
Migration

SAP Mobile Platform 3.0

DOCUMENT ID: DC-01-0300-01
LAST REVISED: December 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Migration ...1
Migrating Native OData Applications1

Migrating iOS Native OData Applications2
Migrating Android Native OData Applications6
Migrating Authentication for Native OData HTTP

Clients ..6
Migrating MBO Applications ...7

MBO and OData Architectural Differences7
MBO and OData SDK Differences8
Comparing MBO Models to OData Entity Data

Models ...10
Migrating of Agentry Applications11

Preparing Agentry Applications With Java
System Connections11

Migrating Agentry Applications to SAP® Mobile
Platform 3.0 ...12

Index ..17

Migration iii

Contents

iv SAP Mobile Platform

Migration

You can migrate SAP® Mobile Platform 2.x Agentry applications, MBO applications, and
OData applications to SAP Mobile Platform 3.0.

Although there are compelling reasons to upgrade to SAP Mobile Platform, version 3.0, and
take advantage of the new features, migrating your applications may not always be the correct
solution. If you want to migrate, you can choose between three high-level strategies: redeploy,
redevelop, or redesign.

Redeploy
You can deploy a number of application types to SAP Mobile Platform Server version 3.0:
Agentry, Mobiliser, and SAP Mobile Platform version 2.3. Agentry and Mobiliser
applications are intrinsically supported in the main platform runtime.

No built-in upgrade support exists to migrate applications from version 2.x to version 3.0, so
you must set up parallel infrastructure for a production environment, with a scheduled
switchover. This may require you to redeploy application clients.

Redevelop
You may need to redevelop SAP Mobile Platform 2.x Mobile Business Object (MBO)
applications, both native offline-able applications, and hybrid Web container applications
using online MBOs. You may also need to redevelop applications that use HTTP and on-
device portal (ODP).

The general theme of this approach is to keep certain aspects of an application, such as the
existing client user interface and services, and replace the underlying communication and
mobile-enabling services with the new SAP Mobile Platform 3.0 SDKs and services.

Redesign
Sometimes when taking into consideration the cost-benefit analysis, with respect to applying
migration strategies, it may be more cost effective to start from the beginning. In such cases,
you need only consider migrating back-end services to be OData centric services, with Delta
Token capabilities to support message-based delta synchronization

Migrating Native OData Applications
You can migrate SAP Mobile Platform 2.x native OData applications to SAP Mobile Platform
3.0.

Note:

Migration

Migration 1

• The Messaging Channel is not supported for iOS and Android applications. The Android
and iOS applications work only on the REST SDK, included as part of the standard SAP
Mobile Platform SDK installer.

• The Messaging Channel is supported for BlackBerry, as part of MBO toolkit installer.
• Applications require re-registration using REST SDK when moving from SAP Mobile

Platform 2.x to 3.0.

OData SDK Type in 3.0 iOS Android BlackBerry

Messaging Channel Not supported Not supported Supported (part of
MBO toolkit instal-
ler)

REST SDK Supported (standard
SDK installer)

Supported (standard
SDK installer)

Not supported

Migrating iOS Native OData Applications
Migrate your iOS OData application from version 2.x to SAP Mobile Platform version 3.0.

Overview
This section covers migration of a REST based application from SAP Mobile Platform 2.3.x
to version 3.x. The following aspects of a REST based application are covered:

• Registration
• Request-Response (data fetch)
• Parsing

Registration
There is no change in code and no refactoring is required to migrate an application from 2.3.x
to 3.x. Existing applications based on 2.x will continue to work against the SAP Mobile
Platform 3.0 OData SDK post migration, without any code changes, with just a rebuild. The
deprecated class details in this section is applicable for new application development, where it
is requested or mandatorily required to use the new APIs. To use OData offline and other
features such as batch processing, the new classes are mandatory.

Request-Response
With 3.x, the old SDM API has been deprecated and a new Request API is introduced for
uniformity in API nomenclature. With this change, all SDM* classes and methods have been
replaced with class names removing the SDM tag. The following table lists the old and new
class names. The method names mostly remain the same, unless specified otherwise in this
section. The class names are listed first, followed by the header files to which the classes
belong.

Migration

2 SAP Mobile Platform

Table 1. List of Refactored Classes

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMHttpRequest (SDMHttpRequest.h) Request (Request.h)

SDMRequestBuilder (SDMRequestBuilder.h) RequestBuilder (RequestBuilder.h)

SDMDownloadCache (SDMDownloadCache.h) DownloadCache (DownloadCache.h)

SDMFormDataRequest (SDMFormDataRe-
quest.h)

FormDataRequest (FormDataRequest.h)

SDMNetworkQueue (SDMNetworkQueue.h) NetworkQueue (NetworkQueue.h)

<SDMRequesting>** (SDMRequesting.h) <Requesting> (Requesting.h)

<SDMCacheDelegate> (SDMCacheDelegate.h) <CacheDelegate> (CacheDelegate.h)

<SDMHttpRequestDelegate> (SDMHttpRe-
questDelegate.h)

<RequestDelegate> (RequestDelegate.h)

<SDMProgressDelegate> (SDMProgressDele-
gate.h)

<ProgressDelegate> (ProgressDelegate.h)

SDMConnectivityException (SDMConnectivi-
tyException.h)

ConnectivityException (ConnectivityExcep-
tion.h)

Note: ** corresponds to the protocol refactoring

Parser
All SDM* classes have been refactored with OData* classes. The following table lists the
refactored classes and protocols. All method names remain the same. In this section, all public
header files are listed first with their corresponding refactored names. If the class names in the
file are different and the file contains multiple class names, different legends have been
provided accordingly.

Table 2. List of Refactored Classes

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMFunctionImportResultParser.h ** ODataFunctionImportResultParser.h

SDMGenericParser.h ** ODataGenericParser.h

SDMOData.h * OData.h

SDMODataCollection.h ** ODataCollection.h

Migration

Migration 3

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMODataDataParser.h ** ODataDataParser.h

SDMODataEntitySchema.h ** ODataEntitySchema.h

SDMODataEntry.h ** ODataEntry.h

SDMODataError.h ** ODataError.h

SDMODataErrorXMLParser.h ** ODataErrorXMLParser.h

SDMODataFunctionImport.h # ODataFunctionImport.h

SDMODataFunctionImportParameter ODataFunctionImportParameter

SDMODataFunctionImport ODataFunctionImport

SDMODataIconInfo.h ** ODataIconInfo.h

SDMODataLink.h # ODataLink.h

SDMODataLink ODataLink

SDMODataRelatedLink ODataRelatedLink

SDMODataMediaResourceLink ODataMediaResourceLink

SDMODataActionLink ODataActionLink

SDMODataMetaDocumentParser.h ** ODataMetaDocumentParser.h

SDMODataProperty.h * ODataProperty.h

SDMODataPropertyInfo.h ** ODataPropertyInfo.h

SDMODataPropertyValueFactory.h ** ODataPropertyValueFactory.h

SDMODataPropertyValues.h # ODataPropertyValues.h

SDMODataPropertyValueObject ODataPropertyValueObject

SDMODataPropertyValueInt ODataPropertyValueInt

SDMODataPropertyValueString ODataPropertyValueString

SDMODataPropertyValueComplex ODataPropertyValueComplex

SDMODataPropertyValueDateTime ODataPropertyValueDateTime

SDMODataPropertyValueBoolean ODataPropertyValueBoolean

SDMODataPropertyValueGuid ODataPropertyValueGuid

Migration

4 SAP Mobile Platform

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMODataPropertyValueBinary ODataPropertyValueBinary

SDMODataPropertyValueSingle ODataPropertyValueSingle

SDMODataPropertyValueDouble ODataPropertyValueDouble

SDMODataPropertyValueDecimal ODataPropertyValueDecimal

SDMDuration ODataDuration

SDMODataPropertyValueTime ODataPropertyValueTime

SDMODataPropertyValueTimeOffset ODataPropertyValueTimeOffset

SDMODataSchema.h ** ODataSchema.h

SDMODataServiceDocument.h ** ODataServiceDocument.h

SDMODataServiceDocumentParser.h ** ODataServiceDocumentParser.h

SDMODataWorkspace.h ** ODataWorkspace.h

SDMODataXMLBuilder.h # ODataXMLBuilder.h

SDMODataEntryXML ODataEntryBody

SDMOpenSearchDescription.h # OpenSearchDescription.h

SDMOpenSearchDescriptionURLTemplate OpenSearchDescriptionURLTemplate

SDMOpenSearchDescription OpenSearchDescription

SDMOpenSearchDescriptionXMLParser.h ** OpenSearchDescriptionXMLParser.h

<SDMParserDelegate.h> ## <ODataParserDelegate.h>

SDMParserException.h ** ODataParserException.h

SDMPerformanceUtil.h ** PerformanceUtil.h

SDMSubscriptionXMLBuilder.h # ODataSubscriptionXMLBuilder.h

SDMSubscriptionInfo ODataSubscriptionInfo

SDMSubscriptionXML ODataSubscriptionXML

• * Indicates a header file and not class definition. Renaming the header file in the #import
statement is sufficient.

• ** Indicates that the class name is same as the name of the header file. For example :
SDMODataError.h file has a class definition whose name is SDMODataError.

Migration

Migration 5

• # Indicates that these header files have multiple class definitions in the header file and are
listed below the same, italicized.

• ## Indicates that this corresponds to protocol definition in iOS.

Note: SAP recommends you to update the APIs to the newly re-factored APIs listed. The
deprecated SDM APIs are supported for backward compatibility.

Migrating Android Native OData Applications
Migrate your Android OData application from version 2.x to SAP Mobile Platform version
3.0.

There is no change in code and no refactoring is required to migrate an application from 2.3.x
to 3.x. Existing applications based on 2.x will continue to work against the SAP Mobile
Platform 3.0 OData SDK post migration, without any code changes, with just a rebuild. The
deprecated class details in this section is applicable for new application development, where it
is requested or mandatorily required to use the new APIs. To use OData offline and other
features such as batch processing, the new classes are mandatory.

Table 3. List of Refactored APIs

API in Version 2.x API in Version 3.x

buildSDMODataEntryXML buildODataEntryRequestBody

parseSDMODataServiceDocumentXML parseODataServiceDocument

parseSDMODataSchemaXML parseODataSchema

parseSDMODataEntriesXML parseODataEntries

parseSDMODataOpenSearchDescriptionXML parseODataOpenSearchDescription

parseSDMODataErrorXML parseODataError

parseFunctionImportResultXML parseFunctionImportResult

Note: SAP recommends you to update the APIs to the newly refactored APIs listed. The
deprecated SDM APIs are supported for backward compatibility.

Migrating Authentication for Native OData HTTP Clients
The X.509 User Certificate (CertificateAuthenticationLoginModule) has been removed from
the csi-core.jar library, and is no longer available for use in security profiles.

Developer tasks

Migrate existing Sybase Mobile Platform and SAP Mobile Platform 2.x OData native HTTP
clients to use mutual SSL authentication instead of certificate blob.

Administrator tasks

Migration

6 SAP Mobile Platform

In Management Cockpit, add the X.509 User Certificate authentication provider to your
designated security profile.

Migrating MBO Applications
You can migrate SAP Mobile Platform 2.x Mobile Business Object (MBO) applications to
SAP Mobile Platform 3.0 by redeveloping the MBOs.

Note: For complete details about migrating SAP Mobile Platform 2.x MBO applications to
3.0, see the documentation in the Migration folder on the SAP Mobile Platform 3.0 Ramp-Up
Knowledge Transfer (RKT) Web site.

MBO and OData Architectural Differences
There are a considerable number of architectural differences between SAP Mobile Platform
versions 2.x and 3.x.

This table summarizes the differences between SAP Mobile Platform versions 2.x and 3.0
architectures.

Version 3.0 Version 2.x Notes

No caching database Cache database In a typical SAP Mobile Platform 2.x production en-
vironment, separate hardware runs the cache database,
which is used for differencing and replication-based
MBO synchronizations.

Settings are stored in
database

Settings are stored in
database and files

In version 2.x, some settings are stored in the cluster
database, but most settings are stored in files that must
be synchronized across the cluster.

Note: SAP Mobile Platform 3.0 does not provide clus-
ter support.

Runs in SAP Light
Java Server

Mix of x86 and Java
runtime

The version 2.x servers runs only on Windows-based
machines. Because SAP Mobile Platform 3.0 runs in
SAP Light Java Server, you can install it on a range of
Linux and Unix servers as well.

Service packages
are managed by OS-
Gi

Custom service and
package manage-
ment

This is also a great differentiator making it much easier
to manage the middleware services on an SAP Mobile
Platform 3.0 server. You can also install custom service
packages, allowing you to deploy services to mobile
platforms. These packages are referred to as features
within the platform, and administrators can manage
them.

HTTP/HTTPS Custom protocols One goal of SAP Mobile Platform3 is to standardize on
network protocols

Migration

Migration 7

Version 3.0 Version 2.x Notes

Support for standard
reverse proxies

Some support for re-
verse proxies, but
SAP recommends
Relay Server

Integration services
are deferred to Net-
Weaver Gateway or
Gateway For Java

Integration is part of
MBO design

MBO and OData SDK Differences
The functionality of SAP Mobile Platform 2.x MBO applications differs greatly from SAP
Mobile Platform 3.0 OData SDKs.

Note: SAP Mobile Platform 3.0 implements OData version 2, and includes delta token
support from version 4.

The OData SDK is primarily responsible for user on-boarding and processing OData requests.
Many features that applications require, for example, reading and updating data from back-
end systems, are features of the OData standard; SAP Mobile Platform 3.0 implements a
version of this standard. OData does not define how integration is done, but defines contracts
between clients and servers using Entity Data Models.

MBO primary functions are to define:

• Integration into back-end systems
• How data is cached and synchronized to devices
• Data models for applications

To compare features, we must compare the functional capability of MBOs with the functional
capability of SAP Mobile Platform 3.0 and the OData standard itself.

These are the functional mappings between SAP Mobile Platform 2.x MBOs and the SAP
Mobile Platform 3.0 OData SDK:

MBO OData Description

Defines integration N/A Note: OData defines the contract.

Integration is performed with other tools, such as
Netweaver Gateway or Gateway for Java.

Defines middleware
caching

N/A For performance reasons, SAP Mobile Platform
3.0 does not implement middleware caching.

Migration

8 SAP Mobile Platform

MBO OData Description

Defines synchronization
with delta calculation us-
ing a cache

Uses the delta token
approach for delta
synchronizations.

Since SAP Mobile Platform 3.0 does not use a
middleware cache, enterprise services must im-
plement delta tracking.

Defines data models Defines entity data
models (EDM)

Defines relationships Defines associations

Defines client-side object
relational models via
code generation

N/A Although there are many tools available to gen-
erate client-side object relational models for
OData EDMs, no such tool is included with the
SAP Mobile Platform 3.0 SDK.

Defines a client-side rela-
tional database for offline
lookup

OData cache re-
quires in-memory
lookup.

The SAP Mobile Platform 3.0 SDK does not in-
clude any tools that provide a client-side relation-
al database for offline lookup.

You can store results from OData queries in a
cache, which must be loaded into memory to
search.

Offline Find By quer-

ies

N/A No direct mapping exists. The document cache
provided by the OData SDK does not allow you to
query the data using SQL. OData usually repre-
sents aggregated data and cannot be treated as
normalized data.

Offline custom queries N/A

Online Find By quer-

ies

HTTP GET, $fil-
ter

Multiple MBO sync with
sync groups

HTTP GET, $fil-
ter, $expand

Not a direct mapping; $expand can only re-

trieve associated entities.

Create HTTP POST

Multilevel inserts HTTP POST with
$batch

Update HTTP PUT, PATCH

Delete HTTP DELETE

Migration

Migration 9

MBO OData Description

Static libraries for user
onboarding

HTTP API for creat-
ing application con-
nections

Push notifications via dy-
namic circuit networks
and target-change notifi-
cations

N/A Push notifications must be handled manually

On device relational da-
tabase

N/A No direct mapping exists. The OData SDK pro-
vides a document cache, but you cannot use this to
replace a normalized relational database.

Comparing MBO Models to OData Entity Data Models
Converting an MBO-based application to an OData application requires that you first develop
the OData entity data model (EDM). MBO models are similar to OData EDMs, both are
entity-relationship models.

In SAP Mobile Platform 2.x, you can use the Mobile Application Diagram to create MBOs
from different data sources, such as databases, Web services, and Business Application
Programming Interfaces.

In SAP Mobile Platform 3.0, the entity data model defines the service contract, which is
independent of how the service is implemented. A number of different techniques exist for
using SAP tools to implement services for contracts.

The following table illustrates the general mappings between structures in an MBO diagram
and structures in an OData EDM diagram. There is not always a direct mapping from MBO
model elements to OData model elements. In MBOs, create, read, update, and delete (CRUD)
operations are synchronized database transactions. Since an OData EDM is used as a contract
in an HTTP REST pattern, CRUD operations are performed using HTTP verbs, such as GET,
POST, PUT, DELETE and MERGE.

MBO Model OData Model Notes

MBO Collection Entity Collection

MBO Entity

Attributes Properties

CRUD operations N/A CRUD operations are not part of the OData model;
OData follows the HTTP REST pattern for CRUD.

Other operations Function imports

Migration

10 SAP Mobile Platform

MBO Model OData Model Notes

Relationship Association, navigation Associations are equivalent to MBO relationships, and
incorporate cardinality. To use OData associations,
you must define additional navigation entities.

Migrating of Agentry Applications

Information on migrating your Agentry-based mobile application from either Agentry Mobile
Platform 6.0.x or from SAP Mobile Platform 2.3 to SAP Mobile Platform 3.0 is provided here,
including step-by-step instructions and overall environment needs.

In general this process involves the installation of the SAP Mobile Platform Server 3.0, the
installation of the Agentry Editor plug-in provided in the SAP Mobile Platform SDK 3.0, and
access to the currently installed mobile application from a previous platform version. This
access can be to the published version of the application, or to the exported Agentry
application project form the Agentry Editor.

In addition, for applications with a Java system connection, there is additional information
provided on preparing the mobile application for migration and deployment to the SAP
Mobile Platform Server 3.0.

Preparing Agentry Applications With Java System Connections

When migrating an Agentry application to the SAP® Mobile Platform Server 3.0, it is
necessary to account for changes within the architecture that directly affect how the Java
synchronization logic of the mobile application processes file references. Note if your
application does not include a Java system connection, the information in this section can be
ignored.

In releases of the SAP® Mobile Platform prior to 3.0, as well as in releases of the Agentry
Mobile Platform versions 6.0.x and earlier, the Java synchronization logic could reference file
resources relative to the installation location of the Agentry Server; or within the SAP® Mobile
Platform Runtime, relative to the directory created when an Agentry application was defined
within the runtime environment. The current directory when the Java logic was processed was
always the location of the Agentry Server and file paths to resources to be loaded or processed
by the Java logic were relative. For example, the path .\JavaBe.ini would be valid for a
file named JavaBe.ini, located within folder where thel Agentry Server was located. In
SAP® Mobile Platform version 3.0, the current directory when processing Java logic is no
longer the location of the Agentry Server.

This change is the result of the architectural changes made to the Agentry Server within the
SAP® Mobile Platform Server. When migrating an Agentry mobile application to the SAP®

Mobile Platform version 3.0, it is therefore necessary to make changes to the Java logic and/or
those file resources referenced by the Java logic in order to properly migrate the application.

Migration

Migration 11

The following information provides the two methods in which this can be handled. The first is
to place the referenced files in the main SAP® Mobile Platform Server 3.0 installation
directory. The second is to modify the Java synchronization logic for the application to use the
method findConifgurationFile within the Agentry Java API class
com.syclo.agentry.Server. Of these methods it is the second, modification of the
Java synchronization logic, which is recommended.

Configuration File Placement for Java Logic Access
One option while migrating the Agentry application to the SAP

®
 Mobile Platform version 3.0

is to move all configuration files, along with any other resource files referenced by the Java
logic into the main installation location of the SAP

®
 Mobile Platform Server 3.0. When files

are referenced by a relative path, this location is returned. This requires the directory structure
to match that of the Agentry Server as implemented within the Agentry Mobile Platform 6.0.x
environment, or within the SAP

®
 Mobile Platform Runtime Environment 2.3.

As an example, if a resource file is located in the directory C:\Agentry\ServerProd
\CustomerDLLs\myResource.dll, the same CustomerDLLs directory must be
created in the main SAP

®
 Mobile Platform Server 3.0 directory.

This method is not recommended as it introduces potential maintenance challenges that can be
avoided by modifying the Java synchronization logic.

Modification of File References Within Java Synchronization Logic
The other, and recommended option for migrating an Agentry mobile application to SAP

®

Mobile Platform 3.0 is to modify the Java synchronization logic. This modification consists of
changing any references to configuration files or other resource files within the logic. In each
case where such a file is referenced, it should be replaced with a call to the method
com.syclo.agentry.Server.findConfigurationFile. This method takes
either the file name or relative path and file name as its parameter and returns the full path to
the file. This return value can then be used in the same manner in which the previous relative
file path was used in order to process a configuration file.

When making this change it is necessary to first import all development resources, including
the Java logic, as well as the Agentry application project into the Agentry Editor plug-in
provided in the SAP Mobile SDK 3.0. It is also necessary to update the AJ-API to the version
provided with the SAP Mobile SDK 3.0. This API is contained in the Agentry-v5.jar file
provided with the SAP Mobile SDK installation.

Migrating Agentry Applications to SAP® Mobile Platform 3.0

Prerequisites

The following items must be addressed prior to performing this procedure:

Migration

12 SAP Mobile Platform

• If the mobile application being migrated contains a Java system connection the procedure
on “Preparing Agentry Applications With Java System Connections” must be performed
prior to this procedure.

• You must have access to the currently installed mobile application to be migrated. The
source from which the application will be migrated dictates the components to which you
need access. You will always need access to the Agentry Server or SAP

®
 Mobile Platform

environment upon which the mobile application is deployed. Additionally, if importing
the application definitions from the Agentry application project you will also need to the
Agentry Editor and Eclipse workspace in which the Agentry application project exists.

• The SAP
®
 Mobile Platform 3.0 must be installed and an Agentry application defined

within the Management Cockpit.
• The Agentry Editor plug-in as provided in the SAP Mobile SDK 3.0 must be installed to

Eclipse.

Task

This procedure describes the steps necessary to migrate a mobile application built and/or
currently deployed on the Agentry Mobile Platform version 6.0.x or earlier; or currently
deployed in SAP

®
 Mobile Platform 2.3 and is built on the Agentry archetype within that

system. The procedure to migrate to SAP
®
 Mobile Platform 3.0 is the same.

In this procedure the following terms are used and should be noted to fully understand the
procedure:

• Import Source: The source mobile application or application project within the Agentry
Mobile Platform 6.0.x or SAP

®
 Mobile Platform 2.3 that is to be migrated to SAP

®
 Mobile

Platform 3.0. This can be an Agentry application export file generated by exporting the
project from the Agentry Editor, or the mobile application as it exists on the Agentry
Server.

1. Verify the Agentry Server within the SAP® Mobile Platform Server 3.0 is not running. If it
is running, stop the service using the Management Cockpit before proceeding.

2. If the import source of the mobile application is an Agentry application project within the
Eclipse workspace, use the Agentry Editor plug-in within Eclipse to export the entire
project. This results in a file with extension .agx or .agxz.

3. Open the Eclipse installation containing the Agentry Editor plug-in as provided in the SAP
Mobile SDK 3.0. Once started, open the Agentry perspective.

4. Begin the import process by either right clicking within the Package Explorer view and
selecting Import... or by selecting the menu item File | Import...

5. Expand the item Agentry Project in the dialog now displayed. Then select the proper
import source from the options listed. Continue the import by clicking through import
wizard and selecting the proper options.

Once the import process is complete, the new Agentry application project for the mobile
application exists in the Eclipse workspace and is listed in the Package Explorer view.

Migration

Migration 13

6. If your mobile application includes a Java system connection, the associated Java project
should now be migrated to the Eclipse workspace. If making changes to the Java logic
using the findConfigurationFile method, described in the section “Preparing
Agentry Applications With Java System Connections,” these changes should be made now
and the Java project rebuilt.

7. Next publish the application to the SAP® Mobile Platform Server 3.0, into the
configuration directory of the Agentry application defined there; typically the directory
within the SAP® Mobile Platform Server installation location is as follows:

configuration
\com.sap.mobile.platform.server.agentry.application

8. Next all other resources residing in either the Agentry Server for version 6.0.x, or in the
Agentry application directory within the SAP® Mobile Platform Server 2.3 directory
structure, which are specific to the mobile application must be copied to the SAP® Mobile
Platform Server 3.0. The specific files are different from mobile application to the next. In
general the following are the types of resources to be moved, and which should be
collected in this step in preparation for move. TH next step specifies where the files should
be placed within the SAP® Mobile Platform Server 3.0 installation:

• Application-specific configuration files, plus the Agentry.ini file
• Application-specific Java resources, including .jar files, but do not include the

Agentry-v5.jar or Agentry-v4.jar (if present) files found in the Java folder
of the server’s installation. Any other resources found here should be included as they
are likely to be application-specific. NOTE: If changes were made to the Java logic, the
resulting resources (Jar files and similar) should be those moved to the SAP® Mobile
Platform Server 3.0 installation, not those in the previous implementation of the
application.

• Application-specific DLL files, but do not include DLL’s provided with a standard
Agentry Server installation.

• The contents of the sql directory under the Agentry Server’s installation location. All
files in this directory can be safely added to the ZIP archive.

• Any other files know to be a part of the mobile application but not provided with a
standard Agentry Server installation.

9. Once all file resources have been collected or their locations noted, they must be placed
within the proper location within the SAP® Mobile Platform Server 3.0. The following
locations each pertain to different file resource types:

a) The Agentry.ini file is copied to two locations within the SAP® Mobile Platform
Server 3.0 location. First, it should be copied and renamed to
AgentryServer.ini and placed within the directory Server
\configuration\com.sap.mobile.platform.server.agentry.

b) A second copy of the Agentry.ini file, with the name remaining Agentry.ini,
is copied to the location Server\configuration
\com.sap.mobile.platform.server.agentry.application.

Migration

14 SAP Mobile Platform

c) All Java .jar files are copied to the location Server\configuration
\com.sap.mobile.platform.server.agentry.application\Java

d) All SQL files or command scripts are copied to the location Server
\configuration
\com.sap.mobile.platform.server.agentry.application\sql

e) All application-specific configuration files not referenced by Java system connection
and synchronization logic are copied to the location Server\configuration
\com.sap.mobile.platform.server.agentry.application

f) All application specific configuration files and all other file resources which are
referenced by Java system connection synchronization logic are copied to one of two
locations, depending on the approach taken after following the procedure provided in
the topic “Preparing Agentry Applications With Java System Connections.” If the
recommended option to change the logic to use the API file method was implemented,
copy the Java-referenced files to the location Server\configuration
\com.sap.mobile.platform.server.agentry.application.
Otherwise, these Java-referenced files must be copied to the root directory of the SAP®

Mobile Platform Server 3.0 installation.

10. Start the Agentry Server within the SAP® Mobile Platform Server 3.0 using the
Management Cockpit. When the startup is complete, verify the Agentry Server has
successfully connected with the back end system.

11. At this point the system should be thoroughly tested, ideally with full end-to-end testing
and operations. When this is complete, it is next necessary to upgrade the Agentry Client
installations within the implementation environment in order to migrate all mobile users to
the new environment. This is a standard client device operation consisting of the following
general steps:.

a) Have all users perform a final transmit to verify all information stored on the device has
been updated to the back end system.

b) All users should shut down their clients prior to upgrading them.
c) Install the Agentry Client provide with the SAP® Mobile Platform 3.0 for the client

device type.
d) Each user should start the new Agentry Client, login, and perform an initial transmit.

With the complete of this procedure the mobile application has been successfully migrated to
the SAP

®
 Mobile Platform 3.0 implementation.

Next

At some point after the completion of fully migrating all mobile users to the new environment,
it is possible to uninstall the previous version of the Agentry Client from the mobile devices,
provided there are two separate versions of the client. For platforms, the Agentry Client may
be upgraded in place, resulting in only one Agentry Client executable existing on the device at
any given time.

Migration

Migration 15

Migration

16 SAP Mobile Platform

Index
2.x, migrating to 3.x 6
3.x, migrating from 2.x 6

A
Android OData applications

migrating 6

C
comparing

MBO functionality with OData SDKs 8

D
deploying

applications to SAP Mobile Platform Server 1

E
Entity Data Models

creating 10

F
functionality

comparing MBOs to OData SDKs 8

I
iOS OData applications

migrating 2

M

mapping
MBO data models to EDMs 10

MBO functionality
comparing with OData SDKs 8

MBOs
migrating to OData 7

migrating
Android OData applications 6
iOS OData applications 2
MBO applications 7

migration 1

O

OData SDK functionality
comparing with MBOs 8

R

redesign, as a migration strategy 1
redeveloping

MBO applications for migration 1

S

security migration 6

Index

Migration 17

Index

18 SAP Mobile Platform

	Migration
	Contents
	Migration
	Migrating Native OData Applications
	Migrating iOS Native OData Applications
	Migrating Android Native OData Applications
	Migrating Authentication for Native OData HTTP Clients

	Migrating MBO Applications
	MBO and OData Architectural Differences
	MBO and OData SDK Differences
	Comparing MBO Models to OData Entity Data Models

	Migrating of Agentry Applications
	Preparing Agentry Applications With Java System Connections
	Migrating Agentry Applications to SAP® Mobile Platform 3.0

	Index

