitialize method, which should be called by the external process during
startup. The handle is then a required parameter to all API method calls. The handle should be
passed to the AgentryUnInitialize method by the external process during shutdown.

Agentry OpenUI API
Learn about the Agentry OpenUI API, which provdes the interface to support development of
custom controls to display within the Agentry Client. Review the concepts and general
procedure, then use the OpenUI API for your target platform.

The Agentry Toolkit installation includes zip files that contain the OpenUI API components
for each supported platform, by default located in SDK_HOME\AgentryToolkit
\OpenUISDK. Supported platforms include Android, iOS, and Windows Presentation
Foundation (WPF). Developers can use this API to create custom controls using the native
language (Objective C, Java, Visual Basic, C#, and so on) of the target device client and to
display those controls within the detail screens of the mobile application.

The API enables you to override and display the custom control for any field edit type of a
detail screen field in the Agentry Client. The API supports communication between the
control and the client, including information about changes to the underlying field, data
capture in the custom control, and other similar interactions.

Before beginning development, be sure to follow the setup instructions for the native
development platform.

Agentry App Development

Agentry App Development 1009

OpenUI SDK Concepts, Usage and Guidance
The OpenUI SDK provides the interface to support the development of custom controls for
display within the Agentry Client for Android, iOS, and Windows .NET. These controls
override the default display and behavior of the detail screen fields that are a part of the
Agentry application project.

When looking to make use of the OpenUI SDK, you should first investigate the standard field
edit types available to you to verify the behavior you desire is not already one which can be
defined within the application project. Assuming there is a need, however, the OpenUI SDK
can be used to create almost limitless variations in the user interface of the Agentry Client.

In addition to the necessary code written to create the custom control, it is also necessary to
make modifications to the Agentry application project within the Agentry Editor, specifically
within the field definition. These changes include modifying the attributes of the field to be
overridden, providing information about the class containing the override code, as well as
specifying the values and actions available within the Agentry application project the custom
control can access and execute, and finally the values available to the Agentry Client from the
custom control.

General Procedure to Create Custom Controls
Creating a custom control for your mobile application includes the following tasks:

1. Install the OpenUI SDK API component for the target client platform, per the instructions
provided in the guide Setting Up the Development Environment - Agentry Toolkit”

2. Using the Agentry Editor modify the application project by defining the detail screen field
to be overridden by the custom control This includes specifying the Extension Adapter
Name, as well as the Extension Values, Agentry Values, and Agentry Actions.

3. Using the IDE appropriate for the client platform, create the custom control using the
OpenUI API.

4. Build the project within the IDE, which will result in either a full Agentry Client build that
includes the custom control logic (Android, iOS); or a DLL containing the customer
control logic to be deployed wit the Agentry Client executable (Windows .NET).

5. Deploy the Agentry Client to a device and test all behaviors. Make needed changes based
on testing and repeat the build and deploy steps until the functionality is considered fully
developed and ready for distribution.

6. Distribute the application to the client devices according to the standard procedures of the
client device platform. (Continue reading for more information on distribution.)

Distributing the Agentry Client With Custom Controls
Once custom controls have been developed the Agentry Client must be rebuilt or repackaged,
depending on the client platform, in order to distribute them to the mobile users. For both
Android and iOS devices, this requires the Agentry Client to be rebuilt and resigned. For
Windows devices, the Agentry Client can be repackaged using the Agentry Client Branding
SDK.

Agentry App Development

1010 SAP Mobile Platform

The projects included in the OpenUI SDK for both Android and iOS are structured for this
purpose. Included in both are resource projects which can be modified to both resign the
application as well as rebrand it as needed. When built a distributable application (.apk file
for Android; .ipa file for iOS) is created.

Developer Requirements and Responsibilities
As a developer of custom controls using the OpenUI SDK, you are expected to provide certain
information about the control to the Agentry Client at runtime. Of course this includes the
field’s behavior itself, including all display aspects and behaviors. Additionally, it includes
items such as size of the control displayed on the detail screen, including whether this size is
dictated by the Agentry Client via the sizing attributes of the field definition or by the custom
control. You must also specify and create logic for the values available to the Agentry Client,
including the value used to set the target property of the detail screen field being overridden.

Included in this behavior for all custom controls, regardless of the field edit type which they
override, should be appropriate behaviors related to the various states a field can be in. This
includes whether the field is enabled or disabled, and whether the field is visible or hidden. An
enabled field and a disabled field can both still be visible, so the custom control should then
allow for this and be displayed appropriately. As a basic example, some types of controls are
grayed out or have an otherwise different appearance to indicate visually to the user the field
cannot be interacted with. If the field is not visible, the Agentry Client will not display the
custom control to the user.

In such a situation, the logic should account for this state and handle any values it would
otherwise display or make available appropriately. In the event of a non-visible field that is in
an enabled, state, the Agentry Client will still enforce any requirements regarding the value
returned by the field, for example a minimum string length. In such a situation, a reasonable
default value should be provided by the custom control. Disabled fields, regardless of visible
state, will not have their values validated. Note that a read-only field is not the same as a
disabled field within the Agentry Client. The enabled or disabled state is controled by the
Enabled attribute for a field definition. This is typically set at runtime on the Agentry Client
based on a return value from a rule. As such, it is important to have a full understanding of the
field definition’s defined behavior while implementing the custom control logic.

Runtime Behavior of the Agentry Client With Custom Controls
The Agentry Client will look to load the referenced custom control, based on the settings of the
External Adapter Name attribute within the detail screen field definition, when that field is
displayed on it’s parent details screen. If it cannot find an adaptor with the referenced named, it
will display the field defined within the Agentry application project according to that field’s
edit type.

When a custom control is displayed, the user will see the custom control on the detail screen as
if it were a built in control. The behavior of the custom control is then dictated by the logic the
you have implemented for that control.

Agentry App Development

Agentry App Development 1011

Agentry OpenUI API for Android
Use the OpenUI API for Android to add custom controls to Agentry applications.

com.sap.mobile.platform package

client package

openui package

adapters package

BooleanDisplayAdapter class
The class that any extension class for boolean display needs to extend.

Syntax
public abstract class BooleanDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of BooleanDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(BooleanDisplayMo-
del, Context) on page 1014

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(boolean) on
page 1014

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Agentry App Development

1012 SAP Mobile Platform

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

Agentry App Development

Agentry App Development 1013

Modifier and Type Member Description

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(BooleanDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (BooleanDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(boolean) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (boolean value)

Parameters

• value – the new value for the field

BooleanEditAdapter class
The class that any extension class for boolean edit needs to extend.

Syntax
public abstract class BooleanEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of BooleanEditAdapter, including inherited members. Methods

Agentry App Development

1014 SAP Mobile Platform

Modifier and Type Method Description

public abstract void initialize(BooleanEditModel,
Context) on page 1016

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(boolean) on
page 1016

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

Agentry App Development 1015

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(BooleanEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (BooleanEditModel model,
Context context)

Parameters
• model – a reference to the object that implements the model. This will be the extension's

means of calling into Agentry.
• context – Android context to use

valueChanged(boolean) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (boolean value)

Agentry App Development

1016 SAP Mobile Platform

Parameters

• value – the new value for the field

ButtonDisplayAdapter class
The class that any extension class for button display needs to extend.

Syntax
public abstract class ButtonDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of ButtonDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public void buttonImageChanged(Agentry-
Image) on page 1019

This method notifies the exten-
sion that the field's image has
changed.

public abstract void initialize(ButtonDisplayModel,
Context) on page 1019

Called to initialize the extension
with its model and Android con-
text.

public void selectedStateChanged(boo-
lean) on page 1019

This method is called when the
field's selected state has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

Agentry App Development

Agentry App Development 1017

Modifier and Type Member Description

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

Agentry App Development

1018 SAP Mobile Platform

buttonImageChanged(AgentryImage) method
This method notifies the extension that the field's image has changed.

Syntax
public void buttonImageChanged (AgentryImage newImage)

Parameters

• newImage – the new image to display on the button.

initialize(ButtonDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (ButtonDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

selectedStateChanged(boolean) method
This method is called when the field's selected state has changed and the UI needs to be
updated to display the correct value.

Syntax
public void selectedStateChanged (boolean selected)

Parameters

• selected – the new selected state for the field

CollectionDisplayAdapter class
The class that any extension class for collection display needs to extend.

Syntax
public abstract class CollectionDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Agentry App Development

Agentry App Development 1019

Members
All members of CollectionDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public void allItemsChanged() on page
1021

Called to inform the adapter that
the collection has changed
enough that it needs to be com-
pletely refreshed.

public abstract void initialize(CollectionDisplay-
Model, Context) on page 1022

Called to initialize the extension
with its model and Android con-
text.

public void itemAdded(int) on page 1022 Called to inform the adapter that
an item has been added at the
specified row.

public void itemChanged(int) on page
1022

Called to inform the adapter that
the item at the specified row has
changed.

public void itemRemoved(int) on page
1022

Called to inform the adapter that
the object at the specified row
has been deleted and needs to be
removed.

public void itemSelected(int) on page
1023

Called to inform the adapter that
the selection row has changed.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

Agentry App Development

1020 SAP Mobile Platform

Modifier and Type Member Description

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

allItemsChanged() method
Called to inform the adapter that the collection has changed enough that it needs to be
completely refreshed.

Syntax
public void allItemsChanged ()

Agentry App Development

Agentry App Development 1021

initialize(CollectionDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (CollectionDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

itemAdded(int) method
Called to inform the adapter that an item has been added at the specified row.

Syntax
public void itemAdded (int row)

Parameters

• row – the row of the added item

itemChanged(int) method
Called to inform the adapter that the item at the specified row has changed.

Syntax
public void itemChanged (int row)

Parameters

• row – the row of the changed item

itemRemoved(int) method
Called to inform the adapter that the object at the specified row has been deleted and needs to
be removed.

Syntax
public void itemRemoved (int row)

Parameters

• row – the row of the removed item

Agentry App Development

1022 SAP Mobile Platform

itemSelected(int) method
Called to inform the adapter that the selection row has changed.

Syntax
public void itemSelected (int row)

Parameters

• row – the row of the selected item

Usage
This is not called when the adapter informs the model of an selection change. This is called
when something in Agentry causes the selection to change. This can happen through update
rules and retargetting that Agentry handles. This can also happen if the currently selected item
gets deleted.

DateAndTimeDisplayAdapter class
The class that any extension class for time and date display needs to extend.

Syntax
public abstract class DateAndTimeDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DateAndTimeDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(DateAndTimeDis-
playModel, Context) on page
1025

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(GregorianCa-
lendar) on page 1025

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Agentry App Development

Agentry App Development 1023

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

Agentry App Development

1024 SAP Mobile Platform

Modifier and Type Member Description

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(DateAndTimeDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DateAndTimeDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(GregorianCalendar) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (GregorianCalendar value)

Parameters

• value – the new value for the field

DateAndTimeEditAdapter class
The class that any extension class for time and date edit needs to extend.

Syntax
public abstract class DateAndTimeEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DateAndTimeEditAdapter, including inherited members. Methods

Agentry App Development

Agentry App Development 1025

Modifier and Type Method Description

public abstract void initialize(DateAndTimeEdit-
Model, Context) on page 1027

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(GregorianCa-
lendar) on page 1027

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

1026 SAP Mobile Platform

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(DateAndTimeEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DateAndTimeEditModel model,
Context context)

Parameters
• model – a reference to the object that implements the model. This will be the extension's

means of calling into Agentry.
• context – Android context to use

valueChanged(GregorianCalendar) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (GregorianCalendar value)

Agentry App Development

Agentry App Development 1027

Parameters

• value – the new value for the field

DateDisplayAdapter class
The class that any extension class for date display needs to extend.

Syntax
public abstract class DateDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DateDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(DateDisplayModel,
Context) on page 1029

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(GregorianCa-
lendar) on page 1030

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

Agentry App Development

1028 SAP Mobile Platform

Modifier and Type Member Description

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(DateDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DateDisplayModel model,
Context context)

Agentry App Development

Agentry App Development 1029

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(GregorianCalendar) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (GregorianCalendar value)

Parameters

• value – the new value for the field

DateEditAdapter class
The class that any extension class for date edit needs to extend.

Syntax
public abstract class DateEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DateEditAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(DateEditModel, Con-
text) on page 1032

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(GregorianCa-
lendar) on page 1032

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Agentry App Development

1030 SAP Mobile Platform

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

Agentry App Development

Agentry App Development 1031

Modifier and Type Member Description

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(DateEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DateEditModel model, Context
context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(GregorianCalendar) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (GregorianCalendar value)

Parameters

• value – the new value for the field

DecimalDisplayAdapter class
The class that any extension class for decimal display needs to extend.

Syntax
public abstract class DecimalDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DecimalDisplayAdapter, including inherited members. Methods

Agentry App Development

1032 SAP Mobile Platform

Modifier and Type Method Description

public abstract void initialize(DecimalDisplayMo-
del, Context) on page 1034

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(double) on page
1034

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

Agentry App Development 1033

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(DecimalDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DecimalDisplayModel model,
Context context)

Parameters
• model – a reference to the object that implements the model. This will be the extension's

means of calling into Agentry.
• context – Android context to use

valueChanged(double) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (double value)

Agentry App Development

1034 SAP Mobile Platform

Parameters

• value – the new value for the field

DecimalEditAdapter class
The class that any extension class for decimal edit needs to extend.

Syntax
public abstract class DecimalEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DecimalEditAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(DecimalEditModel,
Context) on page 1036

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(double) on page
1037

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

Agentry App Development

Agentry App Development 1035

Modifier and Type Member Description

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(DecimalEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DecimalEditModel model,
Context context)

Agentry App Development

1036 SAP Mobile Platform

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(double) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (double value)

Parameters

• value – the new value for the field

DurationDisplayAdapter class
The class that any extension class for duration display needs to extend.

Syntax
public abstract class DurationDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DurationDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public void fractionalHourValue-
Changed(double) on page
1039

This method is called when the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

public abstract void initialize(DurationDisplayMo-
del, Context) on page 1040

Called to initialize the extension
with its model and Android con-
text.

Agentry App Development

Agentry App Development 1037

Modifier and Type Method Description

public void valueChanged(int) on page
1040

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

Agentry App Development

1038 SAP Mobile Platform

Modifier and Type Member Description

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

Usage
Depending on the display format, the host will call either valueChanged(int) or
fractionalHourValueChanged(double) to notify the adapter of updates.

fractionalHourValueChanged(double) method
This method is called when the field's underlying value has changed and the UI needs to be
updated to display the correct value.

Syntax
public void fractionalHourValueChanged (double value)

Parameters

• value – the new value for the field (in hours)

Usage
This should be used when the DurationDisplayFormat is set to DecHour, which can
be checked by calling
DurationDisplayModel.getDurationDisplayFormat().

Agentry App Development

Agentry App Development 1039

initialize(DurationDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DurationDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(int) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (int value)

Parameters

• value – the new value for the field (in seconds)

DurationEditAdapter class
The class that any extension class for duration edit needs to extend.

Syntax
public abstract class DurationEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of DurationEditAdapter, including inherited members. Methods

Modifier and Type Method Description

public void fractionalHourValue-
Changed(double) on page
1042

This method is called when the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Agentry App Development

1040 SAP Mobile Platform

Modifier and Type Method Description

public abstract void initialize(DurationEditModel,
Context) on page 1043

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(int) on page
1043

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

Agentry App Development 1041

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

Usage
Depending on the display format, the host will call either valueChanged(int) or
fractionalHourValueChanged(double) to notify the adapter of updates.

fractionalHourValueChanged(double) method
This method is called when the field's underlying value has changed and the UI needs to be
updated to display the correct value.

Syntax
public void fractionalHourValueChanged (double value)

Parameters

• value – the new value for the field (in hours)

Usage
This should be used when the DurationDisplayFormat is set to DecHour.

Agentry App Development

1042 SAP Mobile Platform

initialize(DurationEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (DurationEditModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(int) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (int value)

Parameters

• value – the new value for the field (in seconds)

EmbeddedImageDisplayAdapter class
The class that any extension class for embedded image display needs to extend.

Syntax
public abstract class EmbeddedImageDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of EmbeddedImageDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public void imageChanged() on page 1045 This method is called when the
field's underlying image has
changed.

Agentry App Development

Agentry App Development 1043

Modifier and Type Method Description

public void imageSelectionChanged() on
page 1045

This method is called when the
field's underlying cell selection
has changed.

public abstract void initialize(EmbeddedImageDis-
playModel, Context) on page
1046

Called to initialize the extension
with its model and Android con-
text.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

Agentry App Development

1044 SAP Mobile Platform

Modifier and Type Member Description

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

imageChanged() method
This method is called when the field's underlying image has changed.

Syntax
public void imageChanged ()

Usage
It only notifies the extension that there is a change. It is the extension's responsibility to call
back into the host model to get the new image when it's ready.

imageSelectionChanged() method
This method is called when the field's underlying cell selection has changed.

Syntax
public void imageSelectionChanged ()

Usage
It only notifies the extension that there is a change. It is the extension's responsibility to call
back into the host model to get the selected cells.

Agentry App Development

Agentry App Development 1045

initialize(EmbeddedImageDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (EmbeddedImageDisplayModel
model, Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

ExternalDataDisplayAdapter class
The class that any extension class for external data display needs to extend.

Syntax
public abstract class ExternalDataDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of ExternalDataDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(ExternalDataDisplay-
Model, Context) on page 1048

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(String) on page
1048

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Agentry App Development

1046 SAP Mobile Platform

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

Agentry App Development

Agentry App Development 1047

Modifier and Type Member Description

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(ExternalDataDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (ExternalDataDisplayModel
model, Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(String) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (String value)

Parameters

• value – the new value for the field

ExternalDataEditAdapter class
The class that any extension class for external data edit needs to extend.

Syntax
public abstract class ExternalDataEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of ExternalDataEditAdapter, including inherited members. Methods

Agentry App Development

1048 SAP Mobile Platform

Modifier and Type Method Description

public abstract void initialize(ExternalDataEditMo-
del, Context) on page 1050

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(String) on page
1050

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

Agentry App Development 1049

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(ExternalDataEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (ExternalDataEditModel model,
Context context)

Parameters
• model – a reference to the object that implements the model. This will be the extension's

means of calling into Agentry.
• context – Android context to use

valueChanged(String) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (String value)

Agentry App Development

1050 SAP Mobile Platform

Parameters

• value – the new value for the field

FieldAdapter class
This is the abstract class all open UI adapter abstract classes derive from.

Syntax
public abstract class FieldAdapter

Derived classes

• BooleanDisplayAdapter on page 1012
• BooleanEditAdapter on page 1014
• ButtonDisplayAdapter on page 1017
• CollectionDisplayAdapter on page 1019
• DateAndTimeDisplayAdapter on page 1023
• DateAndTimeEditAdapter on page 1025
• DateDisplayAdapter on page 1028
• DateEditAdapter on page 1030
• DecimalDisplayAdapter on page 1032
• DecimalEditAdapter on page 1035
• DurationDisplayAdapter on page 1037
• DurationEditAdapter on page 1040
• EmbeddedImageDisplayAdapter on page 1043
• ExternalDataDisplayAdapter on page 1046
• ExternalDataEditAdapter on page 1048
• IntegerDisplayAdapter on page 1058
• IntegerEditAdapter on page 1061
• LabelDisplayAdapter on page 1063
• LocationDisplayAdapter on page 1066
• LocationEditAdapter on page 1068
• StringDisplayAdapter on page 1070
• StringEditAdapter on page 1073
• TimeDisplayAdapter on page 1075
• TimeEditAdapter on page 1077

Members
All members of FieldAdapter, including inherited members. Nested interfaces

Agentry App Development

Agentry App Development 1051

Modifier and Type Interface Description

publicinterface TouchQueryHandler on page
1053

Interface for allowing Open UI
controls to handle nested scroll
events correctly.

Methods

Modifier and Type Method Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

Agentry App Development

1052 SAP Mobile Platform

Modifier and Type Method Description

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

FieldAdapter.TouchQueryHandler interface
Interface for allowing Open UI controls to handle nested scroll events correctly.

Syntax
public interface TouchQueryHandler

Members
All members of TouchQueryHandler, including inherited members. Methods

Modifier and Type Method Description

public boolean isOnBottomEdge() on page
1054

Checks if this view is scrollable
and if so, if it is scrolled as far
down as possible.

public boolean isOnTopEdge() on page 1054 Checks if this view is scrollable
and if so, if it is scrolled as far up
as possible.

Usage
Adapters may add an object that implements TouchQueryHandler as a tag with key
com.syclo.agentry.client.android.R.id.touch_query_handler. This tag should be added to the
view returned by getView(). For performance reasons, Agentry only checks for this tag during
layout passes.

This is handled on a per-view basis, so some views can scroll while others do not. Child views
are handled independently from their parents.

Agentry App Development

Agentry App Development 1053

Failure to include such a tag can result in limited scrolling ability. Some default behavior will
handle basic scrolling of ListViews, ScrollViews, etc. but any custom views which need to
handle motion events will need to include this tag.

isOnBottomEdge() method
Checks if this view is scrollable and if so, if it is scrolled as far down as possible.

Syntax
public boolean isOnBottomEdge ()

Returns
true if the view can no longer scroll down, false if it can scroll down

isOnTopEdge() method
Checks if this view is scrollable and if so, if it is scrolled as far up as possible.

Syntax
public boolean isOnTopEdge ()

Returns
true if the view can no longer scroll up, false if it can scroll up

getAutosizeBehavior() method
Called by Agentry to ask if the extension view needs to auto-size to accommodate the
displayed data.

Syntax
public AutosizeBehavior getAutosizeBehavior ()

Returns
the autosize behavior

Usage
If this returns Autosize_WrapContent and the field's height in the editor is set to "Auto",
Agentry will call getContentHeightForAutosizing to get the needed height from
the extension. If this returns Autosize_FillVisible, Agentry will size the field to fill
the available screen area. If this returns Autosize_None, Agentry will size the extension
without asking.

This works in conjunction with FieldModel.isAutosizeSupported() which
allows the extension to ask if the editor definitions support autosizing.
autosizeBehavior() is Agentry's way of asking if the extension is able to handle
autosizing.

Agentry App Development

1054 SAP Mobile Platform

getContentHeightForAutosizing(int) method
Agentry will call this method if getAutosizeBehavior() is overridden to return
AutosizeBehavior.Autosize_WrapContent.

Syntax
public int getContentHeightForAutosizing (int width)

Parameters

• width – the width of the extension's content area in pixels

Returns
the height needed in pixels for the extension to show the current data

Usage
Agentry passes in the extension view's width in pixels. The extension then needs measure the
height needed for the content in pixels and return it.

getExtensionString(String) method
Called by the Agentry to get the value for the specified string.

Syntax
public String getExtensionString (String name)

Parameters

• name – the string that Agentry is requesting

Returns
the value the extension determines based on the specified key

Usage
In the definitions, there are specified keys. The string passed in is a key, the value is returned
from the extension.

getView() method
Called to get the Android View that will be added as a subview to the Agentry layout.

Syntax
public abstract View getView ()

Returns
Android view to display

Agentry App Development

Agentry App Development 1055

Usage
This will be called one time from Agentry. Any custom views which require scrolling should
include a TouchQueryHandler.

isAgentryDisplayingLabel() method
Called to ask if Agentry should handle displaying the label.

Syntax
public boolean isAgentryDisplayingLabel ()

Returns
true if the Agentry should handle displaying the label, false if the extension will handle
displaying the label

Usage
If this method returns true, Agentry will handle displaying the label, including hyperlink
functionality. If this method returns false, the extension takes responsibility for the label (and
is free to just not bother with it).

By default, the extension is responsible for displaying the label.

isAgentryDisplayingValidationFailure() method
Called to ask if Agentry should handle displaying validation failure text or leave it to the
extension.

Syntax
public boolean isAgentryDisplayingValidationFailure ()

Returns
true if the Agentry should handle displaying the validation failure text, false if the extension
will handle displaying the validation failure text

Usage
If this method returns true, Agentry will handle displaying the field validation failure text. If
this method returns false, the extension takes responsibility for the field validation failure
text.

By default, Agentry is responsible for displaying the validation failure text.

Agentry App Development

1056 SAP Mobile Platform

onActivityResult(int, int, Intent) method
Called from activity launched through FieldModel.launchActivity(Intent intent, int
requestCode) Allows extension the opportunity to handle any result from the now closed
activity.

Syntax
public void onActivityResult (int requestCode, int resultCode, Intent
intent)

Parameters

• requestCode – the integer request code that was supplied to the activity
• resultCode – the activity result
• intent – the means to get at the data

setEnabled(boolean) method
Called to inform the extension that the Agentry field's enable state has changed.

Syntax
public void setEnabled (boolean enabled)

Parameters

• enabled – true to indicate it is enabled, false to indicate it is disabled

setHyperlinkEnabled(boolean) method
Called to inform the extension that the enabled state of the label hyperlink action has changed.

Syntax
public void setHyperlinkEnabled (boolean enabled)

Parameters

• enabled – true if hyperlink is enabled, false if hyperlink is disabled

Usage
Only called if the extension is handling the label functionality and a hyperlink is defined.

setValid(boolean, String) method
Called to inform the extension that the Agentry field's valid state has changed.

Syntax
public void setValid (boolean valid, String validationMessage)

Agentry App Development

Agentry App Development 1057

Parameters

• valid – true if the field value is valid, false for invalid
• validationMessage – the message to display to the user

Usage
The field has either become invalid and the user needs to be informed with the validation
message, or it has become valid and any previously displayed validation failure text needs to
be hidden.

The validation message will contain information that tells the user why their field is invalid.

setVisible(boolean) method
Called to inform the extension that the Agentry field's visibility has changed.

Syntax
public void setVisible (boolean visible)

Parameters

• visible – true to indicate it is visible, false to indicate it is hidden

Usage
The view for the extension will be shown or hidden automatically. The extension will receive
this call to do any additional actions it needs to do when the visible state changes.

updateLabel(String) method
Called to inform the extension that the label text has changed.

Syntax
public void updateLabel (String label)

Parameters

• label – the new value for the label

Usage
Only called if the extension is handling the label functionality and the label is defined with a
rule.

IntegerDisplayAdapter class
The class that any extension class for integer display needs to extend.

Syntax
public abstract class IntegerDisplayAdapter extends

Agentry App Development

1058 SAP Mobile Platform

Base class

• FieldAdapter on page 1051

Members
All members of IntegerDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(IntegerDisplayMo-
del, Context) on page 1060

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(int) on page
1061

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

Agentry App Development

Agentry App Development 1059

Modifier and Type Member Description

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(IntegerDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (IntegerDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

Agentry App Development

1060 SAP Mobile Platform

valueChanged(int) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (int value)

Parameters

• value – the new value for the field

IntegerEditAdapter class
The class that any extension class for integer editing needs to extend.

Syntax
public abstract class IntegerEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of IntegerEditAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(IntegerEditModel,
Context) on page 1063

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(int) on page
1063

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

Agentry App Development

Agentry App Development 1061

Modifier and Type Member Description

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

Agentry App Development

1062 SAP Mobile Platform

initialize(IntegerEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (IntegerEditModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(int) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (int value)

Parameters

• value – the new value for the field

LabelDisplayAdapter class
The class that any extension class for label display needs to extend.

Syntax
public abstract class LabelDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of LabelDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(LabelDisplayModel,
Context) on page 1065

Called to initialize the extension
with its model and Android con-
text.

Agentry App Development

Agentry App Development 1063

Modifier and Type Method Description

public void valueChanged(String) on page
1065

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

Agentry App Development

1064 SAP Mobile Platform

Modifier and Type Member Description

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

Usage
This extension is responsible for displaying the label. Its getView() method should return
the label view. The control's value is considered to be the label text.

initialize(LabelDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (LabelDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(String) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (String value)

Agentry App Development

Agentry App Development 1065

Parameters

• value – the new value for the field

LocationDisplayAdapter class
The class that any extension class for location display needs to extend.

Syntax
public abstract class LocationDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of LocationDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(LocationDisplayMo-
del, Context) on page 1067

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(AgentryLoca-
tion) on page 1068

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

Agentry App Development

1066 SAP Mobile Platform

Modifier and Type Member Description

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(LocationDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (LocationDisplayModel model,
Context context)

Agentry App Development

Agentry App Development 1067

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(AgentryLocation) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (AgentryLocation value)

Parameters

• value – the new value for the field

LocationEditAdapter class
The class that any extension class for location edit needs to extend.

Syntax
public abstract class LocationEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of LocationEditAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(LocationEditModel,
Context) on page 1070

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(AgentryLoca-
tion) on page 1070

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Agentry App Development

1068 SAP Mobile Platform

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

Agentry App Development

Agentry App Development 1069

Modifier and Type Member Description

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(LocationEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (LocationEditModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(AgentryLocation) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (AgentryLocation value)

Parameters

• value – the new value for the field

StringDisplayAdapter class
The class that any extension class for string display needs to extend.

Syntax
public abstract class StringDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of StringDisplayAdapter, including inherited members. Methods

Agentry App Development

1070 SAP Mobile Platform

Modifier and Type Method Description

public abstract void initialize(StringDisplayModel,
Context) on page 1072

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(String) on page
1072

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

Agentry App Development 1071

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(StringDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (StringDisplayModel model,
Context context)

Parameters
• model – a reference to the object that implements the model. This will be the extension's

means of calling into Agentry.
• context – Android context to use

valueChanged(String) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (String value)

Agentry App Development

1072 SAP Mobile Platform

Parameters

• value – the new value for the field

StringEditAdapter class
The class that any extension class for string edit needs to extend.

Syntax
public abstract class StringEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of StringEditAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(StringEditModel,
Context) on page 1074

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(String) on page
1075

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

Agentry App Development

Agentry App Development 1073

Modifier and Type Member Description

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(StringEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (StringEditModel model, Context
context)

Agentry App Development

1074 SAP Mobile Platform

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(String) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (String value)

Parameters

• value – the new value for the field

TimeDisplayAdapter class
The class that any extension class for time display needs to extend.

Syntax
public abstract class TimeDisplayAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of TimeDisplayAdapter, including inherited members. Methods

Modifier and Type Method Description

public abstract void initialize(TimeDisplayModel,
Context) on page 1077

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(GregorianCa-
lendar) on page 1077

This method is called by the to
inform the adapter that the
field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Agentry App Development

Agentry App Development 1075

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

Agentry App Development

1076 SAP Mobile Platform

Modifier and Type Member Description

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(TimeDisplayModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (TimeDisplayModel model,
Context context)

Parameters

• model – a reference to the object that implements the model. This will be the extension's
means of calling into Agentry.

• context – Android context to use

valueChanged(GregorianCalendar) method
This method is called by the to inform the adapter that the field's underlying value has changed
and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (GregorianCalendar value)

Parameters

• value – the new value for the field

TimeEditAdapter class
The class that any extension class for time edit needs to extend.

Syntax
public abstract class TimeEditAdapter extends

Base class

• FieldAdapter on page 1051

Members
All members of TimeEditAdapter, including inherited members. Methods

Agentry App Development

Agentry App Development 1077

Modifier and Type Method Description

public abstract void initialize(TimeEditModel, Con-
text) on page 1079

Called to initialize the extension
with its model and Android con-
text.

public void valueChanged(GregorianCa-
lendar) on page 1079

This method is called by the
host to inform the adapter that
the field's underlying value has
changed and the UI needs to be
updated to display the correct
value.

Inherited members from FieldAdapter

Modifier and Type Member Description

public AutosizeBehavior getAutosizeBehavior() on page
1054

Called by Agentry to ask if the
extension view needs to auto-
size to accommodate the dis-
played data.

public int getContentHeightForAutosiz-
ing(int) on page 1055

Agentry will call this method if
getAutosizeBehavior() is over-
ridden to return AutosizeBehav-
ior.Autosize_WrapContent.

public String getExtensionString(String) on
page 1055

Called by the Agentry to get the
value for the specified string.

public abstract View getView() on page 1055 Called to get the Android View
that will be added as a subview
to the Agentry layout.

public boolean isAgentryDisplayingLabel() on
page 1056

Called to ask if Agentry should
handle displaying the label.

public boolean isAgentryDisplayingValida-
tionFailure() on page 1056

Called to ask if Agentry should
handle displaying validation
failure text or leave it to the ex-
tension.

Agentry App Development

1078 SAP Mobile Platform

Modifier and Type Member Description

public void onActivityResult(int, int, In-
tent) on page 1057

Called from activity launched
through FieldModel.launchAc-
tivity(Intent intent, int reques-
tCode) Allows extension the op-
portunity to handle any result
from the now closed activity.

public void setEnabled(boolean) on page
1057

Called to inform the extension
that the Agentry field's enable
state has changed.

public void setHyperlinkEnabled(boolean)
on page 1057

Called to inform the extension
that the enabled state of the label
hyperlink action has changed.

public void setValid(boolean, String) on
page 1057

Called to inform the extension
that the Agentry field's valid
state has changed.

public void setVisible(boolean) on page
1058

Called to inform the extension
that the Agentry field's visibility
has changed.

public void updateLabel(String) on page
1058

Called to inform the extension
that the label text has changed.

initialize(TimeEditModel, Context) method
Called to initialize the extension with its model and Android context.

Syntax
public abstract void initialize (TimeEditModel model, Context
context)

Parameters
• model – a reference to the object that implements the model. This will be the extension's

means of calling into Agentry.
• context – Android context to use

valueChanged(GregorianCalendar) method
This method is called by the host to inform the adapter that the field's underlying value has
changed and the UI needs to be updated to display the correct value.

Syntax
public void valueChanged (GregorianCalendar value)

Agentry App Development

Agentry App Development 1079

Parameters

• value – the new value for the field

models package

BooleanDisplayModel interface
Interface given to a boolean display extension object so it can call back into the host.

Syntax
public interface BooleanDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• BooleanEditModel on page 1081

Members
All members of BooleanDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public boolean getValue() on page 1081 Returns the current value of the
field.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

Agentry App Development

1080 SAP Mobile Platform

Modifier and Type Member Description

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getValue() method
Returns the current value of the field.

Syntax
public boolean getValue ()

Returns
the field value

BooleanEditModel interface
Interface given to a boolean edit extension object so it can call back into the host.

Syntax
public interface BooleanEditModel implements
BooleanDisplayModel

Implemented interfaces

• BooleanDisplayModel on page 1080

Agentry App Development

Agentry App Development 1081

Members
All members of BooleanEditModel, including inherited members. Methods

Modifier and Type Method Description

public ProcessInputReturn processInput(boolean) on page
1083

Processes the input of the field.

Inherited members from BooleanDisplayModel

Modifier and Type Member Description

public boolean getValue() on page 1081 Returns the current value of the
field.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

Agentry App Development

1082 SAP Mobile Platform

Modifier and Type Member Description

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

processInput(boolean) method
Processes the input of the field.

Syntax
public ProcessInputReturn processInput (boolean value)

Parameters

• value – the value to process

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

ButtonDisplayModel interface
Interface given to a button display extension object so it can call back into the host.

Syntax
public interface ButtonDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Members
All members of ButtonDisplayModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1083

Modifier and Type Method Description

public AgentryImage getButtonImage() on page
1085

Returns the image associated
with the button.

public String getButtonText() on page 1085 Returns the text that the button
should display.

public ButtonType getButtonType() on page 1085 Returns the button type.

public boolean hasAction() on page 1086 Returns whether or not there is
an action tied to the button.

public boolean isButtonSelected() on page
1086

Returns whether or not the but-
ton is selected.

public ProcessInputReturn processInput() on page 1086 Called to process the button
push.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

Agentry App Development

1084 SAP Mobile Platform

Modifier and Type Member Description

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getButtonImage() method
Returns the image associated with the button.

Syntax
public AgentryImage getButtonImage ()

Returns
the associated image

getButtonText() method
Returns the text that the button should display.

Syntax
public String getButtonText ()

Returns
the button text

getButtonType() method
Returns the button type.

Syntax
public ButtonType getButtonType ()

Returns
the type of button

Usage
Possible types are checkbox, radio and push button.

Agentry App Development

Agentry App Development 1085

hasAction() method
Returns whether or not there is an action tied to the button.

Syntax
public boolean hasAction ()

Returns
true if action is supported, false if action is not supported

isButtonSelected() method
Returns whether or not the button is selected.

Syntax
public boolean isButtonSelected ()

Returns
true if selected, false if not selected

processInput() method
Called to process the button push.

Syntax
public ProcessInputReturn processInput ()

Returns
result of processing the push

Usage
Returns a ProcessInputReturn representing the result of processing the push.

CollectionDisplayModel interface
Interface given to a collection display extension object so it can call back into the host.

Syntax
public interface CollectionDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Members
All members of CollectionDisplayModel, including inherited members. Methods

Agentry App Development

1086 SAP Mobile Platform

Modifier and Type Method Description

public AgentryData getCollection() on page 1088 Returns the underlying collec-
tion.

public AgentryData getDisplayedItemAt(int) on
page 1088

Returns the displayed item at
the given row.

public int getDisplayRowCount() on page
1088

Returns the number of dis-
played rows.

public int getSelectedRow() on page
1089

Returns the (0-based) row of the
selected item.

public ProcessInputReturn selectRow(int) on page 1089 Changes the row selection.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

Agentry App Development

Agentry App Development 1087

Modifier and Type Member Description

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getCollection() method
Returns the underlying collection.

Syntax
public AgentryData getCollection ()

Returns
the collection

getDisplayedItemAt(int) method
Returns the displayed item at the given row.

Syntax
public AgentryData getDisplayedItemAt (int row)

Parameters

• row – the (0-based) row

Returns
the displayed item at that position

Exceptions

• IndexOutOfBoundsException – if row is out of bounds

getDisplayRowCount() method
Returns the number of displayed rows.

Syntax
public int getDisplayRowCount ()

Returns
the number of displayed rows

Agentry App Development

1088 SAP Mobile Platform

getSelectedRow() method
Returns the (0-based) row of the selected item.

Syntax
public int getSelectedRow ()

Returns
the selected row or -1 if nothing is selected

selectRow(int) method
Changes the row selection.

Syntax
public ProcessInputReturn selectRow (int row)

Parameters

• row – the row to select, or -1 to deselect all

Returns
the result of the row selection

Usage
Pass in -1 to deselect all rows.

DateAndTimeDisplayModel interface
Interface given to a time and date display extension object so it can call back into the host.

Syntax
public interface DateAndTimeDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• DateAndTimeEditModel on page 1091

Members
All members of DateAndTimeDisplayModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1089

Modifier and Type Method Description

public GregorianCalendar getValue() on page 1091 Returns the field's current date
and time value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

Agentry App Development

1090 SAP Mobile Platform

getValue() method
Returns the field's current date and time value.

Syntax
public GregorianCalendar getValue ()

Returns
the date

DateAndTimeEditModel interface
Interface given to a time and date edit extension object so it can call back into the host.

Syntax
public interface DateAndTimeEditModel implements
DateAndTimeDisplayModel

Implemented interfaces

• DateAndTimeDisplayModel on page 1089

Members
All members of DateAndTimeEditModel, including inherited members. Methods

Modifier and Type Method Description

public ProcessInputReturn processInput(GregorianCalen-
dar) on page 1092

Processes the date and time in-
put.

Inherited members from DateAndTimeDisplayModel

Modifier and Type Member Description

public GregorianCalendar getValue() on page 1091 Returns the field's current date
and time value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

Agentry App Development

Agentry App Development 1091

Modifier and Type Member Description

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

processInput(GregorianCalendar) method
Processes the date and time input.

Syntax
public ProcessInputReturn processInput (GregorianCalendar
dateAndTime)

Parameters

• dateAndTime – the date and time value to process

Agentry App Development

1092 SAP Mobile Platform

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

DateDisplayModel interface
Interface given to a date display extension object so it can call back into the host.

Syntax
public interface DateDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• DateEditModel on page 1094

Members
All members of DateDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public GregorianCalendar getValue() on page 1094 Returns the field's current date
value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

Agentry App Development

Agentry App Development 1093

Modifier and Type Member Description

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getValue() method
Returns the field's current date value.

Syntax
public GregorianCalendar getValue ()

Returns
the date

DateEditModel interface
Interface given to a date edit extension object so it can call back into the host.

Syntax
public interface DateEditModel implements DateDisplayModel

Implemented interfaces
• DateDisplayModel on page 1093

Members
All members of DateEditModel, including inherited members. Methods

Agentry App Development

1094 SAP Mobile Platform

Modifier and Type Method Description

public ProcessInputReturn processInput(GregorianCalen-
dar) on page 1096

Processes the entered date val-
ue.

Inherited members from DateDisplayModel

Modifier and Type Member Description

public GregorianCalendar getValue() on page 1094 Returns the field's current date
value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

Agentry App Development

Agentry App Development 1095

Modifier and Type Member Description

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

processInput(GregorianCalendar) method
Processes the entered date value.

Syntax
public ProcessInputReturn processInput (GregorianCalendar date)

Parameters

• date – the value to process

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

DecimalDisplayModel interface
Interface given to an decimal display extension object so it can call back into the host.

Syntax
public interface DecimalDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• DecimalEditModel on page 1098

Members
All members of DecimalDisplayModel, including inherited members. Methods

Agentry App Development

1096 SAP Mobile Platform

Modifier and Type Method Description

public double getValue() on page 1098 Gets the current value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

Agentry App Development

Agentry App Development 1097

getValue() method
Gets the current value.

Syntax
public double getValue ()

Returns
the current value

DecimalEditModel interface
Interface given to an decimal edit extension object so it can call back into the host.

Syntax
public interface DecimalEditModel implements
DecimalDisplayModel

Implemented interfaces

• DecimalDisplayModel on page 1096

Members
All members of DecimalEditModel, including inherited members. Methods

Modifier and Type Method Description

public double getMaximumValue() on page
1099

The maximum value accepted
for the decimal field.

public double getMinimumValue() on page
1100

The minimum value accepted
for the decimal field.

public ProcessInputReturn processInput(double) on page
1100

Process the current double in-
put.

Inherited members from DecimalDisplayModel

Modifier and Type Member Description

public double getValue() on page 1098 Gets the current value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

Agentry App Development

1098 SAP Mobile Platform

Modifier and Type Member Description

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getMaximumValue() method
The maximum value accepted for the decimal field.

Syntax
public double getMaximumValue ()

Returns
maximum value

Agentry App Development

Agentry App Development 1099

getMinimumValue() method
The minimum value accepted for the decimal field.

Syntax
public double getMinimumValue ()

Returns
minimum value

processInput(double) method
Process the current double input.

Syntax
public ProcessInputReturn processInput (double value)

Parameters

• value – input value

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

DurationDisplayModel interface
Interface given to a duration display extension object so it can call back into the host.

Syntax
public interface DurationDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• DurationEditModel on page 1102

Members
All members of DurationDisplayModel, including inherited members. Methods

Agentry App Development

1100 SAP Mobile Platform

Modifier and Type Method Description

public DurationDisplayFormat getDurationDisplayFormat() on
page 1102

Returns the display format
specified for the duration.

public double getFractionalHourValue() on
page 1102

Returns the current value for the
duration in decimal hour.

public int getValue() on page 1102 Returns the current value for the
duration in seconds.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

Agentry App Development

Agentry App Development 1101

Modifier and Type Member Description

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getDurationDisplayFormat() method
Returns the display format specified for the duration.

Syntax
public DurationDisplayFormat getDurationDisplayFormat ()

Returns
the display format

getFractionalHourValue() method
Returns the current value for the duration in decimal hour.

Syntax
public double getFractionalHourValue ()

Returns
value as decimal hour

Usage
This should be used when the getDurationDisplayFormat() returns DecHour.

getValue() method
Returns the current value for the duration in seconds.

Syntax
public int getValue ()

Returns
value in seconds

DurationEditModel interface
Interface given to a duration edit extension object so it can call back into the host.

Syntax
public interface DurationEditModel implements
DurationDisplayModel

Agentry App Development

1102 SAP Mobile Platform

Implemented interfaces

• DurationDisplayModel on page 1100

Members
All members of DurationEditModel, including inherited members. Methods

Modifier and Type Method Description

public double getMaximumFractionalHour()
on page 1104

Returns the maximum value al-
lowed.

public int getMaximumValue() on page
1105

Returns the maximum value al-
lowed.

public double getMinimumFractionalHour()
on page 1105

Returns the minimum value that
is enforced.

public int getMinimumValue() on page
1105

Returns the minimum value that
is enforced.

public ProcessInputReturn processDecimalInput(double)
on page 1106

Processes the double input.

public ProcessInputReturn processInput(int) on page
1106

Processes the integer input.

Inherited members from DurationDisplayModel

Modifier and Type Member Description

public DurationDisplayFormat getDurationDisplayFormat() on
page 1102

Returns the display format
specified for the duration.

public double getFractionalHourValue() on
page 1102

Returns the current value for the
duration in decimal hour.

public int getValue() on page 1102 Returns the current value for the
duration in seconds.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

Agentry App Development

Agentry App Development 1103

Modifier and Type Member Description

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getMaximumFractionalHour() method
Returns the maximum value allowed.

Syntax
public double getMaximumFractionalHour ()

Returns
minimum value in hours

Agentry App Development

1104 SAP Mobile Platform

Usage
This is a double value representing fractional hour. This should be used when
DurationDisplayModel.getDurationDisplayFormat() returns DecHour.

getMaximumValue() method
Returns the maximum value allowed.

Syntax
public int getMaximumValue ()

Returns
minimum value in seconds

Usage
This is an integer value in seconds.

getMinimumFractionalHour() method
Returns the minimum value that is enforced.

Syntax
public double getMinimumFractionalHour ()

Returns
minimum value in hours

Usage
This is a double value representing fractional hour. This should be used when
DurationDisplayModel.getDurationDisplayFormat() returns DecHour.

getMinimumValue() method
Returns the minimum value that is enforced.

Syntax
public int getMinimumValue ()

Returns
minimum value in seconds

Usage
This is an integer value in seconds.

Agentry App Development

Agentry App Development 1105

processDecimalInput(double) method
Processes the double input.

Syntax
public ProcessInputReturn processDecimalInput (double value)

Parameters

• value – the value to process

Returns
result based on the value passed in

Usage
Input is given as fractional hour. Returns a ProcessInputReturn representing the result
of processing the input. This should only be used when the
DurationDisplayModel.getDurationDisplayFormat() returns DecHour.

processInput(int) method
Processes the integer input.

Syntax
public ProcessInputReturn processInput (int value)

Parameters

• value – the value to process

Returns
result based on the value passed in

Usage
Input is given in seconds. Returns a ProcessInputReturn representing the result of
processing the input.

EmbeddedImageDisplayModel interface
Interface given to a embedded image display extension object so it can call back into the host.

Syntax
public interface EmbeddedImageDisplayModel implements
FieldModel

Agentry App Development

1106 SAP Mobile Platform

Implemented interfaces

• FieldModel on page 1114

Members
All members of EmbeddedImageDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public long getColumnCount() on page
1108

Retrieves from the specified
number of columns in the click-
able image grid.

public MaskColor getHighlightColor() on page
1109

Retrieves the highlight selected
color to use for showing an im-
age cell as selected.

public OpenUIImage getImage() on page 1109 Retrieves the OpenUIImage.

public ImagePosition getImagePosition() on page
1109

Retrieves the image position.

public ImagePresentation getImagePresentation() on page
1109

Retrieves the image presenta-
tion (scaling mode).

public long getRowCount() on page 1110 Retrieves from the specified
number of rows in the clickable
image grid.

public boolean isImageCellSelected(long,
long) on page 1110

Retrieves if the specified cell is
selected.

public void setImageCellSelected(long,
long) on page 1110

Called to inform Agentry that an
image cell has been clicked.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

Agentry App Development

Agentry App Development 1107

Modifier and Type Member Description

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

Usage
Depending on the editor settings, the image can be split into multiple cells. Cells are identified
by x- and y-coordinates, with the origin (0, 0) being at the top-left.

getColumnCount() method
Retrieves from the specified number of columns in the clickable image grid.

Syntax
public long getColumnCount ()

Returns
number of columns

Agentry App Development

1108 SAP Mobile Platform

getHighlightColor() method
Retrieves the highlight selected color to use for showing an image cell as selected.

Syntax
public MaskColor getHighlightColor ()

Returns
highlight color to use

Usage
Color is valid if the return object's isValid() method returns true.

getImage() method
Retrieves the OpenUIImage.

Syntax
public OpenUIImage getImage ()

Returns
the image to display

getImagePosition() method
Retrieves the image position.

Syntax
public ImagePosition getImagePosition ()

Returns
the image position

Usage
This will return null if there is no image.

getImagePresentation() method
Retrieves the image presentation (scaling mode).

Syntax
public ImagePresentation getImagePresentation ()

Returns
the image presentation (scaling mode)

Agentry App Development

Agentry App Development 1109

Usage
This will return null if there is no image.

getRowCount() method
Retrieves from the specified number of rows in the clickable image grid.

Syntax
public long getRowCount ()

Returns
number of rows

isImageCellSelected(long, long) method
Retrieves if the specified cell is selected.

Syntax
public boolean isImageCellSelected (long x, long y)

Parameters

• x – horizontal cell. In other words, the column.
• y – vertical cell. In other words, the row.

Returns
true if the specified cell is selected, false if the specified cell is not selected

setImageCellSelected(long, long) method
Called to inform Agentry that an image cell has been clicked.

Syntax
public void setImageCellSelected (long x, long y)

Parameters

• x – horizontal cell clicked
• y – vertical cell clicked

ExternalDataDisplayModel interface
Interface given to a external data display extension object so it can call back into the host.

Syntax
public interface ExternalDataDisplayModel implements FieldModel

Agentry App Development

1110 SAP Mobile Platform

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• ExternalDataEditModel on page 1112

Members
All members of ExternalDataDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public String getFilePath() on page 1112 Returns the path to the external
data file.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

Agentry App Development

Agentry App Development 1111

Modifier and Type Member Description

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getFilePath() method
Returns the path to the external data file.

Syntax
public String getFilePath ()

Returns
the file path

ExternalDataEditModel interface
Interface given to a external data edit extension object so it can call back into the host.

Syntax
public interface ExternalDataEditModel implements
ExternalDataDisplayModel

Implemented interfaces

• ExternalDataDisplayModel on page 1110

Members
All members of ExternalDataEditModel, including inherited members. Methods

Modifier and Type Method Description

public ProcessInputReturn processInput(String) on page
1114

Processes the entered file path.

Inherited members from ExternalDataDisplayModel

Agentry App Development

1112 SAP Mobile Platform

Modifier and Type Member Description

public String getFilePath() on page 1112 Returns the path to the external
data file.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

Agentry App Development

Agentry App Development 1113

processInput(String) method
Processes the entered file path.

Syntax
public ProcessInputReturn processInput (String filePath)

Parameters

• filePath – path to the file

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

FieldModel interface
Interface given to an extension object so it can call back into the host.

Syntax
public interface FieldModel

Derived interfaces

• BooleanDisplayModel on page 1080
• ButtonDisplayModel on page 1083
• CollectionDisplayModel on page 1086
• DateAndTimeDisplayModel on page 1089
• DateDisplayModel on page 1093
• DecimalDisplayModel on page 1096
• DurationDisplayModel on page 1100
• EmbeddedImageDisplayModel on page 1106
• ExternalDataDisplayModel on page 1110
• IntegerDisplayModel on page 1119
• LabelDisplayModel on page 1123
• LocationDisplayModel on page 1124
• StringDisplayModel on page 1128
• TimeDisplayModel on page 1133

Members
All members of FieldModel, including inherited members. Methods

Agentry App Development

1114 SAP Mobile Platform

Modifier and Type Method Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

executeAgentryAction(String) method
Asks Agentry to execute the action specified by name.

Syntax
public ActionResult executeAgentryAction (String actionName)

Agentry App Development

Agentry App Development 1115

Parameters

• actionName – the action name as a string

Returns
the result of trying to run the action

Usage
This should only be called if getAgentryActionEnableState returns
ActionEnable for the specified action. Only actions defined for this control in the Agentry
Editor can be executed.

executeHyperlinkAction() method
Asks Agentry to run the field's hyperlink action.

Syntax
public ActionResult executeHyperlinkAction ()

Returns
the action result

getAgentryActionEnableState(String) method
Asks Agentry what the current enable state is for the action specified by name.

Syntax
public ActionEnableType getAgentryActionEnableState (String
actionName)

Parameters

• actionName – the action name

Returns
the enable state

Usage
It will either be enabled, disabled, no-op(action not found), or error.

getAgentryString(String) method
Asks Agentry for a specific string value.

Syntax
public String getAgentryString (String name)

Agentry App Development

1116 SAP Mobile Platform

Parameters

• name – the string the extension is requesting.

Returns
the value paired with that string.

Usage
In the definitions there are key/value pairs. The String passed in is a key, the value is returned.
If no key exists for the specified string, null will be returned.

getLabel() method
Returns the label text for the field.

Syntax
public String getLabel ()

Returns
the label text

isAutosizeSupported() method
Checks whether the the field is allowed to automatically decide its own height.

Syntax
public boolean isAutosizeSupported ()

Returns
true if the field can set its height, false if it cannot.

Usage
This directly corresponds to the editor setting for the height of the extended field. If it is set to
"auto", this will return true. If it's set to a number of rows for height, then this will return
false.

This works in conjunction with FieldAdapter.autosizeBehavior(). This method
allows the extension to ask if the editor definitions support autosizing.
FieldAdapter.autosizeBehavior() is Agentry's way of asking the extension how
to handle autosizing.

isEnabled() method
Returns whether the field is currently enabled based on current rule evaluation.

Syntax
public boolean isEnabled ()

Agentry App Development

Agentry App Development 1117

Returns
true if the field is enabled, false if it is disabled

isHidden() method
Returns whether or not the field is currently hidden based on current rule evaluations.

Syntax
public boolean isHidden ()

Returns
true if the field is hidden, false if the field is visible

isHyperlinkEnabled() method
Returns whether or not the label hyperlink action is enabled.

Syntax
public boolean isHyperlinkEnabled ()

Returns
true if the label hyperlink action is enabled, false if it is disabled.

launchActivity(Intent, int) method
If the extension needs to launch an new activity, it has to call through this method to do it.

Syntax
public void launchActivity (Intent intent, int requestCode)

Parameters

• intent – defines the activity to launch
• requestCode – what code to return in onActivityResult().

Usage
It needs to pass in the intent and requestCode. Agentry will handle launching the activity.
FieldAdapter.onActivityResult will be called when the activity is dismissed.

requestLayoutHeight(int) method
This is called by a field's UI extension to tell the model's layout manager that the field needs to
have a specific pixel height.

Syntax
public void requestLayoutHeight (int newHeight)

Agentry App Development

1118 SAP Mobile Platform

Parameters

• newHeight – the new height requested by the extension.

Usage
This is used by auto-sizing fields to tell the layout manager what their actual height is. This
should only be called if isAutosizeSupported() returns true.

IntegerDisplayModel interface
Interface given to an integer display extension object so it can call back into the host.

Syntax
public interface IntegerDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• IntegerEditModel on page 1120

Members
All members of IntegerDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public int getValue() on page 1120 Gets the current integer value
from the model.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

Agentry App Development

Agentry App Development 1119

Modifier and Type Member Description

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getValue() method
Gets the current integer value from the model.

Syntax
public int getValue ()

Returns
the current value of the field

IntegerEditModel interface
Interface given to an integer edit extension object so it can call back into the host.

Syntax
public interface IntegerEditModel implements
IntegerDisplayModel

Agentry App Development

1120 SAP Mobile Platform

Implemented interfaces

• IntegerDisplayModel on page 1119

Members
All members of IntegerEditModel, including inherited members. Methods

Modifier and Type Method Description

public int getMaximumValue() on page
1122

Returns the maximum integer
value that will be accepted.

public int getMinimumValue() on page
1122

Returns the minimum integer
value that will be accepted.

public ProcessInputReturn processIntegerInput(int) on
page 1122

Processes the input of the field.

Inherited members from IntegerDisplayModel

Modifier and Type Member Description

public int getValue() on page 1120 Gets the current integer value
from the model.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

Agentry App Development

Agentry App Development 1121

Modifier and Type Member Description

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getMaximumValue() method
Returns the maximum integer value that will be accepted.

Syntax
public int getMaximumValue ()

Returns
the maximum integer value that will be accepted

getMinimumValue() method
Returns the minimum integer value that will be accepted.

Syntax
public int getMinimumValue ()

Returns
the minimum integer value that will be accepted

processIntegerInput(int) method
Processes the input of the field.

Syntax
public ProcessInputReturn processIntegerInput (int value)

Agentry App Development

1122 SAP Mobile Platform

Parameters

• value – the value to process

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

LabelDisplayModel interface
Interface given to a label display extension object so it can call back into the host.

Syntax
public interface LabelDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Members
All members of LabelDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public String getValue() on page 1124 Returns the text the label should
display.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

Agentry App Development

Agentry App Development 1123

Modifier and Type Member Description

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getValue() method
Returns the text the label should display.

Syntax
public String getValue ()

Returns
the label text

LocationDisplayModel interface
Interface given to a location display extension object so it can call back into the host.

Syntax
public interface LocationDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Agentry App Development

1124 SAP Mobile Platform

Derived interfaces

• LocationEditModel on page 1126

Members
All members of LocationDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public AgentryLocation getValue() on page 1126 Returns the location that should
be displayed.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

Agentry App Development

Agentry App Development 1125

Modifier and Type Member Description

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getValue() method
Returns the location that should be displayed.

Syntax
public AgentryLocation getValue ()

Returns
the location

LocationEditModel interface
Interface given to a location edit extension object so it can call back into the host.

Syntax
public interface LocationEditModel implements
LocationDisplayModel

Implemented interfaces

• LocationDisplayModel on page 1124

Members
All members of LocationEditModel, including inherited members. Methods

Modifier and Type Method Description

public ProcessInputReturn processInput(AgentryLoca-
tion) on page 1127

Processes the selected location.

Inherited members from LocationDisplayModel

Modifier and Type Member Description

public AgentryLocation getValue() on page 1126 Returns the location that should
be displayed.

Inherited members from FieldModel

Agentry App Development

1126 SAP Mobile Platform

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

processInput(AgentryLocation) method
Processes the selected location.

Syntax
public ProcessInputReturn processInput (AgentryLocation location)

Agentry App Development

Agentry App Development 1127

Parameters

• location – object

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

StringDisplayModel interface
Interface given to a string display extension object so it can call back into the host.

Syntax
public interface StringDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• StringEditModel on page 1130

Members
All members of StringDisplayModel, including inherited members. Methods

Modifier and Type Method Description

public String getValue() on page 1129 Returns the current value of the
field.

public boolean isCarriageReturnAllowed() on
page 1130

Returns whether the field allows
carriage returns.

public boolean isWordWrapAllowed() on page
1130

Returns whether the field allows
word wrap.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

Agentry App Development

1128 SAP Mobile Platform

Modifier and Type Member Description

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getValue() method
Returns the current value of the field.

Syntax
public String getValue ()

Returns
the field value

Agentry App Development

Agentry App Development 1129

isCarriageReturnAllowed() method
Returns whether the field allows carriage returns.

Syntax
public boolean isCarriageReturnAllowed ()

Returns
whether or not carriage return is allowed

isWordWrapAllowed() method
Returns whether the field allows word wrap.

Syntax
public boolean isWordWrapAllowed ()

Returns
whether or not word wrap is allowed

StringEditModel interface
Interface given to a string edit extension object so it can call back into the host.

Syntax
public interface StringEditModel implements StringDisplayModel

Implemented interfaces

• StringDisplayModel on page 1128

Members
All members of StringEditModel, including inherited members. Methods

Modifier and Type Method Description

public int getMaximumLength() on page
1132

This retrieves the maximum
number of characters that the
edit text field will allow upon
field validation.

public int getMinimumLength() on page
1132

This retrieves the minimum
number of characters that the
edit text field will allow upon
field validation.

Agentry App Development

1130 SAP Mobile Platform

Modifier and Type Method Description

public boolean isPasswordInput() on page
1133

This is used to determine if the
edit field should obscure its in-
put, as would be the case if it
were being used to retrieve a
password.

public ProcessInputReturn processInput(String) on page
1133

Processes the input of the field.

Inherited members from StringDisplayModel

Modifier and Type Member Description

public String getValue() on page 1129 Returns the current value of the
field.

public boolean isCarriageReturnAllowed() on
page 1130

Returns whether the field allows
carriage returns.

public boolean isWordWrapAllowed() on page
1130

Returns whether the field allows
word wrap.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

Agentry App Development

Agentry App Development 1131

Modifier and Type Member Description

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

getMaximumLength() method
This retrieves the maximum number of characters that the edit text field will allow upon field
validation.

Syntax
public int getMaximumLength ()

Returns
the maximum number of characters to enter

getMinimumLength() method
This retrieves the minimum number of characters that the edit text field will allow upon field
validation.

Syntax
public int getMinimumLength ()

Returns
the minimum number of characters to enter

Agentry App Development

1132 SAP Mobile Platform

isPasswordInput() method
This is used to determine if the edit field should obscure its input, as would be the case if it were
being used to retrieve a password.

Syntax
public boolean isPasswordInput ()

Returns
true if the input should be hidden from the user, in whatever password-entry style is standard
for the platform; false if not

processInput(String) method
Processes the input of the field.

Syntax
public ProcessInputReturn processInput (String value)

Parameters

• value – the value to process

Returns
result based on the value passed in

Usage
Returns a ProcessInputReturn representing the result of processing the input.

TimeDisplayModel interface
Interface given to a time display extension object so it can call back into the host.

Syntax
public interface TimeDisplayModel implements FieldModel

Implemented interfaces

• FieldModel on page 1114

Derived interfaces

• TimeEditModel on page 1135

Members
All members of TimeDisplayModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1133

Modifier and Type Method Description

public GregorianCalendar getValue() on page 1135 Returns the field's current time
value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

Agentry App Development

1134 SAP Mobile Platform

getValue() method
Returns the field's current time value.

Syntax
public GregorianCalendar getValue ()

Returns
the time

TimeEditModel interface
Interface given to a time edit extension object so it can call back into the host.

Syntax
public interface TimeEditModel implements TimeDisplayModel

Implemented interfaces

• TimeDisplayModel on page 1133

Members
All members of TimeEditModel, including inherited members. Methods

Modifier and Type Method Description

public ProcessInputReturn processInput(GregorianCalen-
dar) on page 1136

Processes the current time in-
put.

Inherited members from TimeDisplayModel

Modifier and Type Member Description

public GregorianCalendar getValue() on page 1135 Returns the field's current time
value.

Inherited members from FieldModel

Modifier and Type Member Description

public ActionResult executeAgentryAction(String)
on page 1115

Asks Agentry to execute the ac-
tion specified by name.

public ActionResult executeHyperlinkAction() on
page 1116

Asks Agentry to run the field's
hyperlink action.

Agentry App Development

Agentry App Development 1135

Modifier and Type Member Description

public ActionEnableType getAgentryActionEnableS-
tate(String) on page 1116

Asks Agentry what the current
enable state is for the action
specified by name.

public String getAgentryString(String) on
page 1116

Asks Agentry for a specific
string value.

public String getLabel() on page 1117 Returns the label text for the
field.

public boolean isAutosizeSupported() on page
1117

Checks whether the the field is
allowed to automatically decide
its own height.

public boolean isEnabled() on page 1117 Returns whether the field is cur-
rently enabled based on current
rule evaluation.

public boolean isHidden() on page 1118 Returns whether or not the field
is currently hidden based on
current rule evaluations.

public boolean isHyperlinkEnabled() on page
1118

Returns whether or not the label
hyperlink action is enabled.

public void launchActivity(Intent, int) on
page 1118

If the extension needs to launch
an new activity, it has to call
through this method to do it.

public void requestLayoutHeight(int) on
page 1118

This is called by a field's UI ex-
tension to tell the model's layout
manager that the field needs to
have a specific pixel height.

processInput(GregorianCalendar) method
Processes the current time input.

Syntax
public ProcessInputReturn processInput (GregorianCalendar time)

Parameters

• time – the time value to process

Returns
result based on the value passed in

Agentry App Development

1136 SAP Mobile Platform

Usage
Returns a ProcessInputReturn representing the result of processing the input.

core package

dataapi package

AgentryData interface
Java interface for Agentry Data API.

Syntax
public interface AgentryData

Derived interfaces

• AgentryProperty on page 1143

Members
All members of AgentryData, including inherited members. Methods

Modifier and Type Method Description

public void dispose() on page 1139 Dispose of this AgentryData
object.

public AgentryData getAncestor() on page 1139 Returns the parent AgentryData
for this AgentryData.

public DataType getDataType() on page 1140 Returns the data type of this
AgentryData.

public AgentryData getDescendant(int) on page
1140

Returns a child of this Agentry-
Data.

public int getDescendantCount() on page
1140

Returns the number of children
of this AgentryData.

public String getDisplayName() on page
1141

Returns the display name of this
AgentryData.

public int getIdentifier() on page 1141 Deprecated. This method will
be removed in SMP 3.0 SP 03.
Returns a type identifier for this
AgentryData.

public String getName() on page 1141 Returns the internal name of this
AgentryData.

Agentry App Development

Agentry App Development 1137

Modifier and Type Method Description

public List< AgentryProperty > getProperties() on page 1142 Returns a list of all children
which have the Property data
type.

public AgentryData getRoot() on page 1142 Returns the root AgentryData
for the module this AgentryDa-
ta belongs to.

public boolean isValid() on page 1142 Check if this AgentryData ob-
ject is valid.

AgentryData.DataType enum
Enum for data types.

Members
All members of DataType, including inherited members. Variables

Modifier and Type Variable Description

public COLLECTION on page 1138 Collection data type.

public OBJECT on page 1139 Object data type.

public PROPERTY on page 1139 Property data type.

public UNKNOWN on page 1139 Unknown data type.

Methods

Modifier and Type Method Description

public int getValue() on page 1138

Usage
There are three types of AgentryData: objects, properties, and collections.

getValue() method

Syntax
public int getValue ()

COLLECTION variable
Collection data type.

Syntax
public COLLECTION

Agentry App Development

1138 SAP Mobile Platform

OBJECT variable
Object data type.

Syntax
public OBJECT

PROPERTY variable
Property data type.

Syntax
public PROPERTY

UNKNOWN variable
Unknown data type.

Syntax
public UNKNOWN

dispose() method
Dispose of this AgentryData object.

Syntax
public void dispose ()

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

Usage
Call this method to free memory when you are finished using the object. This will invalidate
the object. Failure to call this method can lead to unexpected crashes.

getAncestor() method
Returns the parent AgentryData for this AgentryData.

Syntax
public AgentryData getAncestor ()

Returns
the parent or null if this is the root

Agentry App Development

Agentry App Development 1139

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

Usage
Every AgentryData has a parent except for the root.

getDataType() method
Returns the data type of this AgentryData.

Syntax
public DataType getDataType ()

Returns
the data type

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

getDescendant(int) method
Returns a child of this AgentryData.

Syntax
public AgentryData getDescendant (int position)

Parameters

• position – the child position

Returns
the child or null if position is invalid

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

getDescendantCount() method
Returns the number of children of this AgentryData.

Syntax
public int getDescendantCount ()

Returns
the number of children

Agentry App Development

1140 SAP Mobile Platform

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

getDisplayName() method
Returns the display name of this AgentryData.

Syntax
public String getDisplayName ()

Returns
the display name

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

getIdentifier() method [deprecated]
Deprecated. This method will be removed in SMP 3.0 SP 03. Returns a type identifier for this
AgentryData.

Syntax
public int getIdentifier ()

Returns
the type identifier

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

getName() method
Returns the internal name of this AgentryData.

Syntax
public String getName ()

Returns
the internal name

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

Agentry App Development

Agentry App Development 1141

getProperties() method
Returns a list of all children which have the Property data type.

Syntax
public List< AgentryProperty > getProperties ()

Returns
the child properties

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

getRoot() method
Returns the root AgentryData for the module this AgentryData belongs to.

Syntax
public AgentryData getRoot ()

Returns
the root AgentryData

Exceptions

• IllegalStateException – if this AgentryData is no longer valid

Usage
This is the main object of the module.

isValid() method
Check if this AgentryData object is valid.

Syntax
public boolean isValid ()

Returns
true if this object is valid, false otherwise

Usage
An AgentryData object can become invalid if the dispose() method is called or if Agentry
deletes the data, e.g. via a delete transaction.

Agentry App Development

1142 SAP Mobile Platform

AgentryProperty interface
Java interface for Agentry Data API properties.

Syntax
public interface AgentryProperty implements AgentryData

Implemented interfaces

• AgentryData on page 1137

Members
All members of AgentryProperty, including inherited members. Methods

Modifier and Type Method Description

public boolean asBoolean() on page 1148 Returns this property's value as
a boolean.

public GregorianCalendar asDate() on page 1148 Returns this property's date val-
ue as a GregorianCalendar.

public GregorianCalendar asDateAndTime() on page
1148

Returns this property's date and
time value as a GregorianCalen-
dar.

public double asDouble() on page 1149 Returns this property's value as
a double.

public AgentryLocation asLocation() on page 1149 Returns this property's value as
an AgentryLocation.

public long asLong() on page 1149 Returns this property's value as
a long.

public String asString() on page 1149 Returns this property's value as
a String.

public GregorianCalendar asTime() on page 1150 Returns this property's time val-
ue as a GregorianCalendar.

public PropertyType getPropertyType() on page
1150

Returns the property type of this
AgentryProperty.

Inherited members from AgentryData

Agentry App Development

Agentry App Development 1143

Modifier and Type Member Description

public void dispose() on page 1139 Dispose of this AgentryData
object.

public AgentryData getAncestor() on page 1139 Returns the parent AgentryData
for this AgentryData.

public DataType getDataType() on page 1140 Returns the data type of this
AgentryData.

public AgentryData getDescendant(int) on page
1140

Returns a child of this Agentry-
Data.

public int getDescendantCount() on page
1140

Returns the number of children
of this AgentryData.

public String getDisplayName() on page
1141

Returns the display name of this
AgentryData.

public int getIdentifier() on page 1141 Deprecated. This method will
be removed in SMP 3.0 SP 03.
Returns a type identifier for this
AgentryData.

public String getName() on page 1141 Returns the internal name of this
AgentryData.

public List< AgentryProperty > getProperties() on page 1142 Returns a list of all children
which have the Property data
type.

public AgentryData getRoot() on page 1142 Returns the root AgentryData
for the module this AgentryDa-
ta belongs to.

public boolean isValid() on page 1142 Check if this AgentryData ob-
ject is valid.

AgentryProperty.PropertyType enum
Enum for property types.

Members
All members of PropertyType, including inherited members. Variables

Modifier and Type Variable Description

public BOOLEAN on page 1146 Boolean.

Agentry App Development

1144 SAP Mobile Platform

Modifier and Type Variable Description

public COMPLEX_TABLE_SELEC-
TION on page 1146

Complex data selection.

public DATA_TABLE_SELECTION
on page 1146

Data table selection.

public DATE on page 1146 Date.

public DATE_AND_TIME on page
1146

Date and time.

public DECIMAL_NUMBER on page
1146

Decimal number.

public DURATION on page 1146 Duration.

public EXTERNAL_DATA on page
1147

External data.

public IDENTIFIER on page 1147 Identifier.

public IMAGE on page 1147 Image.

public INTEGER_NUMBER on page
1147

Integer number.

public LIST_SELECTION on page
1147

List selection.

public LOCATION on page 1147 Location.

public SIGNATURE on page 1147 Signature.

public STRING on page 1148 String.

public TIME on page 1148 Time.

public UNKNOWN on page 1148 Unknown property type.

Methods

Modifier and Type Method Description

public int getValue() on page 1145

getValue() method

Syntax
public int getValue ()

Agentry App Development

Agentry App Development 1145

BOOLEAN variable
Boolean.

Syntax
public BOOLEAN

COMPLEX_TABLE_SELECTION variable
Complex data selection.

Syntax
public COMPLEX_TABLE_SELECTION

DATA_TABLE_SELECTION variable
Data table selection.

Syntax
public DATA_TABLE_SELECTION

DATE variable
Date.

Syntax
public DATE

DATE_AND_TIME variable
Date and time.

Syntax
public DATE_AND_TIME

DECIMAL_NUMBER variable
Decimal number.

Syntax
public DECIMAL_NUMBER

DURATION variable
Duration.

Syntax
public DURATION

Agentry App Development

1146 SAP Mobile Platform

EXTERNAL_DATA variable
External data.

Syntax
public EXTERNAL_DATA

IDENTIFIER variable
Identifier.

Syntax
public IDENTIFIER

IMAGE variable
Image.

Syntax
public IMAGE

INTEGER_NUMBER variable
Integer number.

Syntax
public INTEGER_NUMBER

LIST_SELECTION variable
List selection.

Syntax
public LIST_SELECTION

LOCATION variable
Location.

Syntax
public LOCATION

SIGNATURE variable
Signature.

Syntax
public SIGNATURE

Agentry App Development

Agentry App Development 1147

STRING variable
String.

Syntax
public STRING

TIME variable
Time.

Syntax
public TIME

UNKNOWN variable
Unknown property type.

Syntax
public UNKNOWN

asBoolean() method
Returns this property's value as a boolean.

Syntax
public boolean asBoolean ()

Returns
the property value

asDate() method
Returns this property's date value as a GregorianCalendar.

Syntax
public GregorianCalendar asDate ()

Returns
the property value

asDateAndTime() method
Returns this property's date and time value as a GregorianCalendar.

Syntax
public GregorianCalendar asDateAndTime ()

Agentry App Development

1148 SAP Mobile Platform

Returns
the property value

asDouble() method
Returns this property's value as a double.

Syntax
public double asDouble ()

Returns
the property value

asLocation() method
Returns this property's value as an AgentryLocation.

Syntax
public AgentryLocation asLocation ()

Returns
the property value

asLong() method
Returns this property's value as a long.

Syntax
public long asLong ()

Returns
the property value

asString() method
Returns this property's value as a String.

Syntax
public String asString ()

Returns
the property value

Agentry App Development

Agentry App Development 1149

asTime() method
Returns this property's time value as a GregorianCalendar.

Syntax
public GregorianCalendar asTime ()

Returns
the property value

getPropertyType() method
Returns the property type of this AgentryProperty.

Syntax
public PropertyType getPropertyType ()

Returns
the property type

openui package

AgentryImage class
This class is the Java implementation to support Agentry images.

Syntax
public class AgentryImage implements OpenUIImage

Implemented interfaces

• OpenUIImage on page 1172

Members
All members of AgentryImage, including inherited members. Constructors

Modifier and Type Constructor Description

public AgentryImage(String, Image-
Type, ImagePresentation, Im-
agePosition, int, int, int) on page
1153

Constructs an AgentryImage
object.

Methods

Agentry App Development

1150 SAP Mobile Platform

Modifier and Type Method Description

public byte[] getBitmapData() on page
1153

Returns the bitmap data for the
image.

public String getImageName() on page
1153

Retrieves the imageName.

public ImagePosition getImagePosition() on page
1154

Retrieves the image position.

public ImagePresentation getImagePresentation() on page
1154

Retrieves the image presenta-
tion and scaling mode.

public ImageType getImageType() on page 1154 Retrieves the image type.

public MaskColor getMaskColor() on page 1154 Retrieves the image's transpar-
ency color.

public boolean isValid() on page 1154 Returns whether the image rep-
resented by this object is valid.

public boolean needsBitmapData() on page
1155

Returns true if the bitmap data
has been cached.

public void setBitmapData(byte[]) on page
1155

Sets the bitmap data and caches
it for next time.

AgentryImage.ImageType enum
The ImageType enum represents the different image types that Agentry stores.

Members
All members of ImageType, including inherited members. Variables

Modifier and Type Variable Description

public ImageType_Bitmap on page
1152

.bmp file

public ImageType_GIF on page 1152 .gif file

public ImageType_JPEG on page
1152

.jpg or .jpeg file

public ImageType_PNG on page
1152

.png file

public ImageType_Unknown on page
1152

We don't know the image type.

Methods

Agentry App Development

Agentry App Development 1151

Modifier and Type Method Description

public int getValue() on page 1152

getValue() method

Syntax
public int getValue ()

ImageType_Bitmap variable
.bmp file

Syntax
public ImageType_Bitmap

ImageType_GIF variable
.gif file

Syntax
public ImageType_GIF

ImageType_JPEG variable
.jpg or .jpeg file

Syntax
public ImageType_JPEG

ImageType_PNG variable
.png file

Syntax
public ImageType_PNG

ImageType_Unknown variable
We don't know the image type.

Syntax
public ImageType_Unknown

Agentry App Development

1152 SAP Mobile Platform

AgentryImage(String, ImageType, ImagePresentation, ImagePosition, int, int, int)
constructor
Constructs an AgentryImage object.

Syntax
public AgentryImage (String imageName, ImageType type,
ImagePresentation presentation, ImagePosition position, int maskRed,
int maskGreen, int maskBlue)

Parameters

• imageName – The name of the image
• type – The image type.
• presentation – The image presentation.
• position – The image position.
• maskRed – The red component of the masking color, or -1 if there is no masking color.
• maskGreen – The green component of the masking color, or -1 if there is no masking

color.
• maskBlue – The blue component of the masking color, or -1 if there is no masking color.

Usage
This does not set the actual bitmap data and should be followed by a call to needsBitmapData
and setBitmapData (if appropriate).

getBitmapData() method
Returns the bitmap data for the image.

Syntax
public byte[] getBitmapData ()

Returns
the bitmap data

getImageName() method
Retrieves the imageName.

Syntax
public String getImageName ()

Returns
the image name

Agentry App Development

Agentry App Development 1153

getImagePosition() method
Retrieves the image position.

Syntax
public ImagePosition getImagePosition ()

Returns
The image position.

getImagePresentation() method
Retrieves the image presentation and scaling mode.

Syntax
public ImagePresentation getImagePresentation ()

Returns
The image presentation (scaling mode).

getImageType() method
Retrieves the image type.

Syntax
public ImageType getImageType ()

Returns
The image type

getMaskColor() method
Retrieves the image's transparency color.

Syntax
public MaskColor getMaskColor ()

Returns
the image's transparency masking color, or null if there is no mask color. This only applies to
BMP-format images.

isValid() method
Returns whether the image represented by this object is valid.

Syntax
public boolean isValid ()

Agentry App Development

1154 SAP Mobile Platform

Returns
true if the image is valid, else false

needsBitmapData() method
Returns true if the bitmap data has been cached.

Syntax
public boolean needsBitmapData ()

Returns
true if cached data was found, false otherwise

Usage
If so, there is no need to call setBitmapData. If cached data was not found,
setBitmapData should be called.

setBitmapData(byte[]) method
Sets the bitmap data and caches it for next time.

Syntax
public void setBitmapData (byte[] bitmap)

Parameters

• bitmap – byte array of bitmap data

AgentryLocation class
Gives the location details.

Syntax
public class AgentryLocation

Members
All members of AgentryLocation, including inherited members. Constructors

Modifier and Type Constructor Description

public AgentryLocation(boolean, dou-
ble, double, int, double) on page
1156

Constructs a new AgentryLoca-
tion object.

Methods

Agentry App Development

Agentry App Development 1155

Modifier and Type Method Description

public double getDilution() on page 1156 Retrieves the dilution.

public double getLatitude() on page 1157 Retrieves the latitude.

public double getLongitude() on page 1157 Retrieves the longitude.

public int getSatellites() on page 1157 Retrieves the number of satel-
lites.

public boolean isValid() on page 1157 Returns whether the location is
valid.

public void setDilution(double) on page
1158

Sets the dilution.

public void setLatitude(double) on page
1158

Sets the latitude.

public void setLongitude(double) on page
1158

Sets the longitude.

public void setSatellites(int) on page 1158 Sets the number of satellites.

public void setValid(boolean) on page
1158

Sets whether the location is val-
id.

AgentryLocation(boolean, double, double, int, double) constructor
Constructs a new AgentryLocation object.

Syntax
public AgentryLocation (boolean valid, double lat, double lon, int
sats, double decDilution)

Parameters

• valid – true if the location is valid, false otherwise
• lat – latitude
• lon – longitude
• sats – number of satellites
• decDilution – dilution

getDilution() method
Retrieves the dilution.

Syntax
public double getDilution ()

Agentry App Development

1156 SAP Mobile Platform

Returns
the dilution

getLatitude() method
Retrieves the latitude.

Syntax
public double getLatitude ()

Returns
the latitude

getLongitude() method
Retrieves the longitude.

Syntax
public double getLongitude ()

Returns
the longitude

getSatellites() method
Retrieves the number of satellites.

Syntax
public int getSatellites ()

Returns
the number of satellites

isValid() method
Returns whether the location is valid.

Syntax
public boolean isValid ()

Returns
true if the location is valid, false otherwise

Agentry App Development

Agentry App Development 1157

setDilution(double) method
Sets the dilution.

Syntax
public void setDilution (double dilution)

Parameters

• dilution – the new dilution

setLatitude(double) method
Sets the latitude.

Syntax
public void setLatitude (double latitude)

Parameters

• latitude – the new latitude

setLongitude(double) method
Sets the longitude.

Syntax
public void setLongitude (double longitude)

Parameters

• longitude – the new longitude

setSatellites(int) method
Sets the number of satellites.

Syntax
public void setSatellites (int satellites)

Parameters

• satellites – the new number of satellites

setValid(boolean) method
Sets whether the location is valid.

Syntax
public void setValid (boolean isValid)

Agentry App Development

1158 SAP Mobile Platform

Parameters

• isValid – true if the location is valid, false otherwise

MaskColor class
This encapsulates a masking color that's used by AgentryImage.

Syntax
public class MaskColor

Members
All members of MaskColor, including inherited members. Constructors

Modifier and Type Constructor Description

public MaskColor(short, short, short)
on page 1159

Constructs a new MaskColor
object.

public MaskColor(int, int, int) on page
1160

Constructs a new MaskColor
object.

Methods

Modifier and Type Method Description

public short getBlue() on page 1160 Returns the blue component of
the color.

public short getGreen() on page 1160 Returns the green component of
the color.

public short getRed() on page 1160 Returns the red component of
the color.

public boolean isValid() on page 1161 Evaluates the mask color and
returns if it is valid.

MaskColor(short, short, short) constructor
Constructs a new MaskColor object.

Syntax
public MaskColor (short red, short green, short blue)

Parameters

• red – Red component value, 0-255.

Agentry App Development

Agentry App Development 1159

• green – Green component value, 0-255.
• blue – Blue component value, 0-255.

MaskColor(int, int, int) constructor
Constructs a new MaskColor object.

Syntax
public MaskColor (int red, int green, int blue)

Parameters

• red – Red component value, 0-255.
• green – Green component value, 0-255.
• blue – Blue component value, 0-255.

getBlue() method
Returns the blue component of the color.

Syntax
public short getBlue ()

Returns
The blue component of the color, 0-255.

getGreen() method
Returns the green component of the color.

Syntax
public short getGreen ()

Returns
The green component of the color, 0-255.

getRed() method
Returns the red component of the color.

Syntax
public short getRed ()

Returns
The red component of the color, 0-255.

Agentry App Development

1160 SAP Mobile Platform

isValid() method
Evaluates the mask color and returns if it is valid.

Syntax
public boolean isValid ()

Returns
Whether or not the mask color is valid.

ProcessInputReturn class
Contains the result of calling to process input.

Syntax
public class ProcessInputReturn

Members
All members of ProcessInputReturn, including inherited members. Constructors

Modifier and Type Constructor Description

public ProcessInputReturn(boolean,
boolean, boolean) on page
1162

Constructs a new ProcessInpu-
tReturn object.

Methods

Modifier and Type Method Description

public boolean getChanged() on page 1162 Returns whether or not the proc-
essInput method received a val-
ue different than what it already
had stored.

public boolean getMunged() on page 1163 Returns whether or not the proc-
essInput method "munged" the
value.

public boolean getValid() on page 1163 Returns whether or not the proc-
essInput method accepted the
value as valid.

ProcessInputReturn.processInputReturnValues enum
Return value types for Processing Input.

Members
All members of processInputReturnValues, including inherited members. Variables

Agentry App Development

Agentry App Development 1161

Modifier and Type Variable Description

public Munged on page 1162 The value has been adjusted
from what the user did, but not
in a way that affects its logical
value (for example, if the low-
ercase attribute is set, and an
uppercase character was typed
in)

public Valid on page 1162 The value passed in is valid (or it
was made valid)

Munged variable
The value has been adjusted from what the user did, but not in a way that affects its logical
value (for example, if the lowercase attribute is set, and an uppercase character was typed in)

Syntax
public Munged

Valid variable
The value passed in is valid (or it was made valid)

Syntax
public Valid

ProcessInputReturn(boolean, boolean, boolean) constructor
Constructs a new ProcessInputReturn object.

Syntax
public ProcessInputReturn (boolean valid, boolean munged,
boolean changed)

Parameters
• valid – is the result valid?
• munged – is the result a munged value?
• changed – is the result a changed value?

getChanged() method
Returns whether or not the processInput method received a value different than what it already
had stored.

Syntax
public boolean getChanged ()

Agentry App Development

1162 SAP Mobile Platform

Returns
true if changed, false if not changed

getMunged() method
Returns whether or not the processInput method "munged" the value.

Syntax
public boolean getMunged ()

Returns
true if munged, false if not munged

Usage
Munged means that the value needed to be changed, but the logical value was not affected. For
example, if the lowercase attribute is set, and an uppercase character was typed in, the stored
value gets changed to all lowercase and the UI needs to be updated.

getValid() method
Returns whether or not the processInput method accepted the value as valid.

Syntax
public boolean getValid ()

Returns
true if valid, false if invalid

ActionEnableType enum
The enable states that an action can have.

Members
All members of ActionEnableType, including inherited members. Variables

Modifier and Type Variable Description

public ActionDisable on page 1164 Action is disabled.

public ActionEnable on page 1164 Action is enabled.

public ActionError on page 1164 Action is found but is invalid.

public ActionNoOperation on page
1164

Action cannot be found.

Agentry App Development

Agentry App Development 1163

ActionDisable variable
Action is disabled.

Syntax
public ActionDisable

ActionEnable variable
Action is enabled.

Syntax
public ActionEnable

ActionError variable
Action is found but is invalid.

Syntax
public ActionError

ActionNoOperation variable
Action cannot be found.

Syntax
public ActionNoOperation

ActionResult enum
The result states that running an action can return.

Members
All members of ActionResult, including inherited members. Variables

Modifier and Type Variable Description

public Action_BackUp on page 1165 The action was backed out of by
the user.

public Action_Cancel on page 1165 The action was canceled by
user.

public Action_Complete on page
1165

The action completed success-
fully.

public Action_Error on page 1165 There was an error when run-
ning the action.

Agentry App Development

1164 SAP Mobile Platform

Modifier and Type Variable Description

public Action_Pending on page 1165 The action is still in progress
and has not yet completed.

Action_BackUp variable
The action was backed out of by the user.

Syntax
public Action_BackUp

Action_Cancel variable
The action was canceled by user.

Syntax
public Action_Cancel

Action_Complete variable
The action completed successfully.

Syntax
public Action_Complete

Action_Error variable
There was an error when running the action.

Syntax
public Action_Error

Action_Pending variable
The action is still in progress and has not yet completed.

Syntax
public Action_Pending

AutosizeBehavior enum
Values for autosize behavior for Agentry fields.

Members
All members of AutosizeBehavior, including inherited members. Variables

Agentry App Development

Agentry App Development 1165

Modifier and Type Variable Description

public Autosize_FillVisible on page
1166

Field should take up the remain-
ing visible area on the screen.

public Autosize_None on page 1166 Field does not autosize.

public Autosize_WrapContent on
page 1166

Field should size itself so all of
its content is visible The layout
manager will invoke the Fiel-
dAdapter.getContentHeightFor-
Autosizing(int width) method to
find the field's content size.

Autosize_FillVisible variable
Field should take up the remaining visible area on the screen.

Syntax
public Autosize_FillVisible

Autosize_None variable
Field does not autosize.

Syntax
public Autosize_None

Autosize_WrapContent variable
Field should size itself so all of its content is visible The layout manager will invoke the
FieldAdapter.getContentHeightForAutosizing(int width) method to find the field's content
size.

Syntax
public Autosize_WrapContent

ButtonType enum
This enum has the 3 different types of buttons an Agentry Button Widget can be set to.

Members
All members of ButtonType, including inherited members. Variables

Modifier and Type Variable Description

public ButtonStyleCheckbox on page
1167

Check box style button.

Agentry App Development

1166 SAP Mobile Platform

Modifier and Type Variable Description

public ButtonStylePush on page
1167

Push Button.

public ButtonStyleRadio on page
1167

Radio Button.

ButtonStyleCheckbox variable
Check box style button.

Syntax
public ButtonStyleCheckbox

ButtonStylePush variable
Push Button.

Syntax
public ButtonStylePush

ButtonStyleRadio variable
Radio Button.

Syntax
public ButtonStyleRadio

DurationDisplayFormat enum
This is a list of possible duration display formats.

Members
All members of DurationDisplayFormat, including inherited members. Variables

Modifier and Type Variable Description

public DecHour on page 1168 HH.XX.

public HourMin on page 1168 HH:MM.

public HourMinSec on page 1168 HH:MM:SS where : will be lo-
calized.

public MinSec on page 1168 MM:SS.

Agentry App Development

Agentry App Development 1167

DecHour variable
HH.XX.

Syntax
public DecHour

HourMin variable
HH:MM.

Syntax
public HourMin

HourMinSec variable
HH:MM:SS where : will be localized.

Syntax
public HourMinSec

MinSec variable
MM:SS.

Syntax
public MinSec

ImagePosition enum
The ImagePosition enum represents the different ways that an image can be positioned in the
available space.

Members
All members of ImagePosition, including inherited members. Variables

Modifier and Type Variable Description

public ImagePosition_Center on page
1169

Image positioned at the center.

public ImagePosition_LowerLeft on
page 1169

Image positioned at the bottom
left.

public ImagePosition_LowerMiddle
on page 1170

Image positioned at the bottom
middle.

public ImagePosition_LowerRight on
page 1170

Image positioned at the bottom
right.

Agentry App Development

1168 SAP Mobile Platform

Modifier and Type Variable Description

public ImagePosition_MiddleLeft on
page 1170

Image positioned at the middle
left.

public ImagePosition_MiddleRight on
page 1170

Image positioned at the middle
right.

public ImagePosition_Unknown on
page 1170

We don't know the image posi-
tion.

public ImagePosition_UpperLeft on
page 1170

Image positioned at the top left.

public ImagePosition_UpperMiddle
on page 1170

Image positioned at the top mid-
dle.

public ImagePosition_UpperRight on
page 1171

Image positioned at the top
right.

Methods

Modifier and Type Method Description

public int getValue() on page 1169

getValue() method

Syntax
public int getValue ()

ImagePosition_Center variable
Image positioned at the center.

Syntax
public ImagePosition_Center

ImagePosition_LowerLeft variable
Image positioned at the bottom left.

Syntax
public ImagePosition_LowerLeft

Agentry App Development

Agentry App Development 1169

ImagePosition_LowerMiddle variable
Image positioned at the bottom middle.

Syntax
public ImagePosition_LowerMiddle

ImagePosition_LowerRight variable
Image positioned at the bottom right.

Syntax
public ImagePosition_LowerRight

ImagePosition_MiddleLeft variable
Image positioned at the middle left.

Syntax
public ImagePosition_MiddleLeft

ImagePosition_MiddleRight variable
Image positioned at the middle right.

Syntax
public ImagePosition_MiddleRight

ImagePosition_Unknown variable
We don't know the image position.

Syntax
public ImagePosition_Unknown

ImagePosition_UpperLeft variable
Image positioned at the top left.

Syntax
public ImagePosition_UpperLeft

ImagePosition_UpperMiddle variable
Image positioned at the top middle.

Syntax
public ImagePosition_UpperMiddle

Agentry App Development

1170 SAP Mobile Platform

ImagePosition_UpperRight variable
Image positioned at the top right.

Syntax
public ImagePosition_UpperRight

ImagePresentation enum
The ImagePresentation enum represents the different ways that an image can be displayed.

Members
All members of ImagePresentation, including inherited members. Variables

Modifier and Type Variable Description

public ImagePresentation_CropToFit
on page 1171

Image will be cropped to fit
available area if it is larger than
the available area.

public ImagePresentation_FullSize on
page 1172

The image should be presented
full-sized.

public ImagePresentation_LockAs-
pectRatio on page 1172

Lock the aspect ratio.

public ImagePresentation_StretchTo-
Fit on page 1172

Image will be stretched to fit
available area.

public ImagePresentation_Unknown
on page 1172

We don't know the image pre-
sentation type.

Methods

Modifier and Type Method Description

public int getValue() on page 1171

getValue() method

Syntax
public int getValue ()

ImagePresentation_CropToFit variable
Image will be cropped to fit available area if it is larger than the available area.

Syntax
public ImagePresentation_CropToFit

Agentry App Development

Agentry App Development 1171

ImagePresentation_FullSize variable
The image should be presented full-sized.

Syntax
public ImagePresentation_FullSize

ImagePresentation_LockAspectRatio variable
Lock the aspect ratio.

Syntax
public ImagePresentation_LockAspectRatio

Usage
Image will be resized to fit in the available area but maintains its aspect ratio.

ImagePresentation_StretchToFit variable
Image will be stretched to fit available area.

Syntax
public ImagePresentation_StretchToFit

ImagePresentation_Unknown variable
We don't know the image presentation type.

Syntax
public ImagePresentation_Unknown

OpenUIImage interface
This is the interface used for Open UI images.

Syntax
public interface OpenUIImage

Derived classes

• AgentryImage on page 1150

Members
All members of OpenUIImage, including inherited members. Methods

Agentry App Development

1172 SAP Mobile Platform

Modifier and Type Method Description

public byte[] getBitmapData() on page
1173

Returns the bitmap data for the
image.

public String getImageName() on page
1173

Retrieves the imageName.

public ImageType getImageType() on page 1173 Retrieves the image type.

public MaskColor getMaskColor() on page 1174 Retrieves the image's transpar-
ency color.

public boolean isValid() on page 1174 Returns whether the image rep-
resented by this object is valid.

getBitmapData() method
Returns the bitmap data for the image.

Syntax
public byte[] getBitmapData ()

Returns
the bitmap data

getImageName() method
Retrieves the imageName.

Syntax
public String getImageName ()

Returns
the image name

getImageType() method
Retrieves the image type.

Syntax
public ImageType getImageType ()

Returns
The image type

Agentry App Development

Agentry App Development 1173

getMaskColor() method
Retrieves the image's transparency color.

Syntax
public MaskColor getMaskColor ()

Returns
the image's transparency masking color, or null if there is no mask color. This only applies to
BMP-format images.

isValid() method
Returns whether the image represented by this object is valid.

Syntax
public boolean isValid ()

Returns
true if the image is valid, else false

Agentry OpenUI API for iOS
Use the OpenUI API for iOS to add custom controls to Agentry applications.

iOSDataAPIExternal
The iOS DataAPI exposed interfaces.

Usage
This module contains a grouping of all exposed interfaces of DataAPI to provide easy access
to all the protocols available via the API.

For a detailed overview of DataAPI, please visit the DataAPI Overview (iOS) documentation
landing page.

SMPDataAPILocationProtocol protocol
SMPDataAPILocationProtocol Protocol - Defines a interface that all location objects must
adhere to.

Syntax
@protocol SMPDataAPILocationProtocol

Derived classes

• SMPOpenUILocation on page 1187

Agentry App Development

1174 SAP Mobile Platform

Members
All members of SMPDataAPILocationProtocol, including inherited members. Methods

Method Description

- (id) initWithCLLocation: (CLLocation *) loca-
tion on page 1175

Initializer for the SMPOpenUILocation object
from a CLLocation.

- (id) initWithLatitude: (double) latitude andLon-
gitude: (double) longitude andSatellites: (int) sat-
ellites andDilution: (double) dilution on page
1176

Initializer for the SMPOpenUILocation object.

+ (id) locationWithCLLocation: (CLLocation *)
location on page 1176

Get an autoreleased SMPOpenUILocation object
from a CLLocation.

+ (id) locationWithLatitude: (double) latitude
andLongitude: (double) longitude andSatellites:
(int) satellites andDilution: (double) dilution on
page 1176

Get an autoreleased SMPOpenUILocation ob-
ject.

Properties

Property Description

@property (nonatomic,readonly) double dilution
on page 1177

The dilution of the location.

@property (nonatomic,readonly) double latitude
on page 1177

The latitude of the location.

@property (nonatomic,readonly) CLLocation *
location on page 1177

This location object as an auto release CLLoca-
tion object.

@property (nonatomic,readonly) double longi-
tude on page 1177

The longitude of the location.

@property (nonatomic,readonly) NSInteger sat-
ellites on page 1177

The number of satellites used in the reading of the
location.

@property (nonatomic,readonly) BOOL valid on
page 1177

A Boolean value representing whether the loca-
tion object is valid.

initWithCLLocation: method
Initializer for the SMPOpenUILocation object from a CLLocation.

Syntax
- (id) initWithCLLocation : (CLLocation *) location

Agentry App Development

Agentry App Development 1175

Parameters

• location – the CLLocation.

initWithLatitude:andLongitude:andSatellites:andDilution: method
Initializer for the SMPOpenUILocation object.

Syntax
- (id) initWithLatitude : (double) latitude andLongitude :
(double) longitude andSatellites : (int) satellites andDilution : (
double) dilution

Parameters

• latitude – the latitude.
• longitude – the longitude.
• satellites – the number of satellites used.
• dilution – the horizontal accuracy of the position.

locationWithCLLocation: method
Get an autoreleased SMPOpenUILocation object from a CLLocation.

Syntax
+ (id) locationWithCLLocation : (CLLocation *) location

Parameters

• location – the CLLocation.

locationWithLatitude:andLongitude:andSatellites:andDilution: method
Get an autoreleased SMPOpenUILocation object.

Syntax
+ (id) locationWithLatitude : (double) latitude andLongitude : (
double) longitude andSatellites : (int) satellites andDilution :
(double) dilution

Parameters

• latitude – the latitude.
• longitude – the longitude.
• satellites – the number of satellites used.
• dilution – the horizontal accuracy of the position.

Agentry App Development

1176 SAP Mobile Platform

dilution property
The dilution of the location.

Syntax
@property (nonatomic , readonly) double dilution

latitude property
The latitude of the location.

Syntax
@property (nonatomic , readonly) double latitude

location property
This location object as an auto release CLLocation object.

Syntax
@property (nonatomic , readonly) CLLocation * location

Remarks
Since the CLLocation object does not support number of satellites, that value will be
accessible via the satellites property.

longitude property
The longitude of the location.

Syntax
@property (nonatomic , readonly) double longitude

satellites property
The number of satellites used in the reading of the location.

Syntax
@property (nonatomic , readonly) NSInteger satellites

valid property
A Boolean value representing whether the location object is valid.

Syntax
@property (nonatomic , readonly) BOOL valid

Agentry App Development

Agentry App Development 1177

SMPDataAPIPropertyProtocol protocol
SMPDataAPIPropertyProtocol - Defines a interface that all properties
(SMPDataAPIProperty) must adhere to.

Syntax
@protocol SMPDataAPIPropertyProtocol

Base protocols

• SMPDataAPIProtocol on page 1181

Members
All members of SMPDataAPIPropertyProtocol, including inherited members. Methods

Method Description

- (BOOL) asBool on page 1179 Evaluates the value of the property object as a
bool.

- (NSDate *) asDate on page 1179 Evaluates the value of the property object as an
NSDate object.

- (NSDate *) asDateAndTime on page 1179 Evaluates the value of the property object as an
NSDate object.

- (double) asDecimal on page 1180 Evaluates the value of the property object as an
double.

- (id< SMPDataAPILocationProtocol >) asLoca-
tion on page 1180

Evaluates the value of the property object as an
SMPDataAPILocationProtocol object.

- (NSInteger) asLong on page 1180 Evaluates the value of the property object as an
integer.

- (NSString *) asString on page 1180 Evaluates the value of the property object as a
string.

- (NSDate *) asTime on page 1181 Evaluates the value of the property object as an
NSDate object.

- (void) log on page 1181 Optional debug function to help debug the code.

- (enum SMPDataAPIPropertyType) property-
Type on page 1181

A value that identifes the property type of a prop-
erty data object.

Inherited members from SMPDataAPIProtocol

Agentry App Development

1178 SAP Mobile Platform

Member Description

- (id< SMPDataAPIProtocol >) ancestor on page
1182

The ancestor object (parent object)

- (NSUInteger) dataIdentifier on page 1182 Deprecated. This method will be removed in
SMP 3.0 SP03. An id that indentifies the data
object type (DEPRECATED).

- (enum SMPDataAPIDataType) dataType on
page 1182

A value that identifes the data type of data object.

- (id< SMPDataAPIProtocol >) descendant:
(NSUInteger) position on page 1183

Retrieves a descendant (child) data object.

- (NSUInteger) descendantCount on page 1183 The number of descendant (child) data objects.

- (NSString *) displayName on page 1183 The display name of the Agentry data object.

- (NSString *) name on page 1184 The internal name of the Agentry data object.

- (id< SMPDataAPIProtocol >) root on page
1184

The root object in the data tree for an Agentry
Module.

asBool method
Evaluates the value of the property object as a bool.

Syntax
- (BOOL) asBool

Returns
BOOL value

asDate method
Evaluates the value of the property object as an NSDate object.

Syntax
- (NSDate *) asDate

Returns
NSDate value

asDateAndTime method
Evaluates the value of the property object as an NSDate object.

Syntax
- (NSDate *) asDateAndTime

Agentry App Development

Agentry App Development 1179

Returns
NSDate value

asDecimal method
Evaluates the value of the property object as an double.

Syntax
- (double) asDecimal

Returns
double value

asLocation method
Evaluates the value of the property object as an SMPDataAPILocationProtocol object.

Syntax
- (id< SMPDataAPILocationProtocol >) asLocation

Returns
An object conforming to the SMPDataAPILocationProtocol protocol

asLong method
Evaluates the value of the property object as an integer.

Syntax
- (NSInteger) asLong

Returns
NSInteger value

asString method
Evaluates the value of the property object as a string.

Syntax
- (NSString *) asString

Returns
NSString* value

Agentry App Development

1180 SAP Mobile Platform

asTime method
Evaluates the value of the property object as an NSDate object.

Syntax
- (NSDate *) asTime

Returns
NSDate value

log method
Optional debug function to help debug the code.

Syntax
- (void) log

Remarks
This function will print data to NSLog().

propertyType method
A value that identifes the property type of a property data object.

Syntax
- (enum SMPDataAPIPropertyType) propertyType

Returns
The property type of the object

SMPDataAPIProtocol protocol
SMPDataAPI Protocol - Defines a interface that all data objects must adhere to.

Syntax
@protocol SMPDataAPIProtocol

Derived protocols

• SMPDataAPIPropertyProtocol on page 1178

Members
All members of SMPDataAPIProtocol, including inherited members. Methods

Method Description

- (id< SMPDataAPIProtocol >) ancestor on page
1182

The ancestor object (parent object)

Agentry App Development

Agentry App Development 1181

Method Description

- (NSUInteger) dataIdentifier on page 1182 Deprecated. This method will be removed in
SMP 3.0 SP03. An id that indentifies the data
object type (DEPRECATED).

- (enum SMPDataAPIDataType) dataType on
page 1182

A value that identifes the data type of data object.

- (id< SMPDataAPIProtocol >) descendant:
(NSUInteger) position on page 1183

Retrieves a descendant (child) data object.

- (NSUInteger) descendantCount on page 1183 The number of descendant (child) data objects.

- (NSString *) displayName on page 1183 The display name of the Agentry data object.

- (void) log on page 1183 Optional debug function to help debug the code.

- (NSString *) name on page 1184 The internal name of the Agentry data object.

- (id< SMPDataAPIProtocol >) root on page
1184

The root object in the data tree for an Agentry
Module.

ancestor method
The ancestor object (parent object)

Syntax
- (id< SMPDataAPIProtocol >) ancestor

Returns
Ancestor (parent) object

dataIdentifier method [deprecated]
Deprecated. This method will be removed in SMP 3.0 SP03. An id that indentifies the data
object type (DEPRECATED).

Syntax
- (NSUInteger) dataIdentifier

Returns
The type id value

dataType method
A value that identifes the data type of data object.

Syntax
- (enum SMPDataAPIDataType) dataType

Agentry App Development

1182 SAP Mobile Platform

Returns
The data type of the object

descendant: method
Retrieves a descendant (child) data object.

Syntax
- (id< SMPDataAPIProtocol >) descendant : (NSUInteger)
position

Parameters

• position – Index of data object to retrieve

Returns
Descendant data object

descendantCount method
The number of descendant (child) data objects.

Syntax
- (NSUInteger) descendantCount

Returns
Number of descendant data objects

displayName method
The display name of the Agentry data object.

Syntax
- (NSString *) displayName

Returns
The display name of the object

log method
Optional debug function to help debug the code.

Syntax
- (void) log

Remarks
This function will print data to NSLog().

Agentry App Development

Agentry App Development 1183

name method
The internal name of the Agentry data object.

Syntax
- (NSString *) name

Returns
The internal name

root method
The root object in the data tree for an Agentry Module.

Syntax
- (id< SMPDataAPIProtocol >) root

Returns
The root object

SMPDataAPIDataType enumeration
enum List of Data Types

Syntax
enum SMPDataAPIDataType

Members

Member name Description

SMPDataAPIUnknown The model is invalid and the data type can't be
determined.

SMPDataAPIObject An Object.

SMPDataAPIProperty A Property.

SMPDataAPICollection A Collection of Objects.

SMPDataAPIPropertyType enumeration
enum List of Property Types

Syntax
enum SMPDataAPIPropertyType

Agentry App Development

1184 SAP Mobile Platform

Members

Member name Description

SMPDataAPIUnknownProperty The model is invalid and the property type can't be
determined.

SMPDataAPIIdentifierProperty Identifier property.

SMPDataAPIStringProperty String property.

SMPDataAPIIntegerNumber Integer property.

SMPDataAPIBooleanProperty Boolean property.

SMPDataAPIDateProperty Date property.

SMPDataAPITimeProperty Time property.

SMPDataAPIDurationProperty Duration property.

SMPDataAPIListSelectionProperty List Selection property.

SMPDataAPIDataTableSelectionProperty Data Table Selection property.

SMPDataAPIcomplexTableSelectionProperty Complex Table Selection property.

SMPDataAPISignatureProperty Signature property.

SMPDataAPIDateAndTime Date and time property.

SMPDataAPIDecimalNumber Decimal number property.

SMPDataAPIExternalData External data property.

SMPDataAPIImage Image property.

SMPDataAPILocationProperty Location property.

iOSOpenUIExternal
The iOS OpenUI exposed interfaces.

Usage
This module contains a grouping of all exposed interfaces of the OpenUI framework to
provide easy access to all the protocols available via the API.

For a detailed overview of OpenUI as well as installation instructions, known issues, and other
documentation resources, please visit the OpenUI Overview (iOS) documentation landing
page.

Agentry App Development

Agentry App Development 1185

SMPOpenUIImage class
An immutable object that represents and Agentry image.

Syntax
@interface SMPOpenUIImage : <NSObject>

Members
All members of SMPOpenUIImage, including inherited members. Properties

Property Description

@property (nonatomic,readonly) UIImage * im-
age on page 1186

The actual image created from the image defini-
tion.

@property (nonatomic,readonly) NSString *
name on page 1186

The name of the image defined in the editor.

@property (nonatomic,readonly) SMPOpenUII-
magePosition position on page 1186

The position of the image.

@property (nonatomic,readonly) SMPOpenUII-
magePresentation presentation on page 1187

The presentation of the image.

image property
The actual image created from the image definition.

Syntax
@property (nonatomic , readonly) UIImage * image

name property
The name of the image defined in the editor.

Syntax
@property (nonatomic , readonly) NSString * name

Remarks
Can be used for accessibility features.

position property
The position of the image.

Syntax
@property (nonatomic , readonly) SMPOpenUIImagePosition
position

Agentry App Development

1186 SAP Mobile Platform

presentation property
The presentation of the image.

Syntax
@property (nonatomic , readonly) SMPOpenUIImagePresentation
presentation

SMPOpenUILocation class
An immutable object that represents and Agentry location.

Syntax
@interface SMPOpenUILocation : <NSObject>
<SMPDataAPILocationProtocol>

Base protocols

• SMPDataAPILocationProtocol on page 1174

Members
All members of SMPOpenUILocation, including inherited members. Methods

Method Description

- (id) initWithCLLocation: (CLLocation *) loca-
tion on page 1188

Initializer for the SMPOpenUILocation object
from a CLLocation.

- (id) initWithLatitude: (double) latitude andLon-
gitude: (double) longitude andSatellites: (int) sat-
ellites andDilution: (double) dilution on page
1188

Initializer for the SMPOpenUILocation object.

+ (id) locationWithCLLocation: (CLLocation *)
location on page 1189

Get an autoreleased SMPOpenUILocation object
from a CLLocation.

+ (id) locationWithLatitude: (double) latitude
andLongitude: (double) longitude andSatellites:
(int) satellites andDilution: (double) dilution on
page 1189

Get an autoreleased SMPOpenUILocation ob-
ject.

Properties

Property Description

@property (nonatomic,readonly) double dilution
on page 1189

The dilution of the location.

Agentry App Development

Agentry App Development 1187

Property Description

@property (nonatomic,readonly) double latitude
on page 1189

The latitude of the location.

@property (nonatomic,readonly) CLLocation *
location on page 1189

This location object as an auto release CLLoca-
tion object.

@property (nonatomic,readonly) double longi-
tude on page 1190

The longitude of the location.

@property (nonatomic,readonly) NSInteger sat-
ellites on page 1190

The number of satellites used in the reading of the
location.

@property (nonatomic,readonly) BOOL valid on
page 1190

A Boolean value representing whether the loca-
tion object is valid.

Usage
It provides utility constructors to ease working with CLLocation objects as well as to get this
object as a CLLocation object.

initWithCLLocation: method
Initializer for the SMPOpenUILocation object from a CLLocation.

Syntax
- (id) initWithCLLocation : (CLLocation *) location

Parameters

• location – the CLLocation.

initWithLatitude:andLongitude:andSatellites:andDilution: method
Initializer for the SMPOpenUILocation object.

Syntax
- (id) initWithLatitude : (double) latitude andLongitude :
(double) longitude andSatellites : (int) satellites andDilution : (
double) dilution

Parameters

• latitude – the latitude.
• longitude – the longitude.
• satellites – the number of satellites used.
• dilution – the horizontal accuracy of the position.

Agentry App Development

1188 SAP Mobile Platform

locationWithCLLocation: method
Get an autoreleased SMPOpenUILocation object from a CLLocation.

Syntax
+ (id) locationWithCLLocation : (CLLocation *) location

Parameters

• location – the CLLocation.

locationWithLatitude:andLongitude:andSatellites:andDilution: method
Get an autoreleased SMPOpenUILocation object.

Syntax
+ (id) locationWithLatitude : (double) latitude andLongitude : (
double) longitude andSatellites : (int) satellites andDilution :
(double) dilution

Parameters

• latitude – the latitude.
• longitude – the longitude.
• satellites – the number of satellites used.
• dilution – the horizontal accuracy of the position.

dilution property
The dilution of the location.

Syntax
@property (nonatomic , readonly) double dilution

latitude property
The latitude of the location.

Syntax
@property (nonatomic , readonly) double latitude

location property
This location object as an auto release CLLocation object.

Syntax
@property (nonatomic , readonly) CLLocation * location

Agentry App Development

Agentry App Development 1189

Remarks
Since the CLLocation object does not support number of satellites, that value will be
accessible via the satellites property.

longitude property
The longitude of the location.

Syntax
@property (nonatomic , readonly) double longitude

satellites property
The number of satellites used in the reading of the location.

Syntax
@property (nonatomic , readonly) NSInteger satellites

valid property
A Boolean value representing whether the location object is valid.

Syntax
@property (nonatomic , readonly) BOOL valid

SMPOpenUIBooleanDisplayAdapter protocol
Protocol for a field extension representing a display-only Boolean field.

Syntax
@protocol SMPOpenUIBooleanDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIBooleanDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIBooleanDisplayAdapter >)
initWithBooleanDisplayModel: (id< SMPOpe-
nUIBooleanDisplayModel >) model on page
1192

Called to initialize the extension with its model.

Agentry App Development

1190 SAP Mobile Platform

Method Description

- (void) model: (id< SMPOpenUIBooleanDis-
playModel >) model didChangeBoolean:
(BOOL) value on page 1192

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

Agentry App Development

Agentry App Development 1191

Member Description

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithBooleanDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIBooleanDisplayAdapter >)
initWithBooleanDisplayModel : (id<
SMPOpenUIBooleanDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeBoolean: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIBooleanDisplayModel >) model
didChangeBoolean : (BOOL) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIBooleanDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only Boolean.

Syntax
@protocol SMPOpenUIBooleanDisplayModel

Agentry App Development

1192 SAP Mobile Platform

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIBooleanEditModel on page 1196

Members
All members of SMPOpenUIBooleanDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) BOOL value
on page 1194

The current Boolean value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

Agentry App Development

Agentry App Development 1193

Member Description

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current Boolean value.

Syntax
@property (nonatomic , readonly) BOOL value

SMPOpenUIBooleanEditAdapter protocol
Protocol for a field extension representing an editable Boolean field.

Syntax
@protocol SMPOpenUIBooleanEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIBooleanEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIBooleanEditAdapter >) init-
WithBooleanEditModel: (id< SMPOpenUIBoo-
leanEditModel >) model on page 1196

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIBooleanEdit-
Model >) model didChangeBoolean: (BOOL)
value on page 1196

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

Agentry App Development

1194 SAP Mobile Platform

Member Description

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

Agentry App Development 1195

initWithBooleanEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIBooleanEditAdapter >)
initWithBooleanEditModel : (id< SMPOpenUIBooleanEditModel >)
model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeBoolean: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIBooleanEditModel >) model
didChangeBoolean : (BOOL) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIBooleanEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable Boolean.

Syntax
@protocol SMPOpenUIBooleanEditModel

Base protocols

• SMPOpenUIBooleanDisplayModel on page 1192

Members
All members of SMPOpenUIBooleanEditModel, including inherited members. Methods

Agentry App Development

1196 SAP Mobile Platform

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putBoolean: (BOOL) value on page 1198

Processes the input of the field.

Inherited members from SMPOpenUIBooleanDisplayModel

Member Description

@property (nonatomic,readonly) BOOL value
on page 1194

The current Boolean value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

Agentry App Development

Agentry App Development 1197

processInputBoolean: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputBoolean : (BOOL)
value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

SMPOpenUIButtonDisplayAdapter protocol
Adapter protocol for an extension field that represents a button.

Syntax
@protocol SMPOpenUIButtonDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIButtonDisplayAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIButtonDisplayAdapter >) in-
itWithButtonDisplayModel: (id< SMPOpenUI-
ButtonDisplayModel >) model on page 1200

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIButtonDisplay-
Model >) model didChangeButtonImage:
(SMPOpenUIImage *) image on page 1200

Called to inform the adapter that the button's im-
age has changed.

- (void) model: (id< SMPOpenUIButtonDisplay-
Model >) model didChangeSelected: (BOOL)
value on page 1200

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

1198 SAP Mobile Platform

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

Agentry App Development 1199

initWithButtonDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIButtonDisplayAdapter >)
initWithButtonDisplayModel : (id< SMPOpenUIButtonDisplayModel
>) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeButtonImage: method
Called to inform the adapter that the button's image has changed.

Syntax
- (void) model : (id< SMPOpenUIButtonDisplayModel >) model
didChangeButtonImage : (SMPOpenUIImage *) image

Parameters

• model – the model for the field.
• image – the new image for the button.

model:didChangeSelected: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIButtonDisplayModel >) model
didChangeSelected : (BOOL) value

Parameters

• model – the model.
• value – the updated value the field should display.

Agentry App Development

1200 SAP Mobile Platform

SMPOpenUIButtonDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
button.

Syntax
@protocol SMPOpenUIButtonDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Members
All members of SMPOpenUIButtonDisplayModel, including inherited members. Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
put on page 1202

Called to process a button push.

Properties

Property Description

@property (nonatomic,readonly) SMPOpenUI-
Image * buttonImage on page 1202

The image associated with the button.

@property (nonatomic,readonly) NSString * but-
tonText on page 1203

The text that the button should display.

@property (nonatomic,readonly) SMPOpenUI-
ButtonType buttonType on page 1203

The button type.

@property (nonatomic,readonly) BOOL selected
on page 1203

The selected state of the button.

@property (nonatomic,readonly) BOOL sup-
portsAction on page 1203

Whether or not there is an action tied to the but-
ton.

@property (nonatomic,readonly) BOOL value
on page 1203

Gets the current value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

Agentry App Development 1201

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInput method
Called to process a button push.

Syntax
- (SMPOpenUIProcessInputReturn) processInput

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

buttonImage property
The image associated with the button.

Syntax
@property (nonatomic , readonly) SMPOpenUIImage *
buttonImage

Agentry App Development

1202 SAP Mobile Platform

buttonText property
The text that the button should display.

Syntax
@property (nonatomic , readonly) NSString * buttonText

buttonType property
The button type.

Syntax
@property (nonatomic , readonly) SMPOpenUIButtonType
buttonType

Remarks
Possible types are checkbox, radio, and push buttons. See ButtonStyle enum.

selected property
The selected state of the button.

Syntax
@property (nonatomic , readonly) BOOL selected

supportsAction property
Whether or not there is an action tied to the button.

Syntax
@property (nonatomic , readonly) BOOL supportsAction

value property
Gets the current value.

Syntax
@property (nonatomic , readonly) BOOL value

Remarks
For a button, this is synonymous with "selected".

SMPOpenUICollectionDisplayAdapter protocol
Protocol for a field extension representing a collection.

Syntax
@protocol SMPOpenUICollectionDisplayAdapter

Agentry App Development

Agentry App Development 1203

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUICollectionDisplayAdapter, including inherited members.
Methods

Method Description

- (void) allObjectsChanged: (id< SMPOpenUI-
CollectionDisplayModel >) model on page
1205

Called to inform the adapter that the collection
has changed enough that it needs to be completely
refreshed.

- (id< SMPOpenUICollectionDisplayAdapter >)
initWithCollectionDisplayModel: (id< SMPO-
penUICollectionDisplayModel >) model on page
1206

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUICollectionDis-
playModel >) model didSelectObjectAtIndex:
(NSIndexPath *) indexPath on page 1206

Called to inform the adapter that the selection
index has changed.

- (void) model: (id< SMPOpenUICollectionDis-
playModel >) model objectAddedAtIndex:
(NSIndexPath *) indexPath on page 1206

Called to inform the adapter that an object has
been added to the collection at the specified po-
sition.

- (void) model: (id< SMPOpenUICollectionDis-
playModel >) model objectChangedAtIndex:
(NSIndexPath *) indexPath on page 1207

Called to inform the adapter that the object at the
specified position has changed enough that it
needs to be completely refreshed.

- (void) model: (id< SMPOpenUICollectionDis-
playModel >) model objectDeletedAtIndex:
(NSIndexPath *) indexPath on page 1207

Called to inform the adapter that the object at the
specified position has been deleted and needs to
be removed.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

Agentry App Development

1204 SAP Mobile Platform

Member Description

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

allObjectsChanged: method
Called to inform the adapter that the collection has changed enough that it needs to be
completely refreshed.

Syntax
- (void) allObjectsChanged : (id<
SMPOpenUICollectionDisplayModel >) model

Agentry App Development

Agentry App Development 1205

Parameters

• model – the model.

initWithCollectionDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUICollectionDisplayAdapter >)
initWithCollectionDisplayModel : (id<
SMPOpenUICollectionDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didSelectObjectAtIndex: method
Called to inform the adapter that the selection index has changed.

Syntax
- (void) model : (id< SMPOpenUICollectionDisplayModel >) model
didSelectObjectAtIndex : (NSIndexPath *) indexPath

Parameters

• model – the model.
• indexPath – the index path of the object that now has the selection.

Remarks
This is not called when the user selects a different index. This is called when something in
Agentry causes the selection to change. This can happen through update rules and retargetting
that Agentry handles. This can also happen if the currently selected item gets deleted.

model:objectAddedAtIndex: method
Called to inform the adapter that an object has been added to the collection at the specified
position.

Syntax
- (void) model : (id< SMPOpenUICollectionDisplayModel >) model
objectAddedAtIndex : (NSIndexPath *) indexPath

Agentry App Development

1206 SAP Mobile Platform

Parameters

• model – the model.
• indexPath – the index path of the added object.

model:objectChangedAtIndex: method
Called to inform the adapter that the object at the specified position has changed enough that it
needs to be completely refreshed.

Syntax
- (void) model : (id< SMPOpenUICollectionDisplayModel >) model
objectChangedAtIndex : (NSIndexPath *) indexPath

Parameters

• model – the model.
• indexPath – the index path of the changed object.

model:objectDeletedAtIndex: method
Called to inform the adapter that the object at the specified position has been deleted and needs
to be removed.

Syntax
- (void) model : (id< SMPOpenUICollectionDisplayModel >) model
objectDeletedAtIndex : (NSIndexPath *) indexPath

Parameters

• model – the model.
• indexPath – the index path of the object that needs to be removed.

SMPOpenUICollectionDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
collection.

Syntax
@protocol SMPOpenUICollectionDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Members
All members of SMPOpenUICollectionDisplayModel, including inherited members.
Methods

Agentry App Development

Agentry App Development 1207

Method Description

- (id< SMPDataAPIProtocol >) collection on
page 1209

Returns the collection.

- (id< SMPDataAPIProtocol >) displayedObjec-
tAtIndex: (NSUInteger) index on page 1209

- (SMPOpenUIProcessInputReturn) processIn-
putSelection: (NSInteger) selection on page
1209

Processes the selection of a descendant object of
the collection.

Properties

Property Description

@property (nonatomic,readonly) NSUInteger
displayedObjectCount on page 1210

Returns the number of displayable objects.

@property (nonatomic,readonly) NSIndexPath *
selection on page 1210

The current selected child object.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

Agentry App Development

1208 SAP Mobile Platform

Member Description

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

collection method
Returns the collection.

Syntax
- (id< SMPDataAPIProtocol >) collection

Returns
The collection

displayedObjectAtIndex: method

Syntax
- (id< SMPDataAPIProtocol >) displayedObjectAtIndex :
(NSUInteger) index

processInputSelection: method
Processes the selection of a descendant object of the collection.

Syntax
- (SMPOpenUIProcessInputReturn) processInputSelection :
(NSInteger) selection

Parameters

• selection – the position of the selected descendant object.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

Agentry App Development

Agentry App Development 1209

displayedObjectCount property
Returns the number of displayable objects.

Syntax
@property (nonatomic , readonly) NSUInteger
displayedObjectCount

Remarks
Note that this might be different from the total collection objects because there might be an
include rule set for the adapter.

selection property
The current selected child object.

Syntax
@property (nonatomic , readonly) NSIndexPath * selection

SMPOpenUIDateAndTimeDisplayAdapter protocol
Protocol for a field extension representing a display-only date and time field.

Syntax
@protocol SMPOpenUIDateAndTimeDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDateAndTimeDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIDateAndTimeDisplayAdap-
ter >) initWithDateAndTimeDisplayModel: (id<
SMPOpenUIDateAndTimeDisplayModel >)
model on page 1212

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDateAndTime-
DisplayModel >) model didChangeDateAnd-
Time: (NSDate *) value on page 1212

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

1210 SAP Mobile Platform

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

Agentry App Development 1211

initWithDateAndTimeDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDateAndTimeDisplayAdapter >)
initWithDateAndTimeDisplayModel : (id<
SMPOpenUIDateAndTimeDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeDateAndTime: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDateAndTimeDisplayModel >)
model didChangeDateAndTime : (NSDate *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIDateAndTimeDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only date and time.

Syntax
@protocol SMPOpenUIDateAndTimeDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIDateAndTimeEditModel on page 1216

Agentry App Development

1212 SAP Mobile Platform

Members
All members of SMPOpenUIDateAndTimeDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) NSDate * value
on page 1214

The current date value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

Agentry App Development

Agentry App Development 1213

value property
The current date value.

Syntax
@property (nonatomic , readonly) NSDate * value

SMPOpenUIDateAndTimeEditAdapter protocol
Protocol for a field extension representing an editable date and time field.

Syntax
@protocol SMPOpenUIDateAndTimeEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDateAndTimeEditAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIDateAndTimeEditAdapter >)
initWithDateAndTimeEditModel: (id< SMPO-
penUIDateAndTimeEditModel >) model on page
1215

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDateAndTi-
meEditModel >) model didChangeDateAnd-
Time: (NSDate *) value on page 1216

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

Agentry App Development

1214 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDateAndTimeEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDateAndTimeEditAdapter >)
initWithDateAndTimeEditModel : (id<
SMPOpenUIDateAndTimeEditModel >) model

Parameters

• model – The model for this adapter to use.

Agentry App Development

Agentry App Development 1215

Returns
An initialized object that implements the protocol.

model:didChangeDateAndTime: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDateAndTimeEditModel >) model
didChangeDateAndTime : (NSDate *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIDateAndTimeEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable date and time.

Syntax
@protocol SMPOpenUIDateAndTimeEditModel

Base protocols

• SMPOpenUIDateAndTimeDisplayModel on page 1212

Members
All members of SMPOpenUIDateAndTimeEditModel, including inherited members.
Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putDateAndTime: (NSDate *) value on page
1217

Processes the input of the field.

Inherited members from SMPOpenUIDateAndTimeDisplayModel

Member Description

@property (nonatomic,readonly) NSDate * value
on page 1214

The current date value.

Inherited members from SMPOpenUIFieldModel

Agentry App Development

1216 SAP Mobile Platform

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputDateAndTime: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputDateAndTime :
(NSDate *) value

Parameters

• value – the value to process.

Agentry App Development

Agentry App Development 1217

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

SMPOpenUIDateDisplayAdapter protocol
Protocol for a field extension representing a display-only date field.

Syntax
@protocol SMPOpenUIDateDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDateDisplayAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIDateDisplayAdapter >) init-
WithDateDisplayModel: (id< SMPOpenUIDate-
DisplayModel >) model on page 1219

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDateDisplay-
Model >) model didChangeDate: (NSDate *)
value on page 1220

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

Agentry App Development

1218 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDateDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDateDisplayAdapter >)
initWithDateDisplayModel : (id< SMPOpenUIDateDisplayModel >)
model

Parameters

• model – The model for this adapter to use.

Agentry App Development

Agentry App Development 1219

Returns
An initialized object that implements the protocol.

model:didChangeDate: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDateDisplayModel >) model
didChangeDate : (NSDate *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIDateDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only date.

Syntax
@protocol SMPOpenUIDateDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIDateEditModel on page 1224

Members
All members of SMPOpenUIDateDisplayModel, including inherited members. Properties

Property Description

@property (nonatomic,readonly) NSDate * value
on page 1221

The current date value.

Inherited members from SMPOpenUIFieldModel

Agentry App Development

1220 SAP Mobile Platform

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current date value.

Syntax
@property (nonatomic , readonly) NSDate * value

Remarks
The time portion of the NSDate will be midnight.

Agentry App Development

Agentry App Development 1221

SMPOpenUIDateEditAdapter protocol
Protocol for a field extension representing an editable date field.

Syntax
@protocol SMPOpenUIDateEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDateEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIDateEditAdapter >) initWith-
DateEditModel: (id< SMPOpenUIDateEditMo-
del >) model on page 1223

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDateEditModel
>) model didChangeDate: (NSDate *) value on
page 1224

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

Agentry App Development

1222 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDateEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDateEditAdapter >) initWithDateEditModel : (
id< SMPOpenUIDateEditModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

Agentry App Development

Agentry App Development 1223

model:didChangeDate: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDateEditModel >) model
didChangeDate : (NSDate *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIDateEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable date.

Syntax
@protocol SMPOpenUIDateEditModel

Base protocols

• SMPOpenUIDateDisplayModel on page 1220

Members
All members of SMPOpenUIDateEditModel, including inherited members. Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putDate: (NSDate *) value on page 1225

Processes the input of the field.

Inherited members from SMPOpenUIDateDisplayModel

Member Description

@property (nonatomic,readonly) NSDate * value
on page 1221

The current date value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

1224 SAP Mobile Platform

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputDate: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputDate : (NSDate
*) value

Parameters

• value – the value to process. The time portion of this date will be set to midnight.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

Agentry App Development

Agentry App Development 1225

SMPOpenUIDecimalDisplayAdapter protocol
Protocol for a field extension representing a display-only decimal field.

Syntax
@protocol SMPOpenUIDecimalDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDecimalDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIDecimalDisplayAdapter >)
initWithDecimalDisplayModel: (id< SMPOpe-
nUIDecimalDisplayModel >) model on page
1227

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDecimalDis-
playModel >) model didChangeDecimal: (dou-
ble) value on page 1228

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

Agentry App Development

1226 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDecimalDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDecimalDisplayAdapter >)
initWithDecimalDisplayModel : (id<
SMPOpenUIDecimalDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

Agentry App Development

Agentry App Development 1227

model:didChangeDecimal: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDecimalDisplayModel >) model
didChangeDecimal : (double) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIDecimalDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only decimal.

Syntax
@protocol SMPOpenUIDecimalDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIDecimalEditModel on page 1232

Members
All members of SMPOpenUIDecimalDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) double value
on page 1229

The current decimal value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

1228 SAP Mobile Platform

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current decimal value.

Syntax
@property (nonatomic , readonly) double value

SMPOpenUIDecimalEditAdapter protocol
Protocol for a field extension representing an editable decimal field.

Syntax
@protocol SMPOpenUIDecimalEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Agentry App Development

Agentry App Development 1229

Members
All members of SMPOpenUIDecimalEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIDecimalEditAdapter >) init-
WithDecimalEditModel: (id< SMPOpenUIDeci-
malEditModel >) model on page 1231

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDecimalEdit-
Model >) model didChangeDecimal: (double)
value on page 1231

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

Agentry App Development

1230 SAP Mobile Platform

Member Description

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDecimalEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDecimalEditAdapter >)
initWithDecimalEditModel : (id< SMPOpenUIDecimalEditModel >)
model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeDecimal: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDecimalEditModel >) model
didChangeDecimal : (double) value

Parameters

• model – the model.
• value – the updated value the field should display.

Agentry App Development

Agentry App Development 1231

SMPOpenUIDecimalEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable decimal.

Syntax
@protocol SMPOpenUIDecimalEditModel

Base protocols

• SMPOpenUIDecimalDisplayModel on page 1228

Members
All members of SMPOpenUIDecimalEditModel, including inherited members. Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putDecimal: (double) value on page 1233

Processes the input of the field.

Properties

Property Description

@property (nonatomic,readonly) double maxi-
mumValue on page 1234

The maximum value accepted for the field.

@property (nonatomic,readonly) double mini-
mumValue on page 1234

The minimum value accepted for the field.

Inherited members from SMPOpenUIDecimalDisplayModel

Member Description

@property (nonatomic,readonly) double value
on page 1229

The current decimal value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

Agentry App Development

1232 SAP Mobile Platform

Member Description

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputDecimal: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputDecimal :
(double) value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

Agentry App Development

Agentry App Development 1233

maximumValue property
The maximum value accepted for the field.

Syntax
@property (nonatomic , readonly) double maximumValue

Remarks
If there is no maximum value defined, it returns DBL_MAX.

minimumValue property
The minimum value accepted for the field.

Syntax
@property (nonatomic , readonly) double minimumValue

Remarks
If there is no minimum value defined, it returns DBL_MIN.

SMPOpenUIDurationDisplayAdapter protocol
Protocol for a field extension representing a display-only duration field.

Syntax
@protocol SMPOpenUIDurationDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDurationDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIDurationDisplayAdapter >)
initWithDurationDisplayModel: (id< SMPOpe-
nUIDurationDisplayModel >) model on page
1236

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDurationDis-
playModel >) model didChangeDuration: (NSIn-
teger) value on page 1236

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Agentry App Development

1234 SAP Mobile Platform

Method Description

- (void) model: (id< SMPOpenUIDurationDis-
playModel >) model didChangeFractionalHour:
(double) value on page 1236

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

Agentry App Development

Agentry App Development 1235

Member Description

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDurationDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDurationDisplayAdapter >)
initWithDurationDisplayModel : (id<
SMPOpenUIDurationDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeDuration: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDurationDisplayModel >) model
didChangeDuration : (NSInteger) value

Parameters

• model – the model.
• value – the updated value the field should display. This value is in seconds.

model:didChangeFractionalHour: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDurationDisplayModel >) model
didChangeFractionalHour : (double) value

Agentry App Development

1236 SAP Mobile Platform

Parameters

• model – the model.
• value – the updated value the field should display. This value is in fractional hours.

Remarks
This will be called when the display mode for the duration is fractional hours.

SMPOpenUIDurationDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only duration.

Syntax
@protocol SMPOpenUIDurationDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIDurationEditModel on page 1241

Members
All members of SMPOpenUIDurationDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) SMPOpenUI-
DurationDisplayFormat displayFormat on page
1238

The display format specified for the duration.

@property (nonatomic,readonly) double fractio-
nalHourValue on page 1238

Gets the current value for the duration in decimal
hours.

@property (nonatomic,readonly) NSInteger val-
ue on page 1239

The current value for the duration in seconds.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

Agentry App Development 1237

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

displayFormat property
The display format specified for the duration.

Syntax
@property (nonatomic , readonly)
SMPOpenUIDurationDisplayFormat displayFormat

fractionalHourValue property
Gets the current value for the duration in decimal hours.

Syntax
@property (nonatomic , readonly) double fractionalHourValue

Agentry App Development

1238 SAP Mobile Platform

value property
The current value for the duration in seconds.

Syntax
@property (nonatomic , readonly) NSInteger value

SMPOpenUIDurationEditAdapter protocol
Protocol for a field extension representing an editable duration field.

Syntax
@protocol SMPOpenUIDurationEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIDurationEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIDurationEditAdapter >) init-
WithDurationEditModel: (id< SMPOpenUIDur-
ationEditModel >) model on page 1240

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIDurationEdit-
Model >) model didChangeDuration: (NSInteg-
er) value on page 1241

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

- (void) model: (id< SMPOpenUIDurationEdit-
Model >) model didChangeFractionalHour:
(double) value on page 1241

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

Agentry App Development

Agentry App Development 1239

Member Description

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithDurationEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIDurationEditAdapter >)
initWithDurationEditModel : (id< SMPOpenUIDurationEditModel
>) model

Agentry App Development

1240 SAP Mobile Platform

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeDuration: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDurationEditModel >) model
didChangeDuration : (NSInteger) value

Parameters

• model – the model.
• value – the updated value the field should display. This value is in seconds.

model:didChangeFractionalHour: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIDurationEditModel >) model
didChangeFractionalHour : (double) value

Parameters

• model – the model.
• value – the updated value the field should display. This value is in fractional hours.

Remarks
This will be called when the display mode for the duration is set to fractional hours.

SMPOpenUIDurationEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable duration.

Syntax
@protocol SMPOpenUIDurationEditModel

Agentry App Development

Agentry App Development 1241

Base protocols

• SMPOpenUIDurationDisplayModel on page 1237

Members
All members of SMPOpenUIDurationEditModel, including inherited members. Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putDuration: (NSInteger) value on page 1243

Process the current input.

- (SMPOpenUIProcessInputReturn) processIn-
putFractionalHour: (double) fractionalHourVal-
ue on page 1244

Process the current input.

Properties

Property Description

@property (nonatomic,readonly) double maxi-
mumFractionalHourValue on page 1244

The maximum value accepted for the field in
fractional hours.

@property (nonatomic,readonly) NSInteger
maximumValue on page 1244

The maximum value accepted for the field in
seconds.

@property (nonatomic,readonly) double mini-
mumFractionalHourValue on page 1245

The minimum value accepted for the field in
fractional hours.

@property (nonatomic,readonly) NSInteger
minimumValue on page 1245

The minimum value accepted for the field in sec-
onds.

Inherited members from SMPOpenUIDurationDisplayModel

Member Description

@property (nonatomic,readonly) SMPOpenUI-
DurationDisplayFormat displayFormat on page
1238

The display format specified for the duration.

@property (nonatomic,readonly) double fractio-
nalHourValue on page 1238

Gets the current value for the duration in decimal
hours.

@property (nonatomic,readonly) NSInteger val-
ue on page 1239

The current value for the duration in seconds.

Inherited members from SMPOpenUIFieldModel

Agentry App Development

1242 SAP Mobile Platform

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputDuration: method
Process the current input.

Syntax
- (SMPOpenUIProcessInputReturn) processInputDuration :
(NSInteger) value

Parameters

• value – input value of duration in seconds.

Agentry App Development

Agentry App Development 1243

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

processInputFractionalHour: method
Process the current input.

Syntax
- (SMPOpenUIProcessInputReturn) processInputFractionalHour :
(double) fractionalHourValue

Parameters

• fractionalHourValue – input value of duration in fractional hours.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
This should be used when SMPOpenUIDurationDisplayFormatDecHour is the display
format.

maximumFractionalHourValue property
The maximum value accepted for the field in fractional hours.

Syntax
@property (nonatomic , readonly) double
maximumFractionalHourValue

Remarks
This should be used when SMPOpenUIDurationDisplayFormatDecHour is the display
format. If no maximum value is setup for this field, DBL_MAX will be returned.

maximumValue property
The maximum value accepted for the field in seconds.

Syntax
@property (nonatomic , readonly) NSInteger maximumValue

Remarks
If no maximum value is setup for this field, NSIntegerMax will be returned.

Agentry App Development

1244 SAP Mobile Platform

minimumFractionalHourValue property
The minimum value accepted for the field in fractional hours.

Syntax
@property (nonatomic , readonly) double
minimumFractionalHourValue

Remarks
This should be used when SMPOpenUIDurationDisplayFormatDecHour is the display
format. If no minimum value is setup for this field, DBL_MIN will be returned.

minimumValue property
The minimum value accepted for the field in seconds.

Syntax
@property (nonatomic , readonly) NSInteger minimumValue

Remarks
If no minimum value is setup for this field, NSIntegerMin will be returned.

SMPOpenUIEmbeddedImageDisplayAdapter protocol
Protocol for a field extension representing an embedded image field.

Syntax
@protocol SMPOpenUIEmbeddedImageDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIEmbeddedImageDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIEmbeddedImageDisplayA-
dapter >) initWithEmbeddedImageModel: (id<
SMPOpenUIEmbeddedImageDisplayModel >)
model on page 1247

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIEmbeddedIma-
geDisplayModel >) model didChangeImage:
(SMPOpenUIImage *) image on page 1247

Called to inform the adapter that the field's un-
derlying image has changed, and it needs to be
updated to display the correct value.

Agentry App Development

Agentry App Development 1245

Method Description

- (void) modelDidChangeImageCellSelection:
(id< SMPOpenUIEmbeddedImageDisplayMo-
del >) model on page 1247

Called to inform the adapter that image selection
has changed.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

Agentry App Development

1246 SAP Mobile Platform

Member Description

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithEmbeddedImageModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIEmbeddedImageDisplayAdapter >)
initWithEmbeddedImageModel : (id<
SMPOpenUIEmbeddedImageDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeImage: method
Called to inform the adapter that the field's underlying image has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIEmbeddedImageDisplayModel >)
model didChangeImage : (SMPOpenUIImage *) image

Parameters

• model – the model.
• image – the new image the field should display.

modelDidChangeImageCellSelection: method
Called to inform the adapter that image selection has changed.

Syntax
- (void) modelDidChangeImageCellSelection : (id<
SMPOpenUIEmbeddedImageDisplayModel >) model

Agentry App Development

Agentry App Development 1247

Parameters

• model – the model.

SMPOpenUIEmbeddedImageDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
Embedded Image.

Syntax
@protocol SMPOpenUIEmbeddedImageDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Members
All members of SMPOpenUIEmbeddedImageDisplayModel, including inherited members.
Methods

Method Description

- (void) imageCellClickedAtRow: (NSUInteger)
row andColumn: (NSUInteger) column on page
1249

Call this to inform agentry that a cell at a given
position has been clicked.

- (BOOL) isImageCellSelectedAtRow: (NSUIn-
teger) row andColumn: (NSUInteger) column on
page 1250

Call this to find out whether a cell at a given po-
sition has been clicked.

Properties

Property Description

@property (nonatomic,readonly) NSUInteger
columns on page 1250

The number of columns defined for the image.

@property (nonatomic,readonly) UIColor *
highlightSelectedColor on page 1250

The highlight selected color to use for the selected
cells.

@property (nonatomic,readonly) SMPOpenUI-
Image * image on page 1250

The image to display.

@property (nonatomic,readonly) NSUInteger
rows on page 1250

The number of rows defined for the image.

Inherited members from SMPOpenUIFieldModel

Agentry App Development

1248 SAP Mobile Platform

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

Usage
An Embedded Image can be sectioned into a grid of rows and columns, and each cell can be
selected or not. Agentry Actions might also be launched as a result of selecting a cell.

imageCellClickedAtRow:andColumn: method
Call this to inform agentry that a cell at a given position has been clicked.

Syntax
- (void) imageCellClickedAtRow : (NSUInteger) row andColumn :
(NSUInteger) column

Agentry App Development

Agentry App Development 1249

Parameters

• row – the row of the clicked cell.
• column – the column of the clicked cell.

isImageCellSelectedAtRow:andColumn: method
Call this to find out whether a cell at a given position has been clicked.

Syntax
- (BOOL) isImageCellSelectedAtRow : (NSUInteger) row
andColumn : (NSUInteger) column

Parameters

• row – the row of the cell.
• column – the column of the cell.

Returns
YES if the specified cell is selected. NO otherwise.

columns property
The number of columns defined for the image.

Syntax
@property (nonatomic , readonly) NSUInteger columns

highlightSelectedColor property
The highlight selected color to use for the selected cells.

Syntax
@property (nonatomic , readonly) UIColor *
highlightSelectedColor

image property
The image to display.

Syntax
@property (nonatomic , readonly) SMPOpenUIImage * image

rows property
The number of rows defined for the image.

Syntax
@property (nonatomic , readonly) NSUInteger rows

Agentry App Development

1250 SAP Mobile Platform

SMPOpenUIExternalDataDisplayAdapter protocol
Protocol for a field extension representing a display-only external data field.

Syntax
@protocol SMPOpenUIExternalDataDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIExternalDataDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIExternalDataDisplayAdapter
>) initWithExternalDataDisplayModel: (id<
SMPOpenUIExternalDataDisplayModel >)
model on page 1252

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIExternalData-
DisplayModel >) model didChangeExternalDa-
ta: (NSString *) value on page 1253

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

Agentry App Development

Agentry App Development 1251

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithExternalDataDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIExternalDataDisplayAdapter >)
initWithExternalDataDisplayModel : (id<
SMPOpenUIExternalDataDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

Agentry App Development

1252 SAP Mobile Platform

model:didChangeExternalData: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIExternalDataDisplayModel >)
model didChangeExternalData : (NSString *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIExternalDataDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only external data.

Syntax
@protocol SMPOpenUIExternalDataDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIExternalDataEditModel on page 1257

Members
All members of SMPOpenUIExternalDataDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) NSString * val-
ue on page 1254

The current filename value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

Agentry App Development 1253

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current filename value.

Syntax
@property (nonatomic , readonly) NSString * value

SMPOpenUIExternalDataEditAdapter protocol
Protocol for a field extension representing an editable date field.

Syntax
@protocol SMPOpenUIExternalDataEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Agentry App Development

1254 SAP Mobile Platform

Members
All members of SMPOpenUIExternalDataEditAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIExternalDataEditAdapter >)
initWithExternalDataEditModel: (id< SMPOpe-
nUIExternalDataEditModel >) model on page
1256

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIExternalDataE-
ditModel >) model didChangeExternalData:
(NSString *) value on page 1256

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

Agentry App Development

Agentry App Development 1255

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithExternalDataEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIExternalDataEditAdapter >)
initWithExternalDataEditModel : (id<
SMPOpenUIExternalDataEditModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeExternalData: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIExternalDataEditModel >) model
didChangeExternalData : (NSString *) value

Parameters

• model – the model.
• value – the updated value the field should display.

Agentry App Development

1256 SAP Mobile Platform

SMPOpenUIExternalDataEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable external data.

Syntax
@protocol SMPOpenUIExternalDataEditModel

Base protocols

• SMPOpenUIExternalDataDisplayModel on page 1253

Members
All members of SMPOpenUIExternalDataEditModel, including inherited members.
Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putExternalData: (NSString *) value on page
1258

Processes the input of the field.

Inherited members from SMPOpenUIExternalDataDisplayModel

Member Description

@property (nonatomic,readonly) NSString * val-
ue on page 1254

The current filename value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

Agentry App Development

Agentry App Development 1257

Member Description

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputExternalData: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputExternalData : (
NSString *) value

Parameters

• value – the value to process. This is the path to the external data file.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

SMPOpenUIFieldAdapter protocol
The base class for the protocols that must be implemented by all Open UI field extension
classes.

Syntax
@protocol SMPOpenUIFieldAdapter

Agentry App Development

1258 SAP Mobile Platform

Derived protocols

• SMPOpenUIBooleanDisplayAdapter on page 1190
• SMPOpenUIBooleanEditAdapter on page 1194
• SMPOpenUIButtonDisplayAdapter on page 1198
• SMPOpenUICollectionDisplayAdapter on page 1203
• SMPOpenUIDateAndTimeDisplayAdapter on page 1210
• SMPOpenUIDateAndTimeEditAdapter on page 1214
• SMPOpenUIDateDisplayAdapter on page 1218
• SMPOpenUIDateEditAdapter on page 1222
• SMPOpenUIDecimalDisplayAdapter on page 1226
• SMPOpenUIDecimalEditAdapter on page 1229
• SMPOpenUIDurationDisplayAdapter on page 1234
• SMPOpenUIDurationEditAdapter on page 1239
• SMPOpenUIEmbeddedImageDisplayAdapter on page 1245
• SMPOpenUIExternalDataDisplayAdapter on page 1251
• SMPOpenUIExternalDataEditAdapter on page 1254
• SMPOpenUIIntegerDisplayAdapter on page 1269
• SMPOpenUIIntegerEditAdapter on page 1273
• SMPOpenUILabelDisplayAdapter on page 1278
• SMPOpenUILocationDisplayAdapter on page 1281
• SMPOpenUILocationEditAdapter on page 1285
• SMPOpenUIStringDisplayAdapter on page 1289
• SMPOpenUIStringEditAdapter on page 1293
• SMPOpenUITimeDisplayAdapter on page 1298
• SMPOpenUITimeEditAdapter on page 1302
• SMPOpenUIUnsignedIntegerDisplayAdapter on page 1306
• SMPOpenUIUnsignedIntegerEditAdapter on page 1309

Members
All members of SMPOpenUIFieldAdapter, including inherited members. Methods

Method Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

Agentry App Development

Agentry App Development 1259

Method Description

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page
1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Usage
This is an "abstract" protocol, in that you need to implement one of its child protocols so that
there is an initWithXxxModel method. The client host will create an instance of the specified
class, and call its initWithXxxModel method. When the extension control is to be displayed,
the viewForFrame: method will be called and the returned view will be added as a subview of
the Agentry Screen. Each adapter will have a host view and view controller that will determine
the space dedicated for the adapter.

Agentry App Development

1260 SAP Mobile Platform

agentryShouldDisplayLabel method
Called to ask the adapter if Agentry should handle displaying the label for the field or leave it
to the extension.

Syntax
- (BOOL) agentryShouldDisplayLabel

Returns
YES if Agentry should handle the label, NO if extension handles the label.

Remarks
If this method returns YES, Agentry will handle displaying the label, including hyperlink
functionality. If this method returns NO, the extension takes responsibility for the label (and is
free to just not bother with it).

This is optional. If not present, assumes NO.

agentryShouldDisplayValidationFailure method
Called to ask the adapter if Agentry should handle displaying validation failure text or leave it
to the extension.

Syntax
- (BOOL) agentryShouldDisplayValidationFailure

Returns
YES if Agentry should handle the validation failure text, NO if the extension handles the
validation failure text.

Remarks
If this method returns YES, Agentry will handle displaying the field validation failure text,
and do the necessary layout adjustments for it. If this method returns NO, the extension takes
responsibility for displaying the field validation failure text.

This is optional. If not present, assumes YES and Agentry displays the validation failure
message.

autosizeBehavior method
Called to ask the adapter what its desired autosize behavior is.

Syntax
- (SMPOpenUIAutosizeBehavior) autosizeBehavior

Agentry App Development

Agentry App Development 1261

Returns
The desired autosize behavior. If this method is not implemented or the return value is
unknown, SMPOpenUIAutosizeBehaviorNone will be used.

Remarks
See SMPOpenUIAutosizeBehavior for possible values.

model:didSetEnabled: method
Called to inform the adapter that the host widget has been enabled or disabled.

Syntax
- (void) model : (id< SMPOpenUIFieldModel >) model
didSetEnabled : (BOOL) enabled

Parameters

• model – the model
• enabled – YES to indicate it is enabled, NO to indicate it is disabled

Remarks
The extension should give some kind of indication to the user that it is disabled. Optional.

model:didSetHyperlinkEnabled: method
Called to inform the adapter that the enable state of the hyperlink has changed.

Syntax
- (void) model : (id< SMPOpenUIFieldModel >) model
didSetHyperlinkEnabled : (BOOL) enabled

Parameters

• model – the model
• enabled – YES if hyperlink is enabled, NO if it hyperlink is disabled

Remarks
Only called if the extension is handling the label functionality, and a hyperlink is defined
Optional.

model:didSetValid:withValidationFailureText: method
Called to inform the adapter that the field's valid state has changed.

Syntax
- (void) model : (id< SMPOpenUIFieldModel >) model didSetValid
: (BOOL) valid withValidationFailureText : (NSString *) text

Agentry App Development

1262 SAP Mobile Platform

Parameters

• model – the model
• valid – YES if the field value is valid, NO for invalid.
• text – the message to display to the user if the field is invalid.

Remarks
The field has either become invalid and the user needs to be informed with the validation
message or valid and any previous validation failure text needs to be hidden. The validation
message will contain information that tells the user why their field is invalid.

model:didSetVisible: method
Called to inform the adapter that the host widget has been shown or hidden.

Syntax
- (void) model : (id< SMPOpenUIFieldModel >) model
didSetVisible : (BOOL) visible

Parameters

• model – the model
• visible – YES to indicate it is visible, NO to indicate it is hidden

Remarks
The UIView for the extension will be show or hidden automatically. Optional.

model:didUpdateLabel: method
Called to inform the adapter that the text of the label has changed.

Syntax
- (void) model : (id< SMPOpenUIFieldModel >) model
didUpdateLabel : (NSString *) label

Parameters

• model – the model
• label – The new value for the label

Remarks
Only called if the extension is handling the label functionality, and the label is defined with a
rule Optional.

Agentry App Development

Agentry App Development 1263

model:wantsExtensionString: method
Called by the Agentry to get the value for the specified string.

Syntax
- (NSString *) model : (id< SMPOpenUIFieldModel >) model
wantsExtensionString : (NSString *) stringName

Parameters

• model – the model
• stringName – The string that Agentry is requesting

Returns
The value the extension determines based on the specified key

Remarks
In the definitions, there are specified keys. The string passed in is a key, the value is returned
from the extension.

model:wantsViewHeightForWidth: method
Called to ask the adapter the height needed for its view for a given width for layout
calculations.

Syntax
- (NSUInteger) model : (id< SMPOpenUIFieldModel >) model
wantsViewHeightForWidth : (NSUInteger) width

Parameters

• model – the model
• width – the width for the field

Remarks
This method will only be called if the height of the field is set to Auto in the Editor and the
adapter has reported that its desired autosizeBehavior is
SMPOpenUIAutosizeBehaviorWrapContent.

If the adapter reports its desired autosize behavior is SMPOpenUIAutosizeBehaviorNone, or
if this method is not implemented, standard Agentry layout rules will be used to determine the
height of the field.

Agentry App Development

1264 SAP Mobile Platform

viewForFrame: method
Returns the UIView that will be added as a subview to the host's UIView This will be called
one time after initWithXxxModel: has been called.

Syntax
- (UIView *) viewForFrame : (CGRect) frame

Parameters

• frame – the frame.

SMPOpenUIFieldModel protocol
This is the protocol implemented by all model objects that are given to an adapter extension so
it can interface with Agentry.

Syntax
@protocol SMPOpenUIFieldModel

Derived protocols

• SMPOpenUIBooleanDisplayModel on page 1192
• SMPOpenUIButtonDisplayModel on page 1201
• SMPOpenUICollectionDisplayModel on page 1207
• SMPOpenUIDateAndTimeDisplayModel on page 1212
• SMPOpenUIDateDisplayModel on page 1220
• SMPOpenUIDecimalDisplayModel on page 1228
• SMPOpenUIDurationDisplayModel on page 1237
• SMPOpenUIEmbeddedImageDisplayModel on page 1248
• SMPOpenUIExternalDataDisplayModel on page 1253
• SMPOpenUIIntegerDisplayModel on page 1272
• SMPOpenUILabelDisplayModel on page 1280
• SMPOpenUILocationDisplayModel on page 1284
• SMPOpenUIStringDisplayModel on page 1291
• SMPOpenUITimeDisplayModel on page 1300
• SMPOpenUIUnsignedIntegerDisplayModel on page 1308

Members
All members of SMPOpenUIFieldModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1265

Method Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

Properties

Property Description

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

Usage
See its derived protocols for specific data types.

agentryActionEnableState: method
Asks Agentry what the current enable state is for the action specified by name.

Syntax
- (SMPOpenUIActionEnableType) agentryActionEnableState :
(NSString *) actionName

Agentry App Development

1266 SAP Mobile Platform

Parameters

• actionName – The action name as a string

Returns
The enable state

Remarks
It will either be enabled, disabled, no-op(action not found), or error.

agentryString: method
Asks Agentry for a specific string value.

Syntax
- (NSString *) agentryString : (NSString *) stringName

Parameters

• stringName – The string the extension is requesting.

Returns
The value paired with that string.

Remarks
In the definitions there are key/value pairs. The String passed in is a key, the value is returned.
If no key exists for the specified string, nil will be returned.

executeAgentryAction: method
Asks Agentry to execute the action specified by name.

Syntax
- (SMPOpenUIActionResult) executeAgentryAction : (NSString
*) actionName

Parameters

• actionName – The action name as a string

Returns
The result of trying to run the action

Remarks
This should only be called if agentryActionEnableState returns ActionEnable for
the specified action.

Agentry App Development

Agentry App Development 1267

executeHyperlinkAction method
Executes the field's hyperlink action (if the hyperlink action is enabled).

Syntax
- (SMPOpenUIActionResult) executeHyperlinkAction

Returns
The action result

requestLayoutHeigh: method
Used to inform Agentry that a new height is desired for an autosizing field.

Syntax
- (void) requestLayoutHeigh : (NSUInteger) newHeight

Parameters

• newHeight – the desired height for the extension.

Remarks
If the field is not autosizing, this request will be ignored. If it is autosizing and the extension
can handle autosizing, Agentry will fire layout calculations and it might query the extension
for the size again letting it know what its final width will be. See
model:wantsViewHeightForWidth: (SMPOpenUIFieldAdapter-p) in the
SMPOpenUIFieldAdapter protocol.

autosizing property
A Boolean value representing whether the field is set to Auto height in the Editor.

Syntax
@property (nonatomic , readonly) BOOL autosizing

Remarks
The extension may choose to respond to this by providing the height of the field whenever
requested by Agentry depending on what it wants to display. See
model:wantsViewHeightForWidth: (SMPOpenUIFieldAdapter-p) in the
SMPOpenUIFieldAdapter protocol.

The extension may also choose to notify Agentry that it wants a new height for an autosizing
field via the method requestLayoutHeigh: in this protocol.

Agentry App Development

1268 SAP Mobile Platform

enabled property
A Boolean value representing whether the field is currently enabled based on current rule
evaluation.

Syntax
@property (nonatomic , readonly) BOOL enabled

hidden property
A Boolean value representing whether or not the field is currently hidden based on current rule
evaluations.

Syntax
@property (nonatomic , readonly) BOOL hidden

hyperlinkEnabled property
A Boolean value representing whether or not the hyperlink action is enabled.

Syntax
@property (nonatomic , readonly) BOOL hyperlinkEnabled

label property
The label the field would like the extension to display.

Syntax
@property (nonatomic , readonly) NSString * label

SMPOpenUIIntegerDisplayAdapter protocol
Protocol for a field extension representing a display-only integer field.

Syntax
@protocol SMPOpenUIIntegerDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIIntegerDisplayAdapter, including inherited members. Methods

Agentry App Development

Agentry App Development 1269

Method Description

- (id< SMPOpenUIIntegerDisplayAdapter >) in-
itWithIntegerDisplayModel: (id< SMPOpe-
nUIIntegerDisplayModel >) model on page
1271

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIIntegerDisplay-
Model >) model didChangeInteger: (NSInteger)
value on page 1271

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

Agentry App Development

1270 SAP Mobile Platform

Member Description

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithIntegerDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIIntegerDisplayAdapter >)
initWithIntegerDisplayModel : (id<
SMPOpenUIIntegerDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeInteger: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIIntegerDisplayModel >) model
didChangeInteger : (NSInteger) value

Parameters

• model – the model.
• value – the updated value the field should display.

Agentry App Development

Agentry App Development 1271

SMPOpenUIIntegerDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only integer.

Syntax
@protocol SMPOpenUIIntegerDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIIntegerEditModel on page 1275

Members
All members of SMPOpenUIIntegerDisplayModel, including inherited members. Properties

Property Description

@property (nonatomic,readonly) NSInteger val-
ue on page 1273

The current integer value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

Agentry App Development

1272 SAP Mobile Platform

Member Description

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current integer value.

Syntax
@property (nonatomic , readonly) NSInteger value

SMPOpenUIIntegerEditAdapter protocol
Protocol for a field extension representing an editable integer field.

Syntax
@protocol SMPOpenUIIntegerEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIIntegerEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIIntegerEditAdapter >) initWi-
thIntegerEditModel: (id< SMPOpenUIIntegerE-
ditModel >) model on page 1275

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIIntegerEditMo-
del >) model didChangeInteger: (NSInteger) val-
ue on page 1275

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

Agentry App Development 1273

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

1274 SAP Mobile Platform

initWithIntegerEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIIntegerEditAdapter >)
initWithIntegerEditModel : (id< SMPOpenUIIntegerEditModel >)
model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeInteger: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIIntegerEditModel >) model
didChangeInteger : (NSInteger) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIIntegerEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable integer.

Syntax
@protocol SMPOpenUIIntegerEditModel

Base protocols

• SMPOpenUIIntegerDisplayModel on page 1272

Members
All members of SMPOpenUIIntegerEditModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1275

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putInteger: (NSInteger) value on page 1277

Processes the input of the field.

Properties

Property Description

@property (nonatomic,readonly) NSInteger
maximumValue on page 1277

The maximum integer value that will be accepted.

@property (nonatomic,readonly) NSInteger
minimumValue on page 1277

The minimum integer value that will be accepted.

Inherited members from SMPOpenUIIntegerDisplayModel

Member Description

@property (nonatomic,readonly) NSInteger val-
ue on page 1273

The current integer value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

Agentry App Development

1276 SAP Mobile Platform

Member Description

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputInteger: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputInteger :
(NSInteger) value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

maximumValue property
The maximum integer value that will be accepted.

Syntax
@property (nonatomic , readonly) NSInteger maximumValue

Remarks
If no maximum value is set up for this field, NSIntegerMax will be returned.

minimumValue property
The minimum integer value that will be accepted.

Syntax
@property (nonatomic , readonly) NSInteger minimumValue

Agentry App Development

Agentry App Development 1277

Remarks
If no minimum value is set up for this field, NSIntegerMin will be returned.

SMPOpenUILabelDisplayAdapter protocol
Protocol for a field extension representing a label field.

Syntax
@protocol SMPOpenUILabelDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUILabelDisplayAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUILabelDisplayAdapter >) init-
WithLabelDisplayModel: (id< SMPOpenUILa-
belDisplayModel >) model on page 1279

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUILabelDisplay-
Model >) model didChangeLabel: (NSString *)
value on page 1280

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

Agentry App Development

1278 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithLabelDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUILabelDisplayAdapter >)
initWithLabelDisplayModel : (id< SMPOpenUILabelDisplayModel
>) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

Agentry App Development

Agentry App Development 1279

model:didChangeLabel: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUILabelDisplayModel >) model
didChangeLabel : (NSString *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUILabelDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
label.

Syntax
@protocol SMPOpenUILabelDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Members
All members of SMPOpenUILabelDisplayModel, including inherited members. Properties

Property Description

@property (nonatomic,readonly) NSString * val-
ue on page 1281

The text the label should display.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

Agentry App Development

1280 SAP Mobile Platform

Member Description

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The text the label should display.

Syntax
@property (nonatomic , readonly) NSString * value

SMPOpenUILocationDisplayAdapter protocol
Protocol for a field extension representing a display-only location field.

Syntax
@protocol SMPOpenUILocationDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUILocationDisplayAdapter, including inherited members.
Methods

Agentry App Development

Agentry App Development 1281

Method Description

- (id< SMPOpenUILocationDisplayAdapter >)
initWithLocationDisplayModel: (id< SMPOpe-
nUILocationDisplayModel >) model on page
1283

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUILocationDis-
playModel >) model didChangeLocation:
(SMPOpenUILocation *) value on page 1283

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

Agentry App Development

1282 SAP Mobile Platform

Member Description

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithLocationDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUILocationDisplayAdapter >)
initWithLocationDisplayModel : (id<
SMPOpenUILocationDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeLocation: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUILocationDisplayModel >) model
didChangeLocation : (SMPOpenUILocation *) value

Parameters

• model – the model.
• value – the updated value the field should display.

Agentry App Development

Agentry App Development 1283

SMPOpenUILocationDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only location.

Syntax
@protocol SMPOpenUILocationDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUILocationEditModel on page 1287

Members
All members of SMPOpenUILocationDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) SMPOpenUI-
Location * value on page 1285

The current location value as an autoreleased
SMPOpenUILocation.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

Agentry App Development

1284 SAP Mobile Platform

Member Description

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current location value as an autoreleased SMPOpenUILocation.

Syntax
@property (nonatomic , readonly) SMPOpenUILocation * value

SMPOpenUILocationEditAdapter protocol
Protocol for a field extension representing an editable location field.

Syntax
@protocol SMPOpenUILocationEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUILocationEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUILocationEditAdapter >) init-
WithLocationEditModel: (id< SMPOpenUILo-
cationEditModel >) model on page 1287

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUILocationEdit-
Model >) model didChangeLocation: (SMPOpe-
nUILocation *) value on page 1287

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

Agentry App Development 1285

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

1286 SAP Mobile Platform

initWithLocationEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUILocationEditAdapter >)
initWithLocationEditModel : (id< SMPOpenUILocationEditModel
>) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeLocation: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUILocationEditModel >) model
didChangeLocation : (SMPOpenUILocation *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUILocationEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable location.

Syntax
@protocol SMPOpenUILocationEditModel

Base protocols

• SMPOpenUILocationDisplayModel on page 1284

Members
All members of SMPOpenUILocationEditModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1287

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putLocation: (SMPOpenUILocation *) value on
page 1289

Processes the input of the field.

Inherited members from SMPOpenUILocationDisplayModel

Member Description

@property (nonatomic,readonly) SMPOpenUI-
Location * value on page 1285

The current location value as an autoreleased
SMPOpenUILocation.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

Agentry App Development

1288 SAP Mobile Platform

Member Description

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputLocation: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputLocation :
(SMPOpenUILocation *) value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

SMPOpenUIStringDisplayAdapter protocol
Protocol for a field extension representing a display-only string field.

Syntax
@protocol SMPOpenUIStringDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIStringDisplayAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIStringDisplayAdapter >) in-
itWithStringDisplayModel: (id< SMPOpenUIS-
tringDisplayModel >) model on page 1291

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIStringDisplay-
Model >) model didChangeString: (NSString *)
value on page 1291

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

Agentry App Development 1289

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

1290 SAP Mobile Platform

initWithStringDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIStringDisplayAdapter >)
initWithStringDisplayModel : (id< SMPOpenUIStringDisplayModel
>) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeString: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIStringDisplayModel >) model
didChangeString : (NSString *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIStringDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only string.

Syntax
@protocol SMPOpenUIStringDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIStringEditModel on page 1295

Members
All members of SMPOpenUIStringDisplayModel, including inherited members. Properties

Agentry App Development

Agentry App Development 1291

Property Description

@property (nonatomic,readonly) BOOL allow-
sCarriageReturn on page 1293

A Boolean value representing whether this string
display field allows carriage return.

@property (nonatomic,readonly) BOOL uses-
WordWrap on page 1293

A Boolean value representing whether this string
display field uses word wrap.

@property (nonatomic,readonly) NSString * val-
ue on page 1293

The current string value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

Agentry App Development

1292 SAP Mobile Platform

allowsCarriageReturn property
A Boolean value representing whether this string display field allows carriage return.

Syntax
@property (nonatomic , readonly) BOOL allowsCarriageReturn

usesWordWrap property
A Boolean value representing whether this string display field uses word wrap.

Syntax
@property (nonatomic , readonly) BOOL usesWordWrap

value property
The current string value.

Syntax
@property (nonatomic , readonly) NSString * value

SMPOpenUIStringEditAdapter protocol
Protocol for a field extension representing an editable string field.

Syntax
@protocol SMPOpenUIStringEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIStringEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUIStringEditAdapter >) init-
WithStringEditModel: (id< SMPOpenUIStrin-
gEditModel >) model on page 1295

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIStringEditMo-
del >) model didChangeString: (NSString *) val-
ue on page 1295

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

Agentry App Development 1293

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

1294 SAP Mobile Platform

initWithStringEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIStringEditAdapter >) initWithStringEditModel
: (id< SMPOpenUIStringEditModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeString: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIStringEditModel >) model
didChangeString : (NSString *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIStringEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable string.

Syntax
@protocol SMPOpenUIStringEditModel

Base protocols

• SMPOpenUIStringDisplayModel on page 1291

Members
All members of SMPOpenUIStringEditModel, including inherited members. Methods

Agentry App Development

Agentry App Development 1295

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putString: (NSString *) value on page 1297

Processes the input of the field.

Properties

Property Description

@property (nonatomic,readonly) BOOL isPass-
wordInput on page 1297

A Boolean value representing whether the edit
field should obscure its input, as would be the
case if it were being used to retrieve a password.

@property (nonatomic,readonly) NSUInteger
maximumLength on page 1298

The maximum number of characters that the edit
text field will allow upon field validation.

@property (nonatomic,readonly) NSUInteger
minimumLength on page 1298

The minimum number of characters that the edit
text field will allow upon field validation.

Inherited members from SMPOpenUIStringDisplayModel

Member Description

@property (nonatomic,readonly) BOOL allow-
sCarriageReturn on page 1293

A Boolean value representing whether this string
display field allows carriage return.

@property (nonatomic,readonly) BOOL uses-
WordWrap on page 1293

A Boolean value representing whether this string
display field uses word wrap.

@property (nonatomic,readonly) NSString * val-
ue on page 1293

The current string value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

Agentry App Development

1296 SAP Mobile Platform

Member Description

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputString: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputString :
(NSString *) value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

isPasswordInput property
A Boolean value representing whether the edit field should obscure its input, as would be the
case if it were being used to retrieve a password.

Syntax
@property (nonatomic , readonly) BOOL isPasswordInput

Agentry App Development

Agentry App Development 1297

maximumLength property
The maximum number of characters that the edit text field will allow upon field validation.

Syntax
@property (nonatomic , readonly) NSUInteger maximumLength

Remarks
If no maximum length is setup for this field, 0 will be returned.

minimumLength property
The minimum number of characters that the edit text field will allow upon field validation.

Syntax
@property (nonatomic , readonly) NSUInteger minimumLength

Remarks
If no minimum length is setup for this field, 0 will be returned.

SMPOpenUITimeDisplayAdapter protocol
Protocol for a field extension representing a display-only time field.

Syntax
@protocol SMPOpenUITimeDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUITimeDisplayAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUITimeDisplayAdapter >) init-
WithTimeDisplayModel: (id< SMPOpenUITi-
meDisplayModel >) model on page 1300

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUITimeDisplay-
Model >) model didChangeTime: (NSDate *)
value on page 1300

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Agentry App Development

1298 SAP Mobile Platform

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

Agentry App Development

Agentry App Development 1299

initWithTimeDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUITimeDisplayAdapter >)
initWithTimeDisplayModel : (id< SMPOpenUITimeDisplayModel >)
model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeTime: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUITimeDisplayModel >) model
didChangeTime : (NSDate *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUITimeDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only time.

Syntax
@protocol SMPOpenUITimeDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUITimeEditModel on page 1304

Members
All members of SMPOpenUITimeDisplayModel, including inherited members. Properties

Agentry App Development

1300 SAP Mobile Platform

Property Description

@property (nonatomic,readonly) NSDate * value
on page 1301

The current time value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current time value.

Syntax
@property (nonatomic , readonly) NSDate * value

Agentry App Development

Agentry App Development 1301

Remarks
The date portion will be set to the reference date (Jan 1, 2001)

SMPOpenUITimeEditAdapter protocol
Protocol for a field extension representing an editable time field.

Syntax
@protocol SMPOpenUITimeEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUITimeEditAdapter, including inherited members. Methods

Method Description

- (id< SMPOpenUITimeEditAdapter >) initWith-
TimeEditModel: (id< SMPOpenUITimeEditMo-
del >) model on page 1303

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUITimeEditMo-
del >) model didChangeTime: (NSDate *) value
on page 1304

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

Agentry App Development

1302 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithTimeEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUITimeEditAdapter >) initWithTimeEditModel : (
id< SMPOpenUITimeEditModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

Agentry App Development

Agentry App Development 1303

model:didChangeTime: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUITimeEditModel >) model
didChangeTime : (NSDate *) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUITimeEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable time.

Syntax
@protocol SMPOpenUITimeEditModel

Base protocols

• SMPOpenUITimeDisplayModel on page 1300

Members
All members of SMPOpenUITimeEditModel, including inherited members. Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putTime: (NSDate *) value on page 1305

Processes the input of the field.

Inherited members from SMPOpenUITimeDisplayModel

Member Description

@property (nonatomic,readonly) NSDate * value
on page 1301

The current time value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

1304 SAP Mobile Platform

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputTime: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn) processInputTime : (NSDate
*) value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

Agentry App Development

Agentry App Development 1305

SMPOpenUIUnsignedIntegerDisplayAdapter protocol
Protocol for a field extension representing a display-only unsigned integer field.

Syntax
@protocol SMPOpenUIUnsignedIntegerDisplayAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Members
All members of SMPOpenUIUnsignedIntegerDisplayAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIUnsignedIntegerDisplayA-
dapter >) initWithUnsignedIntegerDisplayMo-
del: (id< SMPOpenUIUnsignedIntegerDisplay-
Model >) model on page 1307

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIUnsignedInte-
gerDisplayModel >) model didChangeUnsigne-
dInteger: (NSUInteger) value on page 1308

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

Agentry App Development

1306 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithUnsignedIntegerDisplayModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIUnsignedIntegerDisplayAdapter >)
initWithUnsignedIntegerDisplayModel : (id<
SMPOpenUIUnsignedIntegerDisplayModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

Agentry App Development

Agentry App Development 1307

model:didChangeUnsignedInteger: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIUnsignedIntegerDisplayModel
>) model didChangeUnsignedInteger : (NSUInteger) value

Parameters

• model – the model.
• value – the updated value the field should display.

SMPOpenUIUnsignedIntegerDisplayModel protocol
Model protocol of object provided to an adapter used for an extension field representing a
display-only unsigned integer.

Syntax
@protocol SMPOpenUIUnsignedIntegerDisplayModel

Base protocols

• SMPOpenUIFieldModel on page 1265

Derived protocols

• SMPOpenUIUnsignedIntegerEditModel on page 1312

Members
All members of SMPOpenUIUnsignedIntegerDisplayModel, including inherited members.
Properties

Property Description

@property (nonatomic,readonly) NSUInteger
value on page 1309

The current unsigned integer value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

1308 SAP Mobile Platform

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

value property
The current unsigned integer value.

Syntax
@property (nonatomic , readonly) NSUInteger value

SMPOpenUIUnsignedIntegerEditAdapter protocol
Protocol for a field extension representing an editable unsigned integer field.

Syntax
@protocol SMPOpenUIUnsignedIntegerEditAdapter

Base protocols

• SMPOpenUIFieldAdapter on page 1258

Agentry App Development

Agentry App Development 1309

Members
All members of SMPOpenUIUnsignedIntegerEditAdapter, including inherited members.
Methods

Method Description

- (id< SMPOpenUIUnsignedIntegerEditAdapter
>) initWithUnsignedIntegerEditModel: (id<
SMPOpenUIUnsignedIntegerEditModel >)
model on page 1311

Called to initialize the extension with its model.

- (void) model: (id< SMPOpenUIUnsignedInte-
gerEditModel >) model didChangeUnsignedIn-
teger: (NSUInteger) value on page 1311

Called to inform the adapter that the field's un-
derlying value has changed, and it needs to be
updated to display the correct value.

Inherited members from SMPOpenUIFieldAdapter

Member Description

- (BOOL) agentryShouldDisplayLabel on page
1261

Called to ask the adapter if Agentry should handle
displaying the label for the field or leave it to the
extension.

- (BOOL) agentryShouldDisplayValidationFai-
lure on page 1261

Called to ask the adapter if Agentry should handle
displaying validation failure text or leave it to the
extension.

- (SMPOpenUIAutosizeBehavior) autosizeBe-
havior on page 1261

Called to ask the adapter what its desired autosize
behavior is.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetEnabled: (BOOL) enabled on page
1262

Called to inform the adapter that the host widget
has been enabled or disabled.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetHyperlinkEnabled: (BOOL) ena-
bled on page 1262

Called to inform the adapter that the enable state
of the hyperlink has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetValid: (BOOL) valid withValida-
tionFailureText: (NSString *) text on page 1262

Called to inform the adapter that the field's valid
state has changed.

- (void) model: (id< SMPOpenUIFieldModel >)
model didSetVisible: (BOOL) visible on page
1263

Called to inform the adapter that the host widget
has been shown or hidden.

Agentry App Development

1310 SAP Mobile Platform

Member Description

- (void) model: (id< SMPOpenUIFieldModel >)
model didUpdateLabel: (NSString *) label on
page 1263

Called to inform the adapter that the text of the
label has changed.

- (NSString *) model: (id< SMPOpenUIField-
Model >) model wantsExtensionString:
(NSString *) stringName on page 1264

Called by the Agentry to get the value for the
specified string.

- (NSUInteger) model: (id< SMPOpenUIField-
Model >) model wantsViewHeightForWidth:
(NSUInteger) width on page 1264

Called to ask the adapter the height needed for its
view for a given width for layout calculations.

- (UIView *) viewForFrame: (CGRect) frame on
page 1265

Returns the UIView that will be added as a sub-
view to the host's UIView This will be called one
time after initWithXxxModel: has been called.

initWithUnsignedIntegerEditModel: method
Called to initialize the extension with its model.

Syntax
- (id< SMPOpenUIUnsignedIntegerEditAdapter >)
initWithUnsignedIntegerEditModel : (id<
SMPOpenUIUnsignedIntegerEditModel >) model

Parameters

• model – The model for this adapter to use.

Returns
An initialized object that implements the protocol.

model:didChangeUnsignedInteger: method
Called to inform the adapter that the field's underlying value has changed, and it needs to be
updated to display the correct value.

Syntax
- (void) model : (id< SMPOpenUIUnsignedIntegerEditModel >)
model didChangeUnsignedInteger : (NSUInteger) value

Parameters

• model – the model.
• value – the updated value the field should display.

Agentry App Development

Agentry App Development 1311

SMPOpenUIUnsignedIntegerEditModel protocol
Model protocol of object provided to an adapter used for an extension field representing an
editable unsigned integer.

Syntax
@protocol SMPOpenUIUnsignedIntegerEditModel

Base protocols

• SMPOpenUIUnsignedIntegerDisplayModel on page 1308

Members
All members of SMPOpenUIUnsignedIntegerEditModel, including inherited members.
Methods

Method Description

- (SMPOpenUIProcessInputReturn) processIn-
putUnsignedInteger: (NSUInteger) value on page
1313

Processes the input of the field.

Properties

Property Description

@property (nonatomic,readonly) NSUInteger
maximumValue on page 1314

The maximum unsigned integer value that will be
accepted.

@property (nonatomic,readonly) NSUInteger
minimumValue on page 1314

The minimum unsigned integer value that will be
accepted.

Inherited members from SMPOpenUIUnsignedIntegerDisplayModel

Member Description

@property (nonatomic,readonly) NSUInteger
value on page 1309

The current unsigned integer value.

Inherited members from SMPOpenUIFieldModel

Member Description

- (SMPOpenUIActionEnableType) agentryAc-
tionEnableState: (NSString *) actionName on
page 1266

Asks Agentry what the current enable state is for
the action specified by name.

Agentry App Development

1312 SAP Mobile Platform

Member Description

- (NSString *) agentryString: (NSString *) string-
Name on page 1267

Asks Agentry for a specific string value.

@property (nonatomic,readonly) BOOL autosiz-
ing on page 1268

A Boolean value representing whether the field is
set to Auto height in the Editor.

@property (nonatomic,readonly) BOOL enabled
on page 1269

A Boolean value representing whether the field is
currently enabled based on current rule evalua-
tion.

- (SMPOpenUIActionResult) executeAgen-
tryAction: (NSString *) actionName on page
1267

Asks Agentry to execute the action specified by
name.

- (SMPOpenUIActionResult) executeHyperlin-
kAction on page 1268

Executes the field's hyperlink action (if the hy-
perlink action is enabled).

@property (nonatomic,readonly) BOOL hidden
on page 1269

A Boolean value representing whether or not the
field is currently hidden based on current rule
evaluations.

@property (nonatomic,readonly) BOOL hyper-
linkEnabled on page 1269

A Boolean value representing whether or not the
hyperlink action is enabled.

@property (nonatomic,readonly) NSString * la-
bel on page 1269

The label the field would like the extension to
display.

- (void) requestLayoutHeigh: (NSUInteger) new-
Height on page 1268

Used to inform Agentry that a new height is de-
sired for an autosizing field.

processInputUnsignedInteger: method
Processes the input of the field.

Syntax
- (SMPOpenUIProcessInputReturn)
processInputUnsignedInteger : (NSUInteger) value

Parameters

• value – the value to process.

Returns
SMPOpenUIProcessInputReturn result based on the value passed in.

Remarks
Returns the SMPOpenUIProcessInputReturn mask from processing the input.

Agentry App Development

Agentry App Development 1313

maximumValue property
The maximum unsigned integer value that will be accepted.

Syntax
@property (nonatomic , readonly) NSUInteger maximumValue

Remarks
If no maximum value is setup for this field, NSUIntegerMax will be returned.

minimumValue property
The minimum unsigned integer value that will be accepted.

Syntax
@property (nonatomic , readonly) NSUInteger minimumValue

Remarks
If no minimum value is setup for this field, 0 will be returned.

SMPOpenUIButtonType enumeration
An enum used to represent the different button types an Agentry Button Field can be set to.

Syntax
enum SMPOpenUIButtonType

Members

Member name Description Value

SMPOpenUIButtonTypeUn-
known

The type of the button could not
be determined.

-1

SMPOpenUIButtonType-
Checkbox

Check box button. 0

SMPOpenUIButtonTypeRadio Radio button. 1

SMPOpenUIButtonTypePush Push button. 2

SMPOpenUIAutosizeBehavior enumeration
An enum used to tell Agentry what the autosize behavior for the extension should be.

Syntax
enum SMPOpenUIAutosizeBehavior

Agentry App Development

1314 SAP Mobile Platform

Members

Member name Description Value

SMPOpenUIAutosizeBeha-
viorNone

The adapter view will not be
autosized.

0

SMPOpenUIAutosizeBeha-
viorFillVisible

The adapter view will be auto-
sized to take up the visible area
of the screen.

1

SMPOpenUIAutosizeBeha-
viorWrapContent

The adapter will be queried via
"wantsViewHeightForWidth:"
to determine the height it wants
its view to be depending on its
content.

2

SMPOpenUIImagePresentation enumeration
An enum used to represent the possible presentation styles for an Agentry image.

Syntax
enum SMPOpenUIImagePresentation

Members

Member name Description Value

SMPOpenUIImagePresentatio-
nUnknown

We don't know the image pre-
sentation type.

-1

SMPOpenUIImagePresenta-
tionLockAspectRatio

Image should be resized to fit
within the field area while main-
taining its aspect ratio.

0

SMPOpenUIImagePresenta-
tionStretchToFit

Image should be stretched to fit
within the field area.

1

SMPOpenUIImagePresenta-
tionCropToFit

Image should be cropped to fit
within the field area.

2

SMPOpenUIImagePresenta-
tionFullSize

The image should be presented
full-sized (nothing is selected in
the Editor)

3

Agentry App Development

Agentry App Development 1315

SMPOpenUIDurationDisplayFormat enumeration
An enum used to represent the different display formats an Agentry Duration field can be set
to.

Syntax
enum SMPOpenUIDurationDisplayFormat

Members

Member name Description Value

SMPOpenUIDurationDisplay-
FormatUnknown

The model is invalid and the
display format cannot be quer-
ied.

-1

SMPOpenUIDurationDisplay-
FormatHourMinSec

HH:MM:SS. 0

SMPOpenUIDurationDisplay-
FormatHourMin

HH:MM. 1

SMPOpenUIDurationDisplay-
FormatMinSec

MM:SS. 2

SMPOpenUIDurationDisplay-
FormatDecHour

HH.XX. 3

SMPOpenUIActionEnableType enumeration
An enum used to represent the possible enabled states of an action.

Syntax
enum SMPOpenUIActionEnableType

Members

Member name Description Value

SMPOpenUIActionEnableTy-
peUnknown

The model is invalid and the ac-
tion enable type cannot be de-
termined.

-1

SMPOpenUIActionEnable The action is enabled. 0

SMPOpenUIActionDisable The action is disabled. 1

SMPOpenUIActionNoOpera-
tion

The action cannot be found. 2

Agentry App Development

1316 SAP Mobile Platform

Member name Description Value

SMPOpenUIActionError The action is found but is inva-
lid.

3

SMPOpenUIActionResult enumeration
An enum used to represent the possible results of executing an action.

Syntax
enum SMPOpenUIActionResult

Members

Member name Description Value

SMPOpenUIActionResultUn-
known

The model is invalid and the ac-
tion is not being processed at all.

-1

SMPOpenUIActionResult-
Backup

The action was backed out of by
the user.

0

SMPOpenUIActionResultEr-
ror

There was an error when run-
ning the action.

1

SMPOpenUIActionResultCan-
cel

The action was canceled by
user.

2

SMPOpenUIActionResult-
Pending

The action is still in progress
and has not yet completed.

3

SMPOpenUIActionResult-
Complete

The action completed success-
fully.

4

SMPOpenUIProcessInputReturn enumeration
An options enum used to represent the return of processInputXxx: on each model.

Syntax
enum SMPOpenUIProcessInputReturn

Agentry App Development

Agentry App Development 1317

Members

Member name Description Value

SMPOpenUIProcessInputRe-
turnNone

There were no changes to the
state of the model or the model
could not be accessed and the
value is not being processed at
all.

0

SMPOpenUIProcessInputRe-
turnValid

The value passed in is valid (or it
was made valid).

1 << 0

SMPOpenUIProcessInputRe-
turnMunged

The value has been adjusted
from what the user did, but not
in a way that affects its logical
value (for example, if the low-
ercase attribute is set, and an
uppercase character was typed
in).

1 << 1

SMPOpenUIProcessInputRe-
turnChanged

The value passed in is not the
same as the value the model al-
ready had.

1 << 2

SMPOpenUIImagePosition enumeration
An enum used to represent the possible presentation positions for an Agentry image.

Syntax
enum SMPOpenUIImagePosition

Members

Member name Description Value

SMPOpenUIImagePositionUn-
known

We don't know the image posi-
tion.

-1

SMPOpenUIImagePosition-
Center

Image positioned at the center. 0

SMPOpenUIImagePositionUp-
perLeft

Image positioned at the top left. 1

SMPOpenUIImagePositionUp-
perMiddle

Image positioned at the top mid-
dle.

2

Agentry App Development

1318 SAP Mobile Platform

Member name Description Value

SMPOpenUIImagePositionUp-
perRight

Image positioned at the top
right.

3

SMPOpenUIImagePosition-
MiddleLeft

Image positioned at the middle
left.

4

SMPOpenUIImagePosition-
MiddleRight

Image positioned at the middle
right.

5

SMPOpenUIImagePositionLo-
werLeft

Image positioned at the bottom
left.

6

SMPOpenUIImagePositionLo-
werMiddle

Image positioned at the bottom
middle.

7

SMPOpenUIImagePositionLo-
werRight

Image positioned at the bottom
right.

8

Agentry OpenUI API for WPF
Use the OpenUI API for WPF to add custom controls to Agentry applications.

IAgentryCollection interface
This interface represents a collection defined in an Agentry application.

Visual Basic syntax
Public Interface IAgentryCollectionImplements IAgentryData

C# syntax
public interface IAgentryCollection : IAgentryData

Implemented interfaces

• IAgentryData on page 1364

Members
All members of IAgentryCollection, including inherited members. Inherited members from
IAgentryData

Modifier and Type Member Description

public IAgentryData Ancestor on page 1366 The parent object of this object.

public List< IAgentryCollec-
tion >

Collections() on page 1365 Return a list of collections con-
tained by this object.

Agentry App Development

Agentry App Development 1319

Modifier and Type Member Description

public AgentryDataType DataType on page 1366 Return the type of this object as
defined in the Editor.

public IAgentryData Descendant(int) on page 1365 Return a specific data item that's
owned by this object.

public int DescendantCount on page
1367

Return the number of data items
owned by this object.

public string DisplayName on page 1367 Return the display name of this
object as specified in the Editor.

public string InternalName on page 1367 Return the internal name of this
object as specified in the Editor.

public List< IAgentryObject > Objects() on page 1365 Return a list of objects con-
tained by this object.

public List< IAgentryProperty
>

Properties() on page 1366 Return a list of properties
owned by this object.

public IAgentryData Root on page 1367 The root object in the data tree
for an Agentry module.

IAgentryControlViewModel interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelImplements
System.ComponentModel.INotifyPropertyChanged

C# syntax
public interface IAgentryControlViewModel :
System.ComponentModel.INotifyPropertyChanged

Derived interfaces

• IAgentryControlViewModelCollectionDisplay on page 1326
• IAgentryControlViewModelDateTimeDisplay on page 1331
• IAgentryControlViewModelDurationDisplay on page 1341
• IAgentryControlViewModelFileDisplay on page 1346
• IAgentryControlViewModelImage on page 1348
• IAgentryControlViewModelLabel on page 1351
• IAgentryControlViewModelNumberDisplay< T > on page 1356

Agentry App Development

1320 SAP Mobile Platform

• IAgentryControlViewModelStringDisplay on page 1358

Members
All members of IAgentryControlViewModel, including inherited members. Methods

Modifier and Type Method Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Properties

Modifier and Type Property Description

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

Agentry App Development

Agentry App Development 1321

Modifier and Type Property Description

public string Label on page 1325 Returns the text of this control's
label.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

DoesAgentryActionExist(string) method
Ask Agentry if an action with the specified name exists.

Visual Basic syntax
Public Function DoesAgentryActionExist (ByVal actionName As
String) As Boolean

C# syntax
public bool DoesAgentryActionExist (string actionName)

Parameters

• actionName – the name of the action

Returns
True if the action exists; false if not

ExecuteAgentryAction(string) method
Ask Agentry to execute the action with the specified name.

Visual Basic syntax
Public Function ExecuteAgentryAction (ByVal actionName As String)
As SMPActionResult

C# syntax
public SMPActionResult ExecuteAgentryAction (string actionName)

Parameters

• actionName – the name of the action

Returns
Enum indicating the result of the action

Agentry App Development

1322 SAP Mobile Platform

Usage
Only actions defined for this control in the Agentry Editor can be executed.

ExecuteHyperlinkAction() method
Direct the Agentry client to invoke the control's hyperlink action.

Visual Basic syntax
Public Function ExecuteHyperlinkAction () As SMPActionResult

C# syntax
public SMPActionResult ExecuteHyperlinkAction ()

Returns
Enum indicating the result of the action

GetAgentryString(string) method
Asks Agentry for a specific string value.

Visual Basic syntax
Public Function GetAgentryString (ByVal key As String) As String

C# syntax
public string GetAgentryString (string key)

Parameters

• key – the key associated with the desired value

Returns
The value associated with the specified key

Usage
In the definitions there are key/value pairs. If the specified string matches a key, its value is
returned. Otherwise, an empty string is returned.

IsAgentryActionEnabled(string) method
Ask Agentry if an action with the specified name exists and is enabled.

Visual Basic syntax
Public Function IsAgentryActionEnabled (ByVal actionName As
String) As Boolean

Agentry App Development

Agentry App Development 1323

C# syntax
public bool IsAgentryActionEnabled (string actionName)

Parameters

• actionName – the name of the action

Returns
True if the action exists and is enabled; false if not

OnPropertyChanged(string) method
The consumer of this class can listen for the PropertyChanged event in order to handle changes
to any of the properties.

Visual Basic syntax
Public Sub OnPropertyChanged (ByVal strPropertyName As String)

C# syntax
public void OnPropertyChanged (string strPropertyName)

Usage
Property Name: Label IsEnabled IsVisible IsHyperlinkEnabled Error (IDataErrorInfo)

Each type of control has its own value property, which raises the PropertyChanged event when
it changes.

String: StringValue Label: Label Integer: NumberValue Identifier: NumberValue Decimal:
NumberValue, StringValue Duration: DurationValue Date: Value, DateValue Time: Value,
TimeValue Date/Time: Value, DateValue, TimeValue Image: Image Data: FilePath

IsAutoSize property
Some Agentry clients depend on the internal layout manager to determine the size of a control
by asking the control to determine its own size.

Visual Basic syntax
Public ReadOnly Property IsAutoSize As Boolean

C# syntax
public bool IsAutoSize {get;}

Usage
The WPF/.NET client doesn't need to do that because of WPF's built-in support for
automatically sizing its controls.

Agentry App Development

1324 SAP Mobile Platform

IsEnabled property
Determine if the control should be enabled.

Visual Basic syntax
Public ReadOnly Property IsEnabled As Boolean

C# syntax
public bool IsEnabled {get;}

IsHyperlinkEnabled property
Determine if the control's hyperlink should be enabled.

Visual Basic syntax
Public ReadOnly Property IsHyperlinkEnabled As Boolean

C# syntax
public bool IsHyperlinkEnabled {get;}

IsVisible property
Determine if the control should be visible.

Visual Basic syntax
Public ReadOnly Property IsVisible As Boolean

C# syntax
public bool IsVisible {get;}

Label property
Returns the text of this control's label.

Visual Basic syntax
Public Property Label As String

C# syntax
public string Label {get;set;}

Usage
(The set method ignores the passed value. It merely determines if the view-model should raise
a change event for this property, in case it's changed in the model.)

Agentry App Development

Agentry App Development 1325

IAgentryControlViewModelCollectionDisplay interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface
IAgentryControlViewModelCollectionDisplayImplements
IAgentryControlViewModel, IEnumerable< IAgentryData >

C# syntax
public interface IAgentryControlViewModelCollectionDisplay :
IAgentryControlViewModel, IEnumerable< IAgentryData >

Base class

• IEnumerable< IAgentryData > on page 1374

Implemented interfaces

• IAgentryControlViewModel on page 1320

Members
All members of IAgentryControlViewModelCollectionDisplay, including inherited
members. Methods

Modifier and Type Method Description

public IAgentryData DisplayedItemAt(int) on page
1328

Return the displayed item at the
passed index.

public SMPProcessInputReturn SelectItem(int) on page 1328 Select the item at the passed in-
dex into the displayed items.

Properties

Modifier and Type Property Description

public uint DisplayedItemCount on page
1328

Get number of items in collec-
tion of displayed objects.

public IAgentryData SelectedItem on page 1329 Return the selected item in the
list.

Inherited members from IAgentryControlViewModel

Agentry App Development

1326 SAP Mobile Platform

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

Agentry App Development

Agentry App Development 1327

This particular interface is only implemented by the view-model of a collection control, such
as a list-view or tile list.

Note that IEnumerable<> implements IEnumerable, too.

DisplayedItemAt(int) method
Return the displayed item at the passed index.

Visual Basic syntax
Public Function DisplayedItemAt (ByVal index As Integer) As
IAgentryData

C# syntax
public IAgentryData DisplayedItemAt (int index)

Parameters

• index – Index of desired displayed item

Returns
Item displayed at the passed index

SelectItem(int) method
Select the item at the passed index into the displayed items.

Visual Basic syntax
Public Function SelectItem (ByVal index As Integer) As
SMPProcessInputReturn

C# syntax
public SMPProcessInputReturn SelectItem (int index)

Parameters

• index – Index of the displayed item to select

Returns
Result of selection

DisplayedItemCount property
Get number of items in collection of displayed objects.

Visual Basic syntax
Public ReadOnly Property DisplayedItemCount As UInteger

Agentry App Development

1328 SAP Mobile Platform

C# syntax
public uint DisplayedItemCount {get;}

SelectedItem property
Return the selected item in the list.

Visual Basic syntax
Public ReadOnly Property SelectedItem As IAgentryData

C# syntax
public IAgentryData SelectedItem {get;}

IAgentryControlViewModelDateTime interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelDateTimeImplements
IAgentryControlViewModelDateTimeDisplay

C# syntax
public interface IAgentryControlViewModelDateTime :
IAgentryControlViewModelDateTimeDisplay

Implemented interfaces

• IAgentryControlViewModelDateTimeDisplay on page 1331

Members
All members of IAgentryControlViewModelDateTime, including inherited members.
Methods

Modifier and Type Method Description

public void ProcessInput(DateTime) on
page 1331

Set the value of the control's
backing property to the passed
value.

Inherited members from IAgentryControlViewModelDateTimeDisplay

Modifier and Type Member Description

public DateTime DateValue on page 1333 Return the Date property of the
DateTime value.

Agentry App Development

Agentry App Development 1329

Modifier and Type Member Description

public TimeSpan TimeValue on page 1333 Return the TimeOfDay property
of the DateTime value.

public DateTime Value on page 1334 Return the DateTime value of
the control's backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

Agentry App Development

1330 SAP Mobile Platform

Modifier and Type Member Description

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Date and Time," "Date,"
or "Time," edit control.

ProcessInput(DateTime) method
Set the value of the control's backing property to the passed value.

Visual Basic syntax
Public Sub ProcessInput (ByVal value As Date)

C# syntax
public void ProcessInput (DateTime value)

Parameters

• value – New value of this control's backing property

IAgentryControlViewModelDateTimeDisplay interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface
IAgentryControlViewModelDateTimeDisplayImplements
IAgentryControlViewModel

C# syntax
public interface IAgentryControlViewModelDateTimeDisplay :
IAgentryControlViewModel

Implemented interfaces

• IAgentryControlViewModel on page 1320

Agentry App Development

Agentry App Development 1331

Derived interfaces

• IAgentryControlViewModelDateTime on page 1329

Members
All members of IAgentryControlViewModelDateTimeDisplay, including inherited members.
Properties

Modifier and Type Property Description

public DateTime DateValue on page 1333 Return the Date property of the
DateTime value.

public TimeSpan TimeValue on page 1333 Return the TimeOfDay property
of the DateTime value.

public DateTime Value on page 1334 Return the DateTime value of
the control's backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

Agentry App Development

1332 SAP Mobile Platform

Modifier and Type Member Description

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Date and Time," "Date,"
or "Time," display control.

DateValue property
Return the Date property of the DateTime value.

Visual Basic syntax
Public Property DateValue As Date

C# syntax
public DateTime DateValue {get;set;}

Usage
If it's null, this returns Today.

(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelDateTime interface that derives from this one.)

TimeValue property
Return the TimeOfDay property of the DateTime value.

Visual Basic syntax
Public Property TimeValue As TimeSpan

Agentry App Development

Agentry App Development 1333

C# syntax
public TimeSpan TimeValue {get;set;}

Usage
If it's null, this returns a zero TimeSpan.

(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelDateTime interface that derives from this one.)

Value property
Return the DateTime value of the control's backing property.

Visual Basic syntax
Public Property Value As Date

C# syntax
public DateTime Value {get;set;}

Usage
The value may be null.

(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelDateTime interface that derives from this one.)

IAgentryControlViewModelDecimal interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelDecimalImplements
IAgentryControlViewModelDecimalDisplay

C# syntax
public interface IAgentryControlViewModelDecimal :
IAgentryControlViewModelDecimalDisplay

Implemented interfaces

• IAgentryControlViewModelDecimalDisplay on page 1336

Members
All members of IAgentryControlViewModelDecimal, including inherited members.
Methods

Agentry App Development

1334 SAP Mobile Platform

Modifier and Type Method Description

public void ProcessInput(double) on page
1336

Set the value of the control's
backing property to the passed
value.

Inherited members from IAgentryControlViewModelDecimalDisplay

Modifier and Type Member Description

public string StringValue on page 1338 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModelNumberDisplay< T >

Modifier and Type Member Description

public T NumberValue on page 1357 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

Agentry App Development

Agentry App Development 1335

Modifier and Type Member Description

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Decimal" edit control.

ProcessInput(double) method
Set the value of the control's backing property to the passed value.

Visual Basic syntax
Public Sub ProcessInput (ByVal value As Double)

C# syntax
public void ProcessInput (double value)

Parameters

• value – New value of this control's backing property

IAgentryControlViewModelDecimalDisplay interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface
IAgentryControlViewModelDecimalDisplayImplements
IAgentryControlViewModelNumberDisplay< T >

Agentry App Development

1336 SAP Mobile Platform

C# syntax
public interface IAgentryControlViewModelDecimalDisplay :
IAgentryControlViewModelNumberDisplay< T >

Implemented interfaces

• IAgentryControlViewModelNumberDisplay< T > on page 1356

Derived interfaces

• IAgentryControlViewModelDecimal on page 1334

Members
All members of IAgentryControlViewModelDecimalDisplay, including inherited members.
Properties

Modifier and Type Property Description

public string StringValue on page 1338 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModelNumberDisplay< T >

Modifier and Type Member Description

public T NumberValue on page 1357 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

Agentry App Development

Agentry App Development 1337

Modifier and Type Member Description

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Decimal" display
control.

StringValue property
Return the value of the control's backing property.

Visual Basic syntax
Public Property StringValue As String

C# syntax
public string StringValue {get;set;}

Usage
(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelDecimal interface that derives from this one.)

Agentry App Development

1338 SAP Mobile Platform

IAgentryControlViewModelDuration interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelDurationImplements
IAgentryControlViewModelDurationDisplay

C# syntax
public interface IAgentryControlViewModelDuration :
IAgentryControlViewModelDurationDisplay

Implemented interfaces

• IAgentryControlViewModelDurationDisplay on page 1341

Members
All members of IAgentryControlViewModelDuration, including inherited members.
Methods

Modifier and Type Method Description

public void ProcessInput(TimeSpan) on
page 1341

Set the value of the control's
backing property to the passed
value.

Properties

Modifier and Type Property Description

public TimeSpan MaximumValue on page 1341 Return the maximum value per-
mitted for this control.

public TimeSpan MinimumValue on page 1341 Return the minimum value per-
mitted for this control.

Inherited members from IAgentryControlViewModelDurationDisplay

Modifier and Type Member Description

public SMPDurationFormat DurationFormat on page 1343 Return the format that is set in
the Agentry Editor for this con-
trol.

public TimeSpan DurationValue on page 1343 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModel

Agentry App Development

Agentry App Development 1339

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Duration" edit control.

Agentry App Development

1340 SAP Mobile Platform

ProcessInput(TimeSpan) method
Set the value of the control's backing property to the passed value.

Visual Basic syntax
Public Sub ProcessInput (ByVal value As TimeSpan)

C# syntax
public void ProcessInput (TimeSpan value)

Parameters

• value – New value of this control's backing property

MaximumValue property
Return the maximum value permitted for this control.

Visual Basic syntax
Public ReadOnly Property MaximumValue As TimeSpan

C# syntax
public TimeSpan MaximumValue {get;}

MinimumValue property
Return the minimum value permitted for this control.

Visual Basic syntax
Public ReadOnly Property MinimumValue As TimeSpan

C# syntax
public TimeSpan MinimumValue {get;}

IAgentryControlViewModelDurationDisplay interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface
IAgentryControlViewModelDurationDisplayImplements
IAgentryControlViewModel

C# syntax
public interface IAgentryControlViewModelDurationDisplay :
IAgentryControlViewModel

Agentry App Development

Agentry App Development 1341

Implemented interfaces

• IAgentryControlViewModel on page 1320

Derived interfaces

• IAgentryControlViewModelDuration on page 1339

Members
All members of IAgentryControlViewModelDurationDisplay, including inherited members.
Properties

Modifier and Type Property Description

public SMPDurationFormat DurationFormat on page 1343 Return the format that is set in
the Agentry Editor for this con-
trol.

public TimeSpan DurationValue on page 1343 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

Agentry App Development

1342 SAP Mobile Platform

Modifier and Type Member Description

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Duration" display
control.

DurationFormat property
Return the format that is set in the Agentry Editor for this control.

Visual Basic syntax
Public ReadOnly Property DurationFormat As SMPDurationFormat

C# syntax
public SMPDurationFormat DurationFormat {get;}

DurationValue property
Return the value of the control's backing property.

Visual Basic syntax
Public Property DurationValue As TimeSpan

C# syntax
public TimeSpan DurationValue {get;set;}

Agentry App Development

Agentry App Development 1343

Usage
(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelDuration interface that derives from this one.)

IAgentryControlViewModelFile interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelFileImplements
IAgentryControlViewModelFileDisplay

C# syntax
public interface IAgentryControlViewModelFile :
IAgentryControlViewModelFileDisplay

Implemented interfaces

• IAgentryControlViewModelFileDisplay on page 1346

Members
All members of IAgentryControlViewModelFile, including inherited members. Methods

Modifier and Type Method Description

public void ProcessInput(string) on page
1346

Set the value of the control's
backing property to the passed
value.

Inherited members from IAgentryControlViewModelFileDisplay

Modifier and Type Member Description

public string FilePath on page 1348 Return the full path of the file.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

Agentry App Development

1344 SAP Mobile Platform

Modifier and Type Member Description

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of an "External File" edit
control.

Agentry App Development

Agentry App Development 1345

ProcessInput(string) method
Set the value of the control's backing property to the passed value.

Visual Basic syntax
Public Sub ProcessInput (ByVal value As String)

C# syntax
public void ProcessInput (string value)

Parameters

• value – New value of this control's backing property

IAgentryControlViewModelFileDisplay interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelFileDisplayImplements
IAgentryControlViewModel

C# syntax
public interface IAgentryControlViewModelFileDisplay :
IAgentryControlViewModel

Implemented interfaces

• IAgentryControlViewModel on page 1320

Derived interfaces

• IAgentryControlViewModelFile on page 1344

Members
All members of IAgentryControlViewModelFileDisplay, including inherited members.
Properties

Modifier and Type Property Description

public string FilePath on page 1348 Return the full path of the file.

Inherited members from IAgentryControlViewModel

Agentry App Development

1346 SAP Mobile Platform

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

Agentry App Development

Agentry App Development 1347

This particular interface is only implemented by the view-model of an "External File" display
control.

FilePath property
Return the full path of the file.

Visual Basic syntax
Public Property FilePath As String

C# syntax
public string FilePath {get;set;}

Usage
(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelFile interface that derives from this one.)

IAgentryControlViewModelImage interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelImageImplements
IAgentryControlViewModel

C# syntax
public interface IAgentryControlViewModelImage :
IAgentryControlViewModel

Implemented interfaces

• IAgentryControlViewModel on page 1320

Members
All members of IAgentryControlViewModelImage, including inherited members. Methods

Modifier and Type Method Description

public bool IsSelected(int, int) on page
1350

public void SelectCell(int, int) on page
1350

Properties

Agentry App Development

1348 SAP Mobile Platform

Modifier and Type Property Description

public int Columns on page 1351 This method returns

public System.Windows.Me-
dia.ImageSource

Image on page 1351

public int Rows on page 1351

public System.Windows.Me-
dia.Color

SelectColor on page 1351

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

Agentry App Development

Agentry App Development 1349

Modifier and Type Member Description

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of an "Embedded Image"
control.

IsSelected(int, int) method

Visual Basic syntax
Public Function IsSelected (ByVal x As Integer, ByVal y As
Integer) As Boolean

C# syntax
public bool IsSelected (int x, int y)

Parameters

• x – Zero-based column of the cell to test
• y – Zero-based row of the cell to test

Returns
flag indicating if the cell at the specified coordinates is selected

SelectCell(int, int) method

Visual Basic syntax
Public Sub SelectCell (ByVal x As Integer, ByVal y As Integer)

C# syntax
public void SelectCell (int x, int y)

Parameters

• x – Zero-based column of the cell to select
• y – Zero-based row of the cell to select

Agentry App Development

1350 SAP Mobile Platform

Columns property
This method returns

Visual Basic syntax
Public ReadOnly Property Columns As Integer

C# syntax
public int Columns {get;}

Image property

Visual Basic syntax
Public Property Image As System.Windows.Media.ImageSource

C# syntax
public System.Windows.Media.ImageSource Image {get;set;}

Rows property

Visual Basic syntax
Public ReadOnly Property Rows As Integer

C# syntax
public int Rows {get;}

SelectColor property

Visual Basic syntax
Public ReadOnly Property SelectColor As
System.Windows.Media.Color

C# syntax
public System.Windows.Media.Color SelectColor {get;}

IAgentryControlViewModelLabel interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelLabelImplements
IAgentryControlViewModel

Agentry App Development

Agentry App Development 1351

C# syntax
public interface IAgentryControlViewModelLabel :
IAgentryControlViewModel

Implemented interfaces

• IAgentryControlViewModel on page 1320

Members
All members of IAgentryControlViewModelLabel, including inherited members. Inherited
members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

Agentry App Development

1352 SAP Mobile Platform

Modifier and Type Member Description

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "Label" control.

IAgentryControlViewModelNumber< T > interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelNumber< T >Implements
IAgentryControlViewModelNumberDisplay< T >

C# syntax
public interface IAgentryControlViewModelNumber< T > :
IAgentryControlViewModelNumberDisplay< T >

Implemented interfaces

• IAgentryControlViewModelNumberDisplay< T > on page 1356

Members
All members of IAgentryControlViewModelNumber< T >, including inherited members.
Methods

Modifier and Type Method Description

public void ProcessInput(T) on page 1355 Set the value of the control's
backing property to the passed
value.

Properties

Modifier and Type Property Description

public T Maximum on page 1355 Return the maximum value per-
mitted for this control.

Agentry App Development

Agentry App Development 1353

Modifier and Type Property Description

public T Minimum on page 1355 Return the minimum value per-
mitted for this control.

Inherited members from IAgentryControlViewModelNumberDisplay< T >

Modifier and Type Member Description

public T NumberValue on page 1357 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

Agentry App Development

1354 SAP Mobile Platform

Modifier and Type Member Description

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of an "Integral" or
"Identifier" edit control.

ProcessInput(T) method
Set the value of the control's backing property to the passed value.

Visual Basic syntax
Public Sub ProcessInput (ByVal value As T)

C# syntax
public void ProcessInput (T value)

Parameters

• value – New value of this control's backing property

Maximum property
Return the maximum value permitted for this control.

Visual Basic syntax
Public ReadOnly Property Maximum As T

C# syntax
public T Maximum {get;}

Minimum property
Return the minimum value permitted for this control.

Visual Basic syntax
Public ReadOnly Property Minimum As T

Agentry App Development

Agentry App Development 1355

C# syntax
public T Minimum {get;}

IAgentryControlViewModelNumberDisplay< T > interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelNumberDisplay< T
>Implements IAgentryControlViewModel

C# syntax
public interface IAgentryControlViewModelNumberDisplay< T > :
IAgentryControlViewModel

Implemented interfaces

• IAgentryControlViewModel on page 1320

Derived interfaces

• IAgentryControlViewModelDecimalDisplay on page 1336
• IAgentryControlViewModelNumber< T > on page 1353

Members
All members of IAgentryControlViewModelNumberDisplay< T >, including inherited
members. Properties

Modifier and Type Property Description

public T NumberValue on page 1357 Return the value of the control's
backing property.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

Agentry App Development

1356 SAP Mobile Platform

Modifier and Type Member Description

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of an "Integral" or
"Identifier" display control.

The template parameter is either an 'int' or 'uint.'

NumberValue property
Return the value of the control's backing property.

Visual Basic syntax
Public Property NumberValue As T

Agentry App Development

Agentry App Development 1357

C# syntax
public T NumberValue {get;set;}

Usage
(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelNumber interface that derives from this one.)

IAgentryControlViewModelStringDisplay interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface
IAgentryControlViewModelStringDisplayImplements
IAgentryControlViewModel

C# syntax
public interface IAgentryControlViewModelStringDisplay :
IAgentryControlViewModel

Implemented interfaces

• IAgentryControlViewModel on page 1320

Derived interfaces

• IAgentryControlViewModelStringEdit on page 1360

Members
All members of IAgentryControlViewModelStringDisplay, including inherited members.
Properties

Modifier and Type Property Description

public string StringValue on page 1360 Return the value of the control's
backing property.

public bool WordWrap on page 1360 Determine if word-wrapping is
enabled.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

Agentry App Development

1358 SAP Mobile Platform

Modifier and Type Member Description

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "String" display control.

Agentry App Development

Agentry App Development 1359

StringValue property
Return the value of the control's backing property.

Visual Basic syntax
Public Property StringValue As String

C# syntax
public string StringValue {get;set;}

Usage
(The set method serves no purpose in this interface. It's provided solely for the
IAgentryControlViewModelString interface that derives from this one.)

WordWrap property
Determine if word-wrapping is enabled.

Visual Basic syntax
Public ReadOnly Property WordWrap As Boolean

C# syntax
public bool WordWrap {get;}

IAgentryControlViewModelStringEdit interface
This interface is implemented by the Agentry client.

Visual Basic syntax
Public Interface IAgentryControlViewModelStringEditImplements
IAgentryControlViewModelStringDisplay

C# syntax
public interface IAgentryControlViewModelStringEdit :
IAgentryControlViewModelStringDisplay

Implemented interfaces

• IAgentryControlViewModelStringDisplay on page 1358

Members
All members of IAgentryControlViewModelStringEdit, including inherited members.
Methods

Agentry App Development

1360 SAP Mobile Platform

Modifier and Type Method Description

public void ProcessInput(string) on page
1362

Set the value of the control's
backing property to the passed
value.

Properties

Modifier and Type Property Description

public bool AcceptReturn on page 1363 Return a flag indicating if the
control should accept the Re-
turn key as input.

public bool IsPassword on page 1363 Return a flag indicating if the
control is a password.

public int MaximumLength on page
1363

Return the maximum length of
the string value (in characters).

public int MinimumLength on page
1363

Return the minimum length of
the string value (in characters).

Inherited members from IAgentryControlViewModelStringDisplay

Modifier and Type Member Description

public string StringValue on page 1360 Return the value of the control's
backing property.

public bool WordWrap on page 1360 Determine if word-wrapping is
enabled.

Inherited members from IAgentryControlViewModel

Modifier and Type Member Description

public bool DoesAgentryActionEx-
ist(string) on page 1322

Ask Agentry if an action with
the specified name exists.

public SMPActionResult ExecuteAgentryAction(string)
on page 1322

Ask Agentry to execute the ac-
tion with the specified name.

public SMPActionResult ExecuteHyperlinkAction() on
page 1323

Direct the Agentry client to in-
voke the control's hyperlink ac-
tion.

public string GetAgentryString(string) on
page 1323

Asks Agentry for a specific
string value.

Agentry App Development

Agentry App Development 1361

Modifier and Type Member Description

public bool IsAgentryActionEna-
bled(string) on page 1323

Ask Agentry if an action with
the specified name exists and is
enabled.

public bool IsAutoSize on page 1324 Some Agentry clients depend
on the internal layout manager
to determine the size of a control
by asking the control to deter-
mine its own size.

public bool IsEnabled on page 1325 Determine if the control should
be enabled.

public bool IsHyperlinkEnabled on page
1325

Determine if the control's hy-
perlink should be enabled.

public bool IsVisible on page 1325 Determine if the control should
be visible.

public string Label on page 1325 Returns the text of this control's
label.

public void OnPropertyChanged(string) on
page 1324

The consumer of this class can
listen for the PropertyChanged
event in order to handle changes
to any of the properties.

Usage
The third-party's custom control's DataContext property is set to an object that implements
this interface. The control can use this to request certain information from the Agentry client's
view-model.

This particular interface is only implemented by the view-model of a "String" edit control.

ProcessInput(string) method
Set the value of the control's backing property to the passed value.

Visual Basic syntax
Public Sub ProcessInput (ByVal value As String)

C# syntax
public void ProcessInput (string value)

Agentry App Development

1362 SAP Mobile Platform

Parameters

• value – New value of this control's backing property

AcceptReturn property
Return a flag indicating if the control should accept the Return key as input.

Visual Basic syntax
Public ReadOnly Property AcceptReturn As Boolean

C# syntax
public bool AcceptReturn {get;}

IsPassword property
Return a flag indicating if the control is a password.

Visual Basic syntax
Public ReadOnly Property IsPassword As Boolean

C# syntax
public bool IsPassword {get;}

MaximumLength property
Return the maximum length of the string value (in characters).

Visual Basic syntax
Public ReadOnly Property MaximumLength As Integer

C# syntax
public int MaximumLength {get;}

MinimumLength property
Return the minimum length of the string value (in characters).

Visual Basic syntax
Public ReadOnly Property MinimumLength As Integer

C# syntax
public int MinimumLength {get;}

Agentry App Development

Agentry App Development 1363

IAgentryData interface

Visual Basic syntax
Public Interface IAgentryData

C# syntax
public interface IAgentryData

Derived interfaces

• IAgentryCollection on page 1319
• IAgentryObject on page 1368
• IAgentryProperty on page 1369

Members
All members of IAgentryData, including inherited members. Methods

Modifier and Type Method Description

public List< IAgentryCollec-
tion >

Collections() on page 1365 Return a list of collections con-
tained by this object.

public IAgentryData Descendant(int) on page 1365 Return a specific data item that's
owned by this object.

public List< IAgentryObject > Objects() on page 1365 Return a list of objects con-
tained by this object.

public List< IAgentryProperty
>

Properties() on page 1366 Return a list of properties
owned by this object.

Properties

Modifier and Type Property Description

public IAgentryData Ancestor on page 1366 The parent object of this object.

public AgentryDataType DataType on page 1366 Return the type of this object as
defined in the Editor.

public int DescendantCount on page
1367

Return the number of data items
owned by this object.

public string DisplayName on page 1367 Return the display name of this
object as specified in the Editor.

Agentry App Development

1364 SAP Mobile Platform

Modifier and Type Property Description

public string InternalName on page 1367 Return the internal name of this
object as specified in the Editor.

public IAgentryData Root on page 1367 The root object in the data tree
for an Agentry module.

Collections() method
Return a list of collections contained by this object.

Visual Basic syntax
Public Function Collections () As List< IAgentryCollection >

C# syntax
public List< IAgentryCollection > Collections ()

Returns
A list of only the child data items that are collections.

Descendant(int) method
Return a specific data item that's owned by this object.

Visual Basic syntax
Public Function Descendant (ByVal index As Integer) As
IAgentryData

C# syntax
public IAgentryData Descendant (int index)

Parameters

• index – The index of the requested child data object

Returns
The data item at the specified index or nullptr if the index is out of range.

Objects() method
Return a list of objects contained by this object.

Visual Basic syntax
Public Function Objects () As List< IAgentryObject >

Agentry App Development

Agentry App Development 1365

C# syntax
public List< IAgentryObject > Objects ()

Returns
A list of only the child data items that are objects.

Properties() method
Return a list of properties owned by this object.

Visual Basic syntax
Public Function Properties () As List< IAgentryProperty >

C# syntax
public List< IAgentryProperty > Properties ()

Returns
A list of only the child data items that are properties.

Ancestor property
The parent object of this object.

Visual Basic syntax
Public ReadOnly Property Ancestor As IAgentryData

C# syntax
public IAgentryData Ancestor {get;}

Usage
Each data object has an ancestor, except the root data object (main object).

DataType property
Return the type of this object as defined in the Editor.

Visual Basic syntax
Public ReadOnly Property DataType As AgentryDataType

C# syntax
public AgentryDataType DataType {get;}

Agentry App Development

1366 SAP Mobile Platform

DescendantCount property
Return the number of data items owned by this object.

Visual Basic syntax
Public ReadOnly Property DescendantCount As Integer

C# syntax
public int DescendantCount {get;}

DisplayName property
Return the display name of this object as specified in the Editor.

Visual Basic syntax
Public ReadOnly Property DisplayName As String

C# syntax
public string DisplayName {get;}

InternalName property
Return the internal name of this object as specified in the Editor.

Visual Basic syntax
Public ReadOnly Property InternalName As String

C# syntax
public string InternalName {get;}

Root property
The root object in the data tree for an Agentry module.

Visual Basic syntax
Public ReadOnly Property Root As IAgentryData

C# syntax
public IAgentryData Root {get;}

Usage
For an Agentry module, the root is the module's Main Object.

Agentry App Development

Agentry App Development 1367

IAgentryObject interface
This interface represents an object defined in an Agentry application.

Visual Basic syntax
Public Interface IAgentryObjectImplements IAgentryData

C# syntax
public interface IAgentryObject : IAgentryData

Implemented interfaces

• IAgentryData on page 1364

Members
All members of IAgentryObject, including inherited members. Inherited members from
IAgentryData

Modifier and Type Member Description

public IAgentryData Ancestor on page 1366 The parent object of this object.

public List< IAgentryCollec-
tion >

Collections() on page 1365 Return a list of collections con-
tained by this object.

public AgentryDataType DataType on page 1366 Return the type of this object as
defined in the Editor.

public IAgentryData Descendant(int) on page 1365 Return a specific data item that's
owned by this object.

public int DescendantCount on page
1367

Return the number of data items
owned by this object.

public string DisplayName on page 1367 Return the display name of this
object as specified in the Editor.

public string InternalName on page 1367 Return the internal name of this
object as specified in the Editor.

public List< IAgentryObject > Objects() on page 1365 Return a list of objects con-
tained by this object.

public List< IAgentryProperty
>

Properties() on page 1366 Return a list of properties
owned by this object.

public IAgentryData Root on page 1367 The root object in the data tree
for an Agentry module.

Agentry App Development

1368 SAP Mobile Platform

IAgentryProperty interface
This interface represents a single property of a data object.

Visual Basic syntax
Public Interface IAgentryPropertyImplements IAgentryData

C# syntax
public interface IAgentryProperty : IAgentryData

Implemented interfaces

• IAgentryData on page 1364

Members
All members of IAgentryProperty, including inherited members. Methods

Modifier and Type Method Description

public bool ToBoolean() on page 1370 Convert this property's value to
a boolean.

public DateTime ToDate() on page 1371 Convert this property's value to
a date.

public DateTime ToDateTime() on page 1371 Convert this property's value to
a date/time.

public double ToDouble() on page 1371 Convert this property's value to
a double.

public int ToInt() on page 1371 Convert this property's value to
an integer.

public string ToString() on page 1372 Convert this property's value to
a string.

public TimeSpan ToTime() on page 1372 Convert this property's value to
a time.

public uint ToUInt() on page 1372 Convert this property's value to
an unsigned integer.

Properties

Agentry App Development

Agentry App Development 1369

Modifier and Type Property Description

public AgentryPropertyType PropertyType on page 1373 The type of property this is (e.g.,
string or integer).

Inherited members from IAgentryData

Modifier and Type Member Description

public IAgentryData Ancestor on page 1366 The parent object of this object.

public List< IAgentryCollec-
tion >

Collections() on page 1365 Return a list of collections con-
tained by this object.

public AgentryDataType DataType on page 1366 Return the type of this object as
defined in the Editor.

public IAgentryData Descendant(int) on page 1365 Return a specific data item that's
owned by this object.

public int DescendantCount on page
1367

Return the number of data items
owned by this object.

public string DisplayName on page 1367 Return the display name of this
object as specified in the Editor.

public string InternalName on page 1367 Return the internal name of this
object as specified in the Editor.

public List< IAgentryObject > Objects() on page 1365 Return a list of objects con-
tained by this object.

public List< IAgentryProperty
>

Properties() on page 1366 Return a list of properties
owned by this object.

public IAgentryData Root on page 1367 The root object in the data tree
for an Agentry module.

ToBoolean() method
Convert this property's value to a boolean.

Visual Basic syntax
Public Function ToBoolean () As Boolean

C# syntax
public bool ToBoolean ()

Returns
This property's value as a boolean

Agentry App Development

1370 SAP Mobile Platform

ToDate() method
Convert this property's value to a date.

Visual Basic syntax
Public Function ToDate () As Date

C# syntax
public DateTime ToDate ()

Returns
This property's value as a date

ToDateTime() method
Convert this property's value to a date/time.

Visual Basic syntax
Public Function ToDateTime () As Date

C# syntax
public DateTime ToDateTime ()

Returns
This property's value as a date/time

ToDouble() method
Convert this property's value to a double.

Visual Basic syntax
Public Function ToDouble () As Double

C# syntax
public double ToDouble ()

Returns
This property's value as a double

ToInt() method
Convert this property's value to an integer.

Visual Basic syntax
Public Function ToInt () As Integer

Agentry App Development

Agentry App Development 1371

C# syntax
public int ToInt ()

Returns
This property's value as an integer

ToString() method
Convert this property's value to a string.

Visual Basic syntax
Public Function ToString () As String

C# syntax
public string ToString ()

Returns
This property's value as a string

ToTime() method
Convert this property's value to a time.

Visual Basic syntax
Public Function ToTime () As TimeSpan

C# syntax
public TimeSpan ToTime ()

Returns
This property's value as a time

ToUInt() method
Convert this property's value to an unsigned integer.

Visual Basic syntax
Public Function ToUInt () As UInteger

C# syntax
public uint ToUInt ()

Returns
This property's value as an unsigned integer

Agentry App Development

1372 SAP Mobile Platform

PropertyType property
The type of property this is (e.g., string or integer).

Visual Basic syntax
Public ReadOnly Property PropertyType As AgentryPropertyType

C# syntax
public AgentryPropertyType PropertyType {get;}

ICustomAgentryControl interface
The third-party custom control must implement this interface in order to provide the Agentry
client with specific information about how it should operate.

Visual Basic syntax
Public Interface ICustomAgentryControl

C# syntax
public interface ICustomAgentryControl

Members
All members of ICustomAgentryControl, including inherited members. Methods

Modifier and Type Method Description

public string GetExtensionString(string) on
page 1373

Return the value of the passed
key for this custom control.

Properties

Modifier and Type Property Description

public bool ClientDisplaysLabel on page
1374

Return a flag indicating if the
client should display this con-
trol's label text.

public bool ClientDisplaysValidationError
on page 1374

Return a flag indicating if the
client should display this con-
trol's validation error message.

GetExtensionString(string) method
Return the value of the passed key for this custom control.

Visual Basic syntax
Public Function GetExtensionString (ByVal key As String) As
String

Agentry App Development

Agentry App Development 1373

C# syntax
public string GetExtensionString (string key)

ClientDisplaysLabel property
Return a flag indicating if the client should display this control's label text.

Visual Basic syntax
Public ReadOnly Property ClientDisplaysLabel As Boolean

C# syntax
public bool ClientDisplaysLabel {get;}

ClientDisplaysValidationError property
Return a flag indicating if the client should display this control's validation error message.

Visual Basic syntax
Public ReadOnly Property ClientDisplaysValidationError As
Boolean

C# syntax
public bool ClientDisplaysValidationError {get;}

IEnumerable< IAgentryData > class

Visual Basic syntax
Public Class IEnumerable< IAgentryData >

C# syntax
public class IEnumerable< IAgentryData >

Derived interfaces

• IAgentryControlViewModelCollectionDisplay on page 1326

AgentryDataType enumeration

Enumeration constant summary

• Unknown –
• Object –
• Property –
• Collection –

Agentry App Development

1374 SAP Mobile Platform

AgentryPropertyType enumeration

Enumeration constant summary

• Unknown –
• String –
• Identifier –
• Integer –
• Decimal –
• Boolean –
• Date –
• Time –
• DateTime –
• Duration –
• ListSelection –
• DataTableSelection –
• ComplexTableSelection –
• Signature –
• ExternalData –
• Image –
• Location –

SMPActionResult enumeration

Enumeration constant summary

• UserBackedOut –
• Error –
• UserCanceled –
• Pending –
• Complete –

SMPActionState enumeration

Enumeration constant summary

• Enable –
• Disable –
• NoOperation –
• Error –

Agentry App Development

Agentry App Development 1375

SMPDurationFormat enumeration

Enumeration constant summary

• HMS –
• HM –
• MS –
• FractionalHour –

SMPProcessInputReturn enumeration

Enumeration constant summary

• None –
• Valid –
• Munged –
• Changed –

Agentry App Development

1376 SAP Mobile Platform

Index
_clientLastDataUpdateTime variable

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 675

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 684

_defaultFormatter variable
AgentryHandler class [Agentry Java System

Connection API API] 640
_name variable

User class [Agentry Java System Connection
API API] 795

_rebuilding variable
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 676
_server variable

ServiceEvent class [Agentry Java System
Connection API API] 760

_session variable
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 676
DataTable< DTOBJ extends DataTableObject

> class [Agentry Java System
Connection API API] 684

Steplet class [Agentry Java System Connection
API API] 775

_sessionData variable
ServiceEvent class [Agentry Java System

Connection API API] 760

A
AcceptReturn property

IAgentryControlViewModelStringEdit
interface [Agentry Open UI
Windows SDK] 1363

Action_BackUp variable
ActionResult enum [Agentry Open UI Android

SDK] 1165
Action_Cancel variable

ActionResult enum [Agentry Open UI Android
SDK] 1165

Action_Complete variable
ActionResult enum [Agentry Open UI Android

SDK] 1165

Action_Error variable
ActionResult enum [Agentry Open UI Android

SDK] 1165
Action_Pending variable

ActionResult enum [Agentry Open UI Android
SDK] 1165

ActionDisable variable
ActionEnableType enum [Agentry Open UI

Android SDK] 1164
ActionEnable variable

ActionEnableType enum [Agentry Open UI
Android SDK] 1164

ActionEnableType enum [Agentry Open UI
Android SDK API]

description 1163
ActionEnableType enum [Agentry Open UI

Android SDK]
ActionDisable variable 1164
ActionEnable variable 1164
ActionError variable 1164
ActionNoOperation variable 1164

ActionError variable
ActionEnableType enum [Agentry Open UI

Android SDK] 1164
ActionNoOperation variable

ActionEnableType enum [Agentry Open UI
Android SDK] 1164

ActionResult enum [Agentry Open UI Android
SDK API]

description 1164
ActionResult enum [Agentry Open UI Android

SDK]
Action_BackUp variable 1165
Action_Cancel variable 1165
Action_Complete variable 1165
Action_Error variable 1165
Action_Pending variable 1165

adapters package [Agentry Open UI Android SDK]
description 1012

Agentry Java System Connection API API
AgentryAppender class 651
AgentryException class 658
AgentryHandler class 637
AgentryJavaLoggingConfigurator class 641

Index

Agentry App Development 1377

AgentryJavaLoggingConfigurator.ReallySimp
leFormatter class 641

BusinessLogicException class 661
com.syclo.agentry package 637
ComplexTable< CTOBJ > class 665
ComplexTableSession class 663
DataTable< DTOBJ extends DataTableObject

> class 680
DataTableMapIterator< K, V > class 654
DataTableObject class 676
DataTableSession class 678
FatalTransactionException class 684
FatalTransactionExceptionStop class 687
FetchSession class 689
java_logging package 637
log4j package 651
Logger class 655
LoginBlockedException class 694
LoginException class 696
LoginSkippedException class 699
PasswordExpiredCannotChangeException

class 701
PasswordExpiredException class 703
PasswordInvalidException class 706
PasswordWarningCannotChangeException

class 708
PasswordWarningException class 710
PushSession class 713
PushUserSession class 719
RetryTransactionException class 725
RetryTransactionWithChangeException class

727
Server class 729
Server.LoginEnumeration enum 736
Server.LoginFailureReason enum 739
ServiceEvent class 758
ServiceEventSession class 760
Session class 765
SessionData interface 795
Steplet class 768
StepletAbortException class 776
StepletStopException class 777
SycloCalendar class 778
TransactionSession class 783
User class 785
User.ChangePasswordResult enum 787
UserLogger class 649
UserLogRecord class 642
utility package 637

Agentry Open UI Android SDK
adapters package 1012
AgentryData interface 1137
AgentryImage class 1150
AgentryLocation class 1155
AgentryProperty interface 1143
BooleanDisplayAdapter class 1012
BooleanDisplayModel interface 1080
BooleanEditAdapter class 1014
BooleanEditModel interface 1081
ButtonDisplayAdapter class 1017
ButtonDisplayModel interface 1083
client package 1012
CollectionDisplayAdapter class 1019
CollectionDisplayModel interface 1086
com.sap.mobile.platform package 1012
core package 1137
dataapi package 1137
DateAndTimeDisplayAdapter class 1023
DateAndTimeDisplayModel interface 1089
DateAndTimeEditAdapter class 1025
DateAndTimeEditModel interface 1091
DateDisplayAdapter class 1028
DateDisplayModel interface 1093
DateEditAdapter class 1030
DateEditModel interface 1094
DecimalDisplayAdapter class 1032
DecimalDisplayModel interface 1096
DecimalEditAdapter class 1035
DecimalEditModel interface 1098
DurationDisplayAdapter class 1037
DurationDisplayModel interface 1100
DurationEditAdapter class 1040
DurationEditModel interface 1102
EmbeddedImageDisplayAdapter class 1043
EmbeddedImageDisplayModel interface

1106
ExternalDataDisplayAdapter class 1046
ExternalDataDisplayModel interface 1110
ExternalDataEditAdapter class 1048
ExternalDataEditModel interface 1112
FieldAdapter class 1051
FieldAdapter.TouchQueryHandler interface

1053
FieldModel interface 1114
IntegerDisplayAdapter class 1058
IntegerDisplayModel interface 1119
IntegerEditAdapter class 1061
IntegerEditModel interface 1120

Index

1378 SAP Mobile Platform

LabelDisplayAdapter class 1063
LabelDisplayModel interface 1123
LocationDisplayAdapter class 1066
LocationDisplayModel interface 1124
LocationEditAdapter class 1068
LocationEditModel interface 1126
MaskColor class 1159
models package 1080
openui package 1012, 1150
OpenUIImage interface 1172
ProcessInputReturn class 1161
StringDisplayAdapter class 1070
StringDisplayModel interface 1128
StringEditAdapter class 1073
StringEditModel interface 1130
TimeDisplayAdapter class 1075
TimeDisplayModel interface 1133
TimeEditAdapter class 1077
TimeEditModel interface 1135

Agentry Open UI Android SDK API
ActionEnableType enum 1163
ActionResult enum 1164
AgentryData.DataType enum 1138
AgentryImage.ImageType enum 1151
AgentryProperty.PropertyType enum 1144
AutosizeBehavior enum 1165
ButtonType enum 1166
DurationDisplayFormat enum 1167
ImagePosition enum 1168
ImagePresentation enum 1171
ProcessInputReturn.processInputReturnValue

s enum 1161
Agentry Open UI iOS SDK

iOSDataAPIExternal 1174
iOSOpenUIExternal 1185
SMPDataAPILocationProtocol protocol 1174
SMPDataAPIPropertyProtocol protocol 1178
SMPDataAPIProtocol protocol 1181
SMPOpenUIBooleanDisplayAdapter protocol

1190
SMPOpenUIBooleanDisplayModel protocol

1192
SMPOpenUIBooleanEditAdapter protocol

1194
SMPOpenUIBooleanEditModel protocol

1196
SMPOpenUIButtonDisplayAdapter protocol

1198

SMPOpenUIButtonDisplayModel protocol
1201

SMPOpenUICollectionDisplayAdapter
protocol 1203

SMPOpenUICollectionDisplayModel
protocol 1207

SMPOpenUIDateAndTimeDisplayAdapter
protocol 1210

SMPOpenUIDateAndTimeDisplayModel
protocol 1212

SMPOpenUIDateAndTimeEditAdapter
protocol 1214

SMPOpenUIDateAndTimeEditModel
protocol 1216

SMPOpenUIDateDisplayAdapter protocol
1218

SMPOpenUIDateDisplayModel protocol
1220

SMPOpenUIDateEditAdapter protocol 1222
SMPOpenUIDateEditModel protocol 1224
SMPOpenUIDecimalDisplayAdapter protocol

1226
SMPOpenUIDecimalDisplayModel protocol

1228
SMPOpenUIDecimalEditAdapter protocol

1229
SMPOpenUIDecimalEditModel protocol

1232
SMPOpenUIDurationDisplayAdapter

protocol 1234
SMPOpenUIDurationDisplayModel protocol

1237
SMPOpenUIDurationEditAdapter protocol

1239
SMPOpenUIDurationEditModel protocol

1241
SMPOpenUIEmbeddedImageDisplayAdapter

protocol 1245
SMPOpenUIEmbeddedImageDisplayModel

protocol 1248
SMPOpenUIExternalDataDisplayAdapter

protocol 1251
SMPOpenUIExternalDataDisplayModel

protocol 1253
SMPOpenUIExternalDataEditAdapter

protocol 1254
SMPOpenUIExternalDataEditModel protocol

1257
SMPOpenUIFieldAdapter protocol 1258

Index

Agentry App Development 1379

SMPOpenUIFieldModel protocol 1265
SMPOpenUIImage class 1186
SMPOpenUIIntegerDisplayAdapter protocol

1269
SMPOpenUIIntegerDisplayModel protocol

1272
SMPOpenUIIntegerEditAdapter protocol

1273
SMPOpenUIIntegerEditModel protocol 1275
SMPOpenUILabelDisplayAdapter protocol

1278
SMPOpenUILabelDisplayModel protocol

1280
SMPOpenUILocation class 1187
SMPOpenUILocationDisplayAdapter

protocol 1281
SMPOpenUILocationDisplayModel protocol

1284
SMPOpenUILocationEditAdapter protocol

1285
SMPOpenUILocationEditModel protocol

1287
SMPOpenUIStringDisplayAdapter protocol

1289
SMPOpenUIStringDisplayModel protocol

1291
SMPOpenUIStringEditAdapter protocol 1293
SMPOpenUIStringEditModel protocol 1295
SMPOpenUITimeDisplayAdapter protocol

1298
SMPOpenUITimeDisplayModel protocol

1300
SMPOpenUITimeEditAdapter protocol 1302
SMPOpenUITimeEditModel protocol 1304
SMPOpenUIUnsignedIntegerDisplayAdapter

protocol 1306
SMPOpenUIUnsignedIntegerDisplayModel

protocol 1308
SMPOpenUIUnsignedIntegerEditAdapter

protocol 1309
SMPOpenUIUnsignedIntegerEditModel

protocol 1312
Agentry Open UI Windows SDK

IAgentryCollection interface 1319
IAgentryControlViewModel interface 1320
IAgentryControlViewModelCollectionDispla

y interface 1326
IAgentryControlViewModelDateTime

interface 1329

IAgentryControlViewModelDateTimeDisplay
interface 1331

IAgentryControlViewModelDecimal interface
1334

IAgentryControlViewModelDecimalDisplay
interface 1336

IAgentryControlViewModelDuration
interface 1339

IAgentryControlViewModelDurationDisplay
interface 1341

IAgentryControlViewModelFile interface
1344

IAgentryControlViewModelFileDisplay
interface 1346

IAgentryControlViewModelImage interface
1348

IAgentryControlViewModelLabel interface
1351

IAgentryControlViewModelNumber< T >
interface 1353

IAgentryControlViewModelNumberDisplay<
T > interface 1356

IAgentryControlViewModelStringDisplay
interface 1358

IAgentryControlViewModelStringEdit
interface 1360

IAgentryData interface 1364
IAgentryObject interface 1368
IAgentryProperty interface 1369
ICustomAgentryControl interface 1373
IEnumerable< IAgentryData > class 1374

AGENTRY_USER_MDC_KEY variable
AgentryAppender class [Agentry Java System

Connection API API] 654
agentryActionEnableState: method

SMPOpenUIFieldModel protocol [Agentry
Open UI iOS SDK] 1266

AgentryAppender class [Agentry Java System
Connection API API]

AGENTRY_USER_MDC_KEY variable 654
AgentryAppender() constructor 653
append(LoggingEvent) method 653
close() method 653
description 651
mapLogLevel(Level) method 653
requiresLayout() method 653

AgentryAppender() constructor
AgentryAppender class [Agentry Java System

Connection API API] 653

Index

1380 SAP Mobile Platform

AgentryData interface [Agentry Open UI Android
SDK]

description 1137
dispose() method 1139
getAncestor() method 1139
getDataType() method 1140
getDescendant(int) method 1140
getDescendantCount() method 1140
getDisplayName() method 1141
getIdentifier() method [deprecated] 1141
getName() method 1141
getProperties() method 1142
getRoot() method 1142
isValid() method 1142

AgentryData.DataType enum [Agentry Open UI
Android SDK API]

description 1138
AgentryData.DataType enum [Agentry Open UI

Android SDK]
COLLECTION variable 1138
getValue() method 1138
OBJECT variable 1139
PROPERTY variable 1139
UNKNOWN variable 1139

AgentryDataType enumeration
IAgentryData.cs file [Agentry Open UI

Windows SDK] 1374
AgentryException class [Agentry Java System

Connection API API]
AgentryException(String, String, String,

Throwable) constructor 660
AgentryException(String, String, String)

constructor 660
AgentryException(String, Throwable)

constructor 659
AgentryException(String) constructor 659
description 658
getNotificationText() method 661
getNotificationTitle() method 661
getOkButtonLabel() method 661

AgentryException(String, String, String,
Throwable) constructor

AgentryException class [Agentry Java System
Connection API API] 660

AgentryException(String, String, String)
constructor

AgentryException class [Agentry Java System
Connection API API] 660

AgentryException(String, Throwable) constructor
AgentryException class [Agentry Java System

Connection API API] 659
AgentryException(String) constructor

AgentryException class [Agentry Java System
Connection API API] 659

AgentryHandler class [Agentry Java System
Connection API API]

_defaultFormatter variable 640
AgentryHandler() constructor 639
close() method 640
description 637
flush() method 640
mapLogLevel(Level) method 640
publish(LogRecord) method 640

AgentryHandler() constructor
AgentryHandler class [Agentry Java System

Connection API API] 639
AgentryImage class [Agentry Open UI Android

SDK]
AgentryImage(String, ImageType,

ImagePresentation, ImagePosition,
int, int, int) constructor 1153

description 1150
getBitmapData() method 1153
getImageName() method 1153
getImagePosition() method 1154
getImagePresentation() method 1154
getImageType() method 1154
getMaskColor() method 1154
isValid() method 1154
needsBitmapData() method 1155
setBitmapData(byte[]) method 1155

AgentryImage.ImageType enum [Agentry Open UI
Android SDK API]

description 1151
AgentryImage.ImageType enum [Agentry Open UI

Android SDK]
getValue() method 1152
ImageType_Bitmap variable 1152
ImageType_GIF variable 1152
ImageType_JPEG variable 1152
ImageType_PNG variable 1152
ImageType_Unknown variable 1152

AgentryImage(String, ImageType,
ImagePresentation, ImagePosition, int,
int, int) constructor

AgentryImage class [Agentry Open UI
Android SDK] 1153

Index

Agentry App Development 1381

AgentryJavaLoggingConfigurator class [Agentry
Java System Connection API API]

AgentryJavaLoggingConfigurator()
constructor 642

description 641
AgentryJavaLoggingConfigurator.ReallySimpleFo

rmatter class [Agentry Java System
Connection API API]

description 641
format(LogRecord) method 642

AgentryJavaLoggingConfigurator() constructor
AgentryJavaLoggingConfigurator class

[Agentry Java System Connection
API API] 642

AgentryLocation class [Agentry Open UI Android
SDK]

AgentryLocation(boolean, double, double, int,
double) constructor 1156

description 1155
getDilution() method 1156
getLatitude() method 1157
getLongitude() method 1157
getSatellites() method 1157
isValid() method 1157
setDilution(double) method 1158
setLatitude(double) method 1158
setLongitude(double) method 1158
setSatellites(int) method 1158
setValid(boolean) method 1158

AgentryLocation(boolean, double, double, int,
double) constructor

AgentryLocation class [Agentry Open UI
Android SDK] 1156

AgentryProperty interface [Agentry Open UI
Android SDK]

asBoolean() method 1148
asDate() method 1148
asDateAndTime() method 1148
asDouble() method 1149
asLocation() method 1149
asLong() method 1149
asString() method 1149
asTime() method 1150
description 1143
getPropertyType() method 1150

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK API]

description 1144

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK]

BOOLEAN variable 1146
COMPLEX_TABLE_SELECTION variable

1146
DATA_TABLE_SELECTION variable 1146
DATE variable 1146
DATE_AND_TIME variable 1146
DECIMAL_NUMBER variable 1146
DURATION variable 1146
EXTERNAL_DATA variable 1147
getValue() method 1145
IDENTIFIER variable 1147
IMAGE variable 1147
INTEGER_NUMBER variable 1147
LIST_SELECTION variable 1147
LOCATION variable 1147
SIGNATURE variable 1147
STRING variable 1148
TIME variable 1148
UNKNOWN variable 1148

AgentryPropertyType enumeration
IAgentryData.cs file [Agentry Open UI

Windows SDK] 1375
agentryShouldDisplayLabel method

SMPOpenUIFieldAdapter protocol [Agentry
Open UI iOS SDK] 1261

agentryShouldDisplayValidationFailure method
SMPOpenUIFieldAdapter protocol [Agentry

Open UI iOS SDK] 1261
agentryString: method

SMPOpenUIFieldModel protocol [Agentry
Open UI iOS SDK] 1267

allItemsChanged() method
CollectionDisplayAdapter class [Agentry

Open UI Android SDK] 1021
allObjectsChanged: method

SMPOpenUICollectionDisplayAdapter
protocol [Agentry Open UI iOS
SDK] 1205

allowsCarriageReturn property
SMPOpenUIStringDisplayModel protocol

[Agentry Open UI iOS SDK] 1293
ancestor method

SMPDataAPIProtocol protocol [Agentry Open
UI iOS SDK] 1182

Ancestor property
IAgentryData interface [Agentry Open UI

Windows SDK] 1366

Index

1382 SAP Mobile Platform

append(LoggingEvent) method
AgentryAppender class [Agentry Java System

Connection API API] 653
appendDebug(String) method

Logger class [deprecated] [Agentry Java
System Connection API API] 656

asBool method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1179
asBoolean() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1148

asDate method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1179
asDate() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1148

asDateAndTime method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1179
asDateAndTime() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1148

asDecimal method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1180
asDouble() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1149

asLocation method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1180
asLocation() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1149

asLong method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1180
asLong() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1149

asString method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1180
asString() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1149

asTime method
SMPDataAPIPropertyProtocol protocol

[Agentry Open UI iOS SDK] 1181
asTime() method

AgentryProperty interface [Agentry Open UI
Android SDK] 1150

Autosize_FillVisible variable
AutosizeBehavior enum [Agentry Open UI

Android SDK] 1166
Autosize_None variable

AutosizeBehavior enum [Agentry Open UI
Android SDK] 1166

Autosize_WrapContent variable
AutosizeBehavior enum [Agentry Open UI

Android SDK] 1166
AutosizeBehavior enum [Agentry Open UI Android

SDK API]
description 1165

AutosizeBehavior enum [Agentry Open UI Android
SDK]

Autosize_FillVisible variable 1166
Autosize_None variable 1166
Autosize_WrapContent variable 1166

autosizeBehavior method
SMPOpenUIFieldAdapter protocol [Agentry

Open UI iOS SDK] 1261
autosizing property

SMPOpenUIFieldModel protocol [Agentry
Open UI iOS SDK] 1268

B
backendTimeAndDate() method [deprecated]

User class [Agentry Java System Connection
API API] 789

beginChangePassword() method
User class [Agentry Java System Connection

API API] 790
beginClientExchange() method

FetchSession class [Agentry Java System
Connection API API] 692

beginDataAndUpdateSteps() method
ServiceEventSession class [Agentry Java

System Connection API API] 763
beginDebug(String) method

Logger class [deprecated] [Agentry Java
System Connection API API] 657

beginDisablePush() method
PushUserSession class [Agentry Java System

Connection API API] 723

Index

Agentry App Development 1383

beginEnablePush() method
PushUserSession class [Agentry Java System

Connection API API] 723
beginFetchObjectRead() method

FetchSession class [Agentry Java System
Connection API API] 692

beginFetchRemoval() method
FetchSession class [Agentry Java System

Connection API API] 693
beginPushError() method

PushUserSession class [Agentry Java System
Connection API API] 723

beginPushError() method [deprecated]
PushSession class [Agentry Java System

Connection API API] 716
beginPushReadStep() method

PushSession class [Agentry Java System
Connection API API] 717

beginPushRemoval() method
PushSession class [Agentry Java System

Connection API API] 717
beginPushResponse() method

PushUserSession class [Agentry Java System
Connection API API] 724

beginPushResponse() method [deprecated]
PushSession class [Agentry Java System

Connection API API] 717
beginPushRetrieval() method

PushSession class [Agentry Java System
Connection API API] 718

beginReadSteps() method
ServiceEventSession class [Agentry Java

System Connection API API] 763
beginServerExchange() method

FetchSession class [Agentry Java System
Connection API API] 693

beginServiceEventError() method
ServiceEventSession class [Agentry Java

System Connection API API] 764
beginTransaction() method

TransactionSession class [Agentry Java
System Connection API API] 785

BOOLEAN variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1146
BooleanDisplayAdapter class [Agentry Open UI

Android SDK]
description 1012

initialize(BooleanDisplayModel, Context)
method 1014

valueChanged(boolean) method 1014
BooleanDisplayModel interface [Agentry Open UI

Android SDK]
description 1080
getValue() method 1081

BooleanEditAdapter class [Agentry Open UI
Android SDK]

description 1014
initialize(BooleanEditModel, Context)

method 1016
valueChanged(boolean) method 1016

BooleanEditModel interface [Agentry Open UI
Android SDK]

description 1081
processInput(boolean) method 1083

build() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 668
BusinessLogicException class [Agentry Java

System Connection API API]
BusinessLogicException(String, Throwable)

constructor 663
BusinessLogicException(String) constructor

662
description 661

BusinessLogicException(String, Throwable)
constructor

BusinessLogicException class [Agentry Java
System Connection API API] 663

BusinessLogicException(String) constructor
BusinessLogicException class [Agentry Java

System Connection API API] 662
ButtonDisplayAdapter class [Agentry Open UI

Android SDK]
buttonImageChanged(AgentryImage) method

1019
description 1017
initialize(ButtonDisplayModel, Context)

method 1019
selectedStateChanged(boolean) method 1019

ButtonDisplayModel interface [Agentry Open UI
Android SDK]

description 1083
getButtonImage() method 1085
getButtonText() method 1085
getButtonType() method 1085
hasAction() method 1086

Index

1384 SAP Mobile Platform

isButtonSelected() method 1086
processInput() method 1086

buttonImage property
SMPOpenUIButtonDisplayModel protocol

[Agentry Open UI iOS SDK] 1202
buttonImageChanged(AgentryImage) method

ButtonDisplayAdapter class [Agentry Open UI
Android SDK] 1019

ButtonStyleCheckbox variable
ButtonType enum [Agentry Open UI Android

SDK] 1167
ButtonStylePush variable

ButtonType enum [Agentry Open UI Android
SDK] 1167

ButtonStyleRadio variable
ButtonType enum [Agentry Open UI Android

SDK] 1167
buttonText property

SMPOpenUIButtonDisplayModel protocol
[Agentry Open UI iOS SDK] 1203

ButtonType enum [Agentry Open UI Android SDK
API]

description 1166
ButtonType enum [Agentry Open UI Android SDK]

ButtonStyleCheckbox variable 1167
ButtonStylePush variable 1167
ButtonStyleRadio variable 1167

buttonType property
SMPOpenUIButtonDisplayModel protocol

[Agentry Open UI iOS SDK] 1203

C

ChangePassword_Blocked variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
788

ChangePassword_Failure variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
788

ChangePassword_NotHandled variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
789

ChangePassword_Success variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
789

changePassword(String, String) method
User class [Agentry Java System Connection

API API] 790
changePasswordFailed(StringBuffer) method

User class [Agentry Java System Connection
API API] 791

changePasswordSessionAborted() method
User class [Agentry Java System Connection

API API] 791
checkForReload() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 668

client package [Agentry Open UI Android SDK]
description 1012

ClientDisplaysLabel property
ICustomAgentryControl interface [Agentry

Open UI Windows SDK] 1374
ClientDisplaysValidationError property

ICustomAgentryControl interface [Agentry
Open UI Windows SDK] 1374

close() method
AgentryAppender class [Agentry Java System

Connection API API] 653
AgentryHandler class [Agentry Java System

Connection API API] 640
code variable

DataTableObject class [Agentry Java System
Connection API API] 678

code() method [deprecated]
DataTableObject class [Agentry Java System

Connection API API] 677
collection method

SMPOpenUICollectionDisplayModel
protocol [Agentry Open UI iOS
SDK] 1209

COLLECTION variable
AgentryData.DataType enum [Agentry Open

UI Android SDK] 1138
CollectionDisplayAdapter class [Agentry Open UI

Android SDK]
allItemsChanged() method 1021
description 1019
initialize(CollectionDisplayModel, Context)

method 1022
itemAdded(int) method 1022
itemChanged(int) method 1022
itemRemoved(int) method 1022
itemSelected(int) method 1023

Index

Agentry App Development 1385

CollectionDisplayModel interface [Agentry Open
UI Android SDK]

description 1086
getCollection() method 1088
getDisplayedItemAt(int) method 1088
getDisplayRowCount() method 1088
getSelectedRow() method 1089
selectRow(int) method 1089

Collections() method
IAgentryData interface [Agentry Open UI

Windows SDK] 1365
columns property

SMPOpenUIEmbeddedImageDisplayModel
protocol [Agentry Open UI iOS
SDK] 1250

Columns property
IAgentryControlViewModelImage interface

[Agentry Open UI Windows SDK]
1351

com.sap.mobile.platform package [Agentry Open
UI Android SDK]

description 1012
com.syclo.agentry package [Agentry Java System

Connection API API]
description 637

COMPLEX_TABLE_SELECTION variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1146
ComplexTable(ComplexTableSession,

GregorianCalendar) method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 669
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API]
_clientLastDataUpdateTime variable 675
_rebuilding variable 676
_session variable 676
build() method 668
checkForReload() method 668
ComplexTable(ComplexTableSession,

GregorianCalendar) method 669
dataIterator() method 669
deleteIterator() method 670
description 665
getClientLastDataUpdateTime() method 671
getNewDataUpdateTime() method 671
getSession() method 671
initialize() method [deprecated] 671
isRebuilding() method 672

lastUpdateDate() method 672
lastUpdateHours() method 672
lastUpdateMinutes() method 672
lastUpdateMonth() method 673
lastUpdateSeconds() method 673
lastUpdateYear() method 673
reload() method [deprecated] 674
setNewDataUpdateTime(GregorianCalendar)

method 674
willRebuildTable() method 675

ComplexTableSession class [Agentry Java System
Connection API API]

ComplexTableSession(String, Server,
SessionData, User) constructor 664

description 663
ComplexTableSession(String, Server, SessionData,

User) constructor
ComplexTableSession class [Agentry Java

System Connection API API] 664
core package [Agentry Open UI Android SDK]

description 1137
createComplexTableSession(String, SessionData,

User) method
Server class [Agentry Java System Connection

API API] 740
createDataTableSession(String, SessionData, User)

method
Server class [Agentry Java System Connection

API API] 741
createFetchSession(String, Server, SessionData,

User) method [deprecated]
Server class [Agentry Java System Connection

API API] 742
createFetchSession(String, SessionData, User)

method
Server class [Agentry Java System Connection

API API] 742
createPushSession(String, Server, SessionData)

method [deprecated]
Server class [Agentry Java System Connection

API API] 743
createPushSession(String, SessionData) method

Server class [Agentry Java System Connection
API API] 743

createPushUserSession(String, Server,
SessionData, User) method [deprecated]

Server class [Agentry Java System Connection
API API] 744

Index

1386 SAP Mobile Platform

createPushUserSession(String, SessionData, User)
method

Server class [Agentry Java System Connection
API API] 744

createServiceEventSession(String, Server,
SessionData) method [deprecated]

Server class [Agentry Java System Connection
API API] 745

createServiceEventSession(String, SessionData)
method

Server class [Agentry Java System Connection
API API] 746

createTransactionSession(String, Server,
SessionData, User) method [deprecated]

Server class [Agentry Java System Connection
API API] 746

createTransactionSession(String, SessionData,
User) method

Server class [Agentry Java System Connection
API API] 747

createUser(String, int) method [deprecated]
Server class [Agentry Java System Connection

API API] 747
createUser(String) method

Server class [Agentry Java System Connection
API API] 748

D

DATA_TABLE_SELECTION variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1146
dataapi package [Agentry Open UI Android SDK]

description 1137
dataIdentifier method [deprecated]

SMPDataAPIProtocol protocol [Agentry Open
UI iOS SDK] 1182

dataIterator() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 669
dataReceived(Object) method

ServiceEvent class [Agentry Java System
Connection API API] 759

DataTable(DataTableSession, GregorianCalendar)
method

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 682

DataTable< DTOBJ extends DataTableObject >
class [Agentry Java System Connection
API API]

_clientLastDataUpdateTime variable 684
_session variable 684
DataTable(DataTableSession,

GregorianCalendar) method 682
description 680
getClientLastDataUpdateTime() method 682
getSession() method 682
initialize() method 683
isOutOfDate() method 683
iterator() method 683

DataTableMapIterator(Map< K, V >) method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
654

DataTableMapIterator< K, V > class [Agentry Java
System Connection API API]

DataTableMapIterator(Map< K, V >) method
654

description 654
hasNext() method 655
next() method 655
remove() method 655

DataTableObject class [Agentry Java System
Connection API API]

code variable 678
code() method [deprecated] 677
DataTableObject(String, String) constructor

677
description 676
equals(Object) method 677
getKey() method 677
getValue() method 678
hashCode() method 678
value variable 678
value() method [deprecated] 678

DataTableObject(String, String) constructor
DataTableObject class [Agentry Java System

Connection API API] 677
DataTableSession class [Agentry Java System

Connection API API]
DataTableSession(String, Server, SessionData,

User) constructor 680
description 678

Index

Agentry App Development 1387

DataTableSession(String, Server, SessionData,
User) constructor

DataTableSession class [Agentry Java System
Connection API API] 680

dataType method
SMPDataAPIProtocol protocol [Agentry Open

UI iOS SDK] 1182
DataType property

IAgentryData interface [Agentry Open UI
Windows SDK] 1366

DATE variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1146
DATE_AND_TIME variable

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1146

DateAndTimeDisplayAdapter class [Agentry Open
UI Android SDK]

description 1023
initialize(DateAndTimeDisplayModel,

Context) method 1025
valueChanged(GregorianCalendar) method

1025
DateAndTimeDisplayModel interface [Agentry

Open UI Android SDK]
description 1089
getValue() method 1091

DateAndTimeEditAdapter class [Agentry Open UI
Android SDK]

description 1025
initialize(DateAndTimeEditModel, Context)

method 1027
valueChanged(GregorianCalendar) method

1027
DateAndTimeEditModel interface [Agentry Open

UI Android SDK]
description 1091
processInput(GregorianCalendar) method

1092
DateDisplayAdapter class [Agentry Open UI

Android SDK]
description 1028
initialize(DateDisplayModel, Context) method

1029
valueChanged(GregorianCalendar) method

1030
DateDisplayModel interface [Agentry Open UI

Android SDK]
description 1093

getValue() method 1094
DateEditAdapter class [Agentry Open UI Android

SDK]
description 1030
initialize(DateEditModel, Context) method

1032
valueChanged(GregorianCalendar) method

1032
DateEditModel interface [Agentry Open UI

Android SDK]
description 1094
processInput(GregorianCalendar) method

1096
DateValue property

IAgentryControlViewModelDateTimeDisplay
interface [Agentry Open UI
Windows SDK] 1333

debug(String, Map< String, String >, String)
method

Logger class [deprecated] [Agentry Java
System Connection API API] 657

debug(String) method
Logger class [deprecated] [Agentry Java

System Connection API API] 657
Server class [Agentry Java System Connection

API API] 748
Session class [Agentry Java System

Connection API API] 767
User class [Agentry Java System Connection

API API] 791
DecHour variable

DurationDisplayFormat enum [Agentry Open
UI Android SDK] 1168

DECIMAL_NUMBER variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1146
DecimalDisplayAdapter class [Agentry Open UI

Android SDK]
description 1032
initialize(DecimalDisplayModel, Context)

method 1034
valueChanged(double) method 1034

DecimalDisplayModel interface [Agentry Open UI
Android SDK]

description 1096
getValue() method 1098

DecimalEditAdapter class [Agentry Open UI
Android SDK]

description 1035

Index

1388 SAP Mobile Platform

initialize(DecimalEditModel, Context)
method 1036

valueChanged(double) method 1037
DecimalEditModel interface [Agentry Open UI

Android SDK]
description 1098
getMaximumValue() method 1099
getMinimumValue() method 1100
processInput(double) method 1100

decryptPassword(String) method
Server class [Agentry Java System Connection

API API] 749
deleteIterator() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 670

descendant: method
SMPDataAPIProtocol protocol [Agentry Open

UI iOS SDK] 1183
Descendant(int) method

IAgentryData interface [Agentry Open UI
Windows SDK] 1365

descendantCount method
SMPDataAPIProtocol protocol [Agentry Open

UI iOS SDK] 1183
DescendantCount property

IAgentryData interface [Agentry Open UI
Windows SDK] 1367

dilution property
SMPDataAPILocationProtocol protocol

[Agentry Open UI iOS SDK] 1177
SMPOpenUILocation class [Agentry Open UI

iOS SDK] 1189
disablePush() method

PushUserSession class [Agentry Java System
Connection API API] 724

DisplayedItemAt(int) method
IAgentryControlViewModelCollectionDispla

y interface [Agentry Open UI
Windows SDK] 1328

DisplayedItemCount property
IAgentryControlViewModelCollectionDispla

y interface [Agentry Open UI
Windows SDK] 1328

displayedObjectAtIndex: method
SMPOpenUICollectionDisplayModel

protocol [Agentry Open UI iOS
SDK] 1209

displayedObjectCount property
SMPOpenUICollectionDisplayModel

protocol [Agentry Open UI iOS
SDK] 1210

displayFormat property
SMPOpenUIDurationDisplayModel protocol

[Agentry Open UI iOS SDK] 1238
displayName method

SMPDataAPIProtocol protocol [Agentry Open
UI iOS SDK] 1183

DisplayName property
IAgentryData interface [Agentry Open UI

Windows SDK] 1367
dispose() method

AgentryData interface [Agentry Open UI
Android SDK] 1139

DoesAgentryActionExist(string) method
IAgentryControlViewModel interface

[Agentry Open UI Windows SDK]
1322

doSteplet() method
Steplet class [Agentry Java System Connection

API API] 772
DURATION variable

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1146

DurationDisplayAdapter class [Agentry Open UI
Android SDK]

description 1037
fractionalHourValueChanged(double) method

1039
initialize(DurationDisplayModel, Context)

method 1040
valueChanged(int) method 1040

DurationDisplayFormat enum [Agentry Open UI
Android SDK API]

description 1167
DurationDisplayFormat enum [Agentry Open UI

Android SDK]
DecHour variable 1168
HourMin variable 1168
HourMinSec variable 1168
MinSec variable 1168

DurationDisplayModel interface [Agentry Open UI
Android SDK]

description 1100
getDurationDisplayFormat() method 1102
getFractionalHourValue() method 1102
getValue() method 1102

Index

Agentry App Development 1389

DurationEditAdapter class [Agentry Open UI
Android SDK]

description 1040
fractionalHourValueChanged(double) method

1042
initialize(DurationEditModel, Context)

method 1043
valueChanged(int) method 1043

DurationEditModel interface [Agentry Open UI
Android SDK]

description 1102
getMaximumFractionalHour() method 1104
getMaximumValue() method 1105
getMinimumFractionalHour() method 1105
getMinimumValue() method 1105
processDecimalInput(double) method 1106
processInput(int) method 1106

DurationFormat property
IAgentryControlViewModelDurationDisplay

interface [Agentry Open UI
Windows SDK] 1343

DurationValue property
IAgentryControlViewModelDurationDisplay

interface [Agentry Open UI
Windows SDK] 1343

E
EmbeddedImageDisplayAdapter class [Agentry

Open UI Android SDK]
description 1043
imageChanged() method 1045
imageSelectionChanged() method 1045
initialize(EmbeddedImageDisplayModel,

Context) method 1046
EmbeddedImageDisplayModel interface [Agentry

Open UI Android SDK]
description 1106
getColumnCount() method 1108
getHighlightColor() method 1109
getImage() method 1109
getImagePosition() method 1109
getImagePresentation() method 1109
getRowCount() method 1110
isImageCellSelected(long, long) method 1110
setImageCellSelected(long, long) method

1110
enabled property

SMPOpenUIFieldModel protocol [Agentry
Open UI iOS SDK] 1269

enablePush() method
PushUserSession class [Agentry Java System

Connection API API] 724
endChangePassword() method

User class [Agentry Java System Connection
API API] 792

endClientExchange() method
FetchSession class [Agentry Java System

Connection API API] 693
endDataAndUpdateSteps() method

ServiceEventSession class [Agentry Java
System Connection API API] 764

endDebug(String) method
Logger class [deprecated] [Agentry Java

System Connection API API] 657
endDisablePush() method

PushUserSession class [Agentry Java System
Connection API API] 724

endEnablePush() method
PushUserSession class [Agentry Java System

Connection API API] 725
endFetchObjectRead() method

FetchSession class [Agentry Java System
Connection API API] 693

endFetchRemoval() method
FetchSession class [Agentry Java System

Connection API API] 694
endPushError() method

PushUserSession class [Agentry Java System
Connection API API] 725

endPushError() method [deprecated]
PushSession class [Agentry Java System

Connection API API] 718
endPushReadStep() method

PushSession class [Agentry Java System
Connection API API] 718

endPushRemoval() method
PushSession class [Agentry Java System

Connection API API] 719
endPushResponse() method

PushUserSession class [Agentry Java System
Connection API API] 725

endPushResponse() method [deprecated]
PushSession class [Agentry Java System

Connection API API] 719
endPushRetrieval() method

PushSession class [Agentry Java System
Connection API API] 719

Index

1390 SAP Mobile Platform

endReadSteps() method
ServiceEventSession class [Agentry Java

System Connection API API] 764
endServerExchange() method

FetchSession class [Agentry Java System
Connection API API] 694

endServiceEventError() method
ServiceEventSession class [Agentry Java

System Connection API API] 764
endTransaction() method

TransactionSession class [Agentry Java
System Connection API API] 785

equals(Object) method
DataTableObject class [Agentry Java System

Connection API API] 677
UserLogRecord class [Agentry Java System

Connection API API] 645
eval(String) method

SessionData interface [Agentry Java System
Connection API API] 798

executeAgentryAction: method
SMPOpenUIFieldModel protocol [Agentry

Open UI iOS SDK] 1267
executeAgentryAction(String) method

FieldModel interface [Agentry Open UI
Android SDK] 1115

ExecuteAgentryAction(string) method
IAgentryControlViewModel interface

[Agentry Open UI Windows SDK]
1322

executeHyperlinkAction method
SMPOpenUIFieldModel protocol [Agentry

Open UI iOS SDK] 1268
executeHyperlinkAction() method

FieldModel interface [Agentry Open UI
Android SDK] 1116

ExecuteHyperlinkAction() method
IAgentryControlViewModel interface

[Agentry Open UI Windows SDK]
1323

EXTERNAL_DATA variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1147
ExternalDataDisplayAdapter class [Agentry Open

UI Android SDK]
description 1046
initialize(ExternalDataDisplayModel,

Context) method 1048
valueChanged(String) method 1048

ExternalDataDisplayModel interface [Agentry
Open UI Android SDK]

description 1110
getFilePath() method 1112

ExternalDataEditAdapter class [Agentry Open UI
Android SDK]

description 1048
initialize(ExternalDataEditModel, Context)

method 1050
valueChanged(String) method 1050

ExternalDataEditModel interface [Agentry Open UI
Android SDK]

description 1112
processInput(String) method 1114

F
FatalTransactionException class [Agentry Java

System Connection API API]
description 684
FatalTransactionException(String, String,

String, Throwable) constructor 687
FatalTransactionException(String, String,

String) constructor 686
FatalTransactionException(String,

Throwable) constructor 686
FatalTransactionException(String)

constructor 686
FatalTransactionException(String, String, String,

Throwable) constructor
FatalTransactionException class [Agentry Java

System Connection API API] 687
FatalTransactionException(String, String, String)

constructor
FatalTransactionException class [Agentry Java

System Connection API API] 686
FatalTransactionException(String, Throwable)

constructor
FatalTransactionException class [Agentry Java

System Connection API API] 686
FatalTransactionException(String) constructor

FatalTransactionException class [Agentry Java
System Connection API API] 686

FatalTransactionExceptionStop class [Agentry Java
System Connection API API]

description 687
FatalTransactionExceptionStop(String, String,

String, Throwable) constructor 689
FatalTransactionExceptionStop(String, String,

String) constructor 688

Index

Agentry App Development 1391

FatalTransactionExceptionStop(String, String,
String, Throwable) constructor

FatalTransactionExceptionStop class [Agentry
Java System Connection API API]
689

FatalTransactionExceptionStop(String, String,
String) constructor

FatalTransactionExceptionStop class [Agentry
Java System Connection API API]
688

FetchSession class [Agentry Java System
Connection API API]

beginClientExchange() method 692
beginFetchObjectRead() method 692
beginFetchRemoval() method 693
beginServerExchange() method 693
description 689
endClientExchange() method 693
endFetchObjectRead() method 693
endFetchRemoval() method 694
endServerExchange() method 694
FetchSession(String, Server, SessionData,

User) constructor 692
FetchSession(String, Server, SessionData, User)

constructor
FetchSession class [Agentry Java System

Connection API API] 692
FieldAdapter class [Agentry Open UI Android

SDK]
description 1051
getAutosizeBehavior() method 1054
getContentHeightForAutosizing(int) method

1055
getExtensionString(String) method 1055
getView() method 1055
isAgentryDisplayingLabel() method 1056
isAgentryDisplayingValidationFailure()

method 1056
onActivityResult(int, int, Intent) method 1057
setEnabled(boolean) method 1057
setHyperlinkEnabled(boolean) method 1057
setValid(boolean, String) method 1057
setVisible(boolean) method 1058
updateLabel(String) method 1058

FieldAdapter.TouchQueryHandler interface
[Agentry Open UI Android SDK]

description 1053
isOnBottomEdge() method 1054
isOnTopEdge() method 1054

FieldModel interface [Agentry Open UI Android
SDK]

description 1114
executeAgentryAction(String) method 1115
executeHyperlinkAction() method 1116
getAgentryActionEnableState(String) method

1116
getAgentryString(String) method 1116
getLabel() method 1117
isAutosizeSupported() method 1117
isEnabled() method 1117
isHidden() method 1118
isHyperlinkEnabled() method 1118
launchActivity(Intent, int) method 1118
requestLayoutHeight(int) method 1118

FilePath property
IAgentryControlViewModelFileDisplay

interface [Agentry Open UI
Windows SDK] 1348

findConfigurationFile(String) method
Server class [Agentry Java System Connection

API API] 749
flush() method

AgentryHandler class [Agentry Java System
Connection API API] 640

format(LogRecord) method
AgentryJavaLoggingConfigurator.ReallySimp

leFormatter class [Agentry Java
System Connection API API] 642

fractionalHourValue property
SMPOpenUIDurationDisplayModel protocol

[Agentry Open UI iOS SDK] 1238
fractionalHourValueChanged(double) method

DurationDisplayAdapter class [Agentry Open
UI Android SDK] 1039

DurationEditAdapter class [Agentry Open UI
Android SDK] 1042

G
getAgentryActionEnableState(String) method

FieldModel interface [Agentry Open UI
Android SDK] 1116

getAgentryString(String) method
FieldModel interface [Agentry Open UI

Android SDK] 1116
GetAgentryString(string) method

IAgentryControlViewModel interface
[Agentry Open UI Windows SDK]
1323

Index

1392 SAP Mobile Platform

getAncestor() method
AgentryData interface [Agentry Open UI

Android SDK] 1139
getAutosizeBehavior() method

FieldAdapter class [Agentry Open UI Android
SDK] 1054

getBitmapData() method
AgentryImage class [Agentry Open UI

Android SDK] 1153
OpenUIImage interface [Agentry Open UI

Android SDK] 1173
getBlue() method

MaskColor class [Agentry Open UI Android
SDK] 1160

getBoolean(String) method
SessionData interface [Agentry Java System

Connection API API] 798
getButtonImage() method

ButtonDisplayModel interface [Agentry Open
UI Android SDK] 1085

getButtonText() method
ButtonDisplayModel interface [Agentry Open

UI Android SDK] 1085
getButtonType() method

ButtonDisplayModel interface [Agentry Open
UI Android SDK] 1085

getBytes(String) method
SessionData interface [Agentry Java System

Connection API API] 798
getChanged() method

ProcessInputReturn class [Agentry Open UI
Android SDK] 1162

getClientLastDataUpdateTime() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 671
DataTable< DTOBJ extends DataTableObject

> class [Agentry Java System
Connection API API] 682

getCollection() method
CollectionDisplayModel interface [Agentry

Open UI Android SDK] 1088
getColumnCount() method

EmbeddedImageDisplayModel interface
[Agentry Open UI Android SDK]
1108

getContentHeightForAutosizing(int) method
FieldAdapter class [Agentry Open UI Android

SDK] 1055

getDataType() method
AgentryData interface [Agentry Open UI

Android SDK] 1140
getDescendant(int) method

AgentryData interface [Agentry Open UI
Android SDK] 1140

getDescendantCount() method
AgentryData interface [Agentry Open UI

Android SDK] 1140
getDilution() method

AgentryLocation class [Agentry Open UI
Android SDK] 1156

getDisplayedItemAt(int) method
CollectionDisplayModel interface [Agentry

Open UI Android SDK] 1088
getDisplayName() method

AgentryData interface [Agentry Open UI
Android SDK] 1141

getDisplayRowCount() method
CollectionDisplayModel interface [Agentry

Open UI Android SDK] 1088
getDouble(String) method

SessionData interface [Agentry Java System
Connection API API] 799

getDurationDisplayFormat() method
DurationDisplayModel interface [Agentry

Open UI Android SDK] 1102
getExtensionString(String) method

FieldAdapter class [Agentry Open UI Android
SDK] 1055

GetExtensionString(string) method
ICustomAgentryControl interface [Agentry

Open UI Windows SDK] 1373
getFilePath() method

ExternalDataDisplayModel interface [Agentry
Open UI Android SDK] 1112

getFloat(String) method
SessionData interface [Agentry Java System

Connection API API] 799
getFractionalHourValue() method

DurationDisplayModel interface [Agentry
Open UI Android SDK] 1102

getGreen() method
MaskColor class [Agentry Open UI Android

SDK] 1160
getHighlightColor() method

EmbeddedImageDisplayModel interface
[Agentry Open UI Android SDK]
1109

Index

Agentry App Development 1393

getIdentifier() method [deprecated]
AgentryData interface [Agentry Open UI

Android SDK] 1141
getImage() method

EmbeddedImageDisplayModel interface
[Agentry Open UI Android SDK]
1109

getImageName() method
AgentryImage class [Agentry Open UI

Android SDK] 1153
OpenUIImage interface [Agentry Open UI

Android SDK] 1173
getImagePosition() method

AgentryImage class [Agentry Open UI
Android SDK] 1154

EmbeddedImageDisplayModel interface
[Agentry Open UI Android SDK]
1109

getImagePresentation() method
AgentryImage class [Agentry Open UI

Android SDK] 1154
EmbeddedImageDisplayModel interface

[Agentry Open UI Android SDK]
1109

getImageType() method
AgentryImage class [Agentry Open UI

Android SDK] 1154
OpenUIImage interface [Agentry Open UI

Android SDK] 1173
getImplementationVersion() method

Server class [Agentry Java System Connection
API API] 749

getInstance() method
Server class [Agentry Java System Connection

API API] 750
getInteger(String) method

SessionData interface [Agentry Java System
Connection API API] 799

getInvalidTimeAndDate() method
SycloCalendar class [Agentry Java System

Connection API API] 782
getKey() method

DataTableObject class [Agentry Java System
Connection API API] 677

getLabel() method
FieldModel interface [Agentry Open UI

Android SDK] 1117

getLatitude() method
AgentryLocation class [Agentry Open UI

Android SDK] 1157
getLevel() method

UserLogRecord class [Agentry Java System
Connection API API] 645

getLoggerName() method
UserLogRecord class [Agentry Java System

Connection API API] 645
getLong(String) method

SessionData interface [Agentry Java System
Connection API API] 799

getLongitude() method
AgentryLocation class [Agentry Open UI

Android SDK] 1157
getMaskColor() method

AgentryImage class [Agentry Open UI
Android SDK] 1154

OpenUIImage interface [Agentry Open UI
Android SDK] 1174

getMaximumFractionalHour() method
DurationEditModel interface [Agentry Open

UI Android SDK] 1104
getMaximumLength() method

StringEditModel interface [Agentry Open UI
Android SDK] 1132

getMaximumValue() method
DecimalEditModel interface [Agentry Open

UI Android SDK] 1099
DurationEditModel interface [Agentry Open

UI Android SDK] 1105
IntegerEditModel interface [Agentry Open UI

Android SDK] 1122
getMessage() method

UserLogRecord class [Agentry Java System
Connection API API] 646

getMillis() method
UserLogRecord class [Agentry Java System

Connection API API] 646
getMinimumFractionalHour() method

DurationEditModel interface [Agentry Open
UI Android SDK] 1105

getMinimumLength() method
StringEditModel interface [Agentry Open UI

Android SDK] 1132
getMinimumValue() method

DecimalEditModel interface [Agentry Open
UI Android SDK] 1100

Index

1394 SAP Mobile Platform

DurationEditModel interface [Agentry Open
UI Android SDK] 1105

IntegerEditModel interface [Agentry Open UI
Android SDK] 1122

getMunged() method
ProcessInputReturn class [Agentry Open UI

Android SDK] 1163
getName() method

AgentryData interface [Agentry Open UI
Android SDK] 1141

Session class [Agentry Java System
Connection API API] 767

User class [Agentry Java System Connection
API API] 792

getNewDataUpdateTime() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 671
getNotificationText() method

AgentryException class [Agentry Java System
Connection API API] 661

Steplet class [Agentry Java System Connection
API API] 773

getNotificationTitle() method
AgentryException class [Agentry Java System

Connection API API] 661
Steplet class [Agentry Java System Connection

API API] 773
getOkButtonLabel() method

AgentryException class [Agentry Java System
Connection API API] 661

Steplet class [Agentry Java System Connection
API API] 773

getParameters() method
UserLogRecord class [Agentry Java System

Connection API API] 646
getProperties() method

AgentryData interface [Agentry Open UI
Android SDK] 1142

getPropertyType() method
AgentryProperty interface [Agentry Open UI

Android SDK] 1150
getRed() method

MaskColor class [Agentry Open UI Android
SDK] 1160

getResourceBundle() method
UserLogRecord class [Agentry Java System

Connection API API] 646

getResourceBundleName() method
UserLogRecord class [Agentry Java System

Connection API API] 646
getReturnData() method

Steplet class [Agentry Java System Connection
API API] 774

getRoot() method
AgentryData interface [Agentry Open UI

Android SDK] 1142
getRowCount() method

EmbeddedImageDisplayModel interface
[Agentry Open UI Android SDK]
1110

getSatellites() method
AgentryLocation class [Agentry Open UI

Android SDK] 1157
getSelectedRow() method

CollectionDisplayModel interface [Agentry
Open UI Android SDK] 1089

getSequenceNumber() method
UserLogRecord class [Agentry Java System

Connection API API] 646
getServer() method

Session class [Agentry Java System
Connection API API] 767

getSession() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 671
DataTable< DTOBJ extends DataTableObject

> class [Agentry Java System
Connection API API] 682

Steplet class [Agentry Java System Connection
API API] 774

getSessionData() method
Session class [Agentry Java System

Connection API API] 768
getSourceClassName() method

UserLogRecord class [Agentry Java System
Connection API API] 646

getSourceMethodName() method
UserLogRecord class [Agentry Java System

Connection API API] 646
getSpecificationVersion() method

Server class [Agentry Java System Connection
API API] 750

getString(String) method
SessionData interface [Agentry Java System

Connection API API] 800

Index

Agentry App Development 1395

getSystemConnectionTime() method
User class [Agentry Java System Connection

API API] 792
getThreadID() method

UserLogRecord class [Agentry Java System
Connection API API] 647

getThrown() method
UserLogRecord class [Agentry Java System

Connection API API] 647
getTimeAndDate(String, String) method

SessionData interface [Agentry Java System
Connection API API] 800

getTimeAndDate(String) method
SessionData interface [Agentry Java System

Connection API API] 800
getTimeZone() method

Server class [Agentry Java System Connection
API API] 750

getTimeZone(StringBuffer) method [deprecated]
User class [Agentry Java System Connection

API API] 793
getUser() method

Session class [Agentry Java System
Connection API API] 768

UserLogger class [Agentry Java System
Connection API API] 650

UserLogRecord class [Agentry Java System
Connection API API] 647

getUserLogger(String, String, User) method
UserLogger class [Agentry Java System

Connection API API] 650
getUserLogger(String, User) method

UserLogger class [Agentry Java System
Connection API API] 650

getValid() method
ProcessInputReturn class [Agentry Open UI

Android SDK] 1163
getValue() method

AgentryData.DataType enum [Agentry Open
UI Android SDK] 1138

AgentryImage.ImageType enum [Agentry
Open UI Android SDK] 1152

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1145

BooleanDisplayModel interface [Agentry
Open UI Android SDK] 1081

DataTableObject class [Agentry Java System
Connection API API] 678

DateAndTimeDisplayModel interface
[Agentry Open UI Android SDK]
1091

DateDisplayModel interface [Agentry Open
UI Android SDK] 1094

DecimalDisplayModel interface [Agentry
Open UI Android SDK] 1098

DurationDisplayModel interface [Agentry
Open UI Android SDK] 1102

ImagePosition enum [Agentry Open UI
Android SDK] 1169

ImagePresentation enum [Agentry Open UI
Android SDK] 1171

IntegerDisplayModel interface [Agentry Open
UI Android SDK] 1120

LabelDisplayModel interface [Agentry Open
UI Android SDK] 1124

LocationDisplayModel interface [Agentry
Open UI Android SDK] 1126

StringDisplayModel interface [Agentry Open
UI Android SDK] 1129

TimeDisplayModel interface [Agentry Open
UI Android SDK] 1135

User.ChangePasswordResult enum [Agentry
Java System Connection API API]
788

getView() method
FieldAdapter class [Agentry Open UI Android

SDK] 1055

H

hasAction() method
ButtonDisplayModel interface [Agentry Open

UI Android SDK] 1086
hashCode() method

DataTableObject class [Agentry Java System
Connection API API] 678

UserLogRecord class [Agentry Java System
Connection API API] 647

hasNext() method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
655

hidden property
SMPOpenUIFieldModel protocol [Agentry

Open UI iOS SDK] 1269

Index

1396 SAP Mobile Platform

highlightSelectedColor property
SMPOpenUIEmbeddedImageDisplayModel

protocol [Agentry Open UI iOS
SDK] 1250

HourMin variable
DurationDisplayFormat enum [Agentry Open

UI Android SDK] 1168
HourMinSec variable

DurationDisplayFormat enum [Agentry Open
UI Android SDK] 1168

hyperlinkEnabled property
SMPOpenUIFieldModel protocol [Agentry

Open UI iOS SDK] 1269

I
IAgentryCollection interface [Agentry Open UI

Windows SDK]
description 1319

IAgentryControlViewModel interface [Agentry
Open UI Windows SDK]

description 1320
DoesAgentryActionExist(string) method

1322
ExecuteAgentryAction(string) method 1322
ExecuteHyperlinkAction() method 1323
GetAgentryString(string) method 1323
IsAgentryActionEnabled(string) method 1323
IsAutoSize property 1324
IsEnabled property 1325
IsHyperlinkEnabled property 1325
IsVisible property 1325
Label property 1325
OnPropertyChanged(string) method 1324

IAgentryControlViewModel.cs file [Agentry Open
UI Windows SDK]

SMPActionResult enumeration 1375
SMPActionState enumeration 1375
SMPProcessInputReturn enumeration 1376

IAgentryControlViewModelCollectionDisplay
interface [Agentry Open UI Windows
SDK]

description 1326
DisplayedItemAt(int) method 1328
DisplayedItemCount property 1328
SelectedItem property 1329
SelectItem(int) method 1328

IAgentryControlViewModelDateTime interface
[Agentry Open UI Windows SDK]

description 1329

ProcessInput(DateTime) method 1331
IAgentryControlViewModelDateTimeDisplay

interface [Agentry Open UI Windows
SDK]

DateValue property 1333
description 1331
TimeValue property 1333
Value property 1334

IAgentryControlViewModelDecimal interface
[Agentry Open UI Windows SDK]

description 1334
ProcessInput(double) method 1336

IAgentryControlViewModelDecimalDisplay
interface [Agentry Open UI Windows
SDK]

description 1336
StringValue property 1338

IAgentryControlViewModelDuration interface
[Agentry Open UI Windows SDK]

description 1339
MaximumValue property 1341
MinimumValue property 1341
ProcessInput(TimeSpan) method 1341

IAgentryControlViewModelDurationDisplay
interface [Agentry Open UI Windows
SDK]

description 1341
DurationFormat property 1343
DurationValue property 1343

IAgentryControlViewModelDurationDisplay.cs
file [Agentry Open UI Windows SDK]

SMPDurationFormat enumeration 1376
IAgentryControlViewModelFile interface [Agentry

Open UI Windows SDK]
description 1344
ProcessInput(string) method 1346

IAgentryControlViewModelFileDisplay interface
[Agentry Open UI Windows SDK]

description 1346
FilePath property 1348

IAgentryControlViewModelImage interface
[Agentry Open UI Windows SDK]

Columns property 1351
description 1348
Image property 1351
IsSelected(int, int) method 1350
Rows property 1351
SelectCell(int, int) method 1350
SelectColor property 1351

Index

Agentry App Development 1397

IAgentryControlViewModelLabel interface
[Agentry Open UI Windows SDK]

description 1351
IAgentryControlViewModelNumber< T > interface

[Agentry Open UI Windows SDK]
description 1353
Maximum property 1355
Minimum property 1355
ProcessInput(T) method 1355

IAgentryControlViewModelNumberDisplay< T >
interface [Agentry Open UI Windows
SDK]

description 1356
NumberValue property 1357

IAgentryControlViewModelStringDisplay
interface [Agentry Open UI Windows
SDK]

description 1358
StringValue property 1360
WordWrap property 1360

IAgentryControlViewModelStringEdit interface
[Agentry Open UI Windows SDK]

AcceptReturn property 1363
description 1360
IsPassword property 1363
MaximumLength property 1363
MinimumLength property 1363
ProcessInput(string) method 1362

IAgentryData interface [Agentry Open UI Windows
SDK]

Ancestor property 1366
Collections() method 1365
DataType property 1366
Descendant(int) method 1365
DescendantCount property 1367
description 1364
DisplayName property 1367
InternalName property 1367
Objects() method 1365
Properties() method 1366
Root property 1367

IAgentryData.cs file [Agentry Open UI Windows
SDK]

AgentryDataType enumeration 1374
AgentryPropertyType enumeration 1375

IAgentryObject interface [Agentry Open UI
Windows SDK]

description 1368

IAgentryProperty interface [Agentry Open UI
Windows SDK]

description 1369
PropertyType property 1373
ToBoolean() method 1370
ToDate() method 1371
ToDateTime() method 1371
ToDouble() method 1371
ToInt() method 1371
ToString() method 1372
ToTime() method 1372
ToUInt() method 1372

ICustomAgentryControl interface [Agentry Open
UI Windows SDK]

ClientDisplaysLabel property 1374
ClientDisplaysValidationError property 1374
description 1373
GetExtensionString(string) method 1373

IDENTIFIER variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1147
IEnumerable< IAgentryData > class [Agentry Open

UI Windows SDK]
description 1374

image property
SMPOpenUIEmbeddedImageDisplayModel

protocol [Agentry Open UI iOS
SDK] 1250

SMPOpenUIImage class [Agentry Open UI
iOS SDK] 1186

Image property
IAgentryControlViewModelImage interface

[Agentry Open UI Windows SDK]
1351

IMAGE variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1147
imageCellClickedAtRow:andColumn: method

SMPOpenUIEmbeddedImageDisplayModel
protocol [Agentry Open UI iOS
SDK] 1249

imageChanged() method
EmbeddedImageDisplayAdapter class

[Agentry Open UI Android SDK]
1045

ImagePosition enum [Agentry Open UI Android
SDK API]

description 1168

Index

1398 SAP Mobile Platform

ImagePosition enum [Agentry Open UI Android
SDK]

getValue() method 1169
ImagePosition_Center variable 1169
ImagePosition_LowerLeft variable 1169
ImagePosition_LowerMiddle variable 1170
ImagePosition_LowerRight variable 1170
ImagePosition_MiddleLeft variable 1170
ImagePosition_MiddleRight variable 1170
ImagePosition_Unknown variable 1170
ImagePosition_UpperLeft variable 1170
ImagePosition_UpperMiddle variable 1170
ImagePosition_UpperRight variable 1171

ImagePosition_Center variable
ImagePosition enum [Agentry Open UI

Android SDK] 1169
ImagePosition_LowerLeft variable

ImagePosition enum [Agentry Open UI
Android SDK] 1169

ImagePosition_LowerMiddle variable
ImagePosition enum [Agentry Open UI

Android SDK] 1170
ImagePosition_LowerRight variable

ImagePosition enum [Agentry Open UI
Android SDK] 1170

ImagePosition_MiddleLeft variable
ImagePosition enum [Agentry Open UI

Android SDK] 1170
ImagePosition_MiddleRight variable

ImagePosition enum [Agentry Open UI
Android SDK] 1170

ImagePosition_Unknown variable
ImagePosition enum [Agentry Open UI

Android SDK] 1170
ImagePosition_UpperLeft variable

ImagePosition enum [Agentry Open UI
Android SDK] 1170

ImagePosition_UpperMiddle variable
ImagePosition enum [Agentry Open UI

Android SDK] 1170
ImagePosition_UpperRight variable

ImagePosition enum [Agentry Open UI
Android SDK] 1171

ImagePresentation enum [Agentry Open UI
Android SDK API]

description 1171
ImagePresentation enum [Agentry Open UI

Android SDK]
getValue() method 1171

ImagePresentation_CropToFit variable 1171
ImagePresentation_FullSize variable 1172
ImagePresentation_LockAspectRatio variable

1172
ImagePresentation_StretchToFit variable

1172
ImagePresentation_Unknown variable 1172

ImagePresentation_CropToFit variable
ImagePresentation enum [Agentry Open UI

Android SDK] 1171
ImagePresentation_FullSize variable

ImagePresentation enum [Agentry Open UI
Android SDK] 1172

ImagePresentation_LockAspectRatio variable
ImagePresentation enum [Agentry Open UI

Android SDK] 1172
ImagePresentation_StretchToFit variable

ImagePresentation enum [Agentry Open UI
Android SDK] 1172

ImagePresentation_Unknown variable
ImagePresentation enum [Agentry Open UI

Android SDK] 1172
imageSelectionChanged() method

EmbeddedImageDisplayAdapter class
[Agentry Open UI Android SDK]
1045

ImageType_Bitmap variable
AgentryImage.ImageType enum [Agentry

Open UI Android SDK] 1152
ImageType_GIF variable

AgentryImage.ImageType enum [Agentry
Open UI Android SDK] 1152

ImageType_JPEG variable
AgentryImage.ImageType enum [Agentry

Open UI Android SDK] 1152
ImageType_PNG variable

AgentryImage.ImageType enum [Agentry
Open UI Android SDK] 1152

ImageType_Unknown variable
AgentryImage.ImageType enum [Agentry

Open UI Android SDK] 1152
initialize() method

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 683

initialize() method [deprecated]
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 671

Index

Agentry App Development 1399

initialize(BooleanDisplayModel, Context) method
BooleanDisplayAdapter class [Agentry Open

UI Android SDK] 1014
initialize(BooleanEditModel, Context) method

BooleanEditAdapter class [Agentry Open UI
Android SDK] 1016

initialize(ButtonDisplayModel, Context) method
ButtonDisplayAdapter class [Agentry Open UI

Android SDK] 1019
initialize(CollectionDisplayModel, Context)

method
CollectionDisplayAdapter class [Agentry

Open UI Android SDK] 1022
initialize(DateAndTimeDisplayModel, Context)

method
DateAndTimeDisplayAdapter class [Agentry

Open UI Android SDK] 1025
initialize(DateAndTimeEditModel, Context)

method
DateAndTimeEditAdapter class [Agentry

Open UI Android SDK] 1027
initialize(DateDisplayModel, Context) method

DateDisplayAdapter class [Agentry Open UI
Android SDK] 1029

initialize(DateEditModel, Context) method
DateEditAdapter class [Agentry Open UI

Android SDK] 1032
initialize(DecimalDisplayModel, Context) method

DecimalDisplayAdapter class [Agentry Open
UI Android SDK] 1034

initialize(DecimalEditModel, Context) method
DecimalEditAdapter class [Agentry Open UI

Android SDK] 1036
initialize(DurationDisplayModel, Context) method

DurationDisplayAdapter class [Agentry Open
UI Android SDK] 1040

initialize(DurationEditModel, Context) method
DurationEditAdapter class [Agentry Open UI

Android SDK] 1043
initialize(EmbeddedImageDisplayModel, Context)

method
EmbeddedImageDisplayAdapter class

[Agentry Open UI Android SDK]
1046

initialize(ExternalDataDisplayModel, Context)
method

ExternalDataDisplayAdapter class [Agentry
Open UI Android SDK] 1048

initialize(ExternalDataEditModel, Context) method
ExternalDataEditAdapter class [Agentry Open

UI Android SDK] 1050
initialize(IntegerDisplayModel, Context) method

IntegerDisplayAdapter class [Agentry Open
UI Android SDK] 1060

initialize(IntegerEditModel, Context) method
IntegerEditAdapter class [Agentry Open UI

Android SDK] 1063
initialize(LabelDisplayModel, Context) method

LabelDisplayAdapter class [Agentry Open UI
Android SDK] 1065

initialize(LocationDisplayModel, Context) method
LocationDisplayAdapter class [Agentry Open

UI Android SDK] 1067
initialize(LocationEditModel, Context) method

LocationEditAdapter class [Agentry Open UI
Android SDK] 1070

initialize(StringDisplayModel, Context) method
StringDisplayAdapter class [Agentry Open UI

Android SDK] 1072
initialize(StringEditModel, Context) method

StringEditAdapter class [Agentry Open UI
Android SDK] 1074

initialize(TimeDisplayModel, Context) method
TimeDisplayAdapter class [Agentry Open UI

Android SDK] 1077
initialize(TimeEditModel, Context) method

TimeEditAdapter class [Agentry Open UI
Android SDK] 1079

initWithBooleanDisplayModel: method
SMPOpenUIBooleanDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1192
initWithBooleanEditModel: method

SMPOpenUIBooleanEditAdapter protocol
[Agentry Open UI iOS SDK] 1196

initWithButtonDisplayModel: method
SMPOpenUIButtonDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1200
initWithCLLocation: method

SMPDataAPILocationProtocol protocol
[Agentry Open UI iOS SDK] 1175

SMPOpenUILocation class [Agentry Open UI
iOS SDK] 1188

initWithCollectionDisplayModel: method
SMPOpenUICollectionDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1206

Index

1400 SAP Mobile Platform

initWithDateAndTimeDisplayModel: method
SMPOpenUIDateAndTimeDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1212

initWithDateAndTimeEditModel: method
SMPOpenUIDateAndTimeEditAdapter

protocol [Agentry Open UI iOS
SDK] 1215

initWithDateDisplayModel: method
SMPOpenUIDateDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1219
initWithDateEditModel: method

SMPOpenUIDateEditAdapter protocol
[Agentry Open UI iOS SDK] 1223

initWithDecimalDisplayModel: method
SMPOpenUIDecimalDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1227
initWithDecimalEditModel: method

SMPOpenUIDecimalEditAdapter protocol
[Agentry Open UI iOS SDK] 1231

initWithDurationDisplayModel: method
SMPOpenUIDurationDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1236

initWithDurationEditModel: method
SMPOpenUIDurationEditAdapter protocol

[Agentry Open UI iOS SDK] 1240
initWithEmbeddedImageModel: method

SMPOpenUIEmbeddedImageDisplayAdapter
protocol [Agentry Open UI iOS
SDK] 1247

initWithExternalDataDisplayModel: method
SMPOpenUIExternalDataDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1252

initWithExternalDataEditModel: method
SMPOpenUIExternalDataEditAdapter

protocol [Agentry Open UI iOS
SDK] 1256

initWithIntegerDisplayModel: method
SMPOpenUIIntegerDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1271
initWithIntegerEditModel: method

SMPOpenUIIntegerEditAdapter protocol
[Agentry Open UI iOS SDK] 1275

initWithLabelDisplayModel: method
SMPOpenUILabelDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1279

initWithLatitude:andLongitude:andSatellites:andD
ilution: method

SMPDataAPILocationProtocol protocol
[Agentry Open UI iOS SDK] 1176

SMPOpenUILocation class [Agentry Open UI
iOS SDK] 1188

initWithLocationDisplayModel: method
SMPOpenUILocationDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1283

initWithLocationEditModel: method
SMPOpenUILocationEditAdapter protocol

[Agentry Open UI iOS SDK] 1287
initWithStringDisplayModel: method

SMPOpenUIStringDisplayAdapter protocol
[Agentry Open UI iOS SDK] 1291

initWithStringEditModel: method
SMPOpenUIStringEditAdapter protocol

[Agentry Open UI iOS SDK] 1295
initWithTimeDisplayModel: method

SMPOpenUITimeDisplayAdapter protocol
[Agentry Open UI iOS SDK] 1300

initWithTimeEditModel: method
SMPOpenUITimeEditAdapter protocol

[Agentry Open UI iOS SDK] 1303
initWithUnsignedIntegerDisplayModel: method

SMPOpenUIUnsignedIntegerDisplayAdapter
protocol [Agentry Open UI iOS
SDK] 1307

initWithUnsignedIntegerEditModel: method
SMPOpenUIUnsignedIntegerEditAdapter

protocol [Agentry Open UI iOS
SDK] 1311

INTEGER_NUMBER variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1147
IntegerDisplayAdapter class [Agentry Open UI

Android SDK]
description 1058
initialize(IntegerDisplayModel, Context)

method 1060
valueChanged(int) method 1061

IntegerDisplayModel interface [Agentry Open UI
Android SDK]

description 1119
getValue() method 1120

IntegerEditAdapter class [Agentry Open UI
Android SDK]

description 1061

Index

Agentry App Development 1401

initialize(IntegerEditModel, Context) method
1063

valueChanged(int) method 1063
IntegerEditModel interface [Agentry Open UI

Android SDK]
description 1120
getMaximumValue() method 1122
getMinimumValue() method 1122
processIntegerInput(int) method 1122

InternalName property
IAgentryData interface [Agentry Open UI

Windows SDK] 1367
iOSDataAPIExternal [Agentry Open UI iOS SDK]

description 1174
iOSOpenUIExternal [Agentry Open UI iOS SDK]

description 1185
IsAgentryActionEnabled(string) method

IAgentryControlViewModel interface
[Agentry Open UI Windows SDK]
1323

isAgentryDisplayingLabel() method
FieldAdapter class [Agentry Open UI Android

SDK] 1056
isAgentryDisplayingValidationFailure() method

FieldAdapter class [Agentry Open UI Android
SDK] 1056

IsAutoSize property
IAgentryControlViewModel interface

[Agentry Open UI Windows SDK]
1324

isAutosizeSupported() method
FieldModel interface [Agentry Open UI

Android SDK] 1117
isButtonSelected() method

ButtonDisplayModel interface [Agentry Open
UI Android SDK] 1086

isCarriageReturnAllowed() method
StringDisplayModel interface [Agentry Open

UI Android SDK] 1130
isDebugMode() method

Logger class [deprecated] [Agentry Java
System Connection API API] 658

IsEnabled property
IAgentryControlViewModel interface

[Agentry Open UI Windows SDK]
1325

isEnabled() method
FieldModel interface [Agentry Open UI

Android SDK] 1117

isHidden() method
FieldModel interface [Agentry Open UI

Android SDK] 1118
IsHyperlinkEnabled property

IAgentryControlViewModel interface
[Agentry Open UI Windows SDK]
1325

isHyperlinkEnabled() method
FieldModel interface [Agentry Open UI

Android SDK] 1118
isImageCellSelected(long, long) method

EmbeddedImageDisplayModel interface
[Agentry Open UI Android SDK]
1110

isImageCellSelectedAtRow:andColumn: method
SMPOpenUIEmbeddedImageDisplayModel

protocol [Agentry Open UI iOS
SDK] 1250

isInvalidTimeAndDate() method
SycloCalendar class [Agentry Java System

Connection API API] 782
isInvalidTimeAndDate(GregorianCalendar)

method
SycloCalendar class [Agentry Java System

Connection API API] 782
isOnBottomEdge() method

FieldAdapter.TouchQueryHandler interface
[Agentry Open UI Android SDK]
1054

isOnTopEdge() method
FieldAdapter.TouchQueryHandler interface

[Agentry Open UI Android SDK]
1054

isOutOfDate() method
DataTable< DTOBJ extends DataTableObject

> class [Agentry Java System
Connection API API] 683

IsPassword property
IAgentryControlViewModelStringEdit

interface [Agentry Open UI
Windows SDK] 1363

isPasswordInput property
SMPOpenUIStringEditModel protocol

[Agentry Open UI iOS SDK] 1297
isPasswordInput() method

StringEditModel interface [Agentry Open UI
Android SDK] 1133

Index

1402 SAP Mobile Platform

isRebuilding() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 672
IsSelected(int, int) method

IAgentryControlViewModelImage interface
[Agentry Open UI Windows SDK]
1350

isValid() method
AgentryData interface [Agentry Open UI

Android SDK] 1142
AgentryImage class [Agentry Open UI

Android SDK] 1154
AgentryLocation class [Agentry Open UI

Android SDK] 1157
MaskColor class [Agentry Open UI Android

SDK] 1161
OpenUIImage interface [Agentry Open UI

Android SDK] 1174
IsVisible property

IAgentryControlViewModel interface
[Agentry Open UI Windows SDK]
1325

isWordWrapAllowed() method
StringDisplayModel interface [Agentry Open

UI Android SDK] 1130
itemAdded(int) method

CollectionDisplayAdapter class [Agentry
Open UI Android SDK] 1022

itemChanged(int) method
CollectionDisplayAdapter class [Agentry

Open UI Android SDK] 1022
itemRemoved(int) method

CollectionDisplayAdapter class [Agentry
Open UI Android SDK] 1022

itemSelected(int) method
CollectionDisplayAdapter class [Agentry

Open UI Android SDK] 1023
iterator() method

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 683

J

java_logging package [Agentry Java System
Connection API API]

description 637

L

label property
SMPOpenUIFieldModel protocol [Agentry

Open UI iOS SDK] 1269
Label property

IAgentryControlViewModel interface
[Agentry Open UI Windows SDK]
1325

LabelDisplayAdapter class [Agentry Open UI
Android SDK]

description 1063
initialize(LabelDisplayModel, Context)

method 1065
valueChanged(String) method 1065

LabelDisplayModel interface [Agentry Open UI
Android SDK]

description 1123
getValue() method 1124

lastUpdateDate() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 672
lastUpdateHours() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 672

lastUpdateMinutes() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 672
lastUpdateMonth() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 673

lastUpdateSeconds() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 673
lastUpdateYear() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 673

latitude property
SMPDataAPILocationProtocol protocol

[Agentry Open UI iOS SDK] 1177
SMPOpenUILocation class [Agentry Open UI

iOS SDK] 1189
launchActivity(Intent, int) method

FieldModel interface [Agentry Open UI
Android SDK] 1118

LIST_SELECTION variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1147

Index

Agentry App Development 1403

location property
SMPDataAPILocationProtocol protocol

[Agentry Open UI iOS SDK] 1177
SMPOpenUILocation class [Agentry Open UI

iOS SDK] 1189
LOCATION variable

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1147

LocationDisplayAdapter class [Agentry Open UI
Android SDK]

description 1066
initialize(LocationDisplayModel, Context)

method 1067
valueChanged(AgentryLocation) method

1068
LocationDisplayModel interface [Agentry Open UI

Android SDK]
description 1124
getValue() method 1126

LocationEditAdapter class [Agentry Open UI
Android SDK]

description 1068
initialize(LocationEditModel, Context)

method 1070
valueChanged(AgentryLocation) method

1070
LocationEditModel interface [Agentry Open UI

Android SDK]
description 1126
processInput(AgentryLocation) method 1127

locationWithCLLocation: method
SMPDataAPILocationProtocol protocol

[Agentry Open UI iOS SDK] 1176
SMPOpenUILocation class [Agentry Open UI

iOS SDK] 1189
locationWithLatitude:andLongitude:andSatellites:a

ndDilution: method
SMPDataAPILocationProtocol protocol

[Agentry Open UI iOS SDK] 1176
SMPOpenUILocation class [Agentry Open UI

iOS SDK] 1189
log method

SMPDataAPIPropertyProtocol protocol
[Agentry Open UI iOS SDK] 1181

SMPDataAPIProtocol protocol [Agentry Open
UI iOS SDK] 1183

log(LogRecord) method
UserLogger class [Agentry Java System

Connection API API] 651

log4j package [Agentry Java System Connection
API API]

description 651
loggedIn() method

User class [Agentry Java System Connection
API API] 793

loggedOut() method
User class [Agentry Java System Connection

API API] 793
Logger class [Agentry Java System Connection API

API]
description 655

Logger class [deprecated] [Agentry Java System
Connection API API]

appendDebug(String) method 656
beginDebug(String) method 657
debug(String, Map< String, String >, String)

method 657
debug(String) method 657
endDebug(String) method 657
isDebugMode() method 658
Logger(String, boolean) constructor 656

Logger(String, boolean) constructor
Logger class [deprecated] [Agentry Java

System Connection API API] 656
Login_Invalid variable

Server.LoginEnumeration enum [deprecated]
[Agentry Java System Connection
API API] 737

Login_InvalidBlocked variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 738

Login_Pass variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 738

Login_Valid variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 738

Login_ValidPasswordExpired variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 738

Login_ValidPasswordExpiredNoChange variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 738

Index

1404 SAP Mobile Platform

Login_ValidPasswordWarning variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 739

Login_ValidPasswordWarningNoChange variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 739

login(String, String, SessionData) method
[deprecated]

Server class [Agentry Java System Connection
API API] 751

login(User, String, SessionData) method
Server class [Agentry Java System Connection

API API] 751
loginBlocked(String, StringBuffer) method

[deprecated]
Server class [Agentry Java System Connection

API API] 752
loginBlocked(User, String, StringBuffer,

SessionData) method
Server class [Agentry Java System Connection

API API] 753
loginBlocked(User, StringBuffer, SessionData)

method [deprecated]
Server class [Agentry Java System Connection

API API] 753
LoginBlockedException class [Agentry Java

System Connection API API]
description 694
LoginBlockedException() constructor 696
LoginBlockedException(String, Throwable)

constructor 696
LoginBlockedException(String) constructor

696
LoginBlockedException() constructor

LoginBlockedException class [Agentry Java
System Connection API API] 696

LoginBlockedException(String, Throwable)
constructor

LoginBlockedException class [Agentry Java
System Connection API API] 696

LoginBlockedException(String) constructor
LoginBlockedException class [Agentry Java

System Connection API API] 696
LoginException class [Agentry Java System

Connection API API]
description 696
LoginException() constructor 698

LoginException(String, Throwable)
constructor 698

LoginException(String) constructor 698
LoginException() constructor

LoginException class [Agentry Java System
Connection API API] 698

LoginException(String, Throwable) constructor
LoginException class [Agentry Java System

Connection API API] 698
LoginException(String) constructor

LoginException class [Agentry Java System
Connection API API] 698

loginFailed(String, StringBuffer) method
[deprecated]

Server class [Agentry Java System Connection
API API] 754

loginFailed(User, String, LoginFailureReason,
StringBuffer, SessionData) method

Server class [Agentry Java System Connection
API API] 755

loginPreviousUser(String, String, SessionData)
method [deprecated]

Server class [Agentry Java System Connection
API API] 756

loginPreviousUser(User, String, SessionData)
method

Server class [Agentry Java System Connection
API API] 756

LoginSkippedException class [Agentry Java
System Connection API API]

description 699
LoginSkippedException() constructor 700
LoginSkippedException(String, Throwable)

constructor 701
LoginSkippedException(String) constructor

700
LoginSkippedException() constructor

LoginSkippedException class [Agentry Java
System Connection API API] 700

LoginSkippedException(String, Throwable)
constructor

LoginSkippedException class [Agentry Java
System Connection API API] 701

LoginSkippedException(String) constructor
LoginSkippedException class [Agentry Java

System Connection API API] 700
longitude property

SMPDataAPILocationProtocol protocol
[Agentry Open UI iOS SDK] 1177

Index

Agentry App Development 1405

SMPOpenUILocation class [Agentry Open UI
iOS SDK] 1190

M

mapLogLevel(Level) method
AgentryAppender class [Agentry Java System

Connection API API] 653
AgentryHandler class [Agentry Java System

Connection API API] 640
MaskColor class [Agentry Open UI Android SDK]

description 1159
getBlue() method 1160
getGreen() method 1160
getRed() method 1160
isValid() method 1161
MaskColor(int, int, int) constructor 1160
MaskColor(short, short, short) constructor

1159
MaskColor(int, int, int) constructor

MaskColor class [Agentry Open UI Android
SDK] 1160

MaskColor(short, short, short) constructor
MaskColor class [Agentry Open UI Android

SDK] 1159
Maximum property

IAgentryControlViewModelNumber< T >
interface [Agentry Open UI
Windows SDK] 1355

maximumFractionalHourValue property
SMPOpenUIDurationEditModel protocol

[Agentry Open UI iOS SDK] 1244
maximumLength property

SMPOpenUIStringEditModel protocol
[Agentry Open UI iOS SDK] 1298

MaximumLength property
IAgentryControlViewModelStringEdit

interface [Agentry Open UI
Windows SDK] 1363

maximumValue property
SMPOpenUIDecimalEditModel protocol

[Agentry Open UI iOS SDK] 1234
SMPOpenUIDurationEditModel protocol

[Agentry Open UI iOS SDK] 1244
SMPOpenUIIntegerEditModel protocol

[Agentry Open UI iOS SDK] 1277
SMPOpenUIUnsignedIntegerEditModel

protocol [Agentry Open UI iOS
SDK] 1314

MaximumValue property
IAgentryControlViewModelDuration

interface [Agentry Open UI
Windows SDK] 1341

Minimum property
IAgentryControlViewModelNumber< T >

interface [Agentry Open UI
Windows SDK] 1355

minimumFractionalHourValue property
SMPOpenUIDurationEditModel protocol

[Agentry Open UI iOS SDK] 1245
minimumLength property

SMPOpenUIStringEditModel protocol
[Agentry Open UI iOS SDK] 1298

MinimumLength property
IAgentryControlViewModelStringEdit

interface [Agentry Open UI
Windows SDK] 1363

minimumValue property
SMPOpenUIDecimalEditModel protocol

[Agentry Open UI iOS SDK] 1234
SMPOpenUIDurationEditModel protocol

[Agentry Open UI iOS SDK] 1245
SMPOpenUIIntegerEditModel protocol

[Agentry Open UI iOS SDK] 1277
SMPOpenUIUnsignedIntegerEditModel

protocol [Agentry Open UI iOS
SDK] 1314

MinimumValue property
IAgentryControlViewModelDuration

interface [Agentry Open UI
Windows SDK] 1341

MinSec variable
DurationDisplayFormat enum [Agentry Open

UI Android SDK] 1168
model:didChangeBoolean: method

SMPOpenUIBooleanDisplayAdapter protocol
[Agentry Open UI iOS SDK] 1192

SMPOpenUIBooleanEditAdapter protocol
[Agentry Open UI iOS SDK] 1196

model:didChangeButtonImage: method
SMPOpenUIButtonDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1200
model:didChangeDate: method

SMPOpenUIDateDisplayAdapter protocol
[Agentry Open UI iOS SDK] 1220

SMPOpenUIDateEditAdapter protocol
[Agentry Open UI iOS SDK] 1224

Index

1406 SAP Mobile Platform

model:didChangeDateAndTime: method
SMPOpenUIDateAndTimeDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1212

SMPOpenUIDateAndTimeEditAdapter
protocol [Agentry Open UI iOS
SDK] 1216

model:didChangeDecimal: method
SMPOpenUIDecimalDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1228
SMPOpenUIDecimalEditAdapter protocol

[Agentry Open UI iOS SDK] 1231
model:didChangeDuration: method

SMPOpenUIDurationDisplayAdapter
protocol [Agentry Open UI iOS
SDK] 1236

SMPOpenUIDurationEditAdapter protocol
[Agentry Open UI iOS SDK] 1241

model:didChangeExternalData: method
SMPOpenUIExternalDataDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1253

SMPOpenUIExternalDataEditAdapter
protocol [Agentry Open UI iOS
SDK] 1256

model:didChangeFractionalHour: method
SMPOpenUIDurationDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1236

SMPOpenUIDurationEditAdapter protocol
[Agentry Open UI iOS SDK] 1241

model:didChangeImage: method
SMPOpenUIEmbeddedImageDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1247

model:didChangeInteger: method
SMPOpenUIIntegerDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1271
SMPOpenUIIntegerEditAdapter protocol

[Agentry Open UI iOS SDK] 1275
model:didChangeLabel: method

SMPOpenUILabelDisplayAdapter protocol
[Agentry Open UI iOS SDK] 1280

model:didChangeLocation: method
SMPOpenUILocationDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1283

SMPOpenUILocationEditAdapter protocol
[Agentry Open UI iOS SDK] 1287

model:didChangeSelected: method
SMPOpenUIButtonDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1200
model:didChangeString: method

SMPOpenUIStringDisplayAdapter protocol
[Agentry Open UI iOS SDK] 1291

SMPOpenUIStringEditAdapter protocol
[Agentry Open UI iOS SDK] 1295

model:didChangeTime: method
SMPOpenUITimeDisplayAdapter protocol

[Agentry Open UI iOS SDK] 1300
SMPOpenUITimeEditAdapter protocol

[Agentry Open UI iOS SDK] 1304
model:didChangeUnsignedInteger: method

SMPOpenUIUnsignedIntegerDisplayAdapter
protocol [Agentry Open UI iOS
SDK] 1308

SMPOpenUIUnsignedIntegerEditAdapter
protocol [Agentry Open UI iOS
SDK] 1311

model:didSelectObjectAtIndex: method
SMPOpenUICollectionDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1206

model:didSetEnabled: method
SMPOpenUIFieldAdapter protocol [Agentry

Open UI iOS SDK] 1262
model:didSetHyperlinkEnabled: method

SMPOpenUIFieldAdapter protocol [Agentry
Open UI iOS SDK] 1262

model:didSetValid:withValidationFailureText:
method

SMPOpenUIFieldAdapter protocol [Agentry
Open UI iOS SDK] 1262

model:didSetVisible: method
SMPOpenUIFieldAdapter protocol [Agentry

Open UI iOS SDK] 1263
model:didUpdateLabel: method

SMPOpenUIFieldAdapter protocol [Agentry
Open UI iOS SDK] 1263

model:objectAddedAtIndex: method
SMPOpenUICollectionDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1206

model:objectChangedAtIndex: method
SMPOpenUICollectionDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1207

Index

Agentry App Development 1407

model:objectDeletedAtIndex: method
SMPOpenUICollectionDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1207

model:wantsExtensionString: method
SMPOpenUIFieldAdapter protocol [Agentry

Open UI iOS SDK] 1264
model:wantsViewHeightForWidth: method

SMPOpenUIFieldAdapter protocol [Agentry
Open UI iOS SDK] 1264

modelDidChangeImageCellSelection: method
SMPOpenUIEmbeddedImageDisplayAdapter

protocol [Agentry Open UI iOS
SDK] 1247

models package [Agentry Open UI Android SDK]
description 1080

Munged variable
ProcessInputReturn.processInputReturnValue

s enum [Agentry Open UI Android
SDK] 1162

N
name method

SMPDataAPIProtocol protocol [Agentry Open
UI iOS SDK] 1184

name property
SMPOpenUIImage class [Agentry Open UI

iOS SDK] 1186
needsBitmapData() method

AgentryImage class [Agentry Open UI
Android SDK] 1155

next() method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
655

NoBackEndsAuthenticated variable
Server.LoginFailureReason enum [Agentry

Java System Connection API API]
740

notificationText() method [deprecated]
Steplet class [Agentry Java System Connection

API API] 775
notificationTitle() method [deprecated]

Steplet class [Agentry Java System Connection
API API] 775

NumberValue property
IAgentryControlViewModelNumberDisplay<

T > interface [Agentry Open UI
Windows SDK] 1357

O

OBJECT variable
AgentryData.DataType enum [Agentry Open

UI Android SDK] 1139
Objects() method

IAgentryData interface [Agentry Open UI
Windows SDK] 1365

okButtonLabel() method [deprecated]
Steplet class [Agentry Java System Connection

API API] 775
onActivityResult(int, int, Intent) method

FieldAdapter class [Agentry Open UI Android
SDK] 1057

OnPropertyChanged(string) method
IAgentryControlViewModel interface

[Agentry Open UI Windows SDK]
1324

openui package [Agentry Open UI Android SDK]
description 1012, 1150

OpenUIImage interface [Agentry Open UI Android
SDK]

description 1172
getBitmapData() method 1173
getImageName() method 1173
getImageType() method 1173
getMaskColor() method 1174
isValid() method 1174

P

PasswordExpiredCannotChange variable
Server.LoginFailureReason enum [Agentry

Java System Connection API API]
740

PasswordExpiredCannotChangeException class
[Agentry Java System Connection API
API]

description 701
PasswordExpiredCannotChangeException()

constructor 703
PasswordExpiredCannotChangeException(Str

ing, Throwable) constructor 703
PasswordExpiredCannotChangeException(Str

ing) constructor 703

Index

1408 SAP Mobile Platform

PasswordExpiredCannotChangeException()
constructor

PasswordExpiredCannotChangeException
class [Agentry Java System
Connection API API] 703

PasswordExpiredCannotChangeException(String,
Throwable) constructor

PasswordExpiredCannotChangeException
class [Agentry Java System
Connection API API] 703

PasswordExpiredCannotChangeException(String)
constructor

PasswordExpiredCannotChangeException
class [Agentry Java System
Connection API API] 703

PasswordExpiredException class [Agentry Java
System Connection API API]

description 703
PasswordExpiredException() constructor 705
PasswordExpiredException(String,

Throwable) constructor 705
PasswordExpiredException(String)

constructor 705
PasswordExpiredException() constructor

PasswordExpiredException class [Agentry
Java System Connection API API]
705

PasswordExpiredException(String, Throwable)
constructor

PasswordExpiredException class [Agentry
Java System Connection API API]
705

PasswordExpiredException(String) constructor
PasswordExpiredException class [Agentry

Java System Connection API API]
705

PasswordInvalid variable
Server.LoginFailureReason enum [Agentry

Java System Connection API API]
740

PasswordInvalidException class [Agentry Java
System Connection API API]

description 706
PasswordInvalidException() constructor 707
PasswordInvalidException(String, Throwable)

constructor 708
PasswordInvalidException(String) constructor

707

PasswordInvalidException() constructor
PasswordInvalidException class [Agentry Java

System Connection API API] 707
PasswordInvalidException(String, Throwable)

constructor
PasswordInvalidException class [Agentry Java

System Connection API API] 708
PasswordInvalidException(String) constructor

PasswordInvalidException class [Agentry Java
System Connection API API] 707

PasswordWarningCannotChangeException class
[Agentry Java System Connection API
API]

description 708
PasswordWarningCannotChangeException()

constructor 710
PasswordWarningCannotChangeException(St

ring, Throwable) constructor 710
PasswordWarningCannotChangeException(St

ring) constructor 710
PasswordWarningCannotChangeException()

constructor
PasswordWarningCannotChangeException

class [Agentry Java System
Connection API API] 710

PasswordWarningCannotChangeException(String,
Throwable) constructor

PasswordWarningCannotChangeException
class [Agentry Java System
Connection API API] 710

PasswordWarningCannotChangeException(String)
constructor

PasswordWarningCannotChangeException
class [Agentry Java System
Connection API API] 710

PasswordWarningException class [Agentry Java
System Connection API API]

description 710
PasswordWarningException() constructor 712
PasswordWarningException(String,

Throwable) constructor 712
PasswordWarningException(String)

constructor 712
PasswordWarningException() constructor

PasswordWarningException class [Agentry
Java System Connection API API]
712

Index

Agentry App Development 1409

PasswordWarningException(String, Throwable)
constructor

PasswordWarningException class [Agentry
Java System Connection API API]
712

PasswordWarningException(String) constructor
PasswordWarningException class [Agentry

Java System Connection API API]
712

position property
SMPOpenUIImage class [Agentry Open UI

iOS SDK] 1186
presentation property

SMPOpenUIImage class [Agentry Open UI
iOS SDK] 1187

processDecimalInput(double) method
DurationEditModel interface [Agentry Open

UI Android SDK] 1106
processInput method

SMPOpenUIButtonDisplayModel protocol
[Agentry Open UI iOS SDK] 1202

processInput() method
ButtonDisplayModel interface [Agentry Open

UI Android SDK] 1086
processInput(AgentryLocation) method

LocationEditModel interface [Agentry Open
UI Android SDK] 1127

processInput(boolean) method
BooleanEditModel interface [Agentry Open

UI Android SDK] 1083
ProcessInput(DateTime) method

IAgentryControlViewModelDateTime
interface [Agentry Open UI
Windows SDK] 1331

processInput(double) method
DecimalEditModel interface [Agentry Open

UI Android SDK] 1100
ProcessInput(double) method

IAgentryControlViewModelDecimal interface
[Agentry Open UI Windows SDK]
1336

processInput(GregorianCalendar) method
DateAndTimeEditModel interface [Agentry

Open UI Android SDK] 1092
DateEditModel interface [Agentry Open UI

Android SDK] 1096
TimeEditModel interface [Agentry Open UI

Android SDK] 1136

processInput(int) method
DurationEditModel interface [Agentry Open

UI Android SDK] 1106
processInput(String) method

ExternalDataEditModel interface [Agentry
Open UI Android SDK] 1114

StringEditModel interface [Agentry Open UI
Android SDK] 1133

ProcessInput(string) method
IAgentryControlViewModelFile interface

[Agentry Open UI Windows SDK]
1346

IAgentryControlViewModelStringEdit
interface [Agentry Open UI
Windows SDK] 1362

ProcessInput(T) method
IAgentryControlViewModelNumber< T >

interface [Agentry Open UI
Windows SDK] 1355

ProcessInput(TimeSpan) method
IAgentryControlViewModelDuration

interface [Agentry Open UI
Windows SDK] 1341

processInputBoolean: method
SMPOpenUIBooleanEditModel protocol

[Agentry Open UI iOS SDK] 1198
processInputDate: method

SMPOpenUIDateEditModel protocol
[Agentry Open UI iOS SDK] 1225

processInputDateAndTime: method
SMPOpenUIDateAndTimeEditModel

protocol [Agentry Open UI iOS
SDK] 1217

processInputDecimal: method
SMPOpenUIDecimalEditModel protocol

[Agentry Open UI iOS SDK] 1233
processInputDuration: method

SMPOpenUIDurationEditModel protocol
[Agentry Open UI iOS SDK] 1243

processInputExternalData: method
SMPOpenUIExternalDataEditModel protocol

[Agentry Open UI iOS SDK] 1258
processInputFractionalHour: method

SMPOpenUIDurationEditModel protocol
[Agentry Open UI iOS SDK] 1244

processInputInteger: method
SMPOpenUIIntegerEditModel protocol

[Agentry Open UI iOS SDK] 1277

Index

1410 SAP Mobile Platform

processInputLocation: method
SMPOpenUILocationEditModel protocol

[Agentry Open UI iOS SDK] 1289
ProcessInputReturn class [Agentry Open UI

Android SDK]
description 1161
getChanged() method 1162
getMunged() method 1163
getValid() method 1163
ProcessInputReturn(boolean, boolean,

boolean) constructor 1162
ProcessInputReturn.processInputReturnValues

enum [Agentry Open UI Android SDK
API]

description 1161
ProcessInputReturn.processInputReturnValues

enum [Agentry Open UI Android SDK]
Munged variable 1162
Valid variable 1162

ProcessInputReturn(boolean, boolean, boolean)
constructor

ProcessInputReturn class [Agentry Open UI
Android SDK] 1162

processInputSelection: method
SMPOpenUICollectionDisplayModel

protocol [Agentry Open UI iOS
SDK] 1209

processInputString: method
SMPOpenUIStringEditModel protocol

[Agentry Open UI iOS SDK] 1297
processInputTime: method

SMPOpenUITimeEditModel protocol
[Agentry Open UI iOS SDK] 1305

processInputUnsignedInteger: method
SMPOpenUIUnsignedIntegerEditModel

protocol [Agentry Open UI iOS
SDK] 1313

processIntegerInput(int) method
IntegerEditModel interface [Agentry Open UI

Android SDK] 1122
Properties() method

IAgentryData interface [Agentry Open UI
Windows SDK] 1366

PROPERTY variable
AgentryData.DataType enum [Agentry Open

UI Android SDK] 1139
propertyType method

SMPDataAPIPropertyProtocol protocol
[Agentry Open UI iOS SDK] 1181

PropertyType property
IAgentryProperty interface [Agentry Open UI

Windows SDK] 1373
publish(LogRecord) method

AgentryHandler class [Agentry Java System
Connection API API] 640

PushSession class [Agentry Java System
Connection API API]

beginPushError() method [deprecated] 716
beginPushReadStep() method 717
beginPushRemoval() method 717
beginPushResponse() method [deprecated]

717
beginPushRetrieval() method 718
description 713
endPushError() method [deprecated] 718
endPushReadStep() method 718
endPushRemoval() method 719
endPushResponse() method [deprecated] 719
endPushRetrieval() method 719
PushSession(String, Server, SessionData)

constructor 716
PushSession(String, Server, SessionData)

constructor
PushSession class [Agentry Java System

Connection API API] 716
PushUserSession class [Agentry Java System

Connection API API]
beginDisablePush() method 723
beginEnablePush() method 723
beginPushError() method 723
beginPushResponse() method 724
description 719
disablePush() method 724
enablePush() method 724
endDisablePush() method 724
endEnablePush() method 725
endPushError() method 725
endPushResponse() method 725
PushUserSession(String, Server, SessionData,

User) constructor 722
PushUserSession(String, Server, SessionData,

User) constructor
PushUserSession class [Agentry Java System

Connection API API] 722

Index

Agentry App Development 1411

R

reload() method [deprecated]
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 674
reLoggedIn() method

User class [Agentry Java System Connection
API API] 794

remove() method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
655

requestLayoutHeigh: method
SMPOpenUIFieldModel protocol [Agentry

Open UI iOS SDK] 1268
requestLayoutHeight(int) method

FieldModel interface [Agentry Open UI
Android SDK] 1118

requiresLayout() method
AgentryAppender class [Agentry Java System

Connection API API] 653
RetryTransactionException class [Agentry Java

System Connection API API]
description 725
RetryTransactionException(String, String,

String, Throwable) constructor 727
RetryTransactionException(String, String,

String) constructor 727
RetryTransactionException(String, String, String,

Throwable) constructor
RetryTransactionException class [Agentry

Java System Connection API API]
727

RetryTransactionException(String, String, String)
constructor

RetryTransactionException class [Agentry
Java System Connection API API]
727

RetryTransactionWithChangeException class
[Agentry Java System Connection API
API]

description 727
RetryTransactionWithChangeException(Strin

g, String, String, Throwable)
constructor 729

RetryTransactionWithChangeException(Strin
g, String, String) constructor 729

RetryTransactionWithChangeException(String,
String, String, Throwable) constructor

RetryTransactionWithChangeException class
[Agentry Java System Connection
API API] 729

RetryTransactionWithChangeException(String,
String, String) constructor

RetryTransactionWithChangeException class
[Agentry Java System Connection
API API] 729

revalidate(String) method
User class [Agentry Java System Connection

API API] 794
root method

SMPDataAPIProtocol protocol [Agentry Open
UI iOS SDK] 1184

Root property
IAgentryData interface [Agentry Open UI

Windows SDK] 1367
rows property

SMPOpenUIEmbeddedImageDisplayModel
protocol [Agentry Open UI iOS
SDK] 1250

Rows property
IAgentryControlViewModelImage interface

[Agentry Open UI Windows SDK]
1351

S
satellites property

SMPDataAPILocationProtocol protocol
[Agentry Open UI iOS SDK] 1177

SMPOpenUILocation class [Agentry Open UI
iOS SDK] 1190

SelectCell(int, int) method
IAgentryControlViewModelImage interface

[Agentry Open UI Windows SDK]
1350

SelectColor property
IAgentryControlViewModelImage interface

[Agentry Open UI Windows SDK]
1351

selected property
SMPOpenUIButtonDisplayModel protocol

[Agentry Open UI iOS SDK] 1203
SelectedItem property

IAgentryControlViewModelCollectionDispla
y interface [Agentry Open UI
Windows SDK] 1329

Index

1412 SAP Mobile Platform

selectedStateChanged(boolean) method
ButtonDisplayAdapter class [Agentry Open UI

Android SDK] 1019
selection property

SMPOpenUICollectionDisplayModel
protocol [Agentry Open UI iOS
SDK] 1210

SelectItem(int) method
IAgentryControlViewModelCollectionDispla

y interface [Agentry Open UI
Windows SDK] 1328

selectRow(int) method
CollectionDisplayModel interface [Agentry

Open UI Android SDK] 1089
Server class [Agentry Java System Connection API

API]
createComplexTableSession(String,

SessionData, User) method 740
createDataTableSession(String, SessionData,

User) method 741
createFetchSession(String, Server,

SessionData, User) method
[deprecated] 742

createFetchSession(String, SessionData, User)
method 742

createPushSession(String, Server,
SessionData) method [deprecated]
743

createPushSession(String, SessionData)
method 743

createPushUserSession(String, Server,
SessionData, User) method
[deprecated] 744

createPushUserSession(String, SessionData,
User) method 744

createServiceEventSession(String, Server,
SessionData) method [deprecated]
745

createServiceEventSession(String,
SessionData) method 746

createTransactionSession(String, Server,
SessionData, User) method
[deprecated] 746

createTransactionSession(String,
SessionData, User) method 747

createUser(String, int) method [deprecated]
747

createUser(String) method 748
debug(String) method 748

decryptPassword(String) method 749
description 729
findConfigurationFile(String) method 749
getImplementationVersion() method 749
getInstance() method 750
getSpecificationVersion() method 750
getTimeZone() method 750
login(String, String, SessionData) method

[deprecated] 751
login(User, String, SessionData) method 751
loginBlocked(String, StringBuffer) method

[deprecated] 752
loginBlocked(User, String, StringBuffer,

SessionData) method 753
loginBlocked(User, StringBuffer,

SessionData) method [deprecated]
753

loginFailed(String, StringBuffer) method
[deprecated] 754

loginFailed(User, String, LoginFailureReason,
StringBuffer, SessionData) method
755

loginPreviousUser(String, String,
SessionData) method [deprecated]
756

loginPreviousUser(User, String, SessionData)
method 756

Server() constructor 740
setDebugEnabled(boolean) method

[deprecated] 757
shutdown() method 757
startup() method 757

Server.LoginEnumeration enum [Agentry Java
System Connection API API]

description 736
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection API
API]

Login_Invalid variable 737
Login_InvalidBlocked variable 738
Login_Pass variable 738
Login_Valid variable 738
Login_ValidPasswordExpired variable 738
Login_ValidPasswordExpiredNoChange

variable 738
Login_ValidPasswordWarning variable 739
Login_ValidPasswordWarningNoChange

variable 739
throwException() method 737

Index

Agentry App Development 1413

Server.LoginFailureReason enum [Agentry Java
System Connection API API]

description 739
NoBackEndsAuthenticated variable 740
PasswordExpiredCannotChange variable 740
PasswordInvalid variable 740

Server() constructor
Server class [Agentry Java System Connection

API API] 740
ServiceEvent class [Agentry Java System

Connection API API]
_server variable 760
_sessionData variable 760
dataReceived(Object) method 759
description 758
ServiceEvent(Server, SessionData,

CallbackInterface) constructor 759
ServiceEvent(Server, SessionData,

CallbackInterface) constructor
ServiceEvent class [Agentry Java System

Connection API API] 759
ServiceEventSession class [Agentry Java System

Connection API API]
beginDataAndUpdateSteps() method 763
beginReadSteps() method 763
beginServiceEventError() method 764
description 760
endDataAndUpdateSteps() method 764
endReadSteps() method 764
endServiceEventError() method 764
ServiceEventSession(String, Server,

SessionData) constructor 763
ServiceEventSession(String, Server, SessionData)

constructor
ServiceEventSession class [Agentry Java

System Connection API API] 763
Session class [Agentry Java System Connection API

API]
debug(String) method 767
description 765
getName() method 767
getServer() method 767
getSessionData() method 768
getUser() method 768
Session(String, Server, SessionData, User)

constructor 766
Session(String, Server, SessionData)

constructor 766
sessionAborted() method 768

Session(String, Server, SessionData, User)
constructor

Session class [Agentry Java System
Connection API API] 766

Session(String, Server, SessionData) constructor
Session class [Agentry Java System

Connection API API] 766
sessionAborted() method

Session class [Agentry Java System
Connection API API] 768

SessionData interface [Agentry Java System
Connection API API]

description 795
eval(String) method 798
getBoolean(String) method 798
getBytes(String) method 798
getDouble(String) method 799
getFloat(String) method 799
getInteger(String) method 799
getLong(String) method 799
getString(String) method 800
getTimeAndDate(String, String) method 800
getTimeAndDate(String) method 800
sessionData(String) constructor 797

sessionData(String) constructor
SessionData interface [Agentry Java System

Connection API API] 797
setBitmapData(byte[]) method

AgentryImage class [Agentry Open UI
Android SDK] 1155

setDebugEnabled(boolean) method [deprecated]
Server class [Agentry Java System Connection

API API] 757
setDilution(double) method

AgentryLocation class [Agentry Open UI
Android SDK] 1158

setEnabled(boolean) method
FieldAdapter class [Agentry Open UI Android

SDK] 1057
setHyperlinkEnabled(boolean) method

FieldAdapter class [Agentry Open UI Android
SDK] 1057

setImageCellSelected(long, long) method
EmbeddedImageDisplayModel interface

[Agentry Open UI Android SDK]
1110

setLatitude(double) method
AgentryLocation class [Agentry Open UI

Android SDK] 1158

Index

1414 SAP Mobile Platform

setLevel(Level) method
UserLogRecord class [Agentry Java System

Connection API API] 647
setLoggerName(String) method

UserLogRecord class [Agentry Java System
Connection API API] 647

setLongitude(double) method
AgentryLocation class [Agentry Open UI

Android SDK] 1158
setMessage(String) method

UserLogRecord class [Agentry Java System
Connection API API] 647

setMillis(long) method
UserLogRecord class [Agentry Java System

Connection API API] 648
setNewDataUpdateTime(GregorianCalendar)

method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 674
setParameters(Object[]) method

UserLogRecord class [Agentry Java System
Connection API API] 648

setResourceBundle(ResourceBundle) method
UserLogRecord class [Agentry Java System

Connection API API] 648
setResourceBundleName(String) method

UserLogRecord class [Agentry Java System
Connection API API] 648

setSatellites(int) method
AgentryLocation class [Agentry Open UI

Android SDK] 1158
setSequenceNumber(long) method

UserLogRecord class [Agentry Java System
Connection API API] 648

setSourceClassName(String) method
UserLogRecord class [Agentry Java System

Connection API API] 648
setSourceMethodName(String) method

UserLogRecord class [Agentry Java System
Connection API API] 648

setThreadID(int) method
UserLogRecord class [Agentry Java System

Connection API API] 648
setThrown(Throwable) method

UserLogRecord class [Agentry Java System
Connection API API] 649

setValid(boolean, String) method
FieldAdapter class [Agentry Open UI Android

SDK] 1057

setValid(boolean) method
AgentryLocation class [Agentry Open UI

Android SDK] 1158
setVisible(boolean) method

FieldAdapter class [Agentry Open UI Android
SDK] 1058

shutdown() method
Server class [Agentry Java System Connection

API API] 757
SIGNATURE variable

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1147

SMPActionResult enumeration
IAgentryControlViewModel.cs file [Agentry

Open UI Windows SDK] 1375
SMPActionState enumeration

IAgentryControlViewModel.cs file [Agentry
Open UI Windows SDK] 1375

SMPDataAPIDataType enumeration
SMPDataAPIProtocols.h [Agentry Open UI

iOS SDK] 1184
SMPDataAPILocationProtocol protocol [Agentry

Open UI iOS SDK]
description 1174
dilution property 1177
initWithCLLocation: method 1175
initWithLatitude:andLongitude:andSatellites:

andDilution: method 1176
latitude property 1177
location property 1177
locationWithCLLocation: method 1176
locationWithLatitude:andLongitude:andSatell

ites:andDilution: method 1176
longitude property 1177
satellites property 1177
valid property 1177

SMPDataAPIPropertyProtocol protocol [Agentry
Open UI iOS SDK]

asBool method 1179
asDate method 1179
asDateAndTime method 1179
asDecimal method 1180
asLocation method 1180
asLong method 1180
asString method 1180
asTime method 1181
description 1178
log method 1181
propertyType method 1181

Index

Agentry App Development 1415

SMPDataAPIPropertyType enumeration
SMPDataAPIProtocols.h [Agentry Open UI

iOS SDK] 1184
SMPDataAPIProtocol protocol [Agentry Open UI

iOS SDK]
ancestor method 1182
dataIdentifier method [deprecated] 1182
dataType method 1182
descendant: method 1183
descendantCount method 1183
description 1181
displayName method 1183
log method 1183
name method 1184
root method 1184

SMPDataAPIProtocols.h [Agentry Open UI iOS
SDK]

SMPDataAPIDataType enumeration 1184
SMPDataAPIPropertyType enumeration 1184

SMPDurationFormat enumeration
IAgentryControlViewModelDurationDisplay.

cs file [Agentry Open UI Windows
SDK] 1376

SMPOpenUIActionEnableType enumeration
SMPOpenUIFieldModel.h [Agentry Open UI

iOS SDK] 1316
SMPOpenUIActionResult enumeration

SMPOpenUIFieldModel.h [Agentry Open UI
iOS SDK] 1317

SMPOpenUIAutosizeBehavior enumeration
SMPOpenUIFieldAdapter.h [Agentry Open UI

iOS SDK] 1314
SMPOpenUIBooleanDisplayAdapter protocol

[Agentry Open UI iOS SDK]
description 1190
initWithBooleanDisplayModel: method 1192
model:didChangeBoolean: method 1192

SMPOpenUIBooleanDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1192
value property 1194

SMPOpenUIBooleanEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1194
initWithBooleanEditModel: method 1196
model:didChangeBoolean: method 1196

SMPOpenUIBooleanEditModel protocol [Agentry
Open UI iOS SDK]

description 1196

processInputBoolean: method 1198
SMPOpenUIButtonDisplayAdapter protocol

[Agentry Open UI iOS SDK]
description 1198
initWithButtonDisplayModel: method 1200
model:didChangeButtonImage: method 1200
model:didChangeSelected: method 1200

SMPOpenUIButtonDisplayModel protocol
[Agentry Open UI iOS SDK]

buttonImage property 1202
buttonText property 1203
buttonType property 1203
description 1201
processInput method 1202
selected property 1203
supportsAction property 1203
value property 1203

SMPOpenUIButtonDisplayModel.h [Agentry
Open UI iOS SDK]

SMPOpenUIButtonType enumeration 1314
SMPOpenUIButtonType enumeration

SMPOpenUIButtonDisplayModel.h [Agentry
Open UI iOS SDK] 1314

SMPOpenUICollectionDisplayAdapter protocol
[Agentry Open UI iOS SDK]

allObjectsChanged: method 1205
description 1203
initWithCollectionDisplayModel: method

1206
model:didSelectObjectAtIndex: method 1206
model:objectAddedAtIndex: method 1206
model:objectChangedAtIndex: method 1207
model:objectDeletedAtIndex: method 1207

SMPOpenUICollectionDisplayModel protocol
[Agentry Open UI iOS SDK]

collection method 1209
description 1207
displayedObjectAtIndex: method 1209
displayedObjectCount property 1210
processInputSelection: method 1209
selection property 1210

SMPOpenUIDateAndTimeDisplayAdapter
protocol [Agentry Open UI iOS SDK]

description 1210
initWithDateAndTimeDisplayModel: method

1212
model:didChangeDateAndTime: method

1212

Index

1416 SAP Mobile Platform

SMPOpenUIDateAndTimeDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1212
value property 1214

SMPOpenUIDateAndTimeEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1214
initWithDateAndTimeEditModel: method

1215
model:didChangeDateAndTime: method

1216
SMPOpenUIDateAndTimeEditModel protocol

[Agentry Open UI iOS SDK]
description 1216
processInputDateAndTime: method 1217

SMPOpenUIDateDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1218
initWithDateDisplayModel: method 1219
model:didChangeDate: method 1220

SMPOpenUIDateDisplayModel protocol [Agentry
Open UI iOS SDK]

description 1220
value property 1221

SMPOpenUIDateEditAdapter protocol [Agentry
Open UI iOS SDK]

description 1222
initWithDateEditModel: method 1223
model:didChangeDate: method 1224

SMPOpenUIDateEditModel protocol [Agentry
Open UI iOS SDK]

description 1224
processInputDate: method 1225

SMPOpenUIDecimalDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1226
initWithDecimalDisplayModel: method 1227
model:didChangeDecimal: method 1228

SMPOpenUIDecimalDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1228
value property 1229

SMPOpenUIDecimalEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1229
initWithDecimalEditModel: method 1231
model:didChangeDecimal: method 1231

SMPOpenUIDecimalEditModel protocol [Agentry
Open UI iOS SDK]

description 1232
maximumValue property 1234
minimumValue property 1234
processInputDecimal: method 1233

SMPOpenUIDurationDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1234
initWithDurationDisplayModel: method 1236
model:didChangeDuration: method 1236
model:didChangeFractionalHour: method

1236
SMPOpenUIDurationDisplayFormat enumeration

SMPOpenUIDurationDisplayModel.h
[Agentry Open UI iOS SDK] 1316

SMPOpenUIDurationDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1237
displayFormat property 1238
fractionalHourValue property 1238
value property 1239

SMPOpenUIDurationDisplayModel.h [Agentry
Open UI iOS SDK]

SMPOpenUIDurationDisplayFormat
enumeration 1316

SMPOpenUIDurationEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1239
initWithDurationEditModel: method 1240
model:didChangeDuration: method 1241
model:didChangeFractionalHour: method

1241
SMPOpenUIDurationEditModel protocol [Agentry

Open UI iOS SDK]
description 1241
maximumFractionalHourValue property 1244
maximumValue property 1244
minimumFractionalHourValue property 1245
minimumValue property 1245
processInputDuration: method 1243
processInputFractionalHour: method 1244

SMPOpenUIEmbeddedImageDisplayAdapter
protocol [Agentry Open UI iOS SDK]

description 1245
initWithEmbeddedImageModel: method 1247
model:didChangeImage: method 1247
modelDidChangeImageCellSelection: method

1247

Index

Agentry App Development 1417

SMPOpenUIEmbeddedImageDisplayModel
protocol [Agentry Open UI iOS SDK]

columns property 1250
description 1248
highlightSelectedColor property 1250
image property 1250
imageCellClickedAtRow:andColumn: method

1249
isImageCellSelectedAtRow:andColumn:

method 1250
rows property 1250

SMPOpenUIExternalDataDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1251
initWithExternalDataDisplayModel: method

1252
model:didChangeExternalData: method 1253

SMPOpenUIExternalDataDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1253
value property 1254

SMPOpenUIExternalDataEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1254
initWithExternalDataEditModel: method

1256
model:didChangeExternalData: method 1256

SMPOpenUIExternalDataEditModel protocol
[Agentry Open UI iOS SDK]

description 1257
processInputExternalData: method 1258

SMPOpenUIFieldAdapter protocol [Agentry Open
UI iOS SDK]

agentryShouldDisplayLabel method 1261
agentryShouldDisplayValidationFailure

method 1261
autosizeBehavior method 1261
description 1258
model:didSetEnabled: method 1262
model:didSetHyperlinkEnabled: method 1262
model:didSetValid:withValidationFailureText:

method 1262
model:didSetVisible: method 1263
model:didUpdateLabel: method 1263
model:wantsExtensionString: method 1264
model:wantsViewHeightForWidth: method

1264
viewForFrame: method 1265

SMPOpenUIFieldAdapter.h [Agentry Open UI iOS
SDK]

SMPOpenUIAutosizeBehavior enumeration
1314

SMPOpenUIFieldModel protocol [Agentry Open
UI iOS SDK]

agentryActionEnableState: method 1266
agentryString: method 1267
autosizing property 1268
description 1265
enabled property 1269
executeAgentryAction: method 1267
executeHyperlinkAction method 1268
hidden property 1269
hyperlinkEnabled property 1269
label property 1269
requestLayoutHeigh: method 1268

SMPOpenUIFieldModel.h [Agentry Open UI iOS
SDK]

SMPOpenUIActionEnableType enumeration
1316

SMPOpenUIActionResult enumeration 1317
SMPOpenUIProcessInputReturn enumeration

1317
SMPOpenUIImage class [Agentry Open UI iOS

SDK]
description 1186
image property 1186
name property 1186
position property 1186
presentation property 1187

SMPOpenUIImage.h [Agentry Open UI iOS SDK]
SMPOpenUIImagePosition enumeration

1318
SMPOpenUIImagePresentation enumeration

1315
SMPOpenUIImagePosition enumeration

SMPOpenUIImage.h [Agentry Open UI iOS
SDK] 1318

SMPOpenUIImagePresentation enumeration
SMPOpenUIImage.h [Agentry Open UI iOS

SDK] 1315
SMPOpenUIIntegerDisplayAdapter protocol

[Agentry Open UI iOS SDK]
description 1269
initWithIntegerDisplayModel: method 1271
model:didChangeInteger: method 1271

Index

1418 SAP Mobile Platform

SMPOpenUIIntegerDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1272
value property 1273

SMPOpenUIIntegerEditAdapter protocol [Agentry
Open UI iOS SDK]

description 1273
initWithIntegerEditModel: method 1275
model:didChangeInteger: method 1275

SMPOpenUIIntegerEditModel protocol [Agentry
Open UI iOS SDK]

description 1275
maximumValue property 1277
minimumValue property 1277
processInputInteger: method 1277

SMPOpenUILabelDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1278
initWithLabelDisplayModel: method 1279
model:didChangeLabel: method 1280

SMPOpenUILabelDisplayModel protocol [Agentry
Open UI iOS SDK]

description 1280
value property 1281

SMPOpenUILocation class [Agentry Open UI iOS
SDK]

description 1187
dilution property 1189
initWithCLLocation: method 1188
initWithLatitude:andLongitude:andSatellites:

andDilution: method 1188
latitude property 1189
location property 1189
locationWithCLLocation: method 1189
locationWithLatitude:andLongitude:andSatell

ites:andDilution: method 1189
longitude property 1190
satellites property 1190
valid property 1190

SMPOpenUILocationDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1281
initWithLocationDisplayModel: method 1283
model:didChangeLocation: method 1283

SMPOpenUILocationDisplayModel protocol
[Agentry Open UI iOS SDK]

description 1284
value property 1285

SMPOpenUILocationEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1285
initWithLocationEditModel: method 1287
model:didChangeLocation: method 1287

SMPOpenUILocationEditModel protocol [Agentry
Open UI iOS SDK]

description 1287
processInputLocation: method 1289

SMPOpenUIProcessInputReturn enumeration
SMPOpenUIFieldModel.h [Agentry Open UI

iOS SDK] 1317
SMPOpenUIStringDisplayAdapter protocol

[Agentry Open UI iOS SDK]
description 1289
initWithStringDisplayModel: method 1291
model:didChangeString: method 1291

SMPOpenUIStringDisplayModel protocol
[Agentry Open UI iOS SDK]

allowsCarriageReturn property 1293
description 1291
usesWordWrap property 1293
value property 1293

SMPOpenUIStringEditAdapter protocol [Agentry
Open UI iOS SDK]

description 1293
initWithStringEditModel: method 1295
model:didChangeString: method 1295

SMPOpenUIStringEditModel protocol [Agentry
Open UI iOS SDK]

description 1295
isPasswordInput property 1297
maximumLength property 1298
minimumLength property 1298
processInputString: method 1297

SMPOpenUITimeDisplayAdapter protocol
[Agentry Open UI iOS SDK]

description 1298
initWithTimeDisplayModel: method 1300
model:didChangeTime: method 1300

SMPOpenUITimeDisplayModel protocol [Agentry
Open UI iOS SDK]

description 1300
value property 1301

SMPOpenUITimeEditAdapter protocol [Agentry
Open UI iOS SDK]

description 1302
initWithTimeEditModel: method 1303
model:didChangeTime: method 1304

Index

Agentry App Development 1419

SMPOpenUITimeEditModel protocol [Agentry
Open UI iOS SDK]

description 1304
processInputTime: method 1305

SMPOpenUIUnsignedIntegerDisplayAdapter
protocol [Agentry Open UI iOS SDK]

description 1306
initWithUnsignedIntegerDisplayModel:

method 1307
model:didChangeUnsignedInteger: method

1308
SMPOpenUIUnsignedIntegerDisplayModel

protocol [Agentry Open UI iOS SDK]
description 1308
value property 1309

SMPOpenUIUnsignedIntegerEditAdapter protocol
[Agentry Open UI iOS SDK]

description 1309
initWithUnsignedIntegerEditModel: method

1311
model:didChangeUnsignedInteger: method

1311
SMPOpenUIUnsignedIntegerEditModel protocol

[Agentry Open UI iOS SDK]
description 1312
maximumValue property 1314
minimumValue property 1314
processInputUnsignedInteger: method 1313

SMPProcessInputReturn enumeration
IAgentryControlViewModel.cs file [Agentry

Open UI Windows SDK] 1376
startup() method

Server class [Agentry Java System Connection
API API] 757

Steplet class [Agentry Java System Connection API
API]

_session variable 775
description 768
doSteplet() method 772
getNotificationText() method 773
getNotificationTitle() method 773
getOkButtonLabel() method 773
getReturnData() method 774
getSession() method 774
notificationText() method [deprecated] 775
notificationTitle() method [deprecated] 775
okButtonLabel() method [deprecated] 775
Steplet(FetchSession) constructor 771
Steplet(PushSession) constructor 771

Steplet(PushUserSession) constructor 771
Steplet(ServiceEventSession) constructor 772
Steplet(TransactionSession) constructor 771

Steplet(FetchSession) constructor
Steplet class [Agentry Java System Connection

API API] 771
Steplet(PushSession) constructor

Steplet class [Agentry Java System Connection
API API] 771

Steplet(PushUserSession) constructor
Steplet class [Agentry Java System Connection

API API] 771
Steplet(ServiceEventSession) constructor

Steplet class [Agentry Java System Connection
API API] 772

Steplet(TransactionSession) constructor
Steplet class [Agentry Java System Connection

API API] 771
StepletAbortException class [Agentry Java System

Connection API API]
description 776
StepletAbortException(String) constructor

777
StepletAbortException(String) constructor

StepletAbortException class [Agentry Java
System Connection API API] 777

StepletStopException class [Agentry Java System
Connection API API]

description 777
StepletStopException(String) constructor 778

StepletStopException(String) constructor
StepletStopException class [Agentry Java

System Connection API API] 778
STRING variable

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1148

StringDisplayAdapter class [Agentry Open UI
Android SDK]

description 1070
initialize(StringDisplayModel, Context)

method 1072
valueChanged(String) method 1072

StringDisplayModel interface [Agentry Open UI
Android SDK]

description 1128
getValue() method 1129
isCarriageReturnAllowed() method 1130
isWordWrapAllowed() method 1130

Index

1420 SAP Mobile Platform

StringEditAdapter class [Agentry Open UI Android
SDK]

description 1073
initialize(StringEditModel, Context) method

1074
valueChanged(String) method 1075

StringEditModel interface [Agentry Open UI
Android SDK]

description 1130
getMaximumLength() method 1132
getMinimumLength() method 1132
isPasswordInput() method 1133
processInput(String) method 1133

StringValue property
IAgentryControlViewModelDecimalDisplay

interface [Agentry Open UI
Windows SDK] 1338

IAgentryControlViewModelStringDisplay
interface [Agentry Open UI
Windows SDK] 1360

supportsAction property
SMPOpenUIButtonDisplayModel protocol

[Agentry Open UI iOS SDK] 1203
SycloCalendar class [Agentry Java System

Connection API API]
description 778
getInvalidTimeAndDate() method 782
isInvalidTimeAndDate() method 782
isInvalidTimeAndDate(GregorianCalendar)

method 782
SycloCalendar() constructor 780
SycloCalendar(GregorianCalendar, Locale)

constructor 780
SycloCalendar(GregorianCalendar)

constructor 779
SycloCalendar(int, int, int, int, int, int)

constructor 780
SycloCalendar(int, int, int, int, int) constructor

781
SycloCalendar(int, int, int) constructor 781
SycloCalendar(Locale) constructor 781
SycloCalendar(TimeZone, Locale) constructor

781
SycloCalendar(TimeZone) constructor 782

SycloCalendar() constructor
SycloCalendar class [Agentry Java System

Connection API API] 780

SycloCalendar(GregorianCalendar, Locale)
constructor

SycloCalendar class [Agentry Java System
Connection API API] 780

SycloCalendar(GregorianCalendar) constructor
SycloCalendar class [Agentry Java System

Connection API API] 779
SycloCalendar(int, int, int, int, int, int) constructor

SycloCalendar class [Agentry Java System
Connection API API] 780

SycloCalendar(int, int, int, int, int) constructor
SycloCalendar class [Agentry Java System

Connection API API] 781
SycloCalendar(int, int, int) constructor

SycloCalendar class [Agentry Java System
Connection API API] 781

SycloCalendar(Locale) constructor
SycloCalendar class [Agentry Java System

Connection API API] 781
SycloCalendar(TimeZone, Locale) constructor

SycloCalendar class [Agentry Java System
Connection API API] 781

SycloCalendar(TimeZone) constructor
SycloCalendar class [Agentry Java System

Connection API API] 782

T

throwException() method
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 737

TIME variable
AgentryProperty.PropertyType enum [Agentry

Open UI Android SDK] 1148
TimeDisplayAdapter class [Agentry Open UI

Android SDK]
description 1075
initialize(TimeDisplayModel, Context)

method 1077
valueChanged(GregorianCalendar) method

1077
TimeDisplayModel interface [Agentry Open UI

Android SDK]
description 1133
getValue() method 1135

timedOut() method
User class [Agentry Java System Connection

API API] 795

Index

Agentry App Development 1421

TimeEditAdapter class [Agentry Open UI Android
SDK]

description 1077
initialize(TimeEditModel, Context) method

1079
valueChanged(GregorianCalendar) method

1079
TimeEditModel interface [Agentry Open UI

Android SDK]
description 1135
processInput(GregorianCalendar) method

1136
TimeValue property

IAgentryControlViewModelDateTimeDisplay
interface [Agentry Open UI
Windows SDK] 1333

ToBoolean() method
IAgentryProperty interface [Agentry Open UI

Windows SDK] 1370
ToDate() method

IAgentryProperty interface [Agentry Open UI
Windows SDK] 1371

ToDateTime() method
IAgentryProperty interface [Agentry Open UI

Windows SDK] 1371
ToDouble() method

IAgentryProperty interface [Agentry Open UI
Windows SDK] 1371

ToInt() method
IAgentryProperty interface [Agentry Open UI

Windows SDK] 1371
toString() method

UserLogRecord class [Agentry Java System
Connection API API] 649

ToString() method
IAgentryProperty interface [Agentry Open UI

Windows SDK] 1372
ToTime() method

IAgentryProperty interface [Agentry Open UI
Windows SDK] 1372

ToUInt() method
IAgentryProperty interface [Agentry Open UI

Windows SDK] 1372
TransactionSession class [Agentry Java System

Connection API API]
beginTransaction() method 785
description 783
endTransaction() method 785

TransactionSession(String, Server,
SessionData, User) constructor 784

TransactionSession(String, Server, SessionData,
User) constructor

TransactionSession class [Agentry Java
System Connection API API] 784

U
UNKNOWN variable

AgentryData.DataType enum [Agentry Open
UI Android SDK] 1139

AgentryProperty.PropertyType enum [Agentry
Open UI Android SDK] 1148

update(GregorianCalendar) method
User class [Agentry Java System Connection

API API] 795
updateLabel(String) method

FieldAdapter class [Agentry Open UI Android
SDK] 1058

User class [Agentry Java System Connection API
API]

_name variable 795
backendTimeAndDate() method [deprecated]

789
beginChangePassword() method 790
changePassword(String, String) method 790
changePasswordFailed(StringBuffer) method

791
changePasswordSessionAborted() method

791
debug(String) method 791
description 785
endChangePassword() method 792
getName() method 792
getSystemConnectionTime() method 792
getTimeZone(StringBuffer) method

[deprecated] 793
loggedIn() method 793
loggedOut() method 793
reLoggedIn() method 794
revalidate(String) method 794
timedOut() method 795
update(GregorianCalendar) method 795
User(String) constructor 789

User.ChangePasswordResult enum [Agentry Java
System Connection API API]

ChangePassword_Blocked variable 788
ChangePassword_Failure variable 788
ChangePassword_NotHandled variable 789

Index

1422 SAP Mobile Platform

ChangePassword_Success variable 789
description 787
getValue() method 788

User(String) constructor
User class [Agentry Java System Connection

API API] 789
UserLogger class [Agentry Java System Connection

API API]
description 649
getUser() method 650
getUserLogger(String, String, User) method

650
getUserLogger(String, User) method 650
log(LogRecord) method 651

UserLogRecord class [Agentry Java System
Connection API API]

description 642
equals(Object) method 645
getLevel() method 645
getLoggerName() method 645
getMessage() method 646
getMillis() method 646
getParameters() method 646
getResourceBundle() method 646
getResourceBundleName() method 646
getSequenceNumber() method 646
getSourceClassName() method 646
getSourceMethodName() method 646
getThreadID() method 647
getThrown() method 647
getUser() method 647
hashCode() method 647
setLevel(Level) method 647
setLoggerName(String) method 647
setMessage(String) method 647
setMillis(long) method 648
setParameters(Object[]) method 648
setResourceBundle(ResourceBundle) method

648
setResourceBundleName(String) method 648
setSequenceNumber(long) method 648
setSourceClassName(String) method 648
setSourceMethodName(String) method 648
setThreadID(int) method 648
setThrown(Throwable) method 649
toString() method 649
UserLogRecord(User, Level, String)

constructor 645

UserLogRecord(User, LogRecord) constructor
645

UserLogRecord(User, Level, String) constructor
UserLogRecord class [Agentry Java System

Connection API API] 645
UserLogRecord(User, LogRecord) constructor

UserLogRecord class [Agentry Java System
Connection API API] 645

usesWordWrap property
SMPOpenUIStringDisplayModel protocol

[Agentry Open UI iOS SDK] 1293
utility package [Agentry Java System Connection

API API]
description 637

V

valid property
SMPDataAPILocationProtocol protocol

[Agentry Open UI iOS SDK] 1177
SMPOpenUILocation class [Agentry Open UI

iOS SDK] 1190
Valid variable

ProcessInputReturn.processInputReturnValue
s enum [Agentry Open UI Android
SDK] 1162

value property
SMPOpenUIBooleanDisplayModel protocol

[Agentry Open UI iOS SDK] 1194
SMPOpenUIButtonDisplayModel protocol

[Agentry Open UI iOS SDK] 1203
SMPOpenUIDateAndTimeDisplayModel

protocol [Agentry Open UI iOS
SDK] 1214

SMPOpenUIDateDisplayModel protocol
[Agentry Open UI iOS SDK] 1221

SMPOpenUIDecimalDisplayModel protocol
[Agentry Open UI iOS SDK] 1229

SMPOpenUIDurationDisplayModel protocol
[Agentry Open UI iOS SDK] 1239

SMPOpenUIExternalDataDisplayModel
protocol [Agentry Open UI iOS
SDK] 1254

SMPOpenUIIntegerDisplayModel protocol
[Agentry Open UI iOS SDK] 1273

SMPOpenUILabelDisplayModel protocol
[Agentry Open UI iOS SDK] 1281

SMPOpenUILocationDisplayModel protocol
[Agentry Open UI iOS SDK] 1285

Index

Agentry App Development 1423

SMPOpenUIStringDisplayModel protocol
[Agentry Open UI iOS SDK] 1293

SMPOpenUITimeDisplayModel protocol
[Agentry Open UI iOS SDK] 1301

SMPOpenUIUnsignedIntegerDisplayModel
protocol [Agentry Open UI iOS
SDK] 1309

Value property
IAgentryControlViewModelDateTimeDisplay

interface [Agentry Open UI
Windows SDK] 1334

value variable
DataTableObject class [Agentry Java System

Connection API API] 678
value() method [deprecated]

DataTableObject class [Agentry Java System
Connection API API] 678

valueChanged(AgentryLocation) method
LocationDisplayAdapter class [Agentry Open

UI Android SDK] 1068
LocationEditAdapter class [Agentry Open UI

Android SDK] 1070
valueChanged(boolean) method

BooleanDisplayAdapter class [Agentry Open
UI Android SDK] 1014

BooleanEditAdapter class [Agentry Open UI
Android SDK] 1016

valueChanged(double) method
DecimalDisplayAdapter class [Agentry Open

UI Android SDK] 1034
DecimalEditAdapter class [Agentry Open UI

Android SDK] 1037
valueChanged(GregorianCalendar) method

DateAndTimeDisplayAdapter class [Agentry
Open UI Android SDK] 1025

DateAndTimeEditAdapter class [Agentry
Open UI Android SDK] 1027

DateDisplayAdapter class [Agentry Open UI
Android SDK] 1030

DateEditAdapter class [Agentry Open UI
Android SDK] 1032

TimeDisplayAdapter class [Agentry Open UI
Android SDK] 1077

TimeEditAdapter class [Agentry Open UI
Android SDK] 1079

valueChanged(int) method
DurationDisplayAdapter class [Agentry Open

UI Android SDK] 1040
DurationEditAdapter class [Agentry Open UI

Android SDK] 1043
IntegerDisplayAdapter class [Agentry Open

UI Android SDK] 1061
IntegerEditAdapter class [Agentry Open UI

Android SDK] 1063
valueChanged(String) method

ExternalDataDisplayAdapter class [Agentry
Open UI Android SDK] 1048

ExternalDataEditAdapter class [Agentry Open
UI Android SDK] 1050

LabelDisplayAdapter class [Agentry Open UI
Android SDK] 1065

StringDisplayAdapter class [Agentry Open UI
Android SDK] 1072

StringEditAdapter class [Agentry Open UI
Android SDK] 1075

viewForFrame: method
SMPOpenUIFieldAdapter protocol [Agentry

Open UI iOS SDK] 1265

W

willRebuildTable() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 675
WordWrap property

IAgentryControlViewModelStringDisplay
interface [Agentry Open UI
Windows SDK] 1360

Index

1424 SAP Mobile Platform

	Agentry App Development
	Contents
	Agentry App Development
	Setting Up the Development Environment for Agentry Toolkit
	Installing the Eclipse IDE and Agentry Editor Plug-In
	Agentry Editor and Eclipse Platform Configuration Overview
	Creating Java Projects for Agentry Java API Development
	Configuring Eclipse File Associations for Agentry Projects
	Configuring Eclipse File Encoding for Agentry Projects
	Creating a Connection Profile for the Agentry Connector Studio

	Agentry OpenUI SDK for iOS Setup Overview
	OpenUI for iOS Manual Xcode Project Setup

	Agentry OpenUI SDK for Android Setup Overview
	Installing the ADT Bundle With Eclipse
	Installing the ADT Plug-in to an Existing Eclipse Instance
	SAP Mobile Platform Agentry OpenUI for Android Project Setup

	Agentry OpenUI for Windows Setup Information
	Installing the Agentry Test Environment
	Agentry SAP Framework Foundation Installation Overview
	Agentry SAP Framework Foundation Component
	Installing Agentry SAP Framework Foundation
	Creating the JavaBE.ini File for SAP Systems

	Installing the Agentry ActiveX SDK

	Developing Agentry Apps
	Agentry Editor Eclipse Preferences
	Agentry Editor and Eclipse Platform Overview
	The Agentry Perspective in Eclipse
	Project Explorer View
	Properties View
	Diagram View
	Dependency View
	Trash Bin View
	Problems View
	Agentry Views Outside of the Agentry Perspective

	The Data Tools Platform: SQL Development Tools
	The Java Perspective
	Searching Agentry Application Projects

	Agentry Application Projects: Creating, Managing, and Publishing
	Creating a New Agentry Application Project
	Agentry Application Export, Import, and Comparison Introduction
	Import Functionality Overview
	Importing a New Agentry Project Into the Eclipse Workspace
	Compare and Import Into an Agentry Application Project
	Export Functionality Overview
	Exporting Agentry Application Project Definitions
	Exporting Agentry Application Project Differences

	Publishing Applications from the Agentry Editor
	Publishing to Development
	Publishing to Production

	Introduction to Definition Tags
	Tagging: Creating New Public Tags
	Tagging: Applying Public Tags to Definitions

	Introduction to Team Configuration
	Team Configuration: Share Repository Requirements and Operations
	Update Conflicts and Conflict Resolution
	Share Operation: Creating a Share Repository
	Share Operation: Checking Out (Importing) From a Share
	Share Operation: Committing Changes to the Share Repository
	Share Operation: Updating From the Tip Share Repository Revision
	Share Operation: Reverting to a Previous Share Revision

	Overview of Mobile Northwind Sample Application
	Target Paths and the Property Browser
	Property Browser Details: Object-Related Options
	Property Browser Details: Screen-Related Options
	Property Browser Details: Complex Table-Related Options
	Property Browser Details: Data Table-Related Options
	Target Path: Selecting an Object By Property Value
	Target Path: Selecting All Nested Collections

	Rules: An Introduction
	Rule Context
	Rule Data Types
	Rule Editor Introduction
	Creating Rule Definitions
	Testing Rules in the Rule Editor

	Syclo Data Markup Language
	SDML Syntax and Data Tag Expansion
	Agentry Data Definitions Overview
	Data Synchronization Overview: The Exchange Data Model
	Data Synchronization: Data Filtering Overview
	Object Development Concepts and Considerations
	Object Properties Concepts and Considerations
	Object Data Structure Concepts
	Object Data Synchronization: Fetches
	Object Read Step Concepts
	Object Read Step Development Considerations
	Fetch Development Using the Exchange Data Model

	Agentry User Interface Definitions Overview
	Client User Interface Considerations and Guidance
	Security Related Development Overview
	Defining Client-Side Data Encryption
	Securing Attachments on iOS Client Devices
	Configuring User Lockout for Failed Login Attempts
	Transaction Authentication/Electronic Signature Support
	Defining Transaction Authentication

	Attached Documents and File Transfer: Key Concepts
	Developing File Transfer and Attached Documents: Process Overview
	Defining the File Object
	Defining the Download Logic for File Transfer
	Defining the User Interface for Attached Documents
	Defining Locally Attached Documents Functionality

	Agentry ActiveX SDK
	Technical Overview - ActiveX Controls and the Agentry Client
	External Field - ActiveX Control
	Action Step Type: External Field Command
	ActiveX Control - Features Log
	Agentry Client ActiveX API Methods
	ActiveXControlValueChanged
	ActiveXControlValueEntered
	ExecuteAgentryAction
	GetPropertyFromMappings
	GetPropertyFromObject
	GetPropertyType
	PropertyAsString
	NextCollectionProperty
	CollectionHasNextProperty
	RewindCollection
	GetAgentryString
	Enumerated List: AgentryActiveXPropertyType
	Expected Methods Implemented in ActiveX Control
	ActiveX Expected Method Declarations - eMbedded Visual C++
	ActiveX Expected Method Declarations - MS Visual Basic
	AgentryInitialize
	AgentrySetActiveXControlHost
	AgentryDestroy
	AgentryGetValue
	AgentrySetFocus
	AgentryGetSpecificValue
	AgentryUpdateScanData
	AgentryEnable
	AgentryShow
	AgentryUpdateRuleEvaluated
	AgentryGetScriptValue
	AgentrySetScriptValue

	Agentry Client API for External Processes Technical Overview
	AgentryInitialize
	AgentryUnInitialize
	EvaluateAgentryRule
	ExecuteAgentryAction
	ExecuteAgentryTransaction
	Data Types Defined in the Agentry Client API for External Processes

	Agentry Language Reference
	Application Level Definitions Overview
	Application Definition
	Module
	Data Table
	SQL Data Table Synchronization Components
	HTTP-XML Data Table Synchronization Components
	HTTP Request Argument
	HTTP Request Response Mapping
	Java Virtual Machine Data Table Synchronization Components

	Complex Table
	Complex Table Fields
	Complex Table Indexes
	SQL Complex Table Synchronization Components
	Java Complex Table Synchronization Components
	HTTP-XML Complex Table Synchronization Components
	HTTP Request Argument
	HTTP Request Response Mapping

	Transmit Configuration
	System Connection
	Validate User Request
	Validate User Request Argument
	Validate User Request Response Mapping

	Global
	Style
	Image

	Module-Level Data Definitions Overview
	Object
	Object Read Step
	Object Property
	Transaction
	Transaction Authentication
	Transaction Type: Add
	Transaction Type: Edit
	Transaction Type: Delete
	Transaction Type: Complex Table Change
	Transaction Type: Data Table Change

	Transaction Validation Rule
	Transaction Validation Rule Properties

	Transaction Server Data State Steps
	Transaction Server Update Step
	Transaction Error Handling Steps
	Fetch
	Fetch Validation Rule
	Fetch Validation Rule Properties

	Fetch Client Exchange Step
	Fetch Server Exchange Step
	Fetch Removal Step
	Transaction and Fetch Properties
	Property Data Types
	Boolean Property Type
	Collection Property Type
	Complex Table Selection Property Type
	Data Table Selection Property Type
	Date Property Type
	Date And Time Property Type
	Decimal Number Property Type
	Duration Property Type
	External Data Property Type
	Identifier Property Type
	Image
	Integral Number Property Type
	Location Property Type
	Object Property Type
	Signature Property Type
	String Property Type
	Time Property Type

	Push
	Push Retrieval Step
	Push Removal Step
	Push Read Step
	Push Response Step
	Push Error Handling Step
	Service Event
	Service Event Type: Poll With Step
	Service Event Type: Java Callback
	Service Event Type: HTTP-XML Message Received
	HTTP-XML Service Event Message Mapping

	Service Event Type: File System Monitor
	File System Monitor Service Event Document Mapping

	Step
	Step Type: SQL Query
	Step Type: Java Steplet
	Step Type: XML via HTTP
	XML via HTTP Step Request Argument
	XML via HTTP Step Response Mapping

	Step Type: File Command Line Step
	Step Type: File Document Management Step
	Document Mapping

	Module-Level User Interface Definitions Overview
	User Interface Definition Types
	Screen Set
	Platform
	List Screen
	List Screen Column
	Detail Screen
	Button
	Detail Screen Fields
	Detail Screen Field Edit Types
	Field Edit Type - Property Data Type Cross Reference

	Field Definitions With Edit Type-Specific Attributes
	Barcode Scan
	Button Field Edit Type
	Calendar View
	Complex Table Drop Down
	Complex Table List
	Complex Table Search
	Complex Table Tree
	Data Table Selection
	Embedded Image Field
	Image Cell

	External Field - ActiveX Control
	HTML
	Domain and URL Parameter

	Image Capture
	List Tile View
	Tile Filter

	List Selection
	List View
	List View Column

	Password Validation
	Tile Edit
	Tile Display

	Detail Screen Fields With Implicit Edit Types
	Signature

	Action
	Action Step
	Action Step Type: Apply
	Action Step Type: Exit Application
	Action Step Type: External Field Command
	Action Step Type: List Selection
	Action Step Type: Message
	Action Step Type: Navigation
	Action Step Type: Open URL
	Action Step Type: Print Report
	Action Step Type: Save Tile Transactions
	Action Step Type: SubAction
	Action Step Type: Transaction
	Action Step Type: Transmit
	Action Step Type: Windows Command

	Report
	Report Column

	Rule Function Terms Overview
	Conversion Functions for Rules
	@FROM_DECIMAL_NUMBER
	@FROM_INTEGRAL_NUMBER
	@FROM_STRING
	@FROM_SIG_DECIMAL_NUMBER
	@FROM_PROPERTY

	Logical Functions for Rules
	@AND
	@CASE
	@CASE_INT
	@CASE_STRING
	@EQBOOL
	@EQDEC
	@EQNUM
	@EQSTR
	@GT
	@GTDEC
	@GTEQ
	@GTEQDEC
	@IF
	@LT
	@LTDEC
	@LTEQ
	@LTEQDEC
	@NAND
	@NOR
	@NOT
	@OR
	@XOR

	Mathematical Functions for Rules
	@ABS
	@DIFF
	@DISTANCE
	@DIV
	@FORMAT_DECIMAL
	@MAX
	@MIN
	@MOD
	@PARSE_FORMATTED_DECIMAL
	@PERCENT
	@PRECISION
	@PROD
	@RANGE_LIMIT
	@ROUND
	@SIGN
	@SIGNIFICANT_DIGITS
	@SQRT
	@SUM
	@TOTAL
	@TRUNC

	Property Functions for Rules
	@COLLECTION_FIND
	@COLLECTION_FIND_BY_DEC
	@COLLECTION_FIND_BY_NUM
	@COLLECTION_FIND_BY_STR
	@COLLECTION_MAX
	@COLLECTION_MIN
	@COUNT
	@CURRENTVALUE
	@FILE_CHANGED
	@FILE_EXTENSION
	@FILE_NAME
	@FILE_PATH
	@FILE_PATH_AND_NAME
	@FILE_SIZE
	@IS_SPECIAL_VALUE
	@IS_VALID_DECIMAL_NUMBER
	@LASTSCANVALUE
	@MEMBER
	@NEEDS_XMIT
	@SCREENFIELDVALUE
	@SCREENFIELDNAME
	@SCREENNAME
	@SCREENSETNAME
	@SIZE
	@TRANSACTIONPROPERTYNAME
	@TYPE
	@UI

	String Functions for Rules
	@CONCATENATE
	@FIND
	@LEFT
	@LENGTH
	@LOWERCASE
	@MID
	@NEWLINE
	@REMOVE
	@REPLACE
	@RFIND
	@RIGHT
	@TAB
	@TRIM
	@UPPERCASE

	System Functions for Rules
	@DATE
	@DATE_AND_TIME
	@DISTANCE_MILES
	@DISTANCE_KILOMETERS
	@GPS_LOCATION
	@IS_VALID_LOCATION
	@JAVASCRIPT
	@LATITUDE
	@LOCATION
	@LONGITUDE
	@MODULE_ENABLED
	@OFFLINE
	@TIME
	@TIME_TICKS
	@USERID

	Table Functions for Rules
	@COMPLEXTABLE
	@TABLE
	@TABLE_COUNT

	Syclo Data Markup Language
	SDML Data Tags Overview
	<<user>> Data Tag Container
	<<user.client>> Data Tag Container
	<<user.info>> Data Tag Container
	<<server>> Data Tag Container
	Data Tags for Application Globals
	Query Constants Files and Data Tags
	Password Data Tags
	Complex Table Data Tags
	Data Table Data Tags
	Property Data Tags Overview
	Data Tags and Property Data Types
	<<agent>> Data Tag Container
	SDML Function Tags Overview
	<<if>>
	<<case>>
	<<skip>>
	<<stop>>
	<<abort>>
	<<rollback>>
	<<and>>
	<<or>>
	<<not>>
	<<eq>>
	<<ne>>
	<<gt>>
	<<lt>>
	<<ge>>
	<<le>>
	<<empty>>
	<<notEmpty>>
	<<size>>
	<<exists>>
	<<foreach>>
	<<upper>>
	<<lower>>
	<<length>>
	<<join>>
	<<dequote>>
	<<trunc>>
	<<wordTrunc>>
	<<cgi>>
	<<sum>>
	<<diff>>
	<<prod>>
	<<div>>
	<<remainder>>
	<<local>>
	<<sql>>
	<<include>>

	Agentry Test Script Overview
	Agentry Test Script: Script Elements Overview
	<script>
	<script-log>
	<script-pause>

	Agentry Test Script: Button Elements Overview
	<button-expect>
	<button-push>
	<button-wait>

	Agentry Test Script: Field Elements Overview
	<field-button-push>
	<field-expect>
	<field-label-select>
	<field-popup>
	<edit-select>
	<field-set>

	Agentry Test Script: List Elements Overview
	<list-double-click>
	<list-expect>
	<list-select>
	<list-sort-by>
	<detail>
	<header>
	<columnheader>
	<row>
	<menu-expect>
	<menu-select>
	<menu>
	<item>

	Agentry Test Script: Tree Elements Overview
	<tree-select>
	<tree-expect>
	<node>
	<tree-expand>
	<tree-collapse>
	<tree-toggle>
	<tree-double-click>
	<tree-count-visible>

	Agentry Test Script: Scanner Elements Overview
	<scan-data>
	<scan-enable>
	<scan-start>

	Agentry Test Script: SQL Elements Overview
	<dsn-create-sql>
	<dsn-remove-sql>
	<sql-command>
	<sql-connect>
	<sql-expect>
	<sql-row>
	<sql-column>

	Agentry Test Script: Tab Elements Overview
	<tab-expect>
	<tab-select>

	Agentry Test Script: Window Elements Overview
	<window-close>
	<window-close-main>
	<window-expect>
	<window-sign>
	<point>

	Agentry Test Script: Client Elements Overview
	<client-restart>
	<registry>
	<key>
	<value>

	Agentry Test Script: Client Host Elements overview
	<command-line>
	<key-press>

	Agentry Java API
	com.syclo.agentry package
	utility package
	java_logging package
	AgentryHandler class
	AgentryHandler() constructor
	close() method
	flush() method
	mapLogLevel(Level) method
	publish(LogRecord) method
	_defaultFormatter variable

	AgentryJavaLoggingConfigurator class
	AgentryJavaLoggingConfigurator.ReallySimpleFormatter class
	format(LogRecord) method

	AgentryJavaLoggingConfigurator() constructor

	UserLogRecord class
	UserLogRecord(User, Level, String) constructor
	UserLogRecord(User, LogRecord) constructor
	equals(Object) method
	getLevel() method
	getLoggerName() method
	getMessage() method
	getMillis() method
	getParameters() method
	getResourceBundle() method
	getResourceBundleName() method
	getSequenceNumber() method
	getSourceClassName() method
	getSourceMethodName() method
	getThreadID() method
	getThrown() method
	getUser() method
	hashCode() method
	setLevel(Level) method
	setLoggerName(String) method
	setMessage(String) method
	setMillis(long) method
	setParameters(Object[]) method
	setResourceBundle(ResourceBundle) method
	setResourceBundleName(String) method
	setSequenceNumber(long) method
	setSourceClassName(String) method
	setSourceMethodName(String) method
	setThreadID(int) method
	setThrown(Throwable) method
	toString() method

	UserLogger class
	getUser() method
	getUserLogger(String, User) method
	getUserLogger(String, String, User) method
	log(LogRecord) method

	log4j package
	AgentryAppender class
	AgentryAppender() constructor
	append(LoggingEvent) method
	close() method
	mapLogLevel(Level) method
	requiresLayout() method
	AGENTRY_USER_MDC_KEY variable

	DataTableMapIterator< K, V > class
	DataTableMapIterator(Map< K, V >) method
	hasNext() method
	next() method
	remove() method

	Logger class
	Logger(String, boolean) constructor
	appendDebug(String) method
	beginDebug(String) method
	debug(String) method
	debug(String, Map< String, String >, String) method
	endDebug(String) method
	isDebugMode() method

	AgentryException class
	AgentryException(String) constructor
	AgentryException(String, Throwable) constructor
	AgentryException(String, String, String, Throwable) constructor
	AgentryException(String, String, String) constructor
	getNotificationText() method
	getNotificationTitle() method
	getOkButtonLabel() method

	BusinessLogicException class
	BusinessLogicException(String) constructor
	BusinessLogicException(String, Throwable) constructor

	ComplexTableSession class
	ComplexTableSession(String, Server, SessionData, User) constructor

	ComplexTable< CTOBJ > class
	build() method
	checkForReload() method
	ComplexTable(ComplexTableSession, GregorianCalendar) method
	dataIterator() method
	deleteIterator() method
	getClientLastDataUpdateTime() method
	getNewDataUpdateTime() method
	getSession() method
	initialize() method [deprecated]
	isRebuilding() method
	lastUpdateDate() method
	lastUpdateHours() method
	lastUpdateMinutes() method
	lastUpdateMonth() method
	lastUpdateSeconds() method
	lastUpdateYear() method
	reload() method [deprecated]
	setNewDataUpdateTime(GregorianCalendar) method
	willRebuildTable() method
	_clientLastDataUpdateTime variable
	_rebuilding variable
	_session variable

	DataTableObject class
	DataTableObject(String, String) constructor
	code() method [deprecated]
	equals(Object) method
	getKey() method
	getValue() method
	hashCode() method
	value() method [deprecated]
	code variable
	value variable

	DataTableSession class
	DataTableSession(String, Server, SessionData, User) constructor

	DataTable< DTOBJ extends DataTableObject > class
	DataTable(DataTableSession, GregorianCalendar) method
	getClientLastDataUpdateTime() method
	getSession() method
	initialize() method
	isOutOfDate() method
	iterator() method
	_clientLastDataUpdateTime variable
	_session variable

	FatalTransactionException class
	FatalTransactionException(String) constructor
	FatalTransactionException(String, Throwable) constructor
	FatalTransactionException(String, String, String) constructor
	FatalTransactionException(String, String, String, Throwable) constructor

	FatalTransactionExceptionStop class
	FatalTransactionExceptionStop(String, String, String) constructor
	FatalTransactionExceptionStop(String, String, String, Throwable) constructor

	FetchSession class
	FetchSession(String, Server, SessionData, User) constructor
	beginClientExchange() method
	beginFetchObjectRead() method
	beginFetchRemoval() method
	beginServerExchange() method
	endClientExchange() method
	endFetchObjectRead() method
	endFetchRemoval() method
	endServerExchange() method

	LoginBlockedException class
	LoginBlockedException() constructor
	LoginBlockedException(String) constructor
	LoginBlockedException(String, Throwable) constructor

	LoginException class
	LoginException() constructor
	LoginException(String) constructor
	LoginException(String, Throwable) constructor

	LoginSkippedException class
	LoginSkippedException() constructor
	LoginSkippedException(String) constructor
	LoginSkippedException(String, Throwable) constructor

	PasswordExpiredCannotChangeException class
	PasswordExpiredCannotChangeException() constructor
	PasswordExpiredCannotChangeException(String) constructor
	PasswordExpiredCannotChangeException(String, Throwable) constructor

	PasswordExpiredException class
	PasswordExpiredException() constructor
	PasswordExpiredException(String) constructor
	PasswordExpiredException(String, Throwable) constructor

	PasswordInvalidException class
	PasswordInvalidException() constructor
	PasswordInvalidException(String) constructor
	PasswordInvalidException(String, Throwable) constructor

	PasswordWarningCannotChangeException class
	PasswordWarningCannotChangeException() constructor
	PasswordWarningCannotChangeException(String) constructor
	PasswordWarningCannotChangeException(String, Throwable) constructor

	PasswordWarningException class
	PasswordWarningException() constructor
	PasswordWarningException(String) constructor
	PasswordWarningException(String, Throwable) constructor

	PushSession class
	PushSession(String, Server, SessionData) constructor
	beginPushError() method [deprecated]
	beginPushReadStep() method
	beginPushRemoval() method
	beginPushResponse() method [deprecated]
	beginPushRetrieval() method
	endPushError() method [deprecated]
	endPushReadStep() method
	endPushRemoval() method
	endPushResponse() method [deprecated]
	endPushRetrieval() method

	PushUserSession class
	PushUserSession(String, Server, SessionData, User) constructor
	beginDisablePush() method
	beginEnablePush() method
	beginPushError() method
	beginPushResponse() method
	disablePush() method
	enablePush() method
	endDisablePush() method
	endEnablePush() method
	endPushError() method
	endPushResponse() method

	RetryTransactionException class
	RetryTransactionException(String, String, String) constructor
	RetryTransactionException(String, String, String, Throwable) constructor

	RetryTransactionWithChangeException class
	RetryTransactionWithChangeException(String, String, String) constructor
	RetryTransactionWithChangeException(String, String, String, Throwable) constructor

	Server class
	Server.LoginEnumeration enum
	throwException() method
	Login_Invalid variable
	Login_InvalidBlocked variable
	Login_Pass variable
	Login_Valid variable
	Login_ValidPasswordExpired variable
	Login_ValidPasswordExpiredNoChange variable
	Login_ValidPasswordWarning variable
	Login_ValidPasswordWarningNoChange variable

	Server.LoginFailureReason enum
	NoBackEndsAuthenticated variable
	PasswordExpiredCannotChange variable
	PasswordInvalid variable

	Server() constructor
	createComplexTableSession(String, SessionData, User) method
	createDataTableSession(String, SessionData, User) method
	createFetchSession(String, Server, SessionData, User) method [deprecated]
	createFetchSession(String, SessionData, User) method
	createPushSession(String, Server, SessionData) method [deprecated]
	createPushSession(String, SessionData) method
	createPushUserSession(String, Server, SessionData, User) method [deprecated]
	createPushUserSession(String, SessionData, User) method
	createServiceEventSession(String, Server, SessionData) method [deprecated]
	createServiceEventSession(String, SessionData) method
	createTransactionSession(String, Server, SessionData, User) method [deprecated]
	createTransactionSession(String, SessionData, User) method
	createUser(String, int) method [deprecated]
	createUser(String) method
	debug(String) method
	decryptPassword(String) method
	findConfigurationFile(String) method
	getImplementationVersion() method
	getInstance() method
	getSpecificationVersion() method
	getTimeZone() method
	login(String, String, SessionData) method [deprecated]
	login(User, String, SessionData) method
	loginBlocked(String, StringBuffer) method [deprecated]
	loginBlocked(User, StringBuffer, SessionData) method [deprecated]
	loginBlocked(User, String, StringBuffer, SessionData) method
	loginFailed(String, StringBuffer) method [deprecated]
	loginFailed(User, String, LoginFailureReason, StringBuffer, SessionData) method
	loginPreviousUser(String, String, SessionData) method [deprecated]
	loginPreviousUser(User, String, SessionData) method
	setDebugEnabled(boolean) method [deprecated]
	shutdown() method
	startup() method

	ServiceEvent class
	ServiceEvent(Server, SessionData, CallbackInterface) constructor
	dataReceived(Object) method
	_server variable
	_sessionData variable

	ServiceEventSession class
	ServiceEventSession(String, Server, SessionData) constructor
	beginDataAndUpdateSteps() method
	beginReadSteps() method
	beginServiceEventError() method
	endDataAndUpdateSteps() method
	endReadSteps() method
	endServiceEventError() method

	Session class
	Session(String, Server, SessionData, User) constructor
	Session(String, Server, SessionData) constructor
	debug(String) method
	getName() method
	getServer() method
	getSessionData() method
	getUser() method
	sessionAborted() method

	Steplet class
	Steplet(FetchSession) constructor
	Steplet(PushSession) constructor
	Steplet(PushUserSession) constructor
	Steplet(TransactionSession) constructor
	Steplet(ServiceEventSession) constructor
	doSteplet() method
	getNotificationText() method
	getNotificationTitle() method
	getOkButtonLabel() method
	getReturnData() method
	getSession() method
	notificationText() method [deprecated]
	notificationTitle() method [deprecated]
	okButtonLabel() method [deprecated]
	_session variable

	StepletAbortException class
	StepletAbortException(String) constructor

	StepletStopException class
	StepletStopException(String) constructor

	SycloCalendar class
	SycloCalendar(GregorianCalendar) constructor
	SycloCalendar(GregorianCalendar, Locale) constructor
	SycloCalendar() constructor
	SycloCalendar(int, int, int, int, int, int) constructor
	SycloCalendar(int, int, int, int, int) constructor
	SycloCalendar(int, int, int) constructor
	SycloCalendar(Locale) constructor
	SycloCalendar(TimeZone, Locale) constructor
	SycloCalendar(TimeZone) constructor
	getInvalidTimeAndDate() method
	isInvalidTimeAndDate() method
	isInvalidTimeAndDate(GregorianCalendar) method

	TransactionSession class
	TransactionSession(String, Server, SessionData, User) constructor
	beginTransaction() method
	endTransaction() method

	User class
	User.ChangePasswordResult enum
	getValue() method
	ChangePassword_Blocked variable
	ChangePassword_Failure variable
	ChangePassword_NotHandled variable
	ChangePassword_Success variable

	User(String) constructor
	backendTimeAndDate() method [deprecated]
	beginChangePassword() method
	changePassword(String, String) method
	changePasswordFailed(StringBuffer) method
	changePasswordSessionAborted() method
	debug(String) method
	endChangePassword() method
	getName() method
	getSystemConnectionTime() method
	getTimeZone(StringBuffer) method [deprecated]
	loggedIn() method
	loggedOut() method
	reLoggedIn() method
	revalidate(String) method
	timedOut() method
	update(GregorianCalendar) method
	_name variable

	SessionData interface
	sessionData(String) constructor
	eval(String) method
	getBoolean(String) method
	getBytes(String) method
	getDouble(String) method
	getFloat(String) method
	getInteger(String) method
	getLong(String) method
	getString(String) method
	getTimeAndDate(String) method
	getTimeAndDate(String, String) method

	Agentry SAP Framework
	Agentry SAP Framework
	SAP Framework
	Mobile Exchange Persistent Layer
	Delta Detection Routine
	Change Detection Configuration Set
	Data Object Handler Class Repository
	Mobile Integration Configuration Set
	Application Authentication Services
	BAPI Wrapper
	Java Connector
	System Monitor
	Configuration Module
	Working with Push Scenarios
	Outbound Trigger Overview
	Agentry SAP Framework Administration Functions in SAP
	Accessing Administrative Functions in SAP
	Agentry SAP Framework Push Instance Purge Utility
	Agentry SAP Framework Data Cache Purge Utility
	Agentry SAP Framework Generic Purge Utility
	Agentry SAP Framework Exchange Table Purge Utility Program
	Agentry SAP Framework Statistics Record Purge Utility
	Agentry SAP Framework Log Deletion
	Agentry SAP Framework Log Display
	Enable SAP Solution Manager to Diagnose Agentry Issues

	Java Development for SAP
	Set Up the SAP Java Project in Eclipse
	Java Architecture
	Data Flow
	Data Flow - Fetch
	Data Flow - Complex Table
	Data Flow - Standard Data Table
	Data Flow - Transaction

	Accessing the Agentry SAP Framework Configuration Panel
	Standard Operations in the Configuration Panel
	Agentry SAP Framework Configuration Panel Overview
	Configuration Panel - Technical Settings
	Configuration Panel - Mobile Application Settings
	Configuration Panel - Back End Change Detection Settings
	Configuration Panel - Mobile Integration Settings
	Configuration Panel - Security Settings

	Technical Settings
	Mobile Application Configuration
	Mobile Application - General
	Mobile Application - Mobile Status Setting
	Mobile Application - Conversion Exit Setting
	Mobile Application - System Components
	Mobile Application - Parameters
	Mobile Application - Client Globals

	Push Scenario Definition
	Push Scenario Definition - General Data
	Push Scenario Definition - Event Setting
	Push Scenario Definition - Outbound Trigger
	Push Scenario Definitions - Subscription Settings

	Subscription Agent Definition
	Exchange Object Configuration
	Exchange Object - Technical Settings
	Exchange Object - Change Detection Field Selection
	Exchange Object - Change Detection Condition Filter
	Exchange Object - Linkage Settings
	Exchange Object - Push Settings

	EFI Assignment
	EFI Assignment - General Settings
	EFI Assignment - Assignment Settings

	Mobile Data Object Configuration
	Mobile Data Object - General Settings
	Mobile Data Object - ResultSet Field Selection
	Mobile Data Object - Data Filter
	Mobile Data Object - Data Staging
	Mobile Data Object - Proxy Setting
	Mobile Data Object - Composite Settings Tab

	BAPI Wrapper Configuration
	BAPI Wrapper - General Settings
	BAPI Wrapper - Assignment Settings

	Security Settings
	Security Settings - System Security
	Security Settings - Product Security
	Security Settings - Class Handler Security

	System Administration
	Accessing the Administration and Monitoring Portal
	Administration Portal - Mobile Solution Overview
	Mobile Solution Overview - Operation Status

	Administration Portal - Administration
	Administration - User Management
	Administration - Server Management
	Administration - Runtime Logging Level Setting
	Administration Portal - Settings

	Administration Portal - Monitoring
	Administration Portal - Settings
	Monitoring - User Monitor
	Mobile User Detail - General Info
	Mobile User Detail - Client Object Info
	Mobile User Detail - Cross Reference List
	Mobile User Detail - Outbound Message Queue
	Mobile User Detail - Communication Sessions

	Monitoring - Push Instance Monitor
	Push Instance Monitor - Subscriber View
	Push Instance Monitor - Push Scenario Info

	Monitoring - Communication Session Monitor
	Monitoring - Object Mobile Status Monitor

	Administration Portal - Statistics
	Retrieving and Recalculating Statistics
	Statistics - Communication Session Statistics
	Statistics - Application BAPI Wrapper Call Statistics
	Statistics - Push Scenario Statistics

	Copying an Object to the Customer Namespace
	Adding a New Downstream Synchronization Process
	Implementing Downstream Synchronization

	Working with BAPI Wrappers
	Changing the MDO Assignment of a BAPI Wrapper
	Changing MDO Filter Rules
	Creating a New Filter Rule

	Adding a New Data Table
	Adding a New Complex Table
	Adding a New Data Object
	Adding new Values to be Retrieved for Mobile Application Definitions
	Adding New Fields to an Exchange Object
	Working with Push Scenarios
	Adding a New Push Scenario

	Sending Email Using the Administration & Monitoring Portal

	Agentry Device Client Branding SDK
	Agentry Client Installer and Executable Branding
	Agentry Windows and Windows Mobile Clients Branding Overview
	Branding Agentry Installers

	Agentry ActiveX SDK
	Technical Overview - ActiveX Controls and the Agentry Client
	External Field - ActiveX Control
	Action Step Type: External Field Command
	ActiveX Control - Features Log
	Agentry Client ActiveX API Methods
	ActiveXControlValueChanged
	ActiveXControlValueEntered
	ExecuteAgentryAction
	GetPropertyFromMappings
	GetPropertyFromObject
	GetPropertyType
	PropertyAsString
	NextCollectionProperty
	CollectionHasNextProperty
	RewindCollection
	GetAgentryString
	Enumerated List: AgentryActiveXPropertyType
	Expected Methods Implemented in ActiveX Control
	ActiveX Expected Method Declarations - eMbedded Visual C++
	ActiveX Expected Method Declarations - MS Visual Basic
	AgentryInitialize
	AgentrySetActiveXControlHost
	AgentryDestroy
	AgentryGetValue
	AgentrySetFocus
	AgentryGetSpecificValue
	AgentryUpdateScanData
	AgentryEnable
	AgentryShow
	AgentryUpdateRuleEvaluated
	AgentryGetScriptValue
	AgentrySetScriptValue

	Agentry Client API for External Processes Technical Overview
	AgentryInitialize
	AgentryUnInitialize
	EvaluateAgentryRule
	ExecuteAgentryAction
	ExecuteAgentryTransaction
	Data Types Defined in the Agentry Client API for External Processes

	Agentry OpenUI API
	OpenUI SDK Concepts, Usage and Guidance
	Agentry OpenUI API for Android
	com.sap.mobile.platform package
	client package
	openui package
	adapters package
	BooleanDisplayAdapter class
	initialize(BooleanDisplayModel, Context) method
	valueChanged(boolean) method

	BooleanEditAdapter class
	initialize(BooleanEditModel, Context) method
	valueChanged(boolean) method

	ButtonDisplayAdapter class
	buttonImageChanged(AgentryImage) method
	initialize(ButtonDisplayModel, Context) method
	selectedStateChanged(boolean) method

	CollectionDisplayAdapter class
	allItemsChanged() method
	initialize(CollectionDisplayModel, Context) method
	itemAdded(int) method
	itemChanged(int) method
	itemRemoved(int) method
	itemSelected(int) method

	DateAndTimeDisplayAdapter class
	initialize(DateAndTimeDisplayModel, Context) method
	valueChanged(GregorianCalendar) method

	DateAndTimeEditAdapter class
	initialize(DateAndTimeEditModel, Context) method
	valueChanged(GregorianCalendar) method

	DateDisplayAdapter class
	initialize(DateDisplayModel, Context) method
	valueChanged(GregorianCalendar) method

	DateEditAdapter class
	initialize(DateEditModel, Context) method
	valueChanged(GregorianCalendar) method

	DecimalDisplayAdapter class
	initialize(DecimalDisplayModel, Context) method
	valueChanged(double) method

	DecimalEditAdapter class
	initialize(DecimalEditModel, Context) method
	valueChanged(double) method

	DurationDisplayAdapter class
	fractionalHourValueChanged(double) method
	initialize(DurationDisplayModel, Context) method
	valueChanged(int) method

	DurationEditAdapter class
	fractionalHourValueChanged(double) method
	initialize(DurationEditModel, Context) method
	valueChanged(int) method

	EmbeddedImageDisplayAdapter class
	imageChanged() method
	imageSelectionChanged() method
	initialize(EmbeddedImageDisplayModel, Context) method

	ExternalDataDisplayAdapter class
	initialize(ExternalDataDisplayModel, Context) method
	valueChanged(String) method

	ExternalDataEditAdapter class
	initialize(ExternalDataEditModel, Context) method
	valueChanged(String) method

	FieldAdapter class
	FieldAdapter.TouchQueryHandler interface
	isOnBottomEdge() method
	isOnTopEdge() method

	getAutosizeBehavior() method
	getContentHeightForAutosizing(int) method
	getExtensionString(String) method
	getView() method
	isAgentryDisplayingLabel() method
	isAgentryDisplayingValidationFailure() method
	onActivityResult(int, int, Intent) method
	setEnabled(boolean) method
	setHyperlinkEnabled(boolean) method
	setValid(boolean, String) method
	setVisible(boolean) method
	updateLabel(String) method

	IntegerDisplayAdapter class
	initialize(IntegerDisplayModel, Context) method
	valueChanged(int) method

	IntegerEditAdapter class
	initialize(IntegerEditModel, Context) method
	valueChanged(int) method

	LabelDisplayAdapter class
	initialize(LabelDisplayModel, Context) method
	valueChanged(String) method

	LocationDisplayAdapter class
	initialize(LocationDisplayModel, Context) method
	valueChanged(AgentryLocation) method

	LocationEditAdapter class
	initialize(LocationEditModel, Context) method
	valueChanged(AgentryLocation) method

	StringDisplayAdapter class
	initialize(StringDisplayModel, Context) method
	valueChanged(String) method

	StringEditAdapter class
	initialize(StringEditModel, Context) method
	valueChanged(String) method

	TimeDisplayAdapter class
	initialize(TimeDisplayModel, Context) method
	valueChanged(GregorianCalendar) method

	TimeEditAdapter class
	initialize(TimeEditModel, Context) method
	valueChanged(GregorianCalendar) method

	models package
	BooleanDisplayModel interface
	getValue() method

	BooleanEditModel interface
	processInput(boolean) method

	ButtonDisplayModel interface
	getButtonImage() method
	getButtonText() method
	getButtonType() method
	hasAction() method
	isButtonSelected() method
	processInput() method

	CollectionDisplayModel interface
	getCollection() method
	getDisplayedItemAt(int) method
	getDisplayRowCount() method
	getSelectedRow() method
	selectRow(int) method

	DateAndTimeDisplayModel interface
	getValue() method

	DateAndTimeEditModel interface
	processInput(GregorianCalendar) method

	DateDisplayModel interface
	getValue() method

	DateEditModel interface
	processInput(GregorianCalendar) method

	DecimalDisplayModel interface
	getValue() method

	DecimalEditModel interface
	getMaximumValue() method
	getMinimumValue() method
	processInput(double) method

	DurationDisplayModel interface
	getDurationDisplayFormat() method
	getFractionalHourValue() method
	getValue() method

	DurationEditModel interface
	getMaximumFractionalHour() method
	getMaximumValue() method
	getMinimumFractionalHour() method
	getMinimumValue() method
	processDecimalInput(double) method
	processInput(int) method

	EmbeddedImageDisplayModel interface
	getColumnCount() method
	getHighlightColor() method
	getImage() method
	getImagePosition() method
	getImagePresentation() method
	getRowCount() method
	isImageCellSelected(long, long) method
	setImageCellSelected(long, long) method

	ExternalDataDisplayModel interface
	getFilePath() method

	ExternalDataEditModel interface
	processInput(String) method

	FieldModel interface
	executeAgentryAction(String) method
	executeHyperlinkAction() method
	getAgentryActionEnableState(String) method
	getAgentryString(String) method
	getLabel() method
	isAutosizeSupported() method
	isEnabled() method
	isHidden() method
	isHyperlinkEnabled() method
	launchActivity(Intent, int) method
	requestLayoutHeight(int) method

	IntegerDisplayModel interface
	getValue() method

	IntegerEditModel interface
	getMaximumValue() method
	getMinimumValue() method
	processIntegerInput(int) method

	LabelDisplayModel interface
	getValue() method

	LocationDisplayModel interface
	getValue() method

	LocationEditModel interface
	processInput(AgentryLocation) method

	StringDisplayModel interface
	getValue() method
	isCarriageReturnAllowed() method
	isWordWrapAllowed() method

	StringEditModel interface
	getMaximumLength() method
	getMinimumLength() method
	isPasswordInput() method
	processInput(String) method

	TimeDisplayModel interface
	getValue() method

	TimeEditModel interface
	processInput(GregorianCalendar) method

	core package
	dataapi package
	AgentryData interface
	AgentryData.DataType enum
	getValue() method
	COLLECTION variable
	OBJECT variable
	PROPERTY variable
	UNKNOWN variable

	dispose() method
	getAncestor() method
	getDataType() method
	getDescendant(int) method
	getDescendantCount() method
	getDisplayName() method
	getIdentifier() method [deprecated]
	getName() method
	getProperties() method
	getRoot() method
	isValid() method

	AgentryProperty interface
	AgentryProperty.PropertyType enum
	getValue() method
	BOOLEAN variable
	COMPLEX_TABLE_SELECTION variable
	DATA_TABLE_SELECTION variable
	DATE variable
	DATE_AND_TIME variable
	DECIMAL_NUMBER variable
	DURATION variable
	EXTERNAL_DATA variable
	IDENTIFIER variable
	IMAGE variable
	INTEGER_NUMBER variable
	LIST_SELECTION variable
	LOCATION variable
	SIGNATURE variable
	STRING variable
	TIME variable
	UNKNOWN variable

	asBoolean() method
	asDate() method
	asDateAndTime() method
	asDouble() method
	asLocation() method
	asLong() method
	asString() method
	asTime() method
	getPropertyType() method

	openui package
	AgentryImage class
	AgentryImage.ImageType enum
	getValue() method
	ImageType_Bitmap variable
	ImageType_GIF variable
	ImageType_JPEG variable
	ImageType_PNG variable
	ImageType_Unknown variable

	AgentryImage(String, ImageType, ImagePresentation, ImagePosition, int, int, int) constructor
	getBitmapData() method
	getImageName() method
	getImagePosition() method
	getImagePresentation() method
	getImageType() method
	getMaskColor() method
	isValid() method
	needsBitmapData() method
	setBitmapData(byte[]) method

	AgentryLocation class
	AgentryLocation(boolean, double, double, int, double) constructor
	getDilution() method
	getLatitude() method
	getLongitude() method
	getSatellites() method
	isValid() method
	setDilution(double) method
	setLatitude(double) method
	setLongitude(double) method
	setSatellites(int) method
	setValid(boolean) method

	MaskColor class
	MaskColor(short, short, short) constructor
	MaskColor(int, int, int) constructor
	getBlue() method
	getGreen() method
	getRed() method
	isValid() method

	ProcessInputReturn class
	ProcessInputReturn.processInputReturnValues enum
	Munged variable
	Valid variable

	ProcessInputReturn(boolean, boolean, boolean) constructor
	getChanged() method
	getMunged() method
	getValid() method

	ActionEnableType enum
	ActionDisable variable
	ActionEnable variable
	ActionError variable
	ActionNoOperation variable

	ActionResult enum
	Action_BackUp variable
	Action_Cancel variable
	Action_Complete variable
	Action_Error variable
	Action_Pending variable

	AutosizeBehavior enum
	Autosize_FillVisible variable
	Autosize_None variable
	Autosize_WrapContent variable

	ButtonType enum
	ButtonStyleCheckbox variable
	ButtonStylePush variable
	ButtonStyleRadio variable

	DurationDisplayFormat enum
	DecHour variable
	HourMin variable
	HourMinSec variable
	MinSec variable

	ImagePosition enum
	getValue() method
	ImagePosition_Center variable
	ImagePosition_LowerLeft variable
	ImagePosition_LowerMiddle variable
	ImagePosition_LowerRight variable
	ImagePosition_MiddleLeft variable
	ImagePosition_MiddleRight variable
	ImagePosition_Unknown variable
	ImagePosition_UpperLeft variable
	ImagePosition_UpperMiddle variable
	ImagePosition_UpperRight variable

	ImagePresentation enum
	getValue() method
	ImagePresentation_CropToFit variable
	ImagePresentation_FullSize variable
	ImagePresentation_LockAspectRatio variable
	ImagePresentation_StretchToFit variable
	ImagePresentation_Unknown variable

	OpenUIImage interface
	getBitmapData() method
	getImageName() method
	getImageType() method
	getMaskColor() method
	isValid() method

	Agentry OpenUI API for iOS
	iOSDataAPIExternal
	SMPDataAPILocationProtocol protocol
	initWithCLLocation: method
	initWithLatitude:andLongitude:andSatellites:andDilution: method
	locationWithCLLocation: method
	locationWithLatitude:andLongitude:andSatellites:andDilution: method
	dilution property
	latitude property
	location property
	longitude property
	satellites property
	valid property

	SMPDataAPIPropertyProtocol protocol
	asBool method
	asDate method
	asDateAndTime method
	asDecimal method
	asLocation method
	asLong method
	asString method
	asTime method
	log method
	propertyType method

	SMPDataAPIProtocol protocol
	ancestor method
	dataIdentifier method [deprecated]
	dataType method
	descendant: method
	descendantCount method
	displayName method
	log method
	name method
	root method

	SMPDataAPIDataType enumeration
	SMPDataAPIPropertyType enumeration

	iOSOpenUIExternal
	SMPOpenUIImage class
	image property
	name property
	position property
	presentation property

	SMPOpenUILocation class
	initWithCLLocation: method
	initWithLatitude:andLongitude:andSatellites:andDilution: method
	locationWithCLLocation: method
	locationWithLatitude:andLongitude:andSatellites:andDilution: method
	dilution property
	latitude property
	location property
	longitude property
	satellites property
	valid property

	SMPOpenUIBooleanDisplayAdapter protocol
	initWithBooleanDisplayModel: method
	model:didChangeBoolean: method

	SMPOpenUIBooleanDisplayModel protocol
	value property

	SMPOpenUIBooleanEditAdapter protocol
	initWithBooleanEditModel: method
	model:didChangeBoolean: method

	SMPOpenUIBooleanEditModel protocol
	processInputBoolean: method

	SMPOpenUIButtonDisplayAdapter protocol
	initWithButtonDisplayModel: method
	model:didChangeButtonImage: method
	model:didChangeSelected: method

	SMPOpenUIButtonDisplayModel protocol
	processInput method
	buttonImage property
	buttonText property
	buttonType property
	selected property
	supportsAction property
	value property

	SMPOpenUICollectionDisplayAdapter protocol
	allObjectsChanged: method
	initWithCollectionDisplayModel: method
	model:didSelectObjectAtIndex: method
	model:objectAddedAtIndex: method
	model:objectChangedAtIndex: method
	model:objectDeletedAtIndex: method

	SMPOpenUICollectionDisplayModel protocol
	collection method
	displayedObjectAtIndex: method
	processInputSelection: method
	displayedObjectCount property
	selection property

	SMPOpenUIDateAndTimeDisplayAdapter protocol
	initWithDateAndTimeDisplayModel: method
	model:didChangeDateAndTime: method

	SMPOpenUIDateAndTimeDisplayModel protocol
	value property

	SMPOpenUIDateAndTimeEditAdapter protocol
	initWithDateAndTimeEditModel: method
	model:didChangeDateAndTime: method

	SMPOpenUIDateAndTimeEditModel protocol
	processInputDateAndTime: method

	SMPOpenUIDateDisplayAdapter protocol
	initWithDateDisplayModel: method
	model:didChangeDate: method

	SMPOpenUIDateDisplayModel protocol
	value property

	SMPOpenUIDateEditAdapter protocol
	initWithDateEditModel: method
	model:didChangeDate: method

	SMPOpenUIDateEditModel protocol
	processInputDate: method

	SMPOpenUIDecimalDisplayAdapter protocol
	initWithDecimalDisplayModel: method
	model:didChangeDecimal: method

	SMPOpenUIDecimalDisplayModel protocol
	value property

	SMPOpenUIDecimalEditAdapter protocol
	initWithDecimalEditModel: method
	model:didChangeDecimal: method

	SMPOpenUIDecimalEditModel protocol
	processInputDecimal: method
	maximumValue property
	minimumValue property

	SMPOpenUIDurationDisplayAdapter protocol
	initWithDurationDisplayModel: method
	model:didChangeDuration: method
	model:didChangeFractionalHour: method

	SMPOpenUIDurationDisplayModel protocol
	displayFormat property
	fractionalHourValue property
	value property

	SMPOpenUIDurationEditAdapter protocol
	initWithDurationEditModel: method
	model:didChangeDuration: method
	model:didChangeFractionalHour: method

	SMPOpenUIDurationEditModel protocol
	processInputDuration: method
	processInputFractionalHour: method
	maximumFractionalHourValue property
	maximumValue property
	minimumFractionalHourValue property
	minimumValue property

	SMPOpenUIEmbeddedImageDisplayAdapter protocol
	initWithEmbeddedImageModel: method
	model:didChangeImage: method
	modelDidChangeImageCellSelection: method

	SMPOpenUIEmbeddedImageDisplayModel protocol
	imageCellClickedAtRow:andColumn: method
	isImageCellSelectedAtRow:andColumn: method
	columns property
	highlightSelectedColor property
	image property
	rows property

	SMPOpenUIExternalDataDisplayAdapter protocol
	initWithExternalDataDisplayModel: method
	model:didChangeExternalData: method

	SMPOpenUIExternalDataDisplayModel protocol
	value property

	SMPOpenUIExternalDataEditAdapter protocol
	initWithExternalDataEditModel: method
	model:didChangeExternalData: method

	SMPOpenUIExternalDataEditModel protocol
	processInputExternalData: method

	SMPOpenUIFieldAdapter protocol
	agentryShouldDisplayLabel method
	agentryShouldDisplayValidationFailure method
	autosizeBehavior method
	model:didSetEnabled: method
	model:didSetHyperlinkEnabled: method
	model:didSetValid:withValidationFailureText: method
	model:didSetVisible: method
	model:didUpdateLabel: method
	model:wantsExtensionString: method
	model:wantsViewHeightForWidth: method
	viewForFrame: method

	SMPOpenUIFieldModel protocol
	agentryActionEnableState: method
	agentryString: method
	executeAgentryAction: method
	executeHyperlinkAction method
	requestLayoutHeigh: method
	autosizing property
	enabled property
	hidden property
	hyperlinkEnabled property
	label property

	SMPOpenUIIntegerDisplayAdapter protocol
	initWithIntegerDisplayModel: method
	model:didChangeInteger: method

	SMPOpenUIIntegerDisplayModel protocol
	value property

	SMPOpenUIIntegerEditAdapter protocol
	initWithIntegerEditModel: method
	model:didChangeInteger: method

	SMPOpenUIIntegerEditModel protocol
	processInputInteger: method
	maximumValue property
	minimumValue property

	SMPOpenUILabelDisplayAdapter protocol
	initWithLabelDisplayModel: method
	model:didChangeLabel: method

	SMPOpenUILabelDisplayModel protocol
	value property

	SMPOpenUILocationDisplayAdapter protocol
	initWithLocationDisplayModel: method
	model:didChangeLocation: method

	SMPOpenUILocationDisplayModel protocol
	value property

	SMPOpenUILocationEditAdapter protocol
	initWithLocationEditModel: method
	model:didChangeLocation: method

	SMPOpenUILocationEditModel protocol
	processInputLocation: method

	SMPOpenUIStringDisplayAdapter protocol
	initWithStringDisplayModel: method
	model:didChangeString: method

	SMPOpenUIStringDisplayModel protocol
	allowsCarriageReturn property
	usesWordWrap property
	value property

	SMPOpenUIStringEditAdapter protocol
	initWithStringEditModel: method
	model:didChangeString: method

	SMPOpenUIStringEditModel protocol
	processInputString: method
	isPasswordInput property
	maximumLength property
	minimumLength property

	SMPOpenUITimeDisplayAdapter protocol
	initWithTimeDisplayModel: method
	model:didChangeTime: method

	SMPOpenUITimeDisplayModel protocol
	value property

	SMPOpenUITimeEditAdapter protocol
	initWithTimeEditModel: method
	model:didChangeTime: method

	SMPOpenUITimeEditModel protocol
	processInputTime: method

	SMPOpenUIUnsignedIntegerDisplayAdapter protocol
	initWithUnsignedIntegerDisplayModel: method
	model:didChangeUnsignedInteger: method

	SMPOpenUIUnsignedIntegerDisplayModel protocol
	value property

	SMPOpenUIUnsignedIntegerEditAdapter protocol
	initWithUnsignedIntegerEditModel: method
	model:didChangeUnsignedInteger: method

	SMPOpenUIUnsignedIntegerEditModel protocol
	processInputUnsignedInteger: method
	maximumValue property
	minimumValue property

	SMPOpenUIButtonType enumeration
	SMPOpenUIAutosizeBehavior enumeration
	SMPOpenUIImagePresentation enumeration
	SMPOpenUIDurationDisplayFormat enumeration
	SMPOpenUIActionEnableType enumeration
	SMPOpenUIActionResult enumeration
	SMPOpenUIProcessInputReturn enumeration
	SMPOpenUIImagePosition enumeration

	Agentry OpenUI API for WPF
	IAgentryCollection interface
	IAgentryControlViewModel interface
	DoesAgentryActionExist(string) method
	ExecuteAgentryAction(string) method
	ExecuteHyperlinkAction() method
	GetAgentryString(string) method
	IsAgentryActionEnabled(string) method
	OnPropertyChanged(string) method
	IsAutoSize property
	IsEnabled property
	IsHyperlinkEnabled property
	IsVisible property
	Label property

	IAgentryControlViewModelCollectionDisplay interface
	DisplayedItemAt(int) method
	SelectItem(int) method
	DisplayedItemCount property
	SelectedItem property

	IAgentryControlViewModelDateTime interface
	ProcessInput(DateTime) method

	IAgentryControlViewModelDateTimeDisplay interface
	DateValue property
	TimeValue property
	Value property

	IAgentryControlViewModelDecimal interface
	ProcessInput(double) method

	IAgentryControlViewModelDecimalDisplay interface
	StringValue property

	IAgentryControlViewModelDuration interface
	ProcessInput(TimeSpan) method
	MaximumValue property
	MinimumValue property

	IAgentryControlViewModelDurationDisplay interface
	DurationFormat property
	DurationValue property

	IAgentryControlViewModelFile interface
	ProcessInput(string) method

	IAgentryControlViewModelFileDisplay interface
	FilePath property

	IAgentryControlViewModelImage interface
	IsSelected(int, int) method
	SelectCell(int, int) method
	Columns property
	Image property
	Rows property
	SelectColor property

	IAgentryControlViewModelLabel interface
	IAgentryControlViewModelNumber< T > interface
	ProcessInput(T) method
	Maximum property
	Minimum property

	IAgentryControlViewModelNumberDisplay< T > interface
	NumberValue property

	IAgentryControlViewModelStringDisplay interface
	StringValue property
	WordWrap property

	IAgentryControlViewModelStringEdit interface
	ProcessInput(string) method
	AcceptReturn property
	IsPassword property
	MaximumLength property
	MinimumLength property

	IAgentryData interface
	Collections() method
	Descendant(int) method
	Objects() method
	Properties() method
	Ancestor property
	DataType property
	DescendantCount property
	DisplayName property
	InternalName property
	Root property

	IAgentryObject interface
	IAgentryProperty interface
	ToBoolean() method
	ToDate() method
	ToDateTime() method
	ToDouble() method
	ToInt() method
	ToString() method
	ToTime() method
	ToUInt() method
	PropertyType property

	ICustomAgentryControl interface
	GetExtensionString(string) method
	ClientDisplaysLabel property
	ClientDisplaysValidationError property

	IEnumerable< IAgentryData > class
	AgentryDataType enumeration
	AgentryPropertyType enumeration
	SMPActionResult enumeration
	SMPActionState enumeration
	SMPDurationFormat enumeration
	SMPProcessInputReturn enumeration

	Index

